WorldWideScience

Sample records for common wild rice

  1. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes.

    Science.gov (United States)

    Liu, Wen; Ghouri, Fozia; Yu, Hang; Li, Xiang; Yu, Shuhong; Shahid, Muhammad Qasim; Liu, Xiangdong

    2017-01-01

    Common wild rice (Oryza rufipogon Griff.) is an important germplasm for rice breeding, which contains many resistance genes. Re-sequencing provides an unprecedented opportunity to explore the abundant useful genes at whole genome level. Here, we identified the nucleotide-binding site leucine-rich repeat (NBS-LRR) encoding genes by re-sequencing of two wild rice lines (i.e. Huaye 1 and Huaye 2) that were developed from common wild rice. We obtained 128 to 147 million reads with approximately 32.5-fold coverage depth, and uniquely covered more than 89.6% (> = 1 fold) of reference genomes. Two wild rice lines showed high SNP (single-nucleotide polymorphisms) variation rate in 12 chromosomes against the reference genomes of Nipponbare (japonica cultivar) and 93-11 (indica cultivar). InDels (insertion/deletion polymorphisms) count-length distribution exhibited normal distribution in the two lines, and most of the InDels were ranged from -5 to 5 bp. With reference to the Nipponbare genome sequence, we detected a total of 1,209,308 SNPs, 161,117 InDels and 4,192 SVs (structural variations) in Huaye 1, and 1,387,959 SNPs, 180,226 InDels and 5,305 SVs in Huaye 2. A total of 44.9% and 46.9% genes exhibited sequence variations in two wild rice lines compared to the Nipponbare and 93-11 reference genomes, respectively. Analysis of NBS-LRR mutant candidate genes showed that they were mainly distributed on chromosome 11, and NBS domain was more conserved than LRR domain in both wild rice lines. NBS genes depicted higher levels of genetic diversity in Huaye 1 than that found in Huaye 2. Furthermore, protein-protein interaction analysis showed that NBS genes mostly interacted with the cytochrome C protein (Os05g0420600, Os01g0885000 and BGIOSGA038922), while some NBS genes interacted with heat shock protein, DNA-binding activity, Phosphoinositide 3-kinase and a coiled coil region. We explored abundant NBS-LRR encoding genes in two common wild rice lines through genome wide re

  2. Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Fu, Qiang; Zhang, Peijiang; Tan, Lubin; Zhu, Zuofeng; Ma, Dan; Fu, Yongcai; Zhan, Xinchun; Cai, Hongwei; Sun, Chuanqing

    2010-02-01

    Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice production in China, as the recurrent parent, an advanced backcross populations were developed. Through genotyping of 187 SSR markers and investigation of six yield-related traits of two generations (BC(4)F(2) and BC(4)F(4)), a total of 26 QTLs were detected by employing single point analysis and interval mapping in both generations. Of the 26 QTLs, the alleles of 10 (38.5%) QTLs originating from O. rufipogon had shown a beneficial effect for yield-related traits in the 93-11 genetic background. In addition, five QTLs controlling yield and its components were newly identified, indicating that there are potentially novel alleles in Yuanjiang common wild rice. Three regions underling significant QTLs for several yield-related traits were detected on chromosome 1, 7 and 12. The QTL clusters were founded and corresponding agronomic traits of those QTLs showed highly significant correlation, suggesting the pleiotropism or tight linkage. Fine-mapping and cloning of these yield-related QTLs from wild rice would be helpful to elucidating molecular mechanism of rice domestication and rice breeding in the future. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  3. Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Luo, Xiaojin; Wu, Shuang; Tian, Feng; Xin, Xiaoyun; Zha, Xiaojun; Dong, Xianxin; Fu, Yongcai; Wang, Xiangkun; Yang, Jinshui; Sun, Chuanqing

    2011-07-01

    Many rice breeding programs have currently reached yield plateaus as a result of limited genetic variability in parental strains. Dongxiang common wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.) and serves as an important gene pool for the genetic improvement of rice cultivars. In this study, heterotic loci (HLs) associated with six yield-related traits were identified in wild and cultivated rice and investigated using a set of 265 introgression lines (ILs) of O. rufipogon Griff. in the background of the Indica high-yielding cultivar Guichao 2 (O. sativa L.). Forty-two HLs were detected by a single point analysis of mid-parent heterosis values from test cross F(1) offspring, and 30 (71.5%) of these HLs showed significantly positive effects, consistent with the superiority shown by the F(1) test cross population in the six yield-related traits under study. Genetic mapping of hsp11, a locus responsible for the number of spikelets per panicle, confirmed the utility of these HLs. The results indicate that favorable HLs capable of improving agronomic traits are available. The identification of HLs between wild rice and cultivated rice could lead to a new strategy for the application of heterosis in rice breeding. Copyright © 2011. Published by Elsevier Ireland Ltd.

  4. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

    Science.gov (United States)

    Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu

    2015-01-01

    The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.

  5. Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication.

    Science.gov (United States)

    Zhang, Fantao; Xu, Tao; Mao, Linyong; Yan, Shuangyong; Chen, Xiwen; Wu, Zhenfeng; Chen, Rui; Luo, Xiangdong; Xie, Jiankun; Gao, Shan

    2016-04-26

    It is widely accepted that cultivated rice (Oryza sativa L.) was domesticated from common wild rice (Oryza rufipogon Griff.). Compared to other studies which concentrate on rice origin, this study is to genetically elucidate the substantially phenotypic and physiological changes from wild rice to cultivated rice at the whole genome level. Instead of comparing two assembled genomes, this study directly compared the Dongxiang wild rice (DXWR) Illumina sequencing reads with the Nipponbare (O. sativa) complete genome without assembly of the DXWR genome. Based on the results from the comparative genomics analysis, structural variations (SVs) between DXWR and Nipponbare were determined to locate deleted genes which could have been acquired by Nipponbare during rice domestication. To overcome the limit of the SV detection, the DXWR transcriptome was also sequenced and compared with the Nipponbare transcriptome to discover the genes which could have been lost in DXWR during domestication. Both 1591 Nipponbare-acquired genes and 206 DXWR-lost transcripts were further analyzed using annotations from multiple sources. The NGS data are available in the NCBI SRA database with ID SRP070627. These results help better understanding the domestication from wild rice to cultivated rice at the whole genome level and provide a genomic data resource for rice genetic research or breeding. One finding confirmed transposable elements contribute greatly to the genome evolution from wild rice to cultivated rice. Another finding suggested the photophosphorylation and oxidative phosphorylation system in cultivated rice could have adapted to environmental changes simultaneously during domestication.

  6. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    Science.gov (United States)

    Krishnan S, Gopala; Waters, Daniel L E; Henry, Robert J

    2014-01-01

    Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts). Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  7. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    Directory of Open Access Journals (Sweden)

    Gopala Krishnan S

    Full Text Available BACKGROUND: Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. RESULTS: We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts. Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. CONCLUSIONS: Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  8. Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice.

    Science.gov (United States)

    Wang, Hongru; Vieira, Filipe G; Crawford, Jacob E; Chu, Chengcai; Nielsen, Rasmus

    2017-06-01

    The domestication history of rice remains controversial, with multiple studies reaching different conclusions regarding its origin(s). These studies have generally assumed that populations of living wild rice, O. rufipogon , are descendants of the ancestral population that gave rise to domesticated rice, but relatively little attention has been paid to the origins and history of wild rice itself. Here, we investigate the genetic ancestry of wild rice by analyzing a diverse panel of rice genomes consisting of 203 domesticated and 435 wild rice accessions. We show that most modern wild rice is heavily admixed with domesticated rice through both pollen- and seed-mediated gene flow. In fact, much presumed wild rice may simply represent different stages of feralized domesticated rice. In line with this hypothesis, many presumed wild rice varieties show remnants of the effects of selective sweeps in previously identified domestication genes, as well as evidence of recent selection in flowering genes possibly associated with the feralization process. Furthermore, there is a distinct geographical pattern of gene flow from aus , indica , and japonica varieties into colocated wild rice. We also show that admixture from aus and indica is more recent than gene flow from japonica , possibly consistent with an earlier spread of japonica varieties. We argue that wild rice populations should be considered a hybrid swarm, connected to domesticated rice by continuous and extensive gene flow. © 2017 Wang et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Genetic Diversity of Wild Rice Species in Yunnan Province of China

    OpenAIRE

    Zai-quan CHENG; Fu-you YING; Ding-qing LI; Teng-qiong YU; Jian FU; Hui-jun YAN; Qiao-fang ZHONG; Dun-yu ZHANG; Wei-jiao LI; Xing-qi HUANG

    2012-01-01

    Yunnan Province of China is one of the important centers for origin and evolution of cultivated rice worldwide. Wild rice is the ancestor of the cultivated rice. Many elite traits of wild rice have widened the genetic basis in cultivated rice. However, many populations of wild rice species have disappeared in the past few years. Therefore, the current status of wild rice resources should be updated and the genetic diversity of wild rice species should be examined for further germplasm preserv...

  10. LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon).

    Science.gov (United States)

    Dai, Xiaodong; Ding, Younian; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Zhu, Zuofeng; Sun, Xianyou; Sun, Xuewen; Gu, Ping; Cai, Hongwei; Sun, Chuanqing

    2012-10-01

    Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of the important factors for controlling heading date. Common wild rice, the ancestor of cultivated rice, exhibits a late heading date and a more sensitive photoperiodic response than cultivated rice. Here, through map-based cloning, we identified a major quantitative trait loci (QTL) LHD1 (Late Heading Date 1), an allele of DTH8/Ghd8, which controls the late heading date of wild rice and encodes a putative HAP3/NF-YB/CBF-A subunit of the CCAAT-box-binding transcription factor. Sequence analysis revealed that several variants in the coding region of LHD1 were correlated with a late heading date, and a further complementary study successfully rescued the phenotype. These results suggest that a functional site for LHD1 could be among those variants present in the coding region. We also found that LHD1 could down-regulate the expression of several floral transition activators such as Ehd1, Hd3a and RFT1 under long-day conditions, but not under short-day conditions. This indicates that LHD1 may delay flowering by repressing the expression of Ehd1, Hd3a and RFT1 under long-day conditions. © 2012 Institute of Botany, Chinese Academy of Sciences.

  11. Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Lei, Dongyang; Tan, Lubin; Liu, Fengxia; Chen, Liyun; Sun, Chuanqing

    2013-03-01

    Understanding the responses of rice plants to heat-stress is a challenging, yet crucial, endeavor. A set of introgression lines was previously developed using an advanced backcrossing strategy that involved the elite indica cultivar Teqing as the recipient and an accession of common wild rice (Oryza rufipongon Griff.) as the donor. In this study, we evaluated the responses of 90 of these previously developed introgression lines to heat stress. Five quantitative trait loci (QTLs) related to heat response were detected. The phenotypic variances explained by these QTLs ranged from 6.83% to 14.63%, and O. rufipogon-derived alleles at one locus reduced sensitivity to heat. A heat-sensitive introgression line, YIL106, was identified and characterized. Genotypic analysis demonstrated that YIL106 contained four introgressed segments derived from O. rufipongon and two QTLs (qHTS1-1 and qHTS3) related to heat response. Physiological tests, including measurements of chlorophyll content, electrolyte leakage, malondialdehyde content, and soluble sugar content, were consistent with the heat sensitivity observed in YIL106. Ultrastructural analysis of YIL106 mesophyll cells showed that they were severely damaged following heat stress. This suggests that modification of the cell membrane system is a primary response to heat stress in plants. Identification and characterization of the heat-sensitive line YIL106 may facilitate the isolation of genes associated with the response of rice plants to heat stress. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice

    OpenAIRE

    Wang, Hongru; Garrett Vieira, Filipe Jorge; Crawford, Jacob E.; Chu, Chengcai; Nielsen, Rasmus

    2017-01-01

    The domestication history of rice remains controversial, with multiple studies reaching different conclusions regarding its origin(s). These studies have generally assumed that populations of living wild rice, O. rufipogon, are descendants of the ancestral population that gave rise to domesticated rice, but relatively little attention has been paid to the origins and history of wild rice itself. Here, we investigate the genetic ancestry of wild rice by analyzing a diverse panel of rice genome...

  13. ?-Oryzanols of North American Wild Rice (Zizania palustris)

    OpenAIRE

    Aladedunye, Felix; Przybylski, Roman; Rudzinska, Magdalena; Klensporf-Pawlik, Dorota

    2013-01-01

    ?-Oryzanol, a natural mixture of ferulic acid esters of triterpene alcohols and sterols, are an important bioactive components present in rice bran oil. In light of the recent increase in the popularity of wild rice among consumers, and the possibility of a direct relationship between ?-oryzanol composition and its bioactivity, the oryzanol profile of major wild rice (Zizania palustris) grown in North America was studied and compared to regular brown rice (Oryza sativa L.). A total of twenty-...

  14. LABA1, a Domestication Gene Associated with Long, Barbed Awns in Wild Rice.

    Science.gov (United States)

    Hua, Lei; Wang, Diane R; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Xiao, Langtao; Zhu, Zuofeng; Fu, Qiang; Sun, Xianyou; Gu, Ping; Cai, Hongwei; McCouch, Susan R; Sun, Chuanqing

    2015-07-01

    Common wild rice (Oryza rufipogon), the wild relative of Asian cultivated rice (Oryza sativa), flaunts long, barbed awns, which are necessary for efficient propagation and dissemination of seeds. By contrast, O. sativa cultivars have been selected to be awnless or to harbor short, barbless awns, which facilitate seed processing and storage. The transition from long, barbed awns to short, barbless awns was a crucial event in rice domestication. Here, we show that the presence of long, barbed awns in wild rice is controlled by a major gene on chromosome 4, LONG AND BARBED AWN1 (LABA1), which encodes a cytokinin-activating enzyme. A frame-shift deletion in LABA1 of cultivated rice reduces the cytokinin concentration in awn primordia, disrupting barb formation and awn elongation. Sequencing analysis demonstrated low nucleotide diversity and a selective sweep encompassing an ∼800-kb region around the derived laba1 allele in cultivated rice. Haplotype analysis revealed that the laba1 allele originated in the japonica subspecies and moved into the indica gene pool via introgression, suggesting that humans selected for this locus in early rice domestication. Identification of LABA1 provides new insights into rice domestication and also sheds light on the molecular mechanism underlying awn development. © 2015 American Society of Plant Biologists. All rights reserved.

  15. A walk on the wild side: Oryza species as source for rice abiotic stress tolerance.

    Science.gov (United States)

    Menguer, Paloma Koprovski; Sperotto, Raul Antonio; Ricachenevsky, Felipe Klein

    2017-01-01

    Oryza sativa, the common cultivated rice, is one of the most important crops for human consumption, but production is increasingly threatened by abiotic stresses. Although many efforts have resulted in breeding rice cultivars that are relatively tolerant to their local environments, climate changes and population increase are expected to soon call for new, fast generation of stress tolerant rice germplasm, and current within-species rice diversity might not be enough to overcome such needs. The Oryza genus contains other 23 wild species, with only Oryza glaberrima being also domesticated. Rice domestication was performed with a narrow genetic diversity, and the other Oryza species are a virtually untapped genetic resource for rice stress tolerance improvement. Here we review the origin of domesticated Oryza sativa from wild progenitors, the ecological and genomic diversity of the Oryza genus, and the stress tolerance variation observed for wild Oryza species, including the genetic basis underlying the tolerance mechanisms found. The summary provided here is important to indicate how we should move forward to unlock the full potential of these germplasms for rice improvement.

  16. LABA1, a Domestication Gene Associated with Long, Barbed Awns in Wild Rice[OPEN

    Science.gov (United States)

    Hua, Lei; Wang, Diane R.; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Xiao, Langtao; Zhu, Zuofeng; Fu, Qiang; Sun, Xianyou; Gu, Ping; Cai, Hongwei; McCouch, Susan R.; Sun, Chuanqing

    2015-01-01

    Common wild rice (Oryza rufipogon), the wild relative of Asian cultivated rice (Oryza sativa), flaunts long, barbed awns, which are necessary for efficient propagation and dissemination of seeds. By contrast, O. sativa cultivars have been selected to be awnless or to harbor short, barbless awns, which facilitate seed processing and storage. The transition from long, barbed awns to short, barbless awns was a crucial event in rice domestication. Here, we show that the presence of long, barbed awns in wild rice is controlled by a major gene on chromosome 4, LONG AND BARBED AWN1 (LABA1), which encodes a cytokinin-activating enzyme. A frame-shift deletion in LABA1 of cultivated rice reduces the cytokinin concentration in awn primordia, disrupting barb formation and awn elongation. Sequencing analysis demonstrated low nucleotide diversity and a selective sweep encompassing an ∼800-kb region around the derived laba1 allele in cultivated rice. Haplotype analysis revealed that the laba1 allele originated in the japonica subspecies and moved into the indica gene pool via introgression, suggesting that humans selected for this locus in early rice domestication. Identification of LABA1 provides new insights into rice domestication and also sheds light on the molecular mechanism underlying awn development. PMID:26082172

  17. Studies on mineral nutrition and safety of wild rice (Oryza L.).

    Science.gov (United States)

    Jiang, Shuli; Shi, Chunhai; Wu, Jianguo

    2009-01-01

    Mineral element contents of five wild rice were analyzed, including mineral nutrient elements such as phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and selenium (Se), and the potential toxic elements arsenic (As), mercury (Hg), lead (Pb) and cadmium (Cd). The results showed that the contents of K, Mg, Fe, Zn, Cu, Mn and Se in five wild rice materials were much higher than the cultivate variety Zhou 903 in both brown and milled rice. Wild rice also had lower potential toxic element contents of Hg, Pb and Cd compared with Zhou 903 in brown rice and milled rice, respectively. Among five wild rice samples, WR-3 from Uganda had the highest level of P, K, Ca, Na, Mg, Fe, Zn, Mn and Se, and the lowest contents of Hg, Pb and Cd.

  18. Diseases of wild rice

    Science.gov (United States)

    Diseases are much more pronounced in cultivated wild rice than in natural stands, most likely due to the narrower genetic base of the populations, plant stress due to high planting density and floodwater removal prior to harvest, and high relative humidity in the plant canopy. Yield losses occur as ...

  19. Physiological and molecular characterization of Si uptake in wild rice species.

    Science.gov (United States)

    Mitani-Ueno, Namiki; Ogai, Hisao; Yamaji, Naoki; Ma, Jian Feng

    2014-07-01

    Cultivated rice (Oryza sativa) accumulates high concentration of silicon (Si), which is required for its high and sustainable production. High Si accumulation in cultivated rice is achieved by a high expression of both influx (Lsi1) and efflux (Lsi2) Si transporters in roots. Herein, we physiologically investigated Si uptake, isolated and functionally characterized Si transporters in six wild rice species with different genome types. Si uptake by the roots was lower in Oryza rufipogon, Oryza barthii (AA genome), Oryza australiensis (EE genome) and Oryza punctata (BB genome), but similar in Oryza glumaepatula and Oryza meridionalis (AA genome) compared with the cultivated rice (cv. Nipponbare). However, all wild rice species and the cultivated rice showed similar concentration of Si in the shoots when grown in a field. All species with AA genome showed the same amino acid sequence of both Lsi1 and Lsi2 as O. sativa, whereas species with EE and BB genome showed several nucleotide differences in both Lsi1 and Lsi2. However, proteins encoded by these genes also showed transport activity for Si in Xenopus oocyte. The mRNA expression of Lsi1 in all wild rice species was lower than that in the cultivated rice, whereas the expression of Lsi2 was lower in O. rufipogon and O. barthii but similar in other species. Similar cellular localization of Lsi1 and Lsi2 was observed in all wild rice as the cultivated rice. These results indicate that superior Si uptake, the important trait for rice growth, is basically conserved in wild and cultivated rice species. © 2013 Scandinavian Plant Physiology Society.

  20. 7 CFR 1412.62 - Fruit, vegetable, and wild rice acreage reporting violations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Fruit, vegetable, and wild rice acreage reporting... Contract Violations and Reduction in Payments § 1412.62 Fruit, vegetable, and wild rice acreage reporting violations. (a)(1) If an acreage report of fruits, vegetables, or wild rice planted on base acreage of a farm...

  1. Factors Affecting the Distribution of Wild Rice (Zizania palustris) and the Surrounding Macrophyte Community.

    Science.gov (United States)

    Pillsbury, R. W.; McGuire, M.

    2005-05-01

    A recent decline in wild rice wetlands is cause for concern due to its importance as a food source, refuge for wildlife, and cultural significance. Sixty wetlands in Wisconsin and Minnesota (USA) were sampled, with approximately equal numbers displaying dense, moderate and sparse wild rice production. Chemical, physical, and watershed parameters were measured as well as macrophyte densities. Data were analyzed using multivariate statistics (CCA). Moderate levels of phosphorus appear beneficial to the overall success of wild rice, while free-floating macrophytes show an overwhelming positive response to higher levels of P. The distribution of macrophytes bordering wild rice beds is correlated to pH,with Potamogeton robbinsii and filamentous green algae responding most strongly to its increase. Healthy stands of wild rice exhibit a narrow circum-neutral range of pH (6.1-8.0)which is significantly different from the greater range exhibited by sparse wild rice wetlands (6.5-8.5). This pattern was paralleled when considering depth which suggests that deeper wetlands may be more susceptible to wild rice loss. Management of existing wild rice wetlands should focus monitoring on pH, depth, phosphorus concentrations and shore development. We are currently using this data base to locate the best reintroduction sites for wild rice.

  2. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... reinsured policies: Cultivated Wild Rice Crop Provisions. 1. Definitions Approved laboratory. A testing.... Cultivated Wild Rice. A member of the grass family Zizania Palustris L., adapted for growing in man-made... for the crop year. Planted acreage. In addition to the definition contained in the Basic Provisions...

  3. Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus.

    Science.gov (United States)

    Jiang, Chunmiao; Cheng, Zaiquan; Zhang, Cheng; Yu, Tengqiong; Zhong, Qiaofang; Shen, J Qingxi; Huang, Xingqi

    2014-01-01

    The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. This was the first report on proteomic analysis of the three wild rice species

  4. Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice.

    Science.gov (United States)

    Brozynska, Marta; Copetti, Dario; Furtado, Agnelo; Wing, Rod A; Crayn, Darren; Fox, Glen; Ishikawa, Ryuji; Henry, Robert J

    2017-06-01

    The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon-like population, referred to as Taxon A, and O. meridionalis-like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short- and long-read next-generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice (O. sativa) than to the other Australian wild populations. Analysis of 4643 genes in the A genome clade showed that the Australian annual, O. meridionalis, and related perennial taxa have the most divergent (around 3 million years) genome sequences relative to domesticated rice. A test for admixture showed possible introgression into the Australian Taxon A (diverged around 1.6 million years ago) especially from the wild indica/O. nivara clade in Asia. These results demonstrate that northern Australia may be the centre of diversity of the A genome Oryza and suggest the possibility that this might also be the centre of origin of this group and represent an important resource for rice improvement. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Malaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia.

    Science.gov (United States)

    Song, Beng-Kah; Chuah, Tse-Seng; Tam, Sheh May; Olsen, Kenneth M

    2014-10-01

    Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, where wild rice (O. rufipogon) can be found growing in close proximity to cultivated and weedy rice. Using 375 accessions and a combined analysis of 24 neutral SSR loci and two rice domestication genes (sh4, controlling seed shattering, and Bh4, controlling hull colour), we addressed the following questions: (i) What is the relationship of Malaysian weedy rice to domesticated and wild rice, and to weedy rice strains in the USA? (ii) To what extent does the presence of O. rufipogon influence the genetic and phenotypic diversity of Malaysian weeds? (iii) What do the distributions of sh4 and Bh4 alleles and associated phenotypes reveal about the origin and contemporary evolution of Malaysian weedy rice? Our results reveal the following: independent evolutionary origins for Malaysian weeds and US strains, despite their very close phenotypic resemblance; wild-to-weed gene flow in Malaysian weed populations, including apparent adaptive introgression of seed-shattering alleles; and a prominent role for modern Malaysian cultivars in the origin and recent proliferation of Malaysian weeds. These findings suggest that the genetic complexity and adaptability of weedy crop relatives can be profoundly influenced by proximity to reproductively compatible wild and domesticated populations. © 2014 John Wiley & Sons Ltd.

  6. Population Dynamics Among six Major Groups of the Oryza rufipogon Species Complex, Wild Relative of Cultivated Asian Rice.

    Science.gov (United States)

    Kim, HyunJung; Jung, Janelle; Singh, Namrata; Greenberg, Anthony; Doyle, Jeff J; Tyagi, Wricha; Chung, Jong-Wook; Kimball, Jennifer; Hamilton, Ruaraidh Sackville; McCouch, Susan R

    2016-12-01

    Understanding population structure of the wild progenitor of Asian cultivated rice (O. sativa), the Oryza rufipogon species complex (ORSC), is of interest to plant breeders and contributes to our understanding of rice domestication. A collection of 286 diverse ORSC accessions was evaluated for nuclear variation using genotyping-by-sequencing (113,739 SNPs) and for chloroplast variation using Sanger sequencing (25 polymorphic sites). Six wild subpopulations were identified, with 25 % of accessions classified as admixed. Three of the wild groups were genetically and geographically closely related to the O. sativa subpopulations, indica, aus and japonica, and carried O. sativa introgressions; the other three wild groups were genetically divergent, had unique chloroplast haplotypes, and were located at the geographical extremes of the species range. The genetic subpopulations were significantly correlated (r 2  = 0.562) with traditional species designations, O. rufipogon (perennial) and O. nivara (annual), differentiated based on morphology and life history. A wild diversity panel of 95 purified (inbred) accessions was developed for future genetic studies. Our results suggest that the cultivated aus subpopulation is most closely related to an annual wild relative, japonica to a perennial wild relative, and indica to an admixed population of diverse annual and perennial wild ancestors. Gene flow between ORSC and O. sativa is common in regions where rice is cultivated, threatening the identity and diversity of wild ORSC populations. The three geographically isolated ORSC populations harbor variation rarely seen in cultivated rice and provide a unique window into the genetic composition of ancient rice subpopulations.

  7. Bulliform Phytolith Research in Wild and Domesticated Rice Paddy Soil in South China

    OpenAIRE

    Huan, Xiujia; Lu, Houyuan; Wang, Can; Tang, Xiangan; Zuo, Xinxin; Ge, Yong; He, Keyang

    2015-01-01

    Bulliform phytoliths play an important role in researching rice origins as they can be used to distinguish between wild and domesticated rice. Rice bulliform phytoliths are characterized by numerous small shallow fish-scale decorations on the lateral side. Previous studies have shown that domesticated rice has a larger number of these decorations than wild rice and that the number of decorations ≥9 is a useful feature for identifying domesticated rice. However, this standard was established b...

  8. Evaluation of Genetic Diversity and Development of a Core Collection of Wild Rice (Oryza rufipogon Griff.) Populations in China.

    Science.gov (United States)

    Liu, Wen; Shahid, Muhammad Qasim; Bai, Lin; Lu, Zhenzhen; Chen, Yuhong; Jiang, Lan; Diao, Mengyang; Liu, Xiangdong; Lu, Yonggen

    2015-01-01

    Common wild rice (Oryza rufipogon Griff.), the progenitor of Asian cultivated rice (O. sativa L.), is endangered due to habitat loss. The objectives of this research were to evaluate the genetic diversity of wild rice species in isolated populations and to develop a core collection of representative genotypes for ex situ conservation. We collected 885 wild rice accessions from eight geographically distinct regions and transplanted these accessions in a protected conservation garden over a period of almost two decades. We evaluated these accessions for 13 morphological or phenological traits and genotyped them for 36 DNA markers evenly distributed on the 12 chromosomes. The coefficient of variation of quantitative traits was 0.56 and ranged from 0.37 to 1.06. SSR markers detected 206 different alleles with an average of 6 alleles per locus. The mean polymorphism information content (PIC) was 0.64 in all populations, indicating that the marker loci have a high level of polymorphism and genetic diversity in all populations. Phylogenetic analyses based on morphological and molecular data revealed remarkable differences in the genetic diversity of common wild rice populations. The results showed that the Zengcheng, Gaozhou, and Suixi populations possess higher levels of genetic diversity, whereas the Huilai and Boluo populations have lower levels of genetic diversity than do the other populations. Based on their genetic distance, 130 accessions were selected as a core collection that retained over 90% of the alleles at the 36 marker loci. This genetically diverse core collection will be a useful resource for genomic studies of rice and for initiatives aimed at developing rice with improved agronomic traits.

  9. Genomic dissection of small RNAs in wild rice (Oryza rufipogon): lessons for rice domestication.

    Science.gov (United States)

    Wang, Yu; Bai, Xuefei; Yan, Chenghai; Gui, Yiejie; Wei, Xinghua; Zhu, Qian-Hao; Guo, Longbiao; Fan, Longjiang

    2012-11-01

    The lack of a MIRNA set and genome sequence of wild rice (Oryza rufipogon) has prevented us from determining the role of MIRNA genes in rice domestication. In this study, a genome, three small RNA populations and a degradome of O. rufipogon were sequenced by Illumina platform and the expression levels of microRNAs (miRNAs) were investigated by miRNA chips. A de novo O. rufipogon genome was assembled using c. 55× coverage of raw sequencing data and a total of 387 MIRNAs were identified in the O. rufipogon genome based on c. 5.2 million unique small RNA reads from three different tissues of O. rufipogon. Of these, O. rufipogon MIRNAs, 259 were not found in the cultivated rice, suggesting a loss of these MIRNAs in the cultivated rice. We also found that 48 MIRNAs were novel in the cultivated rice, suggesting that they were potential targets of domestication selection. Some miRNAs showed significant expression differences between wild and cultivated rice, suggesting that expression of miRNA could also be a target of domestication, as demonstrated for the miR164 family. Our results illustrated that MIRNA genes, like protein-coding genes, might have been significantly shaped during rice domestication and could be one of the driving forces that contributed to rice domestication. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  10. Competitive and Allelopathic Effects of Wild Rice Accessions (Oryza longistaminata) at Different Growth Stages.

    Science.gov (United States)

    Shen, Shicai; Xu, Gaofeng; Clements, David Roy; Jin, Guimei; Zhang, Fudou; Tao, Dayun; Xu, Peng

    2016-01-01

    The competitive and allelopathic effects of wild rice (Oryza longistaminata) accessions on barnyard grass at different growth stages determined by days after sowing (0, 30, 60 and 90 days) were studied in greenhouse pot experiments. Wild rice accession RL159 exhibited the greatest height and tillering. The weed suppression rates of wild rice accessions OL and F1 on barnyard grass were significantly higher than for other rice accessions, with the lowest being O. sativa cultivar RD23. The highest suppression rates of OL and F1 were 80.23 and 73.96% at barnyard grass growth stages of 90 days and 60 days. At a 90 growth stage, wild rice accessions RL159 and RL169 caused 61.33 and 54.51% inhibition in barnyard grass growth, respectively. Under the same conditions, the competitive inhibition rates of OL, F1, RL159, RL169 and RL219 against barnyard grass were markedly lower than their weed suppressive effects, but were relatively similar for RD23. The allelopathic inhibition of OL and F1 on barnyard grass was significantly higher than other rice accessions. The highest allelopathic rates of OL and F1 were 60.61 and 56.87% at the 0 day growth stage. It is concluded that wild rice accessions OL and F1 exhibited the highest allelopathic activity along with moderate competitive ability against barnyard grass; wild rice accession RL159 had the highest competitive ability and moderate allelopathic activity on barnyard grass. Thus, the three wild rice accessions OL, F1 and RL159 could be used as ideal breeding materials for cultivated rice improvement.

  11. Gene interaction at seed-awning loci in the genetic background of wild rice.

    Science.gov (United States)

    Ikemoto, Mai; Otsuka, Mitsuharu; Thanh, Pham Thien; Phan, Phuong Dang Thai; Ishikawa, Ryo; Ishii, Takashige

    2017-09-12

    Seed awning is one of the important traits for successful propagation in wild rice. During the domestication of rice by ancient humans, plants with awnless seeds may have been selected because long awns hindered collection and handling activities. To investigate domestication of awnless rice, QTL analysis for seed awning was first carried out using backcross recombinant inbred lines between Oryza sativa Nipponbare (recurrent parent) and O. rufipogon W630 (donor parent). Two strong QTLs were detected in the same regions as known major seed-awning loci, An-1 and RAE2. Subsequent causal mutation surveying and fine mapping confirmed that O. rufipogon W630 has functional alleles at both loci. The gene effects and interactions at these loci were examined using two backcross populations with reciprocal genetic backgrounds of O. sativa Nipponbare and O. rufipogon W630. As awn length in wild rice varied among seeds even in the same plant, awn length was measured based on spikelet position. In the genetic background of cultivated rice, the wild alleles at An-1 and RAE2 had awning effects, and plants having both wild homozygous alleles produced awns whose length was about 70% of those of the wild parent. On the other hand, in the genetic background of wild rice, the substitution of cultivated alleles at An-1 and RAE2 contributed little to awn length reduction. These results indicate that the domestication process of awnless seeds was complicated because many genes are involved in awn formation in wild rice.

  12. Radial Oxygen Loss in the Rhizosphere of Wild Rice as a Control On Root Surface Mineral Precipitation

    Science.gov (United States)

    Murphy, K.; Trejo, B.; LaFond-Hudson, S.

    2017-12-01

    Wild rice (Zizania palustris) is an aquatic plant native to the Great Lakes region that is culturally and nutritionally significant for the Ojibwe people of Northern Minnesota. Concern for the future health of wild rice populations has increased amidst ongoing pressures from proposed mining projects that risk sulfate contamination to natural waters. Although sulfate itself is not toxic to wild rice, bacteria living in anoxic sediments use the sulfate as an electron acceptor, converting it to sulfide, which subsequently precipitates in the form of iron-sulfide on the root surface of wild rice. These precipitates are linked to lowered viability of wild rice. Most wetland plants are able to shield against the harmful accumulation of these precipitates through a process known as radial oxygen loss (ROL), in which oxygen leaches from roots into anoxic sediments to form protective iron-oxide plaques. This mechanism, however, had yet to be experimentally confirmed in wild rice. In this study, we eliminated the potential for ROL to occur in wild rice prior to the reproductive phase, and measured the rates of iron-sulfide accumulation on the roots and in associated sediments. We compared these data with the geochemical composition of roots and sediment from wild rice that accumulated iron-sulfide precipitate during the reproductive phase. In doing so, we demonstrate that ROL is indeed a mechanism by which wild rice protects itself against sulfide exposure, and examine the nuances of ROL as it relates to the life cycle of wild rice. The better we understand the vulnerability of wild rice across its life cycle and comparative rates of both toxic and protective precipitate accumulation, the better we can approach wild rice conservation.

  13. Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice.

    Science.gov (United States)

    Thalapati, Sudhakar; Batchu, Anil K; Neelamraju, Sarla; Ramanan, Rajeshwari

    2012-06-01

    Chromosomal segments from wild rice species Oryza rufipogon, introgressed into an elite indica rice restorer line (KMR3) using molecular markers, resulted in significant increase in yield. Here we report the transcriptome analysis of flag leaves and fully emerged young panicles of one of the high yielding introgression lines IL50-7 in comparison to KMR3. A 66-fold upregulated gene Os11Gsk, which showed no transcript in KMR3 was highly expressed in O. rufipogon and IL50-7. A 5-kb genomic region including Os11Gsk and its flanking regions could be PCR amplified only from IL50-7, O. rufipogon, japonica varieties of rice-Nipponbare and Kitaake but not from the indica varieties, KMR3 and Taichung Native-1. Three sister lines of IL50-7 yielding higher than KMR3 showed presence of Os11Gsk, whereas the gene was absent in three other ILs from the same cross having lower yield than KMR3, indicating an association of the presence of Os11Gsk with high yield. Southern analysis showed additional bands in the genomic DNA of O. rufipogon and IL50-7 with Os11Gsk probe. Genomic sequence analysis of ten highly co-expressed differentially regulated genes revealed that two upregulated genes in IL50-7 were derived from O. rufipogon and most of the downregulated genes were either from KMR3 or common to KMR3, IL50-7, and O. rufipogon. Thus, we show that Os11Gsk is a wild rice-derived gene introduced in KMR3 background and increases yield either by regulating expression of functional genes sharing homology with it or by causing epigenetic modifications in the introgression line.

  14. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Chen, Zongxiang; Li, Fuli; Yang, Songnan; Dong, Yibo; Yuan, Qianhua; Wang, Feng; Li, Weimin; Jiang, Ying; Jia, Shirong; Pei, Xinwu

    2013-01-01

    MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change

  15. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff..

    Directory of Open Access Journals (Sweden)

    Zongxiang Chen

    Full Text Available BACKGROUND: MicroRNAs (miRNAs is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. RESULTS: Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2 and one flowering stage (CWR-F2 were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. CONCLUSIONS: This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and

  16. Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation

    Science.gov (United States)

    Jin, Xin; Chen, Yu; Liu, Ping; Li, Chen; Cai, Xingxing; Rong, Jun

    2018-01-01

    Abstract Maintaining genetic integrity is essential for in situ and ex situ conservation of crop wild relative (CWR) species. However, introgression of crop alleles into CWR species/populations may change their genetic structure and diversity, resulting in more invasive weeds or, in contrast, the extinction of endangered populations. To determine crop-wild introgression and its consequences, we examined the genetic structure and diversity of six wild rice (Oryza rufipogon) populations under in situ conservation in China. Thirty-four simple sequence repeat (SSR) and 34 insertion/deletion markers were used to genotype the wild rice populations and two sets of rice cultivars (O. sativa), corresponding to the two types of molecular markers. Shared alleles and STRUCTURE analyses suggested a variable level of crop-wild introgression and admixture. Principal coordinates and cluster analyses indicated differentiation of wild rice populations, which was associated with the spatial distances to cultivated rice fields. The level of overall genetic diversity was comparable between wild rice populations and rice cultivars, but a great number of wild-specific alleles was detected in the wild populations. We conclude based on the results that crop-wild introgression can considerably alter the pattern of genetic structure and relationships of CWR populations. Appropriate measures should be taken for effective in situ conservation of CWR species under the scenario of crop-wild introgression. PMID:29308123

  17. Genetic diversity associated with conservation of endangered Dongxiang wild rice (Oryza rufipogon)

    Science.gov (United States)

    The wild progenitor species (Oryza rufipogon) of Asian cultivated rice (O. sativa) is located in Dongxiang county, China where it is considered the northernmost range worldwide. Nine ex situ and three in situ populations of the Dongxiang wild rice (DXWR) and four groups of modern cultivars were geno...

  18. Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa.

    Science.gov (United States)

    Fuchs, Eric J; Meneses Martínez, Allan; Calvo, Amanda; Muñoz, Melania; Arrieta-Espinoza, Griselda

    2016-01-01

    Wild crop relatives are an important source of genetic diversity for crop improvement. Diversity estimates are generally lacking for many wild crop relatives. The objective of the present study was to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated the likelihood of gene flow between wild and commercial rice species because the latter is commonly sympatric with wild rice populations. Introgression may change wild species by incorporating alleles from domesticated species, increasing the risk of losing original variation. Specimens from all known O. glumaepatula populations in Costa Rica were analyzed with 444 AFLP markers to characterize genetic diversity and structure. We also compared genetic diversity estimates between O. glumaepatula specimens and O. sativa commercial rice. Our results showed that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. Despite the restricted distribution of this species in Costa Rica, populations are fairly large, reducing the effects of drift on genetic diversity. We found a dismissible but significant structure (θ = 0.02 ± 0.001) among populations. A Bayesian structure analysis suggested that some individuals share a significant proportion of their genomes with O. sativa. These results suggest that gene flow from cultivated O. sativa populations may have occurred in the recent past. These results expose an important biohazard: recurrent hybridization may reduce the genetic diversity of this wild rice species. Introgression may transfer commercial traits into O. glumaepatula, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica.

  19. Endophytic Colonization and In Planta Nitrogen Fixation by a Herbaspirillum sp. Isolated from Wild Rice Species

    Science.gov (United States)

    Elbeltagy, Adel; Nishioka, Kiyo; Sato, Tadashi; Suzuki, Hisa; Ye, Bin; Hamada, Toru; Isawa, Tsuyoshi; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2001-01-01

    Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and 15N2 gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis. PMID:11679357

  20. Maple Sugar Harvesting/Wild Rice Harvesting.

    Science.gov (United States)

    Minneapolis Public Schools, MN.

    Comprised of two separate booklets, this resource unit assists elementary teachers in explaining how the Ojibwe people harvest maple sugar and wild rice. The first booklet explains the procedure of tapping the maple trees for sap, preparation for boiling the sap, and the three forms the sugar is made into (granulated, "molded," and…

  1. Mutant-inducing effect of γ-ray irradiation for hybrid rice F1 derived from cross of black glutinous rice x wild rice

    International Nuclear Information System (INIS)

    Mao Dezhi; Tang Yilan

    1998-01-01

    The hybrid rice F 1 plant derived from the back crossing of glutinous rice x wild rice was irradiated with γ-ray. The result of investigation to the induced mutant showed that through the selection and backcross, a black glutinous rice strain with the short stem, cold tolerance and high yield was developed. The analysis of the ability of heredity variance showed that the selection was effective for the husk colour, black glutinous and black Indica rice, but ineffective for the white Indica rice and seed setting

  2. Newly Identified Wild Rice Accessions Conferring High Salt Tolerance Might Use a Tissue Tolerance Mechanism in Leaf

    Science.gov (United States)

    Prusty, Manas R.; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G. Q.; Jena, Kshirod K.

    2018-01-01

    Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na

  3. Interspecific variation of total seed protein in wild rice germplasm using SDS-Page

    International Nuclear Information System (INIS)

    Shah, S.M.A.; Hidayat-ur-Rahman; Abbasi, F.M.; Ashiq, M.; Rabbani, A.M.; Khan, I.A.; Shinwari, Z.K.; Shah, Z.

    2011-01-01

    Variation in seed protein of 14 wild rice species (Oryza spp.) along with cultivated rice species (O. sativa) was studied using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to assess genetic diversity in the rice germplasm. SDS bands were scored as present (1) or absent (0) for protein sample of each genotype. On the basis of cluster analysis, four clusters were identified at a similarity level of 0.85. O. nivara, O. rufipogon and O. sativa with AA genomes constituted the first cluster. The second cluster comprised O. punctata of BB genome and wild rice species of CC genome i.e., O. rhizomatis and O. officinalis. However, it also contained O. barthii and O. glumaepatula of AA genome. O. australiensis with EE genome, and O. latifolia, O. alta and O. grandiglumis having CCDD genomes comprised the third cluster. The fourth cluster consisted of wild rice species, O. brachyantha with EE genome along with two other wild rice species, O. longistaminata and O. meridionalis of AA genome. Overall, on the basis of total seed protein, the grouping pattern of rice genotypes was mostly compatible with their genome status. The results of the present work depicted considerable interspecific genetic variation in the investigated germplasm for total seed protein. Moreover, the results obtained in this study also suggest that analysis of seed protein can also provide a better understanding of genetic affinity of the germplasm. (author)

  4. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    Science.gov (United States)

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  5. Screening and Expression of a Silicon Transporter Gene (Lsi1) in Wild-Type Indica Rice Cultivars

    Science.gov (United States)

    Abiri, Rambod; Kalhori, Nahid; Atabaki, Narges

    2017-01-01

    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties. PMID:28191468

  6. Screening and Expression of a Silicon Transporter Gene (Lsi1 in Wild-Type Indica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Mahbod Sahebi

    2017-01-01

    Full Text Available Silicon (Si is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.

  7. Screening and Expression of a Silicon Transporter Gene (Lsi1) in Wild-Type Indica Rice Cultivars.

    Science.gov (United States)

    Sahebi, Mahbod; Hanafi, Mohamed M; Rafii, M Y; Azizi, Parisa; Abiri, Rambod; Kalhori, Nahid; Atabaki, Narges

    2017-01-01

    Silicon (Si) is one of the most prevalent elements in the soil. It is beneficial for plant growth and development, and it contributes to plant defense against different stresses. The Lsi1 gene encodes a Si transporter that was identified in a mutant Japonica rice variety. This gene was not identified in fourteen Malaysian rice varieties during screening. Then, a mutant version of Lsi1 was substituted for the native version in the three most common Malaysian rice varieties, MR219, MR220, and MR276, to evaluate the function of the transgene. Real-time PCR was used to explore the differential expression of Lsi1 in the three transgenic rice varieties. Silicon concentrations in the roots and leaves of transgenic plants were significantly higher than in wild-type plants. Transgenic varieties showed significant increases in the activities of the enzymes SOD, POD, APX, and CAT; photosynthesis; and chlorophyll content; however, the highest chlorophyll A and B levels were observed in transgenic MR276. Transgenic varieties have shown a stronger root and leaf structure, as well as hairier roots, compared to the wild-type plants. This suggests that Lsi1 plays a key role in rice, increasing the absorption and accumulation of Si, then alters antioxidant activities, and improves morphological properties.

  8. Rice production systems and avian influenza: Interactions between mixed-farming systems, poultry and wild birds

    Science.gov (United States)

    Muzaffar, S.B.; Takekawa, John Y.; Prosser, D.J.; Newman, S.H.; Xiao, X.

    2010-01-01

    Wild waterfowl are the reservoir for avian influenza viruses (AIVs), a family of RNA viruses that may cause mild sickness in waterbirds. Emergence of H5N1, a highly pathogenic avian influenza (HPAI) strain, causing severe disease and mortality in wild birds, poultry and humans, had raised concerns about the role of wild birds in possible transmission of the disease. In this review, the link between rice production systems, poultry production systems, and wild bird ecology is examined to assess the extent to which these interactions could contribute towards the persistence and evolution of HPAI H5N1. The rice (Oryza sativa) and poultry production systems in Asia described, and then migration and movements of wild birds discussed. Mixed farming systems in Asia and wild bird movement and migration patterns create opportunities for the persistence of low pathogenic AIVs in these systems. Nonetheless, there is no evidence of long-term persistence of HPAI viruses (including the H5N1 subtype) in the wild. There are still significant gaps in the understanding of how AIVs circulate in rice systems. A better understanding of persistence of AIVs in rice farms, particularly of poultry origins, is essential in limiting exchange of AIVs between mixed-farming systems, poultry and wild birds.

  9. Chloroplast DNA polymorphism and evolutional relationships between Asian cultivated rice (Oryza sativa) and its wild relatives (O. rufipogon).

    Science.gov (United States)

    Li, W J; Zhang, B; Huang, G W; Kang, G P; Liang, M Z; Chen, L B

    2012-12-17

    We analyzed chloroplast DNA (cpDNA) polymorphism and phylogenic relationships between 6 typical indica rice, 4 japonica rice, 8 javanica rice, and 12 Asian common wild rice (Oryza rufipogon) strains collected from different latitudes in China by comparing polymorphism at 9 highly variable regions. One hundred and forty-four polymorphic bases were detected. The O. rufipogon samples had 117 polymorphic bases, showing rich genetic diversity. One hundred and thirty-one bases at 13 sites were identified with indica/japonica characteristics; they showed differences between the indica and japonica subspecies at these sites. The javanica strains and japonica shared similar bases at these 131 polymorphic sites, suggesting that javanica is closely related to japonica. On the basis of length analyses of the open reading frame (ORF)100 and (ORF)29-tRNA-Cys(GCA) (TrnC(GCA)) fragments, the O. rufipogon strains were classified into indica/japonica subgroups, which was consistent with the results of the phylogenic tree assay based on concatenated datasets. These results indicated that differences in indica and japonica also exist in the cpDNA genome of the O. rufipogon strains. However, these differences demonstrated a certain degree of primitiveness and incompleteness, as an O. rufipogon line may show different indica/ japonica attributes at different sites. Consequently, O. rufipogon cannot be simply classified into the indica/japonica types as O. sativa. Our data support the hypothesis that Asian cultivated rice, O. indica and O. japonica, separately evolved from Asian common wild rice (O. rufipogon) strains, which have different indica-japonica differentiation trends.

  10. Modeling the relationship between water level, wild rice abundance, and waterfowl abundance at a central North American wetland

    Science.gov (United States)

    Aagaard, Kevin; Eash, Josh D.; Ford, Walt; Heglund, Patricia J.; McDowell, Michelle; Thogmartin, Wayne E.

    2018-01-01

    Recent evidence suggests wild rice (Zizania palustris), an important resource for migrating waterfowl, is declining in parts of central North America, providing motivation to rigorously quantify the relationship between waterfowl and wild rice. A hierarchical mixed-effects model was applied to data on waterfowl abundance for 16 species, wild rice stem density, and two measures of water depth (true water depth at vegetation sampling locations and water surface elevation). Results provide evidence for an effect of true water depth (TWD) on wild rice abundance (posterior mean estimate for TWD coefficient, β TWD = 0.92, 95% confidence interval = 0.11—1.74), but not for an effect of wild rice stem density or water surface elevation on local waterfowl abundance (posterior mean values for relevant parameters overlapped 0). Refined protocols for sampling design and more consistent sampling frequency to increase data quality should be pursued to overcome issues that may have obfuscated relationships evaluated here.

  11. Identification of microRNAs in Response to Drought in Common Wild Rice (Oryza rufipogon Griff.) Shoots and Roots.

    Science.gov (United States)

    Zhang, Jing-Wen; Long, Yan; Xue, Man-de; Xiao, Xing-Guo; Pei, Xin-Wu

    2017-01-01

    Drought is the most important factor that limits rice production in drought-prone environments. Plant microRNAs (miRNAs) are involved in biotic and abiotic stress responses. Common wild rice (Oryza rufipogon Griff.) contains abundant drought-resistant genes, which provide an opportunity to explore these excellent resources as contributors to improve rice resistance, productivity, and quality. In this study, we constructed four small RNA libraries, called CL and CR from PEG6000-free samples and DL and DR from PEG6000-treated samples, where 'R' indicates the root tissue and 'L' indicates the shoot tissue. A total of 200 miRNAs were identified to be differentially expressed under the drought-treated conditions (16% PEG6000 for 24 h), and the changes in the miRNA expression profile of the shoot were distinct from those of the root. At the miRNA level, 77 known miRNAs, which belong to 23 families, including 40 up-regulated and 37 down-regulated in the shoot, and 85 known miRNAs in 46 families, including 65 up-regulated and 20 down-regulated in the root, were identified as differentially expressed. In addition, we predicted 26 new miRNA candidates from the shoot and 43 from the root that were differentially expressed during the drought stress. The quantitative real-time PCR analysis results were consistent with high-throughput sequencing data. Moreover, 88 miRNAs that were differentially-expressed were predicted to match with 197 targets for drought-stress. Our results suggest that the miRNAs of O. rufipogon are responsive to drought stress. The differentially expressed miRNAs that are tissue-specific under drought conditions could play different roles in the regulation of the auxin pathway, the flowering pathway, the drought pathway, and lateral root formation. Thus, the present study provides an account of tissue-specific miRNAs that are involved in the drought adaption of O. rufipogon.

  12. Anatomy and Histochemistry of Roots and Shoots in Wild Rice (Zizania latifolia Griseb.

    Directory of Open Access Journals (Sweden)

    Chaodong Yang

    2014-01-01

    Full Text Available Wild rice (Zizania latifolia Griseb. is a famous, perennial, emergent vegetable in China. The current work explores the anatomy and histochemistry of roots, stems, and leaves and the permeability of apoplastic barriers of wild rice. The adventitious roots in wild rice have suberized and lignified endodermis and adjacent, thick-walled cortical layers and suberized and lignified hypodermis, composed of a uniseriate sclerenchyma layer (SC underlying uniseriate exodermis; they also have lysigenous aerenchyma. Stems have a thickened epidermal cuticle, a narrow peripheral mechanical ring (PMR, an outer ring of vascular bundles, and an inner ring of vascular bundles embedded in a multiseriate sclerenchyma ring (SCR. There is evidence of suberin in stem SCR and PMR sclerenchyma cells. Sheathing leaves are characterized by thick cuticles and fibrous bundle sheath extensions. Air spaces in stems and leaves consist of mostly lysigenous aerenchyma and pith cavities in stems. Apoplastic barriers are found in roots and stems.

  13. Fungicide sensitivity in the wild rice pathogen Bipolaris oryzae

    Science.gov (United States)

    In recent years the occurrence of fungal brown spot, caused by Bipolaris oryzae has increased in cultivated wild rice (Zizania palustris) paddies in spite of the use of fungicides. To implement an efficient integrated disease management system, we are exploring whether field isolates have developed ...

  14. Sulfide Generated by Sulfate Reduction is a Primary Controller of the Occurrence of Wild Rice (Zizania palustris) in Shallow Aquatic Ecosystems

    Science.gov (United States)

    Myrbo, A.; Swain, E. B.; Engstrom, D. R.; Coleman Wasik, J.; Brenner, J.; Dykhuizen Shore, M.; Peters, E. B.; Blaha, G.

    2017-11-01

    Field observations suggest that surface water sulfate concentrations control the distribution of wild rice, an aquatic grass (Zizania palustris). However, hydroponic studies show that sulfate is not toxic to wild rice at even unrealistically high concentrations. To determine how sulfate might directly or indirectly affect wild rice, potential wild rice habitat was characterized for 64 chemical and physical variables in over 100 sites spanning a relatively steep climatic and geological gradient in Minnesota. Habitat suitability was assessed by comparing the occurrence of wild rice with the field variables, through binary logistic regression. This analysis demonstrated that sulfide in sediment pore water, generated by the microbial reduction of sulfate that diffuses or advects into the sediment, is the primary control of wild rice occurrence. Water temperature and water transparency independently control the suitability of habitat for wild rice. In addition to generating phytotoxic sulfide, sulfate reduction also supports anaerobic decomposition of organic matter, releasing nutrients that can compound the harm of direct sulfide toxicity. These results are important because they show that increases in sulfate loading to surface water can have multiple negative consequences for ecosystems, even though sulfate itself is relatively benign.

  15. Inhibitory Effects of North American Wild Rice on Monocyte Adhesion and Inflammatory Modulators in Low-Density Lipoprotein Receptor-Knockout Mice.

    Science.gov (United States)

    Moghadasian, Mohammed H; Zhao, Ruozhi; Ghazawwi, Nora; Le, Khuong; Apea-Bah, Franklin B; Beta, Trust; Shen, Garry X

    2017-10-18

    The present study examined the effects of wild rice on monocyte adhesion, inflammatory and fibrinolytic mediators in low-density lipoprotein receptor-knockout (LDLr-KO) mice. Male LDLr-KO mice received a cholesterol (0.06%, w/w)-supplemented diet with or without white or wild rice (60%, w/w) for 20 weeks. White rice significantly increased monocyte adhesion and abundances of monocyte chemoattractant protein-1, tissue necrosis factor-α, intracellular cell adhesion molecule-1, plasminogen activator inhibitor-1, urokinase plasminogen activator (uPA), and uPA receptor in aortae and hearts of LDLr-KO mice compared to the control diet. Wild rice inhibited monocyte adhesion to the aorta, atherosclerosis, and abundances of the inflammatory and fibrinolytic regulators in the cardiovascular tissue of LDLr-KO mice compared to white rice. White or wild rice did not significantly alter the levels of cholesterol, triglycerides, or antioxidant enzymes in plasma. The anti-atherosclerotic effect of wild rice may result from its inhibition on monocyte adhesion and inflammatory modulators in LDLr-KO mice.

  16. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.

  17. Herbivory by resident geese: The loss and recovery of wild rice along the tidal Patuxent River

    Science.gov (United States)

    Haramis, G.M.; Kearns, G.D.

    2007-01-01

    Well known for a fall spectacle of maturing wild rice (Zizania aquatica) and migrant waterbirds, the tidal freshwater marshes of the Patuxent River, Maryland, USA, experienced a major decline in wild rice during the 1990s. We conducted experiments in 1999 and 2000 with fenced exclosures and discovered herbivory by resident Canada geese (Branta canadensis). Grazing by geese eliminated rice outside exclosures, whereas protected plants achieved greater size, density, and produced more panicles than rice occurring in natural stands. The observed loss of rice on the Patuxent River reflects both the sensitivity of this annual plant to herbivory and the destructive nature of an overabundance of resident geese on natural marsh vegetation. Recovery of rice followed 2 management actions: hunting removal of approximately 1,700 geese during a 4-year period and reestablishment of rice through a large-scale fencing and planting program.

  18. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa?

    Science.gov (United States)

    Atwell, Brian J; Wang, Han; Scafaro, Andrew P

    2014-02-01

    Oryza sativa and Oryza glaberrima have been selected to acquire and partition resources efficiently as part of the process of domestication. However, genetic diversity in cultivated rice is limited compared to wild Oryza species, in spite of 120,000 genotypes being held in gene banks. By contrast, there is untapped diversity in the more than 20 wild species of Oryza, some having been collected from just a few coastal locations (e.g. Oryza schlechteri), while others are widely distributed (e.g. Oryza nivara and Oryza rufipogon). The extent of DNA sequence diversity and phenotypic variation is still being established in wild Oryza, with genetic barriers suggesting a vast range of morphologies and function even within species, such as has been demonstrated for Oryza meridionalis. With increasing climate variability and attempts to make more marginal land arable, abiotic and biotic stresses will be managed over the coming decades by tapping into the genetic diversity of wild relatives of O. sativa. To help create a more targeted approach to sourcing wild rice germplasm for abiotic stress tolerance, we have created a climate distribution map by plotting the natural occurrence of all Oryza species against corresponding temperature and moisture data. We then discuss interspecific variation in phenotype and its significance for rice, followed by a discussion of ways to integrate germplasm from wild relatives into domesticated rice. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Effects of different treatments of fly ash and mining soil on growth and antioxidant protection of Indian wild rice.

    Science.gov (United States)

    Bisoi, Sidhanta Sekhar; Mishra, Swati S; Barik, Jijnasa; Panda, Debabrata

    2017-05-04

    The aim of the present study was investigation of the effects of fly ash and mining soil on growth and antioxidant protection of two cultivars of Indian wild rice (Oryza nivara and Oryza rufipogon) for possible phytoremediation and restoration of metal-contaminated site. In this study, Indian wild rice showed significant changes in germination, growth, and biochemical parameters after exposure to different ratio of fly ash and mining soil with garden soil. There was significant reduction of germination, fresh weight, dry weight, leaf chlorophyll content, leaf area, Special Analysis Device Chlorophyll (SPAD) Index, proteins, and activities of antioxidant enzymes in both cultivars of the wild rice grown in 100% fly ash and mining soil compared to the plants grown in 100% garden soil. Results from this study showed that in both cultivars of wild rice, all growth and antioxidant parameters increased when grown in 50% fly ash and mining soil. Taken together, Indian wild rice has the capacity to tolerate 50% of fly ash and mining soil, and can be considered as a good candidate for possible phytoremediation of contaminated soils.

  20. Fine mapping and identification of a novel locus qGL12.2 control grain length in wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Qi, Lan; Ding, Yingbin; Zheng, Xiaoming; Xu, Rui; Zhang, Lizhen; Wang, Yanyan; Wang, Xiaoning; Zhang, Lifang; Cheng, Yunlian; Qiao, Weihua; Yang, Qingwen

    2018-04-19

    A wild rice QTL qGL12.2 for grain length was fine mapped to an 82-kb interval in chromosome 12 containing six candidate genes and none was reported previously. Grain length is an important trait for yield and commercial value in rice. Wild rice seeds have a very slender shape and have many desirable genes that have been lost in cultivated rice during domestication. In this study, we identified a quantitative trait locus, qGL12.2, which controls grain length in wild rice. First, a wild rice chromosome segment substitution line, CSSL41, was selected that has longer glume and grains than does the Oryza sativa indica cultivar, 9311. Next, an F 2 population was constructed from a cross between CSSL41 and 9311. Using the next-generation sequencing combined with bulked-segregant analysis and F 3 recombinants analysis, qGL12.2 was finally fine mapped to an 82-kb interval in chromosome 12. Six candidate genes were found, and no reported grain length genes were found in this interval. Using scanning electron microscopy, we found that CSSL41 cells are significantly longer than those of 9311, but there is no difference in cell widths. These data suggest that qGL12.2 is a novel gene that controls grain cell length in wild rice. Our study provides a new genetic resource for rice breeding and a starting point for functional characterization of the wild rice GL gene.

  1. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression

    Directory of Open Access Journals (Sweden)

    Li Xin

    2012-07-01

    Full Text Available Abstract Background DNA methylation plays important biological roles in plants and animals. To examine the rice genomic methylation landscape and assess its functional significance, we generated single-base resolution DNA methylome maps for Asian cultivated rice Oryza sativa ssp. japonica, indica and their wild relatives, Oryza rufipogon and Oryza nivara. Results The overall methylation level of rice genomes is four times higher than that of Arabidopsis. Consistent with the results reported for Arabidopsis, methylation in promoters represses gene expression while gene-body methylation generally appears to be positively associated with gene expression. Interestingly, we discovered that methylation in gene transcriptional termination regions (TTRs can significantly repress gene expression, and the effect is even stronger than that of promoter methylation. Through integrated analysis of genomic, DNA methylomic and transcriptomic differences between cultivated and wild rice, we found that primary DNA sequence divergence is the major determinant of methylational differences at the whole genome level, but DNA methylational difference alone can only account for limited gene expression variation between the cultivated and wild rice. Furthermore, we identified a number of genes with significant difference in methylation level between the wild and cultivated rice. Conclusions The single-base resolution methylomes of rice obtained in this study have not only broadened our understanding of the mechanism and function of DNA methylation in plant genomes, but also provided valuable data for future studies of rice epigenetics and the epigenetic differentiation between wild and cultivated rice.

  2. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes

    DEFF Research Database (Denmark)

    Xu, Xun; Liu, Xin; Ge, Song

    2012-01-01

    Rice is a staple crop that has undergone substantial phenotypic and physiological changes during domestication. Here we resequenced the genomes of 40 cultivated accessions selected from the major groups of rice and 10 accessions of their wild progenitors (Oryza rufipogon and Oryza nivara) to >15 x...... diversity in cultivated but not wild rice, which represent candidate regions selected during domestication. Some of these variants are associated with important biological features, whereas others have yet to be functionally characterized. The molecular markers we have identified should be valuable...... raw data coverage. We investigated genome-wide variation patterns in rice and obtained 6.5 million high-quality single nucleotide polymorphisms (SNPs) after excluding sites with missing data in any accession. Using these population SNP data, we identified thousands of genes with significantly lower...

  3. Research on the ultrafast fluorescence property of thylakoid membranes of the wild-type and mutant rice

    Science.gov (United States)

    Ren, Zhao-Yu; Xu, Xiao-Ming; Wang, Shui-Cai; Xin, Yue-Yong; He, Jun-Fang; Hou, Xun

    2003-10-01

    A high yielding rice variety mutant (Oryza sativa L., Zhenhui 249) with low chlorophyll b (Chl b) has been discovered in natural fields. It has a quality character controlled by a pair of recessive genes (nuclear gene). The partial loss of Chl b in content affects the efficiency of light harvest in a light harvest complex (LHC), thus producing the difference of the exciting energy transfer and the efficiency of photochemistry conversion between the mutant and wild-type rice in photosynthetic unit. The efficiency of utilizing light energy is higher in the mutant than that in the wild-type rice relatively. For further discussion of the above-mentioned difference and learning about the mechanism of the increase in the photochemical efficiency of the mutant, the pico-second resolution fluorescence spectrum measurement with delay-frame-scanning single photon counting technique is adopted. Thylakoid membranes of the mutant and the wild-type rice are excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. Compared with the time and spectrum property of exciting fluorescence, conclusions of those ultrafast dynamic experiments are: 1) The speeds of the exciting energy transferred in photo-system I are faster than that in photo-system II in both samples. 2) The speeds of the exciting energy transfer of mutant sample are faster than those of the wild-type. This might be one of the major reasons why the efficiency of photosynthesis is higher in mutant than that in the wild-type rice.

  4. Development of Novel Cytoplasmic Male Sterile Source from Dongxiang Wild Rice (Oryza rufipogon

    Directory of Open Access Journals (Sweden)

    Xian-hua SHEN

    2013-09-01

    Full Text Available This study was conducted to develop and characterize a novel cytoplasmic male sterile (CMS source which was identified from Dongxiang wild rice (Oryza rufipogon by crossing Dongxiang wild rice as female with Zhongzao 35, an indica inbred variety, as male and continuous backcrossing with Zhongzao 35. Observation under optical microscope manifested that this novel CMS belonged to typical abortion type with less pollen compared with wild abortive type cytoplasm (CMS-WA. Sequential planting showed that this novel CMS has complete and stable male sterility. Testcross experiment showed that all the 24 tested materials including maintainer and restorer lines of CMS-WA and Honglian type cytoplasm (CMS-HL and other indica inbred varieties are the maintainers with complete maintaining ability, suggesting that this novel CMS has fertility restoration totally different from CMS-WA and CMS-HL and belongs to a novel type of CMS. So far, we only discovered a unique fertility restoration source for this novel CMS. Inheritance analysis showed that the fertility restoration of this CMS was governed by three pairs of independent dominant genes. Prospect for application of this novel CMS system in hybrid rice breeding was also discussed.

  5. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun

    2018-03-15

    Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus

  6. Ethnobotanical investigation of 'wild' food plants used by rice farmers in Kalasin, Northeast Thailand

    NARCIS (Netherlands)

    Cruz Garcia, G.S.; Price, L.L.

    2011-01-01

    Background Wild food plants are a critical component in the subsistence system of rice farmers in Northeast Thailand. One of the important characteristics of wild plant foods among farming households is that the main collection locations are increasingly from anthropogenic ecosystems such as

  7. Identification of phasiRNAs in wild rice (Oryza rufipogon).

    Science.gov (United States)

    Liu, Yang; Wang, Yu; Zhu, Qian-Hao; Fan, Longjiang

    2013-08-01

    Plant miRNAs can trigger the production of phased, secondary siRNAs from either non-coding or protein-coding genes. In this study, at least 864 and 3,961 loci generating 21-nt and 24-nt phased siRNAs (phasiRNAs),respectively, were identified in three tissues from wild rice. Of these phasiRNA-producing loci, or PHAS genes, biogenesis of phasiRNAs in at least 160 of 21-nt and 254 of 24-nt loci could be triggered by interaction with miRNA(s). Developing seeds had more PHAS genes than leaves and roots. Genetic constrain on miRNA-triggered PHAS genes suggests that phasiRNAs might be one of the driving forces contributed to rice domestication.

  8. Toxicity of sulfide to early life stages of wild rice (Zizania palustris).

    Science.gov (United States)

    Fort, Douglas J; Todhunter, Kevin; Fort, Troy D; Mathis, Michael B; Walker, Rachel; Hansel, Mike; Hall, Scott; Richards, Robin; Anderson, Kurt

    2017-08-01

    The sensitivity of wild rice (Zizania palustris) to sulfide is not well understood. Because sulfate in surface waters is reduced to sulfide by anaerobic bacteria in sediments and historical information indicated that 10 mg/L sulfate in Minnesota (USA) surface water reduced Z. palustris abundance, the Minnesota Pollution Control Agency established 10 mg/L sulfate as a water quality criterion in 1973. A 21-d daily-renewal hydroponic study was conducted to evaluate sulfide toxicity to wild rice and the potential mitigation of sulfide toxicity by iron (Fe). The hydroponic design used hypoxic test media for seed and root exposure and aerobic headspace for the vegetative portion of the plant. Test concentrations were 0.3, 1.6, 3.1, 7.8, and 12.5 mg/L sulfide in test media with 0.8, 2.8, and 10.8 mg/L total Fe used to evaluate the impact of iron on sulfide toxicity. Visual assessments (i.e., no plants harvested) of seed activation, mesocotyl emergence, seedling survival, and phytoxicity were conducted 10 d after dark-phase exposure. Each treatment was also evaluated for time to 30% emergence (ET30), total plant biomass, root and shoot lengths, and signs of phytotoxicity at study conclusion (21 d). The results indicate that exposure of developing wild rice to sulfide at ≥3.1 mg sulfide/L in the presence of 0.8 mg/L Fe reduced mesocotyl emergence. Sulfide toxicity was mitigated by the addition of Fe at 2.8 mg/L and 10.8 mg/L relative to the control value of 0.8 mg Fe/L, demonstrating the importance of iron in mitigating sulfide toxicity to wild rice. Ultimately, determination of site-specific sulfate criteria taking into account factors that alter toxicity, including sediment Fe and organic carbon, are necessary. Environ Toxicol Chem 2017;36:2217-2226. © 2017 SETAC. © 2017 SETAC.

  9. Ethnobotanical investigation of 'wild' food plants used by rice farmers in Kalasin, Northeast Thailand

    Directory of Open Access Journals (Sweden)

    Cruz-Garcia Gisella S

    2011-11-01

    Full Text Available Abstract Background Wild food plants are a critical component in the subsistence system of rice farmers in Northeast Thailand. One of the important characteristics of wild plant foods among farming households is that the main collection locations are increasingly from anthropogenic ecosystems such as agricultural areas rather than pristine ecosystems. This paper provides selected results from a study of wild food conducted in several villages in Northeast Thailand. A complete botanical inventory of wild food plants from these communities and surrounding areas is provided including their diversity of growth forms, the different anthropogenic locations were these species grow and the multiplicity of uses they have. Methods Data was collected using focus groups and key informant interviews with women locally recognized as knowledgeable about contemporarily gathered plants. Plant species were identified by local taxonomists. Results A total of 87 wild food plants, belonging to 47 families were reported, mainly trees, herbs (terrestrial and aquatic and climbers. Rice fields constitute the most important growth location where 70% of the plants are found, followed by secondary woody areas and home gardens. The majority of species (80% can be found in multiple growth locations, which is partly explained by villagers moving selected species from one place to another and engaging in different degrees of management. Wild food plants have multiple edible parts varying from reproductive structures to vegetative organs. More than two thirds of species are reported as having diverse additional uses and more than half of them are also regarded as medicine. Conclusions This study shows the remarkable importance of anthropogenic areas in providing wild food plants. This is reflected in the great diversity of species found, contributing to the food and nutritional security of rice farmers in Northeast Thailand.

  10. Signatures of adaptation in the weedy rice genome

    Science.gov (United States)

    Weedy rice is a common problem of by product of domestication that has evolved multiple times from cultivated and wild rice relatives. Here we use whole genome sequences to examine the origin and adaptation of the two major US weedy red rice strains, with a comparison to Chinese weedy red rice. We f...

  11. Phylogeny and biogeography of North-American wild rice (Zizania L.Poaceae)

    Science.gov (United States)

    The wild-rice genus Zizania includes four species disjunctly distributed in eastern Asia and North America, with three species (Z. aquatica, Z. palustris, and Z. texana) in North America and one (Z. latifolia) in eastern Asia. The phylogeny and biogeography of Zizania were explored using sequences o...

  12. A 400-year phytolith-based reconstruction of wild rice (Zizania palustris) abundance from Mud Lake core sediments, Fond du Lac Band of Lake Superior Chippewa Reservation, Minnesota, USA.

    Science.gov (United States)

    Munoz, R.; Caylor, E.; Yost, C. L.; Drake, C.; Ladwig, J. L.; Myrbo, A.; Howes, T.

    2014-12-01

    Wild rice (Zizania palustris L.) is an aquatic grass with spiritual and subsistence significance to Native people of the Great Lakes region of North America. Mud Lake (Mashkiigwaagamaag), located on the Fond du Lac Band of Lake Superior Chippewa Reservation in Carlton County, Minnesota, USA, once supported an extensive population of wild rice (manoomin). However, early 20th century attempts to ditch and drain surrounding wetlands for landuse intensification severely altered the natural hydrological system that supports wild rice. Fond du Lac Resource Management (FDLRM) technicians are currently working to increase the wild rice population in Mud Lake. As part of these efforts, this phytolith study was undertaken to better understand how wild rice abundance has fluctuated over the past 400 years, with particular emphasis on the 19th and 20th centuries. Phytoliths are microscopic opal silica plant remains that are incorporated into soils and lake sediments after the plant-parts that contain them decay. Wild rice produces phytolith morphotypes that are unequivocally diagnostic. Mud Lake core MNMN-MUD11-1C-1P-1 (46°43'38.39"N, 92°42'2.45"W) was piston cored by LacCore (National Lacustrine Core Facility) and FDLRM technicians on 24 May 2011. Initial core descriptions, multi-sensor core logging, phytolith sampling and phytolith extractions were completed during the summer of 2014 at LacCore. Wild rice phytolith identification and quantification was conducted on twelve samples using brightfield microscopy at 400x magnification. Wild rice phytolith concentration values ranged from 68 to 2,300 phytoliths/cm3. Wild rice accumulation rates ranged from 9 to 383 phytoliths/ cm2/yr, peaking in 1952 AD. Wild rice abundance in Mud Lake appears to be influenced by a complex set of variables that include anthropogenic disturbance, climatic events and aquatic plant community succession.

  13. Characterization of seeds of selected wild species of rice (Oryza) stored under high temperature and humidity conditions.

    Science.gov (United States)

    Das, Smruti; Nayak, Monalisa; Patra, B C; Ramakrishnan, B; Krishnan, P

    2010-06-01

    Wild progenitors of rice (Oryza) are an invaluable resource for restoring genetic diversity and incorporating useful traits back into cultivars. Studies were conducted to characterize the biochemical changes, including SDS-PAGE banding pattern of storage proteins in seeds of six wild species (Oryza alta, O. grandiglumis, O. meridionalis, O. nivara, O. officinalis and O. rhizomatis) of rice stored under high temperature (45 degrees C) and humidity (approixmately 100%) for 15 days, which facilitated accelerated deterioration. Under the treated conditions, seeds of different wild rice species showed decrease in per cent germination and concentrations of protein and starch, but increase in conductivity of leachate and content of sugar. The SDS-PAGE analysis of seed proteins showed that not only the total number of bands, but also their intensity in terms of thickness differed for each species under storage. The total number of bands ranged from 11 to 22, but none of the species showed all the bands. Similarity index for protein bands between the control and treated seeds was observed to be least in O. rhizomatis and O. alta, while the indices were 0.7 and 0.625 for O. officinalis and O. nivara, respectively. This study clearly showed that seed deterioration led to distinctive biochemical changes, including the presence or absence as well as altered levels of intensity of proteins. Hence, SDS-PAGE protein banding pattern can be used effectively to characterize deterioration of seeds of different wild species of rice.

  14. A Tribal Story Written in Silica: Using Phytoliths to Research the Effects of Mining on Past Wild Rice (Zizania palustris) Abundance in Sandy Lake, Minnesota

    Science.gov (United States)

    Clarke, I. R.; Jones, M. A.; Yost, C. L.; Drake, C.; Ladwig, J. L.; Myrbo, A.; Howes, T.

    2014-12-01

    Wild rice (Zizania palustris, manoomin) is an emergent aquatic plant that grows annually in the northern Great Lakes region of North America. This region is also rich in iron ore deposits and correspondingly has an extensive history of mining activities. Wild rice no longer grows in some areas where it was previously abundant. Sandy Lake, located in St. Louis County on federally protected lands that are ceded territory of the Fond du Lac Band of Lake Superior Chippewa in Minnesota and downstream of the nearby U.S. Steel Minntac mine, was selected as a test site. This lake has a history of ricing activities by the Ojibwe (Chippewa) People, for whom manoomin has cultural importance. Lake cores were taken on June 17, 2014 by LacCore and FDLRM staff and samples were obtained. This project used phytolith analysis to answer the question of past wild rice presence and abundance in Sandy Lake. Phytoliths are microscopic opal silica deposits produced in some plants. Zizania palustris produces phytolith morphotypes that are unequivocally diagnostic of this species in this region. Microscopic slides were prepared and analyzed for wild rice phytoliths. Concentration values ranged from 25 to 4379 phytoliths per cm3/year, and wild rice accumulation figures ranged from 7 to 789 phytoliths/cm2/year, the maximum values of which occurred in the 1920s and generally declined to the current lowest levels observed. Mining has likely impacted wild rice populations by causing increased sulfate levels and possibly contributing to higher lake levels.

  15. Small brown planthopper resistance loci in wild rice (Oryza officinalis).

    Science.gov (United States)

    Zhang, Weilin; Dong, Yan; Yang, Ling; Ma, Bojun; Ma, Rongrong; Huang, Fudeng; Wang, Changchun; Hu, Haitao; Li, Chunshou; Yan, Chengqi; Chen, Jianping

    2014-06-01

    Host-plant resistance is the most practical and economical approach to control the rice planthoppers. However, up to date, few rice germplasm accessions that are resistant to the all three kinds of planthoppers (1) brown planthopper (BPH; Nilaparvata lugens Stål), (2) the small brown planthopper (SBPH; Laodelphax striatellus Fallen), and (3) the whitebacked planthopper (WBPH, Sogatella furcifera Horvath) have been identified; consequently, the genetic basis for host-plant broad spectrum resistance to rice planthoppers in a single variety has been seldom studied. Here, one wild species, Oryza officinalis (Acc. HY018, 2n = 24, CC), was detected showing resistance to the all three kinds of planthoppers. Because resistance to WBPH and BPH in O. officinalis has previously been reported, the study mainly focused on its SBPH resistance. The SBPH resistance gene(s) was (were) introduced into cultivated rice via asymmetric somatic hybridization. Three QTLs for SBPH resistance detected by the SSST method were mapped and confirmed on chromosomes 3, 7, and 12, respectively. The allelic/non-allelic relationship and relative map positions of the three kinds of planthopper resistance genes in O. officinalis show that the SBPH, WBPH, and BPH resistance genes in O. officinalis were governed by multiple genes, but not by any major gene. The data on the genetics of host-plant broad spectrum resistance to planthoppers in a single accession suggested that the most ideally practical and economical approach for rice breeders is to screen the sources of broad spectrum resistance to planthoppers, but not to employ broad spectrum resistance gene for the management of planthoppers. Pyramiding these genes in a variety can be an effective way for the management of planthoppers.

  16. Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (Oryza meridionalis).

    Science.gov (United States)

    Scafaro, Andrew P; Yamori, Wataru; Carmo-Silva, A Elizabete; Salvucci, Michael E; von Caemmerer, Susanne; Atwell, Brian J

    2012-09-01

    Oryza meridionalis is a wild species of rice, endemic to tropical Australia. It shares a significant genome homology with the common domesticated rice Oryza sativa. Exploiting the fact that the two species are highly related but O. meridionalis has superior heat tolerance, experiments were undertaken to identify the impact of temperature on key events in photosynthesis. At an ambient CO(2) partial pressure of 38 Pa and irradiance of 1500 µmol quanta m(-2) s(-1), the temperature optimum of photosynthesis was 33.7 ± 0.8°C for O. meridionalis, significantly higher than the 30.6 ± 0.7°C temperature optimum of O. sativa. To understand the basis for this difference, we measured gas exchange and rubisco activation state between 20 and 42°C and modeled the response to determine the rate-limiting steps of photosynthesis. The temperature response of light respiration (R(light)) and the CO(2) compensation point in the absence of respiration (Γ(*)) were determined and found to be similar for the two species. C3 photosynthesis modeling showed that despite the difference in susceptibility to high temperature, both species had a similar temperature-dependent limitation to photosynthesis. Both rice species were limited by ribulose-1,5-bisphosphate (RuBP) regeneration at temperatures of 25 and 30°C but became RuBP carboxylation limited at 35 and 40°C. The activation state of rubisco in O. meridionalis was more stable at higher temperatures, explaining its greater heat tolerance compared with O. sativa. Copyright © Physiologia Plantarum 2012.

  17. Wild harvest

    NARCIS (Netherlands)

    Cruz-Garcia, G.S.; Struik, P.C.; Johnson, D.E.

    2016-01-01

    Rice fields provide not only a staple food but are also bio-diverse and multi-functional ecosystems. Wild food plants are important elements of biodiversity in rice fields and are critical components to the subsistence of poor farmers. The spatial and seasonal distribution of wild food plants

  18. Protective potentials of wild rice (Zizania latifolia (Griseb) Turcz) against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats.

    Science.gov (United States)

    Han, Shu-Fen; Zhang, Hong; Zhai, Cheng-Kai

    2012-07-01

    The study evaluates the protective potentials of wild rice against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats. In addition to the rats of low-fat diet group, others animals were exposed to a high-fat/cholesterol diet condition for 8 weeks. The city diet (CD) is based on the diet consumed by urban residents in modern China, which is rich in fat/cholesterol and high in carbohydrates from white rice and processed wheat starch. The chief source of dietary carbohydrates of wild rice diet (WRD) is from Chinese wild rice and other compositions are the same with CD. Rats fed CD showed elevated body and liver organ weights, lipid profiles, free fatty acids (FFA) and leptin comparable with rats fed high-fat/cholesterol diet (HFD) known to induce obesity and hyperlipidaemia in this species. However, rats consuming WRD suppressed the increase of lipid droplets accumulation, FFA, and leptin, and the decrease of lipoprotein lipase and adipose triglyceride lipase. Meanwhile, WRD prevented high-fat/cholesterol diet-induced elevation in protein expression of sterol-regulatory element binding protein-1c, and gene expression of fatty acid synthase and acetyl-CoA carboxylase. These findings indicate that wild rice as a natural food has the potentials of preventing obesity and liver lipotoxicity induced by a high-fat/cholesterol diet in rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression

    DEFF Research Database (Denmark)

    Li, Xin; Zhu, Jingde; Hu, Fengyi

    2012-01-01

    DNA methylation plays important biological roles in plants and animals. To examine the rice genomic methylation landscape and assess its functional significance, we generated single-base resolution DNA methylome maps for Asian cultivated rice Oryza sativa ssp. japonica, indica and their wild rela...

  20. Morphological and Molecular Data Reveal Three Distinct Populations of Indian Wild Rice Oryza rufipogon Griff. Species Complex.

    Science.gov (United States)

    Singh, Balwant; Singh, Nisha; Mishra, Shefali; Tripathi, Kabita; Singh, Bikram P; Rai, Vandna; Singh, Ashok K; Singh, Nagendra K

    2018-01-01

    Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India's huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon , and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated 'Pro-Indica,' 'Pro-Aus,' and 'Mid-Gangetic,' which showed poor correspondence with the morpho - taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the 'Pro-Indica' and 'Pro-Aus' sub-populations across agro-climatic zones, indicating a more

  1. Morphological and Molecular Data Reveal Three Distinct Populations of Indian Wild Rice Oryza rufipogon Griff. Species Complex

    Science.gov (United States)

    Singh, Balwant; Singh, Nisha; Mishra, Shefali; Tripathi, Kabita; Singh, Bikram P.; Rai, Vandna; Singh, Ashok K.; Singh, Nagendra K.

    2018-01-01

    Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India’s huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon, and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated ‘Pro-Indica,’ ‘Pro-Aus,’ and ‘Mid-Gangetic,’ which showed poor correspondence with the morpho-taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the ‘Pro-Indica’ and ‘Pro-Aus’ sub-populations across agro-climatic zones

  2. Yield-enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L.

    Science.gov (United States)

    Gaikwad, Kiran B; Singh, Naveen; Bhatia, Dharminder; Kaur, Rupinder; Bains, Navtej S; Bharaj, Tajinder S; Singh, Kuldeep

    2014-01-01

    Utilization of "hidden genes" from wild species has emerged as a novel option for enrichment of genetic diversity for productivity traits. In rice we have generated more than 2000 lines having introgression from 'A' genome-donor wild species of rice in the genetic background of popular varieties PR114 and Pusa44 were developed. Out of these, based on agronomic acceptability, 318 lines were used for developing rice hybrids to assess the effect of introgressions in heterozygous state. These introgression lines and their recurrent parents, possessing fertility restoration ability for wild abortive (WA) cytoplasm, were crossed with cytoplasmic male sterile (CMS) line PMS17A to develop hybrids. Hybrids developed from recurrent parents were used as checks to compare the performance of 318 hybrids developed by hybridizing alien introgression lines with PMS17A. Seventeen hybrids expressed a significant increase in yield and its component traits over check hybrids. These 17 hybrids were re-evaluated in large-size replicated plots. Of these, four hybrids, viz., ILH299, ILH326, ILH867 and ILH901, having introgressions from O. rufipogon and two hybrids (ILH921 and ILH951) having introgressions from O. nivara showed significant heterosis over parental introgression line, recurrent parents and check hybrids for grain yield-related traits. Alien introgressions were detected in the lines taken as male parents for developing six superior hybrids, using a set of 100 polymorphic simple sequence repeat (SSR) markers. Percent introgression showed a range of 2.24 from in O. nivara to 7.66 from O. rufipogon. The introgressed regions and their putative association with yield components in hybrids is reported and discussed.

  3. Mitochondrial Genome Analysis of Wild Rice (Oryza minuta) and Its Comparison with Other Related Species.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Abdur Rahim; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Shahzad, Raheem; Seo, Chang-Woo; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC genome. O. minuta has the potential to resist against various pathogenic diseases such as bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH). Here, we sequenced and annotated the complete mitochondrial genome of O. minuta. The mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two rRNA genes. The mitochondrial genome organization and the gene content at the nucleotide level are highly similar (89%) to that of O. rufipogon. Comparison with other related species revealed that most of the genes with known function are conserved among the Poaceae members. Similarly, O. minuta mt genome shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolutionary relationship and phylogenetic analysis revealed that O. minuta is more closely related to O. rufipogon than to any other related species. Such studies are essential to understand the evolutionary divergence among species and analyze common gene pools to combat risks in the current scenario of a changing environment.

  4. Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice.

    Science.gov (United States)

    Ishikawa, Ryo; Iwata, Masahide; Taniko, Kenta; Monden, Gotaro; Miyazaki, Naoya; Orn, Chhourn; Tsujimura, Yuki; Yoshida, Shusaku; Ma, Jian Feng; Ishii, Takashige

    2017-01-01

    Zinc (Zn) is one of the essential mineral elements for both plants and humans. Zn deficiency in human is one of the major causes of hidden hunger, a serious health problem observed in many developing countries. Therefore, increasing Zn concentration in edible part is an important issue for improving human Zn nutrition. Here, we found that an Australian wild rice O. meridionalis showed higher grain Zn concentrations compared with cultivated and other wild rice species. The quantitative trait loci (QTL) analysis was then performed to identify the genomic regions controlling grain Zn levels using backcross recombinant inbred lines derived from O. sativa 'Nipponbare' and O. meridionalis W1627. Four QTLs responsible for high grain Zn were detected on chromosomes 2, 9, and 10. The QTL on the chromosome 9 (named qGZn9), which showed the largest effect on grain Zn concentration was confirmed with the introgression line, which had a W1627 chromosomal segment covering the qGZn9 region in the genetic background of O. sativa 'Nipponbare'. Fine mapping of this QTL resulted in identification of two tightly linked loci, qGZn9a and qGZn9b. The candidate regions of qGZn9a and qGZn9b were estimated to be 190 and 950 kb, respectively. Furthermore, we also found that plants having a wild chromosomal segment covering qGZn9a, but not qGZn9b, is associated with fertility reduction. qGZn9b, therefore, provides a valuable allele for breeding rice with high Zn in the grains.

  5. Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice.

    Directory of Open Access Journals (Sweden)

    Ryo Ishikawa

    Full Text Available Zinc (Zn is one of the essential mineral elements for both plants and humans. Zn deficiency in human is one of the major causes of hidden hunger, a serious health problem observed in many developing countries. Therefore, increasing Zn concentration in edible part is an important issue for improving human Zn nutrition. Here, we found that an Australian wild rice O. meridionalis showed higher grain Zn concentrations compared with cultivated and other wild rice species. The quantitative trait loci (QTL analysis was then performed to identify the genomic regions controlling grain Zn levels using backcross recombinant inbred lines derived from O. sativa 'Nipponbare' and O. meridionalis W1627. Four QTLs responsible for high grain Zn were detected on chromosomes 2, 9, and 10. The QTL on the chromosome 9 (named qGZn9, which showed the largest effect on grain Zn concentration was confirmed with the introgression line, which had a W1627 chromosomal segment covering the qGZn9 region in the genetic background of O. sativa 'Nipponbare'. Fine mapping of this QTL resulted in identification of two tightly linked loci, qGZn9a and qGZn9b. The candidate regions of qGZn9a and qGZn9b were estimated to be 190 and 950 kb, respectively. Furthermore, we also found that plants having a wild chromosomal segment covering qGZn9a, but not qGZn9b, is associated with fertility reduction. qGZn9b, therefore, provides a valuable allele for breeding rice with high Zn in the grains.

  6. Ecogeographic variation in the morphology of two Asian wild rice species Oryza nivara and O. ruftipogon.

    NARCIS (Netherlands)

    Banaticla, M.C.N.; Sosef, M.S.M.; McNally, K.L.; Sackville Hamilton, R.; Berg, van den R.G.

    2013-01-01

    To search for variation patterns and diagnostic features between Asian wild rice species, several numerical methods were applied to phenotypic data obtained from 116 accessions representing sympatric populations of Oryza nivara and Oryza rufipogon from tropical continental Asia and O. rufipogon

  7. Rice flakes produced from commercial wild rice: Chemical compositions, vitamin B compounds, mineral and trace element contents and their dietary intake evaluation.

    Science.gov (United States)

    Sumczynski, Daniela; Koubová, Eva; Šenkárová, Lenka; Orsavová, Jana

    2018-10-30

    Non-traditional wild rice flakes were analysed for chemical composition, vitamin B compounds, α-tocopherol, mineral and trace elements. Dietary intakes of vitamins, minerals and trace elements were evaluated using FAO/WHO and Institute of Medicine regulations. Wild rice flakes proved to be significant contributors of pyridoxine, pantothenic and folic acids, niacin, thiamine, chromium, magnesium, manganese, phosphorus, zinc, copper, molybdenum and iron to essential dietary intakes values. Toxic dietary intake values for aluminium, cadmium, tin and mercury were less than 33%, which complies the limits for adults set by FAO/WHO for toxic elements intake related to the body weight of 65 kg for females and 80 kg for males taking 100 g of flakes as a portion. However, concentrations of Hg reaching between 3.67 and 12.20 µg/100 g in flakes exceeded the average Hg value of 0.27-1.90 μg/100 g in cereals consumed in the EU. It has to be respected in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Population Genetic Structure of Cochliobolus miyabeanus on Cultivated Wild Rice (Zizania palustris L.) in Minnesota

    Science.gov (United States)

    Cochliobolus miyabeanus (Bipolaris oryzae) is the causal agent of fungal brown spot (FBS) in wild rice (Zizania palustris L.), an aquatic grass, endemic in Minnesota, Wisconsin, and parts of Canada. Grain yield losses can reach up to 74% when the disease starts at the boot stage and continues until ...

  9. Phylogeography of Asian wild rice, Oryza rufipogon: a genome-wide view.

    Science.gov (United States)

    Huang, Pu; Molina, Jeanmaire; Flowers, Jonathan M; Rubinstein, Samara; Jackson, Scott A; Purugganan, Michael D; Schaal, Barbara A

    2012-09-01

    Asian wild rice (Oryza rufipogon) that ranges widely across the eastern and southern part of Asia is recognized as the direct ancestor of cultivated Asian rice (O. sativa). Studies of the geographic structure of O. rufipogon, based on chloroplast and low-copy nuclear markers, reveal a possible phylogeographic signal of subdivision in O. rufipogon. However, this signal of geographic differentiation is not consistently observed among different markers and studies, with often conflicting results. To more precisely characterize the phylogeography of O. rufipogon populations, a genome-wide survey of unlinked markers, intensively sampled from across the entire range of O. rufipogon is critical. In this study, we surveyed sequence variation at 42 genome-wide sequence tagged sites (STS) in 108 O. rufipogon accessions from throughout the native range of the species. Using Bayesian clustering, principal component analysis and amova, we conclude that there are two genetically distinct O. rufipogon groups, Ruf-I and Ruf-II. The two groups exhibit a clinal variation pattern generally from north-east to south-west. Different from many earlier studies, Ruf-I, which is found mainly in China and the Indochinese Peninsula, shows genetic similarity with one major cultivated rice variety, O. satvia indica, whereas Ruf-II, mainly from South Asia and the Indochinese Peninsula, is not found to be closely related to cultivated rice varieties. The other major cultivated rice variety, O. sativa japonica, is not found to be similar to either O. rufipogon groups. Our results support the hypothesis of a single origin of the domesticated O. sativa in China. The possible role of palaeoclimate, introgression and migration-drift balance in creating this clinal variation pattern is also discussed. © 2012 Blackwell Publishing Ltd.

  10. Long-term balancing selection at the Phosphorus Starvation Tolerance 1 (PSTOL1) locus in wild, domesticated and weedy rice (Oryza).

    Science.gov (United States)

    Vigueira, Cynthia C; Small, Linda L; Olsen, Kenneth M

    2016-04-22

    The ability to grow in phosphorus-depleted soils is an important trait for rice cultivation in many world regions, especially in the tropics. The Phosphorus Starvation Tolerance 1 (PSTOL1) gene has been identified as underlying the ability of some cultivated rice varieties to grow under low-phosphorus conditions; however, the gene is absent from other varieties. We assessed PSTOL1 presence/absence in a geographically diverse sample of wild, domesticated and weedy rice and sequenced the gene in samples where it is present. We find that the presence/absence polymorphism spans cultivated, weedy and wild Asian rice groups. For the subset of samples that carry PSTOL1, haplotype sequences suggest long-term selective maintenance of functional alleles, but with repeated evolution of loss-of-function alleles through premature stops and frameshift mutations. The loss-of-function alleles have evolved convergently in multiple rice species and cultivated rice varieties. Greenhouse assessments of plant growth under low- and high-phosphorus conditions did not reveal significant associations with PSTOL1 genotype variation; however, the striking signature of balancing selection at this locus suggests that further phenotypic characterizations of PSTOL1 allelic variants is warranted and may be useful for crop improvement. These findings suggest balancing selection for both functional and non-functional PSTOL1 alleles that predates and transcends Asian rice domestication, a pattern that may reflect fitness tradeoffs associated with geographical variation in soil phosphorus content.

  11. Study on Analysis of Variance on the indigenous wild and cultivated rice species of Manipur Valley

    Science.gov (United States)

    Medhabati, K.; Rohinikumar, M.; Rajiv Das, K.; Henary, Ch.; Dikash, Th.

    2012-10-01

    The analysis of variance revealed considerable variation among the cultivars and the wild species for yield and other quantitative characters in both the years of investigation. The highly significant differences among the cultivars in year wise and pooled analysis of variance for all the 12 characters reveal that there are enough genetic variabilities for all the characters studied. The existence of genetic variability is of paramount importance for starting a judicious plant breeding programme. Since introduced high yielding rice cultivars usually do not perform well. Improvement of indigenous cultivars is a clear choice for increase of rice production. The genetic variability of 37 rice germplasms in 12 agronomic characters estimated in the present study can be used in breeding programme

  12. The whole chloroplast genome of wild rice (Oryza australiensis).

    Science.gov (United States)

    Wu, Zhiqiang; Ge, Song

    2016-01-01

    The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224  bp, exhibiting a typical circular structure including a pair of 25,776  bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212  bp and a small single-copy region (SSC) of 12,470  bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.

  13. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa.

    Science.gov (United States)

    Hirabayashi, Hideyuki; Sasaki, Kazuhiro; Kambe, Takashi; Gannaban, Ritchel B; Miras, Monaliza A; Mendioro, Merlyn S; Simon, Eliza V; Lumanglas, Patrick D; Fujita, Daisuke; Takemoto-Kuno, Yoko; Takeuchi, Yoshinobu; Kaji, Ryota; Kondo, Motohiko; Kobayashi, Nobuya; Ogawa, Tsugufumi; Ando, Ikuo; Jagadish, Krishna S V; Ishimaru, Tsutomu

    2015-03-01

    A decline in rice (Oryza sativa L.) production caused by heat stress is one of the biggest concerns resulting from future climate change. Rice spikelets are most susceptible to heat stress at flowering. The early-morning flowering (EMF) trait mitigates heat-induced spikelet sterility at the flowering stage by escaping heat stress during the daytime. We attempted to develop near-isogenic lines (NILs) for EMF in the indica-type genetic background by exploiting the EMF locus from wild rice, O. officinalis (CC genome). A stable quantitative trait locus (QTL) for flower opening time (FOT) was detected on chromosome 3. A QTL was designated as qEMF3 and it shifted FOT by 1.5-2.0 h earlier for cv. Nanjing 11 in temperate Japan and cv. IR64 in the Philippine tropics. NILs for EMF mitigated heat-induced spikelet sterility under elevated temperature conditions completing flower opening before reaching 35°C, a general threshold value leading to spikelet sterility. Quantification of FOT of cultivars popular in the tropics and subtropics did not reveal the EMF trait in any of the cultivars tested, suggesting that qEMF3 has the potential to advance FOT of currently popular cultivars to escape heat stress at flowering under future hotter climates. This is the first report to examine rice with the EMF trait through marker-assisted breeding using wild rice as a genetic resource. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. WRKY transcription factor genes in wild rice Oryza nivara.

    Science.gov (United States)

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  15. Are common symbiosis genes required for endophytic rice-rhizobial interactions?

    Science.gov (United States)

    Chen, Caiyan; Zhu, Hongyan

    2013-09-01

    Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.

  16. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.

    Science.gov (United States)

    Yu, Guoqin; Olsen, Kenneth M; Schaal, Barbara A

    2011-01-01

    The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, and starch is a trait that has evolved in response to strong selection during rice domestication. In this study, we have examined six key genes (AGPL2, AGPS2b, SSIIa, SBEIIb, GBSSI, ISA1) in the rice endosperm starch biosynthesis pathway to investigate the evolution of these genes before and after rice domestication. Genome-wide sequence tagged sites data were used as a neutral reference to overcome the problems of detecting selection in species with complex demographic histories such as rice. Five variety groups of Oryza sativa (aus, indica, tropical japonica, temperate japonica, aromatic) and its wild ancestor (O. rufipogon) were sampled. Our results showed evidence of purifying selection at AGPL2 in O. rufipogon and strong evidence of positive selection at GBSSI in temperate japonica and tropical japonica varieties and at GBSSI and SBEIIb in aromatic varieties. All the other genes showed a pattern consistent with neutral evolution in both cultivated rice and its wild ancestor. These results indicate the important role of positive selection in the evolution of starch genes during rice domestication. We discuss the role of SBEIIb and GBSSI in the evolution of starch quality during rice domestication and the power and limitation of detecting selection using genome-wide data as a neutral reference.

  17. Distribution, genetic diversity and potential spatiotemporal scale of alien gene flow in crop wild relatives of rice (Oryza spp.) in Colombia.

    Science.gov (United States)

    Thomas, Evert; Tovar, Eduardo; Villafañe, Carolina; Bocanegra, José Leonardo; Moreno, Rodrigo

    2017-12-01

    Crop wild relatives (CWRs) of rice hold important traits that can contribute to enhancing the ability of cultivated rice (Oryza sativa and O. glaberrima) to produce higher yields, cope with the effects of climate change, and resist attacks of pests and diseases, among others. However, the genetic resources of these species remain dramatically understudied, putting at risk their future availability from in situ and ex situ sources. Here we assess the distribution of genetic diversity of the four rice CWRs known to occur in Colombia (O. glumaepatula, O. alta, O. grandiglumis, and O. latifolia). Furthermore, we estimated the degree of overlap between areas with suitable habitat for cultivated and wild rice, both under current and predicted future climate conditions to assess the potential spatiotemporal scale of potential gene flow from GM rice to its CWRs. Our findings suggest that part of the observed genetic diversity and structure, at least of the most exhaustively sampled species, may be explained by their glacial and post-glacial range dynamics. Furthermore, in assessing the expected impact of climate change and the potential spatiotemporal scale of gene flow between populations of CWRs and GM rice we find significant overlap between present and future suitable areas for cultivated rice and its four CWRs. Climate change is expected to have relatively limited negative effects on the rice CWRs, with three species showing opportunities to expand their distribution ranges in the future. Given (i) the sparse presence of CWR populations in protected areas (ii) the strong suitability overlap between cultivated rice and its four CWRs; and (iii) the complexity of managing and regulating areas to prevent alien gene flow, the first priority should be to establish representative ex situ collections for all CWR species, which currently do not exist. In the absence of studies under field conditions on the scale and extent of gene flow between cultivated rice and its Colombian

  18. The interaction of strigolactones with abscisic acid during the drought response in rice

    KAUST Repository

    Haider, Imran; Andreo-Jimenez, Beatriz; Bruno, Mark; Bimbo, Andrea; Floková , Kristý na; Abuauf, Haneen Waleed Hamza; Otang Ntui, Valentine; Guo, Xiujie; Charnikhova, Tatsiana; Al-Babili, Salim; Bouwmeester, Harro J; Ruyter-Spira, Carolien

    2018-01-01

    Both strigolactones (SLs) and abscisic acid (ABA) biosynthetically originate from carotenoids. Considering their common origin, the interaction of these two hormones at the biosynthetic and/or regulatory level may be anticipated. Here, we show in rice that drought simultaneously induces SL production in the root, and ABA production and the expression of SL biosynthetic genes in the shoot. Under control conditions, the ABA concentration was higher in shoots of the SL biosynthetic rice mutants dwarf10 (d10) and d17 than in wild-type plants, while a similar trend was observed for SL-perception mutant d3. These differences were enhanced under drought. However, drought did not result in an increase in leaf ABA content in rice mutant line d27, carrying a mutation in the gene encoding the first committed enzyme in SL biosynthesis, to the same extent as in the other SL mutants and the wild-type. Accordingly, d10, d17 and d3 lines were more drought tolerant than wild-type plants, whereas d27 displayed decreased tolerance. Finally, over-expression of OsD27 in rice resulted in increased levels of ABA when compared with wild-type plants. We conclude that the SL and ABA pathways are connected with each other through D27, which is playing a crucial role in determining ABA and SL content in rice.

  19. The interaction of strigolactones with abscisic acid during the drought response in rice

    KAUST Repository

    Haider, Imran

    2018-03-09

    Both strigolactones (SLs) and abscisic acid (ABA) biosynthetically originate from carotenoids. Considering their common origin, the interaction of these two hormones at the biosynthetic and/or regulatory level may be anticipated. Here, we show in rice that drought simultaneously induces SL production in the root, and ABA production and the expression of SL biosynthetic genes in the shoot. Under control conditions, the ABA concentration was higher in shoots of the SL biosynthetic rice mutants dwarf10 (d10) and d17 than in wild-type plants, while a similar trend was observed for SL-perception mutant d3. These differences were enhanced under drought. However, drought did not result in an increase in leaf ABA content in rice mutant line d27, carrying a mutation in the gene encoding the first committed enzyme in SL biosynthesis, to the same extent as in the other SL mutants and the wild-type. Accordingly, d10, d17 and d3 lines were more drought tolerant than wild-type plants, whereas d27 displayed decreased tolerance. Finally, over-expression of OsD27 in rice resulted in increased levels of ABA when compared with wild-type plants. We conclude that the SL and ABA pathways are connected with each other through D27, which is playing a crucial role in determining ABA and SL content in rice.

  20. Fine mapping and characterization of BPH27, a brown planthopper resistance gene from wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Huang, D; Qiu, Y; Zhang, Y; Huang, F; Meng, J; Wei, S; Li, R; Chen, B

    2013-01-01

    The brown planthopper (Nilaparvata lugens Stål; BPH) is one of the most serious rice pests worldwide. Growing resistant varieties is the most effective way to manage this insect, and wild rice species are a valuable source of resistance genes for developing resistant cultivars. BPH27 derived from an accession of Guangxi wild rice, Oryza rufipogon Griff. (Accession no. 2183, hereafter named GX2183), was primarily mapped to a 17-cM region on the long arm of the chromosome four. In this study, fine mapping of BPH27 was conducted using two BC(1)F(2) populations derived from introgression lines of GX2183. Insect resistance was evaluated in the BC(1)F(2) populations with 6,010 individual offsprings, and 346 resistance extremes were obtained and employed for fine mapping of BPH27. High-resolution linkage analysis defined the BPH27 locus to an 86.3-kb region in Nipponbare. Regarding the sequence information of rice cultivars, Nipponbare and 93-11, all predicted open reading frames (ORFs) in the fine-mapping region have been annotated as 11 types of proteins, and three ORFs encode disease-related proteins. Moreover, the average BPH numbers showed significant differences in 96-120 h after release in comparisons between the preliminary near-isogenic lines (pre-NILs, lines harboring resistance genes) and BaiR54. BPH growth and development were inhibited and survival rates were lower in the pre-NIL plants compared with the recurrent parent BaiR54. The pre-NIL exhibited 50.7% reductions in population growth rates (PGR) compared to BaiR54. The new development in fine mapping of BPH27 will facilitate the efforts to clone this important resistant gene and to use it in BPH-resistance rice breeding.

  1. Analysis of Rhizome Development in Oryza longistaminata, a Wild Rice Species.

    Science.gov (United States)

    Yoshida, Akiko; Terada, Yasuhiko; Toriba, Taiyo; Kose, Katsumi; Ashikari, Motoyuki; Kyozuka, Junko

    2016-10-01

    Vegetative reproduction is a form of asexual propagation in plants. A wide range of plants develop rhizomes, modified stems that grow underground horizontally, as a means of vegetative reproduction. In rhizomatous species, despite their distinct developmental patterns, both rhizomes and aerial shoots derive from axillary buds. Therefore, it is of interest to understand the basis of rhizome initiation and development. Oryza longistaminata, a wild rice species, develops rhizomes. We analyzed bud initiation and growth of O. longistaminata rhizomes using various methods of morphological observation. We show that, unlike aerial shoot buds that contain a few leaves only, rhizome buds initiate several leaves and bend to grow at right angles to the original rhizome. Rhizomes are maintained in the juvenile phase irrespective of the developmental phase of the aerial shoot. Stem elongation and reproductive transition are tightly linked in the aerial shoots, but are uncoupled in the rhizome. Our findings indicate that developmental programs operate independently in the rhizomes and aerial shoots. Temporal modification of the developmental pathways that are common to rhizomes and aerial shoots may be the source of developmental plasticity. Furthermore, the creation of new developmental systems appears to be necessary for rhizome development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Rice as commodity and anti-commodity

    NARCIS (Netherlands)

    Richards, P.

    2016-01-01

    On the Upper West Africa coast rice belongs to two species — African rice (Oryza glaberrima Steud.) and Asian rice (Oryza sativa L.). African rice was domesticated in the region, perhaps three millennia ago, from a presumed wild ancestor, O. barthii. Asian rice was introduced via trans-Saharan

  3. Nanda-gikendaasowin Naawij Gaa-izhiwebakin Manoomini-zaaga'iganiing: Core-based research by Native students on wild rice lakes in northern Minnesota

    Science.gov (United States)

    Myrbo, A.; Howes, T.; Defoe, R.; Dalbotten, D. M.; Pellerin, H.; McEathron, M.; Ito, E.

    2011-12-01

    Little is known about how local and global environmental changes affect the habitat of wild rice (manoomin in Ojibwe; Zizania sp.). Using transects of sediment cores from wild rice lakes on the Fond du Lac Band of Lake Superior Chippewa Reservation (FDL) in Minnesota, undergraduate student researchers are working to reconstruct the lakes' ecological history in order to better manage future change. Reservation Resource Management personnel and University science mentors work together to develop research questions and mentor small groups of college-age students during short (two-week) and long (ten-week) summer internships. Cores are collected during the winter from the frozen lake surface with "Lake Teams" of mainly Native junior high and high school students attending weekend science camps, who also visit LacCore (the National Lacustrine Core Facility) in Minneapolis to conduct initial core description and basic analyses. At the same time as the Fond du Lac Band gains information about the long-term history and variability of the Reservation's lakes, young Native people are exposed to primary research, natural resources management and academia as occupations, and scientists as people. Scientific results, as well as the results of program evaluation, show clearly that this approach has so far been successful and eye-opening for both students and mentors. Lead-210 dated records of the past ~150 years cover the period of European settlement, logging, and the massive ditching of FDL lakes to convert wetlands to agricultural land. Phytolith, pollen, plant macrofossil, and diatom studies by interns, as well as sediment composition and mass accumulation rate data, show anthropogenic lake level and vegetation fluctuations associated with these activities. Earlier in the record (~10,000 years to ~100 years before present), the natural and slow processes of lake infilling and encroachment of shallow-water vegetation are the dominant processes controlling the ecology of the

  4. The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores

    Directory of Open Access Journals (Sweden)

    Pengyong Zhou

    2018-04-01

    Full Text Available Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA, jasmonoyl-isoleucine conjugate (JA-Ile, ethylene and H2O2 but not salicylic acid. These activated signaling pathways altered the volatile profile of rice plants. White-backed planthopper (WBPH, Sogatella furcifera nymphs and gravid females showed a preference for feeding and/or oviposition on control plants: survival rates were better and more eggs were laid than on bismerthiazol-treated plants. Moreover, bismerthiazol treatment also increased both the parasitism rate of WBPH eggs laid on plants in the field by Anagrus nilaparvatae, and also the resistance of rice to the brown planthopper (BPH Nilaparvata lugens and the striped stem borer (SSB Chilo suppressalis. These findings suggest that the bactericide bismerthiazol can induce the direct and/or indirect resistance of rice to multiple insect pests, and so can be used as a broad-spectrum chemical elicitor.

  5. Jasmonic acid and salicylic acid activate a common defense system in rice.

    Science.gov (United States)

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-06-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice.

  6. Molecular evolution of the rice blast resistance gene Pi-ta in invasive weedy rice in the USA.

    Directory of Open Access Journals (Sweden)

    Seonghee Lee

    Full Text Available The Pi-ta gene in rice has been effectively used to control rice blast disease caused by Magnaporthe oryzae worldwide. Despite a number of studies that reported the Pi-ta gene in domesticated rice and wild species, little is known about how the Pi-ta gene has evolved in US weedy rice, a major weed of rice. To investigate the genome organization of the Pi-ta gene in weedy rice and its relationship to gene flow between cultivated and weedy rice in the US, we analyzed nucleotide sequence variation at the Pi-ta gene and its surrounding 2 Mb region in 156 weedy, domesticated and wild rice relatives. We found that the region at and around the Pi-ta gene shows very low genetic diversity in US weedy rice. The patterns of molecular diversity in weeds are more similar to cultivated rice (indica and aus, which have never been cultivated in the US, rather than the wild rice species, Oryza rufipogon. In addition, the resistant Pi-ta allele (Pi-ta found in the majority of US weedy rice belongs to the weedy group strawhull awnless (SH, suggesting a single source of origin for Pi-ta. Weeds with Pi-ta were resistant to two M. oryzae races, IC17 and IB49, except for three accessions, suggesting that component(s required for the Pi-ta mediated resistance may be missing in these accessions. Signatures of flanking sequences of the Pi-ta gene and SSR markers on chromosome 12 suggest that the susceptible pi-ta allele (pi-ta, not Pi-ta, has been introgressed from cultivated to weedy rice by out-crossing.

  7. Molecular Evolution of the Rice Blast Resistance Gene Pi-ta in Invasive Weedy Rice in the USA

    Science.gov (United States)

    Lee, Seonghee; Jia, Yulin; Jia, Melissa; Gealy, David R.; Olsen, Kenneth M.; Caicedo, Ana L.

    2011-01-01

    The Pi-ta gene in rice has been effectively used to control rice blast disease caused by Magnaporthe oryzae worldwide. Despite a number of studies that reported the Pi-ta gene in domesticated rice and wild species, little is known about how the Pi-ta gene has evolved in US weedy rice, a major weed of rice. To investigate the genome organization of the Pi-ta gene in weedy rice and its relationship to gene flow between cultivated and weedy rice in the US, we analyzed nucleotide sequence variation at the Pi-ta gene and its surrounding 2 Mb region in 156 weedy, domesticated and wild rice relatives. We found that the region at and around the Pi-ta gene shows very low genetic diversity in US weedy rice. The patterns of molecular diversity in weeds are more similar to cultivated rice (indica and aus), which have never been cultivated in the US, rather than the wild rice species, Oryza rufipogon. In addition, the resistant Pi-ta allele (Pi-ta) found in the majority of US weedy rice belongs to the weedy group strawhull awnless (SH), suggesting a single source of origin for Pi-ta. Weeds with Pi-ta were resistant to two M. oryzae races, IC17 and IB49, except for three accessions, suggesting that component(s) required for the Pi-ta mediated resistance may be missing in these accessions. Signatures of flanking sequences of the Pi-ta gene and SSR markers on chromosome 12 suggest that the susceptible pi-ta allele (pi-ta), not Pi-ta, has been introgressed from cultivated to weedy rice by out-crossing. PMID:22043312

  8. A study on compatibilities on transgenic herbicide-resistant rice with wild relatives by using autoradiography of 32P labeled pollen

    International Nuclear Information System (INIS)

    Liu Linli; Qiang Sheng; Song Xiaoling

    2004-01-01

    To evaluate the possibility of gene flow through observation of the sexual compatibilities of transgenic herbicide-resistant rice with wild relative by using isotope tracer to label pollen grains, the experiments on radioactivity, tracer mode, autoradiography film and time were conducted. Better procedure was to label pollen grains of transgenic herbicide-resistant rice by culturing the rice in a 1.48 x 10 7 Bq/L 32 P nutrient liquid, to pollinate the labelled pollen grains on the stigmas of barnyard grass (Echinochloa crusgalli var. mitis), Oryza officinalis and weedy rice (Oryza sativa) respectively, and then 3 hour later, to fix these pistils on a piece of glass plate and cover the film of Luck 400 on it for autoradiography. The autoradiographs show that the tube of the transgenic rice's pollens cannot penetrate the stigma of barnyard grass and arrive at embryo sacs to fertilize, so that the possibility of gene flow between them is the lowest; the tube of the labelled pollens can penetrate the stigma of O officinalis and enter the style but can not arrive at embryo sacs to fertilize, so the possibility of gene flow between them is relatively low; and the pollen tube can arrive at the embryo sacs of the weedy rice, so that the possibility of gene flow is relatively high from transgenic herbicide-resistant rice to weedy rice. (authors)

  9. The puzzle of Italian rice origin and evolution: determining genetic divergence and affinity of rice germplasm from Italy and Asia.

    Directory of Open Access Journals (Sweden)

    Xingxing Cai

    Full Text Available The characterization of genetic divergence and relationships of a set of germplasm is essential for its efficient applications in crop breeding and understanding of the origin/evolution of crop varieties from a given geographical region. As the largest rice producing country in Europe, Italy holds rice germplasm with abundant genetic diversity. Although Italian rice varieties and the traditional ones in particular have played important roles in rice production and breeding, knowledge concerning the origin and evolution of Italian traditional varieties is still limited. To solve the puzzle of Italian rice origin, we characterized genetic divergence and relationships of 348 rice varieties from Italy and Asia based on the polymorphisms of microsatellite fingerprints. We also included common wild rice O. rufipogon as a reference in the characterization. Results indicated relatively rich genetic diversity (H(e = 0.63-0.65 in Italian rice varieties. Further analyses revealed a close genetic relationship of the Italian traditional varieties with those from northern China, which provides strong genetic evidence for tracing the possible origin of early established rice varieties in Italy. These findings have significant implications for the rice breeding programs, in which appropriate germplasm can be selected from a given region and utilized for transferring unique genetic traits based on its genetic diversity and evolutionary relationships.

  10. Growth promotion and inhibition of the Amazonian wild rice species Oryza grandiglumis to survive flooding.

    Science.gov (United States)

    Okishio, Takuma; Sasayama, Daisuke; Hirano, Tatsuya; Akimoto, Masahiro; Itoh, Kazuyuki; Azuma, Tetsushi

    2014-09-01

    In Asian cultivated rice (Oryza sativa), distinct mechanisms to survive flooding are activated in two groups of varieties. Submergence-tolerant rice varieties possessing the SUBMERGENCE1A (SUB1A) gene display reduced growth during flash floods at the seedling stage and resume growth after the flood recedes, whereas deepwater rice varieties possessing the SNORKEL1 (SK1) and SNORKEL2 (SK2) genes display enhanced growth based on internodal elongation during prolonged submergence at the mature stage. In this study, we investigated the occurrence of these growth responses to submergence in the wild rice species Oryza grandiglumis, which is native to the Amazon floodplains. When subjected to gradual submergence, adult plants of O. grandiglumis accessions showed enhanced internodal elongation with rising water level and their growth response closely resembled that of deepwater varieties of O. sativa with high floating capacity. On the other hand, when subjected to complete submergence, seedlings of O. grandiglumis accessions displayed reduced shoot growth and resumed normal growth after desubmergence, similar to the response of submergence-tolerant varieties of O. sativa. Neither SUB1A nor the SK genes were detected in the O. grandiglumis accessions. These results indicate that the O. grandiglumis accessions are capable of adapting successfully to flooding by activating two contrasting mechanisms as the situation demands and that each mechanism of adaptation to flooding is not mediated by SUB1A or the SK genes.

  11. 29 CFR 780.114 - Wild commodities.

    Science.gov (United States)

    2010-07-01

    ... Agricultural Or Horticultural Commodities § 780.114 Wild commodities. Employees engaged in the gathering or harvesting of wild commodities such as mosses, wild rice, burls and laurel plants, the trapping of wild... 29 Labor 3 2010-07-01 2010-07-01 false Wild commodities. 780.114 Section 780.114 Labor Regulations...

  12. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China.

    Science.gov (United States)

    Yuan, Zhi-Lin; Zhang, Chu-Long; Lin, Fu-Cheng; Kubicek, Christian P

    2010-03-01

    Rice (Oryza sativa L.) is, on a global scale, one of the most important food crops. Although endophytic fungi and bacteria associated with rice have been investigated, little is known about the endophytic fungi of wild rice (Oryza granulate) in China. Here we studied the root endophytic mycobiota residing in roots of O. granulate by the use of an integrated approach consisting of microscopy, cultivation, ecological indices, and direct PCR. Microscopy confirmed the ubiquitousness of dark septate endophytes (DSEs) and sclerotium-like structures in root tissues. Isolations from 204 root segments from 15 wild rice plants yielded 58 isolates, for which 31 internal transcribed spacer (ITS)-based genotypes were recorded. The best BLAST match indicated that 34.5% of all taxa encountered may represent hitherto undescribed species. Most of the fungi were isolated with a very low frequency. Calculation of ecological indices and estimation of taxon accumulation curves indicated a high diversity of fungal species. A culture-independent approach was also performed to analyze the endophytic fungal community. Three individual clone libraries were constructed. Using a threshold of 90% similarity, 35 potentially different sequences (phylotypes) were found among 186 positive clones. Phylogenetic analysis showed that frequently detected clones were classified as Basidiomycota, and 60.2% of total analyzed clones were affiliated with unknown taxa. Exophiala, Cladophialophora, Harpophora, Periconia macrospinosa, and the Ceratobasidium/Rhizoctonia complex may act as potential DSE groups. A comparison of the fungal communities characterized by the two approaches demonstrated distinctive fungal groups, and only a few taxa overlapped. Our findings indicate a complex and rich endophytic fungal consortium in wild rice roots, thus offering a potential bioresource for establishing a novel model of plant-fungal mutualistic interactions.

  13. Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice

    Directory of Open Access Journals (Sweden)

    Hepler Peter K

    2011-01-01

    Full Text Available Abstract Background Seed shattering, or shedding, is an important fitness trait for wild and weedy grasses. U.S. weedy rice (Oryza sativa is a highly shattering weed, thought to have evolved from non-shattering cultivated ancestors. All U.S. weedy rice individuals examined to date contain a mutation in the sh4 locus associated with loss of shattering during rice domestication. Weedy individuals also share the shattering trait with wild rice, but not the ancestral shattering mutation at sh4; thus, how weedy rice reacquired the shattering phenotype is unknown. To establish the morphological basis of the parallel evolution of seed shattering in weedy rice and wild, we examined the abscission layer at the flower-pedicel junction in weedy individuals in comparison with wild and cultivated relatives. Results Consistent with previous work, shattering wild rice individuals possess clear, defined abscission layers at flowering, whereas non-shattering cultivated rice individuals do not. Shattering weedy rice from two separately evolved populations in the U.S. (SH and BHA show patterns of abscission layer formation and degradation distinct from wild rice. Prior to flowering, the abscission layer has formed in all weedy individuals and by flowering it is already degrading. In contrast, wild O. rufipogon abscission layers have been shown not to degrade until after flowering has occurred. Conclusions Seed shattering in weedy rice involves the formation and degradation of an abscission layer in the flower-pedicel junction, as in wild Oryza, but is a developmentally different process from shattering in wild rice. Weedy rice abscission layers appear to break down earlier than wild abscission layers. The timing of weedy abscission layer degradation suggests that unidentified regulatory genes may play a critical role in the reacquisition of shattering in weedy rice, and sheds light on the morphological basis of parallel evolution for shattering in weedy and wild

  14. Elucidating potential utilization of Portuguese common bean varieties in rice based processed foods.

    Science.gov (United States)

    Carbas, Bruna; Pathania, Shivani; Castanho, Ana; Lourenço, Diana; Veiga, Isabel Mota; Patto, Maria Carlota Vaz; Brites, Carla

    2018-03-01

    The present study was aimed at studying the physico-chemical and functional properties of 31 Portuguese common bean varieties. In addition, the whole bean flours (WBF) and starch isolates (SI) of three representative bean varieties and their rice: bean blends (70:30; 50:50) were assessed for amylose content, thermal and pasting properties in view of supplementation in rice based processed foods. Bean varieties showed significant differences in protein content (20.78-27.10%), fat content (1.16-2.18%), hydration capacity (95.90-149.30%), unhydrated seeds (4.00-40.00%), γ tocopherol (3.20-98.05 mg/100 g fat), δ tocopherol (0.06-4.72 mg/100 g fat) and pasting behavior. Amylose content of WBF (11.4-20.2%) was significantly lower than rice flour (23.51%) whereas SI of beans (40.00-47.26%) had significantly higher amylose content than SI of rice (28.13%). DSC results showed that WBF (11.4-20.2 °C) had significantly broader and lower gelatinization temperature range (∆Tr) than corresponding SI (20.9-23.1 °C). WBF had significantly lower pasting viscosity due to low starch content and compositional matrix effect as compared to SI. Setback viscosities of WBF and rice: bean blends was lower than rice flour. Low setback viscosities of rice:bean blends may be used to prevent syneresis and stabilizing the quality of frozen foods in rice based processed foods.

  15. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae.

    Science.gov (United States)

    Das, Alok; Soubam, D; Singh, P K; Thakur, S; Singh, N K; Sharma, T R

    2012-06-01

    The dominant rice blast resistance gene, Pi54 confers resistance to Magnaporthe oryzae in different parts of India. In our effort to identify more effective forms of this gene, we isolated an orthologue of Pi54 named as Pi54rh from the blast-resistant wild species of rice, Oryza rhizomatis, using allele mining approach and validated by complementation. The Pi54rh belongs to CC-NBS-LRR family of disease resistance genes with a unique Zinc finger (C(3)H type) domain. The 1,447 bp Pi54rh transcript comprises of 101 bp 5'-UTR, 1,083 bp coding region and 263 bp 3'-UTR, driven by pathogen inducible promoter. We showed the extracellular localization of Pi54rh protein and the presence of glycosylation, myristoylation and phosphorylation sites which implicates its role in signal transduction process. This is in contrast to other blast resistance genes that are predicted to be intracellular NBS-LRR-type resistance proteins. The Pi54rh was found to express constitutively at basal level in the leaves, but upregulates 3.8-fold at 96 h post-inoculation with the pathogen. Functional validation of cloned Pi54rh gene using complementation test showed high degree of resistance to seven isolates of M. oryzae collected from different geographical locations of India. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54rh cloned from wild species of rice provides broad spectrum resistance to M. oryzae hence can be used in rice improvement breeding programme.

  16. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice.

    Science.gov (United States)

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Nawrath, Christiane; Pourkheirandish, Mohammad; Tagiri, Akemi; Hu, Yin-Gang; Sameri, Mohammad; Li, Xinrong; Zhao, Xin; Liu, Yubing; Li, Chao; Ma, Xiaoying; Wang, Aidong; Nair, Sudha; Wang, Ning; Miyao, Akio; Sakuma, Shun; Yamaji, Naoki; Zheng, Xiuting; Nevo, Eviatar

    2011-07-26

    Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.

  17. Dolce Vita in the Rice Paddy - Characterization of weedy rice groups in Northern Italy and investigation of their evolutionary origins

    OpenAIRE

    Grimm, Annabelle

    2014-01-01

    The thesis deals with the topic of the invasive rice form called weedy rice or red rice. Studies focused on the geographical area of Italy. Different populations of weedy rice in Italy were genetically characterized. The evolutionary origins of different weedy rice groups were investigated using molecular, morphological and physiological methods. Invasion of wild rice as well as de-domestication of cultivars could be identified as evolutionary sources of weedy rice in Northern Italy.

  18. Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L..

    Directory of Open Access Journals (Sweden)

    Andrés J Cortés

    Full Text Available Reliable estimations of drought tolerance in wild plant populations have proved to be challenging and more accessible alternatives are desirable. With that in mind, an ecological diversity study was conducted based on the geographical origin of 104 wild common bean accessions to estimate drought tolerance in their natural habitats. Our wild population sample covered a range of mesic to very dry habitats from Mexico to Argentina. Two potential evapotranspiration models that considered the effects of temperature and radiation were coupled with the precipitation regimes of the last fifty years for each collection site based on geographical information system analysis. We found that wild accessions were distributed among different precipitation regimes following a latitudinal gradient and that habitat ecological diversity of the collection sites was associated with natural sub-populations. We also detected a broader geographic distribution of wild beans across ecologies compared to cultivated common beans in a reference collection of 297 cultivars. Habitat drought stress index based on the Thornthwaite potential evapotranspiration model was equivalent to the Hamon estimator. Both ecological drought stress indexes would be useful together with population structure for the genealogical analysis of gene families in common bean, for genome-wide genetic-environmental associations, and for postulating the evolutionary history and diversification processes that have occurred for the species. Finally, we propose that wild common bean should be taken into account to exploit variation for drought tolerance in cultivated common bean which is generally considered susceptible as a crop to drought stress.

  19. The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima).

    Science.gov (United States)

    Wang, Kai; Wambugu, Peterson W; Zhang, Bin; Wu, Alex Chi; Henry, Robert J; Gilbert, Robert G

    2015-09-20

    The molecular structure and gelatinization properties of starches from domesticated African rice (Oryza glaberrima) and its wild progenitor (Oryza barthii) are determined and comparison made with Asian domesticated rice (Oryza sativa), the commonest commercial rice. This suggests possible enzymatic processes contributing to the unique traits of the African varieties. These have similar starch structures, including smaller amylose molecules, but larger amounts of amylose chains across the whole amylose chain-length distribution, and higher amylose contents, than O. sativa. They also show a higher proportion of two- and three-lamellae spanning amylopectin branch chains (degree of polymerization 34-100) than O. sativa, which contributes to their higher gelatinization temperatures. Fitting amylopectin chain-length distribution with a biosynthesis-based mathematical model suggests that the reason for this difference might be because O. glaberrima and O. barthii have more active SSIIIa and/or less active SBEIIb enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores

    OpenAIRE

    Pengyong Zhou; Xiaochang Mo; Wanwan Wang; Xia Chen; Yonggen Lou

    2018-01-01

    Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA), jasmonoyl-isoleucine conjugate (JA-Ile), ethylene and H2O2 but not salicylic acid. These activated signaling pathways ...

  1. Photosynthetic Characteristics of Flag Leaves in Rice White Stripe Mutant 6001 During Senescence Process

    Directory of Open Access Journals (Sweden)

    Xiao-hui ZHEN

    2014-11-01

    Full Text Available Physiological, biochemical and electron microscopy analyses were used to investigate the photosynthetic performance of flag leaves in rice white stripe mutant 6001 during the senescence process. Results showed that the chlorophyll content at the heading and milk-ripe stages in rice mutant 6001 were about 34.78% and 3.00% less than those in wild type 6028, respectively. However, the chlorophyll content at the fully-ripe stage in rice mutant 6001 was higher than that in wild type 6028. At the heading stage, the net photosynthetic rate (Pn in rice mutant 6001 was lower than that in wild type 6028. Rice mutant 6001 also exhibited a significantly slower decrease rate of Pn than wild type 6028 during the senescence progress, especially at the later stage. Furthermore, Ca2+-ATPase, Mg2+-ATPase and photophosphorylation activities exhibited the similar trends as the Pn. During the senescence process, the 68 kDa polypeptide concentrations in the thylakoid membrane proteins exhibited a significant change, which was one of the critical factors that contributed to the observed change in photosynthesis. We also observed that the chloroplasts of rice mutant 6001 exhibited higher integrity than those of wild type 6028, and the chloroplast membrane of rice mutant 6001 disintegrated more slow during the senescence process. In general, rice mutant 6001 had a relatively slower senescence rate than wild type 6028, and exhibited anti-senescence properties.

  2. Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Lewis H Ziska

    Full Text Available Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO(2 between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO(2 from an early 20(th century concentration (300 µmol mol(-1 to current (400 µmol mol(-1 and projected, mid-21(st century (600 µmol mol(-1 values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol(-1. The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO(2 also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO(2 could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems.

  3. Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa).

    Science.gov (United States)

    Ziska, Lewis H; Gealy, David R; Tomecek, Martha B; Jackson, Aaron K; Black, Howard L

    2012-01-01

    Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO(2) between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO(2) from an early 20(th) century concentration (300 µmol mol(-1)) to current (400 µmol mol(-1)) and projected, mid-21(st) century (600 µmol mol(-1)) values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol(-1). The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO(2) also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO(2) could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems.

  4. Natural variation of rice blast resistance gene Pi-d2

    Science.gov (United States)

    Studying natural variation of rice resistance (R) genes in cultivated and wild rice relatives can predict resistance stability to rice blast fungus. In the present study, the protein coding regions of rice R gene Pi-d2 in 35 rice accessions of subgroups, aus (AUS), indica (IND), temperate japonica (...

  5. Deciphering the role of a miRNA in rice domestication

    Directory of Open Access Journals (Sweden)

    Swetha Chenna

    2017-10-01

    Full Text Available MicroRNAs (miRNAs are a class of 21 nt non-coding small RNAs (sRNAs produced from endogenously expressed MIR genes. miRNAs are mostly involved in development and disease resistance. We are interested in identifying key miRNAs that are differentially expressed among wild and cultivated rice species. Analysis of sRNA datasets from two wild species (O. nivara and O. rufipogon and one cultivated species of rice (O. sativa var. indica Pusa Basmati-1, revealed a surprisingly higher abundance of small RNAs originating from Chromosome 2 in wild rice species. This locus codes for a novel 22 nt miRNA. This novel miRNA was found to be highly abundant in flag leaf of wild species, a tissue that usually provides 70% of energy required for grain filling. This miRNA targets a group of proteins (Os03g0273200, Os01g0827300, Os01g0850700, Os11g0708100 and Os01g0842500 which are involved in secondary metabolite production, although a functional significance of this interaction has not been understood. The expression of these targets also differs across the species. Typical of 22 nt miRNAs, the identified miRNA also triggers a secondary cascade silencing by producing small interfering RNAs (siRNAs from target mRNAs in O. nivara. These secondary siRNAs are observed only among wild rice species but not in cultivated rice. Currently we are using a range of genetic, biochemical and molecular techniques to understand role of this novel miRNA in domestication of rice.

  6. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong; Shin, Sang Hyun; Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung; Oh, Boung-Jun; Jung, Ho Won; Chung, Young Soo

    2012-01-01

    Highlights: ► We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. ► The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. ► The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. ► The OgUBC1 could protect disruption of plant cells by UV-B radiation. ► OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  7. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Shin, Sang Hyun [National Crop Experiment Station, Rural Development Administration, Suwon 441-100 (Korea, Republic of); Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Oh, Boung-Jun [BioControl Center, Jeonnam 516-942 (Korea, Republic of); Jung, Ho Won, E-mail: hwjung@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young Soo, E-mail: chungys@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  8. Defensive Responses of Rice Genotypes for Resistance Against Rice Leaffolder Cnaphalocrocis medinalis

    Directory of Open Access Journals (Sweden)

    M. PUNITHAVALLI

    2013-09-01

    Full Text Available The experiment was carried out to assess the reaction of different categories of rice genotypes viz., resistant, susceptible, hybrid, scented, popular and wild in response to the infestation by rice leaffolder (RLF, Cnaphalocrocis medinalis (Guenee and to explore the possible use of these genotypes in developing RLF-resistant rice varieties. The changes of various biochemical constituents such as leaf soluble protein, phenol, ortho-dihydroxy phenol, tannin and enzymes viz., peroxidase, phenyl alanine ammonia lyase (PAL were assessed spectrophotometrically in all the rice genotypes before and after RLF infestation. The protein profile was analyzed using sodium dodecyl sulphate-poly acrylamide gel electrophoresis (SDS-PAGE method. A significant constituent of biochemical content such as tannin, phenol and ortho-dihydroxy phenol has been increased along with enzyme activities of peroxidase and PAL in the infested resistant (Ptb 33, TKM6 and LFR831311 and wild rice genotypes (Oryza minuta and O. rhizomatis. A decrease in leaf protein content was evident invariably in all the infested rice genotypes. It is also evident that the contents of biochemicals such as phenol, ortho-dihydroxy phenol and tannin were negatively correlated with leaffolder damage. However, leaf protein content was positively correlated with the damage by rice leaffolder. SDS-PAGE analysis for total protein profiling of healthy and C. medinalis-infested genotypes revealed the enhanced expression of a high molecular weight (> 97 kDa protein in all the genotypes. Besides, there was also an increased induction of a 38 kDa protein in C. medinalis infested resistant genotypes, which was absent in uninfested plants. The present investigation proved that the elevated levels of biochemicals and enzymes may play a vital role in rice plants resistance to RLF.

  9. Massive gene losses in Asian cultivated rice unveiled by comparative genome analysis

    Directory of Open Access Journals (Sweden)

    Itoh Takeshi

    2010-02-01

    Full Text Available Abstract Background Rice is one of the most important food crops in the world. With increasing world demand for food crops, there is an urgent need to develop new cultivars that have enhanced performance with regard to yield, disease resistance, and so on. Wild rice is expected to provide useful genetic resources that could improve the present cultivated species. However, the quantity and quality of these unexplored resources remain unclear. Recent accumulation of the genomic information of both cultivated and wild rice species allows for their comparison at the molecular level. Here, we compared the genome sequence of Oryza sativa ssp. japonica with sets of bacterial artificial chromosome end sequences (BESs from two wild rice species, O. rufipogon and O. nivara, and an African rice species, O. glaberrima. Results We found that about four to five percent of the BESs of the two wild rice species and about seven percent of the African rice could not be mapped to the japonica genome, suggesting that a substantial number of genes have been lost in the japonica rice lineage; however, their close relatives still possess their counterpart genes. We estimated that during evolution, O. sativa has lost at least one thousand genes that are still preserved in the genomes of the other species. In addition, our BLASTX searches against the non-redundant protein sequence database showed that disease resistance-related proteins were significantly overrepresented in the close relative-specific genomic portions. In total, 235 unmapped BESs of the three relatives matched 83 non-redundant proteins that contained a disease resistance protein domain, most of which corresponded to an NBS-LRR domain. Conclusion We found that the O. sativa lineage appears to have recently experienced massive gene losses following divergence from its wild ancestor. Our results imply that the domestication process accelerated large-scale genomic deletions in the lineage of Asian

  10. Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice.

    Directory of Open Access Journals (Sweden)

    Rafi Shaik

    Full Text Available Plants are simultaneously exposed to multiple stresses resulting in enormous changes in the molecular landscape within the cell. Identification and characterization of the synergistic and antagonistic components of stress response mechanisms contributing to the cross talk between stresses is of high priority to explore and enhance multiple stress responses. To this end, we performed meta-analysis of drought (abiotic, bacterial (biotic stress response in rice and Arabidopsis by analyzing a total of 386 microarray samples belonging to 20 microarray studies and identified approximately 3100 and 900 DEGs in rice and Arabidopsis, respectively. About 38.5% (1214 and 28.7% (272 DEGs were common to drought and bacterial stresses in rice and Arabidopsis, respectively. A majority of these common DEGs showed conserved expression status in both stresses. Gene ontology enrichment analysis clearly demarcated the response and regulation of various plant hormones and related biological processes. Fatty acid metabolism and biosynthesis of alkaloids were upregulated and, nitrogen metabolism and photosynthesis was downregulated in both stress conditions. WRKY transcription family genes were highly enriched in all upregulated gene sets while 'CO-like' TF family showed inverse relationship of expression between drought and bacterial stresses. Weighted gene co-expression network analysis divided DEG sets into multiple modules that show high co-expression and identified stress specific hub genes with high connectivity. Detection of consensus modules based on DEGs common to drought and bacterial stress revealed 9 and 4 modules in rice and Arabidopsis, respectively, with conserved and reversed co-expression patterns.

  11. Transgenic expression of an unedited mitochondrial orfB gene product from wild abortive (WA) cytoplasm of rice (Oryza sativa L.) generates male sterility in fertile rice lines.

    Science.gov (United States)

    Chakraborty, Anirban; Mitra, Joy; Bhattacharyya, Jagannath; Pradhan, Subrata; Sikdar, Narattam; Das, Srirupa; Chakraborty, Saikat; Kumar, Sachin; Lakhanpaul, Suman; Sen, Soumitra K

    2015-06-01

    Over-expression of the unedited mitochondrial orfB gene product generates male sterility in fertile indica rice lines in a dose-dependent manner. Cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration are widespread developmental features in plant reproductive systems. In self-pollinated crop plants, these processes often provide useful tools to exploit hybrid vigour. The wild abortive CMS has been employed in the majority of the "three-line" hybrid rice production since 1970s. In the present study, we provide experimental evidence for a positive functional relationship between the 1.1-kb unedited orfB gene transcript, and its translated product in the mitochondria with male sterility. The generation of the 1.1-kb unedited orfB gene transcripts increased during flowering, resulting in low ATP synthase activity in sterile plants. Following insertion of the unedited orfB gene into the genome of male-fertile plants, the plants became male sterile in a dose-dependent manner with concomitant reduction of ATPase activity of F1F0-ATP synthase (complex V). Fertility of the transgenic lines and normal activity of ATP synthase were restored by down-regulation of the unedited orfB gene expression through RNAi-mediated silencing. The genetic elements deciphered in this study could further be tested for their use in hybrid rice development.

  12. Community-wise evaluation of rice beer prepared by some ethnic tribes of Tripura

    Directory of Open Access Journals (Sweden)

    Sushanta Ghosh

    2016-12-01

    Full Text Available Tripura is inhabited by many indigenous communities having unique ethno-socio-cultural lifestyle with age-old rice beer brewing techniques using wild herbs and local rice varieties popularly known as chuwak or zu. The present study is focused on comparative evaluation of brewing methods and nutritional aspects of rice beer among Debbarma, Jamatia, Koloi, and Molsom tribes of Tripura. Sample ingredients and plant species are properly identified before reporting. Rice beer is also prepared in laboratory conditions for comparative studies of qualitative and quantitative aspects. Thirteen different plant species are used by these four tribes for preparation of starter cultures using soaked rice flour. Markhamia stipulate (Wall. Seem. is common to all communities for starter cake preparation. Litsea monopetala (Roxb. Pers. is used by all three communities except Jamatia. The use of Ananus comosus Mill. is common among Debbarma and Jamatia tribes, whereas that of Artocarpus heterophyllus Lam. is common among Molsom and Koloi tribes. However, Aporusa diocia (Roxb. Muell., Combretum indicum (L. DeFilipps., and Citrus sinensis (L. Osbeck. are used only by Debbarma tribe for unique tangy flavor. The physicochemical properties of rice beer varied within tribes for its moisture content, carbohydrate content, reducing sugar, and alcohol percentage. The concentration of alcohol increases with aging and prolonged fermentation. The plants reported here are also reported for having nutritional and medicinal benefits for the metabolic stability in humans, which make the process more prospective for commercialization if a standard for maintaining a quality and associated risk can be determined.

  13. Cell fusion as a tool for rice improvement

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y; Kyozuka, J; Terada, R; Nishibayashi, S; Shimamoto, K [Plantech Research Institute, Kamoshida, Midori-ku, Yokohama (Japan)

    1990-01-01

    Full text: Cell fusion offers a unique opportunity to hybridize sexually incompatible species and to mix cytoplasmic genomes in higher plants. Recent progress in plant regeneration from rice protoplasts facilitates an evaluation of the cell fusion method for rice improvement. By using electrofusion of protoplasts, we obtained hybrid/cybrid plants of the following combinations: Hybrids of rice x barnyard grass (E. oryzicola); Hybrids of rice x wild Oryza species; Cybrids of rice with transferred cms cytoplasm. For the latter, protoplasts irradiated with 70 krad x-rays were used. (author)

  14. A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin N-acetyltransferase expressed in transgenic rice plants.

    Science.gov (United States)

    Byeon, Yeong; Lee, Hyoung Yool; Lee, Kyungjin; Back, Kyoungwhan

    2014-09-01

    Ectopic overexpression of melatonin biosynthetic genes of animal origin has been used to generate melatonin-rich transgenic plants to examine the functional roles of melatonin in plants. However, the subcellular localization of these proteins expressed in the transgenic plants remains unknown. We studied the localization of sheep (Ovis aries) serotonin N-acetyltransferase (OaSNAT) and a translational fusion of a rice SNAT transit peptide to OaSNAT (TS:OaSNAT) in plants. Laser confocal microscopy analysis revealed that both OaSNAT and TS:OaSNAT proteins were localized to the cytoplasm even with the addition of the transit sequence to OaSNAT. Transgenic rice plants overexpressing the TS:OaSNAT fusion transgene exhibited high SNAT enzyme activity relative to untransformed wild-type plants, but lower activity than transgenic rice plants expressing the wild-type OaSNAT gene. Melatonin levels in both types of transgenic rice plant corresponded well with SNAT enzyme activity levels. The TS:OaSNAT transgenic lines exhibited increased seminal root growth relative to wild-type plants, but less than in the OaSNAT transgenic lines, confirming that melatonin promotes root growth. Seed-specific OaSNAT expression under the control of a rice prolamin promoter did not confer high levels of melatonin production in transgenic rice seeds compared with seeds from transgenic plants expressing OaSNAT under the control of the constitutive maize ubiquitin promoter. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Economic Viability of Small Scale Organic Production of Rice, Common Bean and Maize in Goias State, Brazil

    Directory of Open Access Journals (Sweden)

    Alcido Elenor Wander

    2007-04-01

    Full Text Available This study was conducted to assess the economic feasibility of small scale organic production of rice, common bean and maize in Goias State, Brazil. During 2004/05 and 2005/06 growing seasons, rice, common bean and maize were produced at the organic farm of Embrapa Rice and Beans in five mulching systems (fallow, Crotalaria juncea, Cajanus cajan, Mucuna aterrima and Sorghum bicolor , with and without tillage. Soil tillage consisted of heavy disc harrowing followed by light disc harrowing. All operations and used inputs were recorded. Based on those records, the production costs for each crop were estimated for each cropping season. The costs included operations like sowing, ploughing, harrowing, spraying, fertilizer broadcasting and harvesting, as well as inputs like seeds, inoculant strains of Rhizobium, neem oil and organic fertilizers. The benefits include the gross revenue obtained by multiplying the production amount with the market price for non-organic products. For the purpose of analysis of competitiveness of organic production in comparison to conventional farming the market prices assumed were those of conventional production. In the analysis, the costs of certification were not considered yet due to lack of certifiers in the region. For comparison between traits, net revenue, the benefit-cost-ratio (BCR and the break even point were used. In 2004/05 growing season the BCR varied from 0.27 for common bean on S. bicolor mulch system with tillage up to 4.05 for green harvested maize produced after C. juncea in no tillage system. Common bean and rice were not economically viable in this growing season. In 2005/06 growing season the BCR varied between 0.75 for common bean after S. bicolor in tillage system and 4.50 for green harvested maize produced after fallow in no tillage system. In this season common bean was economically viable in leguminous mulching systems and green harvested maize was viable in all mulching systems.

  16. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice

    Science.gov (United States)

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E.; Qiang, Sheng

    2015-01-01

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China. PMID:26012494

  17. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice.

    Science.gov (United States)

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E; Qiang, Sheng

    2015-05-27

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China.

  18. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice

    OpenAIRE

    Wei Tong; Qiang He; Yong-Jin Park

    2017-01-01

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucle...

  19. Genomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice

    Directory of Open Access Journals (Sweden)

    Olsen Kenneth M

    2010-06-01

    Full Text Available Abstract Background Weedy rice (red rice, a conspecific weed of cultivated rice (Oryza sativa L., is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution. Results We find greater population structure than has been previously reported for U.S. weedy rice, and that the multiple, genetically divergent populations have separate origins. The two main U.S. weedy rice populations share genetic backgrounds with cultivated O. sativa varietal groups not grown commercially in the U.S., suggesting weed origins from domesticated ancestors. Hybridization between weedy groups and between weedy rice and local crops has also led to the evolution of distinct U.S. weedy rice populations. Demographic simulations indicate differences among the main weedy groups in the impact of bottlenecks on their establishment in the U.S., and in the timing of divergence from their cultivated relatives. Conclusions Unlike prior research, we did not find unambiguous evidence for U.S. weedy rice originating via hybridization between cultivated and wild Oryza species. Our results demonstrate the potential for weedy life-histories to evolve directly from within domesticated lineages. The diverse origins of U.S. weedy rice populations demonstrate the multiplicity of evolutionary forces that can influence the emergence of weeds from a single species complex.

  20. Little White Lies: Pericarp Color Provides Insights into the Origins and Evolution of Southeast Asian Weedy Rice

    Science.gov (United States)

    Cui, Yongxia; Song, Beng Kah; Li, Lin-Feng; Li, Ya-Ling; Huang, Zhongyun; Caicedo, Ana L.; Jia, Yulin; Olsen, Kenneth M.

    2016-01-01

    Weedy rice is a conspecific form of cultivated rice (Oryza sativa L.) that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy rice, a multiple-origin model has been proposed based on neutral markers and analyses of domestication genes for hull color and seed shattering. Here, we examined variation in pericarp (bran) color and its molecular basis to address how this trait evolved in Malaysian weeds and its possible role in weed adaptation. Functional alleles of the Rc gene confer proanthocyanidin pigmentation of the pericarp, a trait found in most wild and weedy Oryzas and associated with seed dormancy; nonfunctional rc alleles were strongly favored during rice domestication, and most cultivated varieties have nonpigmented pericarps. Phenotypic characterizations of 52 Malaysian weeds revealed that most strains are characterized by the pigmented pericarp; however, some weeds have white pericarps, suggesting close relationships to cultivated rice. Phylogenetic analyses indicate that the Rc haplotypes present in Malaysian weeds likely have at least three distinct origins: wild O. rufipogon, white-pericarp cultivated rice, and red-pericarp cultivated rice. These diverse origins contribute to high Rc nucleotide diversity in the Malaysian weeds. Comparison of Rc allelic distributions with other rice domestication genes suggests that functional Rc alleles may confer particular fitness benefits in weedy rice populations, for example, by conferring seed dormancy. This may promote functional Rc introgression from local wild Oryza populations. PMID:27729434

  1. Dispersal distance of rice ( Oryza Sativa L.) pollen at the Tana River ...

    African Journals Online (AJOL)

    Rice is a staple food in Kenya and its production needs to be increased. Genetically modified (GM) rice may be a solution, but before it can be introduced, potential ecological impacts, such as pollen mediated gene flow from GM rice to non-GM rice or to its wild indigenous relatives, need to be understood. Pollen dispersal in ...

  2. Effects of water management practices on residue decomposition and degradation of Cry1Ac protein from crop-wild Bt rice hybrids and parental lines during winter fallow season.

    Science.gov (United States)

    Xiao, Manqiu; Dong, Shanshan; Li, Zhaolei; Tang, Xu; Chen, Yi; Yang, Shengmao; Wu, Chunyan; Ouyang, Dongxin; Fang, Changming; Song, Zhiping

    2015-12-01

    Rice is the staple diet of over half of the world's population and Bacillus thuringiensis (Bt) rice expressing insecticidal Cry proteins is ready for deployment. An assessment of the potential impact of Bt rice on the soil ecosystem under varied field management practices is urgently required. We used litter bags to assess the residue (leaves, stems and roots) decomposition dynamics of two transgenic rice lines (Kefeng6 and Kefeng8) containing stacked genes from Bt and sck (a modified CpTI gene encoding a cowpea trypsin inhibitor) (Bt/CpTI), a non-transgenic rice near-isoline (Minghui86), wild rice (Oryza rufipogon) and crop-wild Bt rice hybrid under contrasting conditions (drainage or continuous flooding) in the field. No significant difference was detected in the remaining mass, total C and total N among cultivars under aerobic conditions, whereas significant differences in the remaining mass and total C were detected between Kefeng6 and Kefeng8 and Minghui86 under the flooded condition. A higher decomposition rate constant (km) was measured under the flooded condition compared with the aerobic condition for leaf residues, whereas the reverse was observed for root residues. The enzyme-linked immunosorbent assay (ELISA), which was used to monitor the changes in the Cry1Ac protein in Bt rice residues, indicated that (1) the degradation of the Cry1Ac protein under both conditions best fit first-order kinetics, and the predicted DT50 (50% degradation time) of the Cry1Ac protein ranged from 3.6 to 32.5 days; (2) the Cry1Ac protein in the residue degraded relatively faster under aerobic conditions; and (3) by the end of the study (~154 days), the protein was present at a low concentration in the remaining residues under both conditions. The degradation rate constant was negatively correlated with the initial carbon content and positively correlated with the initial Cry1Ac protein concentration, but it was only correlated with the mass decomposition rate constants under

  3. Morphoagronomic genetic diversity in american wild rice species

    Directory of Open Access Journals (Sweden)

    Elizabeth Ann Veasey

    2008-02-01

    Full Text Available To characterize the genetic variability among species and populations of South American wild rice, eleven populations of Oryza glumaepatula, seven of O. grandiglumis, four of O. latifolia and one of O. alta, from Brazil and Argentina, were evaluated. A greenhouse experiment was conducted in completely randomized blocks with 23 treatments. Twenty morphoagronomic traits were assessed. Univariate analyses were performed with 16 quantitative traits with the partitioning of populations within species. Significant differences (pVisando caracterizar a diversidade genética entre espécies e populações de arroz selvagem da América do Sul, foram avaliadas 11 populações de Oryza glumaepatula, sete de O. grandiglumis, quatro de O. latifolia e uma população de O. alta, originárias do Brasil e Argentina. Foi conduzido um experimento em casa-de-vegetação em blocos ao acaso com 23 tratamentos. Vinte caracteres agro-morfológicos foram avaliados. Análises univariadas foram realizadas para 16 caracteres quantitativos, desdobrando-se o efeito de populações dentro de espécies. Diferenças significativas (p<0,001 entre espécies foram observadas para todos os caracteres bem como entre populações dentro de espécies. A mais variável foi O. glumaepatula seguida de O. latifolia. Análises de agrupamento e discriminante canônica confirmaram a separação das populações de O. glumaepatula das espécies tetraplóides, e a grande variação genética entre populações de O. latifolia. Diferenças morfológicas entre as três espécies tetraplóides parecem suficientes para classificá-las como espécies pelo menos na condição statu nascendi.

  4. Population genomics identifies the origin and signatures of selection of Korean weedy rice

    OpenAIRE

    He, Qiang; Kim, Kyu?Won; Park, Yong?Jin

    2016-01-01

    Summary Weedy rice is the same biological species as cultivated rice (Oryza sativa); it is also a noxious weed infesting rice fields worldwide. Its formation and population?selective or ?adaptive signatures are poorly understood. In this study, we investigated the phylogenetics, population structure and signatures of selection of Korean weedy rice by determining the whole genomes of 30 weedy rice, 30 landrace rice and ten wild rice samples. The phylogenetic tree and results of ancestry infere...

  5. The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species.

    Science.gov (United States)

    Asaf, Sajjad; Waqas, Muhammad; Khan, Abdul L; Khan, Muhammad A; Kang, Sang-Mo; Imran, Qari M; Shahzad, Raheem; Bilal, Saqib; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Oryza minuta , a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysis of the composition and diversity of the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with a typical quadripartite structure and consisting of a pair of inverted repeats separated by small and large single copies, 139 representative genes, and 419 randomly distributed microsatellites. The genomic organization, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem and 20 palindromic repeats were detected in the O . minuta cp genome. Comparison of the complete O. minuta cp genome with another eleven Oryza species showed a high degree of sequence similarity and relatively high divergence of intergenic spacers. Phylogenetic analyses were conducted based on the complete genome sequence, 65 shared genes and matK gene showed same topologies and O. minuta forms a single clade with parental O. punctata . Thus, the complete O . minuta cp genome provides interesting insights and valuable information that can be used to identify related species and reconstruct its phylogeny.

  6. Effects of physical and biogeochemical processes on aquatic ecosystems at the groundwater-surface water interface: An evaluation of a sulfate-impacted wild rice stream in Minnesota (USA)

    Science.gov (United States)

    Ng, G. H. C.; Yourd, A. R.; Myrbo, A.; Johnson, N.

    2015-12-01

    Significant uncertainty and variability in physical and biogeochemical processes at the groundwater-surface water interface complicate how surface water chemistry affects aquatic ecosystems. Questions surrounding a unique 10 mg/L sulfate standard for wild rice (Zizania sp.) waters in Minnesota are driving research to clarify conditions controlling the geochemistry of shallow sediment porewater in stream- and lake-beds. This issue raises the need and opportunity to carry out in-depth, process-based analysis into how water fluxes and coupled C, S, and Fe redox cycles interact to impact aquatic plants. Our study builds on a recent state-wide field campaign that showed that accumulation of porewater sulfide from sulfate reduction impairs wild rice, an annual grass that grows in shallow lakes and streams in the Great Lakes region of North America. Negative porewater sulfide correlations with organic C and Fe quantities also indicated that lower redox rates and greater mineral precipitation attenuate sulfide. Here, we focus on a stream in northern Minnesota that receives high sulfate loading from iron mining activity yet maintains wild rice stands. In addition to organic C and Fe effects, we evaluate the degree to which streambed hydrology, and in particular groundwater contributions, accounts for the active biogeochemistry. We collect field measurements, spanning the surrounding groundwater system to the stream, to constrain a reactive-transport model. Observations from seepage meters, temperature probes, and monitoring wells delineate upward flow that may lessen surface water impacts below the stream. Geochemical analyses of groundwater, porewater, and surface water samples and of sediment extractions reveal distinctions among the different domains and stream banks, which appear to jointly control conditions in the streambed. A model based on field conditions can be used to evaluate the relative the importance and the spatiotemporal scales of diverse flux and

  7. Marker-assisted introgression of drought tolerance from wild ancestors into popular Indian rice varieties using a 7K Infinium SNP array

    Directory of Open Access Journals (Sweden)

    Ravindra Donde

    2017-10-01

    Full Text Available Recent advances in the area of genomics have led to the development of high throughput genotyping platforms that have immensely contributed to molecular breeding programs. Custom-designed single nucleotide polymorphism (SNP arrays provide an efficient, cost effective, high throughput genotyping tool for QTL/gene mapping, variety identification, marker-assisted selection, etc. In the current study, two interspecific libraries of Chromosome Segment Substitution Lines (CSSLs were evaluated under both drought and control conditions to identify lines with superior yield under drought. The CSSL libraries consisted of 48 BC4F3 lines derived from O. sativa cv. Curinga (tropical japonica x O. rufipogon, and 32 BC4F3 lines derived from O. sativa cv. Curinga (tropical japonica x O. meridionalis. The phenotypic screening of these 80 CSSLs led to the identification of three lines, MER-20, RUF-16, and RUF-44, that yielded well under drought stress. This line was backcrossed with popular rice variety of India, Swarna-Sub1 to introgress wild chromosome segments responsible for reproductive stage drought tolerance. During backcrossing, tracking of wild introgressions and monitoring of recurrent parent genome recovery was facilitated by the use of the Cornell 6K and 7K Infinium rice SNP arrays. The 6K and 7K SNP arrays assayed 5275 SNPs and 7099 SNPs, respectively, distributed across the 12 chromosomes. In our populations of (MER-20X Swarna sub1 BC2F1 lines, 1775 SNPs were polymorphic using the 6K array. The percentage of recurrent parent genome in these backcrossed lines ranged from 33-92% and the percentage of wild donor genome ranged from 8-67%. Using genotypic selection, 5% of plants were identified for further marker assisted backcrossing, based on the presence of the target donor (wild segment and maximum recovery of recurrent parent background. In the next generation, BC3F1 lines were genotyped using the 7K SNP array, which identified 2521 polymorphic SNPs

  8. Manoomin: place-based research with Native American students on wild rice lakes on the Fond du Lac Band of Lake Superior Chippewa Reservation, northern Minnesota

    Science.gov (United States)

    Ito, E.; Myrbo, A.; Dalbotten, D. M.; Pellerin, H.; Greensky, L.; Howes, T.; Wold, A.; McEathron, M. A.; Shanker, V.

    2010-12-01

    The manoomin project is a collaboration between Fond du Lac Tribal and Community College (Cloquet, MN), the Reservation’s Resource Management Division, and the University of Minnesota funded by the NSF GEO-OEDG Program. It builds on a successful seven-year history of collaboration between these parties, including regular science camps (gidaakiimanaanimigawig, Our Earth Lodge) for students of a wide range of ages. We are working as a team with Native students to study the history of wild rice (manoomin; Zizania palustris), a culturally important resource, growing on Reservation lakes. The joint project takes two main approaches: study of sediment core samples collected from Reservation lakes; and the collection of traditional knowledge about wild rice from the Elders. Science campers collect lake cores during winter with the assistance of the U of MN’s LacCore (National Lacustrine Core Facility) and Resource Management and visit LacCore to log, split and describe cores soon thereafter. Academic mentors with a range of specialties (phytoliths, pollen, plant macrofossils, sedimentology, geochemistry, magnetics) spend 1-2 weeks during the summer with small groups of college-age (>18, many nontraditional) student interns working on a particular paleoenvironmental proxy from the sediment cores. Younger students (middle and high school) also work in small teams in half day units with the same mentors. All campers become comfortable in an academic setting, gain experience working in research labs learning and practicing techniques, and jointly interpret collective results. The continuation of the project over five years (2009-2014) will allow these students to develop relationships with scientists and to receive mentoring beyond the laboratory as they make transitions into 2- and 4-year colleges and into graduate school. Their research provides historical and environmental information that is relevant to their own land that will be used by Resource Management which is

  9. Lowered Diversity and Increased Inbreeding Depression within Peripheral Populations of Wild Rice Oryza rufipogon.

    Science.gov (United States)

    Gao, Li-Zhi; Gao, Cheng-Wen

    2016-01-01

    The distribution of genetic variability from the interior towards the periphery of a species' range is of great interest to evolutionary biologists. Although it has been long presumed that population genetic variation should decrease as a species' range is approached, results of empirical investigations still remain ambiguous. Knowledge regarding patterns of genetic variability as well as affected factors is particularly not conclusive in plants. To determine genetic divergence in peripheral populations of the wild rice Oryza rufipogon Griff. from China, genetic diversity and population structure were studied in five northern & northeastern peripheral and 16 central populations using six microsatellite loci. We found that populations resided at peripheries of the species possessed markedly decreased microsatellite diversity than those located in its center. Population size was observed to be positively correlated with microsatellite diversity. Moreover, there are significantly positive correlations between levels of microsatellite diversity and distances from the northern and northeastern periphery of this species. To investigate genetic structure and heterozygosity variation between generations of O. rufipogon, a total of 2382 progeny seeds from 186 maternal families were further assayed from three peripheral and central populations, respectively. Peripheral populations exhibited significantly lower levels of heterozygosities than central populations for both seed and maternal generations. In comparisons with maternal samples, significantly low observed heterozygosity (HO) and high heterozygote deficit within populations (FIS) values were detected in seed samples from both peripheral and central populations. Significantly lower observed heterozygosity (HO) and higher FIS values were further observed in peripheral populations than those in central populations for seed samples. The results indicate an excess of homozygotes and thus high inbreeding depression in

  10. Rice agroecosystem and the maintenance of biodiversity

    International Nuclear Information System (INIS)

    Ahyaudin Ali

    2002-01-01

    Rice fields are a special type of wetland. They are shallow, constantly disturbed and experience extremes in temperature and dissolved oxygen content. They receive nutrients in the form of fertilizers during rice cultivation. Rice fields; support a variety of flora and fauna that have adapted and adjusted themselves to the extreme conditions. Since rice fields also support populations of wild fish, rice?fish integration should be done in order to optimize land use and provide supplementary income to farmers. Rice?fish farming encourages farmers to judiciously apply pesticides and herbicides in their fields thus helping to control excessive and unwarranted use of these chemicals. Rice fields also support many migratory and nonmigratory bird species and provides habitat for small mammals. Thus the rice agroecosystem helps to maintain aquatic biodiversity. The Muda rice agroecosystem consists of a troika of interconnected ecosystems. The troika consisting of reservoirs, the connecting network of canals and the rice fields; should be investigated further. This data is needed for informed decision-making concerning development and management of the system so that productivity and biodiversity can be maintained and sustained. (Author)

  11. IDENTIFICATION AND OCCURRENCE OF FUSARIUM SPECIES ON SEEDS OF COMMON WETCH, WHITE LUPINE AND SOME WILD LEGUMES

    Directory of Open Access Journals (Sweden)

    Tihomir Miličević

    2013-06-01

    Full Text Available The presence and occurrence of Fusarium species was examined on the seeds of cultivated legumes – common vetch (Vicia sativa, white lupine (Lupinus albus, and wild legumes: bird’s-foot trefoil (Lotus corniculatus, wild alfalfa (Medicago sativa, black locust (Robinia pseudoacacia, honey locust (Gleditsia triacanthos, sweet clover (Melilotus officinalis, bird vetch (Vicia cracca and meadow vetchling (Lathyrus pratensis. Thirteen Fusarium species were identified - F. verticillioides, F. acuminatum, F. avenaceum, F. tricinctum F. oxysporum, F. scirpi, F. semitectum, F. culmorum, F. proliferatum, F. pseudograminearum, F. sporotrichioides, F. sambucinum and F. heterosporum. Species F. verticillioides and F. proliferatum were determined on seeds of the cultivated legumes (common vetch and white lupine. Other 11 Fusarium species were determined on seeds of wild legumes (bird’s-foot trefoil, wild alfalfa, sweet clover and bird vetch among which the most prevalent were species F. avenaceum and F. acuminatum.

  12. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes.

    Science.gov (United States)

    Banik, Avishek; Mukhopadhaya, Subhra Kanti; Dangar, Tushar Kanti

    2016-03-01

    The diversity of endophytic and epiphytic diazotrophs in different parts of rice plants has specificity to the niche (i.e. leaf, stem and root) of different genotypes and nutrient availability of the organ. Inoculation of the indigenous, polyvalent diazotrophs can facilitate and sustain production of non-leguminous crops like rice. Therefore, N2-fixing plant growth promoting bacteria (PGPB) were isolated from different parts of three Indian cultivated [Oryza sativa L. var. Sabita (semi deep/deep water)/Swarna (rain fed shallow lowland)/Swarna-Sub1(submergence tolerant)] and a wild (O. eichingeri) rice genotypes which respond differentially to nitrogenous fertilizers. Thirty-five isolates from four rice genotypes were categorized based on acetylene reduction assay on nitrogenase activity, biochemical tests, BIOLOG and 16S rRNA gene sequencing. The bacteria produced 9.36-155.83 nmole C2H4 mg(-1) dry bacteria h(-1) and among them nitrogenase activity of 11 potent isolates was complemented by nifH-sequence analysis. Phylogenetic analysis based on 16S rDNA sequencing divided them into five groups (shared 95-100 % sequence homology with type strains) belonging to five classes-alpha (Ancylobacter, Azorhizobium, Azospirillum, Rhizobium, Bradyrhizobium, Sinorhizobium, Novosphingobium, spp.), beta (Burkholderia sp.), gamma (Acinetobacter, Aeromonas, Azotobacter, Enterobacter, Klebsiella, Pantoea, Pseudomonas, Stenotrophomonas spp.) Proteobacteria, Bacilli (Bacillus, Paenibacillus spp.) and Actinobacteria (Microbacterium sp.). Besides, all bacterial strains possessed the intrinsic PGP traits of like indole (0.44-7.4 µg ml(-1)), ammonia (0.18-6 mmol ml(-1)), nitrite (0.01-3.4 mol ml(-1)), and siderophore (from 0.16-0.57 μmol ml(-1)) production. Inoculation of rice (cv. Swarna) seedlings with selected isolates had a positive impact on plant growth parameters like shoot and root elongation which was correlated with in vitro PGP attributes. The results indicated that the

  13. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest.

    Science.gov (United States)

    Ji, Hyeonso; Kim, Sung-Ryul; Kim, Yul-Ho; Suh, Jung-Pil; Park, Hyang-Mi; Sreenivasulu, Nese; Misra, Gopal; Kim, Suk-Man; Hechanova, Sherry Lou; Kim, Hakbum; Lee, Gang-Seob; Yoon, Ung-Han; Kim, Tae-Ho; Lim, Hyemin; Suh, Suk-Chul; Yang, Jungil; An, Gynheung; Jena, Kshirod K

    2016-09-29

    Brown planthopper (BPH) is a phloem sap-sucking insect pest of rice which causes severe yield loss. We cloned the BPH18 gene from the BPH-resistant introgression line derived from the wild rice species Oryza australiensis. Map-based cloning and complementation test revealed that the BPH18 encodes CC-NBS-NBS-LRR protein. BPH18 has two NBS domains, unlike the typical NBS-LRR proteins. The BPH18 promoter::GUS transgenic plants exhibited strong GUS expression in the vascular bundles of the leaf sheath, especially in phloem cells where the BPH attacks. The BPH18 proteins were widely localized to the endo-membranes in a cell, including the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, and prevacuolar compartments, suggesting that BPH18 may recognize the BPH invasion at endo-membranes in phloem cells. Whole genome sequencing of the near-isogenic lines (NILs), NIL-BPH18 and NIL-BPH26, revealed that BPH18 located at the same locus of BPH26. However, these two genes have remarkable sequence differences and the independent NILs showed differential BPH resistance with different expression patterns of plant defense-related genes, indicating that BPH18 and BPH26 are functionally different alleles. These findings would facilitate elucidation of the molecular mechanism of BPH resistance and the identified novel alleles to fast track breeding BPH resistant rice cultivars.

  14. Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon).

    Science.gov (United States)

    Zhang, Fantao; Zhou, Yi; Zhang, Meng; Luo, Xiangdong; Xie, Jiankun

    2017-06-30

    Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice ( Oryza rufipogon , DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars. © 2017 The Author(s).

  15. [Index screening and comprehensive evaluation of phenotypic traits of low nitrogen tolerance using BILs population derived from Dongxiang wild rice (Oryza rufipogon Griff)].

    Science.gov (United States)

    Hu, Biao-lin; Li, Xia; Wan, Yong; Qiu, Zai-hui; Nie, Yuan-yuan; Xie, Jian-kun

    2015-08-01

    To identify the low nitrogen tolerance of Dongxiang wild rice (DXWR) and its progenies, ten phenotypic traits including plant height (PH), heading day (HD), panicle length (PL), number of effective tillers per plant (NETP), number of filled grains per panicle (NFGP), number of grains per panicle (NGP), grain density (GD), spikelet fertility (SF), 1000-grain mass (TGM) and grain yield per plant (GYP) were studied under normal and low nitrogen treatments, using backcross inbred lines (BILs) of Xieqingzao B//DXWR/Xieqingzao B in BC1 F12. Comprehensive evaluation on the low nitrogen tolerance of the BILs population was conducted using principal component analysis and the subordinate function. The evaluation results indicated that the low nitrogen tolerance of the line 116, 143 and 157 was the strongest, which could be served as the intermediate materials for genetic studies on the low nitrogen tolerance of DXWR and breeding for the low nitrogen tolerance in rice. The optimal regression equation of the low nitrogen tolerance in rice was established using stepwise regression analysis. The relative values of five traits including PH, NGP, SF, TGM and GYP were screened out and could be used as comprehensive evaluation indices for the low nitrogen tolerance in the whole growth stage. Therefore, more attention should be paid to the relative values of these five traits, especially for NGP and GYP, in the genetic improvement of the low nitrogen tolerance in rice.

  16. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy.

    Directory of Open Access Journals (Sweden)

    Jolly Chatterjee

    Full Text Available Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the 'sativa leaf type' that we see today in domesticated species.

  17. Little white lies: pericarp color provides insights into the origins and evolution of Southeast Asian weedy rice

    Science.gov (United States)

    Weedy rice is a conspecific form of cultivated rice (Oryza sativa L.) that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy ...

  18. Symbiont-mediated adaptation by planthoppers and leafhoppers to resistant rice varieties

    NARCIS (Netherlands)

    Ferrater, J.B.; Jong, de P.W.; Dicke, M.; Chen, Y.H.; Horgan, F.G.

    2013-01-01

    For over 50 years, host plant resistance has been the principal focus of public research to reduce planthopper and leafhopper damage to rice in Asia. Several resistance genes have been identified from native varieties and wild rice species, and some of these have been incorporated into high-yielding

  19. Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis.

    Science.gov (United States)

    Wang, Ya; Gao, Bo Liang; Li, Xi Xi; Zhang, Zhi Bin; Yan, Ri Ming; Yang, Hui Lin; Zhu, Du

    2015-11-01

    The biodiversity of plant endophytic fungi is enormous, numerous competent endophytic fungi are capable of providing different forms of fitness benefits to host plants and also could produce a wide array of bioactive natural products, which make them a largely unexplored source of novel compounds with potential bioactivity. In this study, we provided a first insights into revealing the diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff.) from China using rDNA-ITS phylogenetic analysis. Here, the potential of fungi in producing bioactive natural products was estimated based on the beta-ketosynthase detected in the polyketide synthase (PKS) gene cluster and on the bioassay of antagonistic activity against two rice phytopathogens Thanatephorus cucumeris and Xanthomonas oryzae. A total of 229 endophytic fungal strains were validated in 19 genera. Among the 24 representative strains, 13 strains displayedantagonistic activity against the phytopathogens. Furthermore, PKS genes were detected in 9 strains, indicating their potential for synthesising PKS compounds. Our study confirms the phylogenetic diversity of endophytic fungi in O. rufipogon G. and highlights that endophytic fungi are not only promising resources of biocontrol agents against phytopathogens of rice plants, but also of bioactive natural products and defensive secondary metabolites. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Engineered Dwarf Male-Sterile Rice: A Promising Genetic Tool for Facilitating Recurrent Selection in Rice.

    Science.gov (United States)

    Ansari, Afsana; Wang, Chunlian; Wang, Jian; Wang, Fujun; Liu, Piqing; Gao, Ying; Tang, Yongchao; Zhao, Kaijun

    2017-01-01

    Rice is a crop feeding half of the world's population. With the continuous raise of yield potential via genetic improvement, rice breeding has entered an era where multiple genes conferring complex traits must be efficiently manipulated to increase rice yield further. Recurrent selection is a sound strategy for manipulating multiple genes and it has been successfully performed in allogamous crops. However, the difficulties in emasculation and hand pollination had obstructed efficient use of recurrent selection in autogamous rice. Here, we report development of the dwarf male-sterile rice that can facilitate recurrent selection in rice breeding. We adopted RNAi technology to synergistically regulate rice plant height and male fertility to create the dwarf male-sterile rice. The RNAi construct pTCK-EGGE, targeting the OsGA20ox2 and OsEAT1 genes, was constructed and used to transform rice via Agrobacterium -mediated transformation. The transgenic T0 plants showing largely reduced plant height and complete male-sterile phenotypes were designated as the dwarf male-sterile plants. Progenies of the dwarf male-sterile plants were obtained by pollinating them with pollens from the wild-type. In the T1 and T2 populations, half of the plants were still dwarf male-sterile; the other half displayed normal plant height and male fertility which were designated as tall and male-fertile plants. The tall and male-fertile plants are transgene-free and can be self-pollinated to generate new varieties. Since emasculation and hand pollination for dwarf male-sterile rice plants is no longer needed, the dwarf male-sterile rice can be used to perform recurrent selection in rice. A dwarf male-sterile rice-based recurrent selection model has been proposed.

  1. Use of Wild Relatives and Closely Related Species to Adapt Common Bean to Climate Change

    Directory of Open Access Journals (Sweden)

    James D. Kelly

    2013-05-01

    Full Text Available Common bean (Phaseolus vulgaris L. is an important legume crop worldwide. However, abiotic and biotic stress limits bean yields to <600 kg ha−1 in low-income countries. Current low yields result in food insecurity, while demands for increased yields to match the rate of population growth combined with the threat of climate change are significant. Novel and significant advances in genetic improvement using untapped genetic diversity available in crop wild relatives and closely related species must be further explored. A meeting was organized by the Global Crop Diversity Trust to consider strategies for common bean improvement. This review resulted from that meeting and considers our current understanding of the genetic resources available for common bean improvement and the progress that has been achieved thus far through introgression of genetic diversity from wild relatives of common bean, and from closely related species, including: P. acutifolius, P. coccineus, P. costaricensis and P. dumosus. Newly developed genomic tools and their potential applications are presented. A broad outline of research for use of these genetic resources for common bean improvement in a ten-year multi-disciplinary effort is presented.

  2. Simultaneously Discovering and Localizing Common Objects in Wild Images.

    Science.gov (United States)

    Wang, Zhenzhen; Yuan, Junsong

    2018-09-01

    Motivated by the recent success of supervised and weakly supervised common object discovery, in this paper, we move forward one step further to tackle common object discovery in a fully unsupervised way. Generally, object co-localization aims at simultaneously localizing objects of the same class across a group of images. Traditional object localization/detection usually trains specific object detectors which require bounding box annotations of object instances, or at least image-level labels to indicate the presence/absence of objects in an image. Given a collection of images without any annotations, our proposed fully unsupervised method is to simultaneously discover images that contain common objects and also localize common objects in corresponding images. Without requiring to know the total number of common objects, we formulate this unsupervised object discovery as a sub-graph mining problem from a weighted graph of object proposals, where nodes correspond to object proposals, and edges represent the similarities between neighbouring proposals. The positive images and common objects are jointly discovered by finding sub-graphs of strongly connected nodes, with each sub-graph capturing one object pattern. The optimization problem can be efficiently solved by our proposed maximal-flow-based algorithm. Instead of assuming that each image contains only one common object, our proposed solution can better address wild images where each image may contain multiple common objects or even no common object. Moreover, our proposed method can be easily tailored to the task of image retrieval in which the nodes correspond to the similarity between query and reference images. Extensive experiments on PASCAL VOC 2007 and Object Discovery data sets demonstrate that even without any supervision, our approach can discover/localize common objects of various classes in the presence of scale, view point, appearance variation, and partial occlusions. We also conduct broad

  3. A selfish genetic element confers non-Mendelian inheritance in rice.

    Science.gov (United States)

    Yu, Xiaowen; Zhao, Zhigang; Zheng, Xiaoming; Zhou, Jiawu; Kong, Weiyi; Wang, Peiran; Bai, Wenting; Zheng, Hai; Zhang, Huan; Li, Jing; Liu, Jiafan; Wang, Qiming; Zhang, Long; Liu, Kai; Yu, Yang; Guo, Xiuping; Wang, Jiulin; Lin, Qibing; Wu, Fuqing; Ren, Yulong; Zhu, Shanshan; Zhang, Xin; Cheng, Zhijun; Lei, Cailin; Liu, Shijia; Liu, Xi; Tian, Yunlu; Jiang, Ling; Ge, Song; Wu, Chuanyin; Tao, Dayun; Wang, Haiyang; Wan, Jianmin

    2018-06-08

    Selfish genetic elements are pervasive in eukaryote genomes, but their role remains controversial. We show that qHMS7 , a major quantitative genetic locus for hybrid male sterility between wild rice ( Oryza meridionalis ) and Asian cultivated rice ( O. sativa ), contains two tightly linked genes [ Open Reading Frame 2 ( ORF2 ) and ORF3 ]. ORF2 encodes a toxic genetic element that aborts pollen in a sporophytic manner, whereas ORF3 encodes an antidote that protects pollen in a gametophytic manner. Pollens lacking ORF3 are selectively eliminated, leading to segregation distortion in the progeny. Analysis of the genetic sequence suggests that ORF3 arose first, followed by gradual functionalization of ORF2 Furthermore, this toxin-antidote system may have promoted the differentiation and/or maintained the genome stability of wild and cultivated rice. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Hybridization study of wild rice Oryza glumaepatula with varieties of cultivated rice (O. sativa) and wild (O. grandiglumis)

    International Nuclear Information System (INIS)

    Villalobos Cascante, Eddier

    2015-01-01

    The process of interspecific hybridization of the wild species O. glumaepatula is studied with commercial varieties of the species O. sativa and O. grandiglumis, by morphological evaluation and hybrid flow cytometry. Hybrid plants were evaluated of cross between O. glumaepatula, located in the wetlands of Rio Medio Queso and two varieties of O. sativa, Puita Inta and CFX 18 resistant to a herbicide. The technique of Polymerase Chain Reaction Allele Specifies Oligonucleotide (PCR-ASO) was used to detect allelic mutations in the ALS gene conferring herbicide resistance, and it is confirmed the hybrid nature of the plants obtained at crossings. 68 hybrids were obtained: O. glumaepatula x P. Inta, 21 hybrids P. Inta x O. glumaepatula, 4 hybrids O. glumaepatula x CFX-18 and 15 hybrids CFX-18 x O. glumaepatula. 10 morphological descriptors of the genus Oryza were evaluated and determined that are indifferent to the direction and type of crossing, the hybrids resemble to the wild species O. glumaepatula for characters: height, panicle length and ligule length. All hybrids have showed similarity to commercial varieties in flag leaf length. Other characters evaluated in the hybrids have presented maternal effect, heterosis and intermediate values. The protocol of flow cytometry (FCM) is standardized species for Oryza genus analyzing nuclear DNA content of 106 samples of leaf tissue of wild species O. glumaepatula, O. grandiglumis; whose average has been of 0.73 picograms, and natural hybrids product of the cross of these species. The result has been intermediate compared with O. grandiglumis and O. glumaepatula that have made available to 1.0 picograms and 0.50 of DNA respectively. The molecular nature of the hybrids was confirmed in this way. (author) [es

  5. Genetic potentiality of indigenous rice genotypes from Eastern India with reference to submergence tolerance and deepwater traits

    Directory of Open Access Journals (Sweden)

    Sayani Goswami

    2017-09-01

    Full Text Available Submergence tolerance in rice varieties is crucial for maintaining stable yields in low land areas, where recurrence of flooding is a constant phenomenon during monsoon. We have conducted detailed physiological and genotyping studies of 27 rice genotypes and one wild rice relative, popularly grown in low land areas of the two major rice growing states of eastern India, West Bengal and Odisha with a focus on submergence tolerance traits and Sub1 loci. We found that these genotypes show varying degree (50–100% survival rate during post submergence recovery period, and high degree of polymorphism in the Sub1 linked rice microsatellite loci RM219 and RM7175. Detailed allelic diversity study of Sub1A loci suggests that rice varieties IR42, Panibhasha, Khoda and Kalaputia share a common allele that is different from FR13A, Keralasundari, Bhashakalmi, Kumrogore. Two other genotypes Meghi and Khoda shares both alleles of Sub1A loci (present in IR42 and FR13A groups in addition to a new variant. Detailed sequence analysis of the amplified product for the Sub1A loci from these genotypes showed several single nucleotide changes with respect to reference Oryza sativa Sub1A loci (DQ011598. Three rice genotypes (Meghi, Bhashakalmi and Keralasundari showed beneficial properties in relation to induced submergence stress and can be considered as valuable genetic source in context of utilization of natural rice genetic resources in breeding program for submergence tolerance.

  6. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700-500 BC.

    Directory of Open Access Journals (Sweden)

    Zhenhua Deng

    Full Text Available Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan and south (Qujialing and Shijiahe between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds, from systematic flotation of 123 samples (1700 litres, producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa between 6300-6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato. In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum. Soybean appears on the site in the Shijiahe period (ca.2500 BC and wheat (Triticum cf. aestivum in the Late Longshan levels (2200-1800 BC. Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north.

  7. Determination of genetic variability of traditional varieties of Brazilian rice using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Claudio Brondani

    2006-01-01

    Full Text Available The rice (Oryza sativa breeding program of the Rice and Bean research center of the Brazilian agricultural company Empresa Brasileira de Pesquisa Agropecuária (Embrapa is well established and provides new cultivars every year to attend the demand for improved high yielding varieties with tolerance to biotic and abiotic stresses. However, the elite genitors used to compose new populations for selection are closely related, contributing to the yield plateau reached in the last 20 years. To overcome this limit, it is necessary to broaden the genetic basis of the cultivars using diverse germplasm such as wild relatives or traditional varieties, with the latter being more practical because they are more easily crossed with elite germplasm to accelerate the recovery of modern plant types in the breeding lines. The objective of our study was to characterize the allelic diversity of 192 traditional varieties of Brazilian rice using 12 simple sequence repeat (SSR or microsatellite markers. The germplasm was divided into 39 groups by common name similarity. A total of 176 alleles were detected, 30 of which (from 23 accessions were exclusive. The number of alleles per marker ranged from 6 to 22, with an average of 14.6 alleles per locus. We identified 16 accessions as a mixture of pure lines or heterozygous plants. Dendrogram analysis identified six clusters of identical accessions with different common names and just one cluster with identical accessions with the same common name, indicating that SSR markers are fundamental to determining the genetic relationship between landraces. A subset of 24 landraces, representatives of the 13 similarity groups plus the 11 accessions not grouped, was the most variable set of genotypes analyzed. These accessions can be used as genitors to increase the genetic variability available to rice breeding programs.

  8. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    Science.gov (United States)

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  9. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    Science.gov (United States)

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  10. Identification of molecular markers linked to rice bacterial blight resistance genes from Oryza meyeriana

    Directory of Open Access Journals (Sweden)

    Jing WANG,Chen CHENG,Yanru ZHOU,Yong YANG,Qiong MEI,Junmin LI,Ye CHENG,Chengqi YAN,Jianping CHEN

    2015-09-01

    Full Text Available Y73 is a progeny of asymmetric somatic hybridization between Oryza sativa cv. Dalixiang and the wild rice species Oryza meyeriana. Inoculation with a range of strains of Xanthomonas oryzae pv. oryzae showed that Y73 had inherited a high level of resistance to rice bacterial blight (BB from its wild parent. An F2 population of 7125 individuals was constructed from the cross between Y73 and a BB-susceptible cultivar IR24. After testing 615 SSR and STS markers covering the 12 rice chromosomes, 186 markers were selected that showed polymorphism between Y73 and IR24. Molecular markers linked to the BB resistance genes in Y73 were scanned using the F2 population and the polymorphic markers. The SSR marker RM128 on chromosome 1, the STS marker R03D159 on chromosome 3 and the STS marker R05D104 on chromosome 5 were found to be linked to the rice BB resistance genes in Y73.

  11. Cadmium Accumulation and Its Toxicity in Brittle Culm 1 (bc1, a Fragile Rice Mutant

    Directory of Open Access Journals (Sweden)

    Guo-sheng SHAO

    2007-09-01

    Full Text Available Cadmium (Cd accumulation and toxicity in rice plants were characterized and identified by using brittle culm 1 (bc1, a fragile rice mutant and its wild type (Shuangkezao, an indica rice as materials by hydroponics. The low Cd level didn't obviously affect the growth parameters in both rice genotypes, but under high Cd levels (1.0 and 5.0 μmol/L, the growth of both rice plants were substantially inhibited. Moreover, bc1 tended to suffer more seriously from Cd toxicity than Shuangkezao. Cd accumulation in both rice plants increased with the increase of Cd levels. There was a significant difference in Cd accumulation between the two rice genotypes with constantly higher Cd concentration in bc1, which also accumulated more Cd at 0, 0.1, and 1.0 μmol/L Cd levels. The same case was found in the two rice plants grown on Cd-contaminated soil. This suggested that cell wall might play an important role in Cd accumulation in rice plants by the physiological mechanisms. The malondialdehyde (MDA content, superoxide dismutase (SOD and peroxidase (POD activities in rice plants were affected differently under Cd treatments, and which implied that POD might play the main role in detoxifying active oxygen free radical. A significant difference in antioxidative system between the two rice genotypes was found with constantly higher MDA content, SOD and POD activities in bc1. In summary, bc1 accumulated more Cd and appeared to be more sensitive to Cd stress compared with its wild type.

  12. Blast resistance of space-induced variants derived from rice cultivar Hanghui 7

    International Nuclear Information System (INIS)

    Zhang Jingxin; Yang Qiyun; Zhu Xiaoyuan; Wang Hui; Zeng Liexian; Liu Yongzhu; Guo Tao; Chen Zhiqiang

    2010-01-01

    To screen the resistance lines to rice blast, the blast resistance of SP 3 and SP 4 progenies derived from rice variety Hanghui 7 were evaluated after satellite flight, and the genomic DNA polymorphism of the resistant variants selected from SP 3 was compared with the wild type by microsatellite markers. The results indicated that the SP 3 Variant line H24, which was selected from the 250 space-induced lines ( SP 3 ) with excellent agronomic and economical characters, showed resistance segregation (119R : 108S) against blast isolate GD3286. It was demonstrated that the resistance of H24 might be controlled by two dominant and complementary resistance genes. The resistance of H24 was still segregated in SP 4 , but the resistance spectrum of H24 was 84. 4% in SP 5 , much higher than the wild type, 40. 6%, and H24 especially showed resistant against some blast isolates of broad pathogenic spectrum or specialized pathogenicity; further more, the DNA polymorphism wasn't detected between H24 and its wild type by 229 SSR (simple sequence repeat) markers covering the rice genome equally. (authors)

  13. Genetic control of a transition from black to straw-white seed hull in rice domestication.

    Science.gov (United States)

    Zhu, Bo-Feng; Si, Lizhen; Wang, Zixuan; Zhou, Yan; Zhu, Jinjie; Shangguan, Yingying; Lu, Danfeng; Fan, Danlin; Li, Canyang; Lin, Hongxuan; Qian, Qian; Sang, Tao; Zhou, Bo; Minobe, Yuzo; Han, Bin

    2011-03-01

    The genetic mechanism involved in a transition from the black-colored seed hull of the ancestral wild rice (Oryza rufipogon and Oryza nivara) to the straw-white seed hull of cultivated rice (Oryza sativa) during grain ripening remains unknown. We report that the black hull of O. rufipogon was controlled by the Black hull4 (Bh4) gene, which was fine-mapped to an 8.8-kb region on rice chromosome 4 using a cross between O. rufipogon W1943 (black hull) and O. sativa indica cv Guangluai 4 (straw-white hull). Bh4 encodes an amino acid transporter. A 22-bp deletion within exon 3 of the bh4 variant disrupted the Bh4 function, leading to the straw-white hull in cultivated rice. Transgenic study indicated that Bh4 could restore the black pigment on hulls in cv Guangluai 4 and Kasalath. Bh4 sequence alignment of all taxa with the outgroup Oryza barthii showed that the wild rice maintained comparable levels of nucleotide diversity that were about 70 times higher than those in the cultivated rice. The results from the maximum likelihood Hudson-Kreitman-Aguade test suggested that the significant reduction in nucleotide diversity in rice cultivars could be caused by artificial selection. We propose that the straw-white hull was selected as an important visual phenotype of nonshattered grains during rice domestication.

  14. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700–500 BC)

    Science.gov (United States)

    Deng, Zhenhua; Qin, Ling; Gao, Yu; Weisskopf, Alison Ruth; Zhang, Chi; Fuller, Dorian Q.

    2015-01-01

    Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan) and south (Qujialing and Shijiahe) between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds), from systematic flotation of 123 samples (1700 litres), producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa) between 6300–6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato). In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum). Soybean appears on the site in the Shijiahe period (ca.2500 BC) and wheat (Triticum cf. aestivum) in the Late Longshan levels (2200–1800 BC). Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north. PMID:26460975

  15. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens

    OpenAIRE

    Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya

    2014-01-01

    Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers d...

  16. γ-Oryzanol, tocol and mineral compositions in different grain fractions of giant embryo rice mutants.

    Science.gov (United States)

    Jeng, Toong Long; Shih, Yi Ju; Ho, Pei Tzu; Lai, Chia Chi; Lin, Yu Wen; Wang, Chang Sheng; Sung, Jih Min

    2012-05-01

    Rice embryo is concentrated with lipid, protein and some bioactive chemicals. Two rice mutants IR64-GE and TNG71-GE (M7 generation) were characterised by an enlarged embryo compared with their wild types. In the present study, distributions of protein, lipid, total phenolics, γ-oryzanol, tocols and some essential minerals in these two giant embryo mutants and their respective normal embryo wild types IR64 and TNG71 were compared. The embryo dry weights of giant embryo mutants IR64-GE and TNG71-GE were 0.92 and 1.32 mg per seed respectively. These values were higher than those of their respective normal embryo genotypes (0.50 and 0.62 mg per seed). Large variations in protein, lipid, phenolic, γ-oryzanol, tocol and minerals levels were found between mutant and wild-type pairs. The brown rice of TNG71-GE had higher total γ-oryzanol (average of 24% increase) and total tocol (average of 75% increase) levels than TNG71, IR64 and IR64-GE. The embryo and bran parts of giant embryo mutant TNG71-GE were found to be good sources of vitamin E and γ-oryzanol. Therefore it could be used to produce high-value by-products from milled embryo and bran parts and as a genetic resource for rice improvement programmes. TNG71-GE can also be used as a nutrient-fortified rice cultivar. Copyright © 2011 Society of Chemical Industry.

  17. Molecular evolution of shattering loci in U.S. weedy rice.

    Science.gov (United States)

    Thurber, Carrie S; Reagon, Michael; Gross, Briana L; Olsen, Kenneth M; Jia, Yulin; Caicedo, Ana L

    2010-08-01

    Cultivated rice fields worldwide are plagued with weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting. In the United States, separately evolved weedy rice groups have been shown to share genomic identity with exotic domesticated cultivars. Here, we investigate the shattering phenotype in a collection of U.S. weedy rice accessions, as well as wild and cultivated relatives. We find that all U.S. weedy rice groups shatter seeds easily, despite multiple origins, and in contrast to a decrease in shattering ability seen in cultivated groups. We assessed allelic identity and diversity at the major shattering locus, sh4, in weedy rice; we find that all cultivated and weedy rice, regardless of population, share similar haplotypes at sh4, and all contain a single derived mutation associated with decreased seed shattering. Our data constitute the strongest evidence to date of an evolution of weeds from domesticated backgrounds. The combination of a shared cultivar sh4 allele and a highly shattering phenotype, suggests that U.S. weedy rice have re-acquired the shattering trait after divergence from their progenitors through alternative genetic mechanisms.

  18. Genome-wide patterns of nucleotide polymorphism in domesticated rice

    DEFF Research Database (Denmark)

    Caicedo, Ana L; Williamson, Scott H; Hernandez, Ryan D

    2007-01-01

    Domesticated Asian rice (Oryza sativa) is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments......, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs) in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models...... to explain contemporary patterns of polymorphisms in rice, including a (i) selectively neutral population bottleneck model, (ii) bottleneck plus migration model, (iii) multiple selective sweeps model, and (iv) bottleneck plus selective sweeps model. We find that a simple bottleneck model, which has been...

  19. PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation.

    Science.gov (United States)

    Nath, Manoj; Garg, Bharti; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2015-01-01

    Salinity stress negatively affects the crop productivity worldwide, including that of rice. Coping with these losses is a major concern for all countries. The pea DNA helicase, PDH45 is a unique member of helicase family involved in the salinity stress tolerance. However, the exact mechanism of the PDH45 in salinity stress tolerance is yet to be established. Therefore, the present study was conducted to investigate the mechanism of PDH45-mediated salinity stress tolerance in transgenic tobacco and rice lines along with wild type (WT) plants using CoroNa Green dye based sodium localization in root and shoot sections. The results showed that under salinity stress root and shoot of PDH45 overexpressing transgenic tobacco and rice accumulated less sodium (Na(+)) as compared to their respective WT. The present study also reports salinity tolerant (FL478) and salinity susceptible (Pusa-44) varieties of rice accumulated lowest and highest Na(+) level, respectively. All the varieties and transgenic lines of rice accumulate differential Na(+) ions in root and shoot. However, roots accumulate high Na(+) as compared to the shoots in both tobacco and rice transgenic lines suggesting that the Na(+) transport in shoot is somehow inhibited. It is proposed that the PDH45 is probably involved in the deposition of apoplastic hydrophobic barriers and consequently inhibit Na(+) transport to shoot and therefore confers salinity stress tolerance to PDH45 overexpressing transgenic lines. This study concludes that tobacco (dicot) and rice (monocot) transgenic plants probably share common salinity tolerance mechanism mediated by PDH45 gene.

  20. Testing of Rice Stocks for Their Survival of Winter Cold

    Directory of Open Access Journals (Sweden)

    Hiroshi Ikehashi

    2018-03-01

    Full Text Available Rice cultivation is considered to be initiated by vegetative propagation of sprout from wild perennial stocks. To test whether any presently cultivated rice cultivar can survive the winter cold or not, rice stocks of several cultivars including indica and japonica types were placed in a shallow pool from October to April in 2015–2016 and 2016–2017. During the coldest period of the winter, the bases of the stocks were placed 5–6 cm below the surface of water, where temperatures ranged from 3 °C to 5 °C, while the surface was frozen for two or three times and covered with snow for a day. Only one cultivar, Nipponbare, a japonica type, survived the winter cold and regenerated sprouts in the end of April or early May. A possibility to develop perennial cultivation of rice or perennial hybrid rice is discussed.

  1. Indica rice (Oryza sativa, BR29 and IR64).

    Science.gov (United States)

    Datta, Karabi; Datta, Swapan Kumar

    2006-01-01

    Rice is the world's most important food crop. Indica-type rice provides the staple food for more than half of the world population. To satisfy the growing demand of the ever-increasing population, more sustained production of indica-type rice is needed. In addition, because of the high per capita consumption of indica rice, improvement of any traits including its nutritive value may have a significant positive health outcome for the rice-consuming population. Rice yield productivity is greatly affected by different biotic stresses, like diseases and insect pests, and abiotic stresses like drought, cold, and salinity. Attempts to improve resistance in rice to these stresses by conventional breeding through introgression of traits have limited success owing to a lack of resistance germplasm in the wild relatives. Gene transfer technology with genes from other sources can be used to make rice plants resistant or tolerant to insect pests, diseases, and different environmental stresses. For improving the nutritional value of the edible endosperm part of the rice, genes for increasing iron, beta-carotene, or better quality protein can be introduced in rice plants by genetic engineering. Different crops have been transformed using various gene transfer methods, such as protoplast transformation, biolistic, and Agrobacterium-mediated transformation. This chapter describes the Agrobacterium-mediated transformation protocol for indica-type rice. The selectable marker genes used are hygromycin phosphotransferase (hpt), neomycin phosphotransferase (nptII), or phosphomannose isomerase (pmi), and, accordingly, the selection agents are hygromycin, kanamycin (G418), or mannose, respectively.

  2. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    Science.gov (United States)

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Discrimination of Transgenic Rice Based on Near Infrared Reflectance Spectroscopy and Partial Least Squares Regression Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    ZHANG Long

    2015-09-01

    Full Text Available Near infrared reflectance spectroscopy (NIRS, a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA to discriminate the transgenic (TCTP and mi166 and wild type (Zhonghua 11 rice. Furthermore, rice lines transformed with protein gene (OsTCTP and regulation gene (Osmi166 were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000–8 000 cm-1 and 4 000–10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000–10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000–10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice.

  4. Wild plant food in agricultural environments: a study of occurrence, management, and gathering rights in Northeast Thailand.

    NARCIS (Netherlands)

    Price, L.L.

    1997-01-01

    This article examines the gathering of wild plant foods in agricultural environments and utilizes research conducted among rice cultivators in northeast Thailand as the case study. The management of wild food plants and gathering rights on agricultural land are closely linked to women's roles as

  5. Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice.

    Science.gov (United States)

    Bessho-Uehara, Kanako; Wang, Diane R; Furuta, Tomoyuki; Minami, Anzu; Nagai, Keisuke; Gamuyao, Rico; Asano, Kenji; Angeles-Shim, Rosalyn B; Shimizu, Yoshihiro; Ayano, Madoka; Komeda, Norio; Doi, Kazuyuki; Miura, Kotaro; Toda, Yosuke; Kinoshita, Toshinori; Okuda, Satohiro; Higashiyama, Tetsuya; Nomoto, Mika; Tada, Yasuomi; Shinohara, Hidefumi; Matsubayashi, Yoshikatsu; Greenberg, Anthony; Wu, Jianzhong; Yasui, Hideshi; Yoshimura, Atsushi; Mori, Hitoshi; McCouch, Susan R; Ashikari, Motoyuki

    2016-08-09

    Domestication of crops based on artificial selection has contributed numerous beneficial traits for agriculture. Wild characteristics such as red pericarp and seed shattering were lost in both Asian (Oryza sativa) and African (Oryza glaberrima) cultivated rice species as a result of human selection on common genes. Awnedness, in contrast, is a trait that has been lost in both cultivated species due to selection on different sets of genes. In a previous report, we revealed that at least three loci regulate awn development in rice; however, the molecular mechanism underlying awnlessness remains unknown. Here we isolate and characterize a previously unidentified EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family member named REGULATOR OF AWN ELONGATION 2 (RAE2) and identify one of its requisite processing enzymes, SUBTILISIN-LIKE PROTEASE 1 (SLP1). The RAE2 precursor is specifically cleaved by SLP1 in the rice spikelet, where the mature RAE2 peptide subsequently induces awn elongation. Analysis of RAE2 sequence diversity identified a highly variable GC-rich region harboring multiple independent mutations underlying protein-length variation that disrupt the function of the RAE2 protein and condition the awnless phenotype in Asian rice. Cultivated African rice, on the other hand, retained the functional RAE2 allele despite its awnless phenotype. Our findings illuminate the molecular function of RAE2 in awn development and shed light on the independent domestication histories of Asian and African cultivated rice.

  6. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    Science.gov (United States)

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Responses of sri lankan traditional rice to photoperiod at early vegetative stage

    International Nuclear Information System (INIS)

    Rathnathunga, U.U.E.; Geekiyanage, S.

    2017-01-01

    Rice is a photoperiod sensitive plant for flowering initiation. Effect of photoperiod can be important in vegetative growth and yield determination in rice. The objective of the research was to determine the effect of photoperiod on the vegetative responses of Sri Lankan traditional rice germplasm (SLTRG). Forty five traditional rice accessions (TRA), 5 improved rice varieties (IR), Sri Lankan wild rice (Oryza nivara and Oryza rufipogan) and Oryza japonica accessions 6782 and 6752 were grown in short day (SD), day neutral (DN) and long day (LD) conditions. Days to reach the fifth leaf stage (DFL), plant height (PH) and tiller number (TN) at the fifth leaf stage were recorded. Twenty three genotypes including 21 TRA, Oryza japonica 6752 and Oryza nivara did not respond to photoperiod having non-significant values for DFL, PH and TN among photoperiods. The DFL was affected in 25 genotypes; among them both DFL and PH were affected in 7 genotypes. DFL was significantly increased during LD in 4 TRA while DFL was significantly reduced in all 5 IR and 5 TRA. DFL was significantly increased in Oryza japonica 6782 and 5 TRA under SD. In 4 TRA, DFL was reduced under SD. The TN was affected in Oryza japonica 6782 only under SD with increased DFL. The DFL was significantly increased under DN in Oryza rufipogan, 5 TRA and 2 IR. Both SD and LD photoperiods differently affected the interaction between DFL and PH in TRA while only LD affected that of IR. DN had an effect on the interaction between DFL and PH only in wild rice Oryza rufipogon. Variation of vegetative growth response to photoperiod may depict the wide genetic basis of SLTRG. (author)

  8. FLUORIDE LEVELS IN COMMERCIALLY AVAILABLE RICE IN ...

    African Journals Online (AJOL)

    Preferred Customer

    2013-05-05

    May 5, 2013 ... Rice is one of the commonly consumed cereals for more than half of the ... also used as flour, for making rice wine, as ingredient for beer and liquor, ... Fluoride is a necessary element to human health, and a moderate amount of fluoride intake ... For Ethiopian red rice (ERR) Fogera was selected to collect.

  9. Use of the p-SINE1-r2 in inferring evolutionary relationships of Thai rice varieties with AA genome

    Directory of Open Access Journals (Sweden)

    Preecha Prathepha

    2006-01-01

    Full Text Available In a previous study we described the prevalence and distribution in Thailand of the retroposon p- SINE1-r2, in the intron 10 of the waxy gene in cultivated and wild rice with the AA genome. In this study, additional varieties of rice were collected and sequencing was used to further characterize p-SINE1-r2. It was found that the length of the p-SINE1-r2 nucleotide sequences was about 125 bp, flanked by identical direct repeats of a 14 bp sequence. These sequences were compared and found to be similar to the sequences of p- SINE1-r2 found in Nipponbare, a rice strain discussed in a separate study. However, when compared the 48 DNA sequences identified in this study, much dissimilarity was found within the nucleotide sequences of p- SINE1-r2, in the form of base substitution mutations. Phylogenetic relationships inferred from the nucleotide sequences of these elements in cultivated rice (O. sativa and wild rice (O. nivara. It was found that rice accessions collected from the same geographical distribution have been placed in the same clade. The phylogenetic tree supports the origin and distribution of these rice strains.

  10. Genetic Control of a Transition from Black to Straw-White Seed Hull in Rice Domestication1[C][W][OA

    Science.gov (United States)

    Zhu, Bo-Feng; Si, Lizhen; Wang, Zixuan; Jingjie Zhu, Yan Zhou; Shangguan, Yingying; Lu, Danfeng; Fan, Danlin; Li, Canyang; Lin, Hongxuan; Qian, Qian; Sang, Tao; Zhou, Bo; Minobe, Yuzo; Han, Bin

    2011-01-01

    The genetic mechanism involved in a transition from the black-colored seed hull of the ancestral wild rice (Oryza rufipogon and Oryza nivara) to the straw-white seed hull of cultivated rice (Oryza sativa) during grain ripening remains unknown. We report that the black hull of O. rufipogon was controlled by the Black hull4 (Bh4) gene, which was fine-mapped to an 8.8-kb region on rice chromosome 4 using a cross between O. rufipogon W1943 (black hull) and O. sativa indica cv Guangluai 4 (straw-white hull). Bh4 encodes an amino acid transporter. A 22-bp deletion within exon 3 of the bh4 variant disrupted the Bh4 function, leading to the straw-white hull in cultivated rice. Transgenic study indicated that Bh4 could restore the black pigment on hulls in cv Guangluai 4 and Kasalath. Bh4 sequence alignment of all taxa with the outgroup Oryza barthii showed that the wild rice maintained comparable levels of nucleotide diversity that were about 70 times higher than those in the cultivated rice. The results from the maximum likelihood Hudson-Kreitman-Aguade test suggested that the significant reduction in nucleotide diversity in rice cultivars could be caused by artificial selection. We propose that the straw-white hull was selected as an important visual phenotype of nonshattered grains during rice domestication. PMID:21263038

  11. Comparative Mapping of Seed Dormancy Loci Between Tropical and Temperate Ecotypes of Weedy Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Lihua Zhang

    2017-08-01

    Full Text Available Genotypic variation at multiple loci for seed dormancy (SD contributes to plant adaptation to diverse ecosystems. Weedy rice (Oryza sativa was used as a model to address the similarity of SD genes between distinct ecotypes. A total of 12 quantitative trait loci (QTL for SD were identified in one primary and two advanced backcross (BC populations derived from a temperate ecotype of weedy rice (34.3°N Lat.. Nine (75% of the 12 loci were mapped to the same positions as those identified from a tropical ecotype of weedy rice (7.1°N Lat.. The high similarity suggested that the majority of SD genes were conserved during the ecotype differentiation. These common loci are largely those collocated/linked with the awn, hull color, pericarp color, or plant height loci. Phenotypic correlations observed in the populations support the notion that indirect selections for the wild-type morphological characteristics, together with direct selections for germination time, were major factors influencing allelic distributions of SD genes across ecotypes. Indirect selections for crop-mimic traits (e.g., plant height and flowering time could also alter allelic frequencies for some SD genes in agroecosystems. In addition, 3 of the 12 loci were collocated with segregation distortion loci, indicating that some gametophyte development genes could also influence the genetic equilibria of SD loci in hybrid populations. The SD genes with a major effect on germination across ecotypes could be used as silencing targets to develop transgene mitigation (TM strategies to reduce the risk of gene flow from genetically modified crops into weed/wild relatives.

  12. Full establishment of arbuscular mycorrhizal symbiosis in rice occurs independently of enzymatic jasmonate biosynthesis.

    Directory of Open Access Journals (Sweden)

    Caroline Gutjahr

    Full Text Available Development of the mutualistic arbuscular mycorrhiza (AM symbiosis between most land plants and fungi of the Glomeromycota is regulated by phytohormones. The role of jasmonate (JA in AM colonization has been investigated in the dicotyledons Medicago truncatula, tomato and Nicotiana attenuata and contradicting results have been obtained with respect to a neutral, promotive or inhibitory effect of JA on AM colonization. Furthermore, it is currently unknown whether JA plays a role in AM colonization of monocotyledonous roots. Therefore we examined whether JA biosynthesis is required for AM colonization of the monocot rice. To this end we employed the rice mutant constitutive photomorphogenesis 2 (cpm2, which is deficient in JA biosynthesis. Through a time course experiment the amount and morphology of fungal colonization did not differ between wild-type and cpm2 roots. Furthermore, no significant difference in the expression of AM marker genes was detected between wild type and cpm2. However, treatment of wild-type roots with 50 μM JA lead to a decrease of AM colonization and this was correlated with induction of the defense gene PR4. These results indicate that JA is not required for AM colonization of rice but high levels of JA in the roots suppress AM development likely through the induction of defense.

  13. Selection of gamma-ray induced salt tolerant rice mutants by in vitro mutagenesis

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Chun, Jae Beom; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Yun, Song Jong; Kang, Si Yong

    2010-01-01

    The present study had been performed to select the salt tolerant rice mutant lines through an in vivo and in vitro mutagenesis with a gamma-ray. The physiological responses such as MDA and chlorophyll of the selected salt mutant lines were investigated under salt stress. For the selection of the salt tolerant rice mutants by in vitro mutagenesis with gamma-ray, we conducted a second selection procedure with 1,500 mutant lines induced from the original cv. Dongan (wild-type, WT): Ist, selection under a nutrient solution with 171 mM NaCI: 2nd, selection under in vitro conditions. Based on a growth comparison of the entries, out of mutant lines, the putative 2 salt tolerant rice mutant lines, ST-495 and ST-532, were selected. The 2 ST-lines had a lower malonaldehyde (MDA) contents than wild-type (WT) during salt stress. The survival rate of the WT, ST-495 and ST-532 were 36.6%, 70% and 50% in 171 mM NaCI, respectively. The chlorophyll and carotenoid contents were decreased more in a WT plant than the two selected mutant lines. These rice mutant lines will be released for cultivation at the reclaimed land and used as a control plot for genetic research about salt tolerance

  14. Selection of gamma-ray induced salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Chun, Jae Beom; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Yun, Song Jong; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    The present study had been performed to select the salt tolerant rice mutant lines through an in vivo and in vitro mutagenesis with a gamma-ray. The physiological responses such as MDA and chlorophyll of the selected salt mutant lines were investigated under salt stress. For the selection of the salt tolerant rice mutants by in vitro mutagenesis with gamma-ray, we conducted a second selection procedure with 1,500 mutant lines induced from the original cv. Dongan (wild-type, WT): Ist, selection under a nutrient solution with 171 mM NaCI: 2nd, selection under in vitro conditions. Based on a growth comparison of the entries, out of mutant lines, the putative 2 salt tolerant rice mutant lines, ST-495 and ST-532, were selected. The 2 ST-lines had a lower malonaldehyde (MDA) contents than wild-type (WT) during salt stress. The survival rate of the WT, ST-495 and ST-532 were 36.6%, 70% and 50% in 171 mM NaCI, respectively. The chlorophyll and carotenoid contents were decreased more in a WT plant than the two selected mutant lines. These rice mutant lines will be released for cultivation at the reclaimed land and used as a control plot for genetic research about salt tolerance.

  15. Succession of methanogenic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analyses

    Directory of Open Access Journals (Sweden)

    Atsuo Sugano

    2005-01-01

    Full Text Available The succession and phylogenetic profiles of methanogenic archaeal communities associated with rice straw decomposition in rice-field soil were studied by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE analysis followed by 16S rDNA sequencing. Nylon bags containing either leaf sheaths or blades were buried in the plowed layer of a Japanese rice field under drained conditions during the off-crop season and under flooded conditions after transplanting. In addition, rice straw samples that had been buried in the rice field under drained conditions during the off-crop season were temporarily removed during spring plowing and then re-buried in the same rice field under flooded conditions at transplanting. Populations of methanogenic archaea were examined by amplification of the 16S rRNA genes in the DNA extracted from the rice straw samples. No PCR product was produced for samples of leaf sheath or blade prior to burial or after burial under drained conditions, indicating that the methanogen population was very small during decomposition of rice straw under oxic conditions. Many common bands were observed in rice straw samples of leaf sheath and blade during decomposition of rice straw under flooded conditions. Cluster analysis based on DGGE patterns divided methanogenic archaeal communities into two groups before and after the mid-season drainage. Sequence analysis of DGGE bands that were commonly present were closely related to Methanomicrobiales and Rice cluster I. Methanomicrobiales, Rice cluster I and Methanosarcinales were major members before the mid-season drainage, whereas the DGGE bands that characterized methanogenic archaeal communities after the mid-season drainage were closely related to Methanomicrobiales. These results indicate that mid-season drainage affected the methanogenic archaeal communities irrespective of their location on rice straw (sheath and blade and the previous history of decomposition

  16. Genetic diversity and population structure of Iranian wild Pleurotus eryngii species-complex strains revealed by URP-PCR markers

    NARCIS (Netherlands)

    Behnamian, Mahdi; Mohammadi, Seyed A.; Sonnenberg, A.S.M.; Goltapeh, Ebrahim M.; Hendrickx, P.M.

    2010-01-01

    In the present study, a set of 68 P. eryngii wild strains collected from nine locations in northwest and west of Iran along with six commercial strains were studied using universal rice primers (URP). The wild strains were isolated from Ferula ovina, F. haussknechtii, Cachrys ferulacea, Kellusia

  17. Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Zhang, Fantao; Luo, Xiangdong; Zhou, Yi; Xie, Jiankun

    2016-04-01

    To identify drought stress-responsive conserved microRNA (miRNA) from Dongxiang wild rice (Oryza rufipogon Griff., DXWR) on a genome-wide scale, high-throughput sequencing technology was used to sequence libraries of DXWR samples, treated with and without drought stress. 505 conserved miRNAs corresponding to 215 families were identified. 17 were significantly down-regulated and 16 were up-regulated under drought stress. Stem-loop qRT-PCR revealed the same expression patterns as high-throughput sequencing, suggesting the accuracy of the sequencing result was high. Potential target genes of the drought-responsive miRNA were predicted to be involved in diverse biological processes. Furthermore, 16 miRNA families were first identified to be involved in drought stress response from plants. These results present a comprehensive view of the conserved miRNA and their expression patterns under drought stress for DXWR, which will provide valuable information and sequence resources for future basis studies.

  18. Photosynthetic characterization of a rolled leaf mutant of rice ( Oryza ...

    African Journals Online (AJOL)

    A new rolling leaf rice mutant was identified which showed an apparently straighter longitudinal shape normal transverse rolling characters at all developing stages. The chlorophyll contents per fresh weight of this mutant leaves were lower than those of wild-type. The electron transfer rate (ETR) and photochemical ...

  19. Severity of Bovine Tuberculosis Is Associated with Co-Infection with Common Pathogens in Wild Boar

    Science.gov (United States)

    Risco, David; Serrano, Emmanuel; Fernández-Llario, Pedro; Cuesta, Jesús M.; Gonçalves, Pilar; García-Jiménez, Waldo L.; Martínez, Remigio; Cerrato, Rosario; Velarde, Roser; Gómez, Luis; Segalés, Joaquím; Hermoso de Mendoza, Javier

    2014-01-01

    Co-infections with parasites or viruses drive tuberculosis dynamics in humans, but little is known about their effects in other non-human hosts. This work aims to investigate the relationship between Mycobacterium bovis infection and other pathogens in wild boar (Sus scrofa), a recognized reservoir of bovine tuberculosis (bTB) in Mediterranean ecosystems. For this purpose, it has been assessed whether contacts with common concomitant pathogens are associated with the development of severe bTB lesions in 165 wild boar from mid-western Spain. The presence of bTB lesions affecting only one anatomic location (cervical lymph nodes), or more severe patterns affecting more than one location (mainly cervical lymph nodes and lungs), was assessed in infected animals. In addition, the existence of contacts with other pathogens such as porcine circovirus type 2 (PCV2), Aujeszky's disease virus (ADV), swine influenza virus, porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Haemophilus parasuis and Metastrongylus spp, was evaluated by means of serological, microbiological and parasitological techniques. The existence of contacts with a structured community of pathogens in wild boar infected by M. bovis was statistically investigated by null models. Association between this community of pathogens and bTB severity was examined using a Partial Least Squares regression approach. Results showed that adult wild boar infected by M. bovis had contacted with some specific, non-random pathogen combinations. Contact with PCV2, ADV and infection by Metastrongylus spp, was positively correlated to tuberculosis severity. Therefore, measures against these concomitant pathogens such as vaccination or deworming, might be useful in tuberculosis control programmes in the wild boar. However, given the unexpected consequences of altering any community of organisms, further research should evaluate the impact of such measures under

  20. Severity of bovine tuberculosis is associated with co-infection with common pathogens in wild boar.

    Directory of Open Access Journals (Sweden)

    David Risco

    Full Text Available Co-infections with parasites or viruses drive tuberculosis dynamics in humans, but little is known about their effects in other non-human hosts. This work aims to investigate the relationship between Mycobacterium bovis infection and other pathogens in wild boar (Sus scrofa, a recognized reservoir of bovine tuberculosis (bTB in Mediterranean ecosystems. For this purpose, it has been assessed whether contacts with common concomitant pathogens are associated with the development of severe bTB lesions in 165 wild boar from mid-western Spain. The presence of bTB lesions affecting only one anatomic location (cervical lymph nodes, or more severe patterns affecting more than one location (mainly cervical lymph nodes and lungs, was assessed in infected animals. In addition, the existence of contacts with other pathogens such as porcine circovirus type 2 (PCV2, Aujeszky's disease virus (ADV, swine influenza virus, porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Haemophilus parasuis and Metastrongylus spp, was evaluated by means of serological, microbiological and parasitological techniques. The existence of contacts with a structured community of pathogens in wild boar infected by M. bovis was statistically investigated by null models. Association between this community of pathogens and bTB severity was examined using a Partial Least Squares regression approach. Results showed that adult wild boar infected by M. bovis had contacted with some specific, non-random pathogen combinations. Contact with PCV2, ADV and infection by Metastrongylus spp, was positively correlated to tuberculosis severity. Therefore, measures against these concomitant pathogens such as vaccination or deworming, might be useful in tuberculosis control programmes in the wild boar. However, given the unexpected consequences of altering any community of organisms, further research should evaluate the impact of such measures

  1. Lead in rice: analysis of baseline lead levels in market and field collected rice grains.

    Science.gov (United States)

    Norton, Gareth J; Williams, Paul N; Adomako, Eureka E; Price, Adam H; Zhu, Yongguan; Zhao, Fang-Jie; McGrath, Steve; Deacon, Claire M; Villada, Antia; Sommella, Alessia; Lu, Ying; Ming, Lei; De Silva, P Mangala C S; Brammer, Hugh; Dasgupta, Tapash; Islam, M Rafiqul; Meharg, Andrew A

    2014-07-01

    In a large scale survey of rice grains from markets (13 countries) and fields (6 countries), a total of 1578 rice grain samples were analysed for lead. From the market collected samples, only 0.6% of the samples exceeded the Chinese and EU limit of 0.2 μg g(-1) lead in rice (when excluding samples collected from known contaminated/mine impacted regions). When evaluating the rice grain samples against the Food and Drug Administration's (FDA) provisional total tolerable intake (PTTI) values for children and pregnant women, it was found that only people consuming large quantities of rice were at risk of exceeding the PTTI from rice alone. Furthermore, 6 field experiments were conducted to evaluate the proportion of the variation in lead concentration in rice grains due to genetics. A total of 4 of the 6 field experiments had significant differences between genotypes, but when the genotypes common across all six field sites were assessed, only 4% of the variation was explained by genotype, with 9.5% and 11% of the variation explained by the environment and genotype by environment interaction respectively. Further work is needed to identify the sources of lead contamination in rice, with detailed information obtained on the locations and environments where the rice is sampled, so that specific risk assessments can be performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes.

    Science.gov (United States)

    Long, Yunming; Zhao, Lifeng; Niu, Baixiao; Su, Jing; Wu, Hao; Chen, Yuanling; Zhang, Qunyu; Guo, Jingxin; Zhuang, Chuxiong; Mei, Mantong; Xia, Jixing; Wang, Lan; Wu, Haibin; Liu, Yao-Guang

    2008-12-02

    Sterility is common in hybrids between divergent populations, such as the indica and japonica subspecies of Asian cultivated rice (Oryza sativa). Although multiple loci for plant hybrid sterility have been identified, it remains unknown how alleles of the loci interact at the molecular level. Here we show that a locus for indica-japonica hybrid male sterility, Sa, comprises two adjacent genes, SaM and SaF, encoding a small ubiquitin-like modifier E3 ligase-like protein and an F-box protein, respectively. Most indica cultivars contain a haplotype SaM(+)SaF(+), whereas all japonica cultivars have SaM(-)SaF(-) that diverged by nucleotide variations in wild rice. Male semi-sterility in this heterozygous complex locus is caused by abortion of pollen carrying SaM(-). This allele-specific gamete elimination results from a selective interaction of SaF(+) with SaM(-), a truncated protein, but not with SaM(+) because of the presence of an inhibitory domain, although SaM(+) is required for this male sterility. Lack of any one of the three alleles in recombinant plants does not produce male sterility. We propose a two-gene/three-component interaction model for this hybrid male sterility system. The findings have implications for overcoming male sterility in inter-subspecific hybrid rice breeding.

  3. The effects of captive versus wild rearing environments on long bone articular surfaces in common chimpanzees (Pan troglodytes

    Directory of Open Access Journals (Sweden)

    Kristi L. Lewton

    2017-08-01

    Full Text Available The physical environments of captive and wild animals frequently differ in substrate types and compliance. As a result, there is an assumption that differences in rearing environments between captive and wild individuals produce differences in skeletal morphology. Here, this hypothesis is tested using a sample of 42 captive and wild common chimpanzees (Pan troglodytes. Articular surface areas of the humerus, radius, ulna, femur, and tibia were calculated from linear breadth measurements, adjusted for size differences using Mosimann shape variables, and compared across sex and environmental groups using two-way ANOVA. Results indicate that the articular surfaces of the wrist and knee differ between captive and wild chimpanzees; captive individuals have significantly larger distal ulna and tibial plateau articular surfaces. In both captive and wild chimpanzees, males have significantly larger femoral condyles and distal radius surfaces than females. Finally, there is an interaction effect between sex and rearing in the articular surfaces of the femoral condyles and distal radius in which captive males have significantly larger surface areas than all other sex-rearing groups. These data suggest that long bone articular surfaces may be sensitive to differences experienced by captive and wild individuals, such as differences in diet, body mass, positional behaviors, and presumed loading environments. Importantly, these results only find differences due to rearing environment in some long bone articular surfaces. Thus, future work on skeletal morphology could cautiously incorporate data from captive individuals, but should first investigate potential intraspecific differences between captive and wild individuals.

  4. Organic rice of Bangladesh: focus on disease control

    OpenAIRE

    Hossain, Shaikh Tanveer

    2012-01-01

    Diseases play an important role in rice production. In modern agriculture, application of hazardous chemicals is a common practice allover the world. But organic rice production system does not allow synthetic agro-chemicals due to its adverse effect on environment as well as human health. Thirty six fungal, twenty one viral, six bacterial and six nematode diseases have been recorded in rice. In Bangladesh, 31 rice diseases have been so far identified of which ten are considered as major. She...

  5. Characterization of Agronomy, Grain Physicochemical Quality, and Nutritional Property of High-Lysine 35R Transgenic Rice with Simultaneous Modification of Lysine Biosynthesis and Catabolism.

    Science.gov (United States)

    Yang, Qingqing; Wu, Hongyu; Li, Qianfeng; Duan, Ruxu; Zhang, Changquan; Sun, Samuel Saiming; Liu, Qiaoquan

    2017-05-31

    Lysine is the first limiting essential amino acid in rice. We previously constructed a series of transgenic rice lines to enhance lysine biosynthesis (35S), down-regulate its catabolism (Ri), or simultaneously achieve both metabolic effects (35R). In this study, nine transgenic lines, three from each group, were selected for both field and animal feeding trials. The results showed that the transgene(s) caused no obvious effects on field performance and main agronomic traits. Mature seeds of transgenic line 35R-17 contained 48-60-fold more free lysine than in wild type and had slightly lower apparent amylose content and softer gel consistency. Moreover, a 35-day feeding experiment showed that the body weight gain, food efficiency, and protein efficiency ratio of rats fed the 35R-17 transgenic rice diet were improved when compared with those fed wild-type rice diet. These data will be useful for further evaluation and potential commercialization of 35R high-lysine transgenic rice.

  6. Levels and patterns of nucleotide variation in domestication QTL regions on rice chromosome 3 suggest lineage-specific selection.

    Directory of Open Access Journals (Sweden)

    Xianfa Xie

    Full Text Available Oryza sativa or Asian cultivated rice is one of the major cereal grass species domesticated for human food use during the Neolithic. Domestication of this species from the wild grass Oryza rufipogon was accompanied by changes in several traits, including seed shattering, percent seed set, tillering, grain weight, and flowering time. Quantitative trait locus (QTL mapping has identified three genomic regions in chromosome 3 that appear to be associated with these traits. We would like to study whether these regions show signatures of selection and whether the same genetic basis underlies the domestication of different rice varieties. Fragments of 88 genes spanning these three genomic regions were sequenced from multiple accessions of two major varietal groups in O. sativa--indica and tropical japonica--as well as the ancestral wild rice species O. rufipogon. In tropical japonica, the levels of nucleotide variation in these three QTL regions are significantly lower compared to genome-wide levels, and coalescent simulations based on a complex demographic model of rice domestication indicate that these patterns are consistent with selection. In contrast, there is no significant reduction in nucleotide diversity in the homologous regions in indica rice. These results suggest that there are differences in the genetic and selective basis for domestication between these two Asian rice varietal groups.

  7. Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance.

    Directory of Open Access Journals (Sweden)

    Wei Cai

    Full Text Available Nitric oxide (NO has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.

  8. Inter Simple Sequence Repeat (ISSR) analysis of wild and cultivated ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... for 2 h at constant voltage of 100 V. The gel picture was taken after staining with ethidium ..... systems will provide a useful tool in the future design of collection strategies for ... The drop in diversity is substantially greater for genes involved in .... confirm the occurrence and distribution of wild rice species.

  9. Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India.

    Science.gov (United States)

    Choudhury, Baharul; Khan, Mohamed Latif; Dayanandan, Selvadurai

    2013-12-01

    The Eastern Himalayan region of Northeast (NE) India is home to a large number of indigenous rice varieties, which may serve as a valuable genetic resource for future crop improvement to meet the ever-increasing demand for food production. However, these varieties are rapidly being lost due to changes in land-use and agricultural practices, which favor agronomically improved varieties. A detailed understanding of the genetic structure and diversity of indigenous rice varieties is crucial for efficient utilization of rice genetic resources and for developing suitable conservation strategies. To explore the genetic structure and diversity of rice varieties in NE India, we genotyped 300 individuals of 24 indigenous rice varieties representing sali, boro, jum and glutinous types, 5 agronomically improved varieties, and one wild rice species (O. rufipogon) using seven SSR markers. A total of 85 alleles and a very high level of gene diversity (0.776) were detected among the indigenous rice varieties of the region. Considerable level of genetic variation was found within indigenous varieties whereas improved varieties were monoporphic across all loci. The comparison of genetic diversity among different types of rice revealed that sali type possessed the highest gene diversity (0.747) followed by jum (0.627), glutinous (0.602) and boro (0.596) types of indigenous rice varieties, while the lowest diversity was detected in agronomically improved varieties (0.459). The AMOVA results showed that 66% of the variation was distributed among varieties indicating a very high level of genetic differentiation in rice varieties in the region. Two major genetically defined clusters corresponding to indica and japonica groups were detected in rice varieties of the region. Overall, traditionally cultivated indigenous rice varieties in NE India showed high levels of genetic diversity comparable to levels of genetic diversity reported from wild rice populations in various parts of the

  10. Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin

    Directory of Open Access Journals (Sweden)

    Alejandra Hernández-Terán

    2017-12-01

    Full Text Available Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE. Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE, and domesticated without genetic engineering (domNGE]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance, the phenotypic differences between domGE and domNGE would be either less (or inexistent than between the wild and domesticated relatives (either domGE or domNGE. We conclude that (1 genetic modification (either by selective breeding or GE can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE and (2 the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop

  11. Transcriptional changes of rice in response to rice black-streaked dwarf virus.

    Science.gov (United States)

    Ahmed, Mohamed M S; Ji, Wen; Wang, Muyue; Bian, Shiquan; Xu, Meng; Wang, Weiyun; Zhang, Jiangxiang; Xu, Zhihao; Yu, Meimei; Liu, Qiaoquan; Zhang, Changquan; Zhang, Honggen; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu

    2017-09-10

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Although a great deal of effort has been made to elucidate the interactions among the virus, insect vectors, host and environmental conditions, few RBSDV proteins involved in pathogenesis have been identified, and the biological basis of disease development in rice remains largely unknown. Transcriptomic information associated with the disease development in rice would be helpful to unravel the biological mechanism. To determine how the rice transcriptome changes in response to RBSDV infection, we carried out RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar KTWYJ3. The transcriptomes of RBSDV-infected samples were compared to those of RBSDV-free (healthy) at two time points (time points are represented by group I and II). The results derived from the differential expression analysis in RBSDV-infected libraries vs. healthy ones in group I revealed that 102 out of a total of 281 significant differentially expressed genes (DEGs) were up-regulated and 179 DEGs were down-regulated. Of the 2592 identified DEGs in group II, 1588 DEGs were up-regulated and 1004 DEGs were down-regulated. A total of 66 DEGs were commonly identified in both groups. Of these 66 DEGs, expression patterns for 36 DEGs were similar in both groups. Our analysis demonstrated that some genes related to disease defense and stress resistance were up-regulated while genes associated with chloroplast were down-regulated in response to RBSDV infection. In addition, some genes associated with plant-height were differentially expressed. This result indicates those genes might be involved in dwarf symptoms caused by RBSDV. Taken together, our results provide a genome-wide transcriptome analysis for rice plants in response to RBSDV infection which may contribute to the

  12. Why are There Indica Type and Japonica Type in Rice? — History of the Studies and a View for Origin of Two Types

    Directory of Open Access Journals (Sweden)

    Hiroshi IKEHASHI

    2009-03-01

    Full Text Available On the bases of archaeological discoveries, the earliest domestication of rice has been confirmed in the middle and lower Changjiang River basin, while in the region wild rice populations are found in shallow swamps under a climate with freezing winter cold. These findings lead us re-examine the past ideas about domestication and differentiation of rice. Historically, in 1930s two sub-species, indica and japonica, were proposed on the basis of sterility in F1 hybrids between them. Soon after that, the two types were classified by the associations of a number of genetically independent traits. The characteristic associations of traits have been explained by the hybrid sterility or reproductive barriers which were assumed to comprise a set of duplicate recessive lethal genes and to be an inner genetic mechanism to lead to the varietal differentiations. In 1980s, the hybrid sterility between Indica and Japonica types was analyzed, and Indica, Japonica, and wide-compatibility type which gives fertile hybrids when cross to Indica and Japonica types, are proved to contain an allele, S5i, S5j and S5n, respectively at a locus on chromosome 6. And those gametes having S5j allele are found to be partially aborted in the hybrid genotypes of S5i/S5j while no gamete abortion occurs in S5i/S5n and S5j/S5n genotypes. Since then, the gene S5n has been used in hybrid rice breeding to obtain fertile and vigorous hybrids between subspecies, and the long-disputed problem of hybrid sterility has been solved. Also in such studies the characteristic association of traits found in each of varietal groups is better explained by founder effects. On the other hand, a large number of native cultivars of rice were surveyed with enzyme polymorphism in 1980s and later with molecular markers. As a result, profound genetic diversity is found in cultivated rice as well as in wild rice. These findings seem to lead us to the idea of multiple independent domestications of rice

  13. Overexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice

    Directory of Open Access Journals (Sweden)

    Jingni Wu

    2016-12-01

    Full Text Available Pathogenesis-related proteins play multiple roles in plant development and biotic and abiotic stress tolerance. Here, we characterize a rice defense related gene named “jasmonic acid inducible pathogenesis-related class 10” (JIOsPR10 to gain an insight into its functional properties. Semi-quantitative RT-PCR analysis showed up-regulation of JIOsPR10 under salt and drought stress conditions. Constitutive over-expression JIOsPR10 in rice promoted shoot and root development in transgenic plants, however, their productivity was unaltered. Further experiments exhibited that the transgenic plants showed reduced susceptibility to rice blast fungus, and enhanced salt and drought stress tolerance as compared to the wild type. A comparative proteomic profiling of wild type and transgenic plants showed that overexpression of JIOsPR10 led to the differential modulation of several proteins mainly related with oxidative stresses, carbohydrate metabolism, and plant defense. Taken together, our findings suggest that JIOsPR10 plays important roles in biotic and abiotic stresses tolerance probably by activation of stress related proteins.

  14. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae.

    Science.gov (United States)

    Wang, Zhenzhen; Han, Qiang; Zi, Qian; Lv, Shun; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.

  15. Polycomb Protein OsFIE2 Affects Plant Height and Grain Yield in Rice.

    Directory of Open Access Journals (Sweden)

    Xianbo Liu

    Full Text Available Polycomb group (PcG proteins have been shown to affect growth and development in plants. To further elucidate their role in these processes in rice, we isolated and characterized a rice mutant which exhibits dwarfism, reduced seed setting rate, defective floral organ, and small grains. Map-based cloning revealed that abnormal phenotypes were attributed to a mutation of the Fertilization Independent Endosperm 2 (OsFIE2 protein, which belongs to the PcG protein family. So we named the mutant as osfie2-1. Histological analysis revealed that the number of longitudinal cells in the internodes decreased in osfie2-1, and that lateral cell layer of the internodes was markedly thinner than wild-type. In addition, compared to wild-type, the number of large and small vascular bundles decreased in osfie2-1, as well as cell number and cell size in spikelet hulls. OsFIE2 is expressed in most tissues and the coded protein localizes in both nucleus and cytoplasm. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that OsFIE2 interacts with OsiEZ1 which encodes an enhancer of zeste protein previously identified as a histone methylation enzyme. RNA sequencing-based transcriptome profiling and qRT-PCR analysis revealed that some homeotic genes and genes involved in endosperm starch synthesis, cell division/expansion and hormone synthesis and signaling are differentially expressed between osfie2-1 and wild-type. In addition, the contents of IAA, GA3, ABA, JA and SA in osfie2-1 are significantly different from those in wild-type. Taken together, these results indicate that OsFIE2 plays an important role in the regulation of plant height and grain yield in rice.

  16. Geographic and Research Center Origins of Rice Resistance to Asian Planthoppers and Leafhoppers: Implications for Rice Breeding and Gene Deployment

    Directory of Open Access Journals (Sweden)

    Finbarr G. Horgan

    2017-09-01

    Full Text Available This study examines aspects of virulence to resistant rice varieties among planthoppers and leafhoppers. Using a series of resistant varieties, brown planthopper, Nilaparvata lugens, virulence was assessed in seedlings and early-tillering plants at seven research centers in South and East Asia. Virulence of the whitebacked planthopper, Sogatella furcifera, in Taiwan and the Philippines was also assessed. Phylogenetic analysis of the varieties using single-nucleotide polymorphisms (SNPs indicated a clade of highly resistant varieties from South Asia with two further South Asian clades of moderate resistance. Greenhouse bioassays indicated that planthoppers can develop virulence against multiple resistance genes including genes introgressed from wild rice species. Nilaparvata lugens populations from Punjab (India and the Mekong Delta (Vietnam were highly virulent to a range of key resistance donors irrespective of variety origin. Sogatella furcifera populations were less virulent to donors than N. lugens; however, several genes for resistance to S. furcifera are now ineffective in East Asia. A clade of International Rice Research Institute (IRRI-bred varieties and breeding lines, without identified leafhopper-resistance genes, were highly resistant to the green leafhopper, Nephotettix virescens. Routine phenotyping during breeding programs likely maintains high levels of quantitative resistance to leafhoppers. We discuss these results in the light of breeding and deploying resistant rice in Asia.

  17. Estimation of loci involved in non-shattering of seeds in early rice domestication.

    Science.gov (United States)

    Ishikawa, Ryo; Nishimura, Akinori; Htun, Than Myint; Nishioka, Ryo; Oka, Yumi; Tsujimura, Yuki; Inoue, Chizuru; Ishii, Takashige

    2017-04-01

    Rice (Oryza sativa L.) is widely cultivated around the world and is known to be domesticated from its wild form, O. rufipogon. A loss of seed shattering is one of the most obvious phenotypic changes selected for during rice domestication. Previously, three seed-shattering loci, qSH1, sh4, and qSH3 were reported to be involved in non-shattering of seeds of Japonica-type cultivated rice, O. sativa cv. Nipponbare. In this study, we focused on non-shattering characteristics of O. sativa Indica cv. IR36 having functional allele at qSH1. We produced backcross recombinant inbred lines having chromosomal segments from IR36 in the genetic background of wild rice, O. rufipogon W630. Histological and quantitative trait loci analyses of abscission layer formation were conducted. In the analysis of quantitative trait loci, a strong peak was observed close to sh4. We, nevertheless, found that some lines showed complete abscission layer formation despite carrying the IR36 allele at sh4, implying that non-shattering of seeds of IR36 could be regulated by the combination of mutations at sh4 and other seed-shattering loci. We also genotyped qSH3, a recently identified seed-shattering locus. Lines that have the IR36 alleles at sh4 and qSH3 showed inhibition of abscission layer formation but the degree of seed shattering was different from that of IR36. On the basis of these results, we estimated that non-shattering of seeds in early rice domestication involved mutations in at least three loci, and these genetic materials produced in this study may help to identify novel seed-shattering loci.

  18. The land use potential of flood-prone rice fields using floating rice system in Bojonegoro regency in East Java

    Science.gov (United States)

    Irianto, H.; Mujiyo; Riptanti, E. W.; Qonita, A.

    2018-03-01

    Bojonegoro regency occupies the largest flood-prone rice fields of about 14,198 hectares, in East Java province. Floods commonly occur due to Bengawan Solo river over-burst, particularly in rainy season. The fields are potential for cultivating rice, but floods lasting for months causing these areas to be unproductive. The objective of this article is to examine the potential land use of flood prone rice fields in Bojonegoro regency using floating rice system as an effort to maintain productivity in rainy season. The method of this study is referential study about the rice production using floating cultivation system in other regions, which are later compared with the physical condition of the fields in Bojonegoro. The results of analysis show that rice cultivation using floating system can maintain rice production in flood prone areas during rainy season. The potential production of rice is 5-6 tons/ha. However, technical problems for cultivating rice cannot be ignored since farmers are not familiar with cultivating flooded fields. This article also explains alternatives of floating rice cultivation technique, which can be implemented effectively and efficiently. Pioneer work of developing floating rice in Bojonegoro that has been done by the Team of Faculty of Agriculture of UNS, Surakarta, is expected to serve as a medium for accelerating the adoption of cultivation technology innovation to farmers.

  19. Spatial and seasonal diversity of wild food plants in home gardens of Northeast Thailand

    NARCIS (Netherlands)

    Cruz Garcia, G.S.; Struik, P.C.

    2015-01-01

    Wild food plants (WFPs) are major components of tropical home gardens, constituting an important resource for poor farmers. The spatial and seasonal diversity of WFPs was analyzed across multi-species spatial configurations occurring within home gardens in a rice farming village in northeast

  20. Transfer of gaseous iodine from atmosphere to rough rice, brown rice and polished rice

    International Nuclear Information System (INIS)

    Sumiya, Misako; Uchida, Shigeo; Muramatsu, Yasuyuki; Ohmomo, Yoichiro; Yamaguchi, Shuho; Obata, Hitoshi.

    1987-01-01

    Experiments were carried out in order to obtain information required for establishing transfer coefficients of gaseous iodine (I 2 ) to rough rice, brown rice and polished rice. The gaseous iodine deposited on young rice plants before the heading period was scarcely found in the rough rice harvested at the full ripe stage. The biological half life of iodine in hull, however, was much slower than that in leaves of 14 days. The translocation of iodine from leaves and stalks to rough rice was not clearly recognized. Therefore, it was deduced that iodine found in brown rice mainly should originate from that deposited on the hull. The distribution ratios of iodine between rough rice and brown rice, and between brown rice and polished rice were 100:4 and 100:30 on 100 grains basis, respectively. If average normalized deposition velocity (V d(m) ) or derived deposition velocity (V s ) are given, the transfer coefficients of gaseous iodine to rough rice (TF r ), brown rice (TF b ) and polished rice (TF p ) could be calculated. (author)

  1. Population genetics of foxtail millet and its wild ancestor

    Directory of Open Access Journals (Sweden)

    Wang Yongfang

    2010-10-01

    Full Text Available Abstract Background Foxtail millet (Setaria italica (L. P. Beauv., one of the most ancient domesticated crops, is becoming a model system for studying biofuel crops and comparative genomics in the grasses. However, knowledge on the level of genetic diversity and linkage disequilibrium (LD is very limited in this crop and its wild ancestor, green foxtail (Setaria viridis (L. P. Beauv.. Such information would help us to understand the domestication process of cultivated species and will allow further research in these species, including association mapping and identification of agricultural significant genes involved in domestication. Results In this study, we surveyed DNA sequence for nine loci across 50 accessions of cultivated foxtail millet and 34 of its wild progenitor. We found a low level of genetic diversity in wild green foxtail (θ = 0.0059, θ means Watterson's estimator of θ. Despite of a 55% loss of its wild diversity, foxtail millet still harbored a considerable level of diversity (θ = 0.0027 when compared to rice and sorghum (θ = 0.0024 and 0.0034, respectively. The level of LD in the domesticated foxtail millet extends to 1 kb, while it decayed rapidly to a negligible level within 150 bp in wild green foxtail. Using coalescent simulation, we estimated the bottleneck severity at k = 0.6095 when ρ/θ = 1. These results indicated that the domestication bottleneck of foxtail millet was more severe than that of maize but slightly less pronounced than that of rice. Conclusions The results in this study establish a general framework for the domestication history of foxtail millet. The low level of genetic diversity and the increased level of LD in foxtail millet are mainly caused by a population bottleneck, although gene flow from foxtail millet to green foxtail is another factor that may have shaped the pattern of genetic diversity of these two related gene pools. The knowledge provided in this study will benefit future population

  2. Biological control of golden apple snail, Pomacea canaliculata by Chinese soft-shelled turtle, Pelodiscus sinensis in the wild rice, Zizania latifolia field

    Directory of Open Access Journals (Sweden)

    Shengzhang Dong

    2012-04-01

    Full Text Available The wild rice, Zizania latifolia Turcz, used to be one of the important aquatic vegetables cultivated in China. Recently, the golden apple snail - GAS (Pomacea canaliculata (Lamarck was found to be a major invasive pest attacking Z. latifolia. To control efficiently GAS, predation by the Chinese soft-shelled turtles (Pelodiscus sinensis on GAS was evaluated in laboratory and field trials. P. sinensis had a strong predatory capacity and selectivity for GAS both in laboratory and field conditions. All the sizes of P. sinensis prefer to capture smaller snails. The optimum number of P. sinensis released in Z. latifolia field was dependent on the density of over-wintered GAS, and varied between 30 and 50 turtles per 666.7 m². The number of GAS declined in the fields with turtles as compared to turtle-free field. A pattern of releasing P. sinensis in Z. latifolia fields was developed and widely adopted by farmers because of much more benefit besides biologically controlling GAS.

  3. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    Science.gov (United States)

    Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L. D.; Anuntalabhochai, S.

    2013-07-01

    Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60-80 keV to a beam fluence range of 2 × 1016-2 × 1017 ions/cm2. The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 106 spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11).

  4. Mutation of Cellulose Synthase Gene Improves the Nutritive Value of Rice Straw

    Directory of Open Access Journals (Sweden)

    Yanjing Su

    2012-06-01

    Full Text Available Rice straw is an important roughage resource for ruminants in many rice-producing countries. In this study, a rice brittle mutant (BM, mutation in OsCesA4, encoding cellulose synthase and its wild type (WT were employed to investigate the effects of a cellulose synthase gene mutation on rice straw morphological fractions, chemical composition, stem histological structure and in situ digestibility. The morphological fractions investigation showed that BM had a higher leaf sheath proportion (43.70% vs 38.21%, p0.05 was detected in neutral detergent fiber (NDFom and ADL contents for both strains. Histological structure observation indicated that BM stems had fewer sclerenchyma cells and a thinner sclerenchyma cell wall than WT. The results of in situ digestion showed that BM had higher DM, NDFom, cellulose and hemicellulose disappearance at 24 or 48 h of incubation (p<0.05. The effective digestibility of BM rice straw DM and NDFom was greater than that of WT (31.4% vs 26.7% for DM, 29.1% vs 24.3% for NDFom, p<0.05, but the rate of digestion of the slowly digested fraction of BM rice straw DM and NDF was decreased. These results indicated that the mutation in the cellulose synthase gene could improve the nutritive value of rice straw for ruminants.

  5. Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis.

    Science.gov (United States)

    Lu, Hai-Ping; Luo, Ting; Fu, Hao-Wei; Wang, Long; Tan, Yuan-Yuan; Huang, Jian-Zhong; Wang, Qing; Ye, Gong-Yin; Gatehouse, Angharad M R; Lou, Yong-Gen; Shu, Qing-Yao

    2018-05-07

    Rice is one of the world's most important foods, but its production suffers from insect pests, causing losses of billions of dollars, and extensive use of environmentally damaging pesticides for their control 1,2 . However, the molecular mechanisms of insect resistance remain elusive. Although a few resistance genes for planthopper have been cloned, no rice germplasm is resistant to stem borers. Here, we report that biosynthesis of serotonin, a neurotransmitter in mammals 3 , is induced by insect infestation in rice, and its suppression confers resistance to planthoppers and stem borers, the two most destructive pests of rice 2 . Serotonin and salicylic acid derive from chorismate 4 . In rice, the cytochrome P450 gene CYP71A1 encodes tryptamine 5-hydroxylase, which catalyses conversion of tryptamine to serotonin 5 . In susceptible wild-type rice, planthopper feeding induces biosynthesis of serotonin and salicylic acid, whereas in mutants with an inactivated CYP71A1 gene, no serotonin is produced, salicylic acid levels are higher and plants are more insect resistant. The addition of serotonin to the resistant rice mutant and other brown planthopper-resistant genotypes results in a loss of insect resistance. Similarly, serotonin supplementation in artificial diet enhances the performance of both insects. These insights demonstrate that regulation of serotonin biosynthesis plays an important role in defence, and may prove valuable for breeding insect-resistant cultivars of rice and other cereal crops.

  6. Sexuality and gender in contemporary women's Gothic fiction - Angela Carter's and Anne Rice's Vampires: Angela Carter's and Anne Rice's Vampires

    OpenAIRE

    Fernanda Sousa Carvalho

    2009-01-01

    xxx In this thesis, I provide an analysis of Angela Carter's and Anne Rice's works based on their depiction of vampires. My corpus is composed by Carter's short stories 'The Loves of Lady Purple' and 'The Lady of the House of Love' and by Rice's novels The Vampire Lestat and The Queen of the Damned. My analysis of this corpus is based on four approaches: a comparison between Carter's and Rice's works, supported by their common use of vampire characters; an investigation of how this use con...

  7. QTL Mapping of Grain Quality Traits Using Introgression Lines Carrying Oryza rufipogon Chromosome Segments in Japonica Rice.

    Science.gov (United States)

    Yun, Yeo-Tae; Chung, Chong-Tae; Lee, Young-Ju; Na, Han-Jung; Lee, Jae-Chul; Lee, Sun-Gye; Lee, Kwang-Won; Yoon, Young-Hwan; Kang, Ju-Won; Lee, Hyun-Sook; Lee, Jong-Yeol; Ahn, Sang-Nag

    2016-12-01

    Improved eating quality is a major breeding target in japonica rice due to market demand. Consequently, quantitative trait loci (QTL) for glossiness of cooked rice and amylose content associated with eating quality have received much research focus because of their importance in rice quality. In this study, QTL associated with 12 grain quality traits were identified using 96 introgression lines (IL) of rice developed from an interspecific cross between the Korean elite O. sativa japonica cultivar 'Hwaseong' and O. rufipogon over 7 years. QTL analyses indicated that QTL qDTH6 for heading date, detected on chromosome 6 is associated with variance in grain traits. Most QTLs detected in this study clustered near the qDTH6 locus on chromosome 6, suggesting the effect of qDTH6. O. rufipogon alleles negatively affected grain quality traits except for a few QTLs, including qGCR9 for glossiness of cooked rice on chromosome 9. To characterize the effect of the O. rufipogon locus harboring qGCR9, four lines with a single but different O. rufipogon segment near qGCR9 were compared to Hwaseong. Three lines (O. rufipopgon ILs) having O. rufipogon segment between RM242 and RM245 in common showed higher glossiness of cooked rice than Hwaseong and the other line (Hwaseong IL), indicating that qGCR9 is located in the 3.4-Mb region between RM242 and RM245. Higher glossiness of cooked rice conferred by the O. rufipogon allele might be associated with protein content considering that three lines had lower protein content than Hwaseong (P < 0.1). These three O. rufipogon ILs showed higher yield than Hwaseong and Hwaseong IL due to increase in spikelets per panicle and grain weight indicating the linkage of qGCR9 and yield component QTLs. The qGCR9 locus is of particular interest because of its independence from other undesirable grain quality traits in O. rufipogon. SSR markers linked to qGCR9 can be used to develop high-quality japonica lines and offer a starting point for map

  8. Attachment of associative diazotroph alcaligenes faecalis to rice roots

    International Nuclear Information System (INIS)

    Lin Min; Fang Xuanjun; You Chongbiao

    1993-01-01

    The process of attachment of diazotroph Alcaligenes faecalis to host plant rice was studied by using 15 N-labelled bacteria and Tn5-induced mutants. A three-step attachment mechanism of A. faecalis to rice root surface is proposed on the basis of experimental data. Adsorption is the first step. The number of adsorbed bacteria reaches maximal level after 3 h of inoculation, it consists 3.7% of the total number of bacteria inoculated. Adsorbed bacteria could be removed from rice root surface quantitatively by shaking in water. Therefore, the adsorption forces are weak. Anchoring is the second step. It begins only after 9h of inoculation and reaches a maximal level (21%) after 16 h. Anchored bacteria could not be removed by shaking. Colonization is the third step. After 20 h of inoculation. part of anchored bacteria colonizes on rice root surface tightly, and it can not be removed by vortex. At this time, the pectolytic activity of bacteria appears. Chemotaxis and exopolysaccharide (EPS) play important roles in the attachment of A. faecalis to rice root surface. EPS mutants (Exo - , Exo ++ ) showed less anchoring-capability in comparison with wild type of bacterium, but they remained the adsorption capability. While chemotaxis (Che - ) mutants are defective in adsorption, but not in anchoring. Che - , Exo - mutant lost both adsorption and anchoring capabilities. A. faecalis absorbed on all part of rice root, but the anchoring and colonization of bacteria were occurred mainly on root hairs, particularly on the joint area of main root and lateral root

  9. Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (Oryza sativa) sold in Saudi Arabia and their potential health risk.

    Science.gov (United States)

    Al-Saleh, Iman; Abduljabbar, Mai

    2017-10-01

    The levels of heavy metals (lead, cadmium, methylmercury and arsenic) were determined in 37 brands of imported rice commonly consumed in Saudi Arabia after soaking and rinsing with water, and their potential health risks to residents were estimated by three indices: hazard quotient (HQ), hazard index (HI) and cancer risk (CR). The mean levels of lead, cadmium, methylmercury and total arsenic in soaked (rinsed) rice grains were 0.034 (0.057), 0.015 (0.027), 0.004 (0.007) and 0.202 (0.183) μg/g dry weight, respectively. Soaking or rinsing rice grains with water decreased lead and cadmium levels in all brands to safe levels. All brands had total arsenic above the acceptable regulatory limits, irrespective of soaking or rinsing, and eight soaked and 12 rinsed brands contained methylmercury. The levels of all heavy metals except cadmium were above the acceptable regulatory limits when the rice was neither rinsed nor soaked. Weekly intakes of lead, cadmium, methylmercury and total arsenic from soaked (rinsed) grains were 0.638 (1.068), 0.279 (0.503), 0.271 (0.309) and 3.769 (3.407) μg/kg body weight (bw). The weekly intakes of lead and methylmercury from the consumption of one rinsed and two soaked rice brands respectively, exceeded the Provisional Tolerance Weekly Intake set by the Food and Agriculture Organization and the World Health Organization. The weekly intake of total arsenic for all brands was above the lowest benchmark dose lower confidence limit (BMDL 01 ) level of 0.3μg/kg bw/d for an increased cancer risk set by European Food Safety Authority. Either soaking or rinsing grains before consumption can minimize the non-carcinogenic health risks to residents from cadmium and lead (HQrice contaminated mainly with arsenic (HQ>1 all brands) and to a lesser extent with methylmercury (HQ>1 in 4 brands), even when soaked or rinsed with water before consumption. The combined non-carcinogenic effect of all metals expressed as HI was >1, including soaked or rinsed

  10. Intertextuality and Intermediality in Oscar Wilde's Salome : How Oscar Wilde Become a Postmodernist

    NARCIS (Netherlands)

    de Vries, Kornelis; Bennett, Michael

    2011-01-01

    This paper approaches Wilde's play from three separate directions: intertextual, visual and musical. Comparing ideas and techniques in the play to the positions of postmodern thinkers, this chapter argues that Wilde sought to incorporate literary and philosophical elements more common to the late

  11. Mutation of a Rice Gene Encoding a Phenylalanine Biosynthetic Enzyme Results in Accumulation of Phenylalanine and Tryptophan[W

    Science.gov (United States)

    Yamada, Tetsuya; Matsuda, Fumio; Kasai, Koji; Fukuoka, Shuichi; Kitamura, Keisuke; Tozawa, Yuzuru; Miyagawa, Hisashi; Wakasa, Kyo

    2008-01-01

    Two distinct biosynthetic pathways for Phe in plants have been proposed: conversion of prephenate to Phe via phenylpyruvate or arogenate. The reactions catalyzed by prephenate dehydratase (PDT) and arogenate dehydratase (ADT) contribute to these respective pathways. The Mtr1 mutant of rice (Oryza sativa) manifests accumulation of Phe, Trp, and several phenylpropanoids, suggesting a link between the synthesis of Phe and Trp. Here, we show that the Mtr1 mutant gene (mtr1-D) encodes a form of rice PDT with a point mutation in the putative allosteric regulatory region of the protein. Transformed callus lines expressing mtr1-D exhibited all the characteristics of Mtr1 callus tissue. Biochemical analysis revealed that rice PDT possesses both PDT and ADT activities, with a preference for arogenate as substrate, suggesting that it functions primarily as an ADT. The wild-type enzyme is feedback regulated by Phe, whereas the mutant enzyme showed a reduced feedback sensitivity, resulting in Phe accumulation. In addition, these observations indicate that rice PDT is critical for regulating the size of the Phe pool in plant cells. Feeding external Phe to wild-type callus tissue and seedlings resulted in Trp accumulation, demonstrating a connection between Phe accumulation and Trp pool size. PMID:18487352

  12. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    Science.gov (United States)

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Identification and quantification of flavonoids in yellow grain mutant of rice (Oryza sativa L.).

    Science.gov (United States)

    Kim, Backki; Woo, Sunmin; Kim, Mi-Jung; Kwon, Soon-Wook; Lee, Joohyun; Sung, Sang Hyun; Koh, Hee-Jong

    2018-02-15

    Flavonoids are naturally occurring phenolic compounds with potential health-promoting activities. Although anthocyanins and phenolic acids in coloured rice have been investigated, few studies have focused on flavonoids. Herein, we analysed flavonoids in a yellow grain rice mutant using UHPLC-DAD-ESI-Q-TOF-MS, and identified 19 flavonoids by comparing retention times and accurate mass measurements. Among them, six flavonoids, isoorientin, isoorientin 2″-O-glucoside, vitexin 2″-O-glucoside, isovitexin, isoscoparin 2″-O-glucoside and isoscoparin, were isolated and fully identified from the yellow grain rice mutant, and the levels were significantly higher than wild-type, with isoorientin particularly abundant in mutant embryo. Significant differences in total phenolic compounds and antioxidant activity were observed in mutant rice by DPPH, FRAP and TEAC assays. The results suggest that the representative six flavonoids may play an important role in colouration and antioxidant activity of embryo and endosperm tissue. The findings provide insight into flavonoid biosynthesis and the possibility of improving functionality in rice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Dwarf Tiller1, a Wuschel-related homeobox transcription factor, is required for tiller growth in rice.

    Directory of Open Access Journals (Sweden)

    Wenfei Wang

    2014-03-01

    Full Text Available Unlike many wild grasses, domesticated rice cultivars have uniform culm height and panicle size among tillers and the main shoot, which is an important trait for grain yield. However, the genetic basis of this trait remains unknown. Here, we report that Dwarf Tiller1 (DWT1 controls the developmental uniformity of the main shoot and tillers in rice (Oryza sativa. Most dwt1 mutant plants develop main shoots with normal height and larger panicles, but dwarf tillers bearing smaller panicles compared with those of the wild type. In addition, dwt1 tillers have shorter internodes with fewer and un-elongated cells compared with the wild type, indicating that DWT1 affects cell division and cell elongation. Map-based cloning revealed that DWT1 encodes a Wuschel-related homeobox (WOX transcription factor homologous to the Arabidopsis WOX8 and WOX9. The DWT1 gene is highly expressed in young panicles, but undetectable in the internodes, suggesting that DWT1 expression is spatially or temporally separated from its effect on the internode growth. Transcriptomic analysis revealed altered expression of genes involved in cell division and cell elongation, cytokinin/gibberellin homeostasis and signaling in dwt1 shorter internodes. Moreover, the non-elongating internodes of dwt1 are insensitive to exogenous gibberellin (GA treatment, and some of the slender rice1 (slr1 dwt1 double mutant exhibits defective internodes similar to the dwt1 single mutant, suggesting that the DWT1 activity in the internode elongation is directly or indirectly associated with GA signaling. This study reveals a genetic pathway synchronizing the development of tillers and the main shoot, and a new function of WOX genes in balancing branch growth in rice.

  15. DWARF TILLER1, a WUSCHEL-Related Homeobox Transcription Factor, Is Required for Tiller Growth in Rice

    Science.gov (United States)

    Wang, Wenfei; Li, Gang; Zhao, Jun; Chu, Huangwei; Lin, Wenhui; Zhang, Dabing; Wang, Zhiyong; Liang, Wanqi

    2014-01-01

    Unlike many wild grasses, domesticated rice cultivars have uniform culm height and panicle size among tillers and the main shoot, which is an important trait for grain yield. However, the genetic basis of this trait remains unknown. Here, we report that DWARF TILLER1 (DWT1) controls the developmental uniformity of the main shoot and tillers in rice (Oryza sativa). Most dwt1 mutant plants develop main shoots with normal height and larger panicles, but dwarf tillers bearing smaller panicles compared with those of the wild type. In addition, dwt1 tillers have shorter internodes with fewer and un-elongated cells compared with the wild type, indicating that DWT1 affects cell division and cell elongation. Map-based cloning revealed that DWT1 encodes a WUSCHEL-related homeobox (WOX) transcription factor homologous to the Arabidopsis WOX8 and WOX9. The DWT1 gene is highly expressed in young panicles, but undetectable in the internodes, suggesting that DWT1 expression is spatially or temporally separated from its effect on the internode growth. Transcriptomic analysis revealed altered expression of genes involved in cell division and cell elongation, cytokinin/gibberellin homeostasis and signaling in dwt1 shorter internodes. Moreover, the non-elongating internodes of dwt1 are insensitive to exogenous gibberellin (GA) treatment, and some of the slender rice1 (slr1) dwt1 double mutant exhibits defective internodes similar to the dwt1 single mutant, suggesting that the DWT1 activity in the internode elongation is directly or indirectly associated with GA signaling. This study reveals a genetic pathway synchronizing the development of tillers and the main shoot, and a new function of WOX genes in balancing branch growth in rice. PMID:24625559

  16. Resistance of Rice Varieties to the Stored-Product Insect, Sitophilus zeamais (Coleoptera: Curculionidae).

    Science.gov (United States)

    Antunes, Catarina; Mendes, Raquel; Lima, Arlindo; Barros, Graça; Fields, Paul; Da Costa, Luísa Beirão; Rodrigues, José Carlos; Silva, Maria José; Correia, Augusto Manuel; Carvalho, Maria Otilia

    2016-02-01

    Four common Portuguese rice varieties--Thaibonnet, Gladio, Albatros, and Eurosis--were tested for their relative susceptibility to Sitophilus zeamais Motschulsky, a common pest of stored rice in Portugal and in tropical countries. Physical (moisture content, hardness, length, and width) and chemical (by attenuated total reflection-Fourier transform infrared spectroscopy) properties of rice kernels were measured. Insect bioassays measured median developmental time, Dobie's index of susceptibility, percentage of damaged grains and weight loss, and progeny developed. This was done for paddy, brown rice, and polished rice for each variety. There were small, but significant, differences in insect resistance among the varieties. However, it was different for paddy and polished rice. In paddy, these differences were correlated with hull damage, and Eurosis was the most susceptible variety. In polished rice, resistance was correlated with hardness, and Thaibonnet was the most susceptible variety. In general, paddy rice was more resistant to insect attack, followed by polished rice and then brown rice. Paddy kernels selected with undamaged hull were completely resistant to attack. Implications for IPM and breeding for resistant varieties are discussed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Serobactins-mediated iron acquisition systems optimize competitive fitness of Herbaspirillum seropedicae inside rice plants.

    Science.gov (United States)

    Rosconi, Federico; Trovero, María F; de Souza, Emanuel M; Fabiano, Elena

    2016-09-01

    Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Under iron-deficient conditions, this organism secretes serobactins, a suite of lipopetide siderophores. The role of siderophores in the interaction between endophytes and their plant hosts are not well understood. In this work, we aimed to determine the importance of serobactins-mediated iron acquisition systems in the interaction of H. seropedicae with rice plants. First we provide evidence, by using a combination of genome analysis, proteomic and genetic studies, that the Hsero_2345 gene encodes a TonB-dependent receptor involved in iron-serobactin complex internalization when iron bioavailability is low. Our results show that survival of the Hsero_2345 mutant inside rice plants was not significantly different from that of the wild-type strain. However, when plants were co-inoculated at equal ratios with the wild-type strain and with a double mutant defective in serobactins synthesis and internalization, recovery of mutant was significantly impaired after 8 days post-inoculation. These results demonstrate that serobactins-mediated iron acquisition contributes to competitive fitness of H. seropedicae inside host plants. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. High-irradiance responses induced by far-red light in grass seedlings of the wild type or overexpressing phytochrome A

    International Nuclear Information System (INIS)

    Casal, J.J.; Clough, R.C.; Vierstra, R.D.

    1996-01-01

    The occurrence of phytochrome-mediated high irradiance responses (HIR), previously characterised largely in dicotyledonous plants, was investigated in Triticum aestivum L., Zea mays L., Lolium multiflorum Lam. and in both wild-type Oryza sativa L. and in transgenic plants overexpressing oat phytochrome A under the control of a 35S promoter. Coleoptile growth was promoted (maize, ryegrass) or inhibited (wild-type rice) by continuous far-red light (FRc). However, at equal fluences, hourly pulses of far-red light (FRp) were equally effective, indicating that the growth responses to FRc were not true HIR. In contrast, in maize and rice, FRc increased anthocyanin content in the coleoptile in a fluence-rate dependent manner. This response was a true HIR as FRp had reduced effects. In maize, anthocyanin levels were significantly higher under FRc than under continuous red light. In rice, overexpression of phytochrome A increased the inhibition of coleoptile growth and the levels of anthocyanin under FRc but not under FRp or under continuous red light. The effect of FRc was fluence-rate dependent. In light-grown rice, overexpression of phytochrome A reduced leaf-sheath length, impaired the response to supplementary far-red light, but did not affect the response to canopy shade-light. In grasses, typical HIR, i.e. fluence-rate dependent responses showing reciprocity failure, can be induced by FRc. Under FRc, overexpressed phytochrome A operates through this action mode in transgenic rice. (author)

  19. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    Science.gov (United States)

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  20. Characterization of an Integrated Active Glu-1Ay Allele in Common Wheat from Wild Emmer and Its Potential Role in Flour Improvement

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2018-03-01

    Full Text Available Glu-1Ay, one of six genes encoding a high molecular weight glutenin subunit (HMW-GS, is frequently silenced in hexaploid common wheat. Here, an active allele of Glu-1Ay was integrated from wild emmer wheat (Triticum turgidum ssp. dicoccoides accession D97 into the common wheat (Triticum aestivum cultivar Chuannong 16 via the repeated self-fertilization of the pentaploid interspecific hybrid, culminating in the selection of a line TaAy7-40 shown to express the wild emmer Glu-1Ay allele. The open reading frame of this allele was a 1830 bp long sequence, demonstrated by its heterologous expression in Escherichia coli to encode a 608-residue polypeptide. Its nucleotide sequence was 99.2% identical to that of the sequence within the wild emmer parent. The TaAy7-40 introgression line containing the active Glu-1Ay allele showed higher protein content, higher sodium dodecyl sulfate (SDS sedimentation value, higher content of wet gluten in the flour, higher grain weight, and bigger grain size than Chuannong 16. The end-use quality parameters of the TaAy7-40 were superior to those of the medium gluten common wheat cultivars Mianmai 37 and Neimai 9. Thus, the active Glu-1Ay allele might be of potential value in breeding programs designed to improve wheat flour quality.

  1. Assessment of reference gene stability in Rice stripe virus and Rice black streaked dwarf virus infection rice by quantitative Real-time PCR.

    Science.gov (United States)

    Fang, Peng; Lu, Rongfei; Sun, Feng; Lan, Ying; Shen, Wenbiao; Du, Linlin; Zhou, Yijun; Zhou, Tong

    2015-10-24

    Stably expressed reference gene(s) normalization is important for the understanding of gene expression patterns by quantitative Real-time PCR (RT-qPCR), particularly for Rice stripe virus (RSV) and Rice black streaked dwarf virus (RBSDV) that caused seriously damage on rice plants in China and Southeast Asia. The expression of fourteen common used reference genes of Oryza sativa L. were evaluated by RT-qPCR in RSV and RBSDV infected rice plants. Suitable normalization reference gene(s) were identified by geNorm and NormFinder algorithms. UBQ 10 + GAPDH and UBC + Actin1 were identified as suitable reference genes for RT-qPCR normalization under RSV and RBSDV infection, respectively. When using multiple reference genes, the expression patterns of OsPRIb and OsWRKY, two virus resistance genes, were approximately similar with that reported previously. Comparatively, by using single reference gene (TIP41-Like), a weaker inducible response was observed. We proposed that the combination of two reference genes could obtain more accurate and reliable normalization of RT-qPCR results in RSV- and RBSDV-infected plants. This work therefore sheds light on establishing a standardized RT-qPCR procedure in RSV- and RBSDV-infected rice plants, and might serve as an important point for discovering complex regulatory networks and identifying genes relevant to biological processes or implicated in virus.

  2. Ultrastructure of Oryza glumaepatula , a wild rice species endemic of tropical America

    Directory of Open Access Journals (Sweden)

    Ethel Sánchez

    2005-06-01

    Full Text Available Oryza glumaepatula is a perennial wild rice species,endemic to tropical America, previously known as the Latin American race of Oryza rufipogon .In Costa Rica, it is found in the northern region of the country, mainly in the wetland of the Medio Queso River, Los Chiles, Alajuela. It is diploid, of AA type genome and because of its genetic relatedness to cultivated rice it is included in the O.sativa complex. We describe the ultrastructure of leaf blade, spikelet, ligule and auricles. Special emphasis is given to those traits of major taxonomic value for O.glumaepatula and to those characters that distinguish this species from O. rufipogon and O. sativa . O. glumaepatula has a leaf blade covered with tombstone-shaped, oblong and spheroid epicuticular wax papillae. It has diamond-shaped stomata surrounded by spherical papillae, rows of zipper-like silica cells, bulky prickle trichomes of ca .40 mu m in length and small hirsute trichomes of ca. 32 mu m in length.The central vein is covered with large,globular papillae of ca. 146 mu m in length,a characteristic that distinguishes this species from O.rufipogon and O.sativa. The border of the leaf blade exhibits a row of even-sized bulky prickle trichomes of ca .42.5 mu m in length.Auricles have attenuated trichomes of ca .5.5 mm in length on the edges and small bicellular trichomes of 120 mu m in length on the surface.The ligule has a large number of short attenuated trichomes on its surface of 100 mu m in length.These latter two traits have important taxonomic value since they were found in O.glumaepatula but not found in O.sativa or in O.rufipogon . The spikelet has the typical morphology of the Oryza genus. Fertile lemmas have abundant spines, a trait shared with O.rufipogon but not with O.sativa. The sterile lemmas are wing-shaped with serrated borders,a characteristic that distinguishes this species from O. rufipogon and O.sativa. All the ultrastructure characters observed in O.glumaepatula from

  3. Assessment of adaptive evolution between wheat and rice as deduced from full-length common wheat cDNA sequence data and expression patterns

    Directory of Open Access Journals (Sweden)

    Hayashizaki Yoshihide

    2009-06-01

    Full Text Available Abstract Background Wheat is an allopolyploid plant that harbors a huge, complex genome. Therefore, accumulation of expressed sequence tags (ESTs for wheat is becoming particularly important for functional genomics and molecular breeding. We prepared a comprehensive collection of ESTs from the various tissues that develop during the wheat life cycle and from tissues subjected to stress. We also examined their expression profiles in silico. As full-length cDNAs are indispensable to certify the collected ESTs and annotate the genes in the wheat genome, we performed a systematic survey and sequencing of the full-length cDNA clones. This sequence information is a valuable genetic resource for functional genomics and will enable carrying out comparative genomics in cereals. Results As part of the functional genomics and development of genomic wheat resources, we have generated a collection of full-length cDNAs from common wheat. By grouping the ESTs of recombinant clones randomly selected from the full-length cDNA library, we were able to sequence 6,162 independent clones with high accuracy. About 10% of the clones were wheat-unique genes, without any counterparts within the DNA database. Wheat clones that showed high homology to those of rice were selected in order to investigate their expression patterns in various tissues throughout the wheat life cycle and in response to abiotic-stress treatments. To assess the variability of genes that have evolved differently in wheat and rice, we calculated the substitution rate (Ka/Ks of the counterparts in wheat and rice. Genes that were preferentially expressed in certain tissues or treatments had higher Ka/Ks values than those in other tissues and treatments, which suggests that the genes with the higher variability expressed in these tissues is under adaptive selection. Conclusion We have generated a high-quality full-length cDNA resource for common wheat, which is essential for continuation of the

  4. Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [St?l]) in the rice cultivar ADR52

    OpenAIRE

    Myint, Khin Khin Marlar; Fujita, Daisuke; Matsumura, Masaya; Sonoda, Tomohiro; Yoshimura, Atsushi; Yasui, Hideshi

    2011-01-01

    The brown planthopper (BPH), Nilaparvata lugens (St?l), is one of the most serious and destructive pests of rice, and can be found throughout the rice-growing areas of Asia. To date, more than 24 major BPH-resistance genes have been reported in several Oryza sativa ssp. indica cultivars and wild relatives. Here, we report the genetic basis of the high level of BPH resistance derived from an Indian rice cultivar, ADR52, which was previously identified as resistant to the whitebacked planthoppe...

  5. Ethylene is not involved in adaptive responses to flooding in the Amazonian wild rice species Oryza grandiglumis.

    Science.gov (United States)

    Okishio, Takuma; Sasayama, Daisuke; Hirano, Tatsuya; Akimoto, Masahiro; Itoh, Kazuyuki; Azuma, Tetsushi

    2015-02-01

    The Amazonian wild rice Oryza grandiglumis has two contrasting adaptation mechanisms to flooding submergence: a quiescence response to complete submergence at the seedling stage and an escape response based on internodal elongation to partial submergence at the mature stage. We investigated possible factors that trigger these responses. In stem segments excised from mature O. grandiglumis plants, complete submergence only slightly promoted internodal elongation with increased ethylene levels in the internodes, while partial submergence substantially promoted internodal elongation without increased ethylene levels in the internodes. Incubation of non-submerged stem segments under a continuous flow of humidified ethylene-free air promoted internodal elongation to the same extent as that observed for partially submerged segments. Applied ethylene had little effect on the internodal elongation of non-submerged segments irrespective of humidity conditions. These results indicate that the enhanced internodal elongation of submerged O. grandiglumis plants is not triggered by ethylene accumulated during submergence but by the moist surroundings provided by submergence. The growth of shoots in O. grandiglumis seedlings was not promoted by ethylene or complete submergence, as is the case in O. sativa cultivars possessing the submergence-tolerant gene SUB1A. However, because the genome of O. grandiglumis lacks the SUB1A gene, the quiescence response of O. grandiglumis seedlings to complete submergence may be regulated by a mechanism distinct from that involved in the response of submergence-tolerant O. sativa cultivars. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice.

    Science.gov (United States)

    Qin, Xue; Liu, Jun Hua; Zhao, Wen Sheng; Chen, Xu Jun; Guo, Ze Jian; Peng, You Liang

    2013-02-01

    Gibberellin (GA) 20-oxidase (GA20ox) catalyses consecutive steps of oxidation in the late part of the GA biosynthetic pathway. A T-DNA insertion mutant (17S-14) in rice, with an elongated phenotype, was isolated. Analysis of the flanking sequences of the T-DNA insertion site revealed that an incomplete T-DNA integration resulted in enhanced constitutively expression of downstream OsGA20ox3 in the mutant. The accumulation of bioactive GA(1) and GA(4) were increased in the mutant in comparison with the wild-type plant. Transgenic plants overexpressing OsGA20ox3 showed phenotypes similar to those of the 17S-14 mutant, and the RNA interference (RNAi) lines that had decreased OsGA20ox3 expression exhibited a semidwarf phenotype. Expression of OsGA20ox3 was detected in the leaves and roots of young seedlings, immature panicles, anthers, and pollens, based on β-glucuronidase (GUS) activity staining in transgenic plants expressing the OsGA20ox3 promoter fused to the GUS gene. The OsGA20ox3 RNAi lines showed enhanced resistance against rice pathogens Magnaporthe oryzae (causing rice blast) and Xanthomonas oryzae pv. oryzae (causing bacterial blight) and increased expression of defense-related genes. Conversely, OsGA20ox3-overexpressing plants were more susceptible to these pathogens comparing with the wild-type plants. The susceptibility of wild-type plants to X. oryzae pv. oryzae was increased by exogenous application of GA(3) and decreased by S-3307 treatment. Together, the results provide direct evidence for a critical role of OsGA20ox3 in regulating not only plant stature but also disease resistance in rice.

  7. Wild Food, Prices, Diets and Development: Sustainability and Food Security in Urban Cameroon

    Directory of Open Access Journals (Sweden)

    Lauren Q. Sneyd

    2013-11-01

    Full Text Available This article analyses wild food consumption in urban areas of Cameroon. Building upon findings from Cameroon’s Comprehensive Food Security and Vulnerability Analysis (CFSVA this case study presents empirical data collected from 371 household and market surveys in Cameroonian cities. It employs the UN Special Rapporteur on the Right to Food’s framework for understanding challenges related to the availability, accessibility, and adequacy of food. The survey data suggest that many wild/traditional foods are physically available in Cameroonian cities most of the time, including fruits, vegetables, spices, and insects. Cameroonians spend considerable sums of their food budget on wild foods. However, low wages and the high cost of city living constrain the social and economic access most people have to these foods. The data also suggest that imports of non-traditional staple foods, such as low cost rice, have increasingly priced potentially more nutritious or safe traditional local foods out of markets after the 2008 food price crisis. As a result, diets are changing in Cameroon as the resource-constrained population continues to resort to the coping strategy of eating cheaper imported foods such as refined rice or to eating less frequently. Cameroon’s nutrition transition continues to be driven by need and not necessarily by the preferences of Cameroonian consumers. The implications of this reality for sustainability are troubling.

  8. affect rice in integrated rice-fish culture in Lake Victoria Basin, Kenya?

    African Journals Online (AJOL)

    AGHOGHO A

    Rice field ecology and fish culture - an overview. Hydrobiologia 259:91-113. Fernando CH, Halwart M (2000). Fish farming in irrigation systems. Fisheries Management and Ecol. 7:45-54. Frei M, Razzak MA, Hossain MM, Ochme M, Dewan S, Becker K. (2007). Performance of common carp, Cyprinus carpio L. and Nile.

  9. Similar traits, different genes? Examining convergent evolution in related weedy rice populations.

    Science.gov (United States)

    Thurber, Carrie S; Jia, Melissa H; Jia, Yulin; Caicedo, Ana L

    2013-02-01

    Convergent phenotypic evolution may or may not be associated with convergent genotypic evolution. Agricultural weeds have repeatedly been selected for weed-adaptive traits such as rapid growth, increased seed dispersal and dormancy, thus providing an ideal system for the study of convergent evolution. Here, we identify QTL underlying weedy traits and compare their genetic architecture to assess the potential for convergent genetic evolution in two distinct populations of weedy rice. F(2) offspring from crosses between an indica cultivar and two individuals from genetically differentiated U.S. weedy rice populations were used to map QTL for four quantitative (heading date, seed shattering, plant height and growth rate) and two qualitative traits. We identified QTL on nine of the twelve rice chromosomes, yet most QTL locations do not overlap between the two populations. Shared QTL among weed groups were only seen for heading date, a trait for which weedy groups have diverged from their cultivated ancestors and from each other. Sharing of some QTL with wild rice also suggests a possible role in weed evolution for genes under selection during domestication. The lack of overlapping QTL for the remaining traits suggests that, despite a close evolutionary relationship, weedy rice groups have adapted to the same agricultural environment through different genetic mechanisms. © 2012 Blackwell Publishing Ltd.

  10. Rice Dwarf Virus P2 Protein Hijacks Auxin Signaling by Directly Targeting the Rice OsIAA10 Protein, Enhancing Viral Infection and Disease Development.

    Directory of Open Access Journals (Sweden)

    Lian Jin

    2016-09-01

    Full Text Available The phytohormone auxin plays critical roles in regulating myriads of plant growth and developmental processes. Microbe infection can disturb auxin signaling resulting in defects in these processes, but the underlying mechanisms are poorly understood. Auxin signaling begins with perception of auxin by a transient co-receptor complex consisting of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB protein and an auxin/indole-3-acetic acid (Aux/IAA protein. Auxin binding to the co-receptor triggers ubiquitination and 26S proteasome degradation of the Aux/IAA proteins, leading to subsequent events, including expression of auxin-responsive genes. Here we report that Rice dwarf virus (RDV, a devastating pathogen of rice, causes disease symptoms including dwarfing, increased tiller number and short crown roots in infected rice as a result of reduced sensitivity to auxin signaling. The RDV capsid protein P2 binds OsIAA10, blocking the interaction between OsIAA10 and OsTIR1 and inhibiting 26S proteasome-mediated OsIAA10 degradation. Transgenic rice plants overexpressing wild-type or a dominant-negative (degradation-resistant mutant of OsIAA10 phenocopy RDV symptoms are more susceptible to RDV infection; however, knockdown of OsIAA10 enhances the resistance of rice to RDV infection. Our findings reveal a previously unknown mechanism of viral protein reprogramming of a key step in auxin signaling initiation that enhances viral infection and pathogenesis.

  11. Agricultural wetlands as potential hotspots for mercury bioaccumulation: Experimental evidence using caged fish

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Wetlands provide numerous ecosystem services, but also can be sources of methylmercury (MeHg) production and export. Rice agricultural wetlands in particular may be important sites for MeHg bioaccumulation due to their worldwide ubiquity, periodic flooding schedules, and high use by wildlife. We assessed MeHg bioaccumulation within agricultural and perennial wetlands common to California's Central Valley during summer, when the majority of wetland habitats are shallowly flooded rice fields. We introduced caged western mosquitofish (Gambusia affinis) within white rice (Oryza sativa), wild rice (Zizania palustris), and permanent wetlands at water inlets, centers, and outlets. Total mercury (THg) concentrations and body burdens in caged mosquitofish increased rapidly, exceeding baseline values at introduction by 135% to 1197% and 29% to 1566% among sites, respectively, after only 60 days. Mercury bioaccumulation in caged mosquitofish was greater in rice fields than in permanent wetlands, with THg concentrations at wetland outlets increasing by 12.1, 5.8, and 2.9 times over initial concentrations in white rice, wild rice, and permanent wetlands, respectively. In fact, mosquitofish caged at white rice outlets accumulated 721 ng Hg/fish in just 60 days. Mercury in wild mosquito fish and Mississippi silversides (Menidia audens) concurrently sampled at wetland outlets also were greater in white rice and wild rice than permanent wetlands. Within wetlands, THg concentrations and body burdens of both caged and wild fish increased from water inlets to outlets in white rice fields, and tended to not vary among sites in permanent wetlands. Fish THg concentrations in agricultural wetlands were high, exceeding 0.2 ??g/g ww in 82% of caged fish and 59% of wild fish. Our results indicate that shallowly flooded rice fields are potential hotspots for MeHg bioaccumulation and, due to their global prevalence, suggest that agricultural wetlands may be important contributors to Me

  12. Mosquitoes of the rice agroecosystem of Malaysia: species composition and their abundance in relation to rice farming

    International Nuclear Information System (INIS)

    Abu Hassan Ahmad; Che Salmah Md Rawi

    2002-01-01

    Mosquito abundance in relation to rice farming was studied in the Muda and the Kerian Irrigation Schemes. Mosquito larvae were collected using dippers for several growing seasons. Adult mosquitoes were collected by using human bait and cow bait and net trap at nights. Culex, Mansonia and Anopheles were the three genera of mosquito found in the rice agroecosystem. Four species of Mansonia were found biting on human bait. Culex mosquitoes were caught biting on human and cow baits. Culex tritaeniorhynchus, C pseudovishnui, C vishnui, C gelidus and C bitaeniorhynchus were the most common Culex mosquitoes found. Anoheles sinensis and A. peditaeniatus were the most dominant panopheline mosquitoes. High abundance of larvae and adult mosquitoes were observed during ploughing, planting, and tillering stages of rice farming. (Author)

  13. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    International Nuclear Information System (INIS)

    Mahadtanapuk, S.; Teraarusiri, W.; Phanchaisri, B.; Yu, L.D.; Anuntalabhochai, S.

    2013-01-01

    Highlights: •N-ion beam bombarded Thai jasmine rice seeds to induce mutation. •Mutants with blast-disease resistance and high yield were screened. •Gene involved in the blast-disease resistance was analyzed. •The gene responsible for the resistance was linked to Spotted leaf protein 11. -- Abstract: Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60–80 keV to a beam fluence range of 2 × 10 16 –2 × 10 17 ions/cm 2 . The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 10 6 spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11)

  14. Genotyping by Sequencing and Genome–Environment Associations in Wild Common Bean Predict Widespread Divergent Adaptation to Drought

    Directory of Open Access Journals (Sweden)

    Andrés J. Cortés

    2018-02-01

    Full Text Available Drought will reduce global crop production by >10% in 2050 substantially worsening global malnutrition. Breeding for resistance to drought will require accessing crop genetic diversity found in the wild accessions from the driest high stress ecosystems. Genome–environment associations (GEA in crop wild relatives reveal natural adaptation, and therefore can be used to identify adaptive variation. We explored this approach in the food crop Phaseolus vulgaris L., characterizing 86 geo-referenced wild accessions using genotyping by sequencing (GBS to discover single nucleotide polymorphisms (SNPs. The wild beans represented Mesoamerica, Guatemala, Colombia, Ecuador/Northern Peru and Andean groupings. We found high polymorphism with a total of 22,845 SNPs across the 86 accessions that confirmed genetic relationships for the groups. As a second objective, we quantified allelic associations with a bioclimatic-based drought index using 10 different statistical models that accounted for population structure. Based on the optimum model, 115 SNPs in 90 regions, widespread in all 11 common bean chromosomes, were associated with the bioclimatic-based drought index. A gene coding for an ankyrin repeat-containing protein and a phototropic-responsive NPH3 gene were identified as potential candidates. Genomic windows of 1 Mb containing associated SNPs had more positive Tajima’s D scores than windows without associated markers. This indicates that adaptation to drought, as estimated by bioclimatic variables, has been under natural divergent selection, suggesting that drought tolerance may be favorable under dry conditions but harmful in humid conditions. Our work exemplifies that genomic signatures of adaptation are useful for germplasm characterization, potentially enhancing future marker-assisted selection and crop improvement.

  15. A Comparative Study of the Common Protozoan Parasites of Clarias gariepinus from the Wild and Cultured Environments in Benue State, Nigeria

    Science.gov (United States)

    Omeji, S.; Solomon, S. G.; Idoga, E. S.

    2011-01-01

    A total of one hundred and twenty Clarias gariepinus comprising 30 dead and 30 live fishes were examined for protozoan parasites infestation, sixty each from the wild and a pond (cultured environment) over a period of six months. Ichthyophthirius multifiliis was the most common protozoan parasites found in C. gariepinus from the wild (River Benue) and cultured (pond) environments. These protozoan parasites constitute 37.08% of the total parasites encountered for fishes in the pond and 42.51% of fishes in the wild. Among the body parts of the sampled fishes from the pond, the gills had the highest parasite load (38.86%). Also, the gills had the highest parasite load (40.54%) among the body parts of the fishes sampled from the wild. Fishes not infested with any protozoan parasites from the pond constituted 36.70% of the total fish sampled. On the other hand, fishes not infested with any protozoan parasites from the wild constituted 31.65% of the total fish sampled. Female fishes had more protozoan parasites than the male fishes. Bigger fishes of total length (25–48 cm) had more parasite load than the smaller ones (19–24 cm). Also, fishes between 150–750 g had more parasite load than the smaller ones of less than 150 g. Protozoan parasite load of fish from the cultured environment (pond) did not differ significantly (P < 0.05) from those from River Benue (wild). PMID:22028952

  16. A Comparative Study of the Common Protozoan Parasites of Clarias gariepinus from the Wild and Cultured Environments in Benue State, Nigeria

    Directory of Open Access Journals (Sweden)

    S. Omeji

    2011-01-01

    Full Text Available A total of one hundred and twenty Clarias gariepinus comprising 30 dead and 30 live fishes were examined for protozoan parasites infestation, sixty each from the wild and a pond (cultured environment over a period of six months. Ichthyophthirius multifiliis was the most common protozoan parasites found in C. gariepinus from the wild (River Benue and cultured (pond environments. These protozoan parasites constitute 37.08% of the total parasites encountered for fishes in the pond and 42.51% of fishes in the wild. Among the body parts of the sampled fishes from the pond, the gills had the highest parasite load (38.86%. Also, the gills had the highest parasite load (40.54% among the body parts of the fishes sampled from the wild. Fishes not infested with any protozoan parasites from the pond constituted 36.70% of the total fish sampled. On the other hand, fishes not infested with any protozoan parasites from the wild constituted 31.65% of the total fish sampled. Female fishes had more protozoan parasites than the male fishes. Bigger fishes of total length (25–48 cm had more parasite load than the smaller ones (19–24 cm. Also, fishes between 150–750 g had more parasite load than the smaller ones of less than 150 g. Protozoan parasite load of fish from the cultured environment (pond did not differ significantly (P<0.05 from those from River Benue (wild.

  17. Elemental composition of Malawian rice.

    Science.gov (United States)

    Joy, Edward J M; Louise Ander, E; Broadley, Martin R; Young, Scott D; Chilimba, Allan D C; Hamilton, Elliott M; Watts, Michael J

    2017-08-01

    Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers' fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg -1 , dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg -1 , and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg -1 , dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could significantly increase Se and Zn concentrations and require further investigation. Concentrations of Fe in rice grain varied

  18. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [University of Tennessee, Knoxville (UTK); Guan, Ju [University of Tennessee, Knoxville (UTK); Ferrer, Jean-Luc [Universite Joseph Fourier, France; Engle, Nancy L [ORNL; Chern, Mawsheng [University of California, Davis; Ronald, Pamela [University of California, Davis; Tschaplinski, Timothy J [ORNL; Chen, Feng [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed.

  19. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice.

    Science.gov (United States)

    Zhao, Nan; Guan, Ju; Ferrer, Jean-Luc; Engle, Nancy; Chern, Mawsheng; Ronald, Pamela; Tschaplinski, Timothy J; Chen, Feng

    2010-04-01

    Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  20. Effects of white rice, brown rice and germinated brown rice on antioxidant status of type 2 diabetic rats.

    Science.gov (United States)

    Imam, Mustapha Umar; Musa, Siti Nor Asma; Azmi, Nur Hanisah; Ismail, Maznah

    2012-10-10

    Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR). Though brown rice (BR) and germinated brown rice (GBR) have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations instead of the commonly consumed WR that is known to promote oxidative stress. This will then provide further reasons why less consumption of WR should be encouraged. We studied the effects of GBR on antioxidant status in type 2 diabetic rats, induced using a high-fat diet and streptozotocin injection, and also evaluated the effects of WR, BR and GBR on catalase and superoxide dismutase genes. As dietary components, BR and GBR improved glycemia and kidney hydroxyl radical scavenging activities, and prevented the deterioration of total antioxidant status in type 2 diabetic rats. Similarly, GBR preserved liver enzymes, as well as serum creatinine. There seem to be evidence that upregulation of superoxide dismutase gene may likely be an underlying mechanism for antioxidant effects of BR and GBR. Our results provide insight into the effects of different rice types on antioxidant status in type 2 diabetes. The results also suggest that WR consumption, contrary to BR and GBR, may worsen antioxidant status that may lead to more damage by free radicals. From the data so far, the antioxidant effects of BR and GBR are worth studying further especially on a long term to determine their effects on development of oxidative stress-related problems, which WR consumption predisposes to.

  1. Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Maznah Ismail

    2012-10-01

    Full Text Available Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR. Though brown rice (BR and germinated brown rice (GBR have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations instead of the commonly consumed WR that is known to promote oxidative stress. This will then provide further reasons why less consumption of WR should be encouraged. We studied the effects of GBR on antioxidant status in type 2 diabetic rats, induced using a high-fat diet and streptozotocin injection, and also evaluated the effects of WR, BR and GBR on catalase and superoxide dismutase genes. As dietary components, BR and GBR improved glycemia and kidney hydroxyl radical scavenging activities, and prevented the deterioration of total antioxidant status in type 2 diabetic rats. Similarly, GBR preserved liver enzymes, as well as serum creatinine. There seem to be evidence that upregulation of superoxide dismutase gene may likely be an underlying mechanism for antioxidant effects of BR and GBR. Our results provide insight into the effects of different rice types on antioxidant status in type 2 diabetes. The results also suggest that WR consumption, contrary to BR and GBR, may worsen antioxidant status that may lead to more damage by free radicals. From the data so far, the antioxidant effects of BR and GBR are worth studying further especially on a long term to determine their effects on development of oxidative stress-related problems, which WR consumption predisposes to.

  2. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.

    Science.gov (United States)

    Liu, Wen Xian; Liu, Hua Liang; Qu, Le Qing

    2013-09-01

    Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.

  3. A rice husk gasifier for paddy drying

    International Nuclear Information System (INIS)

    Mirani, A.A.; Kalwar, S.A.; Ahmad, M.

    2013-01-01

    Due to energy crisis and constant increase in the price of fossil fuels, the world's trend changes to renewable sources of energy like solar, wind and biomass gasification. Substantial biomass potential is available in Pakistan in the form of agriculture or forest residue (rice straw, rice husk, cotton stalks, corn cobs, wood chips, wood saw, etc.). These can be best utilised for the production of producer gas or synthetic gas that can be used for drying of agricultural crops. The drying process is an important activity of post harvest processing for long-term storage. Rice husk is nowadays commonly used for biomass gasification and its heat content value is about 15MJ/kg. It constitutes about 30 percent of rice production. A rice husk gasifier was developed and evaluated on paddy drying at Japan International Cooperation Agency (JICA), Tsukuba International Center (TBIC), Japan. Rice husk gasifier has following major components; husk feeding system, ash chamber, burner, centrifugal fan, drying chamber, gasifier reactor, air duct and an electric motor of 0.37kW. The average drying plenum air temperature was recorded as 45 degree C during the drying process. The paddy 'IR 28' from initial moisture content of 24% was dried up to 14% moisture content for about 3.33h consuming 3kg/h of rice husk. The efficiency was found to be 58%. The rice husk gasifier can also be used for drying the fruits and vegetables, provided that heat exchanger should be attached with it. The overall performance of rice husk gasifier was satisfactory and will be beneficial for small scale farmers, food processors and millers as well. (author)

  4. The Organelle Genomes of Hassawi Rice (Oryza sativa L.) and Its Hybrid in Saudi Arabia: Genome Variation, Rearrangement, and Origins

    Science.gov (United States)

    Zhang, Tongwu; Hu, Songnian; Zhang, Guangyu; Pan, Linlin; Zhang, Xiaowei; Al-Mssallem, Ibrahim S.; Yu, Jun

    2012-01-01

    Hassawi rice (Oryza sativa L.) is a landrace adapted to the climate of Saudi Arabia, characterized by its strong resistance to soil salinity and drought. Using high quality sequencing reads extracted from raw data of a whole genome sequencing project, we assembled both chloroplast (cp) and mitochondrial (mt) genomes of the wild-type Hassawi rice (Hassawi-1) and its dwarf hybrid (Hassawi-2). We discovered 16 InDels (insertions and deletions) but no SNP (single nucleotide polymorphism) is present between the two Hassawi cp genomes. We identified 48 InDels and 26 SNPs in the two Hassawi mt genomes and a new type of sequence variation, termed reverse complementary variation (RCV) in the rice cp genomes. There are two and four RCVs identified in Hassawi-1 when compared to 93–11 (indica) and Nipponbare (japonica), respectively. Microsatellite sequence analysis showed there are more SSRs in the genic regions of both cp and mt genomes in the Hassawi rice than in the other rice varieties. There are also large repeats in the Hassawi mt genomes, with the longest length of 96,168 bp and 96,165 bp in Hassawi-1 and Hassawi-2, respectively. We believe that frequent DNA rearrangement in the Hassawi mt and cp genomes indicate ongoing dynamic processes to reach genetic stability under strong environmental pressures. Based on sequence variation analysis and the breeding history, we suggest that both Hassawi-1 and Hassawi-2 originated from the Indonesian variety Peta since genetic diversity between the two Hassawi cultivars is very low albeit an unknown historic origin of the wild-type Hassawi rice. PMID:22870184

  5. Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice.

    Science.gov (United States)

    Mondal, Tapan Kumar; Ganie, Showkat Ahmad; Debnath, Ananda Bhusan

    2015-01-01

    Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h) leaves of O. coarctata were sequenced, which yielded 338 known and 95 novel miRNAs. Additionally, we used publicly available transcriptomics data of O. coarctata which led to the discovery of additional 48 conserved miRNAs along with their pre-miRNA sequences through in silico analysis. In total, 36 known and 7 novel miRNAs were up-regulated whereas, 12 known and 7 novel miRNAs were down-regulated under salinity stress. Further, 233 and 154 target genes were predicted for 48 known and 14 novel differentially regulated miRNAs respectively. These targets with the help of gene ontology analysis were found to be involved in several important biological processes that could be involved in salinity tolerance. Relative expression trends of majority of the miRNAs as detected by real time-PCR as well as predicted by Illumina sequencing were found to be coherent. Additionally, expression of most of the target genes was negatively correlated with their corresponding miRNAs. Thus, the present study provides an account of miRNA-target networking that is involved in salinity adaption of O. coarctata.

  6. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice.

    Science.gov (United States)

    Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao

    2016-01-01

    This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.

  7. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice.

    Directory of Open Access Journals (Sweden)

    Weiyang Zhang

    Full Text Available This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L. is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M and a small-grain mutant (ZF802-M, and their respective wild types (AZU-WT and ZF802-WT were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR, indo-3-acetic acid (IAA, polyamines (PAs, and abscisic acid (ABA were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.

  8. OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers

    NARCIS (Netherlands)

    Chen, Y.; Miller, A.J.; Luo, B.; Wang, M.; Zhu, Z.; Ouwerkerk, P.B.F.

    2016-01-01

    Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA)

  9. Golden Rice is an effective source of vitamin A.

    Science.gov (United States)

    Tang, Guangwen; Qin, Jian; Dolnikowski, Gregory G; Russell, Robert M; Grusak, Michael A

    2009-06-01

    Genetically engineered "Golden Rice" contains up to 35 microg beta-carotene per gram of rice. It is important to determine the vitamin A equivalency of Golden Rice beta-carotene to project the potential effect of this biofortified grain in rice-consuming populations that commonly exhibit low vitamin A status. The objective was to determine the vitamin A value of intrinsically labeled dietary Golden Rice in humans. Golden Rice plants were grown hydroponically with heavy water (deuterium oxide) to generate deuterium-labeled [2H]beta-carotene in the rice grains. Golden Rice servings of 65-98 g (130-200 g cooked rice) containing 0.99-1.53 mg beta-carotene were fed to 5 healthy adult volunteers (3 women and 2 men) with 10 g butter. A reference dose of [13C10]retinyl acetate (0.4-1.0 mg) in oil was given to each volunteer 1 wk before ingestion of the Golden Rice dose. Blood samples were collected over 36 d. Our results showed that the mean (+/-SD) area under the curve for the total serum response to [2H]retinol was 39.9 +/- 20.7 microg x d after the Golden Rice dose. Compared with that of the [13C10]retinyl acetate reference dose (84.7 +/- 34.6 microg x d), Golden Rice beta-carotene provided 0.24-0.94 mg retinol. Thus, the conversion factor of Golden Rice beta-carotene to retinol is 3.8 +/- 1.7 to 1 with a range of 1.9-6.4 to 1 by weight, or 2.0 +/- 0.9 to 1 with a range of 1.0-3.4 to 1 by moles. Beta-carotene derived from Golden Rice is effectively converted to vitamin A in humans. This trial was registered at clinicaltrials.gov as NCT00680355.

  10. Silencing of the Rice Gene LRR1 Compromises Rice Xa21 Transcript Accumulation and XA21-Mediated Immunity.

    Science.gov (United States)

    Caddell, Daniel F; Park, Chang-Jin; Thomas, Nicholas C; Canlas, Patrick E; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. We previously demonstrated that an auxilin-like protein, XA21 BINDING PROTEIN 21 (XB21), positively regulates resistance to Xoo. To further investigate the function of XB21, we performed a yeast two-hybrid screen. We identified 22 unique XB21 interacting proteins, including LEUCINE-RICH REPEAT PROTEIN 1 (LRR1), which we selected for further analysis. Silencing of LRR1 in the XA21 genetic background (XA21-LRR1Ri) compromises resistance to Xoo compared with control XA21 plants. XA21-LRR1Ri plants have reduced Xa21 transcript levels and reduced expression of genes that serve as markers of XA21-mediated activation. Overexpression of LRR1 is insufficient to alter resistance to Xoo in rice lines lacking XA21. Taken together, our results indicate that LRR1 is required for wild-type Xa21 transcript expression and XA21-mediated immunity.

  11. Characterization and quantification of γ-oryzanol in grains of 16 Korean rice varieties.

    Science.gov (United States)

    Kim, Heon Woong; Kim, Jung Bong; Cho, Soo-Muk; Cho, Il Kyu; Li, Qing X; Jang, Hwan-Hee; Lee, Sung-Hyeon; Lee, Young-Min; Hwang, Kyung-A

    2015-03-01

    γ-Oryzanol, a mixture of ferulic acid esters of triterpene alcohols and sterols, is a nutritionally important group of rice secondary metabolites. A library of 27 γ-oryzanol was assembled from existing data and used to assist identification and quantification of γ-oryzanol isolated from 16 Korean rice varieties (11 white and 5 pigmented). γ-Oryzanol was analyzed with liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Nineteen different γ-oryzanol were observed and identified as stigmasterol, campesterol and sitosterol or common and hydroxylated triterpene alcohols. In the 16 varieties, the total γ-oryzanol content averaged 43.8 mg/100 g (range, 26.7-61.6 mg/100 g), which Josaengheugchal exhibited the highest level (61.6 mg/100 g). The Korean rice varieties were classified based on qualitative and quantitative γ-oryzanol data by multivariate statistical analysis. Clusters of specialty rice varieties exhibited higher γ-oryzanol levels than those of common rice varieties.

  12. Sago-Type Palms Were an Important Plant Food Prior to Rice in Southern Subtropical China

    Science.gov (United States)

    Yang, Xiaoyan; Barton, Huw J.; Wan, Zhiwei; Li, Quan; Ma, Zhikun; Li, Mingqi; Zhang, Dan; Wei, Jun

    2013-01-01

    Poor preservation of plant macroremains in the acid soils of southern subtropical China has hampered understanding of prehistoric diets in the region and of the spread of domesticated rice southwards from the Yangtze River region. According to records in ancient books and archaeological discoveries from historical sites, it is presumed that roots and tubers were the staple plant foods in this region before rice agriculture was widely practiced. But no direct evidences provided to test the hypothesis. Here we present evidence from starch and phytolith analyses of samples obtained during systematic excavations at the site of Xincun on the southern coast of China, demonstrating that during 3,350–2,470 aBC humans exploited sago palms, bananas, freshwater roots and tubers, fern roots, acorns, Job's-tears as well as wild rice. A dominance of starches and phytoliths from palms suggest that the sago-type palms were an important plant food prior to the rice in south subtropical China. We also believe that because of their reliance on a wide range of starch-rich plant foods, the transition towards labour intensive rice agriculture was a slow process. PMID:23667584

  13. Breeding for blast-disease-resistant and high-yield Thai jasmine rice (Oryza sativa L. cv. KDML 105) mutants using low-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Mahadtanapuk, S. [School of Agriculture and Natural Resources, University of Phayao, Phayao 56000 (Thailand); Teraarusiri, W. [Central Laboratory, University of Phayao, Phayao 56000 (Thailand); Phanchaisri, B. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@frnf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, S., E-mail: burinka@hotmail.com [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-15

    Highlights: •N-ion beam bombarded Thai jasmine rice seeds to induce mutation. •Mutants with blast-disease resistance and high yield were screened. •Gene involved in the blast-disease resistance was analyzed. •The gene responsible for the resistance was linked to Spotted leaf protein 11. -- Abstract: Low-energy ion beam was applied on mutation induction for plant breeding of blast-disease-resistant Thai jasmine rice (Oryza sativa L. cv. KDML 105). Seeds of the wild-type rice were bombarded in vacuum by nitrogen ion beam at energy of 60–80 keV to a beam fluence range of 2 × 10{sup 16}–2 × 10{sup 17} ions/cm{sup 2}. The ion-bombarded rice seeds were grown in soil for 2 weeks as transplanted rice in plastic pots at 1 seedling/pot. The seedlings were then screened for blast resistance by Pyricularia grisea inoculation with 10{sup 6} spores/ml concentrations. The blast-resistant rice mutant was planted up to F6 generation with the consistent phenotypic variation. The high percentage of the blast-disease-resistant rice was analyzed with DNA fingerprint. The HAT-RAPD (high annealing temperature-random amplified polymorphic DNA) marker revealed the modified polymorphism fragment presenting in the mutant compared with wild type (KDML 105). The cDNA fingerprints were investigated and the polymorphism fragment was subcloned into pGEM-T easy vector and then sequenced. The sequence of this fragment was compared with those already contained in the database, and the fragment was found to be related to the Spotted leaf protein 11 (Spl11)

  14. Development and drought tolerance assay of marker-free transgenic rice with OsAPX2 using biolistic particle-mediated co-transformation

    Directory of Open Access Journals (Sweden)

    Dan Feng

    2017-08-01

    Full Text Available Abiotic stresses such as drought, salinity, and low temperature cause–losses in rice production worldwide. The emergence of transgenic technology has enabled improvements in the drought resistance of rice plants and helped avert crop damage due to drought stress. Selectable marker genes conferring resistance to antibiotics or herbicides have been widely used to identify genetically modified plants. However, the use of such markers has limited the public acceptance of genetically modified organisms. Marker-free materials (i.e., those containing a single foreign gene may be more easily accepted by the public and more likely to find common use. In the present study, we created marker-free drought-tolerant transgenic rice plants using particle bombardment. Overall, 842 T0 plants overexpressing the rice ascorbate peroxidase-coding gene OsAPX2 were generated. Eight independent marker-free lines were identified from T1 seedlings using the polymerase chain reaction. The molecular characteristics of these lines were examined, including the expression level, copy number, and flanking sequences of OsAPX2, in the T2 progeny. A simulated drought test using polyethylene glycol and a drought-tolerance test of seedlings confirmed that the marker-free lines carrying OsAPX2 showed significantly improved drought tolerance in seedlings. In the field, the yield of the wild-type plant decreased by 60% under drought conditions compared with normal conditions. However, the transgenic line showed a yield loss of approximately 26%. The results demonstrated that marker-free transgenic lines significantly improved grain yield under drought-stressed conditions.

  15. Cloning, characterization and expression of OsFMO(t) in rice encoding a flavin monooxygenase.

    Science.gov (United States)

    Yi, Jicai; Liu, Lanna; Cao, Youpei; Li, Jiazuo; Mei, Mantong

    2013-12-01

    Flavin monooxygenases (FMO) play a key role in tryptophan (Trp)-dependent indole-acetic acid (IAA) biosynthesis in plants and regulate plant growth and development. In this study, the full-length genomic DNA and cDNA of OsFMO(t), a FMO gene that was originally identified from a rolled-leaf mutant in rice, was isolated and cloned from wild type of the rolled-leaf mutant. OsFMO(t) was found to have four exons and three introns, and encode a protein with 422 amino acid residues that contains two basic conserved motifs, with a 'GxGxxG' characteristic structure. OsFMO(t) showed high amino acid sequence identity with FMO proteins from other plants, in particular with YUCCA from Arabidopsis, FLOOZY from Petunia, and OsYUCCA1 from rice. Our phylogenetic analysis showed that OsFMO(t) and the homologous FMO proteins belong to the same clade in the evolutionary tree. Overexpression of OsFMO(t) in transformed rice calli produced IAA-excessive phenotypes that showed browning and lethal effects when exogenous auxins such as naphthylacetic acid (NAA) were added to the medium. These results suggested that the OsFMO(t) protein is involved in IAA biosynthesis in rice and its overexpression could lead to the malformation of calli. Spatio-temporal expression analysis using RT-PCR and histochemical analysis for GUS activity revealed that expression of OsFMO(t) was totally absent in the rolled-leaf mutant. However, in the wild type variety, this gene was expressed at different levels temporally and spatially, with the highest expression observed in tissues with fast growth and cell division such as shoot apexes, tender leaves and root tips. Our results demonstrated that IAA biosynthesis regulated by OsFMO(t) is likely localized and might play an essential role in shaping local IAA concentrations which, in turn, is critical for regulating normal growth and development in rice.

  16. The Birth of a Black Rice Gene and Its Local Spread by Introgression.

    Science.gov (United States)

    Oikawa, Tetsuo; Maeda, Hiroaki; Oguchi, Taichi; Yamaguchi, Takuya; Tanabe, Noriko; Ebana, Kaworu; Yano, Masahiro; Ebitani, Takeshi; Izawa, Takeshi

    2015-09-01

    The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red- and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice. © 2015 American Society of Plant Biologists. All rights reserved.

  17. Complete Genome Sequence of a Common Midwife Toad Virus-Like Ranavirus Associated with Mass Mortalities in Wild Amphibians in the Netherlands

    Science.gov (United States)

    Hughes, Joseph; Saucedo, Bernardo; Rijks, Jolianne; Kik, Marja; Haenen, Olga L. M.; Engelsma, Marc Y.; Gröne, Andrea; Verheije, M. Helene; Wilkie, Gavin

    2014-01-01

    A ranavirus associated with mass mortalities in wild water frogs (Pelophylax spp.) and other amphibians in the Netherlands since 2010 was isolated, and its complete genome sequence was determined. The virus has a genome of 107,772 bp and shows 96.5% sequence identity with the common midwife toad virus from Spain. PMID:25540340

  18. Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice.

    Science.gov (United States)

    Du, Hao; Wang, Nili; Cui, Fei; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2010-11-01

    Drought is a major limiting factor for crop production. To identify critical genes for drought resistance in rice (Oryza sativa), we screened T-DNA mutants and identified a drought-hypersensitive mutant, dsm2. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative β-carotene hydroxylase (BCH). BCH is predicted for the biosynthesis of zeaxanthin, a carotenoid precursor of abscisic acid (ABA). The amounts of zeaxanthin and ABA were significantly reduced in two allelic dsm2 mutants after drought stress compared with the wild type. Under drought stress conditions, the mutant leaves lost water faster than the wild type and the photosynthesis rate, biomass, and grain yield were significantly reduced, whereas malondialdehyde level and stomata aperture were increased in the mutant. The mutant is also hypersensitive to oxidative stresses. The mutant had significantly lower maximal efficiency of photosystem II photochemistry and nonphotochemical quenching capacity than the wild type, indicating photoinhibition in photosystem II and decreased capacity for eliminating excess energy by thermal dissipation. Overexpression of DSM2 in rice resulted in significantly increased resistance to drought and oxidative stresses and increases of the xanthophylls and nonphotochemical quenching. Some stress-related ABA-responsive genes were up-regulated in the overexpression line. DSM2 is a chloroplast protein, and the response of DSM2 to environmental stimuli is distinctive from the other two BCH members in rice. We conclude that the DSM2 gene significantly contributes to control of the xanthophyll cycle and ABA synthesis, both of which play critical roles in the establishment of drought resistance in rice.

  19. Wild Marshmallows.

    Science.gov (United States)

    Kallas, John N.

    1984-01-01

    Provides information for teaching a unit on wild plants, including resources to use, plants to learn, safety considerations, list of plants (with scientific name, edible parts, and uses), list of plants that might cause allergic reactions when eaten. Also describes the chickweed, bull thistle, and common mallow. (BC)

  20. IDENTIFICATION AND MAPPING OF A GENE FOR RICE SLENDER KERNEL USING Oryza glumaepatula INTROGRESSION LINES

    Directory of Open Access Journals (Sweden)

    Sobrizal Sobrizal

    2016-10-01

    Full Text Available World demand for superior rice grain quality tends to increase. One of the  criteria of appearance quality of rice grain is grain shape. Rice consumers  exhibit wide preferences for grain shape, but most Indonesian rice consumers prefer long and slender grain. The objectives of this study were to identify and map a gene for rice slender kernel trait using Oryza  glumaepatula introgression lines with O. sativa cv. Taichung 65 genetic background. A segregation analysis of BC4F2 population derived from backcrosses of a donor parent O. glumaepatula into a recurrent parent Taichung 65 showed that the slender kernel was controlled by a single recessive gene. This new identified gene was designated as sk1 (slender kernel 1. Moreover, based on the RFLP analyses using 14 RFLP markers located on chromosomes 2, 8, 9, and 10 in which the O. glumaepatula chromosomal segments were retained in BC4F2 population, the sk1 was located between RFLP markers C679 and C560 on the long arm of chromosome 2, with map distances of 2.8 and 1.5 cM, respectively. The wild rice O. glumaepatula carried a recessive allele for slender kernel. This allele may be useful in breeding of rice with slender kernel types. In addition, the development of plant materials and RFLP map associated with slender kernel in this study is the preliminary works in the effort to isolate this important grain shape gene.

  1. Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice.

    Directory of Open Access Journals (Sweden)

    Wenqi Li

    Full Text Available The hormone auxin plays an important role not only in the growth and development of rice, but also in its defense responses. We've previously shown that the P450 gene CYP71Z2 enhances disease resistance to pathogens through regulation of phytoalexin biosynthesis in rice, though it remains unclear if auxin is involved in this process or not.The expression of CYP71Z2 was induced by Xanthomonas oryzae pv. oryzae (Xoo inoculation was analyzed by qRT-PCR, with GUS histochemical staining showing that CYP71Z2 expression was limited to roots, blades and nodes. Overexpression of CYP71Z2 in rice durably and stably increased resistance to Xoo, though no significant difference in disease resistance was detected between CYP71Z2-RNA interference (RNAi rice and wild-type. Moreover, IAA concentration was determined using the HPLC/electrospray ionization/tandem mass spectrometry system. The accumulation of IAA was significantly reduced in CYP71Z2-overexpressing rice regardless of whether plants were inoculated or not, whereas it was unaffected in CYP71Z2-RNAi rice. Furthermore, the expression of genes related to IAA, expansin and SA/JA signaling pathways was suppressed in CYP71Z2-overexpressing rice with or without inoculation.These results suggest that CYP71Z2-mediated resistance to Xoo may be via suppression of IAA signaling in rice. Our studies also provide comprehensive insight into molecular mechanism of resistance to Xoo mediated by IAA in rice. Moreover, an available approach for understanding the P450 gene functions in interaction between rice and pathogens has been provided.

  2. Broken rice kernels and the kinetics of rice hydration and texture during cooking.

    Science.gov (United States)

    Saleh, Mohammed; Meullenet, Jean-Francois

    2013-05-01

    During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.

  3. Investigating differences in light stable isotopes between Thai jasmine rice and Sungyod rice

    Science.gov (United States)

    Kukusamude, C.; Kongsri, S.

    2017-10-01

    We report the differences in light stable isotopes between two kinds of Thai rice (Thai jasmine and Sungyod rice). Thai jasmine rice and Sungyod rice were cultivated in the northeast and the south of Thailand. Light isotopes including 13C, 15N and 18O of Thai jasmine rice and Sungyod rice samples were carried out using isotope ratio mass spectrometry (IRMS). Thai jasmine rice (Khao Dawk Mali 105) was cultivated from Thung Kula Rong Hai area, whereas Sungyod rice was cultivated from Phathalung province. Hypothesis testing of difference of each isotope between Thai jasmine rice and Sungyod rice was also studied. The study was the feasibility test whether the light stable isotopes can be the variables to identify Thai jasmine rice and Sungyod rice. The result shows that there was difference in the isotope patterns of Thai jasmine rice and Sungyod rice. Our results may provide the useful information in term of stable isotope profiles of Thai rice.

  4. Evaluation of various QuEChERS based methods for the analysis of herbicides and other commonly used pesticides in polished rice by LC-MS/MS.

    Science.gov (United States)

    Pareja, Lucía; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2011-02-15

    Four different extraction and clean-up protocols based on the QuEChERS method were compared for the development of an optimized sample preparation procedure for the multiresidue analysis of 16 commonly applied herbicides in rice crops using LC-QqQ/MS. Additionally the methods were evaluated for the analysis of 26 insecticides and fungicides currently used in rice crops. The methods comprise, in general, the hydratation of the sample with water followed by the extraction with acetonitrile, phase separation with the addition of different salts and finally a clean-up step with various sorbents. Matrix effects were evaluated for the 4 studied methods using LC-QqQ/MS. Additionally LC-TOF/MS was used to compare the co-extractants obtained with the four assayed methodologies. Thirty-six pesticides presented good performance with recoveries in the range 70-120% and relative standard deviations below 20% using 7.5 g of milled polished rice and the buffered acetate QuEChERS method without clean-up at both fortification levels: 10 and 300 μg kg(-1). The other six pesticides presented low recovery rates, nevertheless all these analytes could be analyzed with at least one of the other three studied procedures. Copyright © 2010. Published by Elsevier B.V.

  5. All roads lead to weediness: Patterns of genomic divergence reveal extensive recurrent weedy rice origins from South Asian Oryza.

    Science.gov (United States)

    Huang, Zhongyun; Young, Nelson D; Reagon, Michael; Hyma, Katie E; Olsen, Kenneth M; Jia, Yulin; Caicedo, Ana L

    2017-06-01

    Weedy rice (Oryza spp.), a weedy relative of cultivated rice (O. sativa), infests and persists in cultivated rice fields worldwide. Many weedy rice populations have evolved similar adaptive traits, considered part of the 'agricultural weed syndrome', making this an ideal model to study the genetic basis of parallel evolution. Understanding parallel evolution hinges on accurate knowledge of the genetic background and origins of existing weedy rice groups. Using population structure analyses of South Asian and US weedy rice, we show that weeds in South Asia have highly heterogeneous genetic backgrounds, with ancestry contributions both from cultivated varieties (aus and indica) and wild rice. Moreover, the two main groups of weedy rice in the USA, which are also related to aus and indica cultivars, constitute a separate origin from that of Asian weeds. Weedy rice populations in South Asia largely converge on presence of red pericarps and awns and on ease of shattering. Genomewide divergence scans between weed groups from the USA and South Asia, and their crop relatives are enriched for loci involved in metabolic processes. Some candidate genes related to iconic weedy traits and competitiveness are highly divergent between some weed-crop pairs, but are not shared among all weed-crop comparisons. Our results show that weedy rice is an extreme example of recurrent evolution, and suggest that most populations are evolving their weedy traits through different genetic mechanisms. © 2017 John Wiley & Sons Ltd.

  6. Extraction of rice bran oil from local rice husk

    International Nuclear Information System (INIS)

    Anwar, J.; Zaman, W.; Salman, M.; Jabeen, N.

    2006-01-01

    Rice Bran Oil is widely used in pharmaceutical, food and chemical industries due to its unique properties and high medicinal value. In the present work, extraction of rice bran oil from different samples of rice husk collected from local rice shellers by solvent extraction method has been studied. Experiments were conducted using a soxhelt apparatus, to extract rice bran oil using hexane, petroleum ether, ethanol and methanol as the solvents and the yields obtained under different conditions were compared. Batch extraction tests showed that the rate of extraction decreases with time and the solution approaches saturation at an exponential rate. (author)

  7. Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice.

    Science.gov (United States)

    Hu, Jie; Xiao, Cong; He, Yuqing

    2016-12-01

    Brown planthopper (BPH) is the most devastating pest of rice. Host-plant resistance is the most desirable and economic strategy in the management of BPH. To date, 29 major BPH resistance genes have been identified from indica cultivars and wild rice species, and more than ten genes have been fine mapped to chromosome regions of less than 200 kb. Four genes (Bph14, Bph26, Bph17 and bph29) have been cloned. The increasing number of fine-mapped and cloned genes provide a solid foundation for development of functional markers for use in breeding. Several BPH resistant introgression lines (ILs), near-isogenic lines (NILs) and pyramided lines (PLs) carrying single or multiple resistance genes were developed by marker assisted backcross breeding (MABC). Here we review recent progress on the genetics and molecular breeding of BPH resistance in rice. Prospect for developing cultivars with durable, broad-spectrum BPH resistance are discussed.

  8. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    Directory of Open Access Journals (Sweden)

    Chou Hong

    2011-12-01

    Full Text Available Abstract Background Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. Results In this study, the cellulose hydrolytic enzyme β-1, 4-endoglucanase (E1 gene, from the thermophilic bacterium Acidothermus cellulolyticus, was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial E1 gene in rice was driven by the constitutive Mac promoter, a hybrid promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer, with the signal peptide of tobacco pathogenesis-related protein for targeting the E1 protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial E1 enzyme were obtained that expressed the gene at high levels without severely impairing plant growth and development. However, some transgenic plants exhibited a shorter stature and flowered earlier than the wild type plants. The E1 specific activities in the leaves of the highest expressing transgenic rice lines were about 20-fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. A zymogram and temperature-dependent activity analyses demonstrated the thermostability of the E1 enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid for one hour at 39°C and another hour at 81°C yielded 43% more reducing sugars than wild type rice

  9. Deficiencies in both starch synthase IIIa and branching enzyme IIb lead to a significant increase in amylose in SSIIa-inactive japonica rice seeds.

    Science.gov (United States)

    Asai, Hiroki; Abe, Natsuko; Matsushima, Ryo; Crofts, Naoko; Oitome, Naoko F; Nakamura, Yasunori; Fujita, Naoko

    2014-10-01

    Starch synthase (SS) IIIa has the second highest activity of the total soluble SS activity in developing rice endosperm. Branching enzyme (BE) IIb is the major BE isozyme, and is strongly expressed in developing rice endosperm. A mutant (ss3a/be2b) was generated from wild-type japonica rice which lacks SSIIa activity. The seed weight of ss3a/be2b was 74-94% of that of the wild type, whereas the be2b seed weight was 59-73% of that of the wild type. There were significantly fewer amylopectin short chains [degree of polymerization (DP) ≤13] in ss3a/be2b compared with the wild type. In contrast, the amount of long chains (DP ≥25) connecting clusters of amylopectin in ss3a/be2b was higher than in the wild type and lower than in be2b. The apparent amylose content of ss3a/be2b was 45%, which was >1.5 times greater than that of either ss3a or be2b. Both SSIIIa and BEIIb deficiencies led to higher activity of ADP-glucose pyrophosphorylase (AGPase) and granule-bound starch synthase I (GBSSI), which partly explains the high amylose content in the ss3a/be2b endosperm. The percentage apparent amylose content of ss3a and ss3a/be2b at 10 days after flowering (DAF) was higher than that of the wild type and be2b. At 20 DAF, amylopectin biosynthesis in be2b and ss3a/be2b was not observed, whereas amylose biosynthesis in these lines was accelerated at 30 DAF. These data suggest that the high amylose content in the ss3a/be2b mutant results from higher amylose biosynthesis at two stages, up to 20 DAF and from 30 DAF to maturity. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens.

    Science.gov (United States)

    Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya

    2014-07-22

    Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers detected a single region on the 10th linkage group responsible for the virulence. The QTL explained from 57 to 84% of the total phenotypic variation. Bulked segregant analysis with next-generation sequencing in F2 progenies identified five SNPs genetically linked to the virulence. These analyses showed that virulence to Bph1 was controlled by a single recessive gene. In contrast to previous studies, the gene-for-gene relationship between the major resistance gene Bph1 and virulence gene of BPH was confirmed. Identified markers are available for map-based cloning of the major gene controlling BPH virulence to rice resistance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Development and characterization of japonica rice lines carrying the brown planthopper-resistance genes BPH12 and BPH6.

    Science.gov (United States)

    Qiu, Yongfu; Guo, Jianping; Jing, Shengli; Zhu, Lili; He, Guangcun

    2012-02-01

    The brown planthopper (Nilaparvata lugens Stål; BPH) has become a severe constraint on rice production. Identification and pyramiding BPH-resistance genes is an economical and effective solution to increase the resistance level of rice varieties. All the BPH-resistance genes identified to date have been from indica rice or wild species. The BPH12 gene in the indica rice accession B14 is derived from the wild species Oryza latifolia. Using an F(2) population from a cross between the indica cultivar 93-11 and B14, we mapped the BPH12 gene to a 1.9-cM region on chromosome 4, flanked by the markers RM16459 and RM1305. In this population, BPH12 appeared to be partially dominant and explained 73.8% of the phenotypic variance in BPH resistance. A near-isogenic line (NIL) containing the BPH12 locus in the background of the susceptible japonica variety Nipponbare was developed and crossed with a NIL carrying BPH6 to generate a pyramid line (PYL) with both genes. BPH insects showed significant differences in non-preference in comparisons between the lines harboring resistance genes (NILs and PYL) and Nipponbare. BPH growth and development were inhibited and survival rates were lower on the NIL-BPH12 and NIL-BPH6 plants compared to the recurrent parent Nipponbare. PYL-BPH6 + BPH12 exhibited 46.4, 26.8 and 72.1% reductions in population growth rates (PGR) compared to NIL-BPH12, NIL-BPH6 and Nipponbare, respectively. Furthermore, insect survival rates were the lowest on the PYL-BPH6 + BPH12 plants. These results demonstrated that pyramiding different BPH-resistance genes resulted in stronger antixenotic and antibiotic effects on the BPH insects. This gene pyramiding strategy should be of great benefit for the breeding of BPH-resistant japonica rice varieties.

  12. Some effects of aldrin-treated rice on Gulf Coast wildlife

    Science.gov (United States)

    Flickinger, Edward L.; King, K.A.

    1972-01-01

    Wildlife casualties from aldrin-dieldrin poisoning are associated with the planting of aldrin-treated rice seed along the Texas Gulf Coast. The fulvous tree duck (Dendrocygna bicolor), which depends on the rice field habitats and is highly susceptible to aldrin-dieldrin poisoning, is suffering a serious population decline in that area. Dead waterfowl, shorebirds, and passerines were collected on study areas in Wharton, Brazoria, and Chambers counties, Texas, from 1967 through 1971. Residues of aldrin or dieldrin were found in all samples of bird casualties and in all eggs, scavengers, predators, fish, frogs, invertebrates, and soils. Fulvous tree ducks appeared to be less resistant to aldrin than other ducks. Dieldrin residues in brains of dead fulvous tree ducks were low, but whole-body residues were as high as 16 ppm. Brains of other dead ducks and geese averaged 10 ppm dieldrin. Some dead birds were exposed by eating treated rice seed, but many dead birds with high dieldrin residues were species that feed largely on invertebrates. Although soil residues were low, snails and crayfish contained enough aldrin and dieldrin (average 9.5 ppm) to account for deaths in birds that fed heavily on these invertebrates over a period of time. When fulvous tree ducks were penned for 3 days in fields aerially planted with treated seed, 3 of 10 birds died with brain residues of 2.5, 2.9, and 6.8 ppm dieldrin, and others were intoxicated. None of eight died, and some gained weight, when penned in fields planted with untreated seed. This study adds further evidence for the suspected lethal effects of aldrin-treated rice seed on wild birds and other wildlife in rice field habitats.

  13. RiceAtlas, a spatial database of global rice calendars and production.

    Science.gov (United States)

    Laborte, Alice G; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander J; Boschetti, Mirco; Murty, M V R; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J; Nelson, Andrew

    2017-05-30

    Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It consists of data on rice planting and harvesting dates by growing season and estimates of monthly production for all rice-producing countries. Sources used for planting and harvesting dates include global and regional databases, national publications, online reports, and expert knowledge. Monthly production data were estimated based on annual or seasonal production statistics, and planting and harvesting dates. RiceAtlas has 2,725 spatial units. Compared with available global crop calendars, RiceAtlas is nearly ten times more spatially detailed and has nearly seven times more spatial units, with at least two seasons of calendar data, making RiceAtlas the most comprehensive and detailed spatial database on rice calendar and production.

  14. The Caryopsis of Red-Grained Rice Has Enhanced Resistance to Fungal Attack

    Directory of Open Access Journals (Sweden)

    Alberto Gianinetti

    2018-06-01

    Full Text Available Seed persistence in the soil is threatened by microorganisms, but the seed coat helps protect the seed from them. Although modern rice (Oryza sativa L. cultivars have a whitish caryopsis, some varieties have a red caryopsis coat, a trait typical of wild Oryza species. The red colour is due to the oxidation of proanthocyanidins, a class of flavonoids that is found in the outer layers of the seed in many species. We aimed to assess whether these natural compounds (proanthocyanidins and proanthocyanidin-derived pigment have some protective effect against microbial attacks. Dehulled caryopses of white-grained and red-grained rice genotypes were employed to assay fungal infection. Specifically, three white-grained rice cultivars (Perla, Augusto, and Koral and three red-grained rice varieties (Perla Rosso, Augusto Rosso, and Koral Rosso were used. In a first test, the caryopses were infected with Epicoccum nigrum at 10 °C, and seedling growth was then assessed at 30 °C. In a second test, the degree of infection by the mycotoxigenic fungus Fusarium sporotrichioides was assayed by measuring the accumulation of T-2/HT-2 toxins in the caryopses. Infection was performed at 10 °C to prevent rice germination while allowing fungal growth. In both the tests, red caryopses showed reduced, or delayed, infection with respect to white ones. One black-grained cultivar (Venere was assayed for the accumulation of T-2/HT-2 toxins as well, with results corresponding to those of the red-grained rice varieties. We argue that the red pigment accumulating in the caryopsis coat, and/or the proanthocyanidins associated with it, provides a protective barrier against challenging microorganisms.

  15. Transgene Flow from Glufosinate-Resistant Rice to Improved and Weedy Rice in China

    Directory of Open Access Journals (Sweden)

    Yong-liang LU

    2014-09-01

    Full Text Available The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequencies of transgene flow from glufosinate-resistant rice to improved rice cultivars and weedy rice. Treatments were arranged in randomized complete blocks with three replicates. Experiments were conducted between 2009 and 2010 at the Center for Environmental Safety Supervision and Inspection for Genetically Modified Plants, China National Rice Research Institute, Hangzhou, China. Glufosinate-resistant japonica rice 99-1 was the pollen donor. The pollen recipients were two inbred japonica rice (Chunjiang 016 and Xiushui 09, two inbred indica rice (Zhongzu 14 and Zhongzao 22, two indica hybrid rice (Zhongzheyou 1 and Guodao 1, and one weedy indica rice (Taizhou weedy rice. The offspring of recipients were planted in the field and sprayed with a commercial dose of glufosinate. Leaf tissues of survivors were analyzed by polymerase chain reaction to detect the presence of the transgene. The frequency of gene flow ranged from 0 to 0.488%. In 2009, the order of gene flow frequency was as follows: weedy rice > Chunjiang 016 > Xiushui 09 and Zhongzu 14 > Guodao 1, Zhongzheyou 1 and Zhongzao 22. Gene flow frequencies were generally higher in 2009 than in 2010, but did not differ significantly among rice materials. Gene flow frequency was the highest in weedy rice followed by the inbred japonica rice. The risk of gene flow differed significantly between years and year-to-year variance could mask risk differences among pollen recipients. Gene flow was generally lesser in taller pollen recipients than in shorter ones, but plant height only accounted for about 30% of variation in gene flow. When flowering synchrony was maximized, as in this study, low frequencies of gene flow occurred from herbicide-resistant japonica rice to other cultivars and

  16. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  17. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants

    Directory of Open Access Journals (Sweden)

    Ashraf eEl-Kereamy

    2015-11-01

    Full Text Available Glutaredoxins (GRXs are small glutathione dependent oxidoreductases that belong to the Thioredoxin (TRX superfamily and catalyze the reduction of disulfide bonds of their substrate proteins. Plant GRXs include three different groups based on the motif sequence, namely CPYC, CGFS and CC-type proteins. The rice CC-type proteins, OsGRX6 was identified during the screening for genes whose expression changes depending on the level of available nitrate. Overexpression of OsGRX6 in rice displayed a semi-dwarf phenotype. The OsGRX6 overexpressors contain a higher nitrogen content than the wild type, indicating that OsGRX6 plays a role in homeostatic regulation of nitrogen use. Consistent with this, OsGRX6 overexpressors displayed delayed chlorophyll degradation and senescence compared to the wild type plants. To examine if the growth defect of these transgenic lines attribute to disturbed plant hormone actions, plant hormone levels were measured. The levels of two cytokinins (CKs, 2-isopentenyladenine and trans-zeatin, and gibberellin A1 (GA1 were increased in these lines. We also found that these transgenic lines were less sensitive to exogenously applied GA, suggesting that the increase in GA1 is a result of the feedback regulation. These data suggest that OsGRX6 affects hormone signaling and nitrogen status in rice plants.

  18. A Point Mutation in an F-Box Domain-Containing Protein Is Responsible for Brown Hull Phenotype in Rice

    Directory of Open Access Journals (Sweden)

    Xu Xia

    2016-01-01

    Full Text Available The accumulation of pigments affects the color of rice hulls while only limited information is known about its underlying mechanisms. In the present study, a rice brown hull 6 (bh6 mutant was isolated from an ethane methyl sulfonate (EMS-induced IR64 mutant bank. Brown pigments started to accumulate in bh6 rice hulls after heading and reached a higher level in mature seeds. Some major agronomic traits including panicle length and 1000-grain weight in bh6 were significantly lower than those in its corresponding wild type IR64, while other agronomic traits such as plant height, growth duration and seed-setting rate were largely similar between the two genotypes. The analysis of pigment content showed that the contents of total flavonoids and anthocyanin in bh6 hulls were significantly higher than those in IR64 hulls. Our results showed that the brown hull phenotype in bh6 was controlled by a single recessive gene which locates on the long arm of chromosome 9. Sequencing analysis detected a single base substitution (G/A at position 1013 of the candidate gene (LOC_Os09g12150 encoding an F-box domain-containing protein (FBX310. Functional complementation experiment using the wild type allele can rescue the phenotype in bh6. Thus, we named this mutated gene as OsFBX310bh6, an allele of OsFBX310 functioning as an inhibitor of brown hull. The isolation of OsFBX310bh6 and its wild type allele can provide useful experimental materials and will facilitate the studies on revealing the mechanisms of flavonoid metabolism in monocot plants.

  19. GS6, a member of the GRAS gene family, negatively regulates grain size in rice.

    Science.gov (United States)

    Sun, Lianjun; Li, Xiaojiao; Fu, Yongcai; Zhu, Zuofeng; Tan, Lubin; Liu, Fengxia; Sun, Xianyou; Sun, Xuewen; Sun, Chuanqing

    2013-10-01

    Grain size is an important yield-related trait in rice. Intensive artificial selection for grain size during domestication is evidenced by the larger grains of most of today's cultivars compared with their wild relatives. However, the molecular genetic control of rice grain size is still not well characterized. Here, we report the identification and cloning of Grain Size 6 (GS6), which plays an important role in reducing grain size in rice. A premature stop at the +348 position in the coding sequence (CDS) of GS6 increased grain width and weight significantly. Alignment of the CDS regions of GS6 in 90 rice materials revealed three GS6 alleles. Most japonica varieties (95%) harbor the Type I haplotype, and 62.9% of indica varieties harbor the Type II haplotype. Association analysis revealed that the Type I haplotype tends to increase the width and weight of grains more than either of the Type II or Type III haplotypes. Further investigation of genetic diversity and the evolutionary mechanisms of GS6 showed that the GS6 gene was strongly selected in japonica cultivars. In addition, a "ggc" repeat region identified in the region that encodes the GRAS domain of GS6 played an important historic role in the domestication of grain size in rice. Knowledge of the function of GS6 might aid efforts to elucidate the molecular mechanisms that control grain development and evolution in rice plants, and could facilitate the genetic improvement of rice yield. © 2013 Institute of Botany, Chinese Academy of Sciences.

  20. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  1. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats

    DEFF Research Database (Denmark)

    Schrøder, Malene; Poulsen, Morten; Wilcks, Andrea

    2007-01-01

    An animal model for safety assessment of genetically modified foods was tested as part of the SAFOTEST project. In a 90-day feeding study on Wistar rats, the transgenic KMD1 rice expressing Cry1Ab protein was compared to its non-transgenic parental wild type, Xiushui 11. The KMD1 rice contained 15......, macroscopic and histopathological examinations were performed with only minor changes to report. The aim of the study was to use a known animal model in performance of safety assessment of a GM crop, in this case KMD1 rice. The results show no adverse or toxic effects of KMD1 rice when tested in the design...... used in this 90-day study. Nevertheless the experiences from this study lead to the overall conclusion that safety assessment for unintended effects of a GM crop cannot be done without additional test group(s)....

  3. Ultrastructure of the wild rice Oryza grandiglumis (Gramineae in Costa Rica

    Directory of Open Access Journals (Sweden)

    Ethel Sánchez

    2006-06-01

    Full Text Available Oryza grandiglumis is a wild species of rice endemic to tropical America. This species was first found in 1998 in the wetlands of Caño Negro, located in the northern part of Costa Rica. Twenty five plants of O. grandiglumis were processed for scanning electron microscope. An ultrastructural description of the leaf blade, ligule, auricles, spikelet and caryopsis, with an emphasis on structures of taxonomic value. The leaf blade has a characteristic cuticular wax pattern, composed of dense rod-like structures, and is surrounded by papillae, zipper- like silica cells, abundant bulky prickle trichomes, and hooked trichomes. The blade’s edge has three rows of hooked prickle trichomes of various sizes. The auricles wrapped the culm, with long attenuated trichomes at the edges; the base was surrounded by oblong cells. The ligule is a blunt membrane covered by short prickle trichomes. Spikelet morphology is characteristic of the Poaceae family, but the sterile lemmas were nearly as long as the fertile lemmas, and they have an unique crown-like structure of lignified spines between the rachilla and the fertile lemmas. Comparison with Brazilian specimens of O. grandiglumis revealed little differences in the ultrastructural characteristics. Rev. Biol. Trop. 54(2: 377-385. Epub 2006 Jun 01.El arroz silvestre Oryza grandiglumis es endémico de América. Se localiza en la zona norte de Costa Rica, principalmente en el humedal de Caño Negro y del Río Medio Queso. Es una planta vigorosa y grande. Su nombre deriva del gran tamaño de las lemas estériles (glumas. Presentamos una descripción ultraestructural de la lámina foliar, lígula, aurículas, espiguilla y cariópside, con énfasis en las estructuras de valor taxonómico, usando el microscopio electrónico de barrido. La lámina foliar se caracteriza por presentar un patrón de cera cuticular en forma de densos bastoncillos. Presenta estomas rodeados de papilas, células de sílice en forma crenada

  4. Analysis of rice purchase decision on rice consumer in Bandung city

    Science.gov (United States)

    Kusno, K.; Imannurdin, A.; Syamsiyah, N.; Djuwendah, E.

    2018-03-01

    This study was conducted at three kinds of purchase location which were traditional market, rice kiosk, and supermarket in Bandung City, with survey data of 108 respondents which were selected by systematic random sampling. The aim of this study is to (1) identify consumer characteristics, (2) identify which atribute is considered by consumer in buying rice, and (3) analyze the relationship between purchase decision and income class. Data were analyzed by descriptive analysis and Chi Square test. The results showed most consumers in the traditional market were middle-educated and lower middle-income, at the rice kiosk, the consumer were generally middle-educated and middle-income, and in the supermarkets, the majority were high-educated and upper middle-income consumers. “Kepulenan” be the first priority of most consumers, but for the lower-middle class, the main priority was price. Thus, in case of scarcity and rice price increase, the government should immediately arrange market operations which targeting to lower-middle class consumers. There was a significant relationship between (1) the quality of rice consumed, (2) the frequency of rice purchase per month, and (3) attitudes toward rice price increase; each with the income class. Although the price of rice increase, consumers of middle and upper-middle were remain loyal to the quality of rice they consumed. This indicates rice market in Bandung city is an ideal market for premium rice so that traders and producers are expected to maintain the quality of rice, such as keep using superior seeds and applying good cultivation based on Good Agricultural Practice (GAP) rules.

  5. PhosphoRice: a meta-predictor of rice-specific phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Que Shufu

    2012-02-01

    Full Text Available Abstract Background As a result of the growing body of protein phosphorylation sites data, the number of phosphoprotein databases is constantly increasing, and dozens of tools are available for predicting protein phosphorylation sites to achieve fast automatic results. However, none of the existing tools has been developed to predict protein phosphorylation sites in rice. Results In this paper, the phosphorylation site predictors, NetPhos 2.0, NetPhosK, Kinasephos, Scansite, Disphos and Predphosphos, were integrated to construct meta-predictors of rice-specific phosphorylation sites using several methods, including unweighted voting, unreduced weighted voting, reduced unweighted voting and weighted voting strategies. PhosphoRice, the meta-predictor produced by using weighted voting strategy with parameters selected by restricted grid search and conditional random search, performed the best at predicting phosphorylation sites in rice. Its Matthew's Correlation Coefficient (MCC and Accuracy (ACC reached to 0.474 and 73.8%, respectively. Compared to the best individual element predictor (Disphos_default, PhosphoRice archieved a significant increase in MCC of 0.071 (P Conclusions PhosphoRice is a powerful tool for predicting unidentified phosphorylation sites in rice. Compared to the existing methods, we found that our tool showed greater robustness in ACC and MCC. PhosphoRice is available to the public at http://bioinformatics.fafu.edu.cn/PhosphoRice.

  6. Genome-Wide Analysis of DNA Methylation During Ovule Development of Female-Sterile Rice fsv1

    Directory of Open Access Journals (Sweden)

    Helian Liu

    2017-11-01

    Full Text Available The regulation of female fertility is an important field of rice sexual reproduction research. DNA methylation is an essential epigenetic modification that dynamically regulates gene expression during development processes. However, few reports have described the methylation profiles of female-sterile rice during ovule development. In this study, ovules were continuously acquired from the beginning of megaspore mother cell meiosis until the mature female gametophyte formation period, and global DNA methylation patterns were compared in the ovules of a high-frequency female-sterile line (fsv1 and a wild-type rice line (Gui99 using whole-genome bisulfite sequencing (WGBS. Profiling of the global DNA methylation revealed hypo-methylation, and 3471 significantly differentially methylated regions (DMRs were observed in fsv1 ovules compared with Gui99. Based on functional annotation and Kyoto encyclopedia of genes and genomes (KEGG pathway analysis of differentially methylated genes (DMGs, we observed more DMGs enriched in cellular component, reproduction regulation, metabolic pathway, and other pathways. In particular, many ovule development genes and plant hormone-related genes showed significantly different methylation patterns in the two rice lines, and these differences may provide important clues for revealing the mechanism of female gametophyte abortion.

  7. Rice starch granule amylolysis--differentiating effects of particle size, morphology, thermal properties and crystalline polymorph.

    Science.gov (United States)

    Dhital, Sushil; Butardo, Vito M; Jobling, Stephen A; Gidley, Michael J

    2015-01-22

    The underlying mechanism of amylolysis of rice starch granules was investigated using isolated starch granules from wild-type, as well as SBEIIb mutant and down-regulated lines. Fused granule agglomerates isolated from mutant and transgenic lines were hydrolysed at similar rates by amylases, and had similar crystalline patterns and thermal properties as individual granules. Surface pores, a feature previously only reported for A-polymorphic starch granules, were also observed in B- and C-polymorphic rice starch granules. Although the microscopic patterns of hydrolysis among granules with different crystalline polymorphs were qualitatively similar, the extent and the rate of amylolysis were different, suggesting that B-type crystalline polymorphs are intrinsically more resistant to enzymatic hydrolysis than A-type in rice starch granules. It is proposed that the slightly longer branch lengths of amylopectin which leads to the formation of more stable B-type double helical structures compared to their A-type counterparts is the major parameter, with other factors such as granule size, surface pores and interior channels having secondary roles, in determining the rate of enzymatic hydrolysis of rice starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Use of wild and semi-wild edible plants in nutrition and survival of people in 1430 days of siege of Sarajevo during the war in Bosnia and Herzegovina (1992-1995).

    Science.gov (United States)

    Redzić, Sulejman

    2010-06-01

    This study is a systematic overview of data on use of wild and semi-wild edible plants in nutrition of people in 1430 days of the siege of Sarajevo during aggression on Bosnia and Herzegovina (1992-1995). The author of this study spent all that time in Sarajevo. In 1993, the author prepared a survival program for people that included usage of edible wild plants. In addition, he conducted a detailed survey, including special interviews, on 630 people of average age 37.4 years (55% residential inhabitants, the rest were refuges), 310 males and the rest were females. According to survey, 91 species of mostly wild plants and three species of fungus were used: Küchneromyces mutabilis, Armillariella mellea and Coprinus comatus. Wild vegetables included 49 species, spices 24, wild fruits 16, and 2 species of bread-plants. They belong to 26 plants communities, and grew on 24 different habitats (urban surfaces, river coasts, low forest and scrubs, meadows and rocky grasslands). The 156 plant parts (leaves, young branches, fruit, flower, seed, root and rhizome) from 91 plant species were used. Vegetables were dominant category of use (soups, pottages, sauces) with 80 ways of preparation (30.53%), then salads 41 (15.65%), spices 39 (14.89%), different beverages 38 (14.50%), sweets 21 (8.02%), nutritive teas 15 (5.73%), and other preparations. In order to improve conventional food (war pasta, rice, lentils, old beans) people used spices made from different wild plants.

  9. Rice microstructure

    Science.gov (United States)

    An understanding of plant structure is desirable to obtain a clear idea of the overall impact of a crop. A mature rice plant consists of leafy components (left in the field post-harvest) and paddy rice (collected). The rice plant is supported by a hollow stem (culm) with leaf sheaths attached to nod...

  10. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

    Science.gov (United States)

    Ma, Xiaoding; Ma, Jian; Zhai, Honghong; Xin, Peiyong; Chu, Jinfang; Qiao, Yongli; Han, Longzhi

    2015-01-01

    CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483) exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

  11. CHR729 Is a CHD3 Protein That Controls Seedling Development in Rice.

    Directory of Open Access Journals (Sweden)

    Xiaoding Ma

    Full Text Available CHD3 is one of the chromatin-remodeling factors that contribute to controlling the expression of genes associated with plant development. Loss-of-function mutants display morphological and growth defects. However, the molecular mechanisms underlying CHD3 regulation of plant development remain unclear. In this study, a rice CHD3 protein, CHR729, was identified. The corresponding mutant line (t483 exhibited late seed germination, low germination rate, dwarfism, low tiller number, root growth inhibition, adaxial albino leaves, and short and narrow leaves. CHR729 encoded a nuclear protein and was expressed in almost all organs. RNA-sequencing analysis showed that several plant hormone-related genes were up- or down-regulated in t483 compared to wild type. In particular, expression of the gibberellin synthetase gibberellin 20 oxidase 4 gene was elevated in the mutant. Endogenous gibberellin assays demonstrated that the content of bioactive GA3 was reduced in t483 compared to wild type. Moreover, the seedling dwarfism, late seed germination, and short root length phenotypes of t483 were partially rescued by treatment with exogenous GA3. These results suggest that the rice CHD3 protein CHR729 plays an important role in many aspects of seedling development and controls this development via the gibberellin pathway.

  12. [Nitrogen cycling in rice-duck mutual ecosystem during double cropping rice growth season].

    Science.gov (United States)

    Zhang, Fan; Chen, Yuan-Quan; Sui, Peng; Gao, Wang-Sheng

    2012-01-01

    Raising duck in paddy rice field is an evolution of Chinese traditional agriculture. In May-October 2010, a field experiment was conducted in a double cropping rice region of Hunan Province, South-central China to study the nitrogen (N) cycling in rice-duck mutual ecosystem during early rice and late rice growth periods, taking a conventional paddy rice field as the control. Input-output analysis method was adopted. The N output in the early rice-duck mutual ecosystem was 239.5 kg x hm(-2), in which, 12.77 kg x hm(-2) were from ducks, and the N output in the late rice-duck mutual ecosystem was 338.7 kg x hm(-2), in which, 23.35 kg x hm(-2) were from ducks. At the present N input level, there existed soil N deficit during the growth seasons of both early rice and late rice. The N input from duck sub-system was mainly from the feed N, and the cycling rate of the duck feces N recycled within the system was 2.5% during early rice growth season and 3.5% during late rice growth season. After late rice harvested, the soil N sequestration was 178.6 kg x hm(-2).

  13. Pelletizing of rice straws: A potential solid fuel from agricultural residues

    International Nuclear Information System (INIS)

    Puad, E.; Wan Asma, I; Shaharuddin, H.; Mahanim, S.; Rafidah, J.

    2010-01-01

    Full text: Rice straw is the dry stalks of rice plants, after the grain and chaff have been removed. More than 1 million tonnes of rice straw are produced in MADA in the northern region of Peninsular Malaysia annually. Burning in the open air is the common technique of disposal that contribute to air pollution. In this paper, a technique to convert these residues into solid fuel through pelletizing is presented. The pellets are manufactured from rice straw and sawdust in a disc pelletizer. The pellet properties are quite good with good resistance to mechanical disintegration. The pellets have densities between 1000 and 1200 kg/ m 3 . Overall, converting rice straw into pellets has increased its energy and reduced moisture content to a minimum of 8 % and 30 % respectively. The gross calorific value is about 15.6 MJ/ kg which is lower to sawdust pellet. The garnering of knowledge in the pelletization process provides a path to increase the use of this resource. Rice straw pellets can become an important renewable energy source in the future. (author)

  14. The role of Bh4 in parallel evolution of hull colour in domesticated and weedy rice.

    Science.gov (United States)

    Vigueira, C C; Li, W; Olsen, K M

    2013-08-01

    The two independent domestication events in the genus Oryza that led to African and Asian rice offer an extremely useful system for studying the genetic basis of parallel evolution. This system is also characterized by parallel de-domestication events, with two genetically distinct weedy rice biotypes in the US derived from the Asian domesticate. One important trait that has been altered by rice domestication and de-domestication is hull colour. The wild progenitors of the two cultivated rice species have predominantly black-coloured hulls, as does one of the two U.S. weed biotypes; both cultivated species and one of the US weedy biotypes are characterized by straw-coloured hulls. Using Black hull 4 (Bh4) as a hull colour candidate gene, we examined DNA sequence variation at this locus to study the parallel evolution of hull colour variation in the domesticated and weedy rice system. We find that independent Bh4-coding mutations have arisen in African and Asian rice that are correlated with the straw hull phenotype, suggesting that the same gene is responsible for parallel trait evolution. For the U.S. weeds, Bh4 haplotype sequences support current hypotheses on the phylogenetic relationship between the two biotypes and domesticated Asian rice; straw hull weeds are most similar to indica crops, and black hull weeds are most similar to aus crops. Tests for selection indicate that Asian crops and straw hull weeds deviate from neutrality at this gene, suggesting possible selection on Bh4 during both rice domestication and de-domestication. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  15. FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice.

    Directory of Open Access Journals (Sweden)

    Takuya Suzaki

    2009-10-01

    Full Text Available CLAVATA signaling restricts stem cell identity in the shoot apical meristem (SAM in Arabidopsis thaliana. In rice (Oryza sativa, FLORAL ORGAN NUMBER2 (FON2, closely related to CLV3, is involved as a signaling molecule in a similar pathway to negatively regulate stem cell proliferation in the floral meristem (FM. Here we show that the FON2 SPARE1 (FOS1 gene encoding a CLE protein functions along with FON2 in maintenance of the FM. In addition, FOS1 appears to be involved in maintenance of the SAM in the vegetative phase, because constitutive expression of FOS1 caused termination of the vegetative SAM. Genetic analysis revealed that FOS1 does not need FON1, the putative receptor of FON2, for its action, suggesting that FOS1 and FON2 may function in meristem maintenance as signaling molecules in independent pathways. Initially, we identified FOS1 as a suppressor that originates from O. sativa indica and suppresses the fon2 mutation in O. sativa japonica. FOS1 function in japonica appears to be compromised by a functional nucleotide polymorphism (FNP at the putative processing site of the signal peptide. Sequence comparison of FOS1 in about 150 domesticated rice and wild rice species indicates that this FNP is present only in japonica, suggesting that redundant regulation by FOS1 and FON2 is commonplace in species in the Oryza genus. Distribution of the FNP also suggests that this mutation may have occurred during the divergence of japonica from its wild ancestor. Stem cell maintenance may be regulated by at least three negative pathways in rice, and each pathway may contribute differently to this regulation depending on the type of the meristem. This situation contrasts with that in Arabidopsis, where CLV signaling is the major single pathway in all meristems.

  16. Different Phosphorus Supplies Altered the Accumulations and Quantitative Distributions of Phytic Acid, Zinc, and Iron in Rice (Oryza sativa L.) Grains.

    Science.gov (United States)

    Su, Da; Zhou, Lujian; Zhao, Qian; Pan, Gang; Cheng, Fangmin

    2018-02-21

    Development of rice cultivars with low phytic acid (lpa) is considered as a primary strategy for biofortification of zinc (Zn) and iron (Fe). Here, two rice genotypes (XS110 and its lpa mutant) were used to investigate the effect of P supplies on accumulations and distributions of PA, Zn, and Fe in rice grains by using hydroponics and detached panicle culture system. Results showed that higher P level increased grain PA concentration on dry matter basis (g/kg), but it markedly decreased PA accumulation on per grain basis (mg/grain). Meanwhile, more P supply reduced the amounts and bioavailabilities of Zn and Fe both in milled grains and in brown grains. Comparatively, lpa mutant was more susceptive to exogenous P supply than its wild type. Hence, the appropriate P fertilizer application should be highlighted in order to increase grain microelement (Zn and Fe) contents and improve nutritional quality in rice grains.

  17. Physicochemical and antioxidative properties of black, brown and red rice varieties of northern Thailand

    Directory of Open Access Journals (Sweden)

    Noppawat Pengkumsri

    2015-06-01

    Full Text Available Rice, the seed of Oryza species, is the major cereal crop in most of the developing countries. Nearly 95% of global rice production is done in Asian countries, and about half of the world’s population consumes it. Some speciality rices are not commonly consumed. Colored rice is one of such variety. In these varieties, high amounts of anthocyanin pigment are deposited in the rice coat to form its black (also known as purple, brown and red colors. Minimum studies are there to explain the properties of these rice varieties of Thailand. Thus, the current study was aimed to assess the physicochemical and antioxidative properties of three rice varieties (Chiang Mai Black rice, Mali Red rice and Suphanburi-1 Brown rice of different cultivars of northern Thailand. Rice bran extracts of these three cultivars were prepared with different solvents (polar and non-polar for the evaluation of total phytochemical content and anti-oxidant free-radical-scavenging properties. Chiang Mai Black rice contained higher concentration of phenolic acid, flavonoids, and anthocyanins (Cyanidin 3-glucoside, peonidin 3-glucoside, cyanidin chloride. Chiang Mai Black rice is richer in free-radical-scavenging compounds and activities than the other tested varieties. Polar extractions of rice bran are high in anti-oxidative compounds and activities than non-polar extractions.

  18. Effects of Extraction Methods on Phytochemicals of Rice Bran Oils Produced from Colored Rice.

    Science.gov (United States)

    Mingyai, Sukanya; Srikaeo, Khongsak; Kettawan, Aikkarach; Singanusong, Riantong; Nakagawa, Kiyotaka; Kimura, Fumiko; Ito, Junya

    2018-02-01

    Rice bran oil (RBO) especially from colored rice is rich in phytochemicals and has become popular in food, cosmetic, nutraceutical and pharmaceutical applications owing to its offering health benefits. This study determined the contents of phytochemicals including oryzanols, phytosterols, tocopherols (Toc) and tocotrienols (T3) in RBOs extracted using different methods namely cold-press extraction (CPE), solvent extraction (SE) and supercritical CO 2 extraction (SC-CO 2 ). Two colored rice, Red Jasmine rice (RJM, red rice) and Hom-nin rice (HN, black rice), were studied in comparison with the popular Thai fragrant rice Khao Dawk Mali 105 (KDML 105, white rice). RBOs were found to be the rich source of oryzanols, phytosterols, Toc and T3. Rice varieties had a greater effect on the phytochemicals concentrations than extraction methods. HN rice showed the significantly highest concentration of all phytochemicals, followed by RJM and KDML 105 rice, indicating that colored rice contained high concentration of phytochemicals in the oil than non-colored rice. The RBO samples extracted by the CPE method had a greater concentration of the phytochemicals than those extracted by the SC-CO 2 and SE methods, respectively. In terms of phytochemical contents, HN rice extracted using CPE method was found to be the best.

  19. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants.

    Science.gov (United States)

    Bao, Zhihua; Okubo, Takashi; Kubota, Kengo; Kasahara, Yasuhiro; Tsurumaru, Hirohito; Anda, Mizue; Ikeda, Seishi; Minamisawa, Kiwamu

    2014-08-01

    In a previous study by our group, CH4 oxidation and N2 fixation were simultaneously activated in the roots of wild-type rice plants in a paddy field with no N input; both processes are likely controlled by a rice gene for microbial symbiosis. The present study examined which microorganisms in rice roots were responsible for CH4 oxidation and N2 fixation under the field conditions. Metaproteomic analysis of root-associated bacteria from field-grown rice (Oryza sativa Nipponbare) revealed that nitrogenase complex-containing nitrogenase reductase (NifH) and the alpha subunit (NifD) and beta subunit (NifK) of dinitrogenase were mainly derived from type II methanotrophic bacteria of the family Methylocystaceae, including Methylosinus spp. Minor nitrogenase proteins such as Methylocella, Bradyrhizobium, Rhodopseudomonas, and Anaeromyxobacter were also detected. Methane monooxygenase proteins (PmoCBA and MmoXYZCBG) were detected in the same bacterial group of the Methylocystaceae. Because these results indicated that Methylocystaceae members mediate both CH4 oxidation and N2 fixation, we examined their localization in rice tissues by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The methanotrophs were localized around the epidermal cells and vascular cylinder in the root tissues of the field-grown rice plants. Our metaproteomics and CARD-FISH results suggest that CH4 oxidation and N2 fixation are performed mainly by type II methanotrophs of the Methylocystaceae, including Methylosinus spp., inhabiting the vascular bundles and epidermal cells of rice roots. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Golden Rice is an effective source of vitamin A1234

    Science.gov (United States)

    Qin, Jian; Dolnikowski, Gregory G; Russell, Robert M; Grusak, Michael A

    2009-01-01

    Background: Genetically engineered “Golden Rice” contains up to 35 μg β-carotene per gram of rice. It is important to determine the vitamin A equivalency of Golden Rice β-carotene to project the potential effect of this biofortified grain in rice-consuming populations that commonly exhibit low vitamin A status. Objective: The objective was to determine the vitamin A value of intrinsically labeled dietary Golden Rice in humans. Design: Golden Rice plants were grown hydroponically with heavy water (deuterium oxide) to generate deuterium-labeled [2H]β-carotene in the rice grains. Golden Rice servings of 65–98 g (130–200 g cooked rice) containing 0.99–1.53 mg β-carotene were fed to 5 healthy adult volunteers (3 women and 2 men) with 10 g butter. A reference dose of [13C10]retinyl acetate (0.4–1.0 mg) in oil was given to each volunteer 1 wk before ingestion of the Golden Rice dose. Blood samples were collected over 36 d. Results: Our results showed that the mean (±SD) area under the curve for the total serum response to [2H]retinol was 39.9 ± 20.7 μg·d after the Golden Rice dose. Compared with that of the [13C10]retinyl acetate reference dose (84.7 ± 34.6 μg·d), Golden Rice β-carotene provided 0.24–0.94 mg retinol. Thus, the conversion factor of Golden Rice β-carotene to retinol is 3.8 ± 1.7 to 1 with a range of 1.9–6.4 to 1 by weight, or 2.0 ± 0.9 to 1 with a range of 1.0–3.4 to 1 by moles. Conclusion: β-Carotene derived from Golden Rice is effectively converted to vitamin A in humans. This trial was registered at clinicaltrials.gov as NCT00680355. PMID:19369372

  1. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice.

    Science.gov (United States)

    Yaish, Mahmoud W; El-Kereamy, Ashraf; Zhu, Tong; Beatty, Perrin H; Good, Allen G; Bi, Yong-Mei; Rothstein, Steven J

    2010-09-09

    The interaction between phytohormones is an important mechanism which controls growth and developmental processes in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2) domain leads to phenotypic changes in rice. Overexpression of OsAP2-39 leads to a reduction in yield by decreasing the biomass and the number of seeds in the transgenic rice lines. Global transcriptome analysis of the OsAP2-39 overexpression transgenic rice revealed the upregulation of a key abscisic acid (ABA) biosynthetic gene OsNCED-I which codes for 9-cis-epoxycarotenoid dioxygenase and leads to an increase in the endogenous ABA level. In addition to OsNCED-1, the gene expression analysis revealed the upregulation of a gene that codes for the Elongation of Upper most Internode (EUI) protein, an enzyme that catalyzes 16α, 17-epoxidation of non-13-hydroxylated GAs, which has been shown to deactivate gibberellins (GAs) in rice. The exogenous application of GA restores the wild-type phenotype in the transgenic line and ABA application induces the expression of EUI and suppresses the expression of OsAP2-39 in the wild-type line. These observations clarify the antagonistic relationship between ABA and GA and illustrate a mechanism that leads to homeostasis of these hormones. In vivo and in vitro analysis showed that the expression of both OsNCED-1 and EUI are directly controlled by OsAP2-39. Together, these results reveal a novel mechanism for the control of the ABA/GA balance in rice which is regulated by OsAP2-39 that in turn regulates plant growth and seed production.

  2. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice.

    Directory of Open Access Journals (Sweden)

    Mahmoud W Yaish

    2010-09-01

    Full Text Available The interaction between phytohormones is an important mechanism which controls growth and developmental processes in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2 domain leads to phenotypic changes in rice. Overexpression of OsAP2-39 leads to a reduction in yield by decreasing the biomass and the number of seeds in the transgenic rice lines. Global transcriptome analysis of the OsAP2-39 overexpression transgenic rice revealed the upregulation of a key abscisic acid (ABA biosynthetic gene OsNCED-I which codes for 9-cis-epoxycarotenoid dioxygenase and leads to an increase in the endogenous ABA level. In addition to OsNCED-1, the gene expression analysis revealed the upregulation of a gene that codes for the Elongation of Upper most Internode (EUI protein, an enzyme that catalyzes 16α, 17-epoxidation of non-13-hydroxylated GAs, which has been shown to deactivate gibberellins (GAs in rice. The exogenous application of GA restores the wild-type phenotype in the transgenic line and ABA application induces the expression of EUI and suppresses the expression of OsAP2-39 in the wild-type line. These observations clarify the antagonistic relationship between ABA and GA and illustrate a mechanism that leads to homeostasis of these hormones. In vivo and in vitro analysis showed that the expression of both OsNCED-1 and EUI are directly controlled by OsAP2-39. Together, these results reveal a novel mechanism for the control of the ABA/GA balance in rice which is regulated by OsAP2-39 that in turn regulates plant growth and seed production.

  3. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation

    Science.gov (United States)

    Dolezal, Adam G.; Hendrix, Stephen D.; Scavo, Nicole A.; Carrillo-Tripp, Jimena; Harris, Mary A.; Wheelock, M. Joseph; O’Neal, Matthew E.; Toth, Amy L.

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal—similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages. PMID:27832169

  4. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation.

    Science.gov (United States)

    Dolezal, Adam G; Hendrix, Stephen D; Scavo, Nicole A; Carrillo-Tripp, Jimena; Harris, Mary A; Wheelock, M Joseph; O'Neal, Matthew E; Toth, Amy L

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal-similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages.

  5. The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice.

    Science.gov (United States)

    Peng, Xiaojue; Wang, Kun; Hu, Chaofeng; Zhu, Youlin; Wang, Ting; Yang, Jing; Tong, Jiping; Li, Shaoqing; Zhu, Yingguo

    2010-06-24

    Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames. The mitochondrial gene orfH79 is a candidate gene for causing the CMS trait in CMS-Honglian (CMS-HL) rice. However, whether the orfH79 expression can actually induce CMS in rice remains unclear. Western blot analysis revealed that the ORFH79 protein is mainly present in mitochondria of CMS-HL rice and is absent in the fertile line. To investigate the function of ORFH79 protein in mitochondria, this gene was fused to a mitochondrial transit peptide sequence and used to transform wild type rice, where its expression induced the gametophytic male sterile phenotype. In addition, excessive accumulation of reactive oxygen species (ROS) in the microspore, a reduced ATP/ADP ratio, decreased mitochondrial membrane potential and a lower respiration rate in the transgenic plants were found to be similar to those in CMS-HL rice. Moreover, retarded growth of primary and lateral roots accompanied by abnormal accumulation of ROS in the root tip was observed in both transgenic rice and CMS-HL rice (YTA). These results suggest that the expression of orfH79 in mitochondria impairs mitochondrial function, which affects the development of both male gametophytes and the roots of CMS-HL rice.

  6. Glufosinate ammonium-induced pathogen inhibition and defense responses culminate in disease protection in bar-transgenic rice.

    Science.gov (United States)

    Ahn, Il-Pyung

    2008-01-01

    Glufosinate ammonium diminished developments of rice (Oryza sativa) blast and brown leaf spot in 35S:bar-transgenic rice. Pre- and postinoculation treatments of this herbicide reduced disease development. Glufosinate ammonium specifically impeded appressorium formation of the pathogens Magnaporthe grisea and Cochliobolus miyabeanus on hydrophobic surface and on transgenic rice. In contrast, conidial germination remained unaffected. Glufosinate ammonium diminished mycelial growth of two pathogens; however, this inhibitory effect was attenuated in malnutrition conditions. Glufosinate ammonium caused slight chlorosis and diminished chlorophyll content; however, these alterations were almost completely restored in transgenic rice within 7 d. Glufosinate ammonium triggered transcriptions of PATHOGENESIS-RELATED (PR) genes and hydrogen peroxide accumulation in transgenic rice and PR1 transcription in Arabidopsis (Arabidopsis thaliana) wild-type ecotype Columbia harboring 35S:bar construct. All transgenic Arabidopsis showed robust hydrogen peroxide accumulation by glufosinate ammonium. This herbicide also induced PR1 transcription in etr1 and jar1 expressing bar; however, no expression was observed in NahG and npr1. Fungal infection did not alter transcriptions of PR genes and hydrogen peroxide accumulation induced by glufosinate ammonium. Infiltration of glufosinate ammonium did not affect appressorium formation of M. grisea in vivo but inhibited blast disease development. Hydrogen peroxide scavengers nullified blast protection and transcriptions of PR genes by glufosinate ammonium; however, they did not affect brown leaf spot progression. In sum, both direct inhibition of pathogen infection and activation of defense systems were responsible for disease protection in bar-transgenic rice.

  7. Fipronil application on rice paddy fields reduces densities of common skimmer and scarlet skimmer

    Science.gov (United States)

    Kasai, Atsushi; Hayashi, Takehiko I.; Ohnishi, Hitoshi; Suzuki, Kazutaka; Hayasaka, Daisuke; Goka, Koichi

    2016-01-01

    Several reports suggested that rice seedling nursery-box application of some systemic insecticides (neonicotinoids and fipronil) is the cause of the decline in dragonfly species noted since the 1990s in Japan. We conducted paddy mesocosm experiments to investigate the effect of the systemic insecticides clothianidin, fipronil and chlorantraniliprole on rice paddy field biological communities. Concentrations of all insecticides in the paddy water were reduced to the limit of detection within 3 months after application. However, residuals of these insecticides in the paddy soil were detected throughout the experimental period. Plankton species were affected by clothianidin and chlorantraniliprole right after the applications, but they recovered after the concentrations decreased. On the other hand, the effects of fipronil treatment, especially on Odonata, were larger than those of any other treatment. The number of adult dragonflies completing eclosion was severely decreased in the fipronil treatment. These results suggest that the accumulation of these insecticides in paddy soil reduces biodiversity by eliminating dragonfly nymphs, which occupy a high trophic level in paddy fields. PMID:26979488

  8. Short communication. A spontaneous mutant of L-202 rice

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Yzaguire, A.; Padrones, T.

    2009-07-01

    A new spontaneous phenotype of the rice cultivar L-202 was found. Mendelian analysis indicates that it is a monogenic, recessive mutant. Its distinguishing features are: dark blue-green colour, short and narrow leaves, high tillering and relatively short height. The objectives of this study were: to characterize it, to determine if it is heritable and if so, its genetic basis. Its distinguishing features are: dark blue-green colour, short and narrow leaves, high tillering and relatively short height. Selfing the new phenotype resulted in a uniform progeny, with the traits of the parent plant (wild type). Crossing the new phenotype with the normal L-202 cultivar resulted in a uniform F1 hybrid generation, with the wild type. The F2 generation showed a mendelian segregation which did not depart significantly from three normal plants : one new phenotype. It is concluded that it is a monogenic, recessive mutant. (Author) 3 refs.

  9. Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings.

    Directory of Open Access Journals (Sweden)

    Chunchao Wang

    Full Text Available Rice SPX domain gene, OsSPX1, plays an important role in the phosphate (Pi signaling network. Our previous work showed that constitutive overexpression of OsSPX1 in tobacco and Arabidopsis plants improved cold tolerance while also decreasing total leaf Pi. In the present study, we generated rice antisense and sense transgenic lines of OsSPX1 and found that down-regulation of OsSPX1 caused high sensitivity to cold and oxidative stresses in rice seedlings. Compared to wild-type and OsSPX1-sense transgenic lines, more hydrogen peroxide accumulated in seedling leaves of OsSPX1-antisense transgenic lines for controls, cold and methyl viologen (MV treatments. Glutathione as a ROS scavenger could protect the antisense transgenic lines from cold and MV stress. Rice whole genome GeneChip analysis showed that some oxidative-stress marker genes (e.g. glutathione S-transferase and P450s and Pi-signaling pathway related genes (e.g. OsPHO2 were significantly down-regulated by the antisense of OsSPX1. The microarray results were validated by real-time RT-PCR. Our study indicated that OsSPX1 may be involved in cross-talks between oxidative stress, cold stress and phosphate homeostasis in rice seedling leaves.

  10. Ethnobotanical study of wild food plants used by rice farmers in Northeast Thailand

    NARCIS (Netherlands)

    Cruz Garcia, G.S.

    2012-01-01

    Wild food plants have been recognized as an essential component of the world’s food basket. Farmer’s gathering locations are increasingly from anthropogenic ecosystems given the decline of pristine environments. However, there are neither quantitative studies on the ecological characterization

  11. DETERMINATION OF SPATIAL INTEGRATION AND SUBSTITUTION OF FOREIGN RICE FOR LOCAL RICE IN GHANA

    Directory of Open Access Journals (Sweden)

    Philip Kofi ADOM

    2014-11-01

    Full Text Available This study tested for spatial integration in the rice market and the substitution of imported rice for local rice in Ghana. It is established that the markets for domestic imported rice are well-integrated, but not complete. The imperfect spatial integration of domestic foreign rice markets implies that the market provides opportunities for arbitrage. Price leadership roles are found to be determined by the kind of sub-inter-regional-trade network defined. However, in all, the Accra market emerged as a dominant market leader in the domestic foreign rice market. There is evidence of significant regional substitution of foreign rice for local rice in the long run, but the result is mixed in the short run. The result that local rice is not a perfect substitute for imported rice implies that price disincentive measures such as increasing the import tariffs on foreign rice will only produce a mild effect on increasing the producer price faced by local rice farmers, but aggravate the burden on households’ budget.

  12. [Effects of fish on field resource utilization and rice growth in rice-fish coculture].

    Science.gov (United States)

    Zhang, Jian; Hu, Liang Liang; Ren, Wei Zheng; Guo, Liang; Wu, Min Fang; Tang, Jian Jun; Chen, Xin

    2017-01-01

    Rice field can provide habitat for fish and other aquatic animals. Rice-fish coculture can increase rice yield and simultaneously reduce the use of chemicals through reducing rice pest occurrence and nutrient complementary use. However, how fish uses food sources (e.g. phytoplankton, weeds, duckweed, macro-algal and snail) from rice field, and whether the nutrients releasing from those food sources due to fish transforming can improve rice growth are still unknown. Here, we conducted two field experiments to address these questions. One was to investigate the pattern of fish activity in the field using the method of video recording. The other was to examine the utilization of field resources by fish using stable isotope technology. Rice growth and rice yield were also exa-mined. Results showed that fish tended to be more active and significantly expanded the activity range in the rice-fish coculture compared to fish monoculture (fish not living together with rice plants). The contributions of 3 potential aquatic organisms (duckweed, phytoplankton and snail) to fish dietary were 22.7%, 34.8% and 30.0% respectively under rice-fish coculture without feed. Under the treatment with feed, however, the contributions of these 3 aquatic organisms to the fish die-tary were 8.9%, 5.9% and 1.6% respectively. The feed contribution was 71.0%. Rice-fish coculture significantly increased the nitrogen concentration in rice leaves, prolonged tillering stage by 10-12 days and increased rice spike rate and yield. The results suggested that raising fish in paddy field may transform the nutrients contained in field resources to bioavailable for rice plants through fish feeding activity, which can improve rice growth and rice yield.

  13. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress

    KAUST Repository

    Pires, Inês S.

    2015-07-22

    Increase in soil salinity levels is becoming a major cause of crop yield losses worldwide. Rice (Oryza sativa) is the most salt-sensitive cereal crop, and many studies have focused on rice salinity tolerance, but a global understanding of this crop\\'s response to salinity is still lacking. We systematically analyzed phenotypic data previously collected for 56 rice genotypes to assess the extent to which rice uses three known salinity tolerance mechanisms: shoot-ion independent tolerance (or osmotic tolerance), ion exclusion, and tissue tolerance. In general, our analyses of different phenotypic traits agree with results of previous rice salinity tolerance studies. However, we also established that the three salinity tolerance mechanisms mentioned earlier appear among rice genotypes and that none of them is predominant. Against the pervasive view in the literature that the K+/Na+ ratio is the most important trait in salinity tolerance, we found that the K+ concentration was not significantly affected by salt stress in rice, which puts in question the importance of K+/Na+ when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use our results together with an extensive literature research to highlight some issues commonly observed in salinity stress tolerance studies and to propose solutions for future experiments.

  14. Toxicity of Pesticide Tank Mixtures from Rice Crops Against Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    Science.gov (United States)

    de B Pazini, J; Pasini, R A; Rakes, M; de Armas, F S; Seidel, E J; da S Martins, J F; Grützmacher, A D

    2017-08-01

    The use of insecticides, herbicides, and fungicides commonly occurs in mixtures in tanks in order to control phytosanitary problems in crops. However, there is no information regarding the effects of these mixtures on non-target organisms associated to the rice agroecosystem. The aim of this study was to know the toxicity of pesticide tank mixtures from rice crops against Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Based on the methods adapted from the International Organisation for Biological and Integrated Control of Noxious Animals and Plants (IOBC), adults of T. podisi were exposed to residues of insecticides, herbicides, and fungicides, individually or in mixture commonly used by growers, in laboratory and on rice plants in a greenhouse. The mixture between fungicides tebuconazole, triclyclazole, and azoxystrobin and the mixture between herbicides cyhalofop-butyl, imazethapyr, imazapyr/imazapic, and penoxsulam are harmless to T. podisi and can be used in irrigated rice crops without harming the natural biological control. The insecticides cypermethin, thiamethoxam, and bifenthrin/carbosulfan increase the toxicity of the mixtures in tank with herbicides and fungicides, being more toxic to T. podisi and less preferred for use in phytosanitary treatments in the rice crop protection.

  15. Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats

    OpenAIRE

    Imam, Mustapha Umar; Musa, Siti Nor Asma; Azmi, Nur Hanisah; Ismail, Maznah

    2012-01-01

    Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR). Though brown rice (BR) and germinated brown rice (GBR) have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations inst...

  16. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions.

    Science.gov (United States)

    Park, Seong-Im; Kim, Young-Saeng; Kim, Jin-Ju; Mok, Ji-Eun; Kim, Yul-Ho; Park, Hyang-Mi; Kim, Il-Sup; Yoon, Ho-Sung

    2017-08-01

    Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields. Copyright © 2017. Published by Elsevier GmbH.

  17. INE: a rice genome database with an integrated map view.

    Science.gov (United States)

    Sakata, K; Antonio, B A; Mukai, Y; Nagasaki, H; Sakai, Y; Makino, K; Sasaki, T

    2000-01-01

    The Rice Genome Research Program (RGP) launched a large-scale rice genome sequencing in 1998 aimed at decoding all genetic information in rice. A new genome database called INE (INtegrated rice genome Explorer) has been developed in order to integrate all the genomic information that has been accumulated so far and to correlate these data with the genome sequence. A web interface based on Java applet provides a rapid viewing capability in the database. The first operational version of the database has been completed which includes a genetic map, a physical map using YAC (Yeast Artificial Chromosome) clones and PAC (P1-derived Artificial Chromosome) contigs. These maps are displayed graphically so that the positional relationships among the mapped markers on each chromosome can be easily resolved. INE incorporates the sequences and annotations of the PAC contig. A site on low quality information ensures that all submitted sequence data comply with the standard for accuracy. As a repository of rice genome sequence, INE will also serve as a common database of all sequence data obtained by collaborating members of the International Rice Genome Sequencing Project (IRGSP). The database can be accessed at http://www. dna.affrc.go.jp:82/giot/INE. html or its mirror site at http://www.staff.or.jp/giot/INE.html

  18. Ethanol production from rice on radioactively contaminated field toward sustainable rice farming

    International Nuclear Information System (INIS)

    Yokoyama, Shinya; Izumi, Bintaro; Oki, Kazuo

    2011-01-01

    Radioactive species such as 137 Cs were discharged from Fukushima Daiichi Nuclear Power Plant which was severely damaged by the enormous earthquake and tsunami. Cropland has been radioactively contaminated by 137 Cs etc. and it seems impossible to plant rice due to the non-suitability for food. According to the reports, 137 Cs transferred into the rice from soil is less than 1% on the average. Therefore, it is expected that the concentration of 137 Cs in bioethanol will be well below the tentative restriction value even if bioethanol could be produced from the rice. It is proposed that the rice field should be filled with water to avoid the flow of runoff contaminated by radioactive cesium compounds because they are insoluble in aqueous phase and that bioethanol should be produced from the rice in order to maintain the multifunction of rice field and to continue the agriculture. If rice farming is halted and neglected, agricultural function of rice field as well as local community will be permanently destroyed. (author)

  19. Prevalence of Rice Yellow Mottle Virus (RYMV) on Rice Plants ...

    African Journals Online (AJOL)

    Abstract. Incidence of Rice yellow mottle virus (RYMV) on rice plants (ofada) grown in two local government areas (LGAs) of Ogun State had been evaluated during a two year field survey. Six month old rice plants were observed for symptom expression and leaf samples collected for serological indexing. Of the 60 leaf ...

  20. Life cycle GHG analysis of rice straw bio-DME production and application in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.; Sagisaka, Masayuki; Yamaguchi, Katsunobu

    2013-01-01

    Highlights: • Life cycle GHG emissions of rice straw bio-DME production in Thailand are assessed. • Bio-DME replaces diesel in engines and supplements LPG for household application. • Rice straw bio-DME in both cases of substitution helps reduce GHG emissions. - Abstract: Thailand is one of the leading countries in rice production and export; an abundance of rice straw, therefore, is left in the field nowadays and is commonly burnt to facilitate quick planting of the next crop. The study assesses the life cycle greenhouse gas (GHG) emissions of using rice straw for bio-DME production in Thailand. The analysis is divided into two scenarios of rice straw bio-DME utilization i.e. used as automotive fuel for diesel engines and used as LPG supplement for household application. The results reveal that that utilization of rice straw for bio-DME in the two scenarios could help reduce GHG emissions by around 14–70% and 2–66%, respectively as compared to the diesel fuel and LPG substituted. In case rice straw is considered as a by-product of rice cultivation, the cultivation of rice straw will be the major source of GHG emission contributing around 50% of the total GHG emissions of rice straw bio-DME production. Several factors that can affect the GHG performance of rice straw bio-DME production are discussed along with measures to enhance GHG performance of rice straw bio-DME production and utilization

  1. Effects of P-efficient Transgenic Rice OsPT4 on Inorganic Phosphorus Fractions in Red Soil

    Directory of Open Access Journals (Sweden)

    WEI Lin-lin

    2017-08-01

    Full Text Available In a rhizobox experiment with phosphorus(P fertilizer application and P-deficiency, planting wild-type rice(Nipp, P-efficient mutant rice(PHO2, P-efficient transgenic rice(OsPT4 were chosen to evaluate effects of phosphorus efficient transgenic rice on inorganic phosphorus in the rhizosphere and non-rhizosphere soil. The obtained results were summarized as follows:(1Significant higer dry weight and P accumulation were observed in OsPT4 and PHO2 than in Nipp, but lower total P and inorganic phosphorus observed in OsPT4 and PHO2 than in Nipp;(2The concentrations of inorganic phosphorus fractions in the rhizosphere and non-rhizosphere soil were sorted as follows:O-P > Fe-P > Al-P > Ca-P, and the order of inorganic phosphorus fractions adapted to three rice materials;(3When added phosphorus fertilizer, the concents of rhizospheric Al-P, Fe-P and non-rhizospheric Ca-P in three rice materials had no significant difference. The concents of rhizospheric soil O-P and Ca-P in OsPT4 and PHO2 were significantly inferior to Nipp, and their concents of non-rhizospheric soil Al-P, Fe-P and O-P were significantly lower than Nipp. When added no phosphorus fertilizer, the concents of rhizospheric Al-P, O-P, Ca-P and non-rhizosphere Al-P, Ca-P in three rice materials had no significant difference, and the concents of rhizosphere Fe-P and non-rhizosphere soil Fe-P, O-P in OsPT4 and PHO2 were significantly lower than Nipp, but rhizosphere Ca-P was significantly higher than Nipp.

  2. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens.

    Science.gov (United States)

    Huangfu, Jiayi; Li, Jiancai; Li, Ran; Ye, Meng; Kuai, Peng; Zhang, Tongfang; Lou, Yonggen

    2016-05-31

    WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salicylic acid (SA). The antisense expression of OsWRKY45 (as-wrky) enhanced BPH-induced levels of H₂O₂ and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT) plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani) but higher susceptibility to rice blast (caused by Magnaporthe oryzae) than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice.

  3. Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality

    Directory of Open Access Journals (Sweden)

    Shi-ping LIU

    2007-09-01

    Full Text Available The interplanting with zero-tillage of rice, i.e. direct sowing rice 10–20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting, ZI (Zero-tillage, no straw manure and rice interplanting, PTS (Plowing tillage, straw manure and rice transplanting, and PT (Plowing tillage, no straw manure and rice transplanting, were used. ZIS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002, there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003. Compared with the transplanting treatments, the number of filled grains per panicle decreased but 1000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield. Interplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments

  4. An overview of the sustainability of rice agroecosystem through rice-fish integration

    International Nuclear Information System (INIS)

    Ahyaudin Ali

    2002-01-01

    Rice-fish integration in the rice agroecosystem has been introduced and is expanding in Malaysia. This type of farm integration has resulted in land optimization, thus enabling farmers to grow both fish and rice in one farming system. Introducing fish into the ricefield has also increased seasonal income as well as reduced pesticide use. Although basic ecological knowledge on rice-fish integration has allowed rice-fish integration to be introduced, further research is required to allow for fine tuning of the methodologies used. Thus research on the ecology, management, production methods and the characterization of rice-fish farming system of Malaysia is needed. Further characterization and description is needed on the ecology of the rice-fish farming system of Malaysia in terms of production, food webs, nutrient flow and system diversity. To increase the sustainability efficiency and productivity of the system, implementation of management techniques formulated through research is required. (Author)

  5. Identification of major rice allergen and their clinical significance in children

    Directory of Open Access Journals (Sweden)

    You Hoon Jeon

    2011-10-01

    Full Text Available Purpose : Recently, an increase in the number of patients sensitized to rice allergen with or without clinical symptoms has been reported. This study was designed to determine the major allergens in rice and their clinical significance. Methods : Twenty-four children (15 boys and 9 girls; mean age, 16.3 months with allergic disease, who were sensitized to rice antigen (by UniCAP in the Pediatric Allergy Respiratory Center at Soonchunhyang University Hospital, were enrolled in this study. The allergenicity of various types of rice (raw, cooked, and heat-treated, simulated gastric fluid [SGF], and simulated intestinal fluid [SIF] was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and immunoglobulin E (IgE immunoblots. The patients’ medical records, including laboratory data and allergy symptoms after ingestion of rice were reviewed. Results : Patients were sensitized to an average of 13.5 food antigens and their mean total IgE was 6,888.7 kU/L. In SDS-PAGE, more than 16 protein bands were observed in the raw rice, whereas only 14-16 kDa and 31-35 kDa protein bands were observed in cooked rice. The common SDS-PAGE protein bands observed in SGF-, SIF-, and heattreated rice were 9, 14, and 31 kDa. In a heated-rice IgE immunoblot, protein bands of 9, 14, and 31-33 kDa were found in 27.8%, 38.9%, and 38.9% of all sera, respectively, and in 50%, 50%, and 75%, of ser a from the 4 symptomatic patients, respectively. Conclusion : The 9-, 14-, and 31-kDa protein bands appeared to be the major allergens responsible for rice allergy symptoms.

  6. Characterization of the β-Carotene Hydroxylase Gene DSM2 Conferring Drought and Oxidative Stress Resistance by Increasing Xanthophylls and Abscisic Acid Synthesis in Rice1[C][W][OA

    Science.gov (United States)

    Du, Hao; Wang, Nili; Cui, Fei; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2010-01-01

    Drought is a major limiting factor for crop production. To identify critical genes for drought resistance in rice (Oryza sativa), we screened T-DNA mutants and identified a drought-hypersensitive mutant, dsm2. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative β-carotene hydroxylase (BCH). BCH is predicted for the biosynthesis of zeaxanthin, a carotenoid precursor of abscisic acid (ABA). The amounts of zeaxanthin and ABA were significantly reduced in two allelic dsm2 mutants after drought stress compared with the wild type. Under drought stress conditions, the mutant leaves lost water faster than the wild type and the photosynthesis rate, biomass, and grain yield were significantly reduced, whereas malondialdehyde level and stomata aperture were increased in the mutant. The mutant is also hypersensitive to oxidative stresses. The mutant had significantly lower maximal efficiency of photosystem II photochemistry and nonphotochemical quenching capacity than the wild type, indicating photoinhibition in photosystem II and decreased capacity for eliminating excess energy by thermal dissipation. Overexpression of DSM2 in rice resulted in significantly increased resistance to drought and oxidative stresses and increases of the xanthophylls and nonphotochemical quenching. Some stress-related ABA-responsive genes were up-regulated in the overexpression line. DSM2 is a chloroplast protein, and the response of DSM2 to environmental stimuli is distinctive from the other two BCH members in rice. We conclude that the DSM2 gene significantly contributes to control of the xanthophyll cycle and ABA synthesis, both of which play critical roles in the establishment of drought resistance in rice. PMID:20852032

  7. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase.

    Science.gov (United States)

    Jung, Sunyo; Back, Kyoungwhan

    2005-05-01

    We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected. In response to oxyfluorfen, violaxanthin, beta-carotene, and chlorophylls (Chls) decreased in wild-type plants, whereas antheraxanthin and zeaxanthin increased. Only a slight decline in Chls was observed in transgenic lines at 48 h after oxyfluorfen treatment. Noticeable increases of cytosolic Cu/Zn-superoxide dismutase, peroxidase isozymes 1 and 2, and catalase were observed after at 48 h of oxyfluorfen treatment in the wild-type. Non-enzymatic antioxidants appeared to respond faster to oxyfluorfen-induced photodynamic stress than did enzymatic antioxidants. Protective responses for the detoxification of active oxygen species were induced to counteract photodynamic stress in oxyfluorfen-treated, wild-type plants. However, oxyfluorfen-treated, transgenic plants suffered less oxidative stress, confirming increased herbicidal resistance resulted from dual expression of M. xanthus Protox in chloroplasts and mitochondria.

  8. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice.

    Science.gov (United States)

    Wang, Chunlian; Zhang, Xiaoping; Fan, Yinglun; Gao, Ying; Zhu, Qinlong; Zheng, Chongke; Qin, Tengfei; Li, Yanqiang; Che, Jinying; Zhang, Mingwei; Yang, Bing; Liu, Yaoguang; Zhao, Kaijun

    2014-11-09

    The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE) associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from the wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113-amino acid protein that shares 50% identity to the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike Xa10, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23, but differs in promoter region by lacking the TALE binding-element (EBE) for AvrXa23. XA23 can trigger strong hypersensitive response in rice, tobacco and tomato. Our results provide the first evidence that plant genomes have an executor R gene family in which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in pathogen. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  9. Objective evaluation of whiteness of cooked rice and rice cakes using a portable spectrophotometer.

    Science.gov (United States)

    Goto, Hajime; Asanome, Noriyuki; Suzuki, Keitaro; Sano, Tomoyoshi; Saito, Hiroshi; Abe, Yohei; Chuba, Masaru; Nishio, Takeshi

    2014-03-01

    The whiteness of cooked rice and rice cakes was evaluated using a portable spectrophotometer with a whiteness index (WI). Also, by using boiled rice for measurement of Mido values by Mido Meter, it was possible to infer the whiteness of cooked rice without rice cooking. In the analysis of varietal differences of cooked rice, 'Tsuyahime', 'Koshihikari' and 'Koshinokaori' showed high whiteness, while 'Satonoyuki' had inferior whiteness. The whiteness of rice cakes made from 'Koyukimochi' and 'Dewanomochi' was higher than the whiteness of those made from 'Himenomochi' and 'Koganemochi'. While there was a significant correlation (r = 0.84) between WI values and whiteness scores of cooked rice by the sensory test, no correlation was detected between the whiteness scores and Mido values, indicating that the values obtained by a spectrophotometer differ from those obtained by a Mido Meter. Thus, a spectrophotometer may be a novel device for measurement of rice eating quality.

  10. Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart.

    Science.gov (United States)

    Oberdoerfer, Regina B; Shillito, Raymond D; de Beuckeleer, Marc; Mitten, Donna H

    2005-03-09

    This publication presents an approach to assessing compositional equivalence between grain derived from glufosinate-tolerant rice grain, genetic event LLRICE62, and its nontransgenic counterpart. Rice was grown in the same manner as is common for commercial production, using either conventional weed control practices or glufosinate-ammonium herbicide. A two-season multisite trial design provided a robust data set to evaluate environmental effects between the sites. Statistical comparisons to test for equivalence were made between glufosinate-tolerant rice and a conventional counterpart variety. The key nutrients, carbohydrates, protein, iron, calcium, thiamin, riboflavin, and niacin, for which rice can be the principal dietary source, were investigated. The data demonstrate that rice containing the genetic locus LLRICE62 has the same nutritional value as its nontransgenic counterpart, and most results for nutritional components fall within the range of values reported for rice commodities in commerce.

  11. [Determination of trace lead and cadmium in transgenic rice by crosslinked carboxymethyl konjac glucomannan microcolumn preconcentration combined with graphite furnace atomic absorption spectrometry].

    Science.gov (United States)

    Liu, Hua-qing; Li, Sheng-qing; Qu, Yang; Chen, Hao

    2012-02-01

    A novel method was developed for the determination of trace lead and cadmium in transgenic brown rice based on separation and preconcentration with a micro column packed with crosslinked carboxymethyl konjac glucomannan (CCMKGM) prior to its determination by graphite furnace atomic absorption spectrometry. Variables affecting the separation and preconcentration of lead and cadmium, such as the acidity of the aqueous solution, sample flow rate and volume, and eluent concentration and volume, were optimized. Under optimized condition, detection limits of the method for the determination of trace lead and cadmium in transgenic brown rice were 0.11 and 0.002 microg x L(-1), respectively. The obtained results of lead and cadmium in the certified reference material (GBW10010, GBS1-1) were in good agreement with the certified values. The recoveries were in the range of 90%-103% and 93%-105% for detection of Pb and Cd in transgenic brown rice and the wild-type brown rice samples respectively. This study could provide technical support for determination of trace Pb and Cd in transgenic rice.

  12. Wild genius - domestic fool? Spatial learning abilities of wild and domestic guinea pigs

    Directory of Open Access Journals (Sweden)

    Sachser Norbert

    2010-03-01

    Full Text Available Abstract Background Domestic animals and their wild relatives differ in a wide variety of aspects. The process of domestication of the domestic guinea pig (Cavia aperea f. porcellus, starting at least 4500 years ago, led to changes in the anatomy, physiology, and behaviour compared with their wild relative, the wild cavy, Cavia aperea. Although domestic guinea pigs are widely used as a laboratory animal, learning and memory capabilities are often disregarded as being very scarce. Even less is known about learning and memory of wild cavies. In this regard, one striking domestic trait is a reduction in relative brain size, which in the domesticated form of the guinea pig amounts to 13%. However, the common belief, that such a reduction of brain size in the course of domestication of different species is accomplished by less learning capabilities is not at all very well established in the literature. Indeed, domestic animals might also even outperform their wild conspecifics taking advantage of their adaptation to a man-made environment. In our study we compared the spatial learning abilities of wild and domestic guinea pigs. We expected that the two forms are different regarding their learning performance possibly related to the process of domestication. Therefore wild cavies as well as domestic guinea pigs of both sexes, aged 35 to 45 days, were tested in the Morris water maze to investigate their ability of spatial learning. Results Both, wild cavies and domestic guinea pigs were able to learn the task, proving the water maze to be a suitable test also for wild cavies. Regarding the speed of learning, male as well as female domestic guinea pigs outperformed their wild conspecifics significantly. Interestingly, only domestic guinea pigs showed a significant spatial association of the platform position, while other effective search strategies were used by wild cavies. Conclusion The results demonstrate that domestic guinea pigs do not at all

  13. Wild genius - domestic fool? Spatial learning abilities of wild and domestic guinea pigs.

    Science.gov (United States)

    Lewejohann, Lars; Pickel, Thorsten; Sachser, Norbert; Kaiser, Sylvia

    2010-03-25

    Domestic animals and their wild relatives differ in a wide variety of aspects. The process of domestication of the domestic guinea pig (Cavia aperea f. porcellus), starting at least 4500 years ago, led to changes in the anatomy, physiology, and behaviour compared with their wild relative, the wild cavy, Cavia aperea. Although domestic guinea pigs are widely used as a laboratory animal, learning and memory capabilities are often disregarded as being very scarce. Even less is known about learning and memory of wild cavies. In this regard, one striking domestic trait is a reduction in relative brain size, which in the domesticated form of the guinea pig amounts to 13%. However, the common belief, that such a reduction of brain size in the course of domestication of different species is accomplished by less learning capabilities is not at all very well established in the literature. Indeed, domestic animals might also even outperform their wild conspecifics taking advantage of their adaptation to a man-made environment.In our study we compared the spatial learning abilities of wild and domestic guinea pigs. We expected that the two forms are different regarding their learning performance possibly related to the process of domestication. Therefore wild cavies as well as domestic guinea pigs of both sexes, aged 35 to 45 days, were tested in the Morris water maze to investigate their ability of spatial learning. Both, wild cavies and domestic guinea pigs were able to learn the task, proving the water maze to be a suitable test also for wild cavies. Regarding the speed of learning, male as well as female domestic guinea pigs outperformed their wild conspecifics significantly. Interestingly, only domestic guinea pigs showed a significant spatial association of the platform position, while other effective search strategies were used by wild cavies. The results demonstrate that domestic guinea pigs do not at all perform worse than their wild relatives in tests of spatial

  14. Puffing of okara/rice blends using a rice cake machine.

    Science.gov (United States)

    Xie, M; Huff, H; Hsieh, F; Mustapha, A

    2008-10-01

    Okara is the insoluble byproduct of soymilk and tofu manufactures. It is cheap, high in nutrients, and possesses great potential to be applied to functional human foods. In this study, a puffed okara/rice cake product was developed with blends of okara pellets and parboiled rice. Consumer preference and acceptance tests were conducted for the product. Okara pellets were prepared by grinding the strands obtained from extruding a mixture of dried okara and rice flour (3:2, w/w) with a twin-screw extruder. Okara pellets and parboiled rice were blended in 4 ratios, 90:10, 70:30, 40:60, and 0:100 (w/w), and tempered to 14% and 17% moisture. The blends were puffed at 221, 232, and 243 degrees C for 4, 5, or 6 s. The okara/rice cakes were evaluated for specific volume (SPV), texture, color, and percent weight loss after tumbling. Overall, the decrease in okara content and increase in moisture, heating temperature and time led to greater specific volume (SPV) and hardness, lighter color, and lower percent weight loss after tumbling. The consumer tests indicated that the okara/rice cake containing 70% okara pellets was preferred and the 90% one was liked the least. The possible drivers of liking for the puffed okara/rice cakes could be the okara content, hardness, SPV, bright color, and percent weight loss after tumbling.

  15. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko

    2018-02-14

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  16. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko; Tanaka, Tsuyoshi; Ohyanagi, Hajime; Hsing, Yue-Ie C.; Itoh, Takeshi

    2018-01-01

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  17. Diversity of some endophytic fungi associated with rice black bug Paraeucosmetus pallicornis on rice plant

    OpenAIRE

    Nur, Amin; La Daha; Nurariaty, Agus; Ade, Rosmana; Muh., Fadlan

    2015-01-01

    A new rice insect pest was sighted in some rice producing areas of South Sulawesi Province, Indonesia. This pest is rice black bugs Paraeucosmetus pallicornis. The research aimed to isolation of fungi associated with rice black bugs Paraeucosmetus pallicornis, so as to know the cause of a bitter taste to the rice. The isolation of the fungi consist of three kinds of treatment, namely rice black bugs without sterilization, with sterilization and rice black bugs cut and sterilized. The resul...

  18. Elemental composition of Malawian rice.

    OpenAIRE

    Joy, EJM; Louise Ander, E; Broadley, MR; Young, SD; Chilimba, AD; Hamilton, EM; Watts, MJ

    2016-01-01

    Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic...

  19. RiceAtlas, a spatial database of global rice calendars and production

    NARCIS (Netherlands)

    Laborte, Alice G.; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander; Boschetti, Mirco; Murty, M. V.R.; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J.; Nelson, Andrew

    2017-01-01

    Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It

  20. The Potency of White Rice (Oryza sativa), Black Rice (Oryza sativa L. indica), and Red Rice (Oryza nivara) as Antioxidant and Tyrosinase Inhibitor

    Science.gov (United States)

    Batubara, I.; Maharni, M.; Sadiah, S.

    2017-04-01

    Rice is known to have many beneficial biological activities and is often used as “bedak dingin”, a face powder. The content of vitamins, minerals, fiber, and several types of antioxidants, such as ferulic acid, phytic acid, tocopherol, and oryzanols [1-2] are predicted to be potential as a tyrosinase inhibitor. The purpose of this study is to determine the potency of extracts from there types of rice, namely white, red, and black rice as an antioxidant and tyrosinase inhibitor. The rice was extracted with three different solvents, n-hexane, ethyl acetate, and methanol. The results showed that the highest antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl method was found in the methanol extract of black rice (IC50 290 μg/mL). Meanwhile, ethyl acetate extract of white rice has the highest antioxidant activity withphosphomolybdic acid method (41 mmol α-tocopherol equivalents/g sample). Thus, methanol extract of black rice and ethyl acetate extract of white rice are potential as an antioxidant. For tyrosinase inhibitor, n-hexane extract of red rice (IC50 3156 μg/mL) was the most active extract. The active component for radical scavenging is polar compound and for antioxidant by phosphomolybdate method is less polar compounds in black rice methanol extract based on TLC bioautogram. In conclusion, the black rice is the most potent in antioxidant while red rice is for tyrosinase inhibition.

  1. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines

    International Nuclear Information System (INIS)

    Gadde, Butchaiah; Bonnet, Sebastien; Menke, Christoph; Garivait, Savitri

    2009-01-01

    Rice is a widely grown crop in Asia. China (30%) and India (21%) contribute to about half of the world's total rice production. In this study, three major rice-producing countries in Asia are considered, India, Thailand and the Philippines (the later two contributing 4% and 2% of the world's rice production). Rice straw is one of the main field based residues produced along with this commodity and its applications vary widely in the region. Although rice production practises vary from one country to another, open burning of straw is a common practice in these countries. In this study, an approach was followed aiming at (a) determining the quantity of rice straw being subject to open field burning in those countries, (b) congregating pollutant specific emissions factors for rice straw burning, and (c) quantifying the resulting air pollutant emissions. Uncertainties in the results obtained as compared to a global approach are also discussed. - This research work contributes to enhance scientific knowledge for estimating air pollutant emissions from open burning of crop residues and improve emission results accuracy.

  2. Effect of Rice bran on the Quality of Rice Flour Breads (Gluten-free)

    OpenAIRE

    仲上, 晴世; 矢部, えん; Haruyo, Nakagami; En, Yabe

    2016-01-01

    Over recent years progress has been made in the development of substitute foods for allergy patients. One such is rice flour bread. However, typically rice flour bread uses polysaccharide thickener in substitution for the gluten in wheat. Most polysaccharide thickeners are of dietary fiber origin, and the nutritive value is poor. Therefore, in this study, I made rice flour bread adding rice bran in place of polysaccharide thickener. Various nutrients are included in rice bran, including vitam...

  3. Oscar Wilde and the brain cell.

    Science.gov (United States)

    Cohn, Elisha

    2013-01-01

    This chapter considers Oscar Wilde's interest in the brain cell as an aesthetic object. Offering an account of Wilde's career that analyzes his early interest in physiology and philosophy, this chapter argues that Wilde's uniquely aesthetic take on the brain suggests that he rejects an account of the self as autonomous or self-determining. For many late Victorians brain science threatened both the freedom of human action and the legitimacy of beauty because it had the potential to invalidate conscious experience. But writers whose work Wilde knew, like John Ruskin, W. K. Clifford, and John Tyndall, avoided the despair of materialism by using aesthetic terms in their own discussions of life's invisible materials. Wilde's art collaborates with the contemporary sciences. His depictions of the cell direct the senses to a new field of being that emphasizes the molecular life all humans have in common, in which individual responsibility and activity matter less than the necessity of beauty. © 2013 Elsevier B.V. All rights reserved.

  4. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105).

    Science.gov (United States)

    Rungin, Siriwan; Indananda, Chantra; Suttiviriya, Pavinee; Kruasuwan, Worarat; Jaemsaeng, Ratchaniwan; Thamchaipenet, Arinthip

    2012-10-01

    An endophytic Streptomyces sp. GMKU 3100 isolated from roots of a Thai jasmine rice plant (Oryza sativa L. cv. KDML105) showed the highest siderophore production on CAS agar while phosphate solubilization and IAA production were not detected. A mutant of Streptomyces sp. GMKU 3100 deficient in just one of the plant growth promoting traits, siderophore production, was generated by inactivation of a desD-like gene encoding a key enzyme controlling the final step of siderophore biosynthesis. Pot culture experiments revealed that rice and mungbean plants inoculated with the wild type gave the best enhancement of plant growth and significantly increased root and shoot biomass and lengths compared with untreated controls and siderophore-deficient mutant treatments. Application of the wild type in the presence or absence of ferric citrate significantly promoted plant growth of both plants. The siderophore-deficient mutant clearly showed the effect of this important trait involved in plant-microbe interaction in enhancement of growth in rice and mungbean plants supplied with sequestered iron. Our results highlight the value of a substantial understanding of the relationship of the plant growth promoting properties of endophytic actinomycetes to the plants. Endophytic actinomycetes, therefore, can be applied as potentially safe and environmentally friendly biofertilizers in agriculture.

  5. Mycoplasma gallopavonis in eastern wild turkeys.

    Science.gov (United States)

    Luttrell, M P; Eleazer, T H; Kleven, S H

    1992-04-01

    Serum samples and tracheal cultures were collected from eastern wild turkeys (Meleagris gallopavo sylvestris) trapped for relocation in South Carolina (USA) during 1985 to 1990. Sera were tested for Mycoplasma gallisepticum and M. synoviae by the rapid plate agglutination and hemagglutination inhibition tests and were found to be negative. Tracheal cultures were negative for all pathogenic Mycoplasma spp., including M. gallisepticum, M. synoviae, M. meleagridis, and M. iowae. However, M. gallopavonis was isolated from every group of wild turkeys tested in 1986 to 1990. These data suggest that M. gallopavonis, which is generally considered nonpathogenic, may be a common microorganism in eastern wild turkeys.

  6. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui; Ding, Bo; Mishra, Gyan Prakash; Zhou, Bo; Yang, Hongmei; Bellizzi, Maria Del Rosario; Chen, Songbiao; Meyers, Blake C.; Peng, Zhaohua; Zhu, Jian-Kang; Wang, Guoliang

    2011-01-01

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  7. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui

    2011-09-06

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  8. DIFFUSION AND ADOPTION OF NEW RICE VARIETIES FOR AFRICA

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Saharan Africa (SSA). It is ranked ... cultivated, rice is the most rapidly growing food .... population. Another parameter of interest is the average treatment effect on the treated, commonly denoted as ATE1 or ATT (Wooldridge, 2002, chapter 18).

  9. Rice peasants and rice research in Colombia

    NARCIS (Netherlands)

    Spijkers, P.A.N.M.

    1983-01-01

    Rice has been grown as a food crop in Latin America from early colonial times. In Colombia rice became a prominent subsistence crop especially on the north coast where it has been grown since the 17th century, sometimes also as a commercial crop. During the last twenty years there has been a sharp

  10. Leaf development of cultivated rice and weedy red rice under elevated temperature scenarios

    OpenAIRE

    Streck,Nereu A.; Uhlmann,Lilian O.; Gabriel,Luana F.

    2013-01-01

    The objective of this study was to simulate leaf development of cultivated rice genotypes and weedy red rice biotypes in climate change scenarios at Santa Maria, RS, Brazil. A leaf appearance (LAR) model adapted for rice was used to simulate the accumulated leaf number, represented by the Haun Stage, from crop emergence to flag leaf appearance (EM-FL). Three cultivated rice genotypes and two weedy red rice biotypes in six emergence dates were used. The LAR model was run for each emergence dat...

  11. Zinc uptake and utilisation in wetland rice as influenced by zinc sources

    International Nuclear Information System (INIS)

    Raja Rajan, A.

    1994-01-01

    Soil application of Zn is by far the most common and generally successful method of application to rice. Comparison of the effectiveness of soil applications of Zn necessarily involves simultaneous comparison of different sources. Applying Zn in combination with macronutrient fertilizers is convenient and allows more uniform distribution. Studies have indicated marked differences in Zn availability, uptake and utilisation resulting from the macronutrient fertilizer with which it is applied. This study was undertaken to evaluate the effect of a few sources of Zn on the yield, Zn uptake and utilisation in rice in two major rice grown soil series of Tamil Nadu. (author). 7 refs., 3 tabs

  12. Characterization and evolutionary analysis of ent-kaurene synthase like genes from the wild rice species Oryza rufipogon.

    Science.gov (United States)

    Toyomasu, Tomonobu; Miyamoto, Koji; Shenton, Matthew R; Sakai, Arisa; Sugawara, Chizu; Horie, Kiyotaka; Kawaide, Hiroshi; Hasegawa, Morifumi; Chuba, Masaru; Mitsuhashi, Wataru; Yamane, Hisakazu; Kurata, Nori; Okada, Kazunori

    2016-11-18

    Cultivated rice (Oryza sativa) possesses various labdane-related diterpene synthase genes, homologs of ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of phytohormone gibberellins. The CPS homologs and KS like (KSL) homologs successively converted geranylgeranyl diphosphate to cyclic diterpene hydrocarbons via ent-copalyl diphosphate or syn-copalyl diphosphate in O. sativa. Consequently, a variety of labdane-related diterpenoids, including phytoalexin phytocassanes, momilactones and oryzalexins, have been identified from cultivated rice. Our previous report indicated that the biosynthesis of phytocassanes and momilactones is conserved in Oryza rufipogon, the progenitor of Asian cultivated rice. Moreover, their biosynthetic gene clusters, containing OsCPS2 and OsKSL7 for phytocassane biosynthesis and OsCPS4 and OsKSL4 for momilactone biosynthesis, are also present in the O. rufipogon genome. We herein characterized O. rufipogon homologs of OsKSL5, OsKSL6, OsKSL8 responsible for oryzalexin S biosynthesis, and OsKSL10 responsible for oryzalexins A-F biosynthesis, to obtain more evolutionary insight into diterpenoid biosynthesis in O. sativa. Our phytoalexin analyses showed that no accumulation of oryzalexins was detected in extracts from O. rufipogon leaf blades. In vitro functional analyses indicated that unlike OsKSL10, O. rufipogon KSL10 functions as an ent-miltiradiene synthase, which explains the lack of accumulation of oryzalexins A-F in O. rufipogon. The different functions of KSL5 and KSL8 in O. sativa japonica to those in indica are conserved in each type of O. rufipogon, while KSL6 functions (ent-isokaurene synthases) are well conserved. Our study suggests that O. sativa japonica has evolved distinct specialized diterpenoid metabolism, including the biosynthesis of oryzalexins. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision.

    Science.gov (United States)

    Woo, Hee-Jong; Qin, Yang; Park, Soo-Yun; Park, Soon Ki; Cho, Yong-Gu; Shin, Kong-Sik; Lim, Myung-Ho; Cho, Hyun-Suk

    2015-01-01

    Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM) crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants with enhanced seed tocopherol content. To generate selectable marker-free transgenic rice plants, we constructed a binary vector using the hpt selectable marker gene and the rice codon-optimized FLP (mFLP) gene under the control of an oxidative stress-inducible promoter between two FRT sites, along with multiple cloning sites for convenient cloning of genes of interest. Using this pCMF binary vector with the NtTC gene, marker-free T1 transgenic rice plants expressing NtTC were produced by Agrobacterium-mediated stable transformation using hygromycin as a selective agent, followed by segregation of selectable marker genes. Furthermore, α-, γ-, and total tocopherol levels were significantly increased in seeds of the marker-free transgenic TC line compared with those of wild-type plants. Thus, this spontaneous auto-excision system, incorporating an oxidative stress-inducible mFLP/FRT system to eliminate the selectable marker gene, can be easily adopted and used to efficiently generate marker-free transgenic rice plants. Moreover, nutritional enhancement of rice seeds through elevation of tocopherol content coupled with this marker-free strategy may improve human health and public acceptance of GM rice.

  14. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    Directory of Open Access Journals (Sweden)

    Nathaniel B Lyman

    Full Text Available Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  15. Nutritional test of rice in rats

    International Nuclear Information System (INIS)

    Horii, Masaji; Yoshikawa, Seiji

    1980-01-01

    Behaviors on N derived from rice were followed up by means of 15 N-labeled rice. In the first test, the single unpolished rice diet and the diet of rice and bean lecithin (4.5%) produced urinary excretion of 10 - 12% of 15 N, and that of rice and mannan from devil's tongue (3%), 16 - 20%. The single unpolished rice diet showed slightly more urinary excretion of 15 N, and the other 2 diets showed a similar proportion of 15 N in 3 days. The results indicated that the diet containing mannan from devil's tongue resulted in a poor N absorption by rice, a large quantity of N being excreted over a long period of time. This suggested differences and time lags in the excretion of rice N into the stool and urine depending on the diet constitution. With the unpolished rice diet, a small quantity of rice protein was not absorbed, but was excreted. In the 2nd test with 15 N-polished rice, the urinary excretion rate was 11.44% for a single rice diet, 11.16% for a mixed diet of rice and bean (1:1 in protein), 10.99% for rice and egg yolk, 9.66% for rice, bean and egg yolk and 8.10% for rice and bean lecithin. This decrease in urinary excretion indicated a corresponding increase in absorption of rice protein. (Chiba, N.)

  16. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice.

    Science.gov (United States)

    Dai, Xiaoyan; Wang, Yuanyuan; Zhang, Wen-Hao

    2016-02-01

    The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Effect of post-harvest treatment on bioactive phytochemicals of Thai black rice.

    Science.gov (United States)

    Norkaew, Orranuch; Boontakham, Pittayaporn; Dumri, Kanchana; Noenplab, Acharaporn Na Lampang; Sookwong, Phumon; Mahatheeranont, Sugunya

    2017-02-15

    Because black rice is rich in antioxidants, appropriate methods of post-harvest treatment are necessary for maintaining these bioactive phytochemicals. Drying methods, storage temperatures, storage duration, and packaging methods affected the contents of some bioactive compounds in the two varieties of Thai black rice used in this research. Sun drying reduces the loss of anthocyanins and γ-oryzanols more than does hot air drying. Glutinous black rice stored as paddy at cool room temperature retains more anthocyanins, γ-oryzanols, and vitamin E than does paddy stored at room temperature. Nylon/LLDPE pouches containing N2 are the most suitable packaging for preserving the key aroma compound 2-acetyl-1-pyrroline (2AP), total phenolic, and anthocyanin contents of unpolished aromatic black rice. These pouches also retard the formation of some common off-flavor compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice.

    Science.gov (United States)

    Zhang, Kewei; Qian, Qian; Huang, Zejun; Wang, Yiqin; Li, Ming; Hong, Lilan; Zeng, Dali; Gu, Minghong; Chu, Chengcai; Cheng, Zhukuan

    2006-03-01

    Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis.

  19. Glufosinate herbicide-tolerant (LibertyLink) rice vs. conventional rice in diets for growing-finishing swine.

    Science.gov (United States)

    Cromwell, G L; Henry, B J; Scott, A L; Gerngross, M F; Dusek, D L; Fletcher, D W

    2005-05-01

    Genetically modified (GM) rice (LibertyLink, event LLRICE62) that is tolerant to glufosinate ammonium (Liberty) herbicide was compared with a near-isogenic (NI) conventional medium-grain brown rice (cultivar, Bengal) and a commercially milled long-grain brown rice in diets for growing-finishing pigs. The GM and NI rice were grown in 2000. The GM rice was from fields treated (GM+) or not treated (GM-) with glufosinate herbicide. The GM- and NI rice were grown using herbicide regimens typical of southern United States rice production practices. The four rice grains were similar in composition. Growing-finishing pigs (n = 96) were fed fortified rice-soybean meal diets containing the four different rice grains from 25 to 106 kg BW. Diets contained 0.99% lysine initially (growing phase), with lysine decreased to 0.80% (early finishing phase) and 0.65% (late finishing phase), when pigs reached 51 and 77 kg, respectively. The percentage of rice in the four diets was constant during each of the three phases (72.8, 80.0, and 85.8% for the growing, early-finishing, and late-finishing phases, respectively). There were six pen replicates (three pens of barrows and three pens of gilts) and four pigs per pen for each dietary treatment. All pigs were slaughtered at the termination of the study to collect carcass data. At the end of the 98-d experiment, BW gain, feed intake (as-fed basis), and feed:gain ratio did not differ (P > 0.05) for pigs fed the GM+ vs. conventional rice diets, but growth performance traits of pigs fed the GM+ rice diets were superior (P glufosinate herbicide-tolerant rice was similar in composition and nutritional value to conventional rice for growing-finishing pigs.

  20. An Economic Risk Analysis of Weed Suppressive Rice Cultivars in Rice Production

    Science.gov (United States)

    Weeds are a major constraint to rice production. In the United States, most rice cultivars are not inherently weed-suppressive and require substantial herbicide inputs to achieve agronomic and economic viability. Intensive herbicide application in rice also has many potential drawbacks, resulting in...

  1. Soil to rice transfer factors for 210Pb: a study on rice grown in India

    International Nuclear Information System (INIS)

    Karunakara, N.; Rao, Chetan; Ujwal, P.; Yashodhara, I.; Sudeep Kumara; Somashekarappa, H.M.; Bhaskara Shenoy, K.; Ravi, P.M.

    2013-01-01

    India is the second largest producer of rice (Oryza sativa L.) in the world and rice is the essential component of the diet for the majority of the population of India. However, detailed studies aimed at evaluation of radionuclide transfer factors (F v ) for rice grown in India are almost non-existent. This paper presents soil to rice transfer factors for 210 Pb for rice grown in natural field conditions on the West Coast of India. A rice field was developed very close to the Kaiga nuclear power plant for the field studies. For a comparative study of radionuclide transfer factors, rice samples were also collected from the rice fields of nearby villages. The soil to un-hulled rice grain 210 Pb varied in the range <1.2 x10 -2 to 8.1 x 10 -1 with a mean of 1.4 x 10 -1 . The mean values of un-hulled grain to white rice processing retention factors (F r ) was 0.03 for 210 Pb. Using the processing retention factors the soil to white rice transfer factor was estimated and found to have the mean value of 4.2 x 10 -3 . The study has shown that the transfer of 210 Pb was retained in the root and its transfer to above ground organs of rice plant is significantly lower. (author)

  2. Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants.

    Science.gov (United States)

    Tiwari, Lalit Dev; Mittal, Dheeraj; Chandra Mishra, Ratnesh; Grover, Anil

    2015-07-01

    Protease inhibitors are involved primarily in defense against pathogens. In recent years, these proteins have also been widely implicated in response of plants to diverse abiotic stresses. Rice chymotrypsin protease inhibitor gene OCPI2 is highly induced under salt and osmotic stresses. The construct containing the complete coding sequence of OCPI2 cloned downstream to CaMV35S promoter was transformed in Arabidopsis and single copy, homozygous transgenic lines were produced. The transgenic plants exhibited significantly enhanced tolerance to NaCl, PEG and mannitol stress as compared to wild type plants. Importantly, the vegetative and reproductive growth of transgenic plants under unstressed, control conditions was also enhanced: transgenic plants were more vigorous than wild type, resulting into higher yield in terms of silique number. The RWC values and membrane stability index of transgenic in comparison to wild type plants was higher. Higher proline content was observed in the AtOCPI2 lines, which was associated with higher transcript expression of pyrroline-5-carboxylate synthase and lowered levels of proline dehydrogenase genes. The chymotrypsin protease activities were lower in the transgenic as against wild type plants, under both unstressed, control as well as stressed conditions. It thus appears that rice chymotrypsin protease inhibitor gene OCPI2 is a useful candidate gene for genetic improvement of plants against salt and osmotic stress. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Evidence for divergence of response in Indica, Japonica, and wild rice to high CO2 x temperature interaction

    Science.gov (United States)

    Previous studies suggest that the intraspecific variability of rice yield response to rising carbon dioxide concentration, [CO2], could serve as a basis of selection to improve genotypes for future high CO2 conditions. However, assessment of responses to elevated [CO2] must consider air temperature,...

  4. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice.

    Science.gov (United States)

    Dai, Lei; Dai, Weimin; Song, Xiaoling; Lu, Baorong; Qiang, Sheng

    2014-01-01

    Competition from weedy rice can cause serious yield losses to cultivated rice. However, key traits that facilitate competitiveness are still not well understood. To explore the mechanisms behind the strong growth and competitive ability, replacement series experiments were established with six genotypes of weedy rice from different regions and one cultivated rice cultivar. (1) Weedy rice from southern China had the greatest impact on growth and yield of cultivated rice throughout the entire growing season. Weedy rice from the northeast was very competitive during the early vegetative stage while the competitive effects of eastern weedy rice were more detrimental at later crop-growth stages. (2) As the proportion of weedy rice increased, plant height, tillers, above-ground biomass, and yield of cultivated rice significantly declined; the crop always being at disadvantage regardless of proportion. (3) Weedy biotypes with greater diversity as estimated by their Shannon indexes were more detrimental to the growth and yield of cultivated rice. Geographic origin (latitude) of weedy rice biotype, its mixture proportion under competition with the crop and its genetic diversity are determinant factors of the outcome of competition and the associated decline in the rice crop yield. © 2013 Society of Chemical Industry. © 2013 Society of Chemical Industry.

  5. Diversity of global rice markets and the science required for consumer-targeted rice breeding

    Science.gov (United States)

    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of different quality traits that make up the rice grain and obtain a full picture of rice quality demographics. Rice ...

  6. Laboratory Screening for Resistance in Rice to Rice Stem Borer Chilo Suppressalis Walker

    International Nuclear Information System (INIS)

    Singgih Sutrisno

    2004-01-01

    Rice stem borer Chilo suppressalis Walker is one of the major insect pests in rice in Indonesia. The use of insect pest resistant variety of rice is one of the effective techniques against pests. Breeding of resistance to insect pests rice crops often faced difficulties in obtaining a lot of insect amounts due to the unavailability of enough number insects pests in the field so that a laboratory bioassay is needed. In this experiments five rice varieties were used: a Pelita I/1, Atomita I, Cisadane, Cisanggarung, and IR 36. Rice seedling 7 days of age were put in 1 liter plastic vials for rice resistance test against the attack of insect pest C. suppressalis. The parameters observed were larval and pupal viability, pupal weight, and eggs production. The larval and pupal viability which were reared on of Pelita I/1 and Atomita I rice seedlings were 68.5 % - 55.5 % and 57.3 % - 46.7 % respectively. The respective lowest percentages were found in IR 36 which was about 41.3 % - 29.8 % .The experiment results on the parameters of pupal weight and egg production showed similar results to that on the parameters of larval and pupal viability. Rice variety of IR 36 showed more resistance to the other varieties, while Pelita I/1 and Atomita I showed the most susceptible to the attack of insect pest C. suppressalis. (author)

  7. Creation of transgenic rice plants producing small interfering RNA of Rice tungro spherical virus.

    Science.gov (United States)

    Le, Dung Tien; Chu, Ha Duc; Sasaya, Takahide

    2015-01-01

    Rice tungro spherical virus (RTSV), also known as Rice waika virus, does not cause visible symptoms in infected rice plants. However, the virus plays a critical role in spreading Rice tungro bacilliform virus (RTBV), which is the major cause of severe symptoms of rice tungro disease. Recent studies showed that RNA interference (RNAi) can be used to develop virus-resistance transgenic rice plants. In this report, we presented simple procedures and protocols needed for the creation of transgenic rice plants capable of producing small interfering RNA specific against RTSV sequences. Notably, our study showed that 60 out of 64 individual hygromycin-resistant lines (putative transgenic lines) obtained through transformation carried transgenes designed for producing hairpin double-stranded RNA. Northern blot analyses revealed the presence of small interfering RNA of 21- to 24-mer in 46 out of 56 confirmed transgenic lines. Taken together, our study indicated that transgenic rice plants carrying an inverted repeat of 500-bp fragments encoding various proteins of RTSV can produce small interfering RNA from the hairpin RNA transcribed from that transgene. In light of recent studies with other viruses, it is possible that some of these transgenic rice lines might be resistant to RTSV.

  8. Ranid Herpesvirus 3 and Proliferative Dermatitis in Free-Ranging Wild Common Frogs (Rana Temporaria).

    Science.gov (United States)

    Origgi, F C; Schmidt, B R; Lohmann, P; Otten, P; Akdesir, E; Gaschen, V; Aguilar-Bultet, L; Wahli, T; Sattler, U; Stoffel, M H

    2017-07-01

    Amphibian pathogens are of current interest as contributors to the global decline of amphibians. However, compared with chytrid fungi and ranaviruses, herpesviruses have received relatively little attention. Two ranid herpesviruses have been described: namely, Ranid herpesvirus 1 (RHV1) and Ranid herpesvirus 2 (RHV2). This article describes the discovery and partial characterization of a novel virus tentatively named Ranid herpesvirus 3 (RHV3), a candidate member of the genus Batrachovirus in the family Alloherpesviridae. RHV3 infection in wild common frogs (Rana temporaria) was associated with severe multifocal epidermal hyperplasia, dermal edema, a minor inflammatory response, and variable mucous gland degeneration. Intranuclear inclusions were numerous in the affected epidermis together with unique extracellular aggregates of herpesvirus-like particles. The RHV3-associated skin disease has features similar to those of a condition recognized in European frogs for the last 20 years and whose cause has remained elusive. The genome of RHV3 shares most of the features of the Alloherpesviruses. The characterization of this presumptive pathogen may be of value for amphibian conservation and for a better understanding of the biology of Alloherpesviruses.

  9. A Non-destructive and Continuous Measurement of Gelatinization of Rice in Rice Cooking Process

    OpenAIRE

    Hagura, Yoshio; Suzuki, Kanichi

    2002-01-01

    A non-destructive and continuous method to measure gelatinization of rice samples in a rice-water system during rice cooking process was examined. An aluminum pot and a lid of a rice cooker were used as two electrode plates, and changes in dielectric properties (capacitance : C, and dielectric dissipation factor : tan δ) of the samples in the rice cooking process were measured by a capacitance meter. Differential scanning calorimetry (DSC) was used to measure gelatinization enthalpy and to de...

  10. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens

    Science.gov (United States)

    Huangfu, Jiayi; Li, Jiancai; Li, Ran; Ye, Meng; Kuai, Peng; Zhang, Tongfang; Lou, Yonggen

    2016-01-01

    WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salicylic acid (SA). The antisense expression of OsWRKY45 (as-wrky) enhanced BPH-induced levels of H2O2 and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT) plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani) but higher susceptibility to rice blast (caused by Magnaporthe oryzae) than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice. PMID:27258255

  11. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens

    Directory of Open Access Journals (Sweden)

    Jiayi Huangfu

    2016-05-01

    Full Text Available WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens and by treatment with jasmonic acid (JA or salicylic acid (SA. The antisense expression of OsWRKY45 (as-wrky enhanced BPH-induced levels of H2O2 and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani but higher susceptibility to rice blast (caused by Magnaporthe oryzae than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice.

  12. Duplication and Loss of Function of Genes Encoding RNA Polymerase III Subunit C4 Causes Hybrid Incompatibility in Rice

    Directory of Open Access Journals (Sweden)

    Giao Ngoc Nguyen

    2017-08-01

    Full Text Available Reproductive barriers are commonly observed in both animals and plants, in which they maintain species integrity and contribute to speciation. This report shows that a combination of loss-of-function alleles at two duplicated loci, DUPLICATED GAMETOPHYTIC STERILITY 1 (DGS1 on chromosome 4 and DGS2 on chromosome 7, causes pollen sterility in hybrid progeny derived from an interspecific cross between cultivated rice, Oryza sativa, and an Asian annual wild rice, O. nivara. Male gametes carrying the DGS1 allele from O. nivara (DGS1-nivaras and the DGS2 allele from O. sativa (DGS2-T65s were sterile, but female gametes carrying the same genotype were fertile. We isolated the causal gene, which encodes a protein homologous to DNA-dependent RNA polymerase (RNAP III subunit C4 (RPC4. RPC4 facilitates the transcription of 5S rRNAs and tRNAs. The loss-of-function alleles at DGS1-nivaras and DGS2-T65s were caused by weak or nonexpression of RPC4 and an absence of RPC4, respectively. Phylogenetic analysis demonstrated that gene duplication of RPC4 at DGS1 and DGS2 was a recent event that occurred after divergence of the ancestral population of Oryza from other Poaceae or during diversification of AA-genome species.

  13. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  14. Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability

    Directory of Open Access Journals (Sweden)

    Yufeng Luo

    2014-09-01

    Full Text Available Rice paddies are artificial wetlands that supply people with food and provide wildlife with habitats, breeding areas, shelters, feeding grounds and other services, and rice paddies play an important part in agricultural ecological systems. However, modern agricultural practices with large-scale intensive farming have significantly accelerated the homogenization of the paddy field ecosystem. Modern agriculture mostly relies on chemically-driven modern varieties and irrigation to ensure high production, resulting in the deterioration and imbalance of the ecosystem. Consequently, outbreaks of diseases, insects and weeds have become more frequent in paddy fields. This paper describes the current situation of rice paddy biodiversity in China and analyzes the community characteristics of arthropods and weedy plants. Meanwhile, we discuss how biodiversity was affected by modern agriculture changes, which have brought about a mounting crisis threatening to animals and plants once common in rice paddies. Measures should be focused to firstly preventing further deterioration and, then, also, promoting restoration processes. Ecological sustainability can be achieved by restoring paddy field biodiversity through protecting the ecological environment surrounding the paddy fields, improving paddy cropping patterns, growing rice with less agricultural chemicals and chemical fertilizers, constructing paddy systems with animals and plants and promoting ecological education and public awareness.

  15. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Science.gov (United States)

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  16. Rice varieties in relation to rice bread quality.

    Science.gov (United States)

    Han, Hye Min; Cho, Jun Hyeon; Kang, Hang Won; Koh, Bong Kyung

    2012-05-01

    It is difficult to predict rice bread quality only from the amylose content (AC) or dough characteristics of new lines produced by rice breeding programmes. This study investigated the AC relative to bread baking quality of rice varieties developed in Korea, and identified specific characteristics that contribute to rice bread quality. Manmibyeo, Jinsumi, Seolgaeng and Hanareumbyeo were classified as low AC, YR24088 Acp9, Suweon517, Chenmaai and Goamibyeo as intermediate AC and Milyang261 as high AC. Suweon517, Milyang261 and Manmibyeo had a high water absorption index (WAI), while Goamibyeo, YR24088 Acp9, Jinsumi, Seolgaeng, Hanareumbyeo and Chenmaai had a low WAI. The gelatinisation enthalpy of flour varied from 9.2 J g(-1) in Milyang261 to 14.8 J g(-1) in YR24088 Acp9. After 7 days of storage the rate of flour retrogradation and crumb firmness were weakly correlated, with the exception of Jinsumi. Bread volumes of Jinsumi, Chenmaai, YR24088 Acp9 and Goamibyeo were comparable to that of wheat flour, but the rest were unsuited to bread making because of their low volume and hard crumb texture. Based on volume, texture and crumb firmness ratio, Chenmaai and Goamibyeo were the most appropriate varieties for making bread. An intermediate AC and low WAI were the primary indicators of rice bread flour quality. Copyright © 2011 Society of Chemical Industry.

  17. Morphology and stucture of wild apple (Malus silvestris Mill..common pear (Pyrus cofnmunis L. and Chaenomeles japonica (Thunb Lindl. seeds

    Directory of Open Access Journals (Sweden)

    Stanisław Pelc

    2014-01-01

    Full Text Available The outer and inner structure of wild apple (Malus silvestris Mill., common pear (Pyrus communis L. and Chaenomeles japonica (Thunb. Lindl. seeds was investigated. It was found that the outer structure exhibits good diagnostic features expressed in the first place in the relief of the seed coat and further in the arrangement and appearance of the site of attachment of the free end of the funiculus and the shape of the seeds. In ripe seeds there is, under the thick seed coat, an endosperm layer completely surrounding the embryo which has large cotyledons and a thick rootlet.

  18. Spatial and Temporal Analyses of Environmental Affects on Zizania Palustris and Its Natural Cycles

    Science.gov (United States)

    Rickman, Douglas L.; Greensky, Wayne; Al-Hamdan, M. Z.; Estes, M. G.; Crosson, W. L.; Estes, Sue M.

    2017-01-01

    As part of a joint education and research effort funded by NASA, research studies were initiated involving students associated with the Ojibwe and researchers at Marshall Space Flight Center. Topics were chosen that satisfied the nature of the work proposed and were tractable, given the student's constraints (abilities, interests, and time). One of the studies, which spanned two summers, examined some potential environmental effects on northern wild rice in northern Wisconsin. The rice of interest is naturally occurring ('wild' wild rice), as opposed to cultivated wild rice ('paddy' wild rice).

  19. Medicinal and wild food plants of Marmara Island (Balikesir – Turkey

    Directory of Open Access Journals (Sweden)

    Gizem Bulut

    2016-06-01

    Full Text Available Medicinal and wild food plants have always played an important role in people’s lives especially in rural areas. Similar situation can be said for islands due to the reason of them being isolated from mainland. This paper reports an ethnobotanical investigations performed in 2009 and 2014 to determine medicinal and wild food plants of Marmara Island. A total of 30 individuals were interviewed (19 men, 11 women. Totally, 22 plants are recorded as used as traditional folk medicine for the region, and nine of these are also used as a source of wild food. Furthermore, 18 taxa are wild sources of nutrition for the area. The plants most commonly used in the region as medicinal remedies were Salvia fruticosa, Hypericum perforatum, Ficus carica, and Mentha spicata. Plants are mostly used for the treatment of abdominal pain, the common cold, and haemorrhoids. The species most commonly used for food are: Salvia fruticosa, Arbutus unedo, Rhus coriaria, and Rubus sanctus. This ethnobotanical study conducted in this island will enable the traditional use of wild plants both as food sources and herbal remedies to be passed on to future generations.

  20. Salinity alters the protein composition of rice endosperm and the physicochemical properties of rice flour.

    Science.gov (United States)

    Baxter, Graeme; Zhao, Jian; Blanchard, Christopher

    2011-09-01

    Salinity is one of the major threats to production of rice and other agricultural crops worldwide. Although numerous studies have shown that salinity can severely reduce rice yield, little is known about its impact on the chemical composition, processing and sensory characteristics of rice. The objective of the current study was to investigate the effect of salinity on the pasting and textural properties of rice flour as well as on the protein content and composition of rice endosperm. Rice grown under saline conditions had significantly lower yields but substantially higher protein content. The increase in protein content was mainly attributed to increases in the amount of glutelin, with lesser contributions from albumin. Salinity also altered the relative proportions of the individual peptides within the glutelin fraction. Flours obtained from rice grown under saline conditions showed significantly higher pasting temperatures, but lower peak and breakdown viscosities. Rice gels prepared from the flour showed significantly higher hardness and adhesiveness values, compared to the freshwater controls. Salinity can significantly affect the pasting and textural characteristics of rice flour. Although some of the effects could be attributed to changes in protein content of the rice flour, especially the increased glutelin level, the impact of salinity on the physicochemical properties of rice is rather complex and may involve the interrelated effects of other rice components such as starch and lipids. Copyright © 2011 Society of Chemical Industry.

  1. Assessing the impacts of climate change on rice yields in the main rice areas of China

    International Nuclear Information System (INIS)

    Yao, Fengmei; Xu, Yinglong; Lin, Erda; Yokozawa, Masayuki; Zhang, Jiahua

    2007-01-01

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within ± 10% of observed flowering duration and ± 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations

  2. Assessing the impacts of climate change on rice yields in the main rice areas of China

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fengmei [College of Earth Sciences, The Graduate University of the Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100049 (China); Xu, Yinglong; Lin, Erda [Agricultural Environment and Sustainable Development Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 (China); Yokozawa, Masayuki [National Institute for Agro-environmental Sciences, Tsukuba 305-8604 (Japan); Zhang, Jiahua [Chinese Academy of Meteorological Sciences, Beijing, 100081 (China)

    2007-02-15

    This paper assesses the impact of climate change on irrigated rice yield using B2 climate change scenario from the Regional Climate Model (RCM) and CERES-rice model during 2071--2090. Eight typical rice stations ranging in latitude, longitude, and elevation that are located in the main rice ecological zones of China are selected for impact assessment. First, Crop Estimation through Resource and Environment Synthesis (CERES)-rice model is validated using farm experiment data in selected stations. The simulated results represent satisfactorily the trend of flowering duration and yields. The deviation of simulation within {+-} 10% of observed flowering duration and {+-} 15% of observed yield. Second, the errors of the outputs of RCM due to the difference of topography between station point and grid point is corrected. The corrected output of the RCM used for simulating rice flowering duration and yield is more reliable than the not corrected. Without CO2 direct effect on crop, the results from the assessment explore that B2 climate change scenario would have a negative impact on rice yield at most rice stations and have little impacts at Fuzhou and Kunming. To find the change of inter-annual rice yield, a preliminary assessment is made based on comparative cumulative probability at low and high yield and the coefficient variable of yield between the B2 scenario and baseline. Without the CO2 direct effect on rice yield, the result indicates that frequency for low yield would increase and it reverses for high yield, and the variance for rice yield would increase. It is concluded that high frequency at low yield and high variances of rice yield could pose a threat to rice yield at most selected stations in the main rice areas of China. With the CO2 direct effect on rice yield, rice yield increase in all selected stations.

  3. Use of radiation disinfestation in the control of rice insect pests during storage

    International Nuclear Information System (INIS)

    El-Kady, E.A.

    1981-01-01

    Rice weevil (Sitophilus oryzae), red flour beetle (Tribolium castaeneum), saw-toothed grain beetle (Oryzaephilus surinamensis), and flour moth (Ephestia kuehniella) are commonly found in Egyptian stored rice. The aim of this project is to carry out a study of a pilot-scale radiation disinfestation of these rice insect pests in an amount large enough to extrapolate data for later commercial practice. Fumigation treatments with phostoxin, methyl bromide and a combination treatment (methyl bromide + 7.5 krad) were also performed as a comparison to reveal the most effective way to control these rice pests. The most effective of all treatments tested was the 50-krad treatment. Complete sterility for the adults of these pests was obtained after treating rice directly, while complete mortality was reached within 30-60 days. Regarding fumigation treatments - phostoxin, methylbromide and combined treatment (methylbromide + 7.5 krad), the living stages of the four insect pests in rice varied during the storage period. However, the combination treatment gave the best results. Adults of the three Coleopteran species appeared in rice after four months because the 7.5-krad dose was not enough to kill the eggs which might have been laid by young females before being killed by fumigants. (author)

  4. Iron-biofortified rice improves the iron stores of nonanemic Filipino women.

    Science.gov (United States)

    Haas, Jere D; Beard, John L; Murray-Kolb, Laura E; del Mundo, Angelita M; Felix, Angelina; Gregorio, Glenn B

    2005-12-01

    Iron deficiency is endemic in much of the world, and food system-based approaches to eradication may be viable with new plant breeding approaches to increase the micronutrient content in staple crops. It is thought that conventional plant breeding approaches provide varieties of rice that have 400-500% higher iron contents than varieties commonly consumed in much of Asia. The efficacy of consuming high-iron rice was tested during a 9-mo feeding trial with a double-blind dietary intervention in 192 religious sisters living in 10 convents around metro Manila, the Philippines. Subjects were randomly assigned to consume either high-iron rice (3.21 mg/kg Fe) or a local variety of control rice (0.57 mg/kg Fe), and daily food consumption was monitored. The high-iron rice contributed 1.79 mg Fe/d to the diet in contrast to 0.37 mg Fe/d from the control rice. The 17% difference in total dietary iron consumption compared with controls (10.16 +/- 1.06 vs. 8.44 +/- 1.82 mg/d) resulted in a modest increase in serum ferritin (P = 0.10) and total body iron (P = 0.06) and no increase in hemoglobin (P = 0.59). However, the response was greater in nonanemic subjects for ferritin (P = 0.02) and body iron (P = 0.05), representing a 20% increase after controlling for baseline values and daily rice consumption. The greatest improvements in iron status were seen in those nonanemic women who had the lowest baseline iron status and in those who consumed the most iron from rice. Consumption of biofortified rice, without any other changes in diet, is efficacious in improving iron stores of women with iron-poor diets in the developing world.

  5. Transcriptional Network Analysis Reveals Drought Resistance Mechanisms of AP2/ERF Transgenic Rice

    Directory of Open Access Journals (Sweden)

    Hongryul Ahn

    2017-06-01

    Full Text Available This study was designed to investigate at the molecular level how a transgenic version of rice “Nipponbare” obtained a drought-resistant phenotype. Using multi-omics sequencing data, we compared wild-type rice (WT and a transgenic version (erf71 that had obtained a drought-resistant phenotype by overexpressing OsERF71, a member of the AP2/ERF transcription factor (TF family. A comprehensive bioinformatics analysis pipeline, including TF networks and a cascade tree, was developed for the analysis of multi-omics data. The results of the analysis showed that the presence of OsERF71 at the source of the network controlled global gene expression levels in a specific manner to make erf71 survive longer than WT. Our analysis of the time-series transcriptome data suggests that erf71 diverted more energy to survival-critical mechanisms related to translation, oxidative response, and DNA replication, while further suppressing energy-consuming mechanisms, such as photosynthesis. To support this hypothesis further, we measured the net photosynthesis level under physiological conditions, which confirmed the further suppression of photosynthesis in erf71. In summary, our work presents a comprehensive snapshot of transcriptional modification in transgenic rice and shows how this induced the plants to acquire a drought-resistant phenotype.

  6. Structural and functional properties of alkali-treated high-amylose rice starch.

    Science.gov (United States)

    Cai, Jinwen; Yang, Yang; Man, Jianmin; Huang, Jun; Wang, Zhifeng; Zhang, Changquan; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2014-02-15

    Native starches were isolated from mature grains of high-amylose transgenic rice TRS and its wild-type rice TQ and treated with 0.1% and 0.4% NaOH for 7 and 14 days at 35 °C. Alkali-treated starches were characterised for structural and functional properties using various physical methods. The 0.1% NaOH treatment had no significant effect on structural and functional properties of starches except that it markedly increased the hydrolysis of starch by amylolytic enzymes. The 0.4% NaOH treatment resulted in some changes in structural and functional properties of starches. The alkali treatment affected granule morphology and decreased the electron density between crystalline and amorphous lamellae of starch. The effect of alkali on the crystalline structure including long- and short-range ordered structure was not pronounced. Compared with control starch, alkali-treated TRS starches had lower amylose content, higher onset and peak gelatinisation temperatures, and faster hydrolysis of starch by HCl and amylolytic enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Origin of Oryza sativa in China inferred by nucleotide polymorphisms of organelle DNA.

    Directory of Open Access Journals (Sweden)

    Xin Wei

    Full Text Available China is rich of germplasm resources of common wild rice (Oryza rufipogon Griff. and Asian cultivated rice (O. sativa L. which consists of two subspecies, indica and japonica. Previous studies have shown that China is one of the domestication centers of O. sativa. However, the geographic origin and the domestication times of O. sativa in China are still under debate. To settle these disputes, six chloroplast loci and four mitochondrial loci were selected to examine the relationships between 50 accessions of Asian cultivated rice and 119 accessions of common wild rice from China based on DNA sequence analysis in the present study. The results indicated that Southern China is the genetic diversity center of O. rufipogon and it might be the primary domestication region of O. sativa. Molecular dating suggested that the two subspecies had diverged 0.1 million years ago, much earlier than the beginning of rice domestication. Genetic differentiations and phylogeography analyses indicated that indica was domesticated from tropical O. rufipogon while japonica was domesticated from O. rufipogon which located in higher latitude. These results provided molecular evidences for the hypotheses of (i Southern China is the origin center of O. sativa in China and (ii the two subspecies of O. sativa were domesticated multiple times.

  8. Radiation disinfestation of Basmati rice

    International Nuclear Information System (INIS)

    Rao, V.S.; Gholap, A.S.; Adhikari, H.R.; Nair, P.M.

    1994-01-01

    Effect of low dose γ-radiation on prepackaged Basmati rice was studied in order to achieve disinfestation of rice. Basmati rice procured from local market was repacked in 1 kg pouches made from high density polyethylene (HDP) and biaxially oriented polypropylene: low density polyethylene (BOPP/LDP) laminate and irradiated at doses from 0.25-1.0 kGy. Within one month of storage at room temperature, unirradiated (control) Basmati rice developed heavy infestation. No infestation was observed in any of the irradiated samples even at 0.25 kGy and the rice could be stored for 6 months in a clean state. Irradiation (at 0.25 kGy) did not alter the moisture content of the rice. Likewise, no significant change was noted due to irradiation in the functional properties of rice such as swelling index and water absorption and in total volatile components responsible for flavour of Basmati rice. In organoleptic evaluation, no significant difference was found between the acceptability of irradiated (0.25 kGy) and control rice. These results are significant in view of the high export potential of Basmati rice and the transit losses at present due to infestation. (author). 24 refs., 5 tabs., 1 fig

  9. Integrated rice-duck farming mitigates the global warming potential in rice season.

    Science.gov (United States)

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Yu, Xichen; Hang, Yuhao

    2017-01-01

    Integrated rice-duck farming (IRDF), as a mode of ecological agriculture, is an important way to realize sustainable development of agriculture. A 2-year split-plot field experiment was performed to evaluate the effects of IRDF on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and its ecological mechanism in rice season. This experiment was conducted with two rice farming systems (FS) of IRDF and conventional farming (CF) under four paddy-upland rotation systems (PUR): rice-fallow (RF), annual straw incorporating in rice-wheat rotation system (RWS), annual straw-based biogas residues incorporating in rice-wheat rotation system (RWB), and rice-green manure (RGM). During the rice growing seasons, IRDF decreased the CH 4 emission by 8.80-16.68%, while increased the N 2 O emission by 4.23-15.20%, when compared to CF. Given that CH 4 emission contributed to 85.83-96.22% of global warming potential (GWP), the strong reduction in CH 4 emission led to a significantly lower GWP of IRDF as compared to CF. The reason for this trend was because IRDF has significant effect on dissolved oxygen (DO) and soil redox potential (Eh), which were two pivotal factors for CH 4 and N 2 O emissions in this study. The IRDF not only mitigates the GWP, but also increases the rice yield by 0.76-2.43% compared to CF. Moreover, compared to RWS system, RF, RWB and RGM systems significantly reduced CH 4 emission by 50.17%, 44.89% and 39.51%, respectively, while increased N 2 O emission by 10.58%, 14.60% and 23.90%, respectively. And RWS system had the highest GWP. These findings suggest that mitigating GWP and improving rice yield could be simultaneously achieved by the IRDF, and employing suitable PUR would benefit for relieving greenhouse effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision.

    Directory of Open Access Journals (Sweden)

    Hee-Jong Woo

    Full Text Available Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants with enhanced seed tocopherol content. To generate selectable marker-free transgenic rice plants, we constructed a binary vector using the hpt selectable marker gene and the rice codon-optimized FLP (mFLP gene under the control of an oxidative stress-inducible promoter between two FRT sites, along with multiple cloning sites for convenient cloning of genes of interest. Using this pCMF binary vector with the NtTC gene, marker-free T1 transgenic rice plants expressing NtTC were produced by Agrobacterium-mediated stable transformation using hygromycin as a selective agent, followed by segregation of selectable marker genes. Furthermore, α-, γ-, and total tocopherol levels were significantly increased in seeds of the marker-free transgenic TC line compared with those of wild-type plants. Thus, this spontaneous auto-excision system, incorporating an oxidative stress-inducible mFLP/FRT system to eliminate the selectable marker gene, can be easily adopted and used to efficiently generate marker-free transgenic rice plants. Moreover, nutritional enhancement of rice seeds through elevation of tocopherol content coupled with this marker-free strategy may improve human health and public acceptance of GM rice.

  11. The knockdown of OsVIT2 and MIT affects iron localization in rice seed.

    Science.gov (United States)

    Bashir, Khurram; Takahashi, Ryuichi; Akhtar, Shamim; Ishimaru, Yasuhiro; Nakanishi, Hiromi; Nishizawa, Naoko K

    2013-11-20

    The mechanism of iron (Fe) uptake in plants has been extensively characterized, but little is known about how Fe transport to different subcellular compartments affects Fe localization in rice seed. Here, we discuss the characterization of a rice vacuolar Fe transporter 2 (OsVIT2) T-DNA insertion line (osvit2) and report that the knockdown of OsVIT2 and mitochondrial Fe transporter (MIT) expression affects seed Fe localization. osvit2 plants accumulated less Fe in their shoots when grown under normal or excess Fe conditions, while the accumulation of Fe was comparable to that in wild-type (WT) plants under Fe-deficient conditions. The accumulation of zinc, copper, and manganese also changed significantly in the shoots of osvit2 plants. The growth of osvit2 plants was also slow compared to that of WT plants. The concentration of Fe increased in osvit2 polished seeds. Previously, we reported that the expression of OsVIT2 was higher in MIT knockdown (mit-2) plants, and in this study, the accumulation of Fe in mit-2 seeds decreased significantly. These results suggest that vacuolar Fe trafficking is important for plant Fe homeostasis and distribution, especially in plants grown in the presence of excess Fe. Moreover, changes in the expression of OsVIT2 and MIT affect the concentration and localization of metals in brown rice as well as in polished rice seeds.

  12. Selection and genetic relationship of salt tolerant rice mutants by in vitro mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jae Young; Kim, Dong Sub; Lee, Kyung Jun; Kim, Jin Baek; Kim, Sang Hoon; Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Lee, Myung Chul [National Academy of Agriculture and Science, Suwon (Korea, Republic of); Yun, Song Joong [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-12-15

    Plants have evolved physiological, biochemical and metabolic mechanisms to increase their survival under the adverse conditions. This present study has been performed to select salt tolerant rice mutant lines through in vivo and in vitro mutagenesis with gamma-rays. For the selection of the salt-tolerant rice mutants, we conducted three times of selection procedure using 1,500 gamma ray mutant lines resulted from an embryo culture of the original rice cv. Dongan (wild-type, WT): first, selection in the a nutrient solution with 171 mM NaCI: second, selection under in vitro condition with 171 mM NaCI: and third, selection in a reclaimed saline land. Based on a growth comparison of the entries, out of the mutant lines, two putative 2 salt tolerant (ST) rice mutant lines, ST-87 and ST-301, were finally selected. The survival rate of the WT, ST-87 and ST-301 were 36.6%, 60% and 66.3% after 7 days in 171 mM NaCI treatment, respectively. The WT and two salt tolerant mutant lines were used to analyze their genetic variations. A total of 21 EcoRI and Msel primer combinations were used to analyze the genetic relationship of among the two salt tolerant lines and the WT using the ABI3130 capillary electrophoresis system. In the AFLP analysis, a total of 1469 bands were produced by the 21 primer combinations, and 700 (47.6%) of them were identified as having polymorphism. The genetic similarity coefficients were ranged from 0.52 between the ST-87 and WT to 0.24 between the ST-301 and the WT. These rice mutant lines will be used as a control plot for physiological analysis and genetic research on salt tolerance.

  13. Glufosinate Ammonium-Induced Pathogen Inhibition and Defense Responses Culminate in Disease Protection in bar-Transgenic Rice1[C

    Science.gov (United States)

    Ahn, Il-Pyung

    2008-01-01

    Glufosinate ammonium diminished developments of rice (Oryza sativa) blast and brown leaf spot in 35S:bar-transgenic rice. Pre- and postinoculation treatments of this herbicide reduced disease development. Glufosinate ammonium specifically impeded appressorium formation of the pathogens Magnaporthe grisea and Cochliobolus miyabeanus on hydrophobic surface and on transgenic rice. In contrast, conidial germination remained unaffected. Glufosinate ammonium diminished mycelial growth of two pathogens; however, this inhibitory effect was attenuated in malnutrition conditions. Glufosinate ammonium caused slight chlorosis and diminished chlorophyll content; however, these alterations were almost completely restored in transgenic rice within 7 d. Glufosinate ammonium triggered transcriptions of PATHOGENESIS-RELATED (PR) genes and hydrogen peroxide accumulation in transgenic rice and PR1 transcription in Arabidopsis (Arabidopsis thaliana) wild-type ecotype Columbia harboring 35S:bar construct. All transgenic Arabidopsis showed robust hydrogen peroxide accumulation by glufosinate ammonium. This herbicide also induced PR1 transcription in etr1 and jar1 expressing bar; however, no expression was observed in NahG and npr1. Fungal infection did not alter transcriptions of PR genes and hydrogen peroxide accumulation induced by glufosinate ammonium. Infiltration of glufosinate ammonium did not affect appressorium formation of M. grisea in vivo but inhibited blast disease development. Hydrogen peroxide scavengers nullified blast protection and transcriptions of PR genes by glufosinate ammonium; however, they did not affect brown leaf spot progression. In sum, both direct inhibition of pathogen infection and activation of defense systems were responsible for disease protection in bar-transgenic rice. PMID:17981989

  14. Enhanced resistance to blast fungus in rice (Oryza sativa L.) by expressing the ribosome-inactivating protein α-momorcharin.

    Science.gov (United States)

    Qian, Qian; Huang, Lin; Yi, Rong; Wang, Shuzhen; Ding, Yi

    2014-03-01

    Rice blast caused by Magnaporthe grisea is one of the three major diseases that seriously affect the rice production. Alpha-momorcharin (α-MC), a ribosome-inactivating protein (RIP) isolated from Momordica charantia seeds, has antifungal effects in vitro. In this study, the α-MC gene was constitutively expressed under the control of the 2×35S promoter in transgenic rice (Oryza sativa L.) using an Agrobacterium tumefaciens-mediated method. The nine transgenic plants were obtained and confirmed by PCR and RT-PCR, and the four (B2, B4, B7 and B9) of them whose copy numbers were 1, 2, 3 and 3, respectively, were shown to express the α-MC protein by Western blot. The molecular weight of α-MC in transgenic plants was approximately 38 kDa larger than the purified α-MC protein (28 kDa) in vitro. When the confirmed T1 generations were inoculated with a suspension of M. grisea spores for ten days, the lesions on leaves of transgenic plants were much lesser than those found on wild type (WT). According to the criteria of International Rice Research Institute standard, the mean values for morbidity and disease index numbers were 29.8% and 14.9%, respectively, which were lower than for WT. It is unclear whether RIPs could impact plant fitness and however our results suggest that the α-MC protein is an effective antifungal protein preventing rice blast in transgenic rice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Weed control in organic rice using plastic mulch and water seeding methods in addition to cover crops

    Science.gov (United States)

    Weeds are a major yield limiting factor in organic rice farming and are more problematic than in conventional production systems. Water seeding is a common method of reducing weed pressure in rice fields as many weeds connot tolerate flooded field conditions. The use of cover crops is another method...

  16. 75 FR 56911 - Request for Public Comment on the United States Standards for Rough Rice, Brown Rice for...

    Science.gov (United States)

    2010-09-17

    ... for Rough Rice, Brown Rice for Processing, and Milled Rice AGENCY: Grain Inspection, Packers and... reviewing the United States Standards and grading procedures for Rough Rice, Brown Rice for Processing, and Milled Rice under the Agriculture Marketing Act of 1946 (AMA). Since the standards were last revised...

  17. Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight.

    Science.gov (United States)

    Karmakar, Subhasis; Molla, Kutubuddin Ali; Chanda, Palas K; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2016-01-01

    Green tissue-specific simultaneous overexpression of two defense-related genes ( OsCHI11 & OsOXO4 ) in rice leads to significant resistance against sheath blight pathogen ( R. solani ) without distressing any agronomically important traits. Overexpressing two defense-related genes (OsOXO4 and OsCHI11) cloned from rice is effective at enhancing resistance against sheath blight caused by Rhizoctonia solani. These genes were expressed under the control of two different green tissue-specific promoters, viz. maize phosphoenolpyruvate carboxylase gene promoter, PEPC, and rice cis-acting 544-bp DNA element, immediately upstream of the D54O translational start site, P D54O-544 . Putative T0 transgenic rice plants were screened by PCR and integration of genes was confirmed by Southern hybridization of progeny (T1) rice plants. Successful expression of OsOXO4 and OsCHI11 in all tested plants was confirmed. Expression of PR genes increased significantly following pathogen infection in overexpressing transgenic plants. Following infection, transgenic plants exhibited elevated hydrogen peroxide levels, significant changes in activity of ROS scavenging enzymes and reduced membrane damage when compared to their wild-type counterpart. In a Rhizoctonia solani toxin assay, a detached leaf inoculation test and an in vivo plant bioassay, transgenic plants showed a significant reduction in disease symptoms in comparison to non-transgenic control plants. This is the first report of overexpression of two different PR genes driven by two green tissue-specific promoters providing enhanced sheath blight resistance in transgenic rice.

  18. Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system.

    Science.gov (United States)

    Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-01-01

    Rice wine has been one of the most popular traditional alcoholic drinks in China. However, the presence of potentially carcinogenic ethyl carbamate (EC) in rice wine has raised a series of food safety issues. During rice wine production, the key reason for EC formation is urea accumulation, which occurs because of nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. NCR represses urea utilization by retaining Gln3p in the cytoplasm when preferred nitrogen sources are present. In order to increase the nuclear localization of Gln3p, some possible phosphorylation sites on the nuclear localization signal were mutated and the nuclear localization regulation signal was truncated, and the disruption of URE2 provided an additional method of reducing urea accumulation. By combining these strategies, the genes involved in urea utilization (DUR1,2 and DUR3) could be significantly activated in the presence of glutamine. During shake flask fermentations of the genetically modified strains, very little urea accumulated in the medium. Furthermore, the concentrations of urea and EC were reduced by 63% and 72%, respectively, in a model rice wine system. Examination of the normal nutrients in rice wine indicated that there were few differences in fermentation characteristics between the wild-type strain and the genetically modified strain. These results show that metabolic engineering of the NCR regulators has great potential as a method for eliminating EC during rice wine production.

  19. RICD: A rice indica cDNA database resource for rice functional genomics

    Directory of Open Access Journals (Sweden)

    Zhang Qifa

    2008-11-01

    Full Text Available Abstract Background The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones. Results Rice Indica cDNA Database (RICD is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA. Conclusion The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website http://www.ncgr.ac.cn/ricd.

  20. Physicochemical and Antioxidant Properties of Rice Bran Oils Produced from Colored Rice Using Different Extraction Methods.

    Science.gov (United States)

    Mingyai, Sukanya; Kettawan, Aikkarach; Srikaeo, Khongsak; Singanusong, Riantong

    2017-06-01

    This study investigated the physicochemical and antioxidant properties of rice bran oil (RBO) produced from the bran of three rice varities; Khao Dawk Mali 105 (white rice), Red Jasmine rice (red rice) and Hom-nin rice (black rice) using three extraction methods including cold-press extraction (CPE), solvent extraction (SE) and supercritical CO 2 extraction (SC-CO 2 ). Yields, color, acid value (AV), free fatty acid (FFA), peroxide value (PV), iodine value (IV), total phenolic compound (TPC), γ-oryzanol, α-tocopherol and fatty acid profile were analyzed. It was found that the yields obtained from SE, SC-CO 2 and CPE extractions were 17.35-20.19%, 14.76-18.16% and 3.22-6.22%, respectively. The RBO from the bran of red and black rice samples exhibited high antioxidant activities. They also contained higher amount of γ-oryzanol and α-tocopherol than those of white rice sample. In terms of extraction methods, SC-CO 2 provided better qualities of RBO as evidenced by their physicochemical and antioxidant properties. This study found that RBO produced from the bran of black rice samples using SC-CO 2 extraction method showed the best physicochemical and antioxidant properties.

  1. Dynamic viscoelasticity of protease-treated rice batters for gluten-free rice bread making.

    Science.gov (United States)

    Honda, Yuji; Inoue, Nanami; Sugimoto, Reina; Matsumoto, Kenji; Koda, Tomonori; Nishioka, Akihiro

    2018-03-01

    Papain (cysteine protease), subtilisin (Protin SD-AY10, serine protease), and bacillolysin (Protin SD-NY10, metallo protease) increased the specific volume of gluten-free rice breads by 19-63% compared to untreated bread. In contrast, Newlase F (aspartyl protease) did not expand the volume of the rice bread. In a rheological analysis, the viscoelastic properties of the gluten-free rice batters also depended on the protease categories. Principal component analysis (PCA) analysis suggested that the storage and loss moduli (G' and G″, respectively) at 35 °C, and the maximum values of G' and G″, were important factors in the volume expansion. Judging from the PCA of the viscoelastic parameters of the rice batters, papain and Protin SD-AY10 improved the viscoelasticity for gluten-free rice bread making, and Protin SD-NY effectively expanded the gluten-free rice bread. The rheological properties differed between Protin SD-NY and the other protease treatments.

  2. A Novel Reference Plasmid for the Qualitative Detection of Genetically Modified Rice in Food and Feed

    Directory of Open Access Journals (Sweden)

    Liang Li

    2015-01-01

    Full Text Available Rice is one of the most important food crops in the world. Genetically modified (GM technology has been used in rice to confer herbicide tolerance and pathogen or insect resistance. China invests heavily in research on GM rice. By the end of 2014, at least 250 transgenic rice lines had been developed in China. To monitor the presence of GM rice in food and feed, we collected information on foreign elements from 250 transgenic rice lines and found 5 elements, including the Agrobacterium tumefaciens nopaline synthase terminator (T-NOS, the cauliflower mosaic virus 35S promoter (CaMV35S, the ubiquitin gene (Ubi, the bar gene, and the hygromycin phosphotransferase gene (Hpt, that are commonly present in GM rice. Therefore, we constructed a novel plasmid (pBJGMM001 that contains fragments of these elements and two endogenous reference genes (the sucrose phosphate synthase gene, SPS, and the phosphoenolpyruvate carboxylase gene, PEPC. pBJGMM001 can serve as a standard for detecting 96% of GM rice lines in China. The primers, amplicons, reaction mixture, and PCR program were developed based on Chinese National Standards. The protocol was validated and determined to be suitable for practical use in monitoring and identifying GM rice.

  3. A novel reference plasmid for the qualitative detection of genetically modified rice in food and feed.

    Science.gov (United States)

    Li, Liang; Dong, Mei; An, Na; Liang, Lixia; Wan, Yusong; Jin, Wujun

    2015-01-01

    Rice is one of the most important food crops in the world. Genetically modified (GM) technology has been used in rice to confer herbicide tolerance and pathogen or insect resistance. China invests heavily in research on GM rice. By the end of 2014, at least 250 transgenic rice lines had been developed in China. To monitor the presence of GM rice in food and feed, we collected information on foreign elements from 250 transgenic rice lines and found 5 elements, including the Agrobacterium tumefaciens nopaline synthase terminator (T-NOS), the cauliflower mosaic virus 35S promoter (CaMV35S), the ubiquitin gene (Ubi), the bar gene, and the hygromycin phosphotransferase gene (Hpt), that are commonly present in GM rice. Therefore, we constructed a novel plasmid (pBJGMM001) that contains fragments of these elements and two endogenous reference genes (the sucrose phosphate synthase gene, SPS, and the phosphoenolpyruvate carboxylase gene, PEPC). pBJGMM001 can serve as a standard for detecting 96% of GM rice lines in China. The primers, amplicons, reaction mixture, and PCR program were developed based on Chinese National Standards. The protocol was validated and determined to be suitable for practical use in monitoring and identifying GM rice.

  4. Comparative genomics analysis of rice and pineapple contributes to understand the chromosome number reduction and genomic changes in grasses

    Directory of Open Access Journals (Sweden)

    Jinpeng Wang

    2016-10-01

    Full Text Available Rice is one of the most researched model plant, and has a genome structure most resembling that of the grass common ancestor after a grass common tetraploidization ~100 million years ago. There has been a standing controversy whether there had been 5 or 7 basic chromosomes, before the tetraploidization, which were tackled but could not be well solved for the lacking of a sequenced and assembled outgroup plant to have a conservative genome structure. Recently, the availability of pineapple genome, which has not been subjected to the grass-common tetraploidization, provides a precious opportunity to solve the above controversy and to research into genome changes of rice and other grasses. Here, we performed a comparative genomics analysis of pineapple and rice, and found solid evidence that grass-common ancestor had 2n =2x =14 basic chromosomes before the tetraploidization and duplicated to 2n = 4x = 28 after the event. Moreover, we proposed that enormous gene missing from duplicated regions in rice should be explained by an allotetraploid produced by prominently divergent parental lines, rather than gene losses after their divergence. This means that genome fractionation might have occurred before the formation of the allotetraploid grass ancestor.

  5. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China.

    Science.gov (United States)

    Williams, Paul N; Lei, Ming; Sun, Guoxin; Huang, Qing; Lu, Ying; Deacon, Claire; Meharg, Andrew A; Zhu, Yong-Guan

    2009-02-01

    Paddy rice has been likened to nictiana sp in its ability to scavenge cadmium (Cd) from soil, whereas arsenic (As) accumulation is commonly an order of magnitude higher than in other cereal crops. In areas such as those found in parts of Hunan province in south central China, base-metal mining activities and rice farming coexist. Therefore there is a considerable likelihood that lead (Pb), in addition to Cd and As, will accumulate in rice grown in parts of this region above levels suitable for human consumption. To test this hypothesis, a widespread provincial survey of rice from mine spoilt paddies (n = 100), in addition to a follow-up market grain survey (n = 122) conducted in mine impacted areas was undertaken to determine the safety of local rice supply networks. Furthermore, a specific Cd, As, and Pb biogeochemical survey of paddy soil and rice was conducted within southern China, targeting sites impacted by mining of varying intensities to calibrate rice metal(loid) transfer models and transfer factors that can be used to predict tissue loading. Results revealed a number of highly significant correlations between shoot, husk, bran, and endosperm rice tissue fractions and that rice from mining areas was enriched in Cd, As, and Pb. Sixty-five, 50, and 34% of all the mine-impacted field rice was predicted to fail national food standards for Cd, As, and Pb, respectively. Although, not as elevated as the grains from the mine-impacted field survey, it was demonstrated that metal(loid) tainted rice was entering food supply chains intended for direct human consumption.

  6. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).

    Science.gov (United States)

    Wang, Baolan; Wei, Haifang; Xue, Zhen; Zhang, Wen-Hao

    2017-04-01

    Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant ( eui1 ) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI . Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA 1 and GA 4 , the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice.

    Science.gov (United States)

    Xu, Enbo; Long, Jie; Wu, Zhengzong; Li, Hongyan; Wang, Fang; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2015-07-01

    Enzymatic extrusion, instead of traditional steam cooking, to treat rice is an efficient and alternative pretreatment for Chinese rice wine fermentation. In order to determine the formation of volatiles in enzymatic extrusion-processed rice wine (EE), and to confirm its characteristic flavor compounds, headspace solid-phase micro-extraction followed by GC-MS was used. A total of 66 volatile compounds were identified in EE. During fermentation, most volatiles generated from enzymatic extruded rice had the similar trends with those from steam-cooked rice, but the differences in the concentration of volatiles indicated a changed balance of flavors release caused by enzymatic extrusion. Besides, the concentrations and sorts of volatiles in EEs fermented from different rice particle sizes, were not dramatically different. By principal component analysis, EE could be distinctly separated from other traditional Chinese rice wines according to its characteristic volatiles, namely, 2-heptanol, 1-octen-3-ol, ethyl 4-hydroxybenzoate, methylpentyl 2-propenoate, γ-hexalactone, and 4-vinylguaiacol. Enzymatic extrusion liquefaction has been a popular thermal treatment for cereals, and gradually being applied in fermentation and liquor-making industry all over the world. The characterization of volatile flavor compounds in Chinese rice wine processed by enzymatic extrusion liquefaction pretreatment, might be made use not only for a better understanding of this new-type rice wine, but for the further utilization of enzymatic extrusion in other wine or alcohol production as well. © 2015 Institute of Food Technologists®

  8. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-qun HUANG

    2008-03-01

    Full Text Available A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chl11(t.

  9. Heritability of Wing Size and Shape of the Rice and Corn Strains of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Cañas-Hoyos, N; Márquez, E J; Saldamando-Benjumea, C I

    2016-08-01

    Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) represents a pest of economic importance in all Western Hemisphere. This polyphagous species has diverged into two populations that have been mainly recognized with various mitochondrial and nuclear molecular markers and named "the rice" and "the corn" strains. In Colombia, both strains have evolved prezygotic and postzygotic isolation. They differ in tolerance to Bacillus thuringiensis (Cry1Ac and Cry1Ab endotoxins) and the insecticides lambda-cyhalothrin and methomyl. In 2014, a wing morphometric analysis made in 159 individuals from a colony showed that both strains significantly differ in wing shape. The species also exhibits sexual dimorphism in the rice strain as in females wing size is larger than in males. Here, we continued this work with another wing morphometric approach in laboratory-reared strains to calculate wing size and shape heritabilities using a full-sib design and in wild populations to determine if this method distinguishes these strains. Our results show that male heritabilities of both traits were higher than female ones. Wild populations were significantly different in wing shape and size. These results suggest that wing morphometrics can be used as an alternative method to molecular markers to differentiate adults from laboratory-reared populations and wild populations of this pest, particularly in males of this species. Finally, Q ST values obtained for wing size and shape further demonstrated that both strains are genetically differentiated in nature.

  10. Identification and genetic assay of a high-chlorophyll-content mutant in Rice

    International Nuclear Information System (INIS)

    Liu Baofu; Chen Xifeng; Jin Yang; Gu Zhimin; Ma Bojun; Zhu Xudong

    2011-01-01

    A deep rice mutant ZM1120 was screened from the γ-rays irradiation mutation library of Zhonghua 11. Compared to the wild-type control, this mutant were darker (greener) in shoots and leaves, and after sowing 60 and 90 d, the content of chlorophyll were increased by 16.0% and 7.2%, respectively, and the content of carotenoid also increased by 23.1% and 24.2%, respectively. After sowing 90 d the net photosynthetic rate and transpiration rate were increased by 16.3% and 11.4%, respectively. The agronomical traits of this mutant significantly changed, and the traits of plant height, flag-leaf length, flag-leaf width, tiller number per plant, panicle length and setting rate decreased, but the grain length and 1000-grain weight increased by 7.9% and 2.6%. Genetic analysis revealed that the mutation phenotype was controlled by a single recessive nuclear gene, and further cloning and function assay will be useful for understanding the mechanism of photosynthesis and for rice breeding in future. (authors)

  11. Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields

    Science.gov (United States)

    Conrad, R.

    2006-12-01

    Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce

  12. Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice

    Science.gov (United States)

    Badoni, Saurabh; Das, Sweta; Sayal, Yogesh K.; Gopalakrishnan, S.; Singh, Ashok K.; Rao, Atmakuri R.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.

    2016-01-01

    We developed genome-wide 84634 ISM (intron-spanning marker) and 16510 InDel-fragment length polymorphism-based ILP (intron-length polymorphism) markers from genes physically mapped on 12 rice chromosomes. These genic markers revealed much higher amplification-efficiency (80%) and polymorphic-potential (66%) among rice accessions even by a cost-effective agarose gel-based assay. A wider level of functional molecular diversity (17–79%) and well-defined precise admixed genetic structure was assayed by 3052 genome-wide markers in a structured population of indica, japonica, aromatic and wild rice. Six major grain weight QTLs (11.9–21.6% phenotypic variation explained) were mapped on five rice chromosomes of a high-density (inter-marker distance: 0.98 cM) genetic linkage map (IR 64 x Sonasal) anchored with 2785 known/candidate gene-derived ISM and ILP markers. The designing of multiple ISM and ILP markers (2 to 4 markers/gene) in an individual gene will broaden the user-preference to select suitable primer combination for efficient assaying of functional allelic variation/diversity and realistic estimation of differential gene expression profiles among rice accessions. The genomic information generated in our study is made publicly accessible through a user-friendly web-resource, “Oryza ISM-ILP marker” database. The known/candidate gene-derived ISM and ILP markers can be enormously deployed to identify functionally relevant trait-associated molecular tags by optimal-resource expenses, leading towards genomics-assisted crop improvement in rice. PMID:27032371

  13. Effect of waxy rice flour and cassava starch on freeze-thaw stability of rice starch gels.

    Science.gov (United States)

    Charoenrein, Sanguansri; Preechathammawong, Nutsuda

    2012-10-01

    Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Electricity generation from rice husk in Indian rice mills: potential and financial viability

    International Nuclear Information System (INIS)

    Kapur, T.; Kandpal, T.C.; Garg, H.P.

    1998-01-01

    Rice husk generated as a by-product of rice processing is an important energy resource. The availability of this resource in India has been assessed and the technologies for exploitation of its energy potential in the rice processing industry discussed. Nomographs have been developed for estimation of the husk required to meet the energy of parboiling, drying and milling operations. The unit cost of electricity using rice husk gasifier-based power generation systems has been calculated and its financial feasibility assessed in comparison with utility-supplied and diesel-generated electricity. With the cost and efficiency data assumed here, the unit cost of electricity produced by rice husk gasifier-dual fuel engine-generator system varies between Rs 2/kWh and Rs 7/kWh. (35 Rs approximates to SUS 1.). (author)

  15. Electricity generation from rice husk in Indian rice mills: potential and financial viability

    Energy Technology Data Exchange (ETDEWEB)

    Kapur, T.; Kandpal, T.C.; Garg, H.P. [Indian Inst. of Technology, Centre for Energy Studies, New Delhi (India)

    1998-12-31

    Rice husk generated as a by-product of rice processing is an important energy resource. The availability of this resource in India has been assessed and the technologies for exploitation of its energy potential in the rice processing industry discussed. Nomographs have been developed for estimation of the husk required to meet the energy of parboiling, drying and milling operations. The unit cost of electricity using rice husk gasifier-based power generation systems has been calculated and its financial feasibility assessed in comparison with utility-supplied and diesel-generated electricity. With the cost and efficiency data assumed here, the unit cost of electricity produced by rice husk gasifier-dual fuel engine-generator system varies between Rs 2/kWh and Rs 7/kWh. (35 Rs approximates to SUS 1.). (author)

  16. Evidence for Non-Transmission of Rice Yellow Mottle Virus (RYMV through Rice Seed

    Directory of Open Access Journals (Sweden)

    Sy, AA.

    2004-01-01

    Full Text Available An indexing of the organs (radicle and plumule and components (husk, endosperm and embryo of rice seeds using Enzyme Linked Immunosorbent Assay (ELISA was carried out to detect Rice yellow mottle virus (RYMV and establish the exact location of the virus in the rice seed. RYMV was detected only in the husk (seed coat but not in the endosperm, plumule, radicle, nor embryo. None of the seedlings raised from the seeds expressed RYMV symptoms. No virus particle was detected by the ELISA test in the leaves of the screenhouse-reared plants obtained from seeds of infected plants. The results indicate that RYMV is apparently not transmitted through rice seed probably because the virus is seed-borne in the husk (seed coat of mature rice seeds.

  17. Genome-wide analysis of potential cross-reactive endogenous allergens in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Fang Chao Zhu

    2015-01-01

    Full Text Available The proteins in the food are the source of common allergic components to certain patients. Current lists of plant endogenous allergens were based on the medical/clinical reports as well as laboratory results. Plant genome sequences made it possible to predict and characterize the genome-wide of putative endogenous allergens in rice (Oryza sativa L.. In this work, we identified and characterized 122 candidate rice allergens including the 22 allergens in present databases. Conserved domain analysis also revealed 37 domains among rice allergens including one novel domain (histidine kinase-, DNA gyrase B-, and HSP90-like ATPase, PF13589 adding to the allergen protein database. Phylogenetic analysis of the allergens revealed the diversity among the Prolamin superfamily and DnaK protein family, respectively. Additionally, some allergens proteins clustered on the rice chromosome might suggest the molecular function during the evolution.

  18. Impact of bio-processing on rice

    Directory of Open Access Journals (Sweden)

    ANCA NICOLAU

    2011-07-01

    Full Text Available The usual way of preparing rice is boiling, thermal process that gives it a lower digestibility as compared to instantiation, extrusion or expandation. Having in view this fact, the possibility to biotechnologically improve the boiled rice digestibility was investigated in a laboratory study. In this respect, boiled rice wassolid state fermented using a strain of Saccharomycopsis fibuligera, an amylase producing yeast originating from ragi. Fermented rice was then analyzed from the point of view of its content in easily assimilable sugars, protein, amino-acids, phosphorus and vitamins from B group. Biochemical analyses revealed that the fermented rice has a ten times higher content of reducing sugars than boiled rice, due to starch hydrolysis, while chromatographic studies proved that the fermented rice contains glucose, maltose, maltotriose and maltotetrose that are easily assimilable carbohydrates.Fermented rice has a protein content that is two times higher than that of boiled rice because it contains the yeast biomass, and is enriched in vitamins from B group (B1, B2, and B6 that are synthesized by the yeast. Inorganic phosphorus present in rice doubles its concentration in fermented rice, which means thatphosphorus bioavailability is increased.The sensorial profile of boiled rice is also improved by fermentation.This study proves the possibility to have a processing method which is relatively cheap, practical and of which the resulting product has good nutritive qualities and does not pose safety problems due to pure culture utilization as starter.

  19. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant.

    Science.gov (United States)

    Li, Zhaowei; Su, Da; Lei, Bingting; Wang, Fubiao; Geng, Wei; Pan, Gang; Cheng, Fangmin

    2015-03-15

    To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed

  20. A 90-day safety study of genetically modified rice expressing rhIGF-1 protein in C57BL/6J rats.

    Science.gov (United States)

    Tang, Maoxue; Xie, Tingting; Cheng, Wenke; Qian, Lili; Yang, Shulin; Yang, Daichang; Cui, Wentao; Li, Kui

    2012-06-01

    Genetically modified plants expressing disease resistance traits offer new treatment strategies for human diseases, but at the same time present a challenge in terms of food safety assessment. The present 90-day feeding study was designed to assess the safety of transgenic rice expressing the recombinant human insulin-like growth factor-1 (rhIGF-1) compared to its parental wild rice. Male and female C57BL/6J rats were given a nutritionally balanced purified diet with 20% transgenic rhIGF-1 rice or 20% parental rice for 90 days. This corresponds to a mean daily rhIGF-1 protein intake of approximately 217.6 mg/kg body weight based on the average feed consumption. In the animal study a range of biological, biochemical, clinical, microbiological and pathological parameters were examined and several significant differences were observed between groups, but none of the effects were considered to be adverse. In conclusion, no adverse or toxic effects on C57BL/6J rats were observed in the design used in this 90-day study. These results will provide valuable information for the safety assessment of genetically modified food crops.

  1. A nucleotide substitution at the 5′ splice site of intron 1 of rice HEADING DATE 1 (HD1 gene homolog in foxtail millet, broadly found in landraces from Europe and Asia

    Directory of Open Access Journals (Sweden)

    Kenji Fukunaga

    2015-12-01

    Full Text Available We investigated genetic variation of a rice HEADING DATE 1(HD1 homolog in foxtail millet. First, we searched for a rice HD1 homolog in a foxtail millet genome sequence and designed primers to amplify the entire coding sequence of the gene. We compared full HD1 gene sequences of 11 accessions (including Yugu 1, a Chinese cultivar used for genome sequencing from various regions in Europe and Asia, found a nucleotide substitution at a putative splice site of intron 1, and designated the accessions with the nucleotide substitution as carrying a splicing variant. We verified by RT-PCR that this single nucleotide substitution causes aberrant splicing of intron 1. We investigated the geographical distribution of the splicing variant in 480 accessions of foxtail millet from various regions of Europe and Asia and part of Africa by dCAPS and found that the splicing variant is broadly distributed in Europe and Asia. Differences of heading times between accessions with wild type allele of the HD1 gene and those with the splicing variant allele were unclear. We also investigated variation in 13 accessions of ssp. viridis, the wild ancestor, and the results suggested that the wild type is predominant in the wild ancestor.

  2. Storage stability of flour-blasted brown rice

    Science.gov (United States)

    Brown rice was blasted with rice flour rather than sand in a sand blaster to make microscopic nicks and cuts so that water can easily penetrate into the brown rice endosperm and cook the rice in a shorter time. The flour-blasted American Basmati brown rice, long grain brown rice, and parboiled long...

  3. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images.

    Science.gov (United States)

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-04-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between Rice Landsat and Rice NLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region.

  4. International tourist preference of Lodok Rice Field natural elements, the cultural rice field from Manggarai - Indonesia

    Science.gov (United States)

    March Syahadat, Ray; Trie Putra, Priambudi; Nuraini; Nailufar, Balqis; Fatmala Makhmud, Desy

    2017-10-01

    Lodok Rice Field or usually known as spiderweb rice field is a system of land division. It cultural rice field only found on Manggarai, Province of East Nusa Tenggara, Indonesia. The landscape of Lodok Rice Field was aesthetic and it has big potential for tourism development. The aim of this study was to know the perception of natural elements of Lodok Rice Field landscape that could influence international tourist to visited Lodok Rice Field. If we know the elements that could influenced the international tourist, we could used the landscape image for tourism media promotion. The methods of this study used scenic beauty estimation (SBE) by 85 respondents from 34 countries and Kruskal Wallis H test. The countries grouped by five continents (Asia, America, Europe, Africa, and Oceania). The result showed that the Asian respondents liked the elements of sky, mountain, and the rice field. Then, the other respondent from another continent liked the elements of sunshine, mountain, and the rice field. Although the Asian had different perception about landscape elements of rice field’s good view, it’s not differ significantly by Kruskal Wallis H test.

  5. Rice Production without Insecticide in Smallholder Farmer's Field

    Directory of Open Access Journals (Sweden)

    M. P. Ali

    2017-05-01

    Full Text Available Highlights:Use of perching, sweeping, and need based insecticide (IPM technique useage produce at par yields compared to prophylactic insecticide useage in rice fields.There exists a technique that can reduce 75% of insecticide useage in rice field.The results were obtained in cooperation between smallholder rice farmers and researchers of Bangladesh.Currently rice protection from insect pests solely depends on chemical pesticides which have tremendous impact on biodiversity, environment, animal, and human health. To reduce their impact from our society we need to cut pesticide use from agricultural practices. To address this issue, we did an experiment to identify realistic solutions that could help farmers build sustainable crop protection systems and minimize useage of insecticides and thus reduce the impact of pesticides in the environment. Innovations developed jointly by farmers and researchers and evaluated for their potential to be adopted by more farmers. In this paper we tested four management practices jointly with smallholder farmer fields in order to select the best one. Four management practices were used namely, T1 = Prophylactic use of insecticide where insecticide was applied in rice field at every 15 days interval without judging the infestation level; T2 = Perching (that is, placing roosting (perching sites for insectivorous birds within the rice field and concurrent sweep net samples along with need-based insecticide application; T3 = Perching only; and T4 = Farmer's own practices. The results revealed that routine application of insecticides for crop protection is not mandatory which is commonly found at use in rice farmers. In our experiment, where prophylactic method or farmers used 3–4 times insecticides without judging the insect pests infestation level, the similar pest population was found when compared to the field where insecticide was not applied. Our management system reduced by 75% the use of insecticides even

  6. Do rice water weevils and rice stem borers compete when sharing a host plant?

    Science.gov (United States)

    Shi, Sheng-Wei; He, Yan; Ji, Xiang-Hua; Jiang, Ming-Xing; Cheng, Jia-An

    2008-07-01

    The rice water weevil (RWW) Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) is an invasive insect pest of rice Oryza sativa L. in China. Little is known about the interactions of this weevil with indigenous herbivores. In the present study, adult feeding and population density of the weevil, injury level of striped stem borer Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) and pink stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) to rice, as well as growth status of their host plants were surveyed in a rice field located in Southeastern Zhejiang, China, in 2004 with the objective to discover interspecific interactions on the rice. At tillering stage, both adult feeding of the weevil and injury of the stem borers tended to occur on larger tillers (bearing 5 leaves) compared with small tillers (bearing 2~4 leaves), but the insects showed no evident competition with each other. At booting stage, the stem borers caused more withering/dead hearts and the weevil reached a higher density on the plants which had more productive tillers and larger root system; the number of weevils per tiller correlated negatively with the percentage of withering/dead hearts of plants in a hill. These observations indicate that interspecific interactions exist between the rice water weevil and the rice stem borers with negative relations occurring at booting or earlier developmental stages of rice.

  7. Do rice water weevils and rice stem borers compete when sharing a host plant?*

    Science.gov (United States)

    Shi, Sheng-wei; He, Yan; Ji, Xiang-hua; Jiang, Ming-xing; Cheng, Jia-an

    2008-01-01

    The rice water weevil (RWW) Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) is an invasive insect pest of rice Oryza sativa L. in China. Little is known about the interactions of this weevil with indigenous herbivores. In the present study, adult feeding and population density of the weevil, injury level of striped stem borer Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) and pink stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) to rice, as well as growth status of their host plants were surveyed in a rice field located in Southeastern Zhejiang, China, in 2004 with the objective to discover interspecific interactions on the rice. At tillering stage, both adult feeding of the weevil and injury of the stem borers tended to occur on larger tillers (bearing 5 leaves) compared with small tillers (bearing 2~4 leaves), but the insects showed no evident competition with each other. At booting stage, the stem borers caused more withering/dead hearts and the weevil reached a higher density on the plants which had more productive tillers and larger root system; the number of weevils per tiller correlated negatively with the percentage of withering/dead hearts of plants in a hill. These observations indicate that interspecific interactions exist between the rice water weevil and the rice stem borers with negative relations occurring at booting or earlier developmental stages of rice. PMID:18600788

  8. Genetic Control of Seed Shattering in Rice by the APETALA2 Transcription Factor SHATTERING ABORTION1[C][W][OA

    Science.gov (United States)

    Zhou, Yan; Lu, Danfeng; Li, Canyang; Luo, Jianghong; Zhu, Bo-Feng; Zhu, Jingjie; Shangguan, Yingying; Wang, Zixuan; Sang, Tao; Zhou, Bo; Han, Bin

    2012-01-01

    Seed shattering is an important agricultural trait in crop domestication. SH4 (for grain shattering quantitative trait locus on chromosome 4) and qSH1 (for quantitative trait locus of seed shattering on chromosome 1) genes have been identified as required for reduced seed shattering during rice (Oryza sativa) domestication. However, the regulatory pathways of seed shattering in rice remain unknown. Here, we identified a seed shattering abortion1 (shat1) mutant in a wild rice introgression line. The SHAT1 gene, which encodes an APETALA2 transcription factor, is required for seed shattering through specifying abscission zone (AZ) development in rice. Genetic analyses revealed that the expression of SHAT1 in AZ was positively regulated by the trihelix transcription factor SH4. We also identified a frameshift mutant of SH4 that completely eliminated AZs and showed nonshattering. Our results suggest a genetic model in which the persistent and concentrated expression of active SHAT1 and SH4 in the AZ during early spikelet developmental stages is required for conferring AZ identification. qSH1 functioned downstream of SHAT1 and SH4, through maintaining SHAT1 and SH4 expression in AZ, thus promoting AZ differentiation. PMID:22408071

  9. Field trial of GABA-fortified rice plants and oral administration of milled rice in spontaneously hypertensive rats.

    Science.gov (United States)

    Kowaka, Emi; Shimajiri, Yasuka; Kawakami, Kouhei; Tongu, Miki; Akama, Kazuhito

    2015-06-01

    Hypertension is one of the most critical risk factors accompanying cardiovascular diseases. γ-Aminobutyric acid (GABA) is a non-protein amino acid that functions as a major neurotransmitter in mammals and also as a blood-pressure lowering agent. We previously produced GABA-fortified rice lines of a popular Japonica rice cultivar 'Koshihikari' by genetic manipulation of GABA shunt-related genes. In the study reported here, we grew these same novel rice lines in a field trial and administered the milled rice orally to rats. The yield parameters of the transgenic rice plants were almost unchanged compared to those of untransformed cv. 'Koshihikari' plants, while the rice grains of the transgenic plants contained a high GABA content (3.5 g GABA/kg brown rice; 0.75-0.85 GABA g/kg milled rice) in a greenhouse trial. Oral administration of a diet containing 2.5% GABA-fortified rice, with a daily intake for 8 weeks, had an approximately 20 mmHg anti-hypertensive effect in spontaneous hypertensive rats but not in normotensive Wistar-Kyoto rats. These results suggest that GABA-fortified rice may be applicable as a staple food to control or prevent hypertension.

  10. Effect of acetic acid on rice seeds coated with rice husk ash

    Directory of Open Access Journals (Sweden)

    Lizandro Ciciliano Tavares

    2013-06-01

    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  11. The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice.

    Science.gov (United States)

    Burgos, Nilda Roma; Singh, Vijay; Tseng, Te Ming; Black, Howard; Young, Nelson D; Huang, Zhongyun; Hyma, Katie E; Gealy, David R; Caicedo, Ana L

    2014-11-01

    The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management. © 2014 American Society of Plant Biologists. All Rights Reserved.

  12. Residues and accumulation of molinate in rice crops and aquatic weeds in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Sabri Junoh; Nuriati Nurdin; Ramli Ishak

    2002-01-01

    Plant and soil residue levels and its accumulation in rice crops and rice aquatic weed plants were studied. Molinate residue levels in rice, weeds and soil were not significantly different between the recycled and the non-recycled area, even though they were higher in the non-recycled area. In the rice plant, the residue level at 10 DAT (days after treatment) was significantly higher than 30 DAT in the recycled area. In rice aquatic weed plants, the residue level was significantly higher at 10 DAT as compared to 30 DAT in the non-recycled area. Molinate residue levels in soil at 10 DAT and 30 DAT were similar. Molinate accumulated (ratio of molinate concentration in plant over soil) more in the rice crop as compared to rice aquatic weeds at 10 DAT, in both the recycled and the non-recycled areas. (Author)

  13. Rice stem borers in Malaya. A proposal to use mutation breeding for their control

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, F C [University of Malaya, Kuala Lumpur (Malaysia)

    1970-03-01

    . Various factors pertaining to the morphology, physiology and chemical nature of the rice plant are possibly responsible for the stem borer resistance. Carefully planned experiments have to evaluate their contribution to resistance before successful breeding programs can be undertaken. A wild species of rice in Malaya, Oryza ridleyi Hook. is said to be highly resistant. Similarly, several cultivated varieties are claimed to offer considerable resistance, but none of them can be recommended for commercial planting because of unsatisfactory yield, grain size and appearance, and nutrient and cooking value. Therefore, in order to develop a valuable resistant variety one would have to improve all the above characteristics. Mutation breeding with a high standard variety maybe more promising than a long-term cross-breeding program and should, in the opinion of the author, also be attempted in other countries. Through the co-operation of the authorities of the Serdang Agriculture College, the use of their paddy fields for observation and experimentation has been secured. Preliminary work to assess the type of borer and infestation in the most common rice-varieties namely Mahsuri, Malinja and Ria is already in progress. This is essential because most of the previous work on stem borers in Malaya has been carried out on older varieties which are not much favoured either by the government or by the people. All the four species mentioned earlier have been found attacking the new varieties at Serdang. At present, the data are too meagre to warrant any definite conclusions, but the following possibilities are indicated by the field observation. (a) Some species of borers are more common in one locality than other species, (b) In a particular locality there seems to be a quantitative host variety preference, (c) There is no indication of a relationship between the borer infestation and the habit of the plants, (d) Some varieties are possibly more vulnerable during younger stages. (e

  14. Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk.

    Science.gov (United States)

    Islam, Shofiqul; Rahman, Mohammad Mahmudur; Islam, M R; Naidu, Ravi

    2016-11-01

    Rice is an essential staple food and feeds over half of the world's population. Consumption of rice has increased from limited intake in Western countries some 50years ago to major dietary intake now. Rice consumption represents a major route for inorganic arsenic (As) exposure in many countries, especially for people with a large proportion of rice in their daily diet as much as 60%. Rice plants are more efficient in assimilating As into its grains than other cereal crops and the accumulation may also adversely affect the quality of rice and their nutrition. Rice is generally grown as a lowland crop in flooded soils under reducing conditions. Under these conditions the bioavailability of As is greatly enhanced leading to excessive As bioaccumulation compared to that under oxidizing upland conditions. Inorganic As species are carcinogenic to humans and even at low levels in the diet pose a considerable risk to humans. There is a substantial genetic variation among the rice genotypes in grain-As accumulation as well as speciation. Identifying the extent of genetic variation in grain-As concentration and speciation of As compounds are crucial to determining the rice varieties which accumulate low inorganic As. Varietal selection, irrigation water management, use of fertilizer and soil amendments, cooking practices etc. play a vital role in reducing As exposure from rice grains. In the meantime assessing the bioavailability of As from rice is crucial to understanding human health exposure and reducing the risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. [Effects of rice cleaning and cooking process on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice].

    Science.gov (United States)

    Satoh, Motoaki; Sakaguchi, Masayuki; Kobata, Masakazu; Sakaguchi, Yoko; Tanizawa, Haruna; Miura, Yuri; Sasano, Ryoichi; Nakanishi, Yutaka

    2003-02-01

    We studied the effect of cleaning and cooking on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice. The rice had been sprayed in a paddy field in Wakayama city, with 3 kinds of pesticide application protocols: spraying once at the usual concentration of pesticides, repeated spraying (3 times) with the usual concentration of pesticides and spraying once with 3 times the usual concentration of pesticides. The residue levels of pesticide decreased during the rice cleaning process. Silafluofen, which has a higher log Pow value, remained in the hull of the rice. Fenobucarb, which has a lower log Pow value, penetrated inside the rice. The residue concentration of pesticide in polished rice was higher than that in pre-washed rice processed ready for cooking. During the cooking procedure, the reduction of pesticides in polished rice was higher than that in brown rice.

  16. Estimation of loss of 40K during different cooking procedures of rice

    International Nuclear Information System (INIS)

    Aparna, K.R.; Karunakara, N.; Selvi, B.S.; Joshi, R.M.; Ravi, P.M.

    2008-01-01

    The present regulations on toxic element intake is based on the assumption that 100% of the toxin present in raw materials such as cereals, pulses and vegetables are taken up by human being through ingestion. This is not realistic because of the fact that many of the toxic materials are lost during various cooking processes such as washing, peeling, etc. In order to take into account the loss of radionuclide during cooking, some of the regulatory agencies use Retention Factors (F r ) and Processing Efficiencies (P e ) for impact assessment. In Karnataka, rice is the major dietary item and the cooking procedure varies from place to place. This paper presents the results of estimation of F r and P e for two types of cooking procedures of raw rice and boiled rice commonly used in Karnataka. 40 K is used as tracer in the present study because of its natural abundance, easy detection by gamma ray spectrometry and chemical resemblance with 137 Cs. The concentration of 40 K in raw and processed food was estimated by gamma ray spectrometry using an HPGe detector and F r and P e were estimated. The value of F r ranges from 0.6 to 0.85 and 0.41 to 0.72 for raw rice and boiled rice respectively. Similarly, the values of P e vary from 0.9 to 1 for both types of rice. In the absence of site-specific data for 137 Cs, this data can be used for calculation of 137 Cs in cooked rice during accidental conditions of nuclear installations. (author)

  17. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  18. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China.

    Science.gov (United States)

    Fang, Yong; Sun, Xinyang; Yang, Wenjian; Ma, Ning; Xin, Zhihong; Fu, Jin; Liu, Xiaochang; Liu, Meng; Mariga, Alfred Mugambi; Zhu, Xuefeng; Hu, Qiuhui

    2014-03-15

    In this study, four common heavy metals, lead (Pb), cadmium (Cd), arsenic (As) and mercury (Hg) in rice and edible mushrooms of China were studied to evaluate contamination level and edible safety. Ninety two (92) rice samples were collected from the main rice growing regions in China, and 38 fresh and 21 dry edible mushroom samples were collected from typical markets in Nanjing City. The analyzed metal concentrations were significantly different between rice and edible mushroom samples (price samples respectively, were above maximum allowable concentration (MAC). In fresh edible mushroom, Pb and Hg contents in 2.6% samples were above MAC, respectively. However, only Hg content in 4.8% dry edible mushroom samples was above its MAC. Therefore, more than 95% rice and edible mushroom samples in our test had high edible safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Black-bellied whistling duck (Dendrocygna autumnalis) brain cholinesterase characterization and diagnosis of anticholinesterase pesticide exposure in wild populations from Mexico.

    Science.gov (United States)

    Osten, Jaime Rendón-von; Soares, Amadeu M V M; Guilhermino, Lucia

    2005-02-01

    Rice is the main crop in the subbasin of the fluvial lagoon system of Palizada River (FLSPR) in the state of Campeche, Mexico. The pesticides used to control pests of this crop mainly are carbofuran, chlorpyrifos, and glyphosate. Black-bellied whistling duck (Dendrocygna autumnalis) is an ecologically and economically important species in the area. This duck is consumed by local inhabitants throughout the year, despite its potential exposure to pesticides. Due to its feeding habits, abundance, and nutritional value, D. autumnalis is a good indicator of environmental contamination and a potential route of human exposure to organophosphate and carbamate pesticides. In this study, the brain cholinesterase (ChE) in the frontal cerebral cortex of autochthonous ducks was characterized. In addition, the potential of the three locally used pesticides and mixtures to inhibit ChE activity was investigated and the exposure of the wild duck population during intensive pesticide applications in rice fields was evaluated. We found that acetylcholinesterase (AChE) seems to be the predominant ChE form in the biological fraction analyzed. Carbofuran was the most potent ChE inhibitor of D. autumnalis brain ChE activity from the three pesticides analyzed. Cholinesterase inhibition after exposure to pesticide mixtures predominantly was due to carbofuran. A decrease (p 30%) was apparent in wild ducks compared to reference ducks, with recovery of ChE inhibition in wild ducks occurring months later when no pesticides were applied in the field. Dendrocygna autumnalis brain ChE is a suitable parameter for inclusion in biomonitoring programs for both environmental protection and human safety.

  20. Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.).

    Science.gov (United States)

    Ni, Da-Hu; Li, Juan; Duan, Yong-Bo; Yang, Ya-Chun; Wei, Peng-Cheng; Xu, Rong-Fang; Li, Chun-Rong; Liang, Dan-Dan; Li, Hao; Song, Feng-Shun; Ni, Jin-Long; Li, Li; Yang, Jian-Bo

    2014-05-01

    Gene transformation is an important method for improvement of plants into elite varieties. However, the possibility of gene flow between genetically modified (GM) crops and similar species is a serious public issue that may potentially endanger ecological stability. Cleistogamy is expected to be an ideal genetic tool for preventing transgene propagation from GM crops. A rice mutant, cl7(t), was created by ethyl methanesulfonate mutagenesis. The mutant exhibited cleistogamy, and had closed spikelets, reduced plant height, and altered morphology of the leaves, panicle, and seeds. Anatomical investigations revealed that the cl7(t) mutant contained more vascular bundles and thicker stems than the wild type, which increased the mechanical strength of its internodes, and anti-lodging ability. Further studies demonstrated that the force required to open the lemma and palea was higher in the cl7(t) mutant, and there was weak swelling ability in the lodicules, which leads to cleistogamy. Allelic analyses and complementation tests indicated that cl7(t) was a novel allele of dep2, a mutant that was previously reported to have similar panicle morphology. Sequence analysis showed that cl7(t) had a single nucleotide substitution (C to A) in the third exon that leads to a Ser substitution with a stop codon, giving a truncated DEP2 protein. Quantitative RT-PCR and in situ hybridization tests demonstrated that there was lower CL7(t) expression level in the spikelets and weaker CL7(t) signals in the lodicules of the cl7(t) mutant compared with wild type, which implies that CL7(t) might participate in the development of lodicules. To improve the agronomic traits of cl7(t) to fit the needs of field production, the cl7(t) mutant was crossed with an intermediate-type rice variety named Guanghui102, which bears some important agronomic traits, including increased grain numbers and high rate of seed setting. Through multi-generational pedigree selection, cleistogamy lines with improved

  1. Validation of a sensitive DNA walking strategy to characterise unauthorised GMOs using model food matrices mimicking common rice products.

    Science.gov (United States)

    Fraiture, Marie-Alice; Herman, Philippe; Taverniers, Isabel; De Loose, Marc; Van Nieuwerburgh, Filip; Deforce, Dieter; Roosens, Nancy H

    2015-04-15

    To identify unauthorised GMOs in food and feed matrices, an integrated approach has recently been developed targeting pCAMBIA family vectors, highly present in transgenic plants. Their presence is first assessed by qPCR screening and is subsequently confirmed by characterising the transgene flanking regions, using DNA walking. Here, the DNA walking performance has been thoroughly tested for the first time, regarding the targeted DNA quality and quantity. Several assays, on model food matrices mimicking common rice products, have allowed to determine the limit of detection as well as the potential effects of food mixture and processing. This detection system allows the identification of transgenic insertions as low as 10 HGEs and was not affected by the presence of untargeted DNA. Moreover, despite the clear impact of food processing on DNA quality, this method was able to cope with degraded DNA. Given its specificity, sensitivity, reliability, applicability and practicability, the proposed approach is a key detection tool, easily implementable in enforcement laboratories. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Metabolic Engineering of the Regulators in Nitrogen Catabolite Repression To Reduce the Production of Ethyl Carbamate in a Model Rice Wine System

    Science.gov (United States)

    Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Chen, Jian

    2014-01-01

    Rice wine has been one of the most popular traditional alcoholic drinks in China. However, the presence of potentially carcinogenic ethyl carbamate (EC) in rice wine has raised a series of food safety issues. During rice wine production, the key reason for EC formation is urea accumulation, which occurs because of nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. NCR represses urea utilization by retaining Gln3p in the cytoplasm when preferred nitrogen sources are present. In order to increase the nuclear localization of Gln3p, some possible phosphorylation sites on the nuclear localization signal were mutated and the nuclear localization regulation signal was truncated, and the disruption of URE2 provided an additional method of reducing urea accumulation. By combining these strategies, the genes involved in urea utilization (DUR1,2 and DUR3) could be significantly activated in the presence of glutamine. During shake flask fermentations of the genetically modified strains, very little urea accumulated in the medium. Furthermore, the concentrations of urea and EC were reduced by 63% and 72%, respectively, in a model rice wine system. Examination of the normal nutrients in rice wine indicated that there were few differences in fermentation characteristics between the wild-type strain and the genetically modified strain. These results show that metabolic engineering of the NCR regulators has great potential as a method for eliminating EC during rice wine production. PMID:24185848

  3. Effect of Red Yeast Rice and Coconut, Rice Bran or Sunflower Oil Combination in Rats on Hypercholesterolemic Diet.

    Science.gov (United States)

    Govindarajan, Sumitra; Vellingiri, Kishore

    2016-04-01

    Dietary supplements provide a novel population based health approach for treating hyperlipidemias. Red yeast rice is known to have lipid lowering effects. Combination of red yeast rice with various oils is taken by different population around the world. In this present work, we aimed to compare the effects of red yeast rice with different oil (coconut, rice bran and sunflower oil) supplementations on lipid levels and oxidative stress in rats fed on hypercholesterolemic diet. A Randomized controlled study was conducted on 28 male Sprague Dawley rats. It included 4 arms-Control arm (hypercholesterolemic diet), Test arm A (hypercholesterolemic diet +Red yeast rice + Rice bran oil), arm B (hypercholesterolemic diet +Red yeast rice + Coconut oil) and arm C (hypercholesterolemic diet +Red yeast rice + Sunflower oil). At the end of one month, serum cholesterol, triglycerides, MDA and paraoxonase was measured. The mean values of analytes between the different groups were compared using student 't-' test. The rats fed with red yeast rice and rice bran oil combination showed significantly lower levels of serum cholesterol, triglycerides and MDA when compared to the controls. The serum paraoxonase levels were significantly higher in this group when compared to the controls. The rats fed with red yeast rice and coconut oil combination showed significantly lower serum cholesterol and MDA levels when compared to the controls. The mean triglyceride and paraoxonase levels did not show any statistically significant difference from the controls. The rats on red yeast rice and sunflower oil combination did not show any statistically significant difference in the lipid levels and oxidative stress parameters. The food combination which had best outcome in preventing the development of hyperlipidemia and oxidative stress in rats fed with hypercholesterolemic diet was red yeast rice and rice bran oil. Combining red yeast rice with coconut oil and sunflower oil gave suboptimal benefits.

  4. GOLD HULL AND INTERNODE2 Encodes a Primarily Multifunctional Cinnamyl-Alcohol Dehydrogenase in Rice1

    Science.gov (United States)

    Zhang, Kewei; Qian, Qian; Huang, Zejun; Wang, Yiqin; Li, Ming; Hong, Lilan; Zeng, Dali; Gu, Minghong; Chu, Chengcai; Cheng, Zhukuan

    2006-01-01

    Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis. PMID:16443696

  5. Rice-eating quality among consumers in different rice grain preference countries

    NARCIS (Netherlands)

    Suwannaporn, P.; Linnemann, A.R.

    2008-01-01

    More rice is eaten nowadays in traditionally nonrice-eating countries. This study investigated consumer eating quality preferences among consumers in target rice export countries to identify opportunities and strategic implications. A quantitative study with 1,128 consumers of target nationalities

  6. [The main nutrients digestibility of genetically modified rice and parental rice in the terminal ileum of pigs].

    Science.gov (United States)

    Li, Min; Hu, Yi-chun; Piao, Jian-hua; Yang, Xiao-guang

    2010-10-01

    To compare the digestibility of main nutrients in genetically modified rice with double antisense starch-branching enzyme gene and parental rice. Seven Wuzhishan healthy adult barrows were surgically fitted with a T-cannula at the terminal ileum. After surgery, seven pigs were randomly divided into two groups, and fed genetically modified rice and parental rice by a crossover model. Ileal digesta were collected for analysis of main nutrient digestibility. The apparent digestibility levels of protein in genetically modified rice and parental rice were 69.50% ± 4.50%, 69.61% ± 8.40%, respectively (t = 0.01, P = 0.994); true digestibility levels of protein were 87.55% ± 4.95%, 87.64% ± 9.40%, respectively (t = 0.01, P = 0.994); fat digestibility levels were 72.86% ± 0.34%, 77.89% ± 13.09%, respectively (t = 0.95, P = 0.378); carbohydrate digestibility levels were 72.92% ± 7.43%, 92.35% ± 5.88%, respectively (t = 4.27, P = 0.005). The apparent and true digestibility of 17 amino acids had no significant difference in the two rice. Carbohydrate digestibility in genetically modified rice was significantly lower than that in non-genetically modified rice, other main nutrients digestibility in the two rice have substantial equivalence.

  7. A High-Density Genetic Map of Wild Emmer Wheat from the Karaca Dağ Region Provides New Evidence on the Structure and Evolution of Wheat Chromosomes

    Directory of Open Access Journals (Sweden)

    Chad Jorgensen

    2017-10-01

    Full Text Available Wild emmer (Triticum turgidum ssp. dicoccoides is a progenitor of all cultivated wheat grown today. It has been hypothesized that emmer was domesticated in the Karaca Dağ region in southeastern Turkey. A total of 445 recombinant inbred lines of T. turgidum ssp. durum cv. ‘Langdon’ x wild emmer accession PI 428082 from this region was developed and genotyped with the Illumina 90K single nucleotide polymorphism Infinium assay. A genetic map comprising 2,650 segregating markers was constructed. The order of the segregating markers and an additional 8,264 co-segregating markers in the Aegilops tauschii reference genome sequence was used to compare synteny of the tetraploid wheat with the Brachypodium distachyon, rice, and sorghum. These comparisons revealed the presence of 15 structural chromosome rearrangements, in addition to the already known 4A-5A-7B rearrangements. The most common type was an intra-chromosomal translocation in which the translocated segment was short and was translocated only a short distance along the chromosome. A large reciprocal translocation, one small non-reciprocal translocation, and three large and one small paracentric inversions were also discovered. The use of inversions for a phylogeny reconstruction in the Triticum–Aegilops alliance was illustrated. The genetic map was inconsistent with the current model of evolution of the rearranged chromosomes 4A-5A-7B. Genetic diversity in the rearranged chromosome 4A showed that the rearrangements might have been contemporary with wild emmer speciation. A selective sweep was found in the centromeric region of chromosome 4A in Karaca Dağ wild emmer but not in 4A of T. aestivum. The absence of diversity from a large portion of chromosome 4A of wild emmer, believed to be ancestral to all domesticated wheat, is puzzling.

  8. Processing Conditions, Rice Properties, Health and Environment

    Directory of Open Access Journals (Sweden)

    Nobutaka Nakamura

    2011-06-01

    Full Text Available Rice is the staple food for nearly two-thirds of the world’s population. Food components and environmental load of rice depends on the rice form that is resulted by different processing conditions. Brown rice (BR, germinated brown rice (GBR and partially-milled rice (PMR contains more health beneficial food components compared to the well milled rice (WMR. Although the arsenic concentration in cooked rice depends on the cooking methods, parboiled rice (PBR seems to be relatively prone to arsenic contamination compared to that of untreated rice, if contaminated water is used for parboiling and cooking. A change in consumption patterns from PBR to untreated rice (non-parboiled, and WMR to PMR or BR may conserve about 43–54 million tons of rice and reduce the risk from arsenic contamination in the arsenic prone area. This study also reveals that a change in rice consumption patterns not only supply more food components but also reduces environmental loads. A switch in production and consumption patterns would improve food security where food grains are scarce, and provide more health beneficial food components, may prevent some diseases and ease the burden on the Earth. However, motivation and awareness of the environment and health, and even a nominal incentive may require for a method switching which may help in building a sustainable society.

  9. Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization

    International Nuclear Information System (INIS)

    Sinha, Shailendra; Agarwal, Avinash Kumar; Garg, Sanjeev

    2008-01-01

    Increased environmental awareness and depletion of resources are driving industry to develop viable alternative fuels from renewable resources that are environmentally more acceptable. Vegetable oil is a potential alternative fuel. The most detrimental properties of vegetable oils are its high viscosity and low volatility, and these cause several problems during their long duration usage in compression ignition (CI) engines. The most commonly used method to make vegetable oil suitable for use in CI engines is to convert it into biodiesel, i.e. vegetable oil esters using process of transesterification. Rice bran oil is an underutilized non-edible vegetable oil, which is available in large quantities in rice cultivating countries, and very little research has been done to utilize this oil as a replacement for mineral Diesel. In the present work, the transesterification process for production of rice bran oil methyl ester has been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized with the objective of producing high quality rice bran oil biodiesel with maximum yield. The optimum conditions for transesterification of rice bran oil with methanol and NaOH as catalyst were found to be 55 deg. C reaction temperature, 1 h reaction time, 9:1 molar ratio of rice bran oil to methanol and 0.75% catalyst (w/w). Rice bran oil methyl ester thus produced was characterized to find its suitability to be used as a fuel in engines. Results showed that biodiesel obtained under the optimum conditions has comparable properties to substitute mineral Diesel, hence, rice bran oil methyl ester biodiesel could be recommended as a mineral Diesel fuel substitute for compression ignition (CI) engines in transportation as well as in the agriculture sector

  10. Growth in rice cells requires de novo purine biosynthesis by the blast fungus Magnaporthe oryzae

    Science.gov (United States)

    Fernandez, Jessie; Yang, Kuan Ting; Cornwell, Kathryn M.; Wright, Janet D.; Wilson, Richard A.

    2013-01-01

    Increasing incidences of human disease, crop destruction and ecosystem perturbations are attributable to fungi and threaten socioeconomic progress and food security on a global scale. The blast fungus Magnaporthe oryzae is the most devastating pathogen of cultivated rice, but its metabolic requirements in the host are unclear. Here we report that a purine-requiring mutant of M. oryzae could develop functional appressoria, penetrate host cells and undergo the morphogenetic transition to elaborate bulbous invasive hyphae from primary hyphae, but further in planta growth was aborted. Invasive hyphal growth following rice cell ingress is thus dependent on de novo purine biosynthesis by the pathogen and, moreover, plant sources of purines are neither available to the mutant nor required by the wild type during the early biotrophic phase of infection. This work provides new knowledge about the metabolic interface between fungus and host that might be applicable to other important intracellular fungal pathogens. PMID:23928947

  11. Development of Ozone Technology Rice Storage Systems (OTRISS) for Quality Improvement of Rice Production

    International Nuclear Information System (INIS)

    Nur, M; Kusdiyantini, E; Wuryanti, W; Winarni, T A; Widyanto, S A; Muharam, H

    2015-01-01

    This research has been carried out by using ozone to address the rapidly declining quality of rice in storage. In the first year, research has focused on the rice storage with ozone technology for small capacity (e.g., household) and the medium capacity (e.g., dormitories, hospitals). Ozone was produced by an ozone generator with Dielectric Barrier Discharge Plasma (DBDP). Ozone technology rice storage system (OTRISS) is using ozone charateristic which is a strong oxidizer. Ozone have a short endurance of existence and then decompose, as a result produce oxygen and radicals of oxygen. These characteristics could kill microorganisms and pests, reduce air humidity and enrich oxygen. All components used in SPBTO assembled using raw materials available in the big cities in Indonesia. Provider of high voltage (High Voltage Power Supply, 40-70 kV, 23 KH, AC) is one of components that have been assembled and tested. Ozone generator is assembled with 7 reactors of Dielectric Barrier Discharge Plasma (DBDP). Rice container that have been prepared for OTRISS have adjusted so can be integrated with generator, power supply and blower to blow air. OTRISS with a capacity of 75 kg and 100 kg have been made and tested. The ability of ozone to eliminate bacteria and fungi have been tested and resulted in a decrease of microorganisms at 3 log CFU/g. Testing in food chemistry showed that ozone treatment of rice had not changed the chemical content that still meet the standard of chemical content and nutritional applicable to ISO standard milled rice. The results of this study are very likely to be used as an alternative to rice storage systems in warehouse. Test and scale-up is being carried out in a mini warehouse whose condition is mimicked to rice in National Rice Storage of Indonesia (Bulog) to ensure quality. Next adaptations would be installed in the rice storage system in the Bulog. (paper)

  12. Surveys of rice sold in Canada for aflatoxins, ochratoxin A and fumonisins

    Science.gov (United States)

    Bansal, J.; Pantazopoulos, P.; Tam, J.; Cavlovic, P.; Kwong, K.; Turcotte, A.-M.; Lau, B.P.-Y.; Scott, P.M.

    2011-01-01

    Approximately 200 samples of rice (including white, brown, red, black, basmati and jasmine, as well as wild rice) from several different countries, including the United States, Canada, Pakistan, India and Thailand, were analysed for aflatoxins, ochratoxin A (OTA) and fumonisins by separate liquid Chromatographic methods in two different years. The mean concentrations for aflatoxin B1 (AFB1) were 0.19 and 0.17 ng g−1 with respective positive incidences of 56% and 43% (≥ the limit of detection (LOD) of 0.002 ng g−1). Twenty-three samples analysed in the second year also contained aflatoxin B2 (AFB2) at levels ≥LOD of 0.002 ng g−1 The five most contaminated samples in each year contained 1.44–7.14 ng AFB1 g−1 (year 1) and 1.45–3.48 ng AFB1 g−1 (year 2); they were mostly basmati rice from India and Pakistan and black and red rice from Thailand. The average concentrations of ochratoxin A (OTA) were 0.05 and 0.005 ng g−1 in year 1 and year 2, respectively; incidences of samples containing ≥LOD of 0.05 ng g−1 were 43% and 1%, respectively, in the 2 years. All positive OTA results were confirmed by LC-MS/MS. For fumonisins, concentrations of fumonisin B1 (FB1) averaged 4.5 ng g−1 in 15 positive samples (≥0.7 ng g−1) from year 1 (n = 99); fumonisin B2 (FB2) and fumonisin B3 (FB3) were also present (≥1 ng g−1). In the second year there was only one positive sample (14 ng g−1 FB1) out of 100 analysed. All positive FB1 results were confirmed by LC-MS/MS. PMID:21623501

  13. Mechanisms of UVB-resistance in rice: Cultivar differences in the sensitivity to UVB radiation in rice

    International Nuclear Information System (INIS)

    Hidema, J.

    2001-01-01

    In a study on the sensitivity to UVB radiation of rice cultivars of 5 Asian rice ecotypes, results showed that the rice cultivars widely varied in UVB sensitivity; among the Japanese rice cultivars, Sasanishiki was more resistant to UVB, while Norin 1 was less resistant; UV-sensitive Norin 1 was deficient in photorepair of cyclobutane pyrimidine dimers (UV-induced DNA damage), and the sensitivity to UVB radiation significantly correlated with deficient CPD photorepair; and that this deficiency in Norin 1 resulted from a functionally altered photolyase. The results suggest that photorepair capacity is a principal factor in determining UVB sensitivity in rice. The effects of supplemental UVB radiation on the growth and yield of Japanese rice cultivars under field conditions were also studied in Japan since 1993. The results indicate that supplemental UVB radiation had inhibitory effects on the growth and yield of rice. Furthermore, grain size was smaller with supplemental UVB radiation

  14. Contribution of rice straw carbon to CH4 emission from rice paddies using 13C-enriched rice straw

    Science.gov (United States)

    Watanabe, Akira; Yoshida, Mariko; Kimura, Makoto

    1998-04-01

    It is generally recognized that the application of rice straw (RS) increases CH4 emission from rice paddies. To estimate the contribution of RS carbon to CH4 emission, a pot experiment was conducted using 13C-enriched RS. The percentage contributions of RS carbon to CH4 emission throughout the rice growth period were 10±1, 32±3, and 43±3% for the treatments with RS applied at the rates of 2, 4, and 6 g kg-1 soil, respectively. The increase in the rate of application of RS increased CH4 emission derived from both RS carbon and other carbon sources. The percentage contribution of RS carbon to CH4 emission was larger in the earlier period (maximum 96%) when the decomposition rate of RS was larger. After RS decomposition had slowed, CH4 emission derived from RS carbon decreased. However, the δ13C values of CH4 emitted from the pots with 13C-enriched RS applied at rates of 4 and 6 g kg-1 soil were significantly higher than those from the pots with natural RS until the harvesting stage. An increased atom-13C% of roots of rice plants growing in the pots with 6 g kg-1 of 13C-enriched RS at around the maximum tiller number stage and a decrease during the following 2 months suggested that rice plants assimilated RS carbon once and then released a portion of it. This supply of RS carbon from roots may be one of the sources of CH4 in the late period of rice growth.

  15. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice.

    Directory of Open Access Journals (Sweden)

    He Gao

    Full Text Available Land plants have evolved increasingly complex regulatory modes of their flowering time (or heading date in crops. Rice (Oryza sativa L. is a short-day plant that flowers more rapidly in short-day but delays under long-day conditions. Previous studies have shown that the CO-FT module initially identified in long-day plants (Arabidopsis is evolutionary conserved in short-day plants (Hd1-Hd3a in rice. However, in rice, there is a unique Ehd1-dependent flowering pathway that is Hd1-independent. Here, we report isolation and characterization of a positive regulator of Ehd1, Early heading date 4 (Ehd4. ehd4 mutants showed a never flowering phenotype under natural long-day conditions. Map-based cloning revealed that Ehd4 encodes a novel CCCH-type zinc finger protein, which is localized to the nucleus and is able to bind to nucleic acids in vitro and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional regulator. Ehd4 expression is most active in young leaves with a diurnal expression pattern similar to that of Ehd1 under both short-day and long-day conditions. We show that Ehd4 up-regulates the expression of the "florigen" genes Hd3a and RFT1 through Ehd1, but it acts independently of other known Ehd1 regulators. Strikingly, Ehd4 is highly conserved in the Oryza genus including wild and cultivated rice, but has no homologs in other species, suggesting that Ehd4 is originated along with the diversification of the Oryza genus from the grass family during evolution. We conclude that Ehd4 is a novel Oryza-genus-specific regulator of Ehd1, and it plays an essential role in photoperiodic control of flowering time in rice.

  16. Characterization and evaluation of rice blast resistance of Chinese indica hybrid rice parental lines

    Directory of Open Access Journals (Sweden)

    Yunyu Wu

    2017-12-01

    Full Text Available The development of resistant varieties and hybrid combinations has been the most effective and economical strategy to control blast disease caused by Magnaporthe oryzae. However, the distribution of major R genes and blast resistance characterization in hybrid rice parents has not been well investigated, resulting in their limited use in hybrid rice blast-resistance breeding. In the present study, 88 elite indica hybrid rice parental lines were evaluated with 30 isolates of M. oryzae collected from the main planting area of indica hybrid rice in China and were characterized for the presence of 11 major resistance genes using molecular markers. The pathogenicity assays showed that four types of hybrid rice parent line showed some resistance to M. oryzae. However, the proportions of highly resistant lines and the mean resistance frequency (RF varied among the four types, with resistance in decreasing order shown by three-line restorer lines, three-line maintainer lines, two-line sterile lines, and two-line restorer lines. All 88 hybrid rice parental lines carried more than one R gene, but none carried the R genes Pi1 and Pi2. Although Pid3 and Pi9 were present only in three-line restorer lines and Pigm only in three-line maintainer lines, the remaining six R genes (Pib, Pid2, Pi5, Pia, Pi54, and Pita were present in the four types of hybrid rice parent with significantly different distribution frequencies. The correlation between R genes and resistance reactions was investigated. The results are expected to provide useful information for rational utilization of major R genes in hybrid rice breeding programs. Keywords: Hybrid rice parental lines, Magnaporthe oryzae, Pi genes, Resistance evaluation, Molecular markers

  17. Evaluation of Heavy Metals Contamination from Environment to Food Matrix by TXRF: The Case of Rice and Rice Husk

    Directory of Open Access Journals (Sweden)

    Fabjola Bilo

    2015-01-01

    Full Text Available This paper is devoted to the chemical analysis of contaminated soils of India and the rice grown in the same area. Total reflection X-ray fluorescence spectroscopy is a well-established technique for elemental chemical analysis of environmental samples, and it can be a useful tool to assess food safety. Metals uptake in rice crop grown in soils from different areas was studied. In this work soil, rice husk and rice samples were analyzed after complete solubilization of samples by microwave acid digestion. Heavy metals concentration detected in rice samples decreases in the following order: Mn > Zn > Cu > Ni > Pb > Cr. The metal content in rice husk was higher than in rice. This study suggests, for the first time, a possible role of heavy metals filter played by rice husk. The knowledge of metals sequestration capability of rice husk may promote some new management practices for rice cultivation to preserve it from pollution.

  18. Innovation Chinese rice wine brewing technology by bi-acidification to exclude rice soaking process.

    Science.gov (United States)

    Wei, Xiao Lu; Liu, Shuang Ping; Yu, Jian Shen; Yu, Yong Jian; Zhu, Sheng Hu; Zhou, Zhi Lei; Hu, Jian; Mao, Jian

    2017-04-01

    As a traditional fermented alcoholic beverage of China, Chinese rice wine (CRW) had a long history of more than 5000 years. Rice soaking process was the most crucial step during CRW brewing process, because rice soaking quality directly determined the quality of CRW. However, rice soaking water would cause the eutrophication of water bodies and waste of water. The longer time of rice soaking, the higher the content of biogenic amine, and it would have a huge impact on human health. An innovation brewing technology was carried out to exclude the rice soaking process and the Lactobacillus was added to make up for the total acid. Compared to the traditional brewing technology, the new technology saved water resources and reduced environmental pollution. The concentration of biogenic amine was also decreased by 27.16%, which improving the security of the CRW. The esters increased led to more soft-tasted CRW and less aging time; the quality of CRW would be improved with less alcohol. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Energy use pattern in rice production: A case study from Mazandaran province, Iran

    International Nuclear Information System (INIS)

    AghaAlikhani, M.; Kazemi-Poshtmasari, H.; Habibzadeh, F.

    2013-01-01

    Highlights: ► We compare the energy use efficiency in rice production for traditional and mechanized system. ► Since farmers growing native, high yield and hybrid rice cultivars we have focused on mean data. ► Chemical fertilizer has the highest share in total energy inputs were followed by diesel fuel. ► Rice production in traditional system has lower output but higher EUE than mechanized system. - Abstract: Rice (Oryza sativa L.) is grown under both traditional system (TS) and mechanized system (MS) in Iran. In this study the energy consumption for rice is analyzed in Mazandaran, Northern province of Iran. The indicators are: net energy, energy use efficiency, specific energy, energy productivity, direct energy, indirect energy, renewable energy, non-renewable and total energy input. The cultivars of rice commonly grown in Iran are listed in three groups: native, high yield cultivars and hybrid cultivar. Primary data were obtained through field survey and personal interviews using questionnaires from 48 agricultural services center in Mazandaran province. Secondary data and energy equivalents were obtained from available literature using collected data of the production period of 2007–2008. Analysis of date showed that averagely diesel fuel had the highest share within the total energy inputs, followed by chemical fertilizer in rice production in both TS and MS. Energy use efficiency was calculated as 1.72 in TS and 1.63 in MS. Total energy consumption in rice production were 71,092.26 MJ/ha (TS) and 79,460.33 MJ/ha (MS). In general, there were not significant changes regarding the human labor and chemicals in tow systems

  20. Aerobic salivary bacteria in wild and captive Komodo dragons.

    Science.gov (United States)

    Montgomery, Joel M; Gillespie, Don; Sastrawan, Putra; Fredeking, Terry M; Stewart, George L

    2002-07-01

    During the months of November 1996, August 1997, and March 1998, saliva and plasma samples were collected for isolation of aerobic bacteria from 26 wild and 13 captive Komodo dragons (Varanus komodoensis). Twenty-eight Gram-negative and 29 Gram-positive species of bacteria were isolated from the saliva of the 39 Komodo dragons. A greater number of wild than captive dragons were positive for both Gram-negative and Gram-positive bacteria. The average number of bacterial species within the saliva of wild dragons was 46% greater than for captive dragons. While Escherichia coli was the most common bacterium isolated from the saliva of wild dragons, this species was not present in captive dragons. The most common bacteria isolated from the saliva of captive dragons were Staphylococcus capitis and Staphylococcus capitis and Staphylococcus caseolyticus, neither of which were found in wild dragons. High mortality was seen among mice injected with saliva from wild dragons and the only bacterium isolated from the blood of dying mice was Pasteurella multocida. A competitive inhibition enzyme-linked immunosorbent assay revealed the presence of anti-Pasteurella antibody in the plasma of Komodo dragons. Four species of bacteria isolated from dragon saliva showed resistance to one or more of 16 antimicrobics tested. The wide variety of bacteria demonstrated in the saliva of the Komodo dragon in this study, at least one species of which was highly lethal in mice and 54 species of which are known pathogens, support the observation that wounds inflicted by this animal are often associated with sepsis and subsequent bacteremia in prey animals.

  1. Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria.

    Science.gov (United States)

    Chinma, Chiemela Enyinnaya; Anuonye, Julian Chukwuemeka; Simon, Omotade Comfort; Ohiare, Raliat Ozavize; Danbaba, Nahemiah

    2015-10-15

    This study determined the effect of germination (48 h) on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Local rice varieties (Jamila, Jeep and Kwandala) were evaluated and compared to an improved variety (MR 219). Physicochemical and antioxidant properties of flours were determined using standard methods. Protein, magnesium, phosphorus, potassium and antioxidant properties of rice flours increased after germination while phytic acid and total starch contents decreased. Foaming capacity and stability of rice flours increased after germination. Germination resulted to changes in pasting and thermal characteristics of rice flours. Germinated rice flours had better physicochemical and antioxidant properties with reduced phytic acid and starch contents compared to MR 219, which can be utilized as functional ingredients in the preparation of rice-based products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Expressing OsMPK4 Impairs Plant Growth but Enhances the Resistance of Rice to the Striped Stem Borer Chilo suppressalis

    Directory of Open Access Journals (Sweden)

    Xiaoli Liu

    2018-04-01

    Full Text Available Mitogen-activated protein kinases (MPKs play a central role not only in plant growth and development, but also in plant responses to abiotic and biotic stresses, including pathogens. Yet, their role in herbivore-induced plant defenses and their underlying mechanisms remain largely unknown. Here, we cloned a rice MPK gene, OsMPK4, whose expression was induced by mechanical wounding, infestation of the striped stem borer (SSB Chilo suppressalis, and treatment with jasmonic acid (JA, but not by treatment with salicylic acid (SA. The overexpression of OsMPK4 (oe-MPK4 enhanced constitutive and/or SSB-induced levels of JA, jasmonoyl-l-isoleucine (JA-Ile, ethylene (ET, and SA, as well as the activity of elicited trypsin proteinase inhibitors (TrypPIs, and reduced SSB performance. On the other hand, compared to wild-type plants, oe-MPK4 lines in the greenhouse showed growth retardation. These findings suggest that OsMPK4, by regulating JA-, ET-, and SA-mediated signaling pathways, functions as a positive regulator of rice resistance to the SSB and a negative regulator of rice growth.

  3. 21 CFR 137.350 - Enriched rice.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose and...

  4. Bioethanol production from rice straw residues

    Directory of Open Access Journals (Sweden)

    Elsayed B. Belal

    2013-01-01

    Full Text Available A rice straw -cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 ºC, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L-1.

  5. Assessment of the quality of bran and bran oil produced from some Egyptian rice varieties.

    Science.gov (United States)

    Salem, Eglal G; El Hissewy, Ahmed; Agamy, Neveen F; Abd El Barry, Doaa

    2014-04-01

    Rice (Oryza sativa L.) is one of the leading food crops of the world, the staple food of over half the world's population. The bran, which is an important byproduct obtained during rice milling, constitutes about 1/10 of the weight of the rice grain. Rice bran is the outer brown layer including the rice germ that is removed during the milling process of brown grain. This milling byproduct is reported to be high in natural vitamins and minerals, particularly vitamin E. The present study was conducted to determine the chemical composition of bran and bran oil of 13 different rice varieties commonly produced in Egypt, to study the utilization of rice bran in bread production, and to assess the quality and acceptance of the rice bran edible oil produced. Rice bran was produced from 13 Egyptian varieties of recently harvested rice as well as from paddy rice stored for 1 year. The extracted bran was immediately stabilized then subjected to chemical analysis (such as moisture content, protein, fat, carbohydrates, fiber, and ash) as well as trace and heavy metals determination (P, K, Na, Ca, Fe, Zn, Cu, and Mg). Bread was produced by adding Giza172 rice bran at three different concentrations to wheat flour then subjected to chemical analysis, caloric content, and organoleptic examination. Bran oil was extracted from the different varieties of rice bran (recently harvested and stored) then subjected to chemical and organoleptic examinations as well as vitamin E and oryzanol determination. The percentage of rice bran of newly harvested Egyptian rice was 11.68% and was 10.97% in stored rice. The analysis showed mean values of 5.91 and 5.53% for moisture, 14.60 and 14.40% for crude protein, 14.83 and 15.20% for fat, 44.77 and 45.40% for carbohydrates, 6.55 and 7.06% for crude fiber, and 8.87 and 8.50% for ash for newly harvested and stored rice bran, respectively. Bread containing 15% rice bran showed the highest score percentages for organoleptic quality compared with the

  6. Nutrient management for rice production

    International Nuclear Information System (INIS)

    Khan, A.R.; Chandra, D.; Nanda, P.; Singh, S.S.; Singh, S.R.; Ghorai, A.K.

    2002-06-01

    The nutrient removed by the crops far exceeds the amounts replenished through fertilizer, causing a much greater strain on the native soil reserves. The situation is further aggravated in countries like India, where sub-optimal fertilizer used by the farmers is a common phenomenon rather than an exception. The total consumption of nutrients of all crops in India, even though reached 15 million tons in 1997, remains much below the estimated nutrient removal of 25 million tons (Swarup and Goneshamurthy, 1998). The gap between nutrient removal supplied through fertilizer has widened further in 2000 to 34 million tons of plant nutrients from the soil against an estimated fertilizer availability of 18 million tons (Singh and Dwivedi, 1996). Nitrogen is the nutrient which limits the most the rice production worldwide. In Asia, where more than 90 percent of the world's rice is produced, about 60 percent of the N fertilizer consumed is used on rice (Stangel and De Dutta, 1985). Conjunctive use of organic material along with fertilizer has been proved an efficient source of nitrogen. Organic residue recycling is becoming an increasingly important aspect of environmentally sound sustainable agriculture. Returning residues like green manure to the soil is necessary for maintaining soil organic matter, which is important for favourable soil structure, soil water retention and soil microbial flora and fauna activities. Use of organic manures in conjunction or as an alternative to chemical fertilizer is receiving attention. Green manure, addition to some extent, helps not only in enhancing the yield but also in improving the physical and chemical nature of soils. The excessive application of chemical fertilizers made it imperative that a part of inorganic fertilizer may be substituted with the recycling of organic wastes. Organic manure has been recorded to enhance the efficiency and reduce the requirement of chemical fertilizers. Partial nitrogen substitution through organic

  7. Are habitat fragmentation, local adaptation and isolation-by-distance driving population divergence in wild rice Oryza rufipogon?

    Science.gov (United States)

    Zhao, Yao; Vrieling, Klaas; Liao, Hui; Xiao, Manqiu; Zhu, Yongqing; Rong, Jun; Zhang, Wenju; Wang, Yuguo; Yang, Ji; Chen, Jiakuan; Song, Zhiping

    2013-11-01

    Habitat fragmentation weakens the connection between populations and is accompanied with isolation by distance (IBD) and local adaptation (isolation by adaptation, IBA), both leading to genetic divergence between populations. To understand the evolutionary potential of a population and to formulate proper conservation strategies, information on the roles of IBD and IBA in driving population divergence is critical. The putative ancestor of Asian cultivated rice (Oryza sativa) is endangered in China due to habitat loss and fragmentation. We investigated the genetic variation in 11 Chinese Oryza rufipogon populations using 79 microsatellite loci to infer the effects of habitat fragmentation, IBD and IBA on genetic structure. Historical and current gene flows were found to be rare (mh  = 0.0002-0.0013, mc  = 0.007-0.029), indicating IBD and resulting in a high level of population divergence (FST  = 0.343). High within-population genetic variation (HE  = 0.377-0.515), relatively large effective population sizes (Ne  = 96-158), absence of bottlenecks and limited gene flow were found, demonstrating little impact of recent habitat fragmentation on these populations. Eleven gene-linked microsatellite loci were identified as outliers, indicating local adaptation. Hierarchical AMOVA and partial Mantel tests indicated that population divergence of Chinese O. rufipogon was significantly correlated with environmental factors, especially habitat temperature. Common garden trials detected a significant adaptive population divergence associated with latitude. Collectively, these findings imply that IBD due to historical rather than recent fragmentation, followed by local adaptation, has driven population divergence in O. rufipogon. © 2013 John Wiley & Sons Ltd.

  8. Wild vegetable mixes sold in the markets of Dalmatia (southern Croatia).

    Science.gov (United States)

    Łuczaj, Łukasz; Zovkokončić, Marijana; Miličević, Tihomir; Dolina, Katija; Pandža, Marija

    2013-01-03

    Dalmatia is an interesting place to study the use of wild greens as it lies at the intersection of influence of Slavs, who do not usually use many species of wild greens, and Mediterranean culinary culture, where the use of multiple wild greens is common. The aim of the study was to document the mixtures of wild green vegetables which are sold in all the vegetable markets of Dalmatia. All vendors (68) in all 11 major markets of the Dalmatian coast were interviewed. The piles of wild vegetables they sold were searched and herbarium specimens taken from them. The mean number of species in the mix was 5.7. The most commonly sold wild plants are: Sonchus oleraceus L., Allium ampeloprasum L., Foeniculum vulgare Mill., Urospermum picroides F.W.Schmidt, Papaver rhoeas L., Daucus carota L., Taraxacum sp., Picris echioides L., Silene latifolia Poir. and Crepis spp. Also the cultivated beet (Beta vulgaris L.) and a few cultivated Brassicaceae varieties are frequent components. Wild vegetables from the mix are usually boiled for 20-30 minutes and dressed with olive oil and salt. Altogether at least 37 wild taxa and 13 cultivated taxa were recorded.Apart from the mixes, Asparagus acutifolius L. and Tamus communis L. shoots are sold in separate bunches (they are usually eaten with eggs), as well as some Asteraceae species, the latter are eaten raw or briefly boiled. The rich tradition of eating many wild greens may result both from strong Venetian and Greek influences and the necessity of using all food resources available in the barren, infertile land in the past. Although the number of wild-collected green vegetables is impressive we hypothesize that it may have decreased over the years, and that further in-depth local ethnobotanical studies are needed in Dalmatia to record the disappearing knowledge of edible plants.

  9. Induced mutation for tungro resistance in rice

    International Nuclear Information System (INIS)

    Ikeda, R.; Yumol, R.R.; Taura, S.

    2001-01-01

    Tungro is the most serious virus disease of rice in South and Southeast Asia. It is a composite disease of two kinds of viruses, rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV). Damage to the plant is mostly caused by RTBV, while RTSV acts to facilitate RTBV acquisition and transmission by insect vector. Both viruses are transmitted mainly by green leafhopper (GLH). Resistance to GLH is common in rice germplasm but extremely rare for the two viruses. To induce mutations for tungro resistance, a susceptible variety IR22 was treated with N-methyl-N-nitrosourea (MNH) following the procedure of Satoh and Omura. The panicles of rice variety 'IR22' were soaked in 1 mM MNH solution for 45 minutes at 16 to 18 hours after flowering. Two thousand six hundred and forty fertile M 1 plants were produced. From these plants M 2 lines with 10 or more seedlings were planted in the field to evaluate their reaction against tungro under natural conditions in the 1990 dry season on the IRRI central research farm, Los Banos, the Philippines. Of these, 124 M 2 lines were selected by visual evaluation. Five plants were harvested individually from each selected line. A bulk was also made from all the remaining plants in the line. In the M 3 generation, each family consisted of five sister lines and one bulked line. One line (M 3 -723) showed no tungro symptoms and its related bulk segregated for resistance but all other M 3 lines from the same family were susceptible to tungro. The resistant line, M 3 -723, showed low infection with RTBV and RTSV when leaves were tested by enzyme-linked immunosorbent assay (ELISA) to diagnose tungro infection. All M 4 lines from M 3 -723 showed uniform resistance in the field. They were not infected with RTBV and were resistant to RTSV infection

  10. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams.

    Science.gov (United States)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-07-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar 'Sasanishiki') that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined.

  11. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams

    International Nuclear Information System (INIS)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N.; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-01-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UVTolerantRice319), was isolated from a mutagenized population derived from 2500 M 1 seeds (of the UVB-resistant cultivar ‘Sasanishiki’) that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined

  12. Consumer Preferences and Buying Criteria in Rice: A Study to Identify Market Strategy for Thailand Jasmine Rice Export

    NARCIS (Netherlands)

    Suwannaporn, P.; Linnemann, A.R.

    2008-01-01

    Rice consumption per capita in many Asian countries decreased, but it is consumed more in non-rice-eating countries. This study aimed to investigate consumer preferences and attitudes toward Jasmine rice among consumers in target rice export countries to identify opportunities and strategic

  13. Benthic macroinvertebrates in Italian rice fields

    Directory of Open Access Journals (Sweden)

    Daniela Lupi

    2013-02-01

    Full Text Available Rice fields can be considered man-managed temporary wetlands. Five rice fields handled with different management strategies, their adjacent channels, and a spring were analysed by their benthic macroinvertebrate community to i evaluate the role of rice agroe- cosystem in biodiversity conservation; ii find indicator species which can be used to compare the ecological status of natural wetlands with rice agroecosystems; and iii find the influence of environmental variables on biodiversity. Different methods of data analysis with increasing degree of complexity – from diversity index up to sophisticated multivariate analysis – were used. The investigation provided a picture of benthic macroinvertebrates inhabiting rice agroecosystems where 173 taxa were identified, 89 of which detected in rice paddies. Among them, 4 phyla (Mollusca, Annelida, Nematomorpha, and Arthropoda, 8 classes (Bivalvia, Gastropoda, Oligochaeta, Hirudinea, Gordioida, Insecta, Branchiopoda, and Malacostraca, 24 orders, 68 families, 127 genera and 159 species have been found. Ten threatened and 3 invasive species were detected in the habitats examined. The information obtained by the different methods of data analysis allowed a more comprehensive view on the value of the components of rice agroecosystems. Data analyses highlighted significant differences between habitats (feeding channel and rice field, with higher diversity observed in channels, and emphasised the role of the water chemical-physical parameters. The period of water permanence in rice fields resulted to be only one of the factors influencing the community of benthic macroinvertebrates. The presence of rare/endangered species allowed characterising some stations, but it was less informative about management strategies in rice paddies because most of these species were absent in rice fields.

  14. Study of Rice Marketing System in Iran

    OpenAIRE

    Feizabadi, Yaser

    2011-01-01

    Rice comes second after wheat in Iran`s food consumption economy. Rising population and recent growth in GDP has made Iran one of the greatest rice importer countries all over the world. That is why rice marketing has always been a controversial issue in Iran`s agricultural economics. To study rice marketing system in Iran, this paper aims to calculate rice marketing margin, market efficiency and marketing cost coefficient in seaside Mazandaran province( where 70 percent of domestic rice prod...

  15. Micronutrient-fortified rice can increase hookworm infection risk

    DEFF Research Database (Denmark)

    de Gier, Brechje; Campos Ponce, Maiza; Perignon, Marlene

    2016-01-01

    or inflammation after iron supplementation. OBJECTIVE: To study effects of micronutrient-fortified rice on hookworm infection in Cambodian schoolchildren. METHODS: A double-blinded, cluster-randomized trial was conducted in 16 Cambodian primary schools partaking in the World Food Program school meal program....... Three types of multi-micronutrient fortified rice were tested against placebo rice within the school meal program: UltraRice_original, UltraRice_improved and NutriRice. Four schools were randomly assigned to each study group (placebo n = 492, UltraRice_original n = 479, UltraRice_improved n = 500, NutriRice.......6%, but differed considerably among schools (range 0%- 48.1%).Micronutrient-fortified rice significantly increased risk of new hookworm infection. This effect was modified by baseline hookworm prevalence at the school; hookworm infection risk was increased by all three types of fortified rice in schools where...

  16. APOA-1Milano muteins, orally delivered via genetically modified rice, show anti-atherogenic and anti-inflammatory properties in vitro and in Apoe-/- atherosclerotic mice.

    Science.gov (United States)

    Romano, Gabriele; Reggi, Serena; Kutryb-Zajac, Barbara; Facoetti, Amanda; Chisci, Elisa; Pettinato, Mariateresa; Giuffrè, Maria Rita; Vecchio, Federica; Leoni, Silvia; De Giorgi, Marco; Avezza, Federica; Cadamuro, Massimiliano; Crippa, Luca; Leone, Biagio Eugenio; Lavitrano, Marialuisa; Rivolta, Ilaria; Barisani, Donatella; Smolenski, Ryszard Tomasz; Giovannoni, Roberto

    2018-06-11

    Atherosclerosis is a slowly progressing, chronic multifactorial disease characterized by the accumulation of lipids, inflammatory cells, and fibrous tissue that drives to the formation of asymmetric focal thickenings in the tunica intima of large and mid-sized arteries. Despite the high therapeutic potential of ApoA-1 proteins, the purification and delivery into the disordered organisms of these drugs is still limited by low efficiency in these processes. We report here a novel production and delivery system of anti-atherogenic APOA-1Milano muteins (APOA-1M) by means of genetically modified rice plants. APOA-1M, delivered as protein extracts from transgenic rice seeds, significantly reduced macrophage activation and foam cell formation in vitro in oxLDL-loaded THP-1 model. The APOA-1M delivery method and therapeutic efficacy was tested in healthy mice and in Apoe -/- mice fed with high cholesterol diet (Western Diet, WD). APOA-1M rice milk significantly reduced atherosclerotic plaque size and lipids composition in aortic sinus and aortic arch of WD-fed Apoe -/- mice as compared to wild type rice milk-treated, WD-fed Apoe -/- mice. APOA-1M rice milk also significantly reduced macrophage number in liver of WD-fed Apoe -/- mice as compared to WT rice milk treated mice. The delivery of therapeutic APOA-1M full length proteins via oral administration of rice seeds protein extracts (the 'rice milk') to the disordered organism, without any need of purification, might overcome the main APOA1-based therapies' limitations and improve the use of this molecules as therapeutic agents for cardiovascular patients. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Brewers’ Rice: A By-Product from Rice Processing Provides Natural Hepatorenal Protection in Azoxymethane-Induced Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    Bee Ling Tan

    2015-01-01

    Full Text Available Brewers’ rice, which is known locally as temukut, is a mixture of broken rice, rice bran, and rice germ. Our present study was designed to identify the effect of brewers’ rice on the attenuation of liver and kidney damage induced by azoxymethane (AOM. Alanine transaminase (ALT, alkaline phosphatase (ALP, aspartate transaminase (AST, creatinine, and urea were evaluated to understand potential hepatoprotective effects and the ability of brewers’ rice to attenuate kidney pathology induced by AOM treatment. Liver and kidney tissues were evaluated by hematoxylin and eosin (H&E staining. Overall analyses revealed that brewers’ rice improved the levels of serum markers in a manner associated with better histopathological outcomes, which indicated that brewers’ rice could enhance recovery from hepatocyte and kidney damage. Taken together, these results suggest that brewers’ rice could be used in future applications to combat liver and kidney disease.

  18. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice.

    Science.gov (United States)

    Luo, Anding; Qian, Qian; Yin, Hengfu; Liu, Xiaoqiang; Yin, Changxi; Lan, Ying; Tang, Jiuyou; Tang, Zuoshun; Cao, Shouyun; Wang, Xiujie; Xia, Kai; Fu, Xiangdong; Luo, Da; Chu, Chengcai

    2006-02-01

    Elongation of rice internodes is one of the most important agronomic traits, which determines the plant height and underlies the grain yield. It has been shown that the elongation of internodes is under genetic control, and various factors are implicated in the process. Here, we report a detailed characterization of an elongated uppermost internode1 (eui1) mutant, which has been used in hybrid rice breeding. In the eui1-2 mutant, the cell lengths in the uppermost internodes are significantly longer than that of wild type and thus give rise to the elongated uppermost internode. It was found that the level of active gibberellin was elevated in the mutant, whereas its growth in response to gibberellin is similar to that of the wild type, suggesting that the higher level accumulation of gibberellin in the eui1 mutant causes the abnormal elongation of the uppermost internode. Consistently, the expression levels of several genes which encode gibberellin biosynthesis enzymes were altered. We cloned the EUI1 gene, which encodes a putative cytochrome P450 monooxygenase, by map-based cloning and found that EUI1 was weakly expressed in most tissues, but preferentially in young panicles. To confirm its function, transgenic experiments with different constructs of EUI1 were conducted. Overexpression of EUI1 gave rise to the gibberellin-deficient-like phenotypes, which could be partially reversed by supplementation with gibberellin. Furthermore, apart from the alteration of expression levels of the gibberellin biosynthesis genes, accumulation of SLR1 protein was found in the overexpressing transgenic plants, indicating that the expression level of EUI1 is implicated in both gibberellin-mediated SLR1 destruction and a feedback regulation in gibberellin biosynthesis. Therefore, we proposed that EUI1 plays a negative role in gibberellin-mediated regulation of cell elongation in the uppermost internode of rice.

  19. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel

    Science.gov (United States)

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1– expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and p...

  20. The impact of seasonal rice price changes on rice self-consumption in farm household of rural Java

    Science.gov (United States)

    Ani, S. W.; Antriyandarti, E.

    2018-03-01

    Seasonal rice price changes are very volatile and not predictable. This price changes have a heterogeneous impact on public consumption. The problem of seasonal rice price changes is not only experienced by consumers, but also in the farmers side as producers. The objective of this study is to provide a detail overview and description of the changing seasonal rice self-consumption of farm households in rural Java in response to seasonal rice price changes and income shocks to anticipate seasonal scarcity. This paper constructs a theoretical model to address such seasonality of food deprivation by using one year of seasonally farm household panel data, empirically tests the extent to which farmers in rural Java can smooth their rice self-consumption from season to season in response to income shocks. The result shows that rice farmers increase their rice self-consumption when prices are high.