WorldWideScience

Sample records for commercial radioactive-waste-disposal sites

  1. 1981 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1982-12-01

    This state-by-state report again uses the volume of low-level waste reported as received at each commercial disposal site as the nation baseline figure. A volume of 87,789 m 3 of radioactive waste containing 279,863 Ci of activity was reported disposed at the commercial sites in 1981. The distribution of these waste volumes by disposal site is presented in Table 1 and a summary of estimated volumes by generator categories is contained in Table 2. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. Summary information on commercial nuclear power plant wastes was obtained from semiannual waste reports submitted to the NRC in accordance with the NRC Regulatory Guide 1.21. Data reported for the calendar year 1981 were used for this report where available. When report data were not available reactor information was obtained directly from the utility. The reported quantities of solid radioactive wastes generated by government installations shipped to commercial disposal sites are annually summarized in the SWIMS report. Records of radioactive wastes shippped to commercial disposal sites from the US Navy nuclear-powered ships and support facilities are maintained by the Nuclear Power Directorate, Naval Sea Systems Command, Department of the Navy, and are reported on an annual basis. Available information from other military departments such as the Army and the Air Force were included in this study. Wastes from these other military commands do not constitute a significant volume of radioactive source

  2. 1982 State-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1983-12-01

    This report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 75,891 cubic meters of radioactive waste containing 413,898 curies of activity was reported disposed at the commercial sites in 1982. The distribution of these waste volumes by disposal site is presented in Table 1. Table 2 summarizes estimated volumes by generator categories. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. The total is the sum of the volume and radioactivity by disposal site for each state. Summary information on commercial nuclear power plant wastes was obtained from semiannual waste reports submitted to the NRC in accordance with the NRC Regulatory Guide 1.21. Data reported for the calendar year 1982 were used for this report where available. When report data were not available, reactor information was obtained directly from the utility

  3. The 1986 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    International Nuclear Information System (INIS)

    1987-12-01

    The data are grouped and presented by compact regions. The data include activity and volume by waste classes, generator type, and disposal site. The report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 1,804,998 cubic feet (51,113 cubic meters) of radioactive waste containing 233,726 curies of activity was reported disposed at the commercial sites in 1986. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. The total is the sum of the volume and radioactivity reported by Chem Nuclear Systems, Inc., and US Ecology for each state. Sixty-three percent of low-level waste volumes disposed at commercial sites was assigned to the state of origin. These volumes represent those disposed at Beatty and Barnwell disposal sites. Thirty-seven percent, or 665,066 cubic feet (18,831 cubic meters), of the waste disposed in the US in 1986 went to the Richland site. 8 refs., 75 figs., 4 tabs

  4. 1995 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.

    1996-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included are tables showing the distribution of waste by state for 1995 and a comparison of waste volumes and radioactivity by state for 1991 through 1995; also included is a list of all commercial nuclear power reactors in US as of Dec. 31, 1994. This report distinguishes low-level radioactive waste shipped directly for disposal by generators and waste handled by an intermediary.

  5. 1980 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1982-06-01

    Information is presented on the volumes, curie values, sources, and disposal of low-level radioactive wastes (LLW) in each state. The wastes are segmented into 2 broad categories - institutional/industrial and commercial power reactor wastes. The volumes and curie values were obtained from the commercial site operators. The percentage of LLW disposed of at each of the 3 operating disposal sites located at Barnwell, SC, Beatty, NV, and Richland, WA are included

  6. An industry perspective on commercial radioactive waste disposal conditions and trends.

    Science.gov (United States)

    Romano, Stephen A

    2006-11-01

    The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.

  7. 1996 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.

    1997-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1996 and a comparison of waste volumes and radioactivity by state for 1992 through 1996; also included is a list of all commercial nuclear power reactors in the US as of December 31, 1996. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

  8. 1984 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1985-12-01

    The 1984 report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 75,429 m 3 of radioactive waste containing 600,909 Ci of activity was reported disposed at the commercial sites in 1984. The distribution of these waste volumes by disposal site is presented in Table 1. Table 2 displays typical radionuclides in low-level wastes by sector. Table 3 presents predominant waste forms associated with low-level waste by sector. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. The total is the sum of the volume and radioactivity reported by Chem Nuclear and US Ecology for each state. Figure 1 displays the disposal capacity remaining at Barnwell, Richland, and Beatty commercial disposal sites as of December 31, 1984. Summary information on commercial nuclear power plant wastes was obtained from semiannual waste and effluent reports submitted to the NRC in accordance with the NRC Regulatory Guide 1.21. Where reported data were not available, data were obtained by communication with the utility. Non-reactor waste volumes are actual amounts recorded as received at the commercial waste repositories in 1984. Waste categories are defined as academic, medical, government, and industrial. Academic includes university hospitals and medical and nonmedical research facilities. The medical category includes hospitals and clinics, research facilities, and private medical offices. The industrial category includes private entities such as research and development companies, manufacturers, nondestructive testing, mining, and radiopharmaceutical manufacturers. Government includes state and federal agencies. Data from previous publications were also used as a comparison. 11 refs., 1 fig., 3 tabs

  9. The 1985 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1986-12-01

    The 1985 report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 75,909 m 3 of radioactive waste containing 748,903 Ci of activity was reported disposed at the commercial sites in 1985. The distribution of these waste volumes by disposal site is presented in Table 1. Table 2 displays typical radionuclides in low-level wastes by sector. Table 3 presents predominant waste forms associated with low-level waste by sector. The total volume and curie values tabulated for each state were obtained directly from the commercial disposal site operators. The total is the sum of the volume and radioactivity reported by Chem Nuclear and US Ecology for each state. Figure 1 displays the disposal capacity remaining at Barnwell, Richland, and Beatty commercial disposal sites as of December 31, 1985. Summary information on commercial nuclear power plant wastes was obtained from semiannual waste and effluent reports submitted to the NRC in accordance with the NRC Regulatory Guide 1.21. Where reported data were not available, data were obtained by communication with the utility. Nonreactor waste volumes are actual amounts recorded as received at the commercial waste repositories in 1985. Waste categories are defined as academic, medical, government, and industrial. New to the 1985 report is Appendix B, 1985 Assessments Listed By Ratified Compacts, as well as the proposed Western and Appalachian compacts. Inclusion of the most accurate information available from all sources has resulted in an improved national waste distribution profile of generator sectors. 11 refs

  10. 1992 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    International Nuclear Information System (INIS)

    Fuchs, R.L.; McDonald, S.D.

    1993-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1992 and a comparison of waste volumes and radioactivity by state for 1988 through 1992; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1992. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report

  11. 1994 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1994 and a comparison of waste volumes and radioactivity by state for 1990 through 1994; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1994. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

  12. 1983 state-by-state assessment of low-level radioactive wastes shipped to commercial disposal sites

    International Nuclear Information System (INIS)

    1984-12-01

    The 1983 report uses the volume of low-level waste reported as received at each commercial disposal site as the national baseline figure. A volume of 76,702 m 3 of radioactive waste containing 505,340 Ci of activity was reported disposed at the commercial sites in 1983. The distribution of these waste volumes by disposal site is tabulated. Typical radionuclides in low-level wastes by sector are given. Predominant waste forms associated with low-level waste by sector are tabulated. Sometimes the amount of waste reported by power facilities is equal to or exceeds the state volume reported from commercial disposal site operators. Discrepancies may be a result of waste volumes being credited to the home state of the waste broker instead of the actual state location of the generator. Additionally, waste volumes may have been in transit from the generator to the disposal site at year's end. The Low-Level Waste Management Program felt a responsibility to report information accurately from the various sources, so did not alter the figures to make them balance

  13. 1997 State-by-State Assessment of Low-Level Radioactive Wastes Received at Commercial Disposal Sites

    International Nuclear Information System (INIS)

    Fuchs, R. L.

    1998-01-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1997 and a comparison of waste volumes and radioactivity by state for 1993 through 1997; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1997

  14. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  15. Analyses of soils at commercial radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from three commercial low-level radioactive waste disposal sites. Samples were collected from an area adjacent to the disposal site at Sheffield, IL, and from two operating sites: one at Barnwell, SC, and the other near Richland, WA. The soil samples, which were analyzed from each site, were believed to include soil which was representative of that in contact with buried waste forms. Results of field measurements of earth resistivity and of soil pH will be presented. Additionally, the results of laboratory measurements of resistivity, moisture content, pH, exchange acidity and the soluble ion content of the soils will be discussed. The soluble ion content of the soils was determined by analysis of aqueous extracts of saturated soil pastes. The concentrations of the following ions were determined: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , CO 3 2- , SO 4 2- , Cl - , S 2-

  16. 1990 State-by-State assessment of low-level radioactive wastes received at commercial disposal sites

    International Nuclear Information System (INIS)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1991-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This annual report provides both national and state-specific disposal data on low-level radioactive wastes. Data in this report are categorized according to disposal site, generator category, waste class, volume, and activity. Included in this report are tables showing a distribution of wastes by state for 1990 and a comparison of waste volumes by state for 1986 through 1990; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1990. In this year's report, a distinction has been made between low-level radioactive waste shipped directly by generators for disposal and that which was handled by an intermediary. 5 refs., 4 tabs

  17. 1990 State-by-State assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1991-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This annual report provides both national and state-specific disposal data on low-level radioactive wastes. Data in this report are categorized according to disposal site, generator category, waste class, volume, and activity. Included in this report are tables showing a distribution of wastes by state for 1990 and a comparison of waste volumes by state for 1986 through 1990; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1990. In this year's report, a distinction has been made between low-level radioactive waste shipped directly by generators for disposal and that which was handled by an intermediary. 5 refs., 4 tabs.

  18. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    International Nuclear Information System (INIS)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities

  19. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  20. Commercial radioactive waste disposal: marriage or divorce

    International Nuclear Information System (INIS)

    Corbett, J.S.

    1977-01-01

    It is shown that the state (South Carolina) is doing a good job in regulating the South Carolina disposal facility of Chemo-Nuclear Inc., and that there is no need for the NRC to reassert Federal control. The efforts in developing a low-level site in New Mexico are described. The NRC Task Force report on Federal/state regulation of commercial low-level radioactive waste burial grounds is discussed

  1. The cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites: Whose jurisdiction?

    International Nuclear Information System (INIS)

    Hartnett, C.

    1994-01-01

    There exists an overlap between the Comprehensive Environmental Response, Compensation and Recovery Act (open-quotes CERCLAclose quotes) and the Atomic Energy Act (open-quotes AEAclose quotes) regarding the cleanup of releases of radioactive materials from commercial low-level radioactive waste sites. The Nuclear Regulatory Commission (open-quotes NRCclose quotes) and Agreement States have jurisdiction under the AEA, and the Environmental Protection Agency (open-quotes EPAclose quotes) has jurisdiction pursuant to CERCLA. This overlapping jurisdiction has the effect of imposing CERCLA liability on parties who have complied with AEA regulations. However, CERCLA was not intended to preempt existing legislation. This is evidenced by the federally permitted release exemption, which explicitly exempts releases from CERCLA liability pursuant to an AEA license. With little guidance as to the applicability of this exemption, it is uncertain whether CERCLA's liability is broad enough to supersede the Atomic Energy Act. It is the purpose of this paper to discuss the overlapping jurisdiction for the cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites with particular emphasis on the cleanup at the Maxey Flats, West Valley and Sheffield sites

  2. Nonradiological groundwater quality at low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Goode, D.J.

    1986-04-01

    The NRC is investigating appropriate regulatory options for disposal of low-level radioactive waste containing nonradiological hazardous constituents, as defined by EPA regulations. Standard EPA/RCRA procedures to determine hazardous organics, metals, indicator parameters, and general water quality are applied to samples from groundwater monitoring wells at two commercial low-level radioactive waste disposal sites. At the Sheffield, IL site (nonoperating), several typical organic solvents are identified in elevated concentrations in onsite wells and in an offsite area exhibiting elevated tritium concentrations. At the Barnwell, SC site (operating), only very low concentrations of three organics are found in wells adjacent to disposal units. Hydrocarbons associated with petroleum products are detected at both sites. Hazardous constituents associated with previosuly identified major LLW mixed waste streams, toluene, xylene, chromium, and lead, are at or below detection limits or at background levels in all samples. Review of previously collected data also supports the conclusion that organic solvents are the primary nonradiological contaminants associated with LLW disposal

  3. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  4. Commercial processing and disposal alternatives for very low levels of radioactive waste in the United States

    International Nuclear Information System (INIS)

    Benda, G.A.

    2005-01-01

    The United States has several options available in the commercial processing and disposal of very low levels of radioactive waste. These range from NRC licensed low level radioactive sites for Class A, B and C waste to conditional disposal or free release of very low concentrations of material. Throughout the development of disposal alternatives, the US promoted a graded disposal approach based on risk of the material hazards. The US still promotes this approach and is renewing the emphasis on risk based disposal for very low levels of radioactive waste. One state in the US, Tennessee, has had a long and successful history of disposal of very low levels of radioactive material. This paper describes that approach and the continuing commercial options for safe, long term processing and disposal. (author)

  5. A data base for low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs

  6. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960's through 1990's)

    International Nuclear Information System (INIS)

    1996-11-01

    During the time period covered in this report (1960's through early 1990's), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site's general design, (2) each site's inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site's chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington

  7. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

  8. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  9. Commercial mixed waste treatment and disposal

    International Nuclear Information System (INIS)

    Vance, J.K.

    1994-01-01

    At the South Clive, Utah, site, Envirocare of Utah, Inc., (Envirocare), currently operates a commercial low-activity, low-level radioactive waste facility, a mixed waste RCRA Part B storage and disposal facility, and an 11e.(2) disposal facility. Envirocare is also in the process of constructing a Mixed Waste Treatment Facility. As the nation's first and only commercial treatment and disposal facility for such waste, the information presented in this segment will provide insight into their current and prospective operations

  10. Financing a new low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; McGarvey, R.S.; Lemmon, R.A.

    1982-01-01

    No new commercial low-level radioactive waste disposal site has been licensed in the past decade. During the time, inflation has wreaked havoc on the costs for the labor, equipment, and buildings that will be necessary to develop and operate new sites. The regulatory environment has become much more complex with enactment of the National Environmental Policy Act (NEPA) and the recent issuance by the Nuclear Regulatory Commission (NRC) of a draft set of comprehensive regulations for land disposal of low-level waste (10 CFR Part 61). Finally, the licensing process itself has become much lengthier as both the site developers and regulators respond to the public's desire to be more involved in decisions that may affect their lives

  11. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    International Nuclear Information System (INIS)

    Mohamed, Yasser T.

    2013-01-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  12. An overview of commercial low-level radioactive waste disposal technology

    International Nuclear Information System (INIS)

    Plummer, T.L.; Morreale, B.J.

    1991-01-01

    The primary objective of low-level radioactive (LLW) waste management is to safely dispose of LLW while protecting the health of the public and the quality of the environment. LLW in the United States is generated through both Department of Energy (DOE) and commercial activities. In this paper, waste from commercial activities will be referred to as ''commercial LLW.'' The DOE waste will not be discussed in this paper. Commercial LLW is waste that is generated by Nuclear Regulatory Commission (NRC) designated licensees or Agreement States. Commercial LLW is generated by nuclear power reactors, hospitals, universities, and manufacturers. This paper will give an overview of the current disposal technologies planned by selected States' for disposing of their LLW and the processes by which those selections were made. 3 refs

  13. Directions in low-level radioactive waste management. Low level-radioactive waste disposal: currently operating commercial facilities

    International Nuclear Information System (INIS)

    1983-09-01

    This publication discusses three commercial facilities that receive and dispose of low-level radioactive waste. The facilities are located in Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington. All three facilities initiated operations in the 1960s. The three facilities have operated without such major problems as those which led to the closure of three other commercial disposal facilities located in the United States. The Beatty site could be closed in 1983 as a result of a Nevada Board of Health ruling that renewal of the site license would be inimical to public health and safety. The site remains open pending federal and state court hearings, which began in January 1983, to resolve the Board of Health ruling. The three sites may also be affected by NRC's 10 CFR Part 61 regulations, but the impact of those regulations, issued in December 1982, has not yet been assessed. This document provides detailed information on the history and current status of each facility. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for, establishing, and managing low-level waste disposal facilities. 12 references

  14. Basic principles and criteria on radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Dlouhy, Z.; Kropikova, S.

    1980-01-01

    The basic principles are stated of radiation protection of the workers at radioactive waste disposal facilities, which must be observed in the choice of radioactive waste disposal sites. The emergency programme, the operating regulations and the safety report are specified. Workplace safety regulations are cited. (author)

  15. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  16. The 1988 state-by-state assessment of Low-Level Radioactive Wastes received at commercial disposal sites

    International Nuclear Information System (INIS)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1989-12-01

    This report provides both national and state-specific disposal data on low-level radioactive wastes. Data in this report are divided into generator categories, waste classes, volumes, and activities. Included in this report are tables showing a distribution of wastes by state for 1988 and a comparison of waste volumes by state for 1984 through 1988; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1988. In this year's report, a distinction has been made between low-level radioactive waste shipped directly for disposal by generators and that which was handled by an intermediary. 8 refs., 3 tabs

  17. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    Science.gov (United States)

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  18. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  19. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    Science.gov (United States)

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  20. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  1. Trench water chemistry at commercially operated low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Pietrzak, R.F.; Dayal, R.; Kinsley, M.T.; Clinton, J.; Czyscinski, K.S.; Weiss, A.J.

    1982-01-01

    Water samples from the disposal trenches of two low-level radioactive-waste-disposal sites were analyzed for their inorganic, organic, and radionuclide contents. Since oxidation of the trench waters can occur during their movement along the groundwater flow path, experiments were performed to measure the chemical and physical changes that occur in these waters upon oxidation. Low concentrations of chelating agents, shown to exist in trench waters, may be responsible for keeping radionuclides, particularly 60 Co, in solution. 4 figures, 5 tables

  2. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, Sandra M.

    1997-01-01

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  3. Radioactive waste disposal: Recommendations for a repository site selection

    International Nuclear Information System (INIS)

    Cadelli, N.; Orlowski, S.

    1992-01-01

    This report is a guidebook on recommendations for site selection of radioactive waste repository, based on a consensus in european community. This report describes particularly selection criteria and recommendations for radioactive waste disposal in underground or ground repositories. 14 refs

  4. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  5. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    Science.gov (United States)

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to

  6. Specified radioactive waste final disposal act

    International Nuclear Information System (INIS)

    Yasui, Masaya

    2001-01-01

    Radioactive wastes must be finally and safely disposed far from human activities. Disposal act is a long-range task and needs to be understood and accepted by public for site selection. This paper explains basic policy of Japanese Government for final disposal act of specified radioactive wastes, examination for site selection guidelines to promote residential understanding, general concept of multi-barrier system for isolating the specific radioactive wastes, and research and technical development for radioactive waste management. (S. Ohno)

  7. The United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating ground waters for hundreds of thousands of years. The long-term stability of each site under thermal loading must then be demonstrated by sophisticated rock mechanic analyses. Therefore, it can be expected that the sites that are chosen will effectively isolate the waste for a very long period of time. However, to help provide answers on the mechanisms and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is studied. The overall objective of this program is an assessment of the safety associated with the long-term disposal of high-level radioactive waste in a geologic formation. This objective will be achieved by developing methods and generating data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sites. It is expected that no one particular model will suffice. Both deterministic and probabilistic approaches will be used, and the entire spectrum of phenomena that could influence geologic isolation will be considered

  8. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  9. Characterization of organics in leachates from low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Francis, A.J.; Iden, C.R.; Nine, B.; Chang, C.

    1979-01-01

    Low-level radioactive wastes generated by the nuclear industry, universities, research institutions, and hospitals are disposed of in shallow-land trenches and pits. In 1962 the first commercial disposal site was opened in Beatty, Nevada. Since then, the industry has grown to include three private companies operating six disposal areas located in sparsely populated areas: at Maxey Flats (Morehead), Kentucky; Beatty, Nevada; Sheffield, Illinois; Barnwell, South Carolina; West Valley, New York; and Richland, Washington. Although the facilities are operated by private industry, they are located on public land and are subject to federal and state regulation. Although inventories of the radioactive materials buried in the disposal sites are available, no specific records are kept on the kinds and quantities of organic wastes buried. In general, the organic wastes consist of contaminated paper, packing materials, clothing, plastics, ion-exchange resins, scintillation vials, solvents, chemicals, decontamination fluids, carcasses of experimental animals, and solidification agents. Radionuclides such as 14 C, 3 H, 90 Sr, 134 137 Cs, 60 Co, 241 Am, and 238 239 240 Pu have been identified in leachate samples collected from several trenches at Maxey Flats and West Valley. The purpose of this report is to identify some of the organic compounds present in high concentrations in trench leachates at the disposal sites in order to begin to evaluate their effect on radionuclide mobilization and contamination of the environment

  10. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  11. Analyses of soils at commercial radioactive-waste-disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1982-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from two currently operating commercial radioactive waste disposal sites; one at Barnwell, SC, and the other near Richland, WA. Soil samples believed to be representative of the soil that will contact the buried waste were collected and analyzed. Earth resistivities (field measurements), from both sites, supply information to identify variations in subsurface material. Barnwell soil resistivities (laboratory measurements) range from 3.6 x 10 5 ohm-cm to 8.9 x 10 4 ohm-cm. Soil resistivities of the Hanford sample vary from 3.0 x 10 5 ohm-cm to 6.6 x 10 3 ohm-cm. The Barnwell and Hanford soil pH ranges from 4.8 to 5.4 and from 4.0 to 7.2 respectively. The pH of a 1:2 mixture of soil to 0.01 M CaCl 2 resulted in a pH for the Barnwell samples of 3.9 +- 0.1 and for the Hanford samples of 7.4 +- 0.2. These values are comparable to the pH measurements of the water extract of the soils used for the analyses of soluble ion content of the soils. The exchange acidity of the soils was found to be approximately 7 mg-eq per 100 g of dry soil for clay material from Barnwell, whereas the Hanford soils showed an alkaline reaction. Aqueous extracts of saturated pastes were used to determine the concentrations of the following ions: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , SO 4 /sup =/, and Cl - . The sulfide content of each of the soils was measured in a 1:2.5 mixture of soil to an antioxidant buffer solution. The concentrations of soluble ions found in the soils from both sites are consistent with the high resistivities

  12. Low-level radioactive waste disposal in the United States: An overview of current commercial regulations and concepts

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1993-08-01

    Commercial low-level radioactive waste disposal in the United States is regulated by the US Nuclear Regulatory Commission (NRC) under 10 CFR 61 (1991). This regulation was issued in 1981 after a lengthy and thorough development process that considered the radionuclide concentrations and characteristics associated with commercial low-level radioactive waste streams; alternatives for waste classification; alternative technologies for low-level radioactive waste disposal; and data, modeling, and scenario analyses. The development process also included the publication of both draft and final environmental impact statements. The final regulation describes the general provisions; licenses; performance objectives; technical requirements for land disposal; financial assurances; participation by state governments and Indian tribes; and records, reports, tests, and inspections. This paper provides an overview of, and tutorial on, current commercial low-level radioactive waste disposal regulations in the United States

  13. Development of new low level radioactive waste disposal sites: A progress report

    International Nuclear Information System (INIS)

    Anderson, Robert T.; Antonucci, George J.; Ryan, Michael T.

    1992-01-01

    The status of the development of three new low level radioactive waste disposal facilities for the Central Midwest (Illinois), Southeastern (North Carolina) and Appalachian (Pennsylvania) compacts is presented. These three sites will dispose of about 50-65 percent of the commercial low-level waste (LLW) generated in the U.S. annually. Chem-Nuclear, as developer and proposed operator of all three sites has used a common approach to site development. This approach has been based on their twenty-plus years of operating experience and a standard technical approach. The technology employed is an above-grade, multiple engineered barrier design. The paper also contrasts actual progress at each site with a generalized project schedule. Areas of schedule delays are noted along with the steps being taken to accelerate schedule. Finally, we note that continued progress and timely start-up of operations of these new sites is critical on a national basis. This is due to the possibility of near-term closure of the existing LLW disposal sites. (author)

  14. 1989 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites: National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1990-12-01

    The National Low-Level Waste Management Program has published eleven annual state-by-state assessment reports. These reports provide both national and state-specific disposal data on low-level radioactive wastes. Data in this report are divided into generator category, waste class, volume, and activity. Included in this report are tables showing a distribution of wastes by state for 1989 and a comparison of waste volumes by state for 1985 through 1989; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1989. In this year's report, a distinction has been made between low-level radioactive waste shipped directly for disposal by generators and that handled by an intermediary. 7 refs., 4 tabs

  15. Economics model for new low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    1983-12-01

    This report describes LLWECON, an interactive computer mode for evaluating financial factors involved in low-level radioactive waste disposal. The logic by which LLWECON calculates the final generator price (price per cubic foot the disposal site operator charges waste generators) is detailed. Required user input and hypothetical examples, covering sites with different capacities, and both public and private-sector development, are included

  16. Handling and disposing of radioactive waste

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    Radioactive waste has been separated by definition into six categories. These are: commercial spent fuel; high-level wastes; transuranium waste; low-level wastes; decommissioning and decontamination wastes; and mill tailings and mine wastes. Handling and disposing of these various types of radioactive wastes are discussed briefly

  17. The disposal of solid radioactive wastes to land sites in the UK

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Phillipson, D.L.

    1984-01-01

    Solid radioactive waste management by land disposal, using a strategy laid down by the government, is discussed. Waste disposal at Drigg, and the proposals for the two preferred sites at Elstow (shallow burial) and Billingham (deep burial) are outlined. Nuclear Industry Radioactive Waste Executive (NIREX); safety; public acceptance; and the role of the private sector; are also described. (U.K.)

  18. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.; Larson, G.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  19. Development of low-level radioactive waste disposal capacity in the United States -- Progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The US nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW -- industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW -- face the same storage and cost uncertainties. This paper will summarize the current status of US low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  20. CHARACTERIZATION OF BENTONITE FOR ENGINEERED BARRIER SYSTEMS IN RADIOACTIVE WASTE DISPOSAL SITES

    Directory of Open Access Journals (Sweden)

    Dubravko Domitrović

    2012-07-01

    Full Text Available Engineered barrier systems are used in radioactive waste disposal sites in order to provide better protection of humans and the environment from the potential hazards associated with the radioactive waste disposal. The engineered barrier systems usually contain cement or clay (bentonite because of their isolation properties and long term performance. Quality control tests of clays are the same for all engineering barrier systems. Differences may arise in the required criteria to be met due for different application. Prescribed clay properties depend also on the type of host rocks. This article presents radioactive waste management based on best international practice. Standard quality control procedures for bentonite used as a sealing barrier in radioactive waste disposal sites are described as some personal experiences and results of the index tests (free swelling index, water adsorption capacity, plasticity limits and hydraulic permeability of bentonite (the paper is published in Croatian.

  1. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Smith, T.P.; Jaffe, M.

    1984-09-01

    In discussing the use of compensation and incentives in siting low-level radioactive waste disposal facilities, chapters are devoted to: compensation and incentives in disposal facility siting (definitions and effects of compensation and incentives and siting decisions involving the use of compensation and incentives); the impacts of regional and state low-level radioactive waste facilities; the legal framework of compensation; and recommendations regarding the use of compensation

  2. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Blair, I.

    1985-01-01

    The paper defends the case for marine disposal of radioactive wastes. The amount of packaged waste disposed; the site for marine disposal; the method of disposal; the radioactivity arising from the disposal; and safety factors; are all briefly discussed. (U.K.)

  3. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  4. Development of closure criteria for inactive radioactive waste disposal sites at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1989-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, specifies that cleanup of inactive waste disposal sites at Department of Energy (DOE) facilities shall at least attain legally applicable or relevant and appropriate requirements (ARARs) for cleanup or control of environmental contamination. This paper discusses potential ARARs for cleanup of inactive radioactive waste disposal sites and proposes a set of closure criteria for such sites at Oak Ridge National Laboratory (ORNL). The most important potential ARARs include Federal standards for radiation protection of the public, radioactivity in drinking water, and near-surface land disposal of radioactive wastes. On the basis of these standards, we propose that cleanup and closure of inactive radioactive waste disposal sites at ORNL shall achieve (1) limits on annual effective dose equivalent for off-site individuals and inadvertent intruders that conform to the DOE's performance objectives for new low-level waste disposal facilities and (2) to the extent reasonably achievable, limits on radionuclide concentrations in ground water and surface waters in accordance with Federal drinking water standards and ground-water protection requirements

  5. Siting Criteria for Low and Intermediate Level Radioactive Waste Disposal in Egypt (Proposal approach)

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2012-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media so that it does not result in undue radiation exposure to humans and the environment. The required degree of isolation can be obtained by implementing various disposal methods and suitable criteria. Near surface disposal method has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. Establishing site criteria is the first step in the sitting process to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  6. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  7. Pathways for Disposal of Commercially-Generated Tritiated Waste

    International Nuclear Information System (INIS)

    Halverson, Nancy V.

    2016-01-01

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  8. Overview of commercial low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Smith, P.

    1994-01-01

    Disposal of commercial low-level radioactive waste (LLW) is a critical part of the national infrastructure needed to maintain the health of American businesses, universities, and hospitals. Currently only 19 States (located in the Northwest and Southeast) have access to operating disposal facilities; all other States are storing their LLW until they open new disposal facilities on their own or in concert with other States through regional compact agreements. In response to recommendations from the National Governors Association, Congress assigned the burden for LLW disposal to all States, first in 1980 through Public Law 96-573, the open-quotes Low-level Radioactive Waste Policy Actclose quotes, and again in 1986 through Public Law 99-240, the open-quotes Low-Level Radioactive Waste Policy Amendments Act of 1985close quotes. As directed by Congress, the Department of Energy provides technical assistance to States and compact regions with this task. After almost 14 years, nine compact regions have been ratified by Congress; California, Texas, North Carolina, and Nebraska have submitted license applications; California has issued an operating license; and the number of operating disposal facilities has decreased from three to two

  9. Radioactive Waste Disposal Pilot Plant concept for a New Mexico site

    International Nuclear Information System (INIS)

    Weart, W.D.

    1976-01-01

    Twenty years of investigation have shown that disposal of nuclear wastes in deep salt formations is the surest means of isolating these wastes from the biosphere for the extremely long period of time required. A large scale demonstration of this capability will soon be provided by a Radioactive Waste Disposal Pilot Plant (RWDPP) to be developed in southeastern New Mexico. Initially, the pilot plant will accept only ERDA generated waste; high level waste from the commercial power reactor fuel cycle will eventually be accommodated in the pilot plant and the initial RWDPP design will be compatible with this waste form. Selection of a specific site and salt horizon will be completed in June 1976. Conceptual design of the RWDPP and assessment of its environmental impact will be completed by June 1977. Construction is expected to start in 1978 with first waste accepted in 1982. The present concept develops disposal areas for all nuclear waste types in a single salt horizon about 800 meters deep. This single level can accommodate all low level and high level waste generated in the United States through the year 2010. A major constraint on the RWDPP design is the ERDA requirement that all waste be ''readily'' retrievable during the duration of pilot plant operation

  10. Advanced technology for disposal of low-level radioactive/waste

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1990-01-01

    New Low-Level Radioactive Waste (LLW) sites will be opened in this decade. These sites will replace the existing sites, and will be developed for waste generated at both commercial and governmental facilities. The design and operation of these facilities will include additional engineered provisions to further minimize the probability for any radioactive material release for upwards of 500 years following site closure. Chem-Nuclear Systems, Inc. (CNSI) has been selected by several state waste compacts to design, construct and operate new LLW disposal sites. These new sites will be located in Illinois, North Carolina and Pennsylvania. They will receive waste generated at commercial sites (power utilities, commercial processors, hospitals, etc.), with volumes ranging from 200,000 to 550,000 cubic feet per year. As currently planned, these facilities will be operational for from 20 to 50 years. The basis of the new designs is multiple engineered barriers which augments the natural features of the site and the solid form of the waste as shipped by the generator. The design concept is referred to as the Triple Safe concept, since it is composed of three distinct engineered barriers. This design has been adapted from disposal technology developed in France. This paper discusses aspects of the Triple Safe technology which CNSI is now developing for the new LLW sites. The designs, while not absolutely identical at each site, do have many common features. The author believes that these are representative of disposal technology to be used in the US in the 1990's and beyond. The current projection is that these sites will become operational in the 1993-97 time period

  11. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1985-04-01

    This report assumes that local opposition is a critical issue in siting low-level radioactive waste disposal facilities. Although it recognizes the importance of local health and safety concerns, this report only addresses the economic issues facing local officials in the siting process. Finding ways to overcome local opposition through economic compensation and incentives is a basic step in the waste facility siting process. The report argues that the use of these compensation and incentive mechanisms can help achieve greater local acceptance of waste facilities and also help ease the economic burdens that many communities bear when they agree to host a low-level waste disposal facility. The growing national need for low-level radioactive waste disposal facilities requires that state and local planning agencies develop creative new procedures for siting facilities, procedures that are sensitive to local perceptions and effects

  12. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  13. Research in the selection of very low level radioactive waste disposal site in southwest China

    International Nuclear Information System (INIS)

    Tuo, Xianguo; Long, Qiong; Zhong, Hongmei; Xu, Zhengqi; Mu, Keliang; Gao, Lan

    2008-01-01

    The ultimate goal of Chinese Radioactive Nuclear Waste Management and Disposal Security is that must use proper and optimized ways to manage radioactive waste and make sure human beings and the environment either at the present or in the future can be free from any unacceptable risks. According to the goal, this paper presents an overview of comprehensive site characterization work that comprises investigations of physical geography, climatology, geology and hydrogeology, as well as geological hazard on two candidate Very Low Level Radioactive Waste (VLLW) disposal sites (Site 1 and Site 2) which are both located in the south west of China. The results showed that there are many similarities in the regional extent of the two sites, but many distinct differences are found in terrain and topographic features, granule stratum, hydraulic gradient, and so on. On the whole, the two alternative sites are in line with the requirements for very low level radioactive waste disposal, and Site 1 is superior to Site 2. (author)

  14. Analysis of the reduction in waste volumes received for disposal at the low-level radioactive waste site in the State of Washington

    International Nuclear Information System (INIS)

    Ko, S.

    1988-01-01

    The commercial low-level radioactive waste (LLRW) disposal site at Richland, Washington has been receiving waste from generators nationwide since 1965 and is one of the three sites in the nation currently receiving commercial LLRW for disposal. In the past, volumes of LLRW have been increasing steadily, however, this trend has reversed since 1986. This paper addresses waste volume and activity of the waste disposed, factors which have caused this dramatic reduction in LLRW volume, and regulatory concerns regarding environmental protection, and public and occupational health and safety. Future volumes of LLRW that are disposed at the Richland site depend on economic, technological, political and regulatory variables. Provided there is a continual increase in industrial growth, and a demand for medical research and diagnosis, the volume of LLRW increases. However, this volume also offsets by an increase in demand for volume reduction due to economic and institutional pressures. Yet, if all generators continue to volume reduce their LLRW, some time in future, a limit will be reached when the facility site operator needs to increase the unit disposal cost to cover the fixed cost and maintain a profit margin in order to operate the site

  15. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  16. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  17. Low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    Ozaki, Calvin B.; Kerr, Thomas A.; Williams, R. Eric

    1991-01-01

    Two national systems comprise the low-level radioactive waste management system in the United States of America. The U.S. Nuclear Regulatory Commission regulates low-level radioactive waste produced in the public sector (commercial waste), and the U.S. Department of Energy manages low-level radioactive waste produced by government-sponsored programs. The primary distinction between the two national systems is the source of regulatory control. This paper discusses two issues critical to the success of each system: the site selection process used by the commercial low-level waste disposal system, and the evaluation process used to determine configuration of the DOE waste management system. The two national systems take different approaches to reach the same goals, which are increased social responsibility, protection of public health and safety, and protection of the environment

  18. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  19. Commercial low-level radioactive waste management

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1982-01-01

    The goals, objectives and activities of the Department of Energy's Low-Level Radioactive Waste Management program are reviewed. The goal of the overall Program is to support development of an acceptable, nationwide, near surface waste disposal system by 1986. The commercial LLW program has two major functions: (1) application of the technology improvements for waste handling, treatment and disposal, and (2) assistance to states as they carry out their responsibilities under the Low-Level Radioactive Waste Policy Act of 1980. The priorities for the commercial side of the Low-Level Waste Management Program have been established to meet one goal: to support development of an effective commercial management system by 1986. The first priority is being given to supporting state efforts in forming the institutional structures needed to manage the system. The second priority is the state and industry role in transferring and demonstrating treatment and disposal technologies

  20. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  1. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  2. Disposal of low-level radioactive waste at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sauls, V.W. [Dept. of Energy, Aiken, SC (United States). Savannah River Field Office

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  3. Research on near-surface disposal of very low level radioactive waste

    International Nuclear Information System (INIS)

    Wang Shaowei; Yue Huiguo; Hou Jie; Chen Haiying; Zuo Rui; Wang Jinsheng

    2012-01-01

    Radioactive waste disposal is one of the most sensitive environmental problems to control and solve. As the arriving of decommissioning of early period nuclear facilities in China, large amounts of very low level radioactive waste will be produced inevitably. The domestic and abroad definitions about very low level radioactive waste and its disposal were introduced, and then siting principles of near-surface disposal of very low level radioactive waste were discussed. The near- surface disposal siting methods of very low level radioactive waste were analyzed from natural and geographical conditions assessment, geological conditions analysis, hydrogeological conditions analysis, geological hazard assessment and radioactive background investigation; the near-surface disposal sites'natural barriers of very low level radioactive waste were analyzed from the crustal structure and physico-chemical characteristics, the dynamics characteristics of groundwater, the radionuclide adsorption characteristics of natural barriers and so on; the near-surface disposal sites' engineered barriers of very low level radioactive waste were analyzed from the repository design, the repository barrier materials selection and so on. Finally, the improving direction of very low level radioactive waste disposal was proposed. (authors)

  4. United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. A comprehensive safety assessment program has been established which will proceed on a schedule consistent with the start-up of two waste repositories in late 1985. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating around waters for hundreds of thousands of years. The long-term stability of each site must be demonstrated by sophisticated rock mechanics analyses. To help provide answers on the mechanism and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is being sponsored at the Battelle Pacific Northwest Laboratories. Methods and data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sties, will be developed. Other long-term safety-related studies that complement WISAP are in progress, for example, borehole plugging, salt dissolutioning, and salt transport in vertical boreholes. Requirements for licensing are in the process of being formulated by the NRC

  5. Geohydrologic problems at low-level radioactive waste disposal sites in the United States of America

    International Nuclear Information System (INIS)

    Fischer, J.N.; Robertson, J.B.

    1984-01-01

    Several commercial and US Department of Energy low-level radioactive waste disposal sites in the USA have not adequately contained the waste products. Studies of these sites indicate a number of causes for the problems, including water accumulation in filled trenches, breaches of trench cap integrity, erosion, high water table, hydrogeological complexity, flooding, complex leachate chemistry, and rapid radionuclide migration in groundwater. These problems can be avoided through the application of practical, comprehensive, and common sense earth-science guidelines discussed in this paper. (author)

  6. Studies on site characterization methodologies for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Ju; Guo Yonghai; Chen Weiming

    2008-01-01

    This paper presents the final achievement of the project 'Studies of Site-specific Geological Environment for High Level Waste Disposal and Performance Assessment Methodology, Part Ⅰ: Studies on Site Characterization Methodologies for High Level Radioactive Waste Disposal', which is a 'Key Scientific and Technological Pre-Research Project for National Defense' during 2001-2005. The study area is Beishan area, Gansu Province, NW China--the most potential site for China's underground research laboratory and high level radioactive waste repository. The boreholes BS01, BS2, BS03 and BS04 drilled in fractured granite media in Beishan are used to conduct comprehensive studies on site characterization methodologies, including: bore hole drilling method, in situ measurement methods of hydrogeological parameters, underground water sampling technology, hydrogeochemical logging method, geo-stress measurement method, acoustic borehole televiewer measurement method, borehole radar measurement method, fault stability evaluation methods and rock joint evaluation method. The execution of the project has resulted in the establishment of an 'Integrated Methodological System for Site Characterization in Granite Site for High Level Radioactive Waste Repository' and the 8 key methodologies for site characterization: bore hole drilling method with minimum disturbance to rock mass, measurement method for hydrogeological parameters of fracture granite mass, in situ groundwater sampling methods from bore holes in fractured granite mass, fracture measurement methods by borehole televiewer and bore radar system, hydrogeochemical logging, low permeability measurement methods, geophysical methods for rock mass evaluation, modeling methods for rock joints. Those methods are comprehensive, advanced, innovative, practical, reliable and of high accuracy. The comprehensive utilization of those methods in granite mass will help to obtain systematic parameters of

  7. Illinois perspective on low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Etchison, D.

    1984-01-01

    Illinois is a big generator of low level radioactive waste. It has had extensive experience with controversial waste disposal and storage facilities. This experience makes it difficult for the public and political leaders in Illinois to support the establishment of new disposal facilities in the state. Yet, with extensive debates and discussions concerning the Low Level Waste Policy Act of 1980 and the proposed Midwest Compact, political leaders and the public are facing up to the fact that they must be responsible for the disposal of the low level radioactive waste generated in the state. The Governor and many political leaders from Illinois support the regional approach and believe it can be an innovative and progressive way for the state to deal with the range of low level waste management and disposal problems. A version of the Midwest Interstate Low Level Waste Compact has become Illinois law, but it has significant differences from the one adopted by five other states. Like other states in the midwest and northeast, Illinois is opposed to Congressional consent of the four pending compacts before the remaining two compacts, the northeast and midwest are sent to Washington and interregional agreements are negotiated between the sited and non-sited regions. A new national system must be established before access to existing commercial disposal becomes restricted

  8. A Study on Site Selecting for National Project including High Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many national projects are stopped since sites for the projects are not determined. The sites selections are hold by NIMBY for unpleasant facilities or by PYMFY for preferable facilities among local governments. The followings are the typical ones; NIMBY projects: high level radioactive waste disposal, THAAD, Nuclear power plant(NPP), etc. PIMFY projects: South-east new airport, KTX station, Research center for NPP decommission, etc. The site selection for high level radioactive waste disposal is more difficult problem, and thus government did not decide and postpone to a dead end street. Since it seems that there is no solution for site selection for high level radioactive waste disposal due to NIMBY among local governments, a solution method is proposed in this paper. To decide a high level radioactive waste disposal, the first step is to invite a bid by suggesting a package deal including PIMFY projects such as Research Center for NPP decommission. Maybe potential host local governments are asked to submit sealed bids indicating the minimum compensation sum that they would accept the high level radioactive waste disposal site. If there are more than one local government put in a bid, then decide an adequate site by considering both the accumulated PESS point and technical evaluation results. By considering how fairly preferable national projects and unpleasant national projects are distributed among local government, sites selection for NIMBY or PIMFY facilities is suggested. For NIMBY national projects, risk, cost benefit analysis is useful and required since it generates cost value to be used in the PESS. For many cases, the suggested method may be not adequate. However, similar one should be prepared, and be basis to decide sites for NIMBY or PIMFY national projects.

  9. Commercial low-level radioactive waste disposal in the US

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  10. Commercial low-level radioactive waste disposal in the US

    International Nuclear Information System (INIS)

    Smith, P.

    1995-01-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going

  11. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  12. Radioactive waste disposal in W.A

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1983-01-01

    Radioactive waste in Western Australia arises primarily from medical diagnosis and treatment and from scientific research mainly with a medical orientation. Waste is classified before disposal depending on its level and type of radioactivity and then disposed of either to municipal land fill sites, to the sewerage system or by incineration. The amounts of radioactive materials which may be disposed of to the sewers and air are set by the Radiation Safety Act (1975) Regulations, and the land fill operations are controlled to ensure isolation of the material. Other waste such as unwanted sources used in industrial applications are stored for future disposal. Discussions are being held between officers of the State and Australian Governments aimed at providing suitable disposal methods for sources of this kind

  13. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  14. Siting a low-level radioactive waste disposal facility in California

    International Nuclear Information System (INIS)

    Romano, S.A.; Gaynor, R.K.

    1991-01-01

    US Ecology is the State of California's designee to site, develop and operate a low-level radioactive waste disposal facility. In March 1988, a site in the Ward Valley of California's Mojave Desert was chosen for development. Strong local community support has been expressed for the site. US Ecology anticipates licensing and constructing a facility to receive waste by early 1991. This schedule places California well ahead of the siting milestones identified in Federal law. (author) 1 fig., 2 refs

  15. Status and advice of the low and intermediate level radioactive waste disposal sites in China

    International Nuclear Information System (INIS)

    Teng Keyan; Lu Caixia

    2012-01-01

    With the rapid development of nuclear power industry in China, as well as the decommissioning of the nuclear facilities, and the process of radioactive waste management, a mount of the low and intermediate level radioactive solid wastes will increase rapidly. How to dispose the low and intermediate level radioactive solid wastes, that not only related to Chinese nuclear energy and nuclear technology with sustainable development, but also related to the public health, environment safety. According to Chinese « long-term development plan of nuclear power (2005- 2020) », when construct the nuclear power, should simultaneous consider the sites that dispose the low and intermediate level radioactive waste, In order to adapt to the needs that dispose the increasing low and intermediate level radioactive waste with development of nuclear power. In the future, all countries are facing the enormous challenge of nuclear waste disposal. (authors)

  16. Radioactive waste management and disposal in Australia

    International Nuclear Information System (INIS)

    Harries, J.R.

    1997-01-01

    A national near-surface repository at a remote and arid location is proposed for the disposal of solid low-level and short-lived intermediate-level radioactive wastes in Australia. The repository will be designed to isolate the radioactive waste from the human environment under controlled conditions and for a period long enough for the radioactivity to decay to low levels. Compared to countries that have nuclear power programs, the amount of waste in Australia is relatively small. Nevertheless, the need for a national disposal facility for solid low-level radioactive and short-lived intermediate-level radioactive wastes is widely recognised and the Federal Government is in the process of selecting a site for a national near-surface disposal facility for low and short-lived intermediate level wastes. Some near surface disposal facilities already exist in Australia, including tailings dams at uranium mines and the Mt Walton East Intractable Waste Disposal Facility in Western Australia which includes a near surface repository for low level wastes originating in Western Australia. 7 refs, 1 fig., 2 tabs

  17. Treatment and disposal of radioactive wastes and countermeasures

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi

    1990-01-01

    The treatment and disposal of radioactive wastes are one of important subjects, together with the development of dismantling techniques accompanying the decommissioning measures for nuclear power plants and the development of reprocessing techniques for nuclear fuel cycle. About 25 years have elapsed since the beginning of commercial nuclear power generation in 1966, and the time that the solution of the problems of waste treatment and disposal must be tackled on full scale has come. The features and the amount of generation of radioactive wastes, the way of thinking on the treatment and disposal, and the present status of the treatment and disposal are outlined. For securing the stable supply of energy and solving the environmental problem of the earth such as acid rain and warming, nuclear power generation accomplishes important roles. The objective of waste treatment is based on the way of thinking of 'as low as reasonably achievable (ALARA)'. The radioactive wastes are classified into alpha waste and beta-gamma waste. The present status of RI wastes, the techniques of treating radioactive wastes, the nuclide separation, extinction treatment and the disposal in strata of high level radioactive wastes and the disposal of low level wastes are reported. (K.I.)

  18. Application of GIS in siting disposal repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Zhong Xia; Wang Ju; Huang Shutao

    2010-01-01

    High level radioactive waste geo-disposal is directly related to environment protection and Sustainable Utilization of nuclear energy. To ensure both success and long-term safe disposal of the high level-radioactive waste, finding suitable sites is an important step in the research. Meanwhile, siting and evaluation the geo-disposal repository for high level-radioactive waste need a wide range of relevant information, including geology and geophysical surveys data, geochemistry data and other geoscience data in the field. At the same time, some of the data has its spatial property. Geographic information system (GIS) have a role to play in all geographic and spatial aspects of the development and management of the siting disposal repository. GIS has greatly enhanced our ability to store, analyze and communicate accounts of the information. This study was conducted to compare the more suitable sites for the repository using GIS -based on the data which belongs to the preselected area in BeiShan, Gansu Province, China. First, the data of the pre-selected site is captured by GIS and stored in the geoscience database. Then, according to the relevant guide line in the field, the analysis models based on GIS are build. There are some thematic layers of the sites character grouped into two basic type, namely social factors(town, traffic and nuclear plant) and natural factors (water, land and animals and plants).In the paper, a series of GIS models was developed to compare the pre-selected areas in order to make optimal decision. This study shows that with appropriate and enough information GIS used in modeling is a powerful tool for site selection for disposal repository. (authors)

  19. National Low-Level Radioactive Waste Management Program. Use of compensation and incentives in siting Low-Level Radioactive Waste Disposal Facilities. Revision 1

    International Nuclear Information System (INIS)

    1985-10-01

    This document was prepared to increase understanding of compensation and incentives as they pertain to the siting of Low-Level Radioactive Waste Disposal Facilities. Compensation and incentives are discussed as methods to facilitate siting Low-Level Radioactive Waste Facilities. Compensations may be in the form of grants to enable host communities to evaluate potential impacts of the proposed facility. Compensations may also include reimbursements to the host community for costs incurred during facility construction, operation and closure. These may include required improvements to local roads, new equipment, and payments for revenue losses in local property taxes when disposal sites are removed from the tax base. Incentives provide benefits to the community beyond the costs directly related to the operation of the facility. Greater local control over waste facilities can be a powerful incentive. Local officials may be more willing to accept a facility if they have some control over the operation and monitoring associated with the facility. Failure to secure new disposal sites may cause such problems as illegal dumping which would create public health hazards. Also, lack of disposal capacity may restrict research and medical use of radioactive materials. The use of compensation and incentives may increase acceptance of communities for hosting a low-level waste disposal facility

  20. Development of closure criteria for inactive radioactive waste-disposal sites at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) specifies that the U.S. Department of Energy shall comply with the procedural and substantive requirements of CERCLA regarding cleanup of inactive waste-disposal sites. Remedial actions require a level of control for hazardous substances that at least attains legally applicable or relevant and appropriate requirements (ARAR). This requirement may be waived if compliance with ARAR results in greater risk to human health and the environment than alternatives or is technically impractical. It will review potential ARAR for cleanup of inactive radioactive waste-disposal sites and propose a set of closure criteria for such sites at Oak Ridge National Laboratory. Important potential ARAR include federal standards for radiation protection of the public, radioactivity in drinking water, and near-surface land disposal of radioactive wastes. Proposed criteria for cleanup of inactive radioactive waste-disposal sites are: (1) a limit of 0.25 mSv on annual effective dose equivalent for offsite individuals; (2) limits of 1 mSv for continuous exposures and 5 mSv for occasional exposures on annual effective dose equivalent for inadvertent intruders, following loss of institutional controls over disposal sites; and (3) limits on concentrations of radionuclides in potable ground and surface waters in accordance with federal drinking-water standards, to the extent reasonably achievable

  1. Experience in selection and characterization of sites for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1997-12-01

    An important matter in the development of a geological repository for disposal radioactive waste is the selection of a site that has characteristics that are favorable for isolation. A number of Member States have had national programmes under way for several decades to investigate sites to gather the geological information needed to design and construct a safe repository. The purpose of this report is to document this experience and to summarize what has been learned about the site selection and investigation process. It is hoped it will be of interest to scientists and engineers working in national disposal programmes by providing them information and key references regarding the disposal programmes in other countries. It may also be of interest to members of the public and to decision makers wanting an overview of the worldwide status of programmes to select and characterize geological disposal sites for radioactive waste

  2. Radioactive wastes storage and disposal. Chapter 8

    International Nuclear Information System (INIS)

    2002-01-01

    The Chapter 8 is essentially dedicated to radioactive waste management - storage and disposal. The management safety is being provided due to packages and facilities of waste disposal and storage. It is noted that at selection of sites for waste disposal it is necessary account rock properties and ways of the wastes delivery pathways

  3. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  4. Ocean disposal of radioactive waste: Status report

    International Nuclear Information System (INIS)

    Calmet, D.P.

    1989-01-01

    For hundreds of years, the seas have been used as a place to dispose of wastes resulting from human activities and although no high level radioactive waste (HLW) has been disposed of into the sea, variable amounts of packaged low level radioactive waste (LLW) have been dumped at more than 50 sites in the northern part of the Atlantic and Pacific oceans. So far, samples of sea water, sediments and deep sea organisms collected on the various sites have not shown any excess in the levels of radionuclides above those due to nuclear weapons fallout except on certain occasions where caesium and plutonium were detected at higher levels in samples taken close to packages at the dumping site. Since 1957, the date of its first meeting to design methodologies to assess the safety of ''radioactive waste disposal into the sea'', the IAEA has provided guidance and recommendations for ensuring that disposal of radioactive wastes into the sea will not result in unacceptable hazards to human health and marine organisms, damage to amenities or interference with other legitimate uses of the sea. Since the Convention for the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (referred to as the London Dumping Convention) came into force in 1975, the dumping of waste has been regulated on a global scale. The London Dumping Convention entrusted IAEA with specific responsibilities for the definition of high level radioactive wastes unsuitable for dumping at sea, and for making recommendations to national authorities for issuing special permits for ocean dumping of low level radioactive wastes. This paper presents a status report of immersion operations of low-level radioactive waste and the current studies the IAEA is undertaking on behalf of the LDC

  5. The regulation on commercial reactors and the management of high-level radioactive wastes in U.S

    International Nuclear Information System (INIS)

    Shimomura, Hidetsugu

    2013-01-01

    This article shows U.S. NRC's substantial and procedural regulations regarding commercial reactors and radioactive wastes. The commercial reactor's regulations are analyzed from an ensuring safety, and the radioactive waste' management is done from a locating a disposal site. (author)

  6. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  7. Economics of low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Schafer, J.; Jennrich, E.

    1983-01-01

    Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the costs associated with various disposal site development, financing, and operating scenarios. As site specific costs and requirements are refined LLWECON will be able to calculate exact life cycle costs for each facility. While designed around shallow land burial, as practiced today, LLWECON is flexible and the input parameters discrete enough to be applicable to other disposal options. What the program can do is illustrated

  8. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  9. Selection of radioactive waste disposal site considering natural processes

    International Nuclear Information System (INIS)

    Nakamura, H.

    1991-01-01

    To dispose the radioactive waste, it is necessary to consider the transfer of material in natural environment. The points of consideration are 1) Long residence time of water 2) Independence of biosphere from the compartment containing the disposal site in the natural hydrologic cycle 3) Dilution with the natural inactive isotope or the same group of elements. Isotope dilution for 129 I and 14 C can be expected by proper selection of the site. 241 Am and 239 Pu will be homogenized into soil or sediment with insoluble elements such as iron and aluminium. For 237 Np and 99 Tc anionic condition is important for the selection. From the point of view of hydrologic cycle, anoxic dead water zone avoiding beneath mountain area is preferable for the disposal site. (author)

  10. Plasma separation process: Disposal of PSP radioactive wastes

    International Nuclear Information System (INIS)

    1989-07-01

    Radioactive wastes, in the form of natural uranium contaminated scrap hardware and residual materials from decontamination operations, were generated in the PSP facilities in buildings R1 and 106. Based on evaluation of the characteristics of these wastes and the applicable regulations, the various options for the processing and disposal of PSP radioactive wastes were investigated and recommended procedures were developed. The essential features of waste processing included: (1) the solidification of all liquid wastes prior to shipment; (2) cutting of scrap hardware to fit 55-gallon drums and use of inerting agents (diatomaceous earth) to eliminate pyrophoric hazards; and (3) compaction of soft wastes. All PSP radioactive wastes were shipped to the Hanford Site for disposal. As part of the waste disposal process, a detailed plan was formulated for handling and tracking of PSP radioactive wastes, from the point of generation through shipping. In addition, a waste minimization program was implemented to reduce the waste volume or quantity. Included in this document are discussions of the applicable regulations, the types of PSP wastes, the selection of the preferred waste disposal approach and disposal site, the analysis and classification of PSP wastes, the processing and ultimate disposition of PSP wastes, the handling and tracking of PSP wastes, and the implementation of the PSP waste minimization program. 9 refs., 1 fig., 8 tabs

  11. Secrets of successful siting legislation for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pasternak, A.D.

    1988-01-01

    California's users of radioactive materials, working together through the California Radioactive Materials Management Forum (Cal Rad), have played a role in fostering development of our state's low-level radioactive waste disposal facility. One of Cal Rad's contributions was to develop and sponsor California's siting legislation in 1983. In this paper, the elements of the state's LLRW siting law, California Senate Bill 342 (Chapter 1177, Statutes a 1983), and their relationship to a successful siting program are described

  12. Shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations

  13. Management of commercial high-level and transuranium-contaminated radioactive wastes. Environmental statement

    International Nuclear Information System (INIS)

    1974-09-01

    This Draft Environmental Statement is issued to assess the environmental impact of the AEC's program to manage commercial high-level and transuranium-contaminated radioactive wastes. These are the types of commercial radioactive wastes for which AEC custody is required by present or anticipated regulations. The program consists of three basic parts: development of a Retrievable Surface Storage Facility (RSSF) for commercial high-level waste, using existing technology; evaluating geological formations and sites for the development of a Geological Disposal Pilot Plant (GDPP) which would lead to permanent disposal; and providing retrievable storage for the transuranium-contaminated waste pending availability of permanent disposal. Consideration has been given to all environmental aspects of the program, using waste generation projections through the year 2000. Radiological and other impacts of implementing the program are expected to be minimal, but will be discussed in further environmental statements which will support budget actions for specific repositories. The alternatives discussed in this Draft Environmental Statement are presented. (U.S.)

  14. The politics of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kemp, R.

    1992-01-01

    Plans for radioactive waste disposal have been among the most controversial of all environmental policies, provoking vociferous public opposition in a number of countries. This book looks at the problem from an international perspective, and shows how proposed solutions have to be politically and environmentally, as well as technologically acceptable. In the book the technical and political agenda behind low and intermediate level radioactive waste disposal in the UK, Western Europe, Scandinavia and North America is examined. The technical issues and the industrial proposals and analyses and factors which have been crucial in affecting relative levels of public acceptability are set out. Why Britain has lagged behind countries such as Sweden and France in establishing Low Level Waste (LLW) and Intermediate Level Waste (ILW) sites, the strength of the 'not in my backyard' syndrome in Britain, and comparisons of Britain's decision-making process with the innovative and open pattern followed in the US and Canada are examined. An important insight into the problems facing Nirex, Britain's radioactive waste disposal company, which is seeking to establish an underground waste site at Sellafield in Cumbria is given. (author)

  15. Some statistical and sampling needs for detecting spills or migration at commercial low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.; Skalski, J.R.; Simmons, M.A.

    1984-05-01

    As part of a larger study funded by the US Nuclear Regulatory Commission we have been investigating field sampling strategies and compositing as a means of detecting spills or migration at commercial low-level radioactive waste disposal sites. The overall project is designed to produce information for developing guidance on implementing 10 CFR part 61. Compositing (pooling samples) for detection is discussed first, followed by our development of a statistical test to allow a decision as to whether any component of a composite exceeds a prescribed maximum acceptable level. The question of optimal field sampling designs and an Apple computer program designed to show the difficulties in constructing efficient field designs and using compositing schemes are considered. 6 references, 3 figures, 3 tables

  16. User's manual for applicants proposing on-site burial of self-generated radioactive waste

    International Nuclear Information System (INIS)

    Tolbert, M.E.M.; Loretan, P.A.

    1987-01-01

    This document describes, for medical and research institutions as well as industrial generators of low-level radioactive waste, the NRC or state submittal requirements for authorizing the on-site burial of self-generated radioactive waste. An important part of completing the license application for operation justifying this alternative for waste disposal over other alternatives. Reasons that might be considered acceptable might include the need to dispose of large volumes of low activity waste that would otherwise take up valuable space in commercial sites; the ability to demonstrate that this method of disposal will result in reduced exposures to the public; the ability to show that the prohibitive costs of other methods of disposal would be detrimental to the progress of significant research which generates radioactive waste. 19 refs., 3 figs., 4 tabs

  17. Disposal of low-level and mixed low-level radioactive waste during 1990

    International Nuclear Information System (INIS)

    1993-08-01

    Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data

  18. Obstacle factors and overcoming plans of public communication: With an emphasis on radioactive waste disposal facility siting

    International Nuclear Information System (INIS)

    Yoo, Hae-Woon; Oh, Chang-Taeg

    1996-01-01

    Korea is confronting a serious social conflict, which is phenomenon of local residents reaction to radioactive waste disposal facility. This phenomenon is traced back to the reason that the project sponsors and local residents do not communicate sufficiently each other. Accordingly, in order to overcome local residents' reaction to radioactive waste disposal facility siting effectively, it is absolutely necessary to consider the way of solutions and strategies with regard to obstacle factors for public communication. In this content, this study will review three cases (An-myon Island, Gul-up Island, Yang-yang) on local residents reaction to facility siting. As a result of analysis, authoritarian behavior of project sponsors, local stigma, risk, antinuclear activities of environmental group, failures in siting the radioactive waste disposal facility, etc. has negative impact on public communication of the radioactive waste disposal facility siting. In this study, 5 strategies (reform of project sponsor's authoritarianism, incentive offer, strengthening PA activities, more active talks with environmental groups, promoting credibility of project sponsors) arc suggested to cope with obstacle factors of public communication

  19. Inventory of radioactive material entering the marine environment: Sea disposal of radioactive waste

    International Nuclear Information System (INIS)

    1991-03-01

    Variable amounts of packaged low level radioactive waste have been disposed at more than 50 sites in the northern parts of the Atlantic and Pacific Oceans. The last known disposal operation was in 1982, at a site about 550 km off the European continental shelf in the Atlantic Ocean. Since 1957, the IAEA has provided specific guidance and recommendations for ensuring that disposal of radioactive wastes into the sea will not result in unacceptable hazards to human health and marine organisms, damage to amenities or interference with other legitimate uses of the sea. In 1972, the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter designated the IAEA as the competent international authority in matters related to sea disposal of radioactive waste. The Contracting Parties requested the IAEA to develop an inventory of radioactive wastes entering the marine environment from all sources as an information base with which the impact of radioactive materials from disposal operations can be more adequately assessed. The continuous compilation of these data could ensure that the IAEA recommendations on the disposal rate in a single basin are not overstepped. The inventory shows that between 1946 to 1982 an estimated 46 PBq 1 (1.24 MCi) of radioactive waste coming from research, medicine, the nuclear industry and military activities were packaged, usually in metal drums lined with a concrete or bitumen matrix, and disposed of at sea. This inventory includes some unpackaged wastes and liquid wastes which were disposed of from 1950 to 1960. Beta-gamma emitters represent more than 98% of the total radioactivity of the waste and tritium alone represents one third of the total radioactivity disposed at the North East Atlantic sites. The other beta-gamma emitters radionuclides include 90 Sr, 137 Cs, 55 Fe, 58 Co, 60 Co, 125 I and 14 C. The wastes also contain low quantities of alpha-emitting nuclides with plutonium and americium isotopes representing

  20. Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site

    International Nuclear Information System (INIS)

    Shott, G.; Yucel, V.; Desotell, L.; Carilli, J.T.

    2006-01-01

    The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoring program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim R simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental

  1. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  2. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    International Nuclear Information System (INIS)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches

  3. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  4. Radioactive waste disposal sites: Two successful closures at Tinker Air Force Base

    International Nuclear Information System (INIS)

    McKenzie, G.; Mohatt, J.V.; Kowall, S.J.; Jarvis, M.F.

    1993-06-01

    This article describes remediation and closure of two radioactive waste disposal sites at Tinker Air Force Base, Oklahoma, making them exemption regulatory control. The approach consisted of careful exhumation and assessment of soils in sites expected to be contaminated based on historical documentation, word of mouth, and geophysical surveys; removal of buried objects that had gamma radiation exposure levels above background; and confirmation that the soil containing residual radium-226 was below an activity level equal to no more than a 10 mrem/yr annual dose equivalent. In addition, 4464 kg of chemically contaminated excavated soils were removed for disposal. After remediation, the sites met standards for unrestricted use. These sites were two of the first three Air Force radioactive disposal sites to be closed and were the first to be closed under Draft NUREG/CR-5512

  5. The management and disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ginniff, M.E.; Blair, I.M.

    1986-01-01

    After an introduction on how radioactivity and radiation can cause damage, the three main types of radioactive wastes (high level (HLW), intermediate level (ILW) and low level (LLW)) are defined and the quantities of each produced, and current disposal method mentioned. The Nuclear Industry Radioactive Waste Executive (NIREX) was set up in 1982 to make proposals for the packaging, transportation and disposal of ILW and, if approved, to manage their implementation. NIREX has also taken over some aspects of the LLW disposal programme, and keeps an inventory of the radioactive waste in the country. The NIREX proposals are considered. For ILW this is that ILW should be immersed in a matrix of concrete, then stored in a repository, the design of which is discussed. The transportation of the concrete blocks is also mentioned. Possible sites for a suitable repository are discussed. Efforts are being made to gain public acceptance of these sites. (U.K.)

  6. Waste Disposal: Long-term Performance Studies for Radioactive Waste Disposal and Hydrogeological Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Marivoet, J

    2000-07-01

    The main objectives of SCK-CEN's R and D programme on long-term performance studies are: (1) to develop a methodology and associated tools for assessing the long-term safety of geological disposal of all types of radioactive waste in clay formations and of the shallow-land burial of low-level waste; (2) to assess the performance and to identify the most influential elements of integrated repository systems for the disposal of radioactive waste; (3) to collect geological, piezometric and hydraulic data required for studying the hydrogeological system in north-eastern Belgium; (4) to develop a regional aquifer model for north-easter Belgium and to apply it in the performance assessments for the Mol site; (5) to test, verify and improve computer codes used in the performance assessment calculations of waste disposal concepts and contaminated sites (the computer codes simulate water flow and transport of radionuclides in engineered barriers, aquifers and contaminated sites). The scientific programme and achievements in 1999 are described.

  7. Data base for radioactive waste management: review of low-level radioactive waste disposal history

    International Nuclear Information System (INIS)

    Clancy, J.J.; Gray, D.F.; Oztunali, O.I.

    1981-11-01

    This document is prepared in three volumes and provides part of the technical support to the draft environmental impact statement (NUREG-0782) on a proposed regulation, 10CFR Part 61, setting forth licensing requirements for land disposal of low level radioactive waste. Volume 1 is a summary and analysis of the history of low level waste disposal at both commercial and government disposal facilities

  8. Characterization of trench water at the Maxey Flats low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Weiss, A.J.; Francis, A.J.; Colombo, P.

    1977-01-01

    Currently the United States Geological Survey is conducting a study of the hydrogeological and geochemical behavior of commercially operated low-level radioactive waste disposal sites. The data collected from this study will be used to establish criteria for selection of new sites for disposal of radioactive wastes. As part of this study, water samples from trenches at the Maxey Flats, Kentucky site were analyzed at Brookhaven National Laboratory to determine the source terms of the radionuclides and other components in solution in the trenches. Procedures for collection and filtration of the samples under anoxic conditions are described. The samples were analyzed for inorganic, radiochemical and organic constituents. The inorganic analysis includes the measurements of pH, specific conductance, alkalinity, and various cations and anions. The radionuclides were measured by the gross alpha, gross beta, tritium, and gamma activities, followed by specific measurements of strontium-90 and plutonium isotopes. The organics were extracted, concentrated, and identified by gas chromatography/mass spectrometry. Considerable quantities of organics were detected in all of the trench waters sampled. Specific organics were found in most of the trenches, however, the organic composition of the trench waters vary. The presence of a variety of organic compounds in trench waters suggest that they may play an important role in the transport of radionuclides

  9. Evaluation of site-generated radioactive waste treatment and disposal methods for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Jardine, L.J.

    1989-01-01

    This study identifies the sources of radioactive wastes that may be generated at the proposed high-level waste (HLW) repository at Yucca Mountain, NV, estimates the waste quantities and characteristics, compares technologies available for waste treatment and disposal, and develops recommended concepts for site-generated waste treatment and disposal. The scope of this study is limited to operations during the emplacement phase, in which 70,000 MTU of high-level waste will be received and emplaced at the proposed repository. The evaluations consider all radioactive wastes generated during normal operations in surface and underground facilities. Wastes generated as a result of accidents are not addressed; accidents that could result in large quantities of radioactive waste are expected to occur very infrequently and temporary, portable systems could be used for any necessary cleanup. The results of this study can be used to develop more definitive plans for managing the site-generated wastes and as a basis for the design of associated facilities at the proposed repository

  10. Geotechnical site assessment for underground radioactive waste disposal in rock

    International Nuclear Information System (INIS)

    Hudson, J.A.

    1986-05-01

    This report contains a state-of-the-art review of the geotechnical assessment of Land 3 and Land 4 repository sites (at 100 - 300 m depth in rock) for intermediate level radioactive waste disposal. The principles established are also valid for the disposal of low and high level waste in rock. The text summarizes the results of 21 DoE research contract reports, firstly 'in series' by providing a technical review of each report and then 'in parallel' by considering the current state of knowledge in the context of the subjects in an interaction matrix framework. 1214 references are cited. It is concluded that four further research projects are required for site assessment procedures to be developed or confirmed. These are coupled modelling, mechanical properties, water flow and establishment of 2 phase site assessment procedures. (author)

  11. Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

    International Nuclear Information System (INIS)

    Kwak, Kyung Kil; Ji, Young Yong

    2010-12-01

    The radioactive waste form should be meet the waste acceptance criteria of national regulation and disposal site specification. We carried out a characterization of rad waste form, especially the characteristics of radioactivity, mechanical and physical-chemical properties in various rad waste forms. But asphalt products is not acceptable waste form at disposal site. Thus we are change the product materials. We select the development of the new process or new materials. The asphalt process is treatment of concentrated liquid and spent-resin and that we decide the Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

  12. Area 5 Radioactive Waste Management Site Safety Assessment Document

    International Nuclear Information System (INIS)

    Horton, K.K.; Kendall, E.W.; Brown, J.J.

    1980-02-01

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization

  13. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  14. Meeting performance objectives for Low-Level Radioactive Disposal Waste Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Taylor, G.E.

    1992-01-01

    A new Low-Level Radioactive Waste (LLW) disposal facility at the Savannah River Site is presently being constructed. The facility was designed to meet specific performance objectives (derived from DOE Order 5820.2A and proposed EPA Regulation 40CFR 193) in the disposal of containerized Class A and B wastes. The disposal units have been designed as below-grade concrete vaults. These vaults will be constructed using uniquely designed blast furnace slag + fly as concrete mix, surrounded by a highly permeable drainage layer, and covered with an engineered clay cap to provide the necessary environmental isolation of the waste form to meet the stated performance objectives. The concrete mix used in this facility, is the first such application in the United States. These vaults become operational in September 1992 and will become the first active facility of its kind, several years ahead of those planned in the commercial theater. This paper will discuss the selection of the performance objectives and conceptual design

  15. Acceptance criteria for disposal of radioactive waste in Romania

    International Nuclear Information System (INIS)

    Dogaru, D.

    2001-01-01

    In Romania the institutional radioactive waste are managed by National Institute of R and D for Physics and Nuclear Engineering. The institutional radioactive waste are collected, treated and conditioned at the Radioactive Waste Treatment Plant then transferred and disposed to the National Repository of Radioactive Waste at Baita Bihor. National Repository for Radioactive Waste is a long term storage facility. The repository is placed in a former worked out uranium ore mine, being excavated in the Bihor peak. The repository has been sited taking into account the known geological, hydrogeoloical, seismic and meteorological and mining properties of a uranium mining site. In the absence of an updated Safety Analysis Report, the maximum radioactive content permitted by the regulatory authority in the operation license is below the values reported for other engineered repositories in mine galleries. The paper presents the acceptance criteria for disposal of radioactive waste in National Repository for Radioactive Waste at Baita Bihor. (author)

  16. Outline of the radioactive waste management strategy at the national radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.F.; Tukhto, A.A.; Ivanov, V.B.

    2000-01-01

    The national Belarus radioactive waste disposal facility 'Ekores' was started in 1964 and was designed for radioactive waste coming from nuclear applications in industry, medicine and research. It is located in the neighbourhood of Minsk (2 Mil. people) and it is the only one in this country. In 1997 the Government initiated the project for the facility reconstruction. The main reconstruction goal is to upgrade radiological safety of the site by creating adequate safety conditions for managing radioactive waste at the Ekores disposal facility. This covers modernising technologies for new coming wastes and also that the wastes currently disposed in the pits are retrieved, sorted and treated in the same way as new coming wastes. The reconstruction project developed by Belarus specialists was reviewed by the IAEA experts. The main provisions of the revised project strategy are given in this paper. The paper's intention is to outline the technical measures which may be taken at standard 'old type Soviet Radon' disposal facility so as to ensure the radiological safety of the site. (author)

  17. Disposal of radioactive wastes. Chapter 11

    International Nuclear Information System (INIS)

    Skitt, J.

    1979-01-01

    An account is given of the history and present position of legislation in the United Kingdom on the disposal of radioactive wastes. The sections are headed: introduction and definitions; history; the Radioactive Substances Act 1960; disposal of solid radioactive wastes through Local Authority services; function of Local Authorities; exemptions; national radioactive waste disposal service; incidents involving radioactivity. (U.K.)

  18. Design basis for the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Lewi, J.; Kaluzny, Y.

    1990-01-01

    All radioactive waste disposal sites, regardless of disposal concept, are designed to isolate the radioactive substances contained in such waste for a period at least equal to the time it may remain potentially harmful. Isolation is achieved through the use of containment barriers. This paper summarises the function and limits of different types of barrier used in various disposal systems. For each type of barrier, the paper describes and comments on the site selection criteria and waste packaging requirements applicable in various countries. 13 refs., 1 fig [fr

  19. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    Cotton, T.

    1985-01-01

    With the passage of the Nuclear Waste Policy Act of 1982 (NWPA), Congress for the first time established in law a comprehensive Federal policy for commercial high-level radioactive waste management, including interim storage and permanent disposal. NWPA provides sufficient authority for developing and operating a high-level radioactive waste management system based on disposal in mined geologic repositories. Authorization for other types of waste facilities will not be required unless major problems with geologic disposal are discovered, and studies to date have identified no insurmountable technical obstacles to developing geologic repositories. The NWPA requires the Department of Energy (DOE) to submit to Congress three key documents: (1) a Mission Plan, containing both a waste management plan with a schedule for transferring waste to Federal facilities and an implementation program for choosing sites and developing technologies to carry out that plan; (2) a monitored retrievable storage (MRS) proposal, to include a site-specific design for a long-term federal storage facility, an evaluation of whether such an MRS facility is needed and feasible, and an analysis of how an MRS facility would be integrated with the repository program if authorized by Congress; and (3) a study of alternative institutional mechanisms for financing and managing the radioactive waste system, including the option of establishing an independent waste management organization outside of DOE. The Mission Plan and the report on alternative institutional mechanisms were submitted to the 99th US Congress in 1985. The MRS proposal is to be submitted in early 1986. Each of these documents is discussed following an overview of the Nuclear Waste Policy Act of 1982

  20. Grimsel test site. Research on safe geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2010-07-01

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  1. Grimsel test site. Research on safe geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  2. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  3. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.

    2010-01-01

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  4. Safe disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hooker, P.; Metcalfe, R.; Milodowski, T.; Holliday, D.

    1997-01-01

    A high degree of international cooperation has characterized the two studies reported here which aim to address whether radioactive waste can be disposed of safely. Using hydrogeochemical and mineralogical surveying techniques earth scientists from the British Geological Survey have sought to identify and characterise suitable disposal sites. Aspects of the studies are explored emphasising their cooperative nature. (UK)

  5. Safety assessment for Area 5 radioactive-waste-management site

    International Nuclear Information System (INIS)

    Hunter, P.H.; Card, D.H.; Horton, K.

    1982-09-01

    The Area 5 Radioactive Waste Management Safety Assessment Document contains evaluations of site characteristics, facilities, and operating practices that contribute to the safe handling, storage, and disposal of low-level radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. A separate section considers facilities and operating practices such as monitoring, storage/disposal criteria, site maintenance, equipment, and support. The section also considers the transportation and waste handling requirements supporting the new Greater Confinement Disposal Facility (GCDF), GCDF demonstration project, and other requirements for the safe handling, storage, and disposal of low-level radioactive wastes. Finally, the document provides an analysis of releases and an assessment of the near-term operational impacts and dose commitments to operating personnel and the general public from normal operations and anticipated accidental occurrences. The conclusion of this report is that the Area 5 Radioactive Waste Management Site is suitable for low-level radioactive waste handling, storage, and disposal. Also, the new GCDF demonstration project will not affect the overall safety of the Area 5 Radioactive Waste Management Site

  6. Intruder dose pathway analysis for the onsite disposal of commercial radioactive waste

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Peloquin, R.A.; Napier, B.A.

    1984-10-01

    Because of uncertainties associated with assessing the potential risks from onsite burials of commercial radioactive waste, the US Nuclear Regulatory Commission (NRC) has amended its regulations to provide greater assurance that buried radioactive material will not present a hazard to public health and safety. The amended regulations now require licensees to apply for approval of proposed procedures for onsite disposal pursuant to 10 CFR 20.302. The NRC technically reviews these requests on a case-by-case basis. These technical reviews require modeling potential pathways to man and projecting radiation dose commitments. This paper contains a summary of our efforts to develop human-intrusion scenarios and to modify a version of the MAXI computer program for potential use by the NRC in reviewing applications for onsite radioactive waste disposal. The ONSITE/MAXI1 computer software package contains four computer codes. ONSITE is the interactive user interface that allows the end-user to simply and efficiently create and use the radiation-exposure scenarios. MAXI1 is then used with the scenario information to calculate the maximum annual dose to the exposed individual from selected pathways. 1 figure

  7. Development of a low level radioactive waste disposal site in Texas - 1994 status

    International Nuclear Information System (INIS)

    Jacobi, L.R. Jr.

    1995-01-01

    The Texas Low Level Radioactive Waste Disposal Authority, an agency of the State of Texas, has been trying to develop a site for the disposal of low level radioactive waste in Texas for over ten years. Since 1991, the agency has been evaluating a site near Sierra Blanca, in far west Texas. Site characterization has been completed and a license application has been filed with the Texas Natural Resource Conservation Commission. Construction plans were completed in 1993, and the agency is prepared to begin construction and operations as soon as a license can be issued. Development costs for the site are borne by the utility companies and other major generators in Texas through the assessment of a planning and implementation fee. Total costs to date are approximately $26 million. As the project moves toward completion, state and national anti-nuclear activist groups have become more involved in attempts to thwart the Texas government's effort to solve the radioactive waste problem. To counter this increased opposition, the Texas utility companies and medical radioactive waste generators have also become more active in responding to these groups. This has been very helpful and is in keeping with the elements of building block 12 of the Nuclear Power Oversight Committee's Strategic Plan for Building New Nuclear Power Plants. This paper and poster session look at the schedule, design, and long term prospects for ultimate success of the project

  8. Disposal of radioactive waste in the Atlantic

    International Nuclear Information System (INIS)

    1982-06-01

    An operation to dispose of low-level radioactive waste in the North Atlantic deeps is undertaken each year. This leaflet seeks to answer questions which are sometimes asked about the operation. It deals with origin, composition, quantity, reason for sea- rather than land-disposal, packaging, transport (rail, road), route of transport, safety precautions, radiation protection, personnel, contamination, site of dump, international regulations, neutral observers, safety standards of containers and control of level of radioactivity of wastes. (U.K.)

  9. Site selection handbook: Workshop on site selection for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1987-10-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) requires the Department of Energy (DOE) to provide technical assistance to ''...those compact regions, host States and nonmember States determined by the Secretary to require assistance.'' Technical assistance has been defined to include, but not be limited to, ''technical guidelines for site selection.'' This site selection workshop was developed to assist States and Compacts in developing new low-level radioactive waste (LLW) disposal sites in accordance with the requirements of the LLRWPAA. The workshop comprises a series of lectures, discussion topics, and exercises, supported by this Site Selection Workshop Handbook, designed to examine various aspects of a comprehensive site selection program. It is not an exhaustive treatment of all aspects of site selection, nor is it prescriptive. The workshop focuses on the major elements of site selection and the tools that can be used to implement the site selection program

  10. Disposal of Radioactive Waste. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  11. The transport implications of siting policies for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    James, I.A.

    1986-01-01

    This report has been produced to be complementary to the previously issued report ''The Transport Implications of Regional Policies for The Disposal of Intermediate Level Radioactive Wastes''. The same combinations of disposal facilities have been used so that direct comparison with intermediate waste results can be made. Low level wastes and short-lived intermediate level wastes for near-surface disposal are assumed to share a common infrastructure on the rail system and hence a methodology of separating total costs between these two waste types has been derived. Two transport modes, road and rail have been analysed. Hybrid transport, a combination of road and rail systems, has not been examined since no site is considered to produce sufficient waste to justify a dedicated rail service. Sellafield, has not been included in this examination since it is assumed to be served by its own disposal site at Drigg. (author)

  12. High-level radioactive waste disposal problem in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    This presentation on radioactive waste management in Russia discusses criteria for the selection of disposal sites, how the various types of waste should be contained and stored, and gives a list showing the liable owner, type, volume, activity and storage place of the present amount of radioactive waste. The bulk of this waste, in volume and radioactivity, is at the enterprises of Minatom of the Russian Federation

  13. Radioecological activity limits for radioactive waste disposal

    International Nuclear Information System (INIS)

    Ahmet, E. Osmanlioglu

    2006-01-01

    Full text: Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides. Near surface disposal term includes broad range of facilities from simple trenches to concrete vaults. Principally, disposal of radioactive waste requires the implementation of measures that will provide safety for human health and environment now and in the future. For this reason preliminary activity limits should be determined to avoid radioecological problems. Radioactive waste has to be safely disposed in a regulated manner, consistent with internationally agreed principles and standards and with national legislations to avoid serious radioecological problems. The purpose of this study, presents a safety assessment approach to derive operational and post-closure radioecological activity limits for the disposal of radioactive waste. Disposal system has three components; the waste, the facility (incl. engineered barriers) and the site (natural barriers). Form of the waste (unconditioned or conditioned) is effective at the beginning of the migration scenerio. Existence of the engineered barriers in the facility will provide long term isolation of the waste from environment. The site characteristics (geology, groundwater, seismicity, climate etc.) are important for the safety of the system. Occupational exposure of a worker shall be controlled so that the following dose limits are not exceeded: an effective dose of 20mSv/y averaged over 5 consecutive years; and an effective dose of 50mSv in any single year. The effective dose limit for members of the public recommended by ICRP and IAEA is 1 mSv/y for exposures from all man-made sources [1,2]. Dose constraints are typically a fraction of the dose limit and ICRP recommendations (0.3 mSv/y) could be applied [3,4]. Radioecological activity concentration limits of each radionuclide in the waste (Bq/kg) were calculated. As a result of this study radioecological activity

  14. The siting dilemma: Low-level radioactive waste disposal in the United States

    International Nuclear Information System (INIS)

    English, M.R.

    1991-01-01

    The 1980 Low-Level Radioactive Waste Policy Act ushered in a new era in low-level waste disposal; one with vastly increased state responsibilities. By a 1985 amendment, states were given until January 1993 to fulfill their mandate. In this dissertation, their progress is reviewed. The focus then turns to one particularly intractable problem: that of finding technically and socially acceptable sites for new disposal facilities. Many lament the difficulty of siting facilities that are intended to benefit the public at large but are often locally unwanted. Many label local opposition as purely self-interested; as simply a function of the NIMBY (Not In My Backyard) syndrome. Here, it is argued that epithets such as NIMBY are unhelpful. Instead, to lay the groundwork for widely acceptable solutions to siting conflicts, deeper understanding is needed of differing values on issues concerning authority, trust, risk, and justice. This dissertation provides a theoretical and practical analysis of those issues as they pertain to siting low-level waste disposal facilities and, by extension, other locally unwanted facilities

  15. Disposal facility for radioactive wastes

    International Nuclear Information System (INIS)

    Utsunomiya, Toru.

    1985-01-01

    Purpose: To remove heat generated from radioactive wastes thereby prevent the working circumstances from being worsened in a disposal-facility for radioactive wastes. Constitution: The disposal-facility comprises a plurality of holes dug out into the ground inside a tunnel excavated for the storage of radioactive wastes. After placing radioactive wastes into the shafts, re-filling materials are directly filled with a purpose of reducing the dosage. Further, a plurality of heat pipes are inserted into the holes and embedded within the re-filling materials so as to gather heat from the radioactive wastes. The heat pipes are connected to a heat exchanger disposed within the tunnel. As a result, heating of the solidified radioactive wastes itself or the containing vessel to high temperature can be avoided, as well as thermal degradation of the re-filling materials and the worsening in the working circumstance within the tunnel can be overcome. (Moriyama, K.)

  16. The role of performance assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Stenhouse, M.J.

    1998-01-01

    Performance assessment has many applications in the field of radioactive waste management, none more important than demonstrating the suitability of a particular repository system for waste disposal. The role of performance assessment in radioactive waste disposal is discussed with reference to assessments performed in civilian waste management programmes. The process is, however, relevant, and may be applied directly to the disposal of defence-related wastes. When used in an open and transparent manner, performance assessment is a powerful methodology not only for convincing the authorities of the safety of a disposal concept, but also for gaining the wider acceptance of the general public for repository siting. 26 refs

  17. Disposal of radioactive wastes from Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Neumann, L.

    In gaseous radioactive waste disposal, aerosol particles are filtered and gaseous wastes are discharged in the environment. The filters and filter materials used are stored on solid radioactive waste storage sites in the individual power plants. Liquid radioactive wastes are concentrated and the concentrates are stored. Distillates and low-level radioactive waste water are discharged into the hydrosphere. Solid radioactive wastes are stored without treatment in power plant bunkers. Bituminization and cementation of liquid radioactive wastes are discussed. (H.S.)

  18. The disposal of radioactive waste in Sweden, West Germany and France

    International Nuclear Information System (INIS)

    1987-01-01

    Representatives from Humberside, Lincolnshire and Bedford County Councils have visited radioactive waste disposal sites in Sweden (Forsmak), West Germany (Konrad) and France (Centre de la Manche). The British regions are those in which there are sites which NIREX (Nuclear Industry Radioactive Waste Executive) have been investigating with a view to disposing of low and intermediate level radioactive waste. The sites, methods of disposal, cost and radiation levels are detailed for the three countries visited and compared with the NIREX proposals for shallow trench disposal for wastes at low and intermediate levels. The general findings were that the three countries visited are more advanced in the development of policies and practices for radioactive waste disposal with better technical alternatives to the NIREX proposals. Secondly, that the overall cost may be greater than for a shallow repository but would still be less than 1% of the nuclear electricity generation cost. Thirdly, the need to gain and sustain public acceptance for what was being done was more clearly understood and acted on than in the UK. (U.K.)

  19. Waste classification and methods applied to specific disposal sites

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1979-01-01

    An adequate definition of the classes of radioactive wastes is necessary to regulating the disposal of radioactive wastes. A classification system is proposed in which wastes are classified according to characteristics relating to their disposal. Several specific sites are analyzed with the methodology in order to gain insights into the classification of radioactive wastes. Also presented is the analysis of ocean dumping as it applies to waste classification. 5 refs

  20. Radioactive Waste Technical and Normative Aspects of its Disposal

    CERN Document Server

    Streffer, Christian; Kamp, Georg; Kröger, Wolfgang; Rehbinder, Eckard; Renn, Ortwin; Röhlig, Klaus-Jürgen

    2012-01-01

    Waste caused by the use of radioactive material in research, medicine and technologies, above all high level waste from nuclear power plants, must be disposed of safely. However, the strategies discussed for the disposal of radioactive waste as well as proposals for choosing a proper site for final waste disposal are strongly debated. An appropriate disposal must satisfy complex technical requirements and must meet stringent conditions to appropriately protect man and nature from risks of radioactivity over very long periods. Ethical, legal and social conditions must be considered as well. An interdisciplinary team of experts from relevant fields compiled the current status and developed criteria as well as strategies which meet the requirements of safety and security for present and future generations. The study also provides specific recommendations that will improve and optimize the chances for the selection of a repository site implementing the participation of stakeholders including the general public an...

  1. Low-level radioactive waste disposal facility closure

    International Nuclear Information System (INIS)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J.

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs

  2. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  3. Final disposal of radioactive wastes. Site selection criteria. Technical and economical factors

    International Nuclear Information System (INIS)

    Granero, J.J.

    1984-01-01

    General considerations, geological and socioeconomical criteria for final disposal of radioactive wastes in geological formations are treated. More attention is given to the final disposal of high level radioactive wastes and different solutions searched abroad which seems of interest for Spain. (author)

  4. Management and disposal of radioactive waste from clean-up operations

    International Nuclear Information System (INIS)

    Lehto, J.

    1997-01-01

    Clean-up of large contaminated areas may create enormous amounts of radioactive waste which need to be safely disposed of. Disposal of the waste may include pre-treatment and transportation to a final repository. There is much experience of the removal and disposal of large amounts of radioactive contaminated material from uranium mill tailings sites. For example, in Salt Lake City, USA, two million tons of radium-containing waste was transported 140 km by rail to a disposal site. In Port Hope, Canada, 70,000 cubic meters of similar waste were moved by road to a disposal site 350 km away. The disposal of the uranium mill tailings can be pre-planned, but an accident situation is quite different. In an emergency, decisions on how to deal with the waste from the clean-up may have to be made rapidly and disposal options may be limited. After the Chernobyl accident, large amounts of contaminated material (mainly soil and trees) were disposed of in shallow pits and surface mounds. Overall, approximately 4x10 6 m 3 of waste were distributed between about 800 disposal sites. Because the amounts of waste after a major nuclear accident could be large, their final disposal may require large human and capital resources. Depending on the scale it is possible that the wastes will have to be placed in several final disposal sites. These are likely to be pits or surface mounds. Such repositories may need clay or concrete liners to prevent migration of the radionuclides from the disposal sites. (EG)

  5. Updated Strategic Assessment of the U.S. NRC Low-Level Radioactive Waste (LLW) Program and the new WCS Commercial Disposal Facility for LLW

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chang-Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-05-15

    The purpose of this paper is to review the updated NRC low level radioactive waste regulatory strategy and also present an update on a significant change in the LLW disposal landscape in the U.S., the opening of a new commercial disposal facility, the Texas Compact Waste Facility (CWF) in Andrews, Texas. Operational since spring of 2012, the CWF is owned and licensed by the state of Texas and operated by Waste Control Specialists LLC (WCS). The WCS facility in western Andrews County is the only commercial facility in the United States licensed to dispose of Class A, B and C LLW in the U.S. in the past 40 years. Based on the observation that other suitable sites have been identified such as the Clive, Utah site that meet (almost) all of these criteria it would appear that the first and last factors in our list are the most problematic and it will require a change in the public acceptance and the political posture of states to help solve the national issue of safe and cost-effective LLW disposal.

  6. Shallow ground disposal of radioactive wastes. A guidebook

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations.

  7. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  8. Site selection experience for a new low-level radioactive waste storage/disposal facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Towler, O.A.; Cook, J.R.; Helton, B.D.

    1985-10-01

    Preliminary performance criteria and site selection guides specific to the Savannah River Plant, were developed for a new low-level radioactive waste storage/disposal facility. These site selection guides were applied to seventeen potential sites identified at SRP. The potential site were ranked based on how well they met a set of characteristics considered important in site selection for a low-level radioactive waste disposal facility. The characteristics were given a weighting factor representing its relative importance in meeting site performance criteria. A candidate site was selected and will be the subject of a site characterization program

  9. Organizing and managing radioactive waste disposal as an experiment

    International Nuclear Information System (INIS)

    Cook, B.J.; Emel, J.L.; Kasperson, R.E.

    1990-01-01

    This paper examines organization and management issues engendered by the national program for permanent disposal of commercial radioactive wastes. The description of current organizational and managerial responses to the waste disposal problem serves as a springboard for consideration of the technical, political, and organizational constraints that impinge upon the waste-management effort. Taking these constraints into account, the authors apply ideas that have emerged from previous radioactive waste-management studies and research on organizations, concluding that a change of course is needed. As an alternative, they propose an experimental approach predicated on the waste-management organization's acknowledging uncertainty and constructing responses that seek to reduce uncertainty systematically and without distortion

  10. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    International Nuclear Information System (INIS)

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs

  11. Analysis and evaluation of a radioactive waste package retrieved from the Farallon Islands 900-meter disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Kendig, M.W.

    1990-09-01

    The Environmental Protection Agency (EPA) was given a Congressional mandate to develop criteria and regulations governing the ocean disposal of all forms of waste. The EPA taken an active role both nationally and within the international nuclear regulatory community to develop the effective controls necessary to protect the health and safety of man and the marine environment. The EPA Office of Radiation Programs (ORP) first initiated feasibility studies to determine whether current technologies could be applied toward determining the fate of radioactive waste disposed of in the past. After successfully locating actual radioactive waste packages in formerly used disposal sites, in the United States, the Office of Radiation Programs developed an intensive program of site characterization studies to examine biological, chemical and physical characteristics including evaluations of the concentration and distribution of radionuclides within these sites, and has conducted a performance evaluation of past packaging techniques and materials. Brookhaven National Laboratory (BNL) has performed container corrosion and matrix analysis studies on the recovered radioactive waste packages. This report presents the final results of laboratory analyses performed. 17 refs., 40 figs., 7 tabs.

  12. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    Science.gov (United States)

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  13. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  14. Low-level radioactive waste disposal at a humid site

    International Nuclear Information System (INIS)

    Lee, D.W.

    1987-03-01

    Waste management in humid environments poses a continuing challenge because of the potential contamination of groundwater in the long term. Short-term needs for waste disposal, regulatory uncertainty, and unique site and waste characteristics have led to the development of a site-specific waste classification and management system proposed for the Oak Ridge Reservation. The overlying principle of protection of public health and safety is used to define waste classes compatible with generated waste types, disposal sites and technologies, and treatment technologies. 1 fig., 1 tab

  15. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  16. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment.

  17. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 1 of 3

    International Nuclear Information System (INIS)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment

  18. Status of the Texas low-level radioactive waste disposal site - construction sequencing and staffing patterns

    International Nuclear Information System (INIS)

    Jacobi, L.R. Jr.

    1996-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority, an agency of the State of Texas, has been attempting to develop a site for the disposal of low-level radioactive waste in Texas for more than fourteen years. Since 1991, the agency has been evaluating a site near Sierra Blanca, in far west Texas. Site characterization was completed in 1992, and a license application was filed that year. Construction plans were completed in 1993. In April 1996, the licensing agency, the Texas Natural Resource Conservation Commission, completed its review and proposed to issue a license. The administrative hearings on the proposed license should be completed by July 1997. The Authority is prepared to begin construction and operations as soon as a final license can be issued

  19. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It represents a major update and expansion of the Analysis presented to Congress in our summary report, Managing Commercial High-Level Radioactive Waste, published in April of 1982 (NWPA). This new report is intended to contribute to the implementation of NWPA, and in particular to Congressional review of three major documents that DOE will submit to the 99th Congress: a Mission Plan for the waste management program; a monitored retrievable storage (MRS) proposal; and a report on mechanisms for financing and managing the waste program. The assessment was originally focused on the ocean disposal of nuclear waste. OTA later broadened the study to include all aspects of high-level waste disposal. The major findings of the original analysis were published in OTA's 1982 summary report

  20. Background studies: human-induced effects on the evolution of shallow land burial sites for radioactive waste disposal

    International Nuclear Information System (INIS)

    1987-11-01

    This report presents the results of a programme of background research on the human-induced effects on the long term evolution of shallow disposal sites for low level radioactive wastes. The work is intended to support development and use of the TIME2 simulation code. Within the context of climatic change up to the next glacial maximum three areas are addressed: planning and legislative control over site usage, biosphere state changes and intrusion. An appendix presents a discussion of some planning aspects of radioactive waste disposal. (author)

  1. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  2. Low-level radioactive waste disposal technologies used outside the United States

    International Nuclear Information System (INIS)

    Templeton, K.J.; Mitchell, S.J.; Molton, P.M.; Leigh, I.W.

    1994-01-01

    Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material as defined in Section II(e)(2) of the Atomic Energy Act. LLW may contain some long-lived components in very low concentrations. Countries outside the United States, however, may define LLW differently and may use different disposal technologies. This paper outlines the LLW disposal technologies that are planned or being used in Canada, China, Finland, France, Germany, Japan, Sweden, Taiwan, and the United Kingdom (UK)

  3. Radioactive wastes with negligible heat generation suitable for disposal

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1987-01-01

    It is planned to dispose of radioactive wastes with negligible heat generation in the Konrad repository. Preliminary waste acceptance requirements are derived taking the results of site-specific safety assessments as a basis. These requirements must be fulfilled by the waste packages on delivery. The waste amounts which are currently stored and those anticipated up to the year 2000 are discussed. The disposability of these waste packages in the Konrad repository was evaluated. This examination reveals that basically almost all radioactive wastes with negligible heat generation can be accepted. (orig.) [de

  4. Changes in US commercial radioactive waste management and lessons learned in China

    International Nuclear Information System (INIS)

    Cai Tingsong; Yan Cangsheng

    2014-01-01

    The changes of commercial radioactive waste management in the US and the work done by the LLW generators in seeking new means to cost-effectively dispose these wastes without prejudicing future disposal options are introduced. Then the article concludes the lessons learned on radioactive waste management in China. (authors)

  5. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  6. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  7. Economic analysis of radioactive waste storage and disposal projects

    International Nuclear Information System (INIS)

    Kleinen, P.J.; Starnes, R.B.

    1995-01-01

    Radioactive waste storage and disposal efforts present challenging issues for cost and economic analyses. In particular, legal requirements for states and compact areas to develop radioactive waste disposal sites, combined with closure of some sites, have placed urgency on planning, locating, and constructing storage and disposal sites. Cost analyses of potential projects are important to the decision processes. Principal objectives for cost analyses for projects are to identify all activities, covering the entire project life cycle, and to develop costs for those activities using methods that allow direct comparisons between competing project alternatives. For radioactive waste projects, long project lives ranging from tens of years to 100 or more years must be considered. Alternative, and competing, technologies, designs, and operating plans must be evaluated. Thorough base cost estimates must be made for all project phases: planning, development, licensing/permitting, construction, operations, and maintenance, closure, and post-closure/institutional care. Economic analysis procedures need to accommodate the specific features of each project alternative and facilitate cost comparisons between differing alternatives. Economic analysis assumptions must be developed to address the unusually long project lives involved in radioactive waste projects

  8. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  9. Public acceptability of risk of radioactive waste disposal

    International Nuclear Information System (INIS)

    Millerd, W.H.

    1977-01-01

    A ''public interest'' viewpoint is presented on the disposal of radioactive wastes. Criteria for the development of disposal methods are needed. The current program to develop disposal sites and methods has become an experiment. The advantages and disadvantages of radwaste disposal as an ongoing experiment are discussed briefly

  10. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  11. Issues in radioactive waste disposal. Second report of the working group on principles and criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    1996-10-01

    This report discusses issues related to long time-scale underground disposal of radioactive wastes. The chapters are devoted to the following issues: (1) Post closure issues of underground repositories, e.g., record keeping and markers, public reassurance and prevention of misuse; (2) Optimization of radiation protection by optimizing radioactive waste management, siting analysis, repository design etc.; (3) An interface between nuclear safeguards and radioactive waste management by safeguarding conditioning of spent fuel, during operational phase of repository and post-closure phase of the repository. 31 refs

  12. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  13. Policies on radioactive waste disposal in the Netherlands

    International Nuclear Information System (INIS)

    Selling, H.A.

    1999-01-01

    An outline is given of the policy in the Netherlands on radioactive waste management, with an emphasis on the preferred disposal strategies. A description is given of the siting and licensing process for the waste treatment and storage facility of COVRA, which is in many respects expected to be comparable with that for a disposal site in due course. Immediate disposal of radioactive waste is not envisaged. Instead, the government has opted for long term interim storage in an engineered facility until sufficient confidence has been obtained on the safety performance of a geological repository over long time periods. In the previous decade research has mostly focused on the exploration of the suitability of existing salt formations in the northern part of the country as host rock for a radioactive waste repository. Although so far no in situ research was carried out, it could be demonstrated by utilising values of the relevant parameters from other rock salt formations that, in principle, deep underground disposal of radioactive waste is safe. This assessment was made by comparing both with common radiation protection criteria and with risk criteria over long periods of time. However, a decision to proceed with in situ research was postponed in view of the strong opposition from the local population against underground disposal. Instead, the scope of the research was extended to other host rock materials (clay). Additionally, from a sustainability point of view it was demanded that disposal should be conceived as an irreversible process. This means that the waste should be disposed of in such a way that it is retrievable in case better processing methods for the waste would become available. This demand of retrievability derives from the general waste policy to close the life-cycles of raw materials in order not to deprive future generations from their benefits. Consequently, much of the sequential research is now focused on the safety and financial impact of

  14. Microbial effects on radioactive wastes at SLB sites

    International Nuclear Information System (INIS)

    Colombo, P.

    1982-01-01

    The objectives of this study are to determine the significance of microbial degradation of organic wastes on radionuclide migration on shallow land burial for humid and arid sites, establish which mechanisms predominate and ascertain the conditions under which these mechanisms operate. Factors contolling gaseous eminations from low-level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide and possibly hydrogen from the site stems from the inclusion of tritium and/or 14 C into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste materials, primary emphasis of the study involved on examination of the biochemical pathways producing methane, carbon dioxide and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Although the methane and carbon dioxide production rate indicates the degradation rate of the organic substances in the waste, it does not predict the methane evolution rate from the trench site. Methane fluxes from the soil surface are equivalent to the net synthesis minus the quantity oxidized by the microbial community as the gas passes through the soil profile. Gas studies were performed at three commercial low-level radioactive waste disposal sites (West Valley, New York; Beatty, Nevada; Maxey Flats, Kentucky) during the period 1976 to 1978. The results of these studies are presented. 3 tables

  15. Treatment and disposal of low- and medium-level radioactive wastes in Hungary

    International Nuclear Information System (INIS)

    Berci, Karoly; Feher, Janos; Hemm, Bela; Setenyi, Marta

    1989-01-01

    Low- and medium-level radioactive wastes from the Paks Nuclear Power Plant, Hungary, are treated and disposed according to international and Hungarian regulations. Treatment of liquid wastes is accomplished by cementing, most of solid wastes are disposed after compaction. The forming of the final disposal site satisfies every radiation protection criteria. The recommendations of radioactive waste treatment are interpreted and analyzed in detail, for the implementation of advanced radioactive waste treatment techniques and facilities for treating and disposing of the liquid and solid wastes accumulated during operation of the PNPP. (R.P.) 8 figs.; 9 tabs

  16. De minimis concepts in radioactive waste disposal. Considerations in defining de minimis quantities of solid radioactive waste for uncontrolled disposal by incineration and landfill

    International Nuclear Information System (INIS)

    1983-02-01

    This document deals with recommendations addressed to those national authorities wishing to dispose of low level radioactive waste into the terrestrial environment, on how de minimis levels or quantities can be derived. The only radioactive materials covered here are declared solid radioactive wastes of very low activity which are controlled up to the point where deliberate control is lost, or wastes below a level that requires regulatory control. As regards the disposal sites, these wastes are not intended to be disposed of in fully controlled disposal facilities, such as repositories located in shallow land, rock cavities, etc. On the other hand, it is considered that these materials should not be disposed of in any place, but should be handled like other municipal wastes. Among the different techniques available, only two are considered in this document, namely a sanitary landfill facility, and an urban incineration plant

  17. Licensing and Operations of the Clive, Utah Low-Level Containerized Radioactive Waste Disposal Facility- A Continuation of Excellence

    International Nuclear Information System (INIS)

    Ledoux, M. R.; Cade, M. S.

    2002-01-01

    Envirocare's Containerized Waste Facility (CWF) is the first commercial low-level radioactive waste disposal facility to be licensed in the 21st century and the first new site to be opened and operated since the late 1970's. The licensing of this facility has been the culmination of over a decade's effort by Envirocare of Utah at their Clive, Utah site. With the authorization to receive and dispose of higher activity containerized Class A low-level radioactive waste (LLRW), this facility has provided critical access to disposal for the nuclear power industry, as well as the related research and medical communities. This paper chronicles the licensing history and operational efforts designed to address the disposal of containerized LLRW in accordance with state and federal regulations

  18. A successful case site selection for low-and intermediate-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Lee, Bongwoo

    2007-01-01

    Korea decided on Gyeongju-si as the site of low-and intermediate-level radioactive waste disposal facility by referendum in November, 2005. Five success factors are considered; 1) the mayor and municipal assembly leaded the public opinion of inhabitants, 2) an invitation group was formed by citizen, social and religious group, 3) Gyeongju-si has operated the nuclear power plant since 20 years ago, and this radioactive waste disposal facility brings large financial support, 4) many kinds of public information means were used for invitation agreement and 5) the preconception, a nuclear facility is danger, was removed by visiting citizen, social group and local inhabitants at the nuclear power plant facility. Promotion process of the project, invitation process of Gyeongju-si and success factors, construction of an invitation promotion group and development of public information activities, publicity of financial effects and safety of radioactive waste disposal facility, increase of general acceptance among inhabitants by many kinds of public information means, and P.R. of safety of nuclear power plant facility by visiting leadership layers are reported. (S.Y.)

  19. OPEN SPATIAL DECISION SUPPORT SYSTEM: CASE FOR RADIOACTIVE WASTE DISPOSAL SITE SELECTION

    Directory of Open Access Journals (Sweden)

    Dario Perković

    2012-07-01

    Full Text Available In recent years the scientific and professional circles frequently discussed about radioactive waste and site selection for radioactive waste disposal. This issue will be further updated with accession of Republic of Croatia to the European Union and the only issue is politicized view of the fact that nuclear power plant Krško Croatia shares with neighbouring Republic of Slovenia. All the necessary studies have been made and these are attended by experts from different areas. Also, all Croatian residents should be familiar with this subject matter in a manner accessible to the general public through all available media. There are some questions: What are the institutions have taken on the issue of informing the public and can it be enough? When selecting a suitable site, with many parameters, the basic element is suitable geological formation, although the landfill must be socially acceptable. Well established methods used in the selection of eligible areas are multicriteria decision analysis (MCDA, geographic information system (GIS and combined GIS-MCDA method. The application of these methods is of great help in making decisions about the location of disposal of radioactive waste. Presentation of results, designed in the form of an open spatial decision support system, could help in education and informing the general public (the paper is published in Croatian.

  20. Management of radioactive fuel wastes: the Canadian disposal program

    International Nuclear Information System (INIS)

    Boulton, J.

    1978-10-01

    This report describes the research and development program to verify and demonstrate the concepts for the safe, permanent disposal of radioactive fuel wastes from Canadian nuclear reactors. The program is concentrating on deep underground disposal in hard-rock formations. The nature of the radioactive wastes is described, and the options for storing, processing, packaging and disposing of them are outlined. The program to verify the proposed concept, select a suitable site and to build and operate a demonstration facility is described. (author)

  1. Criteria and technical concept for demonstrating greater confinement disposal of radioactive wastes at Arid Western Sites

    International Nuclear Information System (INIS)

    Hunter, P.H.

    1981-01-01

    This report summarizes the work of two documents; the Criteria for Greater Confinement of Radioactive Wastes at Arid Western Sites, NVO-234, March 1981, (within this report, referred to as the GCDF Criteria Document); and the Draft Technical Concept for a Test of Greater Confinement Disposal of Radioactive Waste in Unsaturated Media at the Nevada Test Site, FBDU-343-004, June 1981, (referred within this report as the Technical Concept for the GCDF). For the past two years, Ford, Bacon and Davis has been performing technical services for the Department of Energy at the Nevada Test Site in development of defense low-level waste management concepts, including the greater confinement disposal concept with particular application to arid sites. The investigations have included the development of Criteria for Greater Confinement Disposal, NVO-234, which we published in May of this year; then the draft for the technical concept for greater confinement disposal, published in June; leading up to the point where we are now. The final technical concept and design specifications should be published imminently. The document is prerequisite to the actual construction and implementation of the demonstration facility this fiscal year

  2. Operational radioactive waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1980-11-01

    The Operational Radioactive Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  3. Investigations of the unsaturated zone at two radioactive waste disposal sites in Lithuania.

    Science.gov (United States)

    Skuratovič, Žana; Mažeika, Jonas; Petrošius, Rimantas; Martma, Tõnu

    2016-01-01

    The unsaturated zone is an important part of the water cycle, governed by many hydrological and hydrogeological factors and processes and provide water and nutrients to the terrestrial ecosystem. Besides, the soils of the unsaturated zone are regarded as the first natural barrier to a large extent and are able to limit the spread of contaminants depending on their properties. The unsaturated zone provides a linkage between atmospheric moisture, groundwater, and seepage of groundwater to streams, lakes, or other surface water bodies. The major difference between water flow in saturated and unsaturated soils is that the hydraulic conductivity, which is conventionally assumed to be a constant in saturated soils, is a function of the degree of saturation or matrix suction in the unsaturated soils. In Lithuania, low and intermediate level radioactive wastes generated from medicine, industry and research were accumulated at the Maisiagala radioactive waste repository. Short-lived low and intermediate levels radioactive waste, generated during the operation of the Ignalina Nuclear Power Plant (INPP) and arising after the INPP decommissioning will be disposed of in the near surface repository close to the INPP (Stabatiske site). Extensive data sets of the hydraulic properties and water content attributed to unsaturated zone soil profiles of the two radioactive waste disposal sites have been collected and summarized. Globally widespread radionuclide tritium ((3)H) and stable isotope ratio ((18)O/(16)O and (2)H/(1)H) distribution features were determined in precipitation, unsaturated zone soil moisture profiles and groundwater.

  4. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  5. Low-Level Radioactive Waste siting simulation information package

    International Nuclear Information System (INIS)

    1985-12-01

    The Department of Energy's National Low-Level Radioactive Waste Management Program has developed a simulation exercise designed to facilitate the process of siting and licensing disposal facilities for low-level radioactive waste. The siting simulation can be conducted at a workshop or conference, can involve 14-70 participants (or more), and requires approximately eight hours to complete. The exercise is available for use by states, regional compacts, or other organizations for use as part of the planning process for low-level waste disposal facilities. This information package describes the development, content, and use of the Low-Level Radioactive Waste Siting Simulation. Information is provided on how to organize a workshop for conducting the simulation. 1 ref., 1 fig

  6. DSEM, Radioactive Waste Disposal Site Economic Model

    International Nuclear Information System (INIS)

    Smith, P.R.

    2005-01-01

    1 - Description of program or function: The Disposal Site Economic Model calculates the average generator price, or average price per cubic foot charged by a disposal facility to a waste generator, one measure of comparing the economic attractiveness of different waste disposal site and disposal technology combinations. The generator price is calculated to recover all costs necessary to develop, construct, operate, close, and care for a site through the end of the institutional care period and to provide the necessary financial returns to the site developer and lender (when used). Six alternative disposal technologies, based on either private or public financing, can be considered - shallow land disposal, intermediate depth disposal, above or below ground vaults, modular concrete canister disposal, and earth mounded concrete bunkers - based on either private or public development. 2 - Method of solution: The economic models incorporate default cost data from the Conceptual Design Report (DOE/LLW-60T, June 1987), a study by Rodgers Associates Engineering Corporation. Because all costs are in constant 1986 dollars, the figures must be modified to account for inflation. Interest during construction is either capitalized for the private developer or rolled into the loan for the public developer. All capital costs during construction are depreciated over the operation life of the site using straight-line depreciation for the private sector. 3 - Restrictions on the complexity of the problem: Maxima of - 100 years post-operating period, 30 years operating period, 15 years pre-operating period. The model should be used with caution outside the range of 1.8 to 10.5 million cubic feet of total volume. Depreciation is not recognized with public development

  7. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  8. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  9. Radioactive waste disposal into the ground

    International Nuclear Information System (INIS)

    1965-01-01

    Disposal into ground has sometimes proved to be an expedient and simple method. Where ground disposal has become an established practice, the sites have so far been limited to those remote from population centres; but in other respects, such as in climate and soil conditions, their characteristics vary widely. Experience gained at these sites has illustrated the variety of problems in radioactive waste migration and the resulting pollution and environmental radiation levels that may reasonably be anticipated at other sites, whether remote from population centres or otherwise.

  10. Rokkasho low-level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1994-01-01

    Japan Nuclear Fuel Limited commenced the operation of the shallow land disposal of low-level radioactive waste from reactor operation, in 1992 at Rokkasho site in Aomori Prefecture. JNFL is private company whose main activities within the responsibility of JNFL are: 1) Disposal of low-level radioactive waste, 2) Uranium enrichment, 3) Reprocessing of spent nuclear fuels, 4) Temporary storage of returned wastes from COGEMA and BNFL by reprocessing contracts, prior to disposal. JNFL selected the site for the disposal of LLW at Rokkasho in Aomori Prefecture, then bought land of 3.4 million m 2 . Among waste spectrum, LLWs from nuclear power plants, from uranium enrichment and from reprocessing are to be managed by JNFL, including dismantling of these facilities, and JNFL has plan to dispose about 600 thousand m 3 of wastes ultimately. On the middle of November 1990 JNFL got the permission of the application for 40 thousand m 3 (equivalent to 200,000 drums each with a 200-liter capacity) of reactor operating wastes which is solidified with cement, bitumen or plastics as a first stage. And after the construction work for about 2 years, the operations started at Dec. 8th, 1992. The Disposal center has already accepted about 24,000 LLW drums as of the end of February, 1994. (author)

  11. Sub-seabed disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sivintsaev, Yu.V.

    1990-01-01

    The first stage of investigations of possibility of sub-seabed disposal of long-living intermediate-level radioactive wastes carried out by NIREX (UK) is described. Advantages and disadvantages of sub-seabed disposal of radioactive wastes are considered; regions suitable for disposal, transport means for marine disposal are described. Three types of sub-seabed burials are characterized

  12. Selection of low-level radioactive waste disposal sites using screening models versus more complex methodologies

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.

    1993-01-01

    The task of choosing a waste-disposal site from a set of candidate sites requires an approach capable of objectively handling many environmental variables for each site. Several computer methodologies have been developed to assist in the process of choosing a site for the disposal of low-level radioactive waste; however, most of these models are costly to apply, in terms of computer resources and the time and effort required by professional modelers, geologists, and waste-disposal experts. The authors describe how the relatively simple DRASTIC methodology (a standardized system for evaluating groundwater pollution potential using hydrogeologic settings) may be used for open-quotes pre-screeningclose quotes of sites to determine which subset of candidate sites is worthy of more detailed screening. Results of site comparisons made with DRASTIC are compared with results obtained using PRESTO-II methodology, which is representative of the more complex release-transport-human exposure methodologies. 6 refs., 1 fig., 1 tab

  13. Radiobiological effects in small mammals populations dwelled at radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Sypin, V.D.; Osipov, A.N.; Pol'skij, O.G.; Elakov, A.L.; Egorov, V.G.; Synsynys, B.I.

    2004-01-01

    A major issue in evaluating the ecological acceptability of a disposal system for radioactive waste is in preventing the ecological risk that may arise from exposures in the distant future. There is uncertainty surrounding any estimate of these doses or risks due to lack of knowledge about future conditions. Therefore, the adequate estimation of the ecological acceptability of a radioactive waste disposal system required a complex radioecological and radiobiological approach. Environmental surveillance at the Sergievo-Posadsky radioactive waste disposal system of the Scientific and Industrial Association Radon in additional to a standard complex radiological testing includes also the study of the radiobiological effects in different biological objects sampled from the contaminated areas. In present report the results obtained on small rodents (mice and voles) sampled from the strict mode and fence zones of this disposal system are displayed and discussed. (author)

  14. The performance assessment impacts of disposal of high-moisture, low-level radioactive waste at the Nevada Test Site

    International Nuclear Information System (INIS)

    Crowe, B.M.; Hansen, W.; Hechnova, A.; Voss, C.; Waters, R.; Sully, M.; Levitt, D.

    1999-01-01

    A panel of independent scientists was convened by the Department of Energy to assess the performance impacts of disposal of low-level radioactive waste from the Fernald Environmental Management Project. This waste stream was involved in a transportation incident in December 1997. A resulting outgrowth of investigations of the transportation incident was the recognition that the waste was transported and disposed in stress-fractured metal boxes and some of the waste contained excess moisture (high volumetric water contents). The panel was charged with determining whether disposal of this waste in the Area 5 radioactive waste management site on the Nevada Test Site has impacted the conclusions of the completed performance assessment. Three questions were developed by the panel to assess performance impacts: (1) the performance impacts of reduced container integrity, (2) the impact of reduced container integrity on subsidence of waste in the disposal pits and (3) the performance impacts of excess moisture. No performance or subsidence impacts were noted from disposal of the Fernald waste. The impacts of excess moisture were assessed through simulation modeling of the movement of moisture in the vadose zone assuming high water contents (wet waste) for different percentages of the waste inventory. No performance impacts were noted for either the base-case scenario (ambient conditions) or a scenario involving subsidence and flooding of the waste cells. The absence of performance impacts results form the extreme conservatism used in the Area 5-performance assessment and the robust nature of the disposal site

  15. Geological Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    Dody, A.; Klein, Ben; David, O.

    2014-01-01

    Disposal of radioactive waste imposes complicated constrains on the regulator to ensure the isolation of radioactive elements from the biosphere. The IAEA (1995) states that T he objective of radioactive waste management is to deal with radioactive waste in a manner that protects human health and the environment now and the future without imposing undue burdens on future generation . The meaning of this statement is that the operator of the waste disposal facilities must prove to the regulator that in routine time and in different scenarios the dose rate to the public will not exceed 0.3 mSv/y in the present and in the future up to 10,000 years

  16. Characteristics of low-level radioactive waste disposed during 1987--1989

    International Nuclear Information System (INIS)

    Roles, G.W.

    1990-12-01

    This report presents the volume, activity, and radionuclide distributions in low-level radioactive waste (LLW) disposed during 1987 through 1989 at the commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. The report has been entirely assembled from descriptions of waste provided in LLW shipment manifests. Individual radionuclide distributions are listed as a function of waste class, of general industry, and of waste stream. In addition, information is presented about disposal of wastes containing chelating agents, about use of solidification media, about the distribution of radiation levels at the surfaces of waste containers, and about the distribution of waste container sizes. Considerably more information is presented about waste disposed at the Richland and Beatty disposal facilities than at the Barnwell disposal facility

  17. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1987-01-01

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  18. Radioactive waste disposal in Slovakia: Current practice and development

    International Nuclear Information System (INIS)

    Salzer, P.; Hanusik, V.; Ehn, L.

    2002-01-01

    The paper describes activities concerning the disposal of radioactive waste in the Slovak Republic. For disposal of the low and intermediate short-lived radioactive waste, the National radioactive waste repository Mochovce (near surface type) was put into operation in 1999. History and approaches to repository development, siting and construction are briefly described. Recent activities regarding the repository are concerning on the safety re-assessment and re-derivation of coherent waste acceptance criteria, studies of repository covering and possible enlargement. In the second part, attention is given to the Slovak deep geological repository development programme, which has been under way since 1996. Most of the results were obtained from the siting part of the programme, where four localities (six sites) were identified as prospective for next investigation. The paper also gives an overview on next two routes of deep repository development programme: studies resulted later in performance assessment and general activities, i.e. design studies, analysis of legislative and infrastructure conditions, planning and evaluation of works. (author)

  19. Licensing and Operations of the Clive, Utah Low-Level Containerized Radioactive Waste Disposal Facility- A Continuation of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, M. R.; Cade, M. S.

    2002-02-25

    Envirocare's Containerized Waste Facility (CWF) is the first commercial low-level radioactive waste disposal facility to be licensed in the 21st century and the first new site to be opened and operated since the late 1970's. The licensing of this facility has been the culmination of over a decade's effort by Envirocare of Utah at their Clive, Utah site. With the authorization to receive and dispose of higher activity containerized Class A low-level radioactive waste (LLRW), this facility has provided critical access to disposal for the nuclear power industry, as well as the related research and medical communities. This paper chronicles the licensing history and operational efforts designed to address the disposal of containerized LLRW in accordance with state and federal regulations.

  20. Disposal of radioactive waste from mining and processing of mineral sands

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    All mineral sands products contain the naturally radioactive elements uranium and thorium and their daughters. The activity levels in the different minerals can vary widely and in the un mined state are frequently widely dispersed and add to the natural background radiation levels. Following mining, the minerals are concentrated to a stage where radiation levels can present an occupational hazard and disposal of waste can result in radiation doses in excess of the public limit. Chemical processing can release radioactive daughters, particularly radium, leading to the possibility of dispersal and resulting in widespread exposure of the public. The activity concentration in the waste can vary widely and different disposal options appropriate to the level of activity in the waste are needed. Disposal methods can range from dilution and dispersal of the material into the mine site, for untreated mine tailings, to off site disposal in custom built and engineered waste disposal facilities, for waste with high radionuclide content. The range of options for disposal of radioactive waste from mineral sands mining and processing is examined and the principles for deciding on the appropriate disposal option are discussed. The range of activities of waste from different downstream processing paths are identified and a simplified method of identifying potential waste disposal paths is suggested. 15 refs., 4 tabs

  1. Geochemistry of radioactive waste disposal

    International Nuclear Information System (INIS)

    Bird, G.W.

    1979-01-01

    Safe, permanent disposal of radioactive wastes requires isolation of a number of elements including Se, Tc, I, Sr, Cs, Pd, u, Np, Pu and Cm from the environment for a long period of time. The aquatic chemistry of these elements ranges from simple anionic (I - ,IO 3 - ) and cationic (Cs + ,Sr ++ ) forms to multivalent hydrolyzed complexes which can be anionic or cationic (Pu(OH) 2 + ,Pu(OH) 3 + , PuO 2 (CO 3 )(OH) - ,PuO 2 Cl - ,etc.) depending on the chemical environment. The parameters which can affect repository safety are rate of access and composition of grounwater, stability of the waste container, stability of the waste form, rock-water-waste interactons, and dilution and dispersion as the waste moves away from the repository site. Our overall research program on radioactive waste disposal includes corrosion studies of containment systems hydrothermal stability of various waste forms, and geochemical behaviour of various nuclides including solubilities, redox equilibria, hydrolysis, colloid fomation and transport ion exchange equilibria and adsorption on mineral surfaces and irreversible precipitation reactions. This paper discusses the geochemistry of I, Se, Tc, Cs, Sr and the actinide elements and potential mechanisms by which the mobility could be retarded if necessary

  2. Comparative approaches to siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Newberry, W.F.

    1994-07-01

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection

  3. Proceedings of the 1996 international conference on deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1996-01-01

    The 1996 September International Conference on Deep Geological Disposal of Radioactive Waste was held in Winnipeg, Canada. Speakers from many countries that have or are developing geological disposal technologies presented the current research and implementation strategies for the deep geological disposal of radioactive wastes. Special sessions focused on International Trends in Geological Disposal and Views on Confidence Building in Radioactive Waste Management; Excavation Disturbed Zone (EDZ) Workshop; Educator's Program and Workshop and a Roundtable on Social Issues in Siting

  4. Radioactive waste management and decommissioning in The United States

    International Nuclear Information System (INIS)

    Raymont, J.M.

    2005-01-01

    With their missions and access to disposal sites changing over the last decade, radioactive waste management and decommissioning practice in the U.S. commercial and federal nuclear markets has evolved to keep pace. This paper reviews the changes that have occurred and the differing waste management practices that have resulted depending on whether a nuclear facility is situated on federally owned or privately owned property in the United States, confirming that the cost of disposal generally dictates waste management and decommissioning practices. Of the 123 utility-owned licensed commercial reactors in U.S., 19 are undergoing decomissioning, with the balance of 104 reactors focusing on plant life extension, power upgrades, and power generation. As a result, almost all of the approximately dollar 400 million in annual expenditures on waste processing and disposal comes from waste generated from operations. In contrast, the U.S. Department of Energy (DOE), under its Environmental Management (EM) program, is focused on decommissioning the facilities, tanks, and ground contamination resulting from 50-years of Cold War activities and spending about dollar 7 billion a year on these activities. Other than spent fuel, U.S. federal law precludes disposal of commercial nuclear power plant radioactive wastes at DOE disposal sites. In contrast to the commercial disposal market, which must go through extensive public hearings and decision-making, the DOE has a much freer hand in siting new disposal capacity on federal land. As a result, the DOE has ample disposal capacity, 'routinely' opens new disposal sites, and enjoys disposal pricing well below the commercial market. Waste composition, volume, and activity levels drive disposal costs, which is the key life cycle parameter in determining radioactive waste management practice. Differences in these parameters drive the differences in how radioactive waste management practice is performed in the commercial and DOE markets

  5. Ultimate disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Roethemeyer, H.

    1991-01-01

    The activities developed by the Federal Institution of Physical Engineering PTB and by the Federal Office for Radiation Protection (BfS) concentrated, among others, on work to implement ultimate storage facilities for radioactive wastes. The book illuminates this development from site designation to the preliminary evaluation of the Gorleben salt dome, to the preparation of planning documents proving that the Konrad ore mine is suitable for a repository. The paper shows the legal provisions involved; research and development tasks; collection of radioactive wastes ready for ultimate disposal; safety analysis in the commissioning and post-operational stages, and product control. The historical development of waste management in the Federal Republic of Germany and international cooperation in this area are outlined. (DG) [de

  6. Disposal of radioactive waste: can long-term safety be evaluated

    International Nuclear Information System (INIS)

    1991-01-01

    The long-term safety of any hazardous waste disposal system must be convincingly shown prior to its implementation. For radioactive wastes, safety assessments over timescales far beyond the normal horizon of social and technical planning have already been conducted in many countries. These assessments provide the principal means to investigate, quantify, and explain long-term safety of each selected disposal concept and site for the appropriate authorities and the public. Such assessments are based on four main elements: definition of the disposal system and its environment, identification of possible processes and events that may affect the integrity of the disposal system, quantification of the radiological impact by predictive modelling, and description of associated uncertainties. The NEA Radioactive Waste Management Committee and the IAEA International Radioactive Waste Management Advisory Committee have carefully examined the current scientific methods for safety assessments of radioactive waste disposal systems, as briefly summarized in this report. The Committees have also reviewed the experience now available from using safety assessment methods in many countries, for different disposal concepts and formations, and in the framework of both nationally and internationally conducted studies, as referenced in this report [fr

  7. Disposal method of radioactive wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Fukazawa, Tetsuo.

    1986-01-01

    Purpose: To improve the safety of underground disposal of radioactive wastes for a long period of time by surrounding the periphery of the radioactive wastes with materials that can inhibit the migration of radioactive nuclides and are physically and chemically stable. Method: Hardening products prepared from a water-hardenable calcium silicate compound and an aqueous solution of alkali silicate have compression strength as comparable with that of concretes, high water tightness and adsorbing property to radioactive isotopes such as cobalt similar to that of concretes and they also show adsorption to cesium which is not adsorbed to concretes. Further, the kneaded slurry thereof is excellent in the workability and can be poured even into narrow gaps. Accordingly, by alternately charging granular radioactive wastes and this slurry before hardening into the ground, the radioactive wastes can be put to underground disposal stably with simple procedures. (Kamimura, M.)

  8. Estimation of contaminant transport in groundwater beneath radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Wang, J.C.; Tauxe, J.D.; Lee, D.W.

    1995-01-01

    Performance assessments are required for low-level radioactive waste disposal facilities to demonstrate compliance with the performance objectives contained in either 10 CFR 61, open-quotes Licensing Requirements for Land Disposal of Radioactive Waste,close quotes or U.S. Department of Energy Order 5820.2A, open-quotes Radioactive Waste Management.close quotes The purpose of a performance assessment is to provide detailed, site-specific analyses of all credible pathways by which radionuclides could escape from the disposal facility into the environment. Among these, the groundwater pathway analysis usually involves complex numerical simulations. This paper demonstrates that the use of simpler analytical models avoids the complexity and opacity of the numerical simulations while capturing the essential physical behavior of a site

  9. ICRP guidance on radioactive waste disposal

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    The International Commission on Radiological Protection (ICRP) issued recommendations for a system of radiological protection in 1991 as the 1990 Recommendations. Guidance on the application of these recommendations in the general area of waste disposal was issued in 1997 as Publication 77 and guidance specific to disposal of solid long-lived radioactive waste was issued as Publication 81. This paper summarises ICRP guidance in radiological protection requirements for waste disposal concentrating on the ones of relevance to the geological disposal of solid radioactive waste. Suggestions are made for areas where further work is required to apply the ICRP guidance. (author)

  10. An interim report of the Subcommittee on Radioactive Waste Countermeasures: measures for radioactive waste treatment and disposal

    International Nuclear Information System (INIS)

    1984-01-01

    The Subcommittee on Radioactive Waste Countermeasures has studied on the measures for land disposal of low-level radioactive wastes and ultra-low-level radioactive wastes and the measures for treatment and disposal of high-level radioactive wastes and transuranium wastes. The results of studies so far are presented as an interim report. In disposal of low-level radioactive wastes, the land disposal is being required increasingly. The measures according to the levels of radioactivity are necessary. For the ultra-low-level radioactive wastes, their occurrence in large quantities is expected along with reactor decommissioning. In disposal of the high-level radioactive wastes, the present status is a transition toward the practical stages. Transuranium wastes should increase in their arising in the future. (Mori, K.)

  11. The trends of radioactive waste disposal

    International Nuclear Information System (INIS)

    Nomi, Mitsuhiko

    1977-01-01

    The disposal of radioactive wastes instead of their treatment has come to be important problem. The future development of nuclear fuel can not be expected unless the final disposal of nuclear fuel cycle is determined. Research and development have been made on the basis of the development project on the treatment of radioactive wastes published by Japan Atomic Energy Commission in 1976. The high level wastes produced by the reprocessing installations for used nuclear fuel are accompanied by strong radioactivity and heat generation. The most promising method for their disposal is to keep them in holes dug at the sea bottom after they are solidified. Middle or low level wastes are divided into two groups; one contains transuranium elements and the other does not. These wastes are preserved on the ground or in shallow strata, while the safe abandonment into the ground or the sea has been discussed about the latter. The co-operations among nations are necessary not only for peaceful utilization of atomic energy but also for radioactive waste disposal. (Kobatake, H.)

  12. Operational radioactive defense waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1981-07-01

    The Operational Radioactive Defense Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  13. Tritium migration from a low-level radioactive-waste disposal site near Chicago, Illinois

    Science.gov (United States)

    Nicholas, J.R.; Healy, R.W.

    1988-01-01

    This paper describes the results of a study to determine the geologic and hydrologic factors that control migration of tritium from a closed, low-level radioactive-waste disposal site. The disposal site, which operated from 1943 to mid1949, contains waste generated by research activities at the world's first nuclear reactors. Tritium has migrated horizontally at least 1,300 feet northward in glacial drift and more than 650 feet in the underlying dolomite. Thin, gently sloping sand layers in an otherwise clayey glacial drift are major conduits for ground-water flow and tritium migration in a perched zone beneath the disposal site. Tritium concentrations in the drift beneath the disposal site exceed 100,000 nanocuries per liter. Regional horizontal joints in the dolomite are enlarged by solution and are the major conduits for ground-water flow and tritium migration in the dolomite. A weathered zone at the top of the dolomite also is a pathway for tritium migration. The maximum measured tritium concentration in the dolomite is 29.4 nanocuries per liter. Fluctuations of tritium concentration in the dolomite are the result of dilution by seasonal recharge from the drift.

  14. Disposal Options for Low and Intermediate-Level Radioactive Waste: Comparative Study

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    This study presents the status of current disposal options for Low and Intermediate- Level Radioactive Waste (LILRW) generated in different countries and outlines the potential for future disposal option/s of these wastes in Egypt. Since approaches used in other countries may provide useful lessons for managing Egyptian radioactive wastes. This study was based on data for19 countries repositories and we focused on 6 countries, which considered as leaders in the field of disposal of rad waste. Several countries have plans for repositories which are sufficiently advanced that it was based on their own of their extensive experience with nuclear power generation and with constructing and operating LLRW disposal facilities. On the other hand, our programme for site selection and host rock characterization for low and intermediate level radioactive waste disposal is under study. We are preparing our criteria for selecting a national repository for LIL rad waste.

  15. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008

    International Nuclear Information System (INIS)

    2008-11-01

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  16. Making waves with undersea (radioactive waste) disposal

    International Nuclear Information System (INIS)

    Milne, Roger.

    1987-01-01

    Following the Government's decision to halt the search for land-based disposal sites for low-level radioactive wastes, the search for alternative means of disposal of low- and intermediate-level wastes continues. Off-shore sites now seems to be the most likely. Two approaches are mentioned. The first is that proposed by Consolidated Environmental Technologies Ltd., to sink a shaft 15 metre in diameter under the seabed in an area of tectonic stability, possibly off Lincolnshire. The shaft could be 3000 metres deep. Waste packages and large decommissioning items would be lowered in from a giant barge. This would be expensive but environmentally more acceptable than the other approach. That is to tunnel out from the land and store the waste offshore, below the seabed. (U.K.)

  17. Suggestions on R and D work of high-level radioactive waste disposal in China

    International Nuclear Information System (INIS)

    Xu Guoqing

    2012-01-01

    The difference between repository and generic underground facilities is described. Some differences and similarities of site selection between the low and medium radioactive waste disposal, nuclear power station and high-level radioactive waste repository are also discussed here. We trend to extremely emphasize the safety of high-level radioactive waste disposal because of high toxicity, long half-life and long safety disposal period of this kind of radioactive wastes; because radioactive waste in the repository is of high specific activities and buried in depth, it would be difficult to meddle with its safety. In case of repository system being destroyed, the author considers that in the stages of regional and area site selection, the first task is to investigate regional tectonic stability. Some problems about disposal options and others are also discussed in this paper. (author)

  18. Sites and projects for the disposal of radioactive waste and repositories in Russia and other states of the former USSR

    International Nuclear Information System (INIS)

    Schneider, L.; Herzog, C.

    2000-01-01

    The nuclear industry in Russia and other states of the former USSR contents the whole nuclear fuel cycle - Uranium mining, fuel element production, nuclear power and research reactors, nuclear powered ships and reprocessing of nuclear fuel. High amounts of radioactive waste are already disposed at the sites of these industrial centers and further radioactive waste is arising in production, reprocessing and decommissioning processes. Spent fuel elements are reprocessed or stored onsite. Solid and liquid wastes are disposed near surface at the sites of nuclear power plants, radiochemical plants, 'Radon'- and other sites. High volumes of high-, medium- and low-level liquid waste with high radioactivity has been injected into deep geologic formations at the sites of radiochemical plants. In Russia perspective all spent fuel elements shall be reprocessed and dry storage facilities are planned for long term storage until reprocessing. Repositories for solid waste are foreseen in deep geological formations (e.g. salt, granite) at several sites. (author)

  19. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  20. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  1. Low-level radioactive wastes: Their treatment, handling, disposal

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Conrad P [Robert A. Taft Sanitary Engineering Center, Radiological Health Research Activities, Cincinnati, OH(United States)

    1964-07-01

    The release of low level wastes may result in some radiation exposure to man and his surroundings. This book describes techniques of handling, treatment, and disposal of low-level wastes aimed at keeping radiation exposure to a practicable minimum. In this context, wastes are considered low level if they are released into the environment without subsequent control. This book is concerned with practices relating only to continuous operations and not to accidental releases of radioactive materials. It is written by use for those interested in low level waste disposal problems and particularly for the health physicist concerned with these problems in the field. It should be helpful also to water and sewage works personnel concerned with the efficiency of water and sewage treatment processes for the removal of radioactive materials; the personnel engaged in design, construction, licensing, and operation of treatment facilities; and to student of nuclear technology. After an introduction the following areas are discussed: sources, quantities and composition of radioactive wastes; collection, sampling and measurement; direct discharge to the water, soil and air environment; air cleaning; removal of radioactivity by water-treatment processes and biological processes; treatment on site by chemical precipitation , ion exchange and absorption, electrodialysis, solvent extraction and other methods; treatment on site including evaporation and storage; handling and treatment of solid wastes; public health implications. Appendices include a glossary; standards for protection against radiation; federal radiation council radiation protection guidance for federal agencies; site selection criteria for nuclear energy facilities.

  2. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives. (DMC)

  3. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives

  4. Environmental safety of the disposal system for radioactive substance-contaminated wastes

    International Nuclear Information System (INIS)

    Oosako, Masahiro

    2012-01-01

    In accordance with the full-scale enforcement of 'The Act on Special Measures concerning the Handling of Radioactive Pollution' in 2012, the collective efforts of entire Japan for dealing with radioactive pollutants began. The most important item for dealing with radioactive pollution is to control radioactive substances that polluted the global environment and establish a contaminated waste treatment system for risk reduction. On the incineration system and landfill disposal system of radioactive waste, this paper arranges the scientific information up to now, and discusses the safety of the treatment / disposal systems of contaminated waste. As for 'The Act on Special Measures concerning the Handling of Radioactive Pollution,' this paper discusses the points of the Act and basic policy, roadmap for the installation of interim storage facilities, and enforcement regulations (Ordinance of the Ministry of the Environment). About the safety of waste treatment system, it discusses the safety level of technical standards at waste treatment facilities, safety of incineration facilities, and safety of landfill disposal sites. (O.A.)

  5. Experiences in development, qualification, and use of concrete high-integrity containers in commercial disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Schmitt, R.C.; Reno, H.W.

    1985-01-01

    Disposal of EPICOR prefilters as commercial radioactive wastes is being accomplished by using a first-of-a-kind, reinforced concrete, high-integrity container in lieu of prior in situ solidification of resins before disposal of prefilters. Experiences in developing, testing, certifying, and using high-integrity containers are an untold story worthy of review for the benefit of the nuclear industry at large. The lessons learned in gaining regulatory acceptance of the concrete HIC are discussed

  6. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land.

    Science.gov (United States)

    Nancarrow, D J; White, M M

    2004-03-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  7. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land

    International Nuclear Information System (INIS)

    Nancarrow, D J; White, M M

    2004-01-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950 000 m 3 ). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  8. Old radioactive waste storage sites

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the regulatory context for the management of old sites used for the storage of radioactive wastes with respect with their activity, the concerned products, the disposal or storage type, this document describes AREVA's involvement in the radioactive waste management process in France. Then, for the different kinds of sites (currently operated sites having radioactive waste storage, storage sites for uranium mineral processing residues), it indicates their location and name, their regulatory status and their control authority, the reference documents. It briefly presents the investigation on the long term impact of uranium mineral processing residues on health and environment, evokes some aspects of public information transparency, and presents the activities of an expertise group on old uranium mines. The examples of the sites of Bellezane (uranium mineral processing residues) and COMURHEX Malvesi (assessment of underground and surface water quality at the vicinity of this installation) are given in appendix

  9. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  10. Final disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kroebel, R [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Projekt Wiederaufarbeitung und Abfallbehandlung; Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Abt. zur Behandlung Radioaktiver Abfaelle

    1978-08-01

    This paper discusses the final disposal possibilities for radioactive wastes in the Federal Republic of Germany and the related questions of waste conditioning, storage methods and safety. The programs in progress in neighbouring CEC countries and in the USA are also mentioned briefly. The autors conclude that the existing final disposal possibilities are sufficiently well known and safe, but that they could be improved still further by future development work. The residual hazard potential of radioactive wastes from fuel reprocessing after about 1000 years of storage is lower that of known inorganic core deposits.

  11. Application of concrete to the treatment and disposal of radioactive waste in Japan

    International Nuclear Information System (INIS)

    Maki, Yasuro; Ohnuma, Hiroshi

    1992-01-01

    The paper presents the present state of application of concrete to treatment, storage and disposal of low level radioactive waste in Japan. In the 2nd section, the electric power supply and the kinds and volumes of radioactive waste from nuclear power plants in Japan are described. In the 3rd section, the applications of concrete to the treatment of radioactive waste are described. These are solidification with cement and containers made by various mortars and concretes. The application of concrete to disposal structures are presented in the 4th section; these are research on the durabity of concrete under disposal site condition, research on the filling the concrete pit with 200 l drum packed cement solidified wastes by prepacked concreting methods, and so on. And this section describes also the outlines of the low level radioactive disposal system at the Rokkasho site. (orig./DG)

  12. Current status of high level radioactive waste disposal in Japan and foreign countries

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Tanabe, Hiromi; Inagaki, Yusuke; Ishida, Hisahiro; Kato, Osamu; Kurata, Mitsuyuki; Yamachika, Hidehiko

    2002-01-01

    At a time point of 2002, there is no country actually disposing high level radioactive wastes into grounds, but in most of countries legislative preparation and practicing agents are carried out and site selection is promoted together with energetic advancement of its R and Ds. As disposal methods of the high level radioactive wastes, various methods such as space disposal, oceanic bottom disposal, ice bed disposal, ground disposal, and so on have been examined. And, a processing technology called partitioning and transmutation technology separating long-lived radionuclides from liquid high level radioactive waste and transmutation into short-lived or harmless radionuclides has also been studied. Here was introduced their wrestling conditions in Japan and main foreign countries, as a special issue of the Current status of high level radioactive waste disposal in Japan and foreign countries'. The high level radioactive wastes (glassification solids or spent nuclear fuels) are wastes always formed by nuclear power generation and establishment of technologies is an important subject for nuclear fuel cycle. (G.K.)

  13. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  14. Remediation and assessment of the national radioactive waste storage and disposal site in Tajikistan - 59110

    International Nuclear Information System (INIS)

    Buriev, Nazirzhon T.; Abdushukurov, Dzhamshed A.; Vandergraaf, Tjalle T.

    2012-01-01

    The National Radioactive Waste Storage and Disposal Site was established in 1959 in the Faizabad region approximately 50 km east of the capital, Dushanbe. The site is located on the southern flank of the Fan Mountains facing the Gissar Valley in a sparsely populated agricultural area, with the nearest villages located a few km from the site. The site was initially designed to accept a wide range of contaminated materials, including obsolete smoke detectors, sealed radioactive sources, waste from medical institutions, and radioactive liquids. Between 1962 and 1976, 363 tonnes and 1146 litres of material, contaminated with a range of radionuclides were shipped to the site. Between 1972 - 1980 and 1985 - 1991, ∼4.8 x 10 14 and 2 x 10 13 Bq, respectively, were shipped to the site. An additional 7 x 10 14 Bq was shipped to the site in 1996. Partly as a result of the dissolution of the former Soviet Union, the disposal site had fallen into disrepair and currently presents both an environmental hazard and a potential for the proliferation of radionuclides that could potentially be used for illicit purposes. Remediation of the disposal site was started in 2005. New security fences were erected and a new superstructure over an in-ground storage site constructed. A central alarm monitoring and observation station has been constructed and is now operational. The geology, flora, and fauna of the region have been documented. Radiation surveys of the buildings and the storage and disposal sites have been carried out. Samples of soil, surface water and vegetation have been taken and analyzed by gamma spectrometry. Results show a slight extent of contamination of soils near the filling ports of the underground liquid storage container where a Cs-137 concentration of 2.3 x 104 Bq/kg was obtained. Similar values were obtained for Ra- 226. Radiation fields of the in-ground storage site were generally 3 . Most of the activity appears to be associated with the sediments in the tank

  15. Disposal of radioactive wastes by UK NIREX Ltd

    International Nuclear Information System (INIS)

    Ginniff, M.E.

    1989-01-01

    In the United Kingdom UK Nirex Ltd., provides a comprehensive, long-term radioactive waste disposal service for low and intermediate level solid radioactive wastes arising from all radioactive operations in the country. The high level wastes which are not the responsibility of Nirex, are to be vitrified and stored for some 50 years. The low and intermediate wastes are to be emplaced in a deep underground repository and the developments during 1988 towards this objective are presented. Following the publication of a widely circulated consultation document entitled 'The Way Forward', design studies and site selection exercises for a deep underground repository were started. (author)

  16. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  17. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is

  18. Disposal of high level and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1991-01-01

    The waste products from the nuclear industry are relatively small in volume. Apart from a few minor gaseous and liquid waste streams, containing readily dispersible elements of low radiotoxicity, all these products are processed into stable solid packages for disposal in underground repositories. Because the volumes are small, and because radioactive wastes are latecomers on the industrial scene, a whole new industry with a world-wide technological infrastructure has grown up alongside the nuclear power industry to carry out the waste processing and disposal to very high standards. Some of the technical approaches used, and the Regulatory controls which have been developed, will undoubtedly find application in the future to the management of non-radioactive toxic wastes. The repository site outlined would contain even high-level radioactive wastes and spent fuels being contained without significant radiation dose rates to the public. Water pathway dose rates are likely to be lowest for vitrified high-level wastes with spent PWR fuel and intermediate level wastes being somewhat higher. (author)

  19. Maxey Flats low-level waste disposal site closure activities

    International Nuclear Information System (INIS)

    Haight, C.P.; Mills, D.; Razor, J.E.

    1987-01-01

    The Maxey Flats Radioactive Waste Disposal Facility in Fleming County, Kentucky is in the process of being closed. The facility opened for commercial business in the spring of 1963 and received approximately 4.75 million cubic feet of radioactive waste by the time it was closed in December of 1977. During fourteen years of operation approximately 2.5 million curies of by-product material, 240,000 kilograms of source material, and 430 kilograms of special nuclear material were disposed. The Commonwealth purchased the lease hold estate and rights in May 1978 from the operating company. This action was taken to stabilize the facility and prepare it for closure consisting of passive care and monitoring. To prepare the site for closure, a number of remedial activities had to be performed. The remediation activities implemented have included erosion control, surface drainage modifications, installation of a temporary plastic surface cover, leachate removal, analysis, treatment and evaporation, US DOE funded evaporator concentrates solidification project and their on-site disposal in an improved disposal trench with enhanced cover for use in a humid environment situated in a fractured geology, performance evaluation of a grout injection demonstration, USGS subsurface geologic investigation, development of conceptual closure designs, and finally being added to the US EPA National Priority List for remediation and closure under Superfund. 13 references, 3 figures

  20. The land impact associated with the disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Redmond, I.G.

    1983-01-01

    At present, the only land being utilized for the storage of radioactive wastes in Canada is at the sites of nuclear power generating stations, for high- and low-level wastes, and the land adjacent to uranium mines and mills in the case of tailings and the land in the vicinity of the uranium refinery in Port Hope. Existing storage sites for high- and low-level wastes do not occupy large amounts of land, since the amount of materials is relatively small. Uranium mine tailings, however, need hundreds of hectares of land. In addition to land directly utilized for the storage of the wastes, there may be a need for future buffer zones to separate them from adjoining land uses once a method of permanent disposal is decided. Any land utilized for the disposal of the wastes is likely to be unsuitable for other uses for anywhere from a few years to several thousand years, depending on the waste type occupying the land. Clearly, use of land for the storage and disposal of radioactive wastes may influence it beyond site boundaries and restrict its usage for other purposes for some considerable time to come

  1. Research on the assessment technology of the radionuclide inventory for the radioactive waste disposal(I)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Hong, D. S.; Hwang, G. H.; Shin, J. J.; Yuk, D. S. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    Characteristics and states of management of low and intermediate level radioactive waste in site : state of management for each type of wastes, characteristics of low and intermediate level solid radioactive waste, stage of management of low and intermediate level solid radioactive waste. Survey of state of management and characteristics of low and intermediate level radioactive waste disposal facility in foreign countries : state of management of disposal facilities, classification criteria and target radionuclides for assessment in foreign disposal facilities. Survey of the assessment methods of the radionuclides inventory and establishing the direction of requirement : assessment methods of the radionuclides inventory, analysis of radionuclides assay system in KORI site, establishment the direction of requirement in the assessment methods.

  2. Status of commercial nuclear high-level waste disposal. Special report

    International Nuclear Information System (INIS)

    Dau, G.J.; Williams, R.F.

    1976-09-01

    The results of this review, presented in the form of a functional description of high level waste management system, shows that technology is available to dispose of nuclear waste safely by several different processes. The most attractive alternative in terms of available technology and shortness of time to demonstrate it at commercial scale is a system that converts the waste to a solid by immobilizing the radioactive elements in a glass matrix. Brief comments are also given on international efforts in high level waste management and advanced disposal concepts

  3. Using performance assessment for radioactive waste disposal decision making -- implementation of the methodology into the third performance assessment iteration of the Greater Confinement Disposal site

    International Nuclear Information System (INIS)

    Gallegos, D.P.; Conrad, S.H.; Baer, T.A.

    1993-01-01

    The US Department of Energy is responsible for the disposal of a variety of radioactive wastes. Some of these wastes are prohibited from shallow land burial and also do not meet the waste acceptance criteria for proposed waste repositories at the Waste Isolation Pilot Plant (WIPP) and Yucca Mountain. These have been termed ''special-case'' waste and require an alternative disposal method. From 1984 to 1989, the Department of Energy disposed of a small quantity of special-case transuranic wastes at the Greater Confinement Disposal (GCD) site at the Nevada Test Site. In this paper, an iterative performance assessment is demonstrated as a useful decision making tool in the overall compliance assessment process for waste disposal. The GCD site has been used as the real-site implementation and test of the performance assessment approach. Through the first two performance assessment iterations for the GCD site, and the transition into the third, we demonstrate how the performance assessment methodology uses probabilistic risk concepts to guide affective decisions about site characterization activities and how it can be used as a powerful tool in bringing compliance decisions to closure

  4. Introduction to Envirocare of Utah's low activity radioactive waste disposal site located at Clive, Utah

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Envirocare of Utah was licensed by the state of Utah on February 2, 1988, to become fully operational to receive low-activity radioactive waste at its disposal site near Clive, Utah. This paper discusses the organization of the firm, political support, acceptable materials, benefits of the operation, site characteristics, construction, health physics program, and environmental program

  5. Considerations for alternative low-level radioactive disposal sites

    International Nuclear Information System (INIS)

    Beck, J.M.

    1986-01-01

    In the immediate future, there is a need for low-level radioactive disposal sites to accommodate wastes that would otherwise be placed at a later date in permanent, government sanctioned ''compact'' sites. Until these ''compact'' sites become operational, a potential, relatively low-cost alternative exists in the numerous inactive uranium processing sites that are likewise proposed for remedial action removal or stabilization operations. This paper addressed disposal from the aspects of engineering design, economics and liability of participating parties. Many uranium (and by-product) processing facilities in the western states now stand idle due to current economic conditions within the industry. Many more were previously deactivated for various reasons. All must be dealt with under the UMTRA Program Guidelines with regard to removal, reclamation or other remedial action activities. With cooperative efforts, some of these sites would appear to be suitable for disposal of small volume, low-level radioactive wastes that presently render urban properties valueless in terms of real estate and aesthetic values. Likely sites would appear to be those slated for in-place stabilization and reclamation, particularly where the urban property material has a lower level of radioactivity than the disposal site material. The resultant impacts for site stabilization and reclamation would be solely in the areas of increased material volumes (generally requiring a minimal increase in engineering design complexity) and liability. Clearly, liability will be the overriding factor in such an approach. With the complex hierarchy of regulatory agencies involved and the private sector, what appears to be a relative simple and economic approach may have extreme difficulty in achieving reality

  6. Comparative overview of dangers, protective measures and risks for the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-10-01

    The purpose of this report is to present an overview of the anticipated risks of geological disposal of radioactive wastes and to compare these to 'conventional' risks, which voluntarily or involuntarily are associated with human activities and have accompanied mankind for long times. Radioactive wastes which result from the generation of electricity by commercial nuclear reactors as well as those originating from research, industrial and medical applications necessitate prolonged isolation from the biosphere to their long-lived, although decaying, toxicity. Chapter 2 of this report contains a survey of the nature and extent of the potential hazard of radioactive waste, drawing attention to the fact that the toxicity of radionuclides is comparable to that of nonradioactive chemical compounds. The possibility of adverse effects on the public cannot be ruled out for either kind of waste. Current plans aim at the safe and effective disposal of radioactive wastes in deep and stable geological formations which should serve as hosts for engineered final repositories. For a final repository to be suitable, the site chosen should be free from circulating groundwater or the free movement of the groundwater must be strongly restricted. In order to prevent radioactive substances migrating away from the final repository in which they have been placed, it is planned to utilise natural and man-made barriers which function largely independently from each other. Thorough knowledge of the properties of man-made barriers, is as important as knowledge of the natural barriers, which are determined by the geology and hydrogeology of the site of the final repository. This principle of protection is known as a 'multiple-barrier concept' and is considered capable of providing safe disposal of radioactive wastes

  7. Experiences in development, qualification, and use of concrete high-integrity containers in commercial disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Schmitt, R.C.; Reno, H.W.

    1985-01-01

    Disposal of EPICOR prefilters as commercial radioactive wastes is being accomplished by using a first-of-a-kind, reinforced concrete, high-integrity container (HIC) in lieu of prior in situ solidification of resins before disposal of prefilters. Experiences in developing, testing, certifying, and using high-integrity containers are an untold story worthy of review for the benefit of the nuclear industry at large. The lessons learned in gaining regulatory acceptance of the concrete HIC are discussed. 6 refs., 1 tab

  8. Challenges and Lessons Learned in Low-Level Radioactive Waste Management and Disposal in the Texas Compact

    International Nuclear Information System (INIS)

    Jablonski, S.M.

    2009-01-01

    This paper discusses challenges and lessons learned in approaching the management and disposal of commercial low-level radioactive waste in the Texas Compact. The State of Texas has actively worked decades to address radioactive waste management and disposal issues. The current strides made in Texas on the radioactive waste management front have benefited from unique attributes that help support a public policy foundation. The public policy of radioactive waste management, specifically low-level radioactive waste disposal, has been evolving in Texas for more than twenty years. The policy today is a product of past events and lessons learned. In many ways, public policy on radioactive waste disposal has come full circle. A purely scientific approach to radioactive waste management has not been the solution. Radioactive waste management public policy does not solely rely on technical expertise or state of the best technology. Sound science is simply not enough. Innovation in this case is largely people-based, focused on new ways to communicate and new opportunities to deliver a message of safe and effective radioactive waste management. (authors)

  9. The disposal of radioactive wastes in Brazil with special emphasis on rocks

    International Nuclear Information System (INIS)

    Enokihara, Cyro Teiti

    1983-01-01

    The disposal of radioactive wastes in geological formations seems to be the most appropriate solution for the nuclear waste problem. The disposal sites must provide the maximum safety for the radionuclides during its decay period. The study presents a general analysis of three types rocks: salt, granite and basalt. In our analysis we have dealt with the following aspects: geology, tectonics, seismicity, hydrogeology , mineral resources, geomorphology, population and access. The studied regions were: Sergipe-Alagoas and Reconcavo Basins, Northeastern and Southeastern Folded Regions and Parana Basin. Our study contains the macro-analysis needed for the selection of a safe site for radioactive waste disposal. We believe this work will be useful as a first step for further micro-analysis of selected sites. (author)

  10. Water balance at a low-level radioactive-waste disposal site

    Science.gov (United States)

    Healy, R.W.; Gray, J.R.; De Vries, G. M.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components (81 millimeters per year) indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site.

  11. Water balance at a low-level radioactive-waste disposal site

    International Nuclear Information System (INIS)

    Healy, R.W.; Gray, J.R.; de Vries, M.P.; Mills, P.C.

    1989-01-01

    The water balance at a low-level radioactive-waste disposal site in northwestern Illinois was studied from July 1982 through June 1984. Continuous data collection allowed estimates to be made for each component of the water-balance equation independent of other components. The average annual precipitation was 948 millimeters. Average annual evapotranspiration was estimated at 637 millimeters, runoff was 160 millimeters, change in water storage in a waste-trench cover was 24 millimeters, and deep percolation was 208 millimeters. The magnitude of the difference between precipitation and all other components indicates that, in a similar environment, the water-budget method would be useful in estimating evapotranspiration, but questionable for estimation of other components. Precipitation depth and temporal distribution had a very strong effect on all other components of the water-balance equation. Due to the variability of precipitation from year to year, it appears that two years of data are inadequate for characterization of the long-term average water balance at the site

  12. General criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    Maxey, M.N.; Musgrave, B.C.; Watkins, G.B.

    1979-01-01

    Techniques are being developed for conversion of radioactive wastes to solids and their placement into repositories. Criteria for such disposal are needed to assure protection of the biosphere. The ALARA (as low as reasonably achievable) principle should be applicable at all times during the disposal period. Radioactive wastes can be categorized into three classes, depending on the activity. Three approaches were developed for judging the adequacy of disposal concepts: acceptable risk, ore body comparison, and three-stage ore body comparison

  13. Basic approach to the disposal of low level radioactive waste generated from nuclear reactors containing comparatively high radioactivity

    International Nuclear Information System (INIS)

    Moriyama, Yoshinori

    1998-01-01

    Low level radioactive wastes (LLW) generated from nuclear reactors are classified into three categories: LLW containing comparatively high radioactivity; low level radioactive waste; very low level radioactive waste. Spent control rods, part of ion exchange resin and parts of core internals are examples of LLW containing comparatively high radioactivity. The Advisory Committee of Atomic Energy Commission published the report 'Basic Approach to the Disposal of LLW from Nuclear Reactors Containing Comparatively High Radioactivity' in October 1998. The main points of the proposed concept of disposal are as follows: dispose of underground deep enough not be disturb common land use (e.g. 50 to 100 m deep); dispose of underground where radionuclides migrate very slowly; dispose of with artificial engineered barrier which has the same function as the concrete pit; control human activities such as land use of disposal site for a few hundreds years. (author)

  14. Managing the nation's commercial high-level radioactive waste

    International Nuclear Information System (INIS)

    1985-03-01

    This report presents the findings and conclusions of OTA's analysis of Federal policy for the management of commercial high-level radioactive waste. It is intended to contribute to the implementation of Nuclear Waste Policy Act of 1982 (NWPA). The major conclusion of that review is that NWPA provides sufficient authority for developing and operating a waste management system based on disposal in geologic repositories. Substantial new authority for other facilities will not be required unless major unexpected problems with geologic disposal are encountered. OTA also concludes that DOE's Draft Mission Plan published in 1984 falls short of its potential for enhancing the credibility and acceptability of the waste management program

  15. Hazardous waste shipment data collection from DOE sites

    International Nuclear Information System (INIS)

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste

  16. Low-level radioactive waste management at the Nevada Test Site - Current status

    International Nuclear Information System (INIS)

    Becker, B.D.; Crowe, B.M.; Gertz, C.P.; Clayton, W.A.

    1999-01-01

    The performance objectives of the Department of Energy's Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity wastes, classified materials, and high-specific-activity special case wastes. Twenty miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMS's since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  17. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Alfred Wickline

    2007-01-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval

  18. Concept and Planning of Site Preparation for Radioactive Waste Disposal in Jawa and Surrounding Area

    International Nuclear Information System (INIS)

    Heru Sriwahyuni; Sastrowardoyo, Pratomo B.; Teddy Sumantri; Dewi Susilowati; Hendra Adhi Pratama; Syarmufni, A.

    2008-01-01

    Concept and planning for radioactive waste disposal in Jawa and surrounding area have been done. These activities were part of the investigation for preparation of repository location in Jawa. In this report, the summary of previous sitting activities, the waste inventory in Radioactive Waste Technology Centre, and list of important factors for sitting on radioactive waste disposal location. Several potential areas such as Karawang, Subang, Majalengka, Rembang, Tuban, Madura will be the focus for next activities. The result will be part of activities report regarding the preparation of repository location in Jawa and surrounding area, that will be used as recommendation prior to radioactive waste management policy. (author)

  19. Interim report on reference biospheres for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F. van [NAGRA (Switzerland)] [and others

    1994-10-01

    Primary criteria for repository safety are commonly expressed in terms of risk or dose, and a biosphere model is required to evaluate the corresponding assessment endpoints. Even when other indicators are used to express the safety goals, a biosphere model is still needed in order to justify those indicators. In safety or performance assessments of a repository, the uncertainties in space and time for the different components of the repository system have to be considered. For the biosphere component, prediction of future human habits, in particular, is extremely uncertain. This is especially important in the assessment of deep geological disposal, which involves very long timescales, particularly for wastes containing very long lived radionuclides. Thus, the results of biosphere modelling should not be seen as predictions, but as illustrations of the consequences that may occur, should the postulated release occur today or under other conditions implied by the underlying biosphere model assumptions. Differences in biosphere modelling approaches arise because of differences in regulations, the nature of the wastes to be disposed of, disposal site characteristics, disposal concepts and purposes of the assessment. Differences in treatment of uncertainties can also arise. For example, if doses or risks are anticipated to be far below regulatory limits, assessments may be based upon simplified and, necessarily, conservative biosphere models. At present biosphere models used to assess radioactive waste disposal show significant differences in the features, events and processes (FEPs) included or excluded. In general, the reasons for these differences have not been well documented or explained. Developments in radioecology have implications for biosphere modelling for radioactive waste disposal. In particular, after the Chernobyl accident, radioecological research has been significantly increased. Results of this research are already having and will continue to have a

  20. Interim report on reference biospheres for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F van [NAGRA (Switzerland); and others

    1994-10-01

    Primary criteria for repository safety are commonly expressed in terms of risk or dose, and a biosphere model is required to evaluate the corresponding assessment endpoints. Even when other indicators are used to express the safety goals, a biosphere model is still needed in order to justify those indicators. In safety or performance assessments of a repository, the uncertainties in space and time for the different components of the repository system have to be considered. For the biosphere component, prediction of future human habits, in particular, is extremely uncertain. This is especially important in the assessment of deep geological disposal, which involves very long timescales, particularly for wastes containing very long lived radionuclides. Thus, the results of biosphere modelling should not be seen as predictions, but as illustrations of the consequences that may occur, should the postulated release occur today or under other conditions implied by the underlying biosphere model assumptions. Differences in biosphere modelling approaches arise because of differences in regulations, the nature of the wastes to be disposed of, disposal site characteristics, disposal concepts and purposes of the assessment. Differences in treatment of uncertainties can also arise. For example, if doses or risks are anticipated to be far below regulatory limits, assessments may be based upon simplified and, necessarily, conservative biosphere models. At present biosphere models used to assess radioactive waste disposal show significant differences in the features, events and processes (FEPs) included or excluded. In general, the reasons for these differences have not been well documented or explained. Developments in radioecology have implications for biosphere modelling for radioactive waste disposal. In particular, after the Chernobyl accident, radioecological research has been significantly increased. Results of this research are already having and will continue to have a

  1. Alternatives for future land disposal of radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.

    1982-01-01

    Shallow land burial incorporating improvements to facilitate stabilization and decommissioning will continue to be the primary method of disposing of low level waste in areas where conditions are suitable for this type of disposal. The existing disposal sites should be closely monitored to assure that continued acceptance of this method of disposal. Plans for the decommissioning of the existing sites should be closely reviewed to assure that the planning is adequate and that adequate resources will be available to implement the decommissioning plan. For these areas where geological conditions are not suitable for shallow land burial and in situations where a higher degree of containment is desired, alternative disposal methods should be considered. Technology exists or is readily attainable to provide engineered disposal facilities which provide a higher degree of containment and can be readily decommissioned. The cost of disposal using these methods can be competitive with shallow land burial when the cost of environmental and hydrogeologic investigations and decommissioning are included. Disposal of radioactive waste having low activity in secure sanitary landfills could significantly reduce the transportation and disposal requirements for low level waste

  2. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  3. Alternatives for the disposal of NORM [naturally occurring radioactive materials] wastes in Texas

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.; Pollard, C.G.

    1989-01-01

    Some of the Texas wastes containing naturally occurring radioactive materials (NORM) have been disposed of in a uranium mill tailings impoundment. There is currently no operating disposal facility in Texas to accept these wastes. As a result, some wastes containing extremely small amounts of radioactivity are sent to elaborate disposal sites at extremely high costs. The Texas Low-Level Radioactive Waste Disposal Authority has sponsored a study to investigate lower cost, alternative disposal methods for certain wastes containing small quantities of NORM. This paper presents the results of a multipathway safety analysis of various scenarios for disposing of wastes containing limited quantities of NORM in Texas. The wastes include pipe scales and sludges from oil and gas production, residues from rare-earth mineral processing, and water treatment resins, but exclude large-volume, diffuse wastes (coal fly ash, phosphogypsum). The purpose of the safety analysis is to define concentration and quantity limits for the key nuclides of NORM that will avoid dangerous radiation exposures under different waste disposal scenarios

  4. Radioactive Solid Waste Management Site (RSMS), Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    Nuclear operations generate a variety of primary solid waste comprising of tissue materials, glassware, plastics, protective rubber-wears, used components like filters, piping, structural items, unserviceable equipment, etc. This type of solid waste is generally associated with low and intermediate level of beta and gamma radiation and, in some cases, by low levels of alpha contamination. Radioactive Solid Waste Management Site (RSMS), Trombay is operational with an objective of safe and efficient management of low and intermediate level solid waste generated from various nuclear fuel cycle facilities of BARC, Trombay. The RSMS also manages the spent radioactive sources, utilised in healthcare, industries and research institutes, after completion of their useful life. The radioactive solid waste is first segregated, treated for volume reduction and disposed in engineered disposal module to prevent the migration of radionuclides and isolate them from human environment

  5. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  6. Ancient tombs in China and shallow land disposal of low-intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Huang, Y.; Gu, C.

    1987-01-01

    The paper summerises the experiences of ancient tombs in China on tomb siting, configuration of tombs, backfilling materials, civil engineering techniques, sealing (or airlight) techniques, drainage system, antiseptic techniques and so on based upon site investigation. Comparison between ancient tombs in China and shallow land disposal of radioactive wastes has been made. The authors point out that the brilliant achievements of ancient tombs in China in keeping ancient corpses and funeral objects is a historical evidence for safety of shallow land disposal of radioactive wastes, and that the main experiences of ancient tombs can be used for reference to shallow land disposal of radioactive wastes

  7. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Palmer, R.

    1985-01-01

    The paper presents arguments against the marine disposal of radioactive wastes. Results of American studies of deep-water dump-sites, and strontium levels in fish, are cited as providing evidence of the detrimental effects of marine dumping. The London Dumping Convention and the British dumping programme, are briefly discussed. (U.K.)

  8. High-level radioactive waste disposal: Key geochemical issues and information needs for site characterization

    International Nuclear Information System (INIS)

    Brooks, D.J.; Bembia, P.J.; Bradbury, J.W.; Jackson, K.C.; Kelly, W.R.; Kovach, L.A.; Mo, T.; Tesoriero, J.A.

    1986-01-01

    Geochemistry plays a key role in determining the potential of a high-level radioactive waste disposal site for long-term radionuclide containment and isolation. The Nuclear Regulatory Commission (NRC) has developed a set of issues and information needs important for characterizing geochemistry at the potential sites being investigated by the Department of Energy Basalt Waste Isolation Project, Nevada Nuclear Waste Storage Investigations project, and Salt Repository Project. The NRC site issues and information needs consider (1) the geochemical environment of the repository, (2) changes to the initial geochemical environment caused by construction and waste emplacement, and (3) interactions that affect the transport of waste radionuclides to the accessible environment. The development of these issues and information needs supports the ongoing effort of the NRC to identify and address areas of geochemical data uncertainty during prelicensing interactions

  9. Status report on Texas Low-Level Radioactive Waste Disposal Authority activities

    International Nuclear Information System (INIS)

    Avant, R.V. Jr.

    1990-01-01

    In 1981, the Texas Low-Level Radioactive Waste Disposal Authority was created by Article 4590f-1 to site, develop, operate, decommission, and close a low-level radioactive waste disposal facility for Texas generated waste. In 1989, the Authority's act was recodified by the Texas legislature in the Health and Safety Code., Title 5. Sanitation and Environmental Quality, Subtitle D. Nuclear and Radioactive Materials, Chapter 402. The Authority is governed by a Board of Directors appointed by the Governor, composed of a certified health physicist, geologist, attorney, medical doctor, and two private citizens. Under the statute, low-level radioactive waste is defined as any radioactive material with a half-life of 35 years or less or having less than 10 nanocuries per gram of transuranics. Materials with half-lives of greater than 35 years may be classed as low-level waste if special criteria are established by the Texas Department of Health Bureau of Radiation Control. Subsequent sessions of the legislature have amended the act to revise siting criteria, require consideration of state land, create a Citizen's Advisory Committee, incorporate alternative designs, and establish a special low-level radioactive waste account in the state treasury. The Authority began its activities in 1982. The Authority has proposed a site in far West Texas near Fort Hancock, but El Paso County, the neighboring county to the west, has instituted three separate lawsuits to slow or stop the site selection process. Particular attention was paid early in the site selection process to items which could be fatal flaws from a licensing standpoint. This paper discusses the Fort Hancock site description, site evaluation studies, siting issues, waste volume projections, facility design, license application, cost and schedule

  10. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  11. Biosphere models for safety assesment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Proehl, G; Olyslaegers, G; Zeevaert, T [SCK/CEN, Mol (Belgium); Kanyar, B [University of Veszprem (Hungary). Dept. of Radiochemistry; Pinedo, P; Simon, I [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Bergstroem, U; Hallberg, B [Studsvik Ecosafe, Nykoeping (Sweden); Mobbs, S; Chen, Q; Kowe, R [NRPB, Chilton, Didcot (United Kingdom)

    2004-07-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  12. Biosphere models for safety assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T.; Kanyar, B.; Bergstroem, U.; Hallberg, B.; Mobbs, S.; Chen, Q.; Kowe, R.

    2004-01-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  13. Key scientific challenges in geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Wang Ju

    2007-01-01

    The geological disposal of high radioactive waste is a challenging task facing the scientific and technical world. This paper introduces the latest progress of high level radioactive disposal programs in the latest progress of high level radioactive disposal programs in the world, and discusses the following key scientific challenges: (1) precise prediction of the evolution of a repository site; (2) characteristics of deep geological environment; (3) behaviour of deep rock mass, groundwater and engineering material under coupled con-ditions (intermediate to high temperature, geostress, hydraulic, chemical, biological and radiation process, etc); (4) geo-chemical behaviour of transuranic radionuclides with low concentration and its migration with groundwater; and (5) safety assessment of disposal system. Several large-scale research projects and several hot topics related with high-level waste disposal are also introduced. (authors)

  14. Siting process for disposal site of low level radiactive waste in Thailand

    International Nuclear Information System (INIS)

    Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.; Sriyotha, K.

    1992-01-01

    The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The site selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand

  15. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    International Nuclear Information System (INIS)

    Wildi, Walter; Dermange, Francois; Appel, Detlef; Buser, Marcos; Eckhardt, Anne; Hufschmied, Peter; Keusen, Hans-Rudolf; Aebersold, Michael

    2000-01-01

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA

  16. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    Energy Technology Data Exchange (ETDEWEB)

    Wildi, Walter; Dermange, Francois [Univ. of Geneva, CH-1211 Geneva (Switzerland); Appel, Detlef [PanGeo, Hannover (Germany); Buser, Marcos [Buser and Finger, Zurich (Switzerland); Eckhardt, Anne [Basler and Hofmann, Zurich (Switzerland); Hufschmied, Peter [Emch and Berger, Bern (Switzerland); Keusen, Hans-Rudolf [Geotest, Zollikofen (Switzerland); Aebersold, Michael [Swiss Federal Office of Energy (BFE), CH-3003 Bern (Switzerland)

    2000-01-15

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA.

  17. Status of siting studies for a near surface repository site for radioactive wastes in the Philippines

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Palattao, M.V.B.; Marcelo, E.A.; Caseria, E.S.; Venida, L.L.; Cruz, J.M. dela

    2002-01-01

    The Philippines, through the Philippine Nuclear Research Institute (PNRI), decided to conduct a study on siting a low level radioactive waste disposal facility. The infrastructure set up for this purpose, the radioactive waste disposal concept, the overall siting process, the methodology applied and preliminary results obtained are described in this paper. (author)

  18. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    International Nuclear Information System (INIS)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 x 10 -7 cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination

  19. The Cigeo project: an industrial storage site for radioactive wastes in deep underground

    International Nuclear Information System (INIS)

    Krieguer, Jean-Marie

    2017-01-01

    In 2006, France has decided to store its high-level and long-lived radioactive wastes, mostly issued from the nuclear industry, in a deep geological underground disposal site. This document presents the Cigeo project, a deep underground disposal site (located in the East of France) for such radioactive wastes, which construction is to be started in 2021 (subject to authorization in 2018). After a brief historical review of the project, started 20 years ago, the document presents the radioactive waste disposal context, the ethical choice of underground storage (in France and elsewhere) for these types of radioactive wastes, the disposal site safety and financing aspects, the progressive development of the underground facilities and, of most importance, its reversibility. In a second part, the various works around the site are presented (transport, buildings, water and power supply, etc.) together with a description of the various radioactive wastes (high and intermediate level and long-lived wastes and their packaging) that will be disposed in the site. The different steps of the project are then reviewed (the initial design and initial construction phases, the pilot industrial phase (expected in 2030), the operating phase, and the ultimate phases that will consist in the definitive closure of the site and its monitoring), followed by an extensive description of the various installations of surface and underground facilities, their architecture and their equipment

  20. Parameters for characterizing sites for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Lutton, R.J.; Malone, P.G.; Meade, R.B.; Patrick, D.M.

    1982-05-01

    Sixty-seven site parameters and parameter groups are identified as important characteristics of sites for disposal of low-level radioactive waste and require detailed evaluation. Several of the most important parameters are needed for hydrological analysis while others are needed for facility design, construction, and operation. Still others are needed for baseline and detection stages of monitoring. It is recommended that all parameters be evaluated by technically qualified personnel. Appropriate tests and documentation methods are discussed in a second report, which will follow. However, site-specific testing or elaborate field measurement will not always be necessary, i.e., where indicated to be unnecessary on a technical basis. Much of this report, Appendices A through G, is directed to explaining the importances of parameters and to establishing site-specific limitations

  1. Radioactive waste disposal by UKAEA establishments during 1980 and associated environmental monitoring results

    International Nuclear Information System (INIS)

    Flew, E.M.

    1981-09-01

    This report gives details of the amounts of solid and liquid radioactive waste disposed of by the principal establishments of the UKAEA during 1980. Waste arising at the UKAEA Nuclear Power Development Laboratories at Windscale and Springfields, which are both situated on British Nuclear Fuels Ltd. (BNFL)-sites, is disposed of by BNFL and included in their authorisations. Discharges to atmosphere of airborne radioactive waste are also included in the report. A summary of the results of the environmental monitoring programmes carried out in connection with the radioactive waste discharges is given. (author)

  2. Radioactive waste disposal by UKAEA establishments during 1978 and associated environmental monitoring results

    International Nuclear Information System (INIS)

    Flew, E.M.

    1979-05-01

    This report gives details of the amounts of solid and liquid radioactive waste disposed of by the principal establishments of the UKAEA during 1978. Waste arising at the UKAEA Nuclear Power Development Laboratories at Windscale and Springfields, which are both situated on British Nuclear Fuels Ltd. (BNFL) sites, is disposed of by BNFL and included in their authorisations. Discharges to atmosphere of airborne radioactive waste are also included in the report. A summary of the results of the environmental monitoring programmes carried out in connection with the radioactive waste discharges is given. (author)

  3. Trends of radioactive waste management policy and disposal of LLW/ILW in the UK

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    2003-01-01

    In 1997, the UK program for the deep disposal of radioactive waste was stopped with the refusal by the Secretary of State for the Environment to allow Nuclear Industry Radioactive Waste Executive, Ltd. (Nirex) to go ahead with its plans for an underground Rock Characterization Facility (RCF) at Sellafield, seen as the precursor of an underground repository for LLW/ILW. Department of Environment, Food and Rural Affairs (DEFRA) and the Developed Administrations published a white paper 'Managing Radioactive Waste Safety' Proposal for developing a policy for managing solid radioactive waste in the UK on 12 September 2001. The paper set out five-stage program of action for reaching decisions until 2007. It suggests their view can be sought via opinion polls, the Internet, workshops, citizens, juries, consensus conferences, stakeholder, local authority and community groups and research panels. With the exception of a disposal facility associated with the operation of the Dounreay site on the north coast of Scotland, essentially all LLW in the UK is disposed of at the Drigg site, near Sellafield. The site has been in operation since 1959. Until 1988, disposals were solely in trenches, cut into the glacial tills underlying the site. In 1988, an engineered concrete vault was brought into operation and is currently in use. Drigg only has a finite capacity in the currently area and may be full by about 2050, hence new arrangements will have to examine. This report describes the trends of radioactive waste management policy and disposal of LLW/ILW in the UK. These include: NDA(Nuclear Decommissioning Authority) organization plan, Feb. 2003; Encapsulation of LLW/ILW and safe store for ILW; Summary of LLW repository at the Drigg site; Nirex concept for underground storage/disposal of LLW/ILW. This information and new approach of the safe management of radioactive waste in the UK will prove helpful to the planning for future management and disposal of LLW in Japan. (author)

  4. Alternatives to land disposal of solid radioactive mixed wastes on the Hanford Site

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1992-03-01

    This report is a detailed description of the generation and management of land disposal restricted mixed waste generated, treated, and stored at the Hanford Site. This report discusses the land disposal restricted waste (mixed waste) managed at the Hanford Site by point of generation and current storage locations. The waste is separated into groups on the future treatment of the waste before disposal. This grouping resulted in the definition of 16 groups or streams of land disposal restricted waste

  5. The Safety Case and Safety Assessment for the Disposal of Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    This Safety Guide provides guidance and recommendations on meeting the safety requirements in respect of the safety case and supporting safety assessment for the disposal of radioactive waste. The safety case and supporting safety assessment provide the basis for demonstration of safety and for licensing of radioactive waste disposal facilities and assist and guide decisions on siting, design and operations. The safety case is also the main basis on which dialogue with interested parties is conducted and on which confidence in the safety of the disposal facility is developed. This Safety Guide is relevant for operating organizations preparing the safety case as well as for the regulatory body responsible for developing the regulations and regulatory guidance that determine the basis and scope of the safety case. Contents: 1. Introduction; 2. Demonstrating the safety of radioactive waste disposal; 3. Safety principles and safety requirements; 4. The safety case for disposal of radioactive waste; 5. Radiological impact assessment for the period after closure; 6. Specific issues; 7. Documentation and use of the safety case; 8. Regulatory review process.

  6. Studies on disposal of low-level radioactive wastes in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Fields, D.E.; Yalcintas, M.G.

    1989-08-01

    The Turkish Government is in the process of planning two nuclear reactors in Turkey. Studies have begun for improved control of low level wastes (LLW) in Turkey before establishment of these reactors. In this study, the PRESTO-II (Prediction of Radiation Exposures form Shallow Trench Operations) computer code is used to assess the risk associated with the shallow land disposal of low level waste (LLW) in various sites in Turkey. PRESTO-II is a computer code developed under the United States Environmental Protection Agency, Department of Energy and Nuclear Regulatory Commission funding to evaluate possible health effects from radioactive releases from shallow, radioactive waste disposal trenches and from areas contaminated with operational spillage. A preliminary simulation using the PRESTO-II computer code has been run for the site in Koteyli, Balikesir, Turkey. This example simulation was performed using the same radionuclide data set believed representative of the LLW disposal facility in Barnwell, South Carolina. Site environmental variables were selected to typify credible worst case exposure scenarios. Radionuclide inventories are primarily based on estimated waste composition rather than measured values. 9 refs., 4 figs., 1 tab

  7. Inventory of radioactive waste disposals at sea

    International Nuclear Information System (INIS)

    1999-08-01

    The IAEA was requested by the Contracting Parties to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention 1972) to develop and maintain an inventory of radioactive material entering the marine environment from all sources. The rationale for having such an inventory is related to its use as an information base with which the impact of radionuclides from different sources entering the marine environment can be assessed and compared. To respond to the request of the London Convention, the IAEA has undertaken the development of the inventory to include: disposal at sea of radioactive wastes, and accidents and losses at sea involving radioactive materials. This report addresses disposal at sea of radioactive waste, a practice which continued from 1946 to 1993. It is a revision of IAEA-TECDOC-588, Inventory of Radioactive Material Entering the Marine Environment: Sea Disposal of Radioactive Waste, published in 1991. In addition to the data already published in IAEA-TECDOC-588, the present publication includes detailed official information on sea disposal operations carried out by the former Soviet Union and the Russian Federation provided in 1993 as well as additional information provided by Sweden in 1992 and the United Kingdom in 1997 and 1998

  8. Application of quality assurance to radioactive waste disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs.

  9. Application of quality assurance to radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs

  10. Radioactive waste disposal and constitution

    International Nuclear Information System (INIS)

    Stober, R.

    1983-01-01

    The radioactive waste disposal has many dimensions with regard to the constitutional law. The central problem is the corret delimitation between adequate governmental precautions against risks and or the permitted risk which the state can impose on the citizen, and the illegal danger which nobody has to accept. The solution requires to consider all aspects which are relevant to the constitutional law. Therefore, the following analysis deals not only with the constitutional risks and the risks of the nuclear energy, but also with the liberal, overall-economic, social, legal, and democratic aspects of radioactive waste disposal. (HSCH) [de

  11. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  12. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W.

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated

  13. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990

    Science.gov (United States)

    Trask, N.J.; Stevens, P.R.

    1991-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.

  14. Generic impact statement for commercial radioactive waste management

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1976-01-01

    ERDA is preparing a generic environmental impact statement on the treatment and disposal of waste resulting from commercial reactors and post fission operations in the light water reactor (LWR) fuel cycle. Expert contributions will be provided by many of the ERDA national laboratories and contractors. The waste management aspects of the statement will be based on available technology as presented in the recently issued ''Alternatives for Managing Waste from Reactors and Post Fission Operations in the LWR Fuel Cycle,'' ERDA-76-43 Document. This 1500 page, five volume Technical Alternative Document (TAD) describes the status of technology (to September, 1975) for handling post fission radioactive waste generated by the production of electricity by nuclear power light water reactor-generator systems. The statement will be generic in nature discussing typical or hypothetical facilities in typical or hypothetical environments. It is not intended to replace environmental statements required in support of specific projects nor for Nuclear Regulatory Commission licensing procedures. A major purpose of the generic statement is to inform the public and to solicit comments on the ERDA program for: (1) the final disposition of commercial radioactive waste, (2) waste treatment, (3) waste interim storage, and (4) transportation of waste. The statement will discuss the ERDA contingency program to provide retrievable storage of such waste if they should be transferred to Federal custody prior to the availability of the geologic isolation facilities for terminal disposal. The generic statement will not address radioactive waste resulting from U.S. Defense Programs, the mining or milling of uranium, the management of waste from the breeder reactor program, waste from other nations, nor will it include an evaluation of the impact of waste resulting from power sources other than light water reactors

  15. Scientific and social polemy about radioactive waste disposal

    International Nuclear Information System (INIS)

    Rosa, Geza

    1988-01-01

    Major requirements towards final disposal of low- and medium-active wastes according to the recommendations of the IAEA and the Hungarian authority regulations are summarized. After preliminary examinations technical project for the establishment of a radioactive waste facility in the vicinity of the village Ofalu, Hungary was prepared. According to an independent ad hoc board of experts the selected site is unsuitable forwaste disposal because of disadvantageous geological, hydrological and seismic conditions. Due to the disagreement between official and independent experts the final scientific and legal decision is postponed. (V.N.) 7 refs

  16. Probabilistic safety assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Robinson, P.C.

    1987-07-01

    Probabilistic safety assessment codes are now widely used in radioactive waste disposal assessments. This report gives an overview of the current state of the field. The relationship between the codes and the regulations covering radioactive waste disposal is discussed and the characteristics of current codes is described. The problems of verification and validation are considered. (author)

  17. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    Directory of Open Access Journals (Sweden)

    M. V. Vedernikova

    2017-01-01

    of public roads during radioactive waste transportation to the disposal facility site

  18. The project for national disposal facility for low and intermediate level radioactive waste in Bulgaria

    International Nuclear Information System (INIS)

    Alexandrov, A.; Boyanov, S.; Christoskova, M.; Ivanov, A.

    2006-01-01

    The State Enterprise Radioactive Waste is the responsible organisation in Bulgaria for the radioactive waste management and, in particular, for the establishment of the national disposal facility (NDF) for low and intermediate level short-lived radioactive waste (LIL RAW SL). According to the national strategy for the safe management of spent fuel and radioactive waste the NDF should be commissioned in 2015. NDF will accept two main waste streams - for disposal and for storage if the waste is not disposable. The major part of disposable waste is generated by Kozloduy NPP. The disposal facility will be a near surface module type engineered facility. Consecutive erection of new modules will be available in order to increase the capacity of the facility. The corrective measures are previewed to be applied if needed - upgrading of engineered barriers and/or retrieval of the waste. The active control after the facility is closed should be not more than 300 years. The safety of the facility is supposed to be based on the passive measures based on defense in deep consisting of physical barriers and administrative measures. A multi barrier approach will be applied. Presently the NDF project is at the first stage of the facility life cycle - the site selection. The siting process itself consists of four stages - elaboration of a concept for waste disposal and site selection planning, data collection and region analyses, characterization of the preferred sites-candidates and site confirmation. Up till now the work on the first two stages of the siting process had been done by the SE RAW. Geological site investigations have been carried out for more than two decades all over the territory of the country. The results of the investigations have been summarized and analysed thoroughly. More than 40 potential sites have been considered, after the preselection 12 sites have been selected as favourable and among them 5 are pointed out as acceptable. The ultimate decision for a site

  19. A Probabilistic Performance Assessment Study of Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    Science.gov (United States)

    Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.

    2006-12-01

    For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need

  20. Hydraulic containment of low-level radioactive waste disposal sites: [Final technical report

    International Nuclear Information System (INIS)

    Ostendorf, D.W.; Noss, R.R.; Miller, A.B.; Phillips, H.S.

    1987-01-01

    This document describes the use of impermeable barriers for the containment of liquid radioactive wastes at low-level radioactive waste disposal sites. Included are a review of existing barrier systems, assessments of laboratory and field data, and simulations of system performance under humid and arid conditions. Alternatives are identified as the most promising of the existing systems based on retention of irradiated water, field installation feasibility, and response to aggressive permeation. In decreasing order of preference, the favored systems are asphalt slurry, high density polyethylene synthetic liner, polyvinyl chloride synthetic liner, lean portland cement concrete, and compacted bentonite liner. It should be stressed that all five of these alternatives effectively retain irradiated water in the humid and arid simulations. Recommendations on the design and operation of the hydraulic containment system and suggestions on avenues for future research are included. 102 refs., 27 figs., 23 tabs

  1. Interim oceanographic description of the North-East-Atlantic site for the disposal of low-level radioactive waste. Vol. 2

    International Nuclear Information System (INIS)

    Dickson, R.R.; Gurbutt, P.A.; Kershaw, P.J.

    1986-01-01

    The NEA Co-ordinated Research and Environmental Surveillance Programme (CRESP) related to sea disposal of radioactive waste was started in 1981 following a recommendation of the Group of experts convened every five years by NEA to review the continued suitability of the dumping site for radioactive waste in the North-East Atlantic. The objective of CRESP is to increase the available scientific data base related to the oceanographic and biological characteristics of the dump site and elaborate a site specific model of the transfers of radionuclides to human populations. Volume one of the ''Interim Oceanographic Description of the North-East Atlantic Site for the Disposal of Low-Level Radioactive Waste'' was published in early 1983. It was an attempt to identify remaining gaps in current knowledge of conditions at the site and relate these conditions to the physical environment of the North-East Atlantic Ocean as a whole. The amount of data obtained by the CRESP Programme is now sufficient to justify publication of this second volume. Scientists present results of research which is of direct relevance to a better assessment of the impact from dumping radioactive waste in the North-East Atlantic, in particular an evaluation of the potential radiation doses to man. These two volumes represent part of the scientific contribution of the CRESP Programme to the 1985 Review of the Continued Suitability of the North-East Atlantic dump site

  2. Northwest disposal site for LLW and ILW in China radioactive impact assessment

    International Nuclear Information System (INIS)

    Wei Kuizi; He Chunying; Lu Baozhen; Li Tingjun

    1993-01-01

    This paper describes the studies and main conclusions in site selection, design, and radioactive impact assessment of the Northwest Disposal Site of China for intermediate- and low-level radioactive wastes. At the end of the paper, further works are proposed

  3. Directions in low-level radioactive waste management. The siting process: establishing a low-level waste-disposal facility

    International Nuclear Information System (INIS)

    1982-11-01

    The siting of a low-level radioactive waste disposal facility encompasses many interrelated activities and, therefore, is inherently complex. The purpose of this publication is to assist state policymakers in understanding the nature of the siting process. Initial discussion focuses on the primary activities that require coordination during a siting effort. Available options for determining site development, licensing, regulating, and operating responsibilities are then considered. Additionally, the document calls attention to technical services available from federal agencies to assist states in the siting process; responsibilities of such agencies are also explained. The appendices include a conceptual plan for scheduling siting activities and an explanation of the process for acquiring agreement state status. An agreement state takes responsibility for licensing and regulating a low-level waste facility within its borders

  4. Strategy and plan for siting and licensing a Rocky Mountain low-level radioactive waste facility

    International Nuclear Information System (INIS)

    Whitman, M.

    1983-09-01

    In 1979, the States of Nevada and Washington temporarily closed their commercial low-level radioactive waste (LLW) disposal facilities and South Carolina, the only other state hosting such a facility, restricted the amount of waste it would accept. All three states then announced that they did not intend to continue the status quo of accepting all of the country's commercial low-level radioactive waste. Faced with this situation, other states began considering alternative LLW management and disposal options. In the Rocky Mountain region, this evolved into discussions for the development of an interstate compact to manage low-level waste. Inherent in this management plan was a strategy to site and license a new LLW disposal facility for the Rocky Mountain region. The Rocky Mountain Low-Level Radioactive Waste Compact was negotiated over the course of a year, with final agreement on the language of the compact agreed to in early 1982. States eligible to join the compact are Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. Colorado adopted the compact into law in 1982, and Nevada, New Mexico and Wyoming adopted it in 1983. Utah has joined the Northwest Compact, although it may decide to join the Rocky Mountain Compact after a new disposal facility is developed for the region. Arizona has taken no action on the Rocky Mountain Compact

  5. Major unresolved issues preventing a timely resolution to radioactive waste disposal

    International Nuclear Information System (INIS)

    1978-01-01

    GAO surveyed a portion of the literature on radioactive waste management and identified those major issues which could impede the timely and comprehensive removal of obstacles to demonstrating a national radioactive waste disposal program. Presently, U.S. radioactive waste policy goals are unclear in that there is no clear differentiation of management, regulation (licensing), and research, development, and demonstration functions. Decisions on such important issues as regulatory responsibility over radioactive wastes, criteria for radioactive waste form and performance, method of final disposition, and repository site locations must be made, and made soon, in order to assure public health and safety and adequate management of these potentially hazardous materials

  6. Disposal of low and intermediate level solid radioactive waste

    International Nuclear Information System (INIS)

    Kanwar Raj

    1998-01-01

    Radioactive waste disposal facility is a very important link in the nuclear fuel cycle chain. Being at the end of the back-end of the fuel cycle, it forms an interface between nuclear industry and the environment. Therefore, the effectiveness of the disposal facility for safe isolation of radioactive waste is vital. This is achieved by following a systematic approach to the disposal system as a whole. Conditioned waste, engineered barriers, back-fill and surrounding geosphere are main components of the disposal system. All of them play complementary role in isolating the radioactivity contained in the waste for extended period of time

  7. Lessons from radioactive waste disposal applied to other pollutants

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1983-01-01

    In order to manage scientifically the quantities and kinds of waste disposal in coastal waters and open oceans, one needs to assess the environment's capacity to assimilate these materials. This knowledge may help us avoid an unacceptable biological impact on components of the ecosystem and on humans who harvest its resources. One approach available is the one that has been demonstrated to be applicable for the management of the disposal of radioactive wastes in the ocean. New generic and site-specific methodologies can establish relationships between discharge or release rates and associated radiation doses. The International Commission on Radiological Protection (ICRP) has developed guidelines and recommendations that govern acceptable amounts of radiation that people can be exposed to. The ICRP recommendations on justification and optimization can be integrated into an overall management philosophy in order to quantify alternative waste disposal options. These methodologies, which were developed for the control of radioactive wastes, should be applied directly to public health protection from nonradioactive wastes such as metals and organochlorine pesticides

  8. Geological aspects of the deep disposal of radioactive waste

    International Nuclear Information System (INIS)

    McEwen, T.J.

    1998-01-01

    Various environments have been selected throughout the world for the potential deep disposal of long-lived radioactive waste. The selection of these environments has been carried out using a variety of methods, some of them more logical and defensible than others. The 'raison d'etre' for their selection also varies from country to country. Important lessons have been learnt from the site selection programmes, the site characterisation activities and the accompanying performance assessments that have been carried out concerning the suitability of geological environments for the disposal of long-lived waste. These lessons are the subject of this paper. 24 refs

  9. Appliance of geochemical engineering in radioactive waste disposal

    International Nuclear Information System (INIS)

    Li Shuang; Zhang Chengjiang; Ni Shijun; Li Kuanliang

    2008-01-01

    The basic foundation of applying geochemical engineering to control environment, common engineering models of disposal radioactive waste and the functions of the engineering barriers are introduced in this paper. The authors take the geochemical engineering barrier materiel research of a radioactive waste repository as an example to explain the appliance of geochemical engineering in the disposal of radioactive waste. And the results show that it can enhance the security of the nuclear waste repository if we use geochemical engineering barrier. (authors)

  10. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  11. Radioactive wastes and their disposal

    International Nuclear Information System (INIS)

    Neumann, L.

    1984-01-01

    The classification of radioactive wastes is given and the achievements evaluated in the disposal of radioactive wastes from nuclear power plants. An experimental pilot unit was installed at the Jaslovske Bohunice nuclear power plant for the bituminization of liquid radioactive wastes. UJV has developed a mobile automated high-output unit for cementation. In 1985 the unit will be tested at the Jaslovske Bohunice and the Dukovany nuclear power plants. A prototype press for processing solid wastes was manufactured which is in operation at the Jaslovske Bohunice plant. A solidification process for atypical wastes from long-term storage of spent fuel elements has been developed to be used for the period of nuclear power plant decommissioning. (E.S.)

  12. Program for responsible and safe disposal of spent fuel elements and radioactive wastes (National disposal program)

    International Nuclear Information System (INIS)

    2015-01-01

    The contribution covers the following topics: fundamentals of the disposal policy; amount of radioactive wastes and prognosis; disposal of radioactive wastes - spent fuel elements and wastes from waste processing, radioactive wastes with low heat production; legal framework of the nuclear waste disposal in Germany; public participation, cost and financing.

  13. Low level radioactive waste disposal in Kozloduy NPP in Bulgaria

    International Nuclear Information System (INIS)

    Stanchev, V.

    2001-01-01

    Kozloduy NPP is the biggest power plant in the Republic of Bulgaria. It is in operation since 1974 and for the past 25 years it has generated over 263 billion kWh electric power. The NPP share in the total electric production in 1998 was about 50%. It has six units in operation - four WWER 440 B-230 and two WWER 1000 B-320. In the nuclear reactor operation the generation of radioactive waste (RAW) is an inevitable process. The waste must be conditioned, stored and disposed of in a safe manner. There are no national radioactive waste disposal facilities, for waste generated by an NPP, in Bulgaria to the moment. This situation necessitates the storage of operational RAW to be carried out on site for a long period of time (30 to 50 years). Following the principle for protection of human health and environment now and in the future, Kozloduy NPP adopted the concept for conditioning the RAW to a stable solid form and placing the waste in a package which should keep its features for a sufficiently long term so that the package can be safely transported to the disposal site. (author)

  14. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals

  15. Current practices for maintaining occupational exposures ALARA at low-level waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hadlock, D.E.; Herrington, W.N.; Hooker, C.D.; Murphy, D.W.; Gilchrist, R.L.

    1983-12-01

    The United States Nuclear Regulatory Commission contracted with Pacific Northwest Laboratory (PNL) to provide technical assistance in establishing operational guidelines, with respect to radiation control programs and methods of minimizing occupational radiation exposure, at Low-Level Waste (LLW) disposal sites. The PNL, through site visits, evaluated operations at LLW disposal sites to determine the adequacy of current practices in maintaining occupational exposures as low as is reasonably achievable (ALARA). The data sought included the specifics of: ALARA programs, training programs, external exposure control, internal exposure control, respiratory protection, surveillance, radioactive waste management, facilities and equipment, and external dose analysis. The results of the study indicated the following: The Radiation Protection and ALARA programs at the three commercial LLW disposal sites were observed to be adequate in scope and content compared to similar programs at other types of nuclear facilities. However, it should be noted that there were many areas that could be improved upon to help ensure the health and safety of occupationally exposed individuals.

  16. Hydrogeological aspects of radioactive waste disposal into surface formations

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1980-01-01

    Safe disposal is discussed of radioactive wastes in geological surface formations and basic criteria are shown of the radiological protection of population from possible effects of radioactive materials diffused in the environment. Main principles are listed governing the selection of suitable localities with respect to possible interactions of the locality and the storage site with the environment. (author)

  17. Modeling of a sedimentary rock alternative for the siting of the radioactive waste disposal system

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2007-01-01

    Here are described the main concepts, the approximations, and all those simulation aspects that characterize the modeling performed using the unsaturated saturated approach for porous media. The objective of this work is to obtain a generic description of a sedimentary rock soil as an alternative site for the low and intermediate level radioactive waste disposal system. (author) [es

  18. Costs of the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Drasdo, P.

    2001-01-01

    The study on the costs of radioactive waste disposal covers the topic of national concepts for the countries Germany, France, United Kingdom, Sweden, Switzerland and Unites States of America. The introduction into the topic of radioactive waste disposal is concerned with the classification of radioactive wastes, the safety of final repositories and the different concepts of final disposal. The used methods of data acquisition and data processing are described. The study compares the national final disposal concepts in order to identify the reasons for the differences in capital costs and annuity costs in the respective countries. The final chapter is concerned with the optimum timing for the start-up of operation of final repositories

  19. Stabilization and isolation of low-level liquid waste disposal sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Gilbert, T.W.

    1987-01-01

    Rockwell Hanford Operations is developing and testing equipment for stabilization and isolation of low-level radioactive liquid waste disposal sites. Stabilization and isolation are accomplished by a dynamic consolidation and particulate grout injection system. System equipment components include: a mobile grout plant for transport, mixing, and pumping of particulate grout; a vibratory hammer/extractor for consolidation of waste, backfill, and for emplacement of the injector; dynamic consolidation/injector probe for introducing grout into fill material; and an open-void surface injector that uses surface or subsurface mechanical or pneumatic packers and displacement gas filtration for introducing grout into disposal structure access piping. Treatment of a liquid-waste disposal site yields a physically stable, cementitious monolith. Additional testing and modification of this equipment for other applications to liquid waste disposal sites is in progress

  20. Use of Formal Procedures in Developing Dialogue Between Operator and Regulator on Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Yearsley, Roger; Duerden, Susan; Bennett, David

    2001-01-01

    The Environment Agency (the Agency) is responsible, in England and Wales, for authorisation of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorised to dispose of solid low level radioactive waste at its Drigg site near Sellafield in Cumbria. Drigg is the primary site for the disposal of solid low level radioactive waste generated by the UK nuclear industry. A small facility operated by United Kingdom Atomic Energy Authority (UKAEA) at Dounreay on the north coast of Scotland is used solely for wastes arising on the UKAEA site. Drigg also offers a disposal route for smaller users of radioactive substances, such as hospitals and universities. Significant benefits have been derived from implementing a formal Issue Resolution Procedure as part of a soundly based process for dialogue between the Agency and BNFL. Benefits include improved understanding of the Agency's expectations, which has in turn led to improvements in BNFL's documentation and technical approach. The Agency considers the use of a formal Issue Resolution Procedure has placed the dialogue with BNFL on firm foundations for the planned assessment of the PostClosure Safety Case for Drigg when it is submitted in September 2002

  1. De minimis applications for alternative disposal of very low level radioactive waste at Duke Power Company

    International Nuclear Information System (INIS)

    Lan, C.

    1986-01-01

    Existing NRC regulations provide no minimum level of radioactivity in waste from a licensee's facility that may be disposed of in a manner other than as radioactive waste. With one exception, in 10CFRsection20.306, licensees may dispose of certain levels of tritium and carbon-14 in liquid-scintillation and animal-carcass waste without regard to its radioactivity. In the interim, before specific or generic provisions for disposing of very low level radioactive wastes are adopted through rule making, licensees have another alternative for obtaining approval to dispose of large volumes of materials contaminated with very low levels of radioactivity under provision 10CFRsection20.302(a) ''Method for obtaining approval of proposed disposal procedures.'' This paper provides the experiences of obtaining both NRC and states (North Carolina and South Carolina) approval for disposing of very low-level radioactive wastes from Duke Power Company's nuclear stations. The approved disposal procedures include landfarming of water treatment residues, on-site disposal (burial) of sand and feedwater heaters, and include offsite release for treatment and disposal of sanitary sewage sludge. In summary, users of radioactive materials should not exclude this approach in their quest to reduce the volume of radioactive waste. It is expected that such submittals could provide a data base for further development of generic limits for radioactive wastes

  2. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  3. Preliminary site characterization at Beishan northwest China-A potential site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Wang Ju; Su Rui; Xue Weiming; Zheng Hualing

    2004-01-01

    Chinese nuclear power plants,radioactive waste and radioactive waste disposal are introduced. Beishan region (Gansu province,Northwest China)for high-level radioactive waste repository and preliminary site characterization are also introduced. (Zhang chao)

  4. Geological disposal of radioactive wastes: national commitment, local and regional involvement

    International Nuclear Information System (INIS)

    2013-07-01

    Long-term radioactive waste management, including geological disposal, involves the construction of a limited number of facilities and it is therefore a national challenge with a strong local/regional dimension. Public information, consultation and/or participation in environmental or technological decision-making are today's best practice and must take place at the different geographical and political scales. Large-scale technology projects are much more likely to be accepted when stakeholders have been involved in making them possible and have developed a sense of interest in or responsibility for them. In this way, national commitment, and local and regional involvement are two essential dimensions of the complex task of securing continued societal agreement for the deep geological disposal of radioactive wastes. Long-term radioactive waste management, including geological disposal, is a national challenge with a strong local/regional dimension. The national policy frameworks increasingly support participatory, flexible and accountable processes. Radioactive waste management institutions are evolving away from a technocratic stance, demonstrating constructive interest in learning and adapting to societal requirements. Empowerment of the local and regional actors has been growing steadily in the last decade. Regional and local players tend to take an active role concerning the siting and implementation of geological repositories. National commitment and local/regional involvement go hand-in-hand in supporting sustainable decisions for the geological disposal of radioactive waste

  5. Greater confinement disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics

  6. Special Analysis for the Disposal of the Materials and Energy Corporation Sealed Sources at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-05-15

    This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.

  7. Disposal approach for long-lived low and intermediate-level radioactive waste

    International Nuclear Information System (INIS)

    Park, Jin Beak; Park, Joo Wan; Kim, Chang Lak

    2005-01-01

    There certainly exists the radioactive inventory that exceeds the waste acceptance criteria for final disposal of the low and intermediate-level radioactive waste. In this paper, current disposal status of the long-lived radioactive waste in several nations are summarized and the basic procedures for disposal approach are suggested. With this suggestion, intensive discussion and research activities can hopefully be launched to set down the possible resolutions to dispose of the long-lived radioactive waste

  8. Site closure and perpetual care of a low-level radioactive waste disposal facility in semi-arid climate

    International Nuclear Information System (INIS)

    Singh, P.N.; Breeden, K.H.; Hana, S.L.A.

    1988-01-01

    A study has been performed on site closure and perpetual care and maintenance requirements for the commercially operated low-level radioactive waste (LLRW) disposal facility, referred to as the Richland Facility, on the Hanford Reservation near Richland, Washington. The study included a site assessment and identification and formulation of site specific design elements for closure and perpetual care and maintenance. This paper summarizes the observations, findings and conclusions resulting from Phase I of this study. Three release mechanisms and four destructive processes are considered in the conceptual closure design process. The release mechanisms considered include subsurface liquid movement, biological transport of wastes to the surface and subsurface gas movement. The destructive processes considered are wind erosion, biological penetration or damage of cover, vegetation destroying processes and subsidence and seismic activity. The closure design elements were developed with several key principles in mind. The primary goals were to prevent intrusion into, or exposure of, the waste; to prevent or minimize release from the trenches; to provide early warning of any release that should occur; and to provide definitive information as to whether or not any observed environmental contamination actually originated from the facility

  9. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Science.gov (United States)

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  10. Nuclear power and radioactive waste: a sub-seabed disposal option

    International Nuclear Information System (INIS)

    Deese, D.A.

    1978-01-01

    The radioactive waste disposal programs of most countries are still focused on investigation of land-based geologic formations as possible containment media for radioactive wastes. Important discoveries in geological oceanography and amazing advances in ocean engineering over the past decade have, however, led several countries to investigate another promising possibility for geologic disposal of radioactive waste--isolation within the deep seabed or sub-seabed disposal. Beyond the various technical advantages and disadvantages involved, use of the international seabed for radioactive waste disposal raises a multitude of social, economic, political, legal, institutional, and ethical issues. These issues are analyzed in this volume

  11. Disposal of slightly contaminated radioactive wastes from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    With regard to the disposal of solid wastes, nuclear power plants basically have two options, disposal in a Part 61 licensed low-level waste site, or receive approval pursuant to 20.2002 for disposal in a manner not otherwise authorized by the NRC. Since 1981, the staff has reviewed and approved 30 requests for disposal of slightly contaminated radioactive materials pursuant to Section 20.2002 (formerly 20.302) for nuclear power plants located in non-Agreement States. NRC Agreement States have been delegated the authority for reviewing and approving such disposals (whether onsite or offsite) for nuclear power plants within their borders. This paper describes the characteristics of the waste disposed of, the review process, and the staff`s guidelines.

  12. Management of radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1984-01-01

    The disposal of radioactive wastes is perhaps the most controversial and least understood aspect of the use of nuclear materials in generating electrical power, the investigation of biochemical processes through tracer kinetics, and the diagnosis and treatment of disease. In the siting of nuclear power facilities, the disposal of radioactive wastes is invariably posed as the ultimate unanswerable question. In the fall of 1979, biochemical and physiologic research employing radioactive tracers was threatened with a slowdown resulting from temporary closure of sites for disposal of low-level radioactive wastes (LLW). Radioactive pharmaceuticals used extensively for diagnosis and treatment of human disease have increased dramatically in price, partly as a result of the escalating cost of disposing of radioactive wastes created during production of the labeled pharmaceuticals. These problems have resulted in identification of the disposal of LLW as the most pressing issue in the entire scheme of management of hazardous wastes. How this issue as well as the separate issue of disposal of high-level radioactive wastes (HLW) are being addressed at both national and state levels is the subject of this chapter

  13. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  14. Technical and economic evaluation of controlled disposal options for very low level radioactive wastes

    International Nuclear Information System (INIS)

    Robinson, P.J.; Vance, J.N.

    1990-08-01

    Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Research Institute (EPRI), drafted a petition titled: ''Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs

  15. A report on the environmental safety evaluation in sea disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1976-01-01

    In October 1976, the Atomic Energy Commission of Japan decided its policy regarding radioactive wastes. It is stated that the sea disposal of low-level solid wastes as test will be made from about 1978, and after the confirmation of the safety, full-scale sea disposal will then follow. In this field, studies have long been made in Japan and international organizations. Based on these results, the present report describes on the following matters: the amount of radioactive wastes and the activities for disposal, the safety of disposal packages, the state of prospective sites for sea disposal, the models of the sea, the estimation of radionuclide concentrations in the ocean, and the exposure doses of general people. (Mori, K.)

  16. Disposal of radioactive waste in Romania. Present and future strategy

    International Nuclear Information System (INIS)

    Rodna, A.; Garlea, C.

    2002-01-01

    The paper begins with the presentation of the actual situation of radioactive waste management in Romania. The organizations responsible for radioactive waste management and their capabilities are described, including radioactive waste disposal. The main provisions of the 'Draft law regarding the management of nuclear spent fuel and radioactive waste, in view of their final disposal' are also presented, with accent on the responsibilities of the National Radioactive Waste Agency (ANDRAD) and on the fund for radioactive waste and spent fuel management and for decommissioning. The paper ends with the presentation of the future radioactive waste and spent fuel management strategy. (author)

  17. Uncertainty analysis for geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Helton, J.C.

    1981-01-01

    The incorporation and representation of uncertainty in the analysis of the consequences and risks associated with the geologic disposal of high-level radioactive waste are discussed. Such uncertainty has three primary components: process modeling uncertainty, model input data uncertainty, and scenario uncertainty. The following topics are considered in connection with the preceding components: propagation of uncertainty in the modeling of a disposal site, sampling of input data for models, and uncertainty associated with model output

  18. Conditioning of Radioactive Wastes Prior to disposal; Segregation and Repackaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Sik; Kim, Ki Hong; Hong, Dae Seok; Lee, Bum Chul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    We stored several types of radioactive wastes at interim storage facility of KAERI ; the combustible wastes (cloths, decontamination paper and vinyls) from Hanaro multipurpose research reactor, nuclear fuel cycle facility, RI production facility and laboratories, and the non-combustible wastes (metals and glass) dismantled and discarded from the apparatus of laboratories which deteriorated, and also the miscellaneous wastes (spent air-filters). After a segregation of these wastes as the same type, they were treated by using a proper method in order to meet both the national regulation and the waste acceptance criteria of Kyung-ju disposal site. For a safe disposal of waste drums, the waste characterization system including a scaling factor which is hard to measure special radionuclides is established completely. All data of those repackaged drums were input into an ANSIM system so that we could manage them clearly and effectively such like an easy transparent traceability. Through a decontamination of empty drums generated in a repackaging process of the stored drums, these drums can be reused or compressed to reduce their volume reduction for disposal. As a result, the space to store radioactive waste drums are secured more than before, and also the interim storage facility are maintained in a good state. The combustible wastes, which stored at the interim storage facility of KAERI, are managed safely in compliance with the specifications of the national regulations and disposal site. Through the classification and repackage of them, the storage space of drums at RWTF was secured more than before, and the storage facility was kept in a good state, and also the disposal cost of all stored waste drums of KAERI will be reduced due to the reduction of waste volume. Base on the experiences, the non-combustible wastes will be treated soon.

  19. Review on waste inventory, waste characteristics and candidate site for LLW disposal in Thailand

    International Nuclear Information System (INIS)

    Yamkate, P.; Sriyotha, P.; Punnachaiya, M.; Danladkaew, K.

    1997-01-01

    It is a worldwide practice that radioactive waste has to be kept under control to be ensured of low potential impact on man and his environment. In Thailand, the OAEP is responsible for all radioactive waste management activities, both operation and the competent authority. The radioactive waste in Thailand consists of low level wastes from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. A plan for central disposal site has been set up. The near surface disposal method is chosen for this aspect because of its simple, inexpensive and adequate safe and very well know process. 8 refs., 6 tabs

  20. Radioactive waste disposal: an international law perspective

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1989-01-01

    The question of radioactive waste disposal is the most intractable technical and political problem facing nuclear industry. Environmentalists world-wide demand a nuclear waste policy that must be ecologically acceptable internationally. Radioactive wastes and oil pollution were the first two types of marine pollution to receive international attention and various marine pollution controls were established. Ocean disposal was co-ordinated by the Nuclear Energy Agency and the Organization of Economic Co-operation and Development in 1967. The first treaty was the 1958 Convention on the High Seas (High Seas Convention). In response to its call for national co-operation the International Atomic Energy Agency (IAEA) established its Brynielson panel. The IAEA first issued guidelines on sea dumping in 1961. The London Dumping Convention, written in 1972, is the only global agreement concerned solely with the disposal of wastes in the marine environment by dumping. None of the global agreements make specific reference to sea-bed disposal of high-level radioactive wastes. Negotiations began at the Third UN Conference on the Law of the Sea (UNCLOS III) for the codification of a comprehensive treaty concerned with the protection, conservation, sustainable use and development of the marine environment. Burial in deep geological formations is a method of HLW disposal which decreases the chances of accidental intrusion by mankind and has little likelihood of malicious intrusion. National waste management programmes of different countries differ but there is agreement on the acceptable technical solutions to issues of waste management. The final disposition of HLW - storage or disposal - has not been decisively determined, but there is growing consensus that geological land-based disposal is the most viable alternative. Expanded international technical co-operation could well reduce the time needed to develop effective waste disposal mechanisms

  1. Who regulates the disposal of low-level radioactive waste under the Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Mostaghel, D.M.

    1988-01-01

    The present existence of immense quantities of low-level nuclear waste, a federal law providing for state or regional control of such waste disposal, and a number of state disposal laws challenged on a variety of constitutional grounds underscore what currently may be the most serious problem in nuclear waste disposal: who is to regulate the disposal of low-level nuclear wastes. This problem's origin may be traced to crucial omissions in the Atomic Energy Act of 1946 and its 1954 amendments (AEA) that concern radioactive waste disposal. Although the AEA states that nuclear materials and facilities are affected with the public interest and should be regulated to provide for the public health and safety, the statute fails to prescribe specific guidelines for any nuclear waste disposal. The Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) grants states some control over radioactive waste disposal, an area from which they were previously excluded by the doctrine of federal preemption. This Comment discusses the question of who regulates low-level radioactive waste disposal facilities by examining the following: the constitutional doctrines safeguarding federal government authority; area of state authority; grants of specific authority delegations under the LLRWPA and its amendment; and finally, potential problems that may arise depending on whether ultimate regulatory authority is deemed to rest with single states, regional compacts, or the federal government

  2. Technical development for geological disposal of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Asano, Hidekazu; Sugino, Hiroyuki; Kawakami, Susumu; Yamanaka, Yumiko

    1997-01-01

    Technical developments for geological disposal of high-level radioactive wastes materials research and design technique for engineered barriers (overpack and buffer material) were studied to evaluate more reliable disposal systems for high-level radioactive wastes. A lifetime prediction model for the maximum corrosion depth of carbon steel was developed. A preferable alloys evaluation method for crevice corrosion was established for titanium. Swelling pressure and water permeability of bentonite as a buffer material was measured, and coupled hydro-thermo-mechanical analysis code for bentonite was also studied. The CIP (cold isostatic pressing) method for monolithically formed buffer material was tested. A concept study on operation equipment for the disposal site was performed. Activities of microorganisms involved in underground performance were investigated. (author)

  3. Dynamics of radioactive waste generation

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Virtopeanu, Cornelia; Ivan, Alexandrina

    2008-01-01

    In Romania there are in operation three facilities licensed for collection, treatment and storage of radioactive waste resulted from industry, research, medicine, and agriculture, named institutional radioactive waste. The repository, which is of near surface type, is designed for disposing institutional radioactive waste. The institutional radioactive wastes generated are allowed to be disposed into repository according to the waste acceptance criteria, defined for the disposal facility. The radioactive wastes which are not allowed for disposal are stored on the site of each facility which is special authorised for this. The paper describes the dynamics of generation of institutional waste in Romania, both for radioactive waste which are allowed to be disposed into repository and for radioactive waste which are not allowed to be disposed of. (authors)

  4. Deep disposal of long-lived radioactive waste in France: The volunteering approach in site selection

    International Nuclear Information System (INIS)

    Raynal, M.; Barber, P.

    1995-01-01

    The French Waste Act of December 1991 set up important dispositions among which the deep disposal of long-lived waste should be evaluated before 2006. ANDRA, the French National Agency for Radioactive Waste Management, is particularly responsible for the siting, the construction and the operation of underground laboratories designed to study potential geologic host-formations for deep disposal. An open decision-making process started up in 1992, specially to restore the public confidence after strong contest in the early 1990. The mission of negotiation conducted in 1993 all over the country by the appointed Member of Parliament, Mr. Bataille, allowed volunteer candidates for the siting surveyed by ANDRA in 1994 and 1995. Four areas are presently under characterization investigations, proceeding with the first phase of the underground laboratory program with the objective of choosing two sites for two underground laboratories. France is now entering a new and very important phase on the long path towards the creation of an underground repository where public's understanding and acceptance is an important part of the overall process as it is shown in this paper

  5. Analysis of local acceptance of a radioactive waste disposal facility.

    Science.gov (United States)

    Chung, Ji Bum; Kim, Hong-Kew; Rho, Sam Kew

    2008-08-01

    Like many other countries in the world, Korea has struggled to site a facility for radioactive waste for almost 30 years because of the strong opposition from local residents. Finally, in 2005, Gyeongju was established as the first Korean site for a radioactive waste facility. The objectives of this research are to verify Gyeongju citizens' average level of risk perception of a radioactive waste disposal facility as compared to other risks, and to explore the best model for predicting respondents' acceptance level using variables related to cost-benefit, risk perception, and political process. For this purpose, a survey is conducted among Gyeongju residents, the results of which are as follows. First, the local residents' risk perception of an accident in a radioactive waste disposal facility is ranked seventh among a total of 13 risks, which implies that nuclear-related risk is not perceived very highly by Gyeongju residents; however, its characteristics are still somewhat negative. Second, the comparative regression analyses show that the cost-benefit and political process models are more suitable for explaining the respondents' level of acceptance than the risk perception model. This may be the result of the current economic depression in Gyeongju, residents' familiarity with the nuclear industry, or cultural characteristics of risk tolerance.

  6. Regulatory criteria for final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Petraitis, E.; Ciallella, N.; Siraky, G.

    1998-01-01

    This paper describes briefly the legislative and regulatory framework in which the final disposal of radioactive wastes is carried out in Argentina. It also presents the criteria developed by the Nuclear Regulatory Authority (ARN) to assess the long-term safety of final disposal systems for high level radioactive wastes. (author)

  7. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  8. Evaluating Options for Disposal of Low-Level Waste at LANL

    International Nuclear Information System (INIS)

    Hargis, K.M.; French, S.B.; Boyance, J.A.

    2009-01-01

    Los Alamos National Laboratory (LANL) generates a wide range of waste types, including solid low-level radioactive waste (LLW), in conducting its national security mission and other science and technology activities. Although most of LANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D and D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LLW generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or available commercial LLW disposal sites. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal. An evaluation of risks associated with both on-site and off-site disposal will also be conducted. (authors)

  9. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985

    Science.gov (United States)

    Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.

  10. Radioactive waste disposal at Sellafield, UK: site selection, geological and engineering problems

    International Nuclear Information System (INIS)

    Haszeldine, R.S.; Smythe, D.K.

    1996-01-01

    UK Nirex is the company charged with finding a suitable site for the underground disposal of radioactive waste in the United Kingdom. Since 1991, Nirex has concentrated its investigation work at a site owned by British Nuclear Fuels Ltd near Sellafield. Planning permission was sought in 1994 for the development of an underground Rock Characterisation Facility at the site. A public Planning Inquiry began in September 1995. A wide range of scientific and technical objections were put by expert witnesses against the Nirex proposal. These witnesses were co-ordinated by three Objecting Organisations - Cumbria County Council, Friends of the Earth and Greenpeace. Their written evidence is presented in the 34 chapters of this book and separate abstracts have been written for each contribution. (UK)

  11. KS 20322007 Near-Surface Disposal Radioactive Waste - Code Of Practice

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    To provide a basis for the near-surface disposal of solid radioactive waste to ensures that there is no unacceptable risk to humans, other biota or the environment. Near-Surface Disposal is the disposal of radioactive waste in below or above the natural ground surface, within app. 30 m. The code deals with management aspects associated with radioactive waste disposal only, and is not intended to cover issues related to the production and use of radionuclides. The objective of waste disposal is to isolate radioactive waste in order to ensure that there is no unacceptable health risk to humans and no long-term unacceptable effect to the environment. Radiation protection annual effective dose for exposure of members of the public should not exceed 1 mSv/year and occupational exposure of 20 mSv/year

  12. Methods of Disposing Of High-Level Radioactive Waste: A Review

    International Nuclear Information System (INIS)

    Abumurade, K.

    2002-01-01

    High level nuclear waste from both commercial reactors and defense industry presents a difficult problem to the scientific community as well as the public. The solutions to this problem is still debatable both technically and ethically. There are few methods proposed for disposing of high level waste. Each method has its own advantages and disadvantages. However, the very deep underground geologic repository is the best choice for disposing of high-level radioactive wastes. The cost benefit equation of nuclear power production and its waste is discussed. However, the public should be educated about this matter to minimize the gap between them and the nuclear power community including scientists industry, and governments. (Author) 15 refs., 4 tabs., 1 fig

  13. Factors influencing U(VI adsorption onto soil from a candidate very low level radioactive waste disposal site in China

    Directory of Open Access Journals (Sweden)

    Zuo Rui

    2016-01-01

    Full Text Available The properties of soil at disposal sites are very important for geological disposal of very low level radioactive waste in terms of U(VI. In this study, soil from a candidate very low level radioactive waste disposal site in China was evaluated for its capacity on uranium sorption. Specifically, the equilibrium time, initial concentration, soil particle, pH, temperature, and carbonate were evaluated. The results indicated that after 15-20 days of sorption, the Kd value fluctuated and stabilized at 355-360 mL/g. The adsorptive capacity of uranium was increased as the initial uranium concentration increased, while it decreased as the soil particle size increased. The pH value played an important role in the U(VI sorption onto soil, especially under alkaline conditions, and had a great effect on the sorption capacity of soil for uranium. Moreover, the presence of carbonate decreased the sorption of U(VI onto soil because of the role of the strong complexation of carbonate with U(VI in the groundwater. Overall, this study assessed the behavior of U(VI sorption onto natural soil, which would be an important factor in the geological barrier of the repository, has contribution on mastering the characteristic of the adsorption of uranium in the particular soil media for the process of very low level radioactive waste disposal.

  14. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  15. Basic concept on safety regulation for land disposal of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    1985-01-01

    As to the land disposal of low level radioactive solid wastes, to which the countermeasures have become the urgent problem at present, it is considered to be a realistic method to finally store the solid wastes concentratedly outside the sites of nuclear power stations and others, and effort has been exerted by those concerned to realize it. Besides, as for extremely low level radioactive solid wastes, the measures of disposing them corresponding to the radioactivity level are necessary, and the concrete method has been examined. The Committee on Safety Regulation for Radioactive Wastes has discussed the safety regulation for those since April, 1984, and the basic concept on the safety regulation was worked up. It is expected that the safety of the land disposal of low level radioactive solid wastes can be ensured when the safety regulation is carried out in conformity with this basic concept. The present status of the countermeasures to the land disposal of low level radioactive solid wastes is shown. As the concrete method, the disposal in shallow strate has been generally adopted. At present, the plan for the final storage in Aomori Prefecture is considered, and it will be started with the first stage of four-stage control. (Kako, I.)

  16. Interim report on reference biospheres for radioactive waste disposal

    International Nuclear Information System (INIS)

    Dorp, F. van

    1994-10-01

    Primary criteria for repository safety are commonly expressed in terms of risk or dose, and a biosphere model is required to evaluate the corresponding assessment endpoints. Even when other indicators are used to express the safety goals, a biosphere model is still needed in order to justify those indicators. In safety or performance assessments of a repository, the uncertainties in space and time for the different components of the repository system have to be considered. For the biosphere component, prediction of future human habits, in particular, is extremely uncertain. This is especially important in the assessment of deep geological disposal, which involves very long timescales, particularly for wastes containing very long lived radionuclides. Thus, the results of biosphere modelling should not be seen as predictions, but as illustrations of the consequences that may occur, should the postulated release occur today or under other conditions implied by the underlying biosphere model assumptions. Differences in biosphere modelling approaches arise because of differences in regulations, the nature of the wastes to be disposed of, disposal site characteristics, disposal concepts and purposes of the assessment. Differences in treatment of uncertainties can also arise. For example, if doses or risks are anticipated to be far below regulatory limits, assessments may be based upon simplified and, necessarily, conservative biosphere models. At present biosphere models used to assess radioactive waste disposal show significant differences in the features, events and processes (FEPs) included or excluded. In general, the reasons for these differences have not been well documented or explained. Developments in radioecology have implications for biosphere modelling for radioactive waste disposal. In particular, after the Chernobyl accident, radioecological research has been significantly increased. Results of this research are already having and will continue to have a

  17. Radioactive waste management and disposal scenario for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tabara, Takashi; Yamano, Naoki [Sumitomo Atomic Energy Industries Ltd., Tokyo (Japan); Seki, Yasushi; Aoki, Isao

    1997-10-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a light water reactor (LWR) have been evaluated and compared. At first, the amount and the radioactive level of the radwaste generated in five fusion reactors ware evaluated by an activation calculation code. Next, a possible radwaste disposal scenario applicable to fusion radwaste in Japan is considered and the disposal cost evaluated under certain assumptions. The exposure doses are evaluated for the skyshine of gamma-rays during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical LWR was estimated based on a literature survey and the disposal cost was evaluated using the same assumptions as for the fusion reactors. It is found that the relative cost of disposal is strongly dependent on the cost for interim storage of medium level waste of fusion reactors and the cost of high level waste for the LWR. (author)

  18. NRC Task Force report on review of the federal/state program for regulation of commercial low-level radioactive waste burial grounds

    International Nuclear Information System (INIS)

    1977-01-01

    The underlying issue explored in this report is that of Federal vs State regulation of commercial radioactive waste burial grounds. The need for research and development, a comprehensive set of standards and criteria, a national plan for low-level waste management, and perpetual care funding are closely related to the central issue and are also discussed. Five of the six commercial burial grounds are regulated by Agreement States; the sixth is regulated solely by the NRC (NRC also regulates Special Nuclear Material at the sites). The sites are operated commercially. The operators contribute to the perpetual care funds for the sites at varying rates. The States have commitments for the perpetual care of the decommissioned sites except for one site, located on Federally owned land. Three conclusions are reached. Federal control over the disposal of low-level waste should be increased by requiring joint Federal/State site approval, NRC licensing, Federal ownership of the land, and a Federally administered perpetual care program. The NRC should accelerate the development of its regulatory program for the disposal of low-level waste. The undisciplined proliferation of low-level burial sites must be avoided. NRC should evaluate alternative disposal methods, conduct necessary studies, and develop a comprehensive low-level waste regulatory program (i.e., accomplish the above recommendations) prior to the licensing of new disposal sites

  19. Underground disposal of radioactive waste regulations in The Netherlands

    International Nuclear Information System (INIS)

    Cornelis, J.C.

    1978-01-01

    The only method of final disposal of radioactive waste currently envisaged in the Netherlands is disposal in rock-salt. This question is at present being studied by governmental authorities, and a public discussion is foreseen for the near future. Various Ministries, as well as local authorities at both provincial and municipal levels, are involved in the licensing and control of waste disposal. The principal stages are site selection (including that for test-drilling), construction of the mine, and supervision of the repository. These activities are governed by the legislation on mining as well as by nuclear regulations. One matter still to be decided is the nature of the body to be responsible for conducting the disposal operations. (NEA) [fr

  20. Evaluation of isotope migration: land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Progress report No. 6, July--September 1977. [Maxey Flats, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, P.; Weiss, A. J.; Francis, A. J.

    1978-04-01

    A survey of the Maxey Flats, Kentucky, low-level radioactive waste disposal site was conducted to obtain an overview of the radioactivity in the trench waters for the purpose of selecting specific trenches for comprehensive study. Water samples collected from trenches and wells were analyzed for specific conductance, pH, temperature, dissolved organic carbon, tritium, gross alpha, gross beta, and gamma radioactivities. The results indicate that there are large differences in the composition of trench waters at the site. Several trenches, that represent extreme and average values of the major parameters measured, have been tentatively selected for further study. 10 fig, 6 tables.

  1. Project report for the commercial disposal of mixed low-level waste debris

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  2. Project report for the commercial disposal of mixed low-level waste debris

    International Nuclear Information System (INIS)

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project

  3. Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Shadrack, Antoony; Kim, Changlak [KEPCO International Nuclear Graduate School, Uljin (Korea, Republic of)

    2013-07-01

    The nuclear power program will inevitably generate radioactive wastes including low-and intermediate radioactive waste and spent fuel. These wastes are hazardous to human health and the environment and therefore, a reliable radioactive waste disposal facility becomes a necessity. This paper describes Kenya's basic plans for the disposal of radioactive wastes expected from the nuclear program. This plan is important as an initial implementation of a national Low to intermediate level wastes storage facility in Kenya. In Kenya, radioactive waste is generated from the use of radioactive materials in medicine, industry, education and research and development. Future radioactive waste is expected to arise from nuclear reactors, oil exploration, radioisotope and fuel production, and research reactors as shown in table 1. The best strategy is to store the LILW and spent fuel temporarily within reactor sites pending construction of a centralized interim storage facility or final disposal facility. The best philosophy is to introduce both repository and nuclear power programs concurrently. Research and development on volume reduction technology and conceptual design of disposal facility of LILW should be pursued. Safe management of radioactive waste is a national responsibility for sustainable generation of nuclear power. The republic of Kenya is set to become the second African nuclear power generation country after South Africa.

  4. Deep underground disposal of radioactive waste in the United Kingdom

    International Nuclear Information System (INIS)

    Mathieson, J.

    1995-01-01

    The UK Government's radioactive waste disposal policy is for intermediate-level waste, and low-level waste as necessary, to be buried in a deep underground repository, and Nirex is the company, owned by the nuclear industry, charged with developing that deep facility. The Company's current focus is on surface-based geological investigations to determine the suitability of a potential repository site near Sellafield, Cumbria, in north-west England. Nirex's next step is to construct a deep underground laboratory (rock characterization facility, or RCF). Subject to a successful outcome from these investigations, Nirex will submit a planning application for the 650m deep repository at the end of this decade; this will be the subject of a further public inquiry. The timetable for the project assumes that a deep repository, capable of taking 400,000m 3 of waste, will be available by about 2010. In 1994, the UK Government began reviewing the future of the nuclear power industry and, as a separate exercise, radioactive waste management and disposal policy. Both reviews involved widespread consultations. The radwaste review has concentrated on three aspects: general policies; legal aspects of disposal (including safety requirements); and the principles of site selection and the protection of human health. Preliminary conclusions of the main radwaste review were published in August 1994. These confirmed that government continued to favor disposal rather than extended surface storage of waste. The final outcome of the review, including institutional aspects, is expected in the Spring of 1995

  5. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  6. Various problems concerning radioactive waste disposal sites and parameters for their evaluation

    International Nuclear Information System (INIS)

    Fukui, Masami

    1990-01-01

    The present report first describes various methods used for low-level radioactive waste disposal in the U.S. and then discusses major factors affecting the parameters used for quantitative evaluation of the behavior of radioactive nuclides existing in the environment, focusing on the distribution coefficient which is assumed in a model widely used for such evaluation. Some problems encountered in applying these parameters to practical evaluation are also discussed together with further studies required in the future. The distribution coefficient varies with many physical, chemical and biological factors, and it may be unavoidable to rely on experiments with a simplified system in determining the effect of each factor separately. However, the values obtained from such experiments cannot be used as parameters to reflect the behaviors of these nuclides in real environments. They should be considered as such. Efforts should be made to develop techniques to obtain effective values for the distribution coefficient that properly reflect their behaviors in real environments near disposal sites or in far fields. (N.K.)

  7. Problems related to final disposal of high-level radioactive waste in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    According to this presentation, the radioactivity of the total amount of radioactive waste accumulated in Russia to date is 1.5*10 9 Ci and of spent fuel 4.5*10 9 Ci. A table is given that shows the source, type, volume activity and storage type under the responsibility of the different departments and enterprises. 99.9% of the wastes are accumulated at the enterprises of Minatom of the Russian Federation. Some companies inject their liquid wastes from ionisation sources and intermediate liquid waste from the nuclear power industry into deep-seated reliably isolated aquifers. The Mayak plant has released liquid low-level and intermediate wastes into artificial reservoirs and Lake Karachay. Liquid high-level wastes are always stored in special tanks at interim storage facilities. A large number of nuclear submarines are laid up in North-Western Russia and East Russia, with spent fuel still in place as the interim storages in these regions are filled up and there are no conditioning plants. Underground disposal is considered the best way of isolating radioactive waste for as long as it is hazardous to the environment. Two new technologies are discussed. One involves including long-lived isotopes in high-stable mineral matrices, the other uses selective separation from the bulk of wastes. The matrices should be disposed of deep in the Earth's crust, at least 2-3 km down. Liquid waste of caesium-strontium fraction must be transformed into glass-like form and stored underground at a depth of a few hundred metres. Short-lived low level and intermediate level wastes should be conditioned and then deposited in subsurface ferroconcrete repositories constructed in clays. Finally, the presentation discusses the selection of sites and conditions for radioactive waste disposal. Two sites are discussed, the Mayak plant and a possible site at Mining Chemical Combine in Krasnoyarsk-26

  8. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd 3 ) (157,437 cubic feet (ft 3 )). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd 3 (756,999 ft 3 ) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd 3 (0.9 million ft 3 ). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls (PCBs)) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with

  9. The principles of design of a shallow disposal site for low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Holmes, R.E.

    1985-01-01

    This paper addresses the principles of design of a shallow disposal site for low and intermediate level radioactive wastes. The objective of the author is to review the need for shallow land disposal facilities in the UK and to propose design principles which will protect the public and operatives from excessive risk. It is not the intent of the author to present a detailed design of facility which will meet the design standards proposed although such a design is feasible and within the scope of currently available technology. The principles and standards proposed in this paper are not necessarily those of PPC Consultant Services Ltd. or NEI Waste Technologies Ltd. (author)

  10. Situation and prospects of radioactive waste disposal in the member states of the European Community

    International Nuclear Information System (INIS)

    Schaller, K.H.; Orlowski, S.

    1990-01-01

    All Member States of the European Community with a nuclear power production programme are preparing for the disposal of radioactive waste produced in the nuclear fuel cycle and through the use of radionuclides in health care, research and industry. The situation of storage and planned, on-going - and already performed - disposal of radioactive waste in these States is first summarised. Suitable sites for disposal of radioactive waste of all categories exist in all Member States concerned. The general principles and international recommendations, and common principles, standards and requirements applicable to disposal in the European Community are then presented, followed by a description of existing disposal facilities and of those which are in an advanced planning stage, and the implementation of basic criteria by national authorities. Finally, policies and strategies for long-term storage and disposal for definitively shut-down nuclear installations, and contributions to research in this field in the ''Communities' Radioactive Waste Management Programme'' are discussed. (author)

  11. Selection and investigation of sites for the disposal of radioactive wastes in hydraulically induced subsurface fractures

    International Nuclear Information System (INIS)

    Sun, R.J.

    1982-01-01

    Injection of intermediate-level radioactive wastes (specific activity of less than 6 x 10 3 μCi/mL, consisting mainly of radionuclides, such as strontium and cesium, having half-lives of less than 50 years) mixed with cement into a thick shale formation is a promising and feasible disposal method. Hydraulic fracturing provides openings in the shale to accommodate the wastes. Ion exchange and radionuclide-adsorption materials can be added to the grout during mixing to further increase the radionuclide-retaining capacity of the grout. After solidification of the grout, the injected wastes become an integral part of the shale formation, and therefore the wastes will remain at depth and in place as long as the injection zone is not subjected to erosion and dissolution. Problems concerning safety of the disposal method are (1) the potential for inducing vertical fractures, (2) phase separation during and after the injections, (3) the reliability of methods for determining the orientation of induced fractures, (4) the possibility of triggering earthquakes, and (5) radionuclides being leached and transported by ground water. Theoretical considerations about inducing nearly horizontal bedding-plane fractures in shale are discussed, as are field procedures for site selection, safety, and the monitoring and operation of radioactive waste disposal. Case histories are used as examples to demonstrate the application of the theory and techniques of field operations

  12. Guidelines for the selection of sites for disposal of radioactive waste on or beneath the ocean floor

    International Nuclear Information System (INIS)

    Searle, R.C.

    1979-01-01

    An assessment of factors which will probably need to be taken into account in selecting potential sites for the disposal of high-level radioactive wastes into geological formations beneath the ocean floor is presented based in part on a survey of available published and unpublished literature. Since present quantitative knowledge concerning the properties and processes of the sea bed and oceanic waters is poor the guidelines are generally stated in qualitative terms and it is hoped that future research will determine acceptable quantitative values for the parameters involved. The subject is dealt with under the headings; introduction, emplacement below the sea-bed, emplacement on the sea-bed, identification of oceanic areas that might prove suitable for disposal of high-level radioactive wastes (discussion limited to the North Atlantic). 30 references. (U.K.)

  13. A program for evolution from storage to disposal of radioactive wastes at CRNL

    International Nuclear Information System (INIS)

    Dixon, D.F.

    1985-10-01

    This report reviews past and current radioactive waste management practices at the Chalk River Nuclear Laboratories (CRNL) and outlines the proposed future program. For nearly 40 years, radioactive wastes have been generated at CRNL and have also been received there on a continuing basis from hospitals, industries, universities and miscellaneous other sources across Canada. The solid wastes now at CRNL have been either stored or buried and their total consolidated volume is approaching 50 000 m 3 . Much of that waste will require disposal as will the future wastes of similar character. The waste management program plan describes the proposed development of safe disposal facilities which could be built on site to accommodate most, if not all, of the radioactive wastes for which CRNL has responsibility. Three reference disposal concepts, each potentially capable of accepting a portion of the wastes, are described. One of these, the intrusion-resistant shallow land burial (SLB) concept, could be suitable for disposal of most of the CRNL wastes. It is proposed that a prototype SLB facility be designed, constructed and operated on the CRNL property and filled by 1992 to provide a focus for disposal research and development programs and to accumulate experience in all aspects of waste management. 53 refs

  14. Commercial low-level radioactive waste transportation liability and radiological risk

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  15. Commercial low-level radioactive waste transportation liability and radiological risk

    International Nuclear Information System (INIS)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers

  16. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    A general analysis of transportation requirements for postfission radioactive wastes that are produced from the commercial light water reactor (LWR) fuel cycle and that are assumed to require Federal custody for storage or disposal is given. Possible radioactive wastes for which transportation requirements are described include: spent fuel, solidified high-level waste, fuel residues (cladding wastes), plutonium, and non-high-level transuranic (TRU) wastes. Transportation is described for wastes generated in three fuel cycle options: once-through fuel cycle, uranium recycle only, and recycle of uranium and plutonium. The geologic considerations essential for repository selection, the nature of geologic formations that are potential repository media, the thermal criteria for waste placement in geologic repositories, and conceptual repositories in four different geologic media are described. The media are salt deposits, granite, shale, and basalt. Possible alternatives for managing retired facilities and procedures for decommissioning are reviewed. A qualitative comparison is made of wastes generated by the uranium fuel cycle and the thorium fuel cycle. This study presents data characterizing wastes from prebreeder light water breeder reactors using thorium and slightly enriched uranium-235. The prebreeder LWBRs are essentially LWRs using thorium. The operation of HTGR and LWBR cycles are conceptually designed, and wastes produced in these cycles are compared for potential differences

  17. Japan's Siting Process for the Geological Disposal of High-level Radioactive Waste - An International Peer Review

    International Nuclear Information System (INIS)

    Brassinnes, Stephane; Fabbri, Olivier; Rubenstone, James; Seppaelae, Timo; Siemann, Michael; ); Kwong, Gloria; )

    2016-01-01

    The Nuclear Energy Agency carried out an independent peer review of Japan's siting process and criteria for the geological disposal of high-level radioactive waste in May 2016. The review concluded that Japan's site screening process is generally in accordance with international practices. As the goal of the siting process is to locate a site - that is both appropriate and accepted by the community - to host a geological disposal facility for high-level radioactive waste, the international review team emphasises in this report the importance of maintaining an open dialogue and interaction between the regulator, the implementer and the public. Dialogue should begin in the early phases and continue throughout the siting process. The international review team also underlines the importance of taking into account feasibility aspects when selecting a site for preliminary investigations, but suggests that it would be inappropriate to set detailed scientific criteria for nationwide screening at this stage. The team has provided extensive advisory remarks in the report as opportunities for improvement, including the recommendation to use clear and consistent terminology in defining the site screening criteria as it is a critical factor in a successful siting process. (authors)

  18. Waste package performance criteria for deepsea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Colombo, P.; Fuhrmann, M.

    1988-07-01

    Sea disposal of low-level radioactive waste began in the United States in 1946, and was placed under the licensing authority of the Atomic Energy Commission (AEC). The practice stopped completely in 1970. Most of the waste disposed of at sea was packaged in second- hand or reconditioned 55-gallon drums filled with cement so that the average package density was sufficiently greater than that of sea water to ensure sinking. It was assumed that all the contents would eventually be released since the packages were not designed or required to remain intact for sustained periods of time after descent to the ocean bottom. Recently, there has been renewed interest in ocean disposal, both in this country and abroad, as a waste management alternative to land burial. The Marine Protection, Research and Sanctuaries Act of 1972 (PL 92-532) gives EPA the regulatory responsibility for ocean dumping of all materials, including radioactive waste. This act prohibits the ocean disposal of high-level radioactive waste and requires EPA to control the ocean disposal of all other radioactive waste through the issuance of permits. In implementing its permit authorities, EPA issued on initial set of regulations and criteria in 1973 to control the disposal of material into the ocean waters. It was in these regulations that EPA initially introduced the general requirement of isolation and containment of radioactive waste as the basic operating philosophy. 37 refs

  19. Sediment properties and water movement through shallow unsaturated alluvium at an arid site for disposal of low-level radioactive waste near Beatty, Nye County, Nevada

    Science.gov (United States)

    Fischer, Jeffrey M.

    1992-01-01

    A commercial disposal facility for low-level radioactive waste has been in operation near Beatty, Nevada, since 1962. The facility is in the arid Amargosa Desert where wastes are buried in trenches excavated into unsaturated alluvial sediments. Thick unsaturated zones in arid environments offer many potential advantages for disposal of radioactive wastes, but little is known about the natural movement of water near such facilities. Thus, a study was begun in 1982 to better define the direction and rates of water movement through the unsaturated zone in undisturbed sediments near the disposal facility. This report discusses the analyses of data collected between 1983 and 1988.

  20. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP including α and β forms of isosaccharinic acid (ISA and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118 in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2 hr(-1 (SE ± 2.9 × 10(-3. These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  1. Fee structures for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Baird, R.D.; Rogers, V.C.

    1988-01-01

    Some compacts and states require that the fee system at their new low-level waste (LLW) disposal facility be based on the volume and radioactive hazard of the wastes. The fee structure discussed in this paper includes many potential fee elements that could be used to recover the costs of disposal and at the same time influence the volume and nature of waste that arrives at the disposal facility. It includes a base fee which accounts for some of the underlying administrative costs of disposal, and a broad range of charges related to certain parameters of the waste, such as volume, radioactivity, etc. It also includes credits, such as credits for waste with short-lived radionuclides or superior waste forms. The fee structure presented should contain elements of interest to all states and compacts. While no single disposal facility is likely to incorporate all of the elements discussed here in its fee structure, the paper presents a fairly exhaustive list of factors worth considering

  2. Decontamination and disposal of radioactive wastes from nuclear facilities

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1978-01-01

    A survey and characteristics are given of the main sources of wastes from the operation of nuclear installations. The amounts are compared of liquid and gaseous wastes from PWR and BWR reactors. The main trends of radioactive waste processing in the world are described. In Czechoslovakia, two methods of waste fixation have been developed: vacuum cementation and bituminization. The demands are summed up on radioactive waste storage sites and it is stated that there are a number of suitable localities, namely abolished granite quarries with a very deep ground water level and a low-permeable overburden and exhausted quarries of kaolinitic clays, which meet all criteria and secure the safe disposal of wastes from Czechoslovak nuclear power plants up to the year 2020. (Z.M.)

  3. Identification of permit and waste acceptance criteria provisions requiring modification for acceptance of commercial mixed waste

    International Nuclear Information System (INIS)

    1994-03-01

    In October 1990, representatives of States and compact regions requested that the US Department of Energy (DOE) explore an agreement with host States and compact regions under which DOE would accept commercial mixed low-level radioactive waste (LLW) at DOE's own treatment and disposal facilities. A program for DOE management of commercial mixed waste is made potentially more attractive in light of the low commercial mixed waste volumes, high regulatory burdens, public opposition to new disposal sites, and relatively high cost of constructing commercial disposal facilities. Several studies were identified as essential in determining the feasibility of DOE accepting commercial mixed waste for disposal. The purpose of this report is to identify any current or proposed waste acceptance criteria (WAC) or Resource Conservation and Recovery Act (RCRA) provisions that would have to be modified for commercial mixed waste acceptance at specified DOE facilities. Following the introduction, Section 2 of this report (a) provides a background summary of existing and proposed mixed waste disposal facilities at each DOE site, and (b) summarizes the status of any RCRA Part B permit and WAC provisions relating to the disposal of mixed waste, including provisions relating to acceptance of offsite waste. Section 3 provides overall conclusions regarding the current status and permit modifications that must be implemented in order to grant DOE sites authority under their permits to accept commercial mixed waste for disposal. Section 4 contains a list of references

  4. Report on the disposal of radioactive wastes and spent fuel elements from Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    2017-04-01

    The report on the disposal of radioactive wastes and spent fuel elements from Baden- Wuerttemberg covers the following issues: legal framework for the nuclear disposal; producer of spent fuels and radioactive wastes in Baden- Report on the disposal of radioactive wastes and spent fuel elements from Baden- Wuerttemberg; low- and medium-level radioactive wastes (non heat generating radioactive wastes); spent fuels and radioactive wastes from waste processing (heat generating radioactive wastes); final disposal.

  5. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  6. Geotechnical, geological, and selected radionuclide retention characteristics of the radioactive waste disposal site near the Farallon Islands

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Poppe, L.J.; Neiheisel, J.; Dyer, R.S.

    1989-01-01

    A geotechnical and geological investigation of the Farallon Islands low-level radioactive waste (LLW) disposal area was conducted to qualitatively assess the host sediments' relative effectiveness as a barrier to radionuclide migration, to estimate the portion of the barrier that is in contact with the waste packages at the three primary disposal sites, and to provide a basic physical description of the sediments. Box cores recovered from within the general disposal area at depths of 500, 1000, and 1500 m were subcored to provide samples (~30 cm in length) for detailed descriptions, textural and mineralogical analyses, and a suite of geotechnical tests (index property, CRS consolidation, and CIU triaxial compression). -from Authors

  7. Design and operation of a low-level solid-waste disposal site at Los Alamos

    International Nuclear Information System (INIS)

    Balo, K.A.; Wilson, N.E.; Warren, J.L.

    1982-01-01

    Since the mid-1940's, approximately 185000 m 3 of low-level and transuranic radioactive solid waste, generated in operations at the Los Alamos National Laboratory, have been disposed of by on-site shallow land burial. Procedures and facilities have been designed and evaluated in the areas of waste acceptance, treatment and storage, disposal, traffic control, and support systems. The methodologies assuring the proper management and disposal of radioactive solid waste are summarized

  8. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Rope, R.C.

    1985-01-01

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  9. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Arnold, P.

    2012-01-01

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams

  10. New state roles in the management and disposal of commercial nuclear waste

    International Nuclear Information System (INIS)

    Udall, M.K.

    1977-01-01

    Arguments are presented for the need for congressional action to clarify the respective regulatory responsibilities of the state and Federal Governments as they relate to commercial nuclear power. Three case studies in radioactive waste management and disposal are reviewed which are proported to illustrate the inadequacy of the existing regulatory framework to effectively manage and dispose of nuclear wastes. Examples of instances in which state legislatures have taken the initiative in the waste disposal problem are cited. It is concluded that regulatory reform should be in the direction of a dual system that provides states with new authority and leverage to control nuclear energy development patterns within their borders

  11. Radioactive waste disposal and public acceptance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M., E-mail: mouraor@cdtn.b, E-mail: vvmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  12. Radioactive waste disposal and public acceptance aspects

    International Nuclear Information System (INIS)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M.

    2011-01-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  13. Prediction of radionuclide inventory for the low-and intermediated-level radioactive waste disposal facility the radioactive waste classification

    International Nuclear Information System (INIS)

    Jung, Kang Il; Jeong, Noh Gyeom; Moon, Young Pyo; Jeong, Mi Seon; Park, Jin Beak

    2016-01-01

    To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment

  14. Necessary contents of public outreach for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Kanzaki, Noriko; Okamoto, Koji

    2011-01-01

    Nuclear power generation is one of the solutions for global warming. However, the nuclear power generation technology can not be completed unless the disposal method of the radioactive waste is decided. Various actions are performed about the High Level Radioactive Waste (HLW) disposal in particular in each country. However, planning of HLW disposal site was not successful, except Finland and Sweden. In Japan, geological disposal of HLW was selected. The operating body and the capital management body are also decided. Up to the present, no municipality apply the disposal site candidate. An important social element for HLW disposal is careful explanation and communication for municipality. For this purpose, a symposium to explain necessity of HLW is held in each district in Japan. The symposium is not successful, because of lack of carefulness to local situation considered. In this study, we evaluates the questionnaire by the symposium attendee to extract the idea and requests by the local people. With these questionnaire, the responsibility of the government should be more enhanced. Also, the detail answer to the people's questions are needed. Using these knowledge, the HLW disposal social acceptance has been discussed. (author)

  15. Status of technologies related to radioactive waste management and disposal

    International Nuclear Information System (INIS)

    1979-09-01

    The document discusses the status of technologies relevant to radioactive waste management and disposal, as defined by the INFCE Working Group 7 study. All fuel cycle wastes, with the exception of mill tailings, are placed in mined geologic repositories. In addition to the availability of technologies, the document discusses the: a) importance of the systems viewpoint, b) importance of modeling, c) need for site-specific investigations, d) consideration of future sub-surface human activities and e) prospects for successful isolation. In the sections on waste isolation and repository safety assessments, principal considerations are discussed. The document concludes that successful isolation of radioactive wastes from the biosphere appears technically feasible for periods of thousands of years provided that the systems view is used in repository siting and design

  16. Development of disposal technologies for radioactive waste generated from radioisotope users and research institutes

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro

    2001-01-01

    In order to safely dispose of a radioactive waste, which is generated from radioisotope users and research institutes, investigation of characteristics of the waste and conceptual design of disposal facility were carried out. As a result of investigating JAERI that the waste has mainly been stored, it became clear that radioactivities of 19 nuclides are important from the viewpoint of the safety of the disposal. And the result of the conceptual design of disposal facilities on the assumption of 3 kinds of sites, the differences on the safety could not be recognized in either case, though the installation depth to construct the facilities influenced the economical efficiency. (author)

  17. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-01-01

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites

  18. Deep injection disposal of liquid radioactive waste in Russia

    International Nuclear Information System (INIS)

    Foley, M.G.; Ballou, L.; Rybal'chenko, A.I.; Pimenov, M.K.; Kostin, P.P.

    1998-01-01

    Originally published in Russian, Deep Injection Disposal is the most comprehensive account available in the West of the Soviet and Russian practice of disposing of radioactive wastes into deep geological formations. It tells the story of the first 40 years of work in the former Soviet Union to devise, test, and execute a program to dispose by deep injection millions of cubic meters of liquid radioactive wastes from nuclear materials processing. The book explains decisions involving safety aspects, research results, and practical experience gained during the creation and operation of disposal systems. Deep Injection Disposal will be useful for studying other problems worldwide involving the economic use of space beneath the earth's surface. The material in the book is presented with an eye toward other possible applications. Because liquid radioactive wastes are so toxic and the decisions made are so vital, information in this book will be of great interest to those involved in the disposal of nonradioactive waste

  19. Development of the program for underground disposal of radioactive wastes in Slovenia

    International Nuclear Information System (INIS)

    Marc, D.; Loose, A.; Mele, I.

    1995-01-01

    In Slovenia, three of four steps of surface low and intermediate level radioactive wastes (LILW) repository site selection have already been completed . Since the fourth step is stopped due to the strong public opposition, an option of underground disposal is now being considered. In 1994, Agency for Rad waste Management started with preparation of basic guidelines for site selection of an underground LILW repository in Slovenia. The guidelines consist of general and geological criteria. General criteria are similar to those used for surface repository site selection, while geological criteria, based strongly on International Atomic Energy Agency (IAEA) recommendations, include some changes. Mainly they are less rigorous and more qualitative. A set of basic geological recommendations and guidelines for an underground disposal of radioactive wastes is presented in this paper. A comparison between proposed geological criteria for underground repository site selection and geological criteria used for surface repository site selection is given as well. (author)

  20. Radwaste characteristics and Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Sung, Suk Hyun; Jeong, Yi Yeong; Kim, Ki Hong

    2008-01-01

    The purpose of Radioactive Waste Acceptance Criteria (WAC) is to verify a radioactive waste compliance with radioactive disposal facility requirements in order to maintain a disposal facility's performance objectives and to ensure its safety. To develop WAC which is conformable with domestic disposal site conditions, we furthermore analysed the WAC of foreign disposal sites similar to the Kyung-Ju disposal site and the characteristics of various wastes which are being generated from Korea nuclear facilities. Radioactive WAC was developed in the technical cooperation with the Korea Atomic Energy Research Institute in consideration of characteristics of the wastes which are being generated from various facilities, waste generators' opinions and other conditions. The established criteria was also discussed and verified at an advisory committee which was comprised of some experts from universities, institutes and the industry. So radioactive WAC was developed to accept all wastes which are being generated from various nuclear facilities as much as possible, ensuring the safety of a disposal facility. But this developed waste acceptance criteria is not a criteria to accept all the present wastes generated from various nuclear facilities, so waste generators must seek an alternative treatment method for wastes which were not worth disposing of, and then they must treat the wastes more to be acceptable at a disposal site. The radioactive disposal facility WAC will continuously complement certain criteria related to a disposal concentration limit for individual radionuclide in order to ensure a long-term safety.

  1. Buried for ever. The US experience of radioactive waste disposal

    International Nuclear Information System (INIS)

    Resnikoff, Marvin.

    1987-01-01

    The United States is the largest producer of radioactive wastes and has considerable experience, not all good, of shallow disposal methods for low level wastes. Indeed, as a result of leakage and contamination, three sites have been closed down and there is concern over another site, at Barnwell in South Carolina. This chapter analyses the geological and technical problems of each of the sites from the viewpoint of the environmental pressure group, the Sienna Club. The sites are at Maxey Flats, Kentucky; Sheffield, Illinois; West Valley, New York; Barnwell; Richland, Washington and Beatly, Nevada. The problems have been those situated in the humid, northern regions where there has been excessive ground water, degradation of waste containers, subsidence and erosion, the presence of chelating agents and a lack of stabilisation and funding for long-term care. In the semi-arid western sites the problems are fewer. However, the cost of transporting the waste to them is high. It is suggested that some of the low-level wastes should be reclassified as high-level wastes and should be disposed of deep underground. (UK)

  2. Development of database systems for safety of repositories for disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Hun; Han, Jeong Sang; Shin, Hyeon Jun; Ham, Sang Won; Kim, Hye Seong [Yonsei Univ., Seoul (Korea, Republic of)

    1999-03-15

    In the study, GSIS os developed for the maximizing effectiveness of the database system. For this purpose, the spatial relation of data from various fields that are constructed in the database which was developed for the site selection and management of repository for radioactive waste disposal. By constructing the integration system that can link attribute and spatial data, it is possible to evaluate the safety of repository effectively and economically. The suitability of integrating database and GSIS is examined by constructing the database in the test district where the site characteristics are similar to that of repository for radioactive waste disposal.

  3. Options open to a small country, like Slovenia, in relation to radioactive waste disposal

    International Nuclear Information System (INIS)

    Kontic, B.

    1996-01-01

    When a society of two million people, who live on scarcely 20500 km 2 , needs to plan, and afterwards to implement, a strategy for radioactive waste management, the first step in the process is to look round and ask its bigger, stronger and more experienced neighbours (neighbouring countries), how they performed that task. Unfortunately, it is usually found that only few of the numerous answers to these questions and sub-questions are suitable for questioner. So what is to be done when the society is a Mediterranean, Central European, relatively highly populated country, where the Gross Domestic Product (GDP) per capita in 1994 exceeded 7000 US dollars, where the territory is mainly intended for residence, tourism and agricultural purposes, and where there is only one nuclear power plant (NPP) and one uranium mill which are responsible for the greatest part of the highly undesired radioactive waste ? The producers of radioactive wastes, and the economy of the country as a whole, cannot afford the costs of seeking a unique way of disposing of those wastes, but nevertheless, answers to the two primary questions concerning radioactive waste management should be given in any case. First: What should be done with the radioactive wastes produced in one NPP (PWR, 632 MWe) during 35 years of operation (up to 8000 m 3 of low - and intermediate - level waste, about 600 tons of spent fuel), and a uranium mill closed after only six years of ore-processing operation (670000 tons of ore-processing wastes)? Second: Where should it be done? Both questions pose the problem of siting, environmental assessment and the appropriateness of (all kinds of) criteria. In this paper the situation in Slovenia is presented with emphasis on the possibility and feasibility of radioactive waste disposal. Methodology and criteria for site evaluation and site selection for low- and intermediate- level radioactive waste (LILW) disposal is described. Fifty-five criteria are included in a decision

  4. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  5. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 3. Public comments hearing board report

    International Nuclear Information System (INIS)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement

  6. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 3. Public comments hearing board report

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement.

  7. Environmental development plan. LWR commercial waste management

    International Nuclear Information System (INIS)

    1980-08-01

    This Environmental Development Plan (EDP) identifies the planning and managerial requirements and schedules needed to evaluate and assess the environmental, health and safety (EH and S) aspects of the Commercial Waste Management Program (CWM). Environment is defined in its broadest sense to include environmental, health (occupational and public), safety, socioeconomic, legal and institutional aspects. This plan addresses certain present and potential Federal responsibilities for the storage, treatment, transfer and disposal of radioactive waste materials produced by the nuclear power industry. The handling and disposal of LWR spent fuel and processed high-level waste (in the event reprocessing occurs) are included in this plan. Defense waste management activities, which are addressed in detail in a separate EDP, are considered only to the extent that such activities are common to the commercial waste management program. This EDP addresses three principal elements associated with the disposal of radioactive waste materials from the commercial nuclear power industry, namely Terminal Isolation Research and Development, Spent Fuel Storage and Waste Treatment Technology. The major specific concerns and requirements addressed are assurance that (1) radioactivity will be contained during waste transport, interim storage or while the waste is considered as retrievable from a repository facility, (2) the interim storage facilities will adequately isolate the radioactive material from the biosphere, (3) the terminal isolation facility will isolate the wastes from the biosphere over a time period allowing the radioactivity to decay to innocuous levels, (4) the terminal isolation mode for the waste will abbreviate the need for surveillance and institutional control by future generations, and (5) the public will accept the basic waste management strategy and geographical sites when needed

  8. Treatment and disposal of radioactive wastes from nuclear power plants. Research programs

    International Nuclear Information System (INIS)

    1992-09-01

    The report presents programs for research, development and demonstration concerning radioactive waste disposal in underground facilities. The main topics are: Radioactive waste management, radioactive waste storage, capsules, environmental impacts, risk assessment, radionuclide migration, radioactive waste disposal, decommissioning, cost, and international cooperation. (129 refs.)

  9. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume I of V

    International Nuclear Information System (INIS)

    1997-05-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for treated (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the no action alternative, which includes only existing or approved waste management facilities, the alternatives for each of the waste type configurations include decentralized, regionalized, and centralized alternatives for using existing and operating new waste management facilities. However, the siting, construction and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  10. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    Science.gov (United States)

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  11. Disposal of radioactive and other hazardous wastes

    International Nuclear Information System (INIS)

    Boge, R.; Bergman, C.; Bergvall, S.; Gyllander, C.

    1989-01-01

    The purpose of the workshop was discuss legal, scientific and practical aspects of disposal of low- and intermediate-level radioactive waste and other types of hazardous waste. During the workshop the non-radioactive wastes discussed were mainly wastes from energy production, but also industrial, chemical and household wastes. The workshop gave the participants the opportunity to exchange information on policies, national strategies and other important matters. A number of invited papers were presented and the participants brought background papers, describing the national situation, that were used in the working groups. One of the main aims of the workshop was to discuss if the same basic philosophy as that used in radiation protection could be used in the assessment of disposal of non-radioactive waste, as well as to come up with identifications of areas for future work and to propose fields for research and international cooperation. The main text of the report consists of a summary of the discussions and the conclusions reached by the workshop

  12. Swiss guideline: Protection objectives for the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Zurkinden, A.

    1994-01-01

    The Swiss guideline R-21 establishing the protection objectives for the disposal of radioactive waste has been reviewed and amended in order to adapt it to improvements made in the field of radioactive waste disposal. In an introductory part, the new guideline states the overall objective of radioactive waste disposal and the associated principles which have to be observed. The guideline then establishes the safety requirements applied to a geological disposal facility. These safety requirements are formulated as protection goals for the whole disposal system and not as specific criteria applying to the system components. The guideline gives finally a series of explanatory comments and indications concerning the conduct of the safety assessment for a disposal facility

  13. Regulation on radioactive waste management

    International Nuclear Information System (INIS)

    1999-01-01

    A national calculator control system for the metropolitan radioactive waste banks was developed in 1999. The NNSA reviewed by the regulations the feasibility of some rectification projects for uranium ore decommissioning and conducted field inspections on waste treating systems and radioactive waste banks at the 821 plant. The NNSA realized in 1999 the calculator control for the disposal sites of low and medium radioactive waste. 3 routine inspections were organized on the reinforced concrete structures for disposal units and their pouring of concrete at waste disposal site and specific requirements were put forth

  14. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  15. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  16. Roles of bentonite in radioactive waste disposal

    International Nuclear Information System (INIS)

    Suzuki, Keizo

    1995-01-01

    Bentonite is used in radioactive waste disposal from the following points; (1) properties (2) now utilization fields (3) how to use in radioactive waste disposal (4) how much consumption and deposits as source at the present time. Bentonite is produced as alteration products from pyroclastic rocks such as volcanic ash and ryolite, and is clay composed mainly smectite (montmorillonite in general). Therefore, special properties of bentonite such as swelling potential, rheological property, bonding ability, cation exchange capacity and absorption come mainly from properties of montmorillonite. Bentonite has numerous uses such as iron ore pelleizing, civil engineering, green sand molding, cat litter, agricultural chemicals and drilling mud. Consumption of bentonite is about 600-700 x 10 3 tons in Japan and about 10 x 10 6 tons in the world. Roles of bentonite to be expected in radioactive waste disposal are hydraulic conductivity, swelling potential, absorption, mechanical strength, ion diffusion capacity and long-term durability. These properties come from montmorillonite. (author)

  17. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  18. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1979-01-01

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container. 30 claims

  19. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1977-01-01

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container

  20. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Critchley, R.J.; Swindells, R.J.

    1984-01-01

    A method and apparatus for charging radioactive waste into a disposable steel drum having a plug type lid. The drum is sealed to a waste dispenser and the dispenser closure and lid are withdrawn into the dispenser in back-to-back manner. Before reclosing the dispenser the drum is urged closer to it so that on restoring the dispenser closure to the closed position the lid is pressed into the drum opening

  1. Experience in the upgrading of radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.

    2000-01-01

    The national Belarus radioactive disposal facility 'Ekores' is designed for waste from nuclear applications in industry, medicine and research. Currently 12-20 tons of waste and over 6000 various types spent sources annually come to the 'Ekores'. Total activity in the vaults is evaluated as 352.8 TBq. Approximately 150 000 spent sources disposed of in the vaults and wells have total activity about 1327 TBq. In 1997 the Government initiated a project for the facility reconstruction in order to upgrade radiological safety of the site by creating adequate safety conditions for managing and storage of the waste. The reconstruction project developed by Belarus specialists has been reviewed by IAEA experts. This covers modernising technologies for new coming waste and also that the waste currently disposed in the pits is retrieved, sorted and treated in the same way as the new coming waste

  2. International intercomparison and harmonization projects for demonstrating the safety of radioactive waste management, decommissioning and radioactive waste disposal

    International Nuclear Information System (INIS)

    Metcalf, Phil; O'Donnell, Patricio; Jova Sed, Luis; Batandjieva, Borislava; Rowat, John; Kinker, Monica

    2008-01-01

    Full text: The Joint Convention on the safety of spent fuel management and the safety of radioactive waste management and the international safety standards on radioactive waste management, decommissioning and radioactive waste disposal call for assessment and demonstration of the safety of facilities and activities; during siting, design and construction prior to operation, periodically during operation and at the end of lifetime or upon closure of a waste disposal facility. In addition, more recent revisions of the international safety standards require the development of a safety case for such facilities and activities, documentation presenting all the arguments supporting the safety of the facilities and activities covering site and engineering features, quantitative safety assessment and management systems. Guidance on meeting these safety requirements also indicates the need for a graded approach to safety assessment, with the extent and complexity of the assessment being proportional to the complexity of the activity or facility, and its propensity for radiation hazard. Safety assessment approaches and methodologies have evolved over several decades and international interest in these developments has been considerable as they can be complex and often subjective, which has led to international projects being established aimed at harmonization. The IAEA has sponsored a number of such initiatives, particularly in the area of disposal facility safety, but more recently in the areas of pre disposal waste management and decommissioning, including projects known as ISAM, ASAM, SADRWMS and DeSa. The projects have a number of common aspects including development of standardized methodological approaches, application on test cases and assessment review; they also have activity and facility specific elements. The paper presents an overview of the projects, the outcomes from the projects to date and their future direction aimed very much at practical application of

  3. Natural analogue study for low-and-intermediate level radioactive waste shallow burial disposal

    International Nuclear Information System (INIS)

    Gu Cunli; Fan Zhiwen; Huang Yawen; Cui Anxi; Liu Xiuzheng; Zhang Jinshen

    1995-01-01

    The paper makes a comparison of low-and-intermediate level radioactive waste shallow burial disposal with Chinese ancient tombs in respects of siting, engineering structures, design principle and construction procedures. Results showed that Chinese ancient tombs are very good analogue for low-and-intermediate level radioactive waste shallow burial disposal. Long-term preservation of ancient tombs and buried objects demonstrated that low-and-intermediate level radioactive waste shallow burial disposal would be safe if suitable sites were selected, reasonable engineering structures and good backfill materials were adopted, and scientific construction procedures were followed. The paper reports for the first time the testing results of certain ancient tomb backfill materials. The results indicated that the materials have so low a permeability as 1.5 x 10 -8 cm/s , and strong adsorption to radionuclides Co and Cs with the distribution coefficients of 1.4 x 10 4 mL/g and 2.1 x 10 4 mL/g, and the retardation factors of 4.4 x 10 4 and 7.7 x 10 4 respectively. Good performance of these materials is important assurance of long-term preservation of the ancient tombs. These materials may be considered to be used as backfill materials in low-and-intermediate level radioactive shallow burial disposal. (4 figs., 10 tabs.)

  4. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  5. Siting history and current construction status of disposal facility for low and intermediate level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Kikuchi, Saburo; Maruyama, Masakatsu

    2008-01-01

    Korean government decided disposal site for low and intermediate level radioactive waste (LILW), which is located at coastal area near the Wolsong nuclear power plants in Gyeong-Ju city in December. 2005, based on the result of votes of residents in four candidate sites. Since then, Korea Hydro and Nuclear Power Co., Ltd (KHNP), which is the management company of the LILW disposal facility, has carried out the preparation for construction of disposal facility and its licensing process. At the first phase, 100 thousand drums in 200 liter are planned to be disposed of in the rock cavern type disposal facility located at the depth from 80m to 130m below the sea level, and finally 800 thousand drums in 200 liter are planned to be disposed of in the site. This report shows the history of siting for the LILW disposal, the outline of design of disposal facility and current status of its construction, based on the information which was obtained mainly during our visit to the disposal site in Korea. (author)

  6. Involvement of AVN as TSO in the safety analysis of radioactive waste disposal

    International Nuclear Information System (INIS)

    Gelder, P. de; Nys, V.; Smidts, O.; Boeck, B. de

    2004-01-01

    In 1998, ONDRAF/NIRAS, the agency responsible for radioactive waste management in Belgium, was requested by the government to involve the nuclear safety authorities in its activities of safety evaluation of site-specific waste disposal options (deep or surface disposal) for the short-lived low-level waste. A working group was created in which ONDRAF/NIRAS, FANC (the Federal Agency for Nuclear Control) and AVN discuss different aspects of the ONDRAF/NIRAS program concerning the long-term management of short-lived low-level radioactive waste disposal. It includes also the review of technical safety assessments performed by ONDRAF/NIRAS or by contractors for ONDRAF/NIRAS. The involvement of AVN (the Belgian TSO) in the pre-project phase appears to be positive for all partners. Indeed, all felt the need for an independent actor, with a strong technical basis. Through this presentation, the experience and the topics discussed since 1998 will be developed. Mainly, the presentation will focus on the approach followed to develop competency in the radioactive waste field, on the discussions about the development of a regulatory framework adapted to final disposal of low-level radioactive waste, and on the technical regulatory positions developed so far. Also the experience related to the interaction with local stakeholders will be described. (orig.)

  7. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  8. Costs and ways of financing of the geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Venet, P.; Haijtink, B.

    1988-01-01

    A global approach to the management of radioactive wastes must take into account not only the technological or safety aspects but also economic and financial considerations. In this study, the cost of geological disposal of radioactive wastes are initially evaluated for a certain number of representative cases of present tendencies in the European Community. These expenses comprise research, development and site validation costs, transport and interim storage costs and finally expenditure relating to various investment and exploitation phases of the disposal site as well as its closure. The possible ways of financing are subsequently reviewed and the financial charges which resulted are calculated for each considered scenario. The study is based on the most recent technical knowledge. It has been carried out by natural organizations involved in the management of radioactive wastes. ANDRA in France, CEN/SCK and ONDRAF/NIRAS in Belgium and DBE in Federal Republic of Germany on behalf of the Commission of the European Communities [fr

  9. Costs and ways of financing of the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Venet, P.; Baetsle, L.H.; Barthoux, A.; Engelmann, H.J.

    1985-01-01

    A global approach to the management of radioactive waste must take into account not only the technological or safety aspects but also economic and financial considerations. In this study, the costs of geological disposal of radioactive waste are initially evaluated for a certain number of representative cases of present tendencies in the European Community. These expenses comprise research, development and site validation costs, transport and interim storage costs and finally expenditure relating to various investment and exploitation phases of the disposal site as well as its closure. The possible ways of financing are subsequently reviewed and the financial charges which resulted are calculated for each considered scenario. The study is based on the most recent technical knowledge. It has been carried out by national organizations involved in the management of radioactive waste: ANDRA in France, CEN/SCK and ONDRAF/NIRAS in Belgium and DBE in F.R. of Germany on behalf of the Commission of the European Communities

  10. The application of magnetic gradiometry and electromagnetic induction at a former radioactive waste disposal site.

    Science.gov (United States)

    Rucker, Dale Franklin

    2010-04-01

    A former radioactive waste disposal site is surveyed with two non-intrusive geophysical techniques, including magnetic gradiometry and electromagnetic induction. Data were gathered over the site by towing the geophysical equipment mounted to a non-electrically conductive and non-magnetic fibre-glass cart. Magnetic gradiometry, which detects the location of ferromagnetic material, including iron and steel, was used to map the existence of a previously unknown buried pipeline formerly used in the delivery of liquid waste to a number of surface disposal trenches and concrete vaults. The existence of a possible pipeline is reinforced by historical engineering drawing and photographs. The electromagnetic induction (EMI) technique was used to map areas of high and low electrical conductivity, which coincide with the magnetic gradiometry data. The EMI also provided information on areas of high electrical conductivity unrelated to a pipeline network. Both data sets demonstrate the usefulness of surface geophysical surveillance techniques to minimize the risk of exposure in the event of future remediation efforts.

  11. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-12-01

    The feasibility of safe ocean disposal options for heat-generating radioactive waste relies on the existence of suitable disposal sites. This review considers the status of the development of site selection criteria and the results of the study area investigations carried out under various national and international research programmes. In particular, the usefulness of the results obtained is related to the data needed for environmental and emplacement modelling. Preliminary investigations have identified fifteen potential deep ocean study areas in the North Atlantic. From these Great Meteor East (GME), Southern Nares Abyssal Plan (SNAP) and Kings Trough Flank (KTF) were selected for further investigation. The review includes appraisals of regional geology, geophysical studies, sedimentology, geotechnical studies, geochemical studies and oceanography. (author)

  12. The disposal of orphan wastes using the greater confinement disposal concept

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H.; Dickman, P.T.

    1991-01-01

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ''home'' for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ''special-case'' or ''orphan'' wastes. This paper describes an ongoing project sponsored by the DOE's Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs

  13. Biogenesis of tritiated and carbon-14 methane from low-level radioactive waste

    International Nuclear Information System (INIS)

    Francis, A.J.; Dobbs, S.; Doering, R.F.

    1980-01-01

    Methane bacteria were detected in leachate samples collected from commercial low-level radioactive waste disposal sites. Significant amounts of tritiated and carbon-14 methane were generated by a mixed methanogenic culture from a leachate sample collected from the low-level radioactive waste disposal site, Maxey Flats, KY. Tritiated methane was produced by methane bacteria from synthetic media containing 2 mCi of tritium as tritiated water or tritiated acetate, and the level of tritium added to the medium had no effect on methanogenesis. Under anaerobic conditions the organic compounds containing 14 C and 3 H activity and tritiated water in the waste are metabolized by microorganisms and they produce radioactive gases which escape into the environment from the disposal sites. 4 figures, 3 tables

  14. Siting of geological disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. This Safety Guide defines the process to be used and guidelines to be considered in selecting sites for deep geological disposal of radioactive wastes. It reflects the collective experience of eleven Member States having programmes to dispose of spent fuel, high level and long lived radioactive waste. In addition to the technical factors important to site performance, the Safety Guide also addresses the social, economic and environmental factors to be considered in site selection. 3 refs

  15. Radioactive waste disposal and study of mineral deposit of uranium

    International Nuclear Information System (INIS)

    Doi, Kazumi

    2003-01-01

    To realize high level radioactive waste disposal, it is need to guarantee with high reliability safety of isolation of radioactive waste during some ten thousand years. There are two important factors related to geophysics such as ground water and diastrophism. The problems to be solved in the present point are followings; 1) increasing data of characteristics of radionuclide within high level radioactive waste, 2) development of undisruptive exploration technologies of lithosphere, especially formal fabric of pore and 3) improvement of protection technologies of diastrophism. Our country has to make efforts to realize the safety of isolation of radioactive waste on the basis of researches, by means of keeping them in the strong facilities without disposal. The formation of concentrated uranium in the mineral deposit was explained in relation with high level radioactive waste disposal. (S.Y.)

  16. Radioactive waste disposal - ethical and environmental considerations - A Canadian perspective

    International Nuclear Information System (INIS)

    Roots, F.

    1994-01-01

    This work deals with ethical and environmental considerations of radioactive waste disposal in Canada. It begins with the canadian attitudes toward nature and environment. Then are given the canadian institutions which reflect an environmental ethic, the development of a canadian radioactive waste management policy, the establishment of formal assessment and review process for a nuclear fuel waste disposal facility, some studies of the ethical and risk dimensions of nuclear waste decisions, the canadian societal response to issues of radioactive wastes, the analysis of risks associated with fuel waste disposal, the influence of other energy related environmental assessments and some common ground and possible accommodation between the different views. (O.L.). 50 refs

  17. The role of geology in the evaluation of waste disposal sites

    International Nuclear Information System (INIS)

    Ogunsanwo, O.; Mands, E.

    1999-01-01

    The construction of waste disposal sites demonstrates the awareness of the need to protect the environment against pollution. The site are constructed on foundations of soils and rocks. Photo geological studies, geophysical investigations and geological field mapping are indispensable in the selection of suitable sites. Most of the construction materials (in the case of landfills) are of geologic origin and their suitability can only be ascertained after some geological assessments. Furthermore, the hydrogeological conditions within the adjoining terrains and the flow of leachates from and within the wastes must be monitored so as to prevent pollution (radiation, in the case of radioactive wastes, can be monitored with the aid of geochemistry). Several models/systems are available for the hydrogeological/geochemical evaluation of waste disposal sites. The selection of the site and the construction materials as well as the hydrogeological/ /geochemical studies are very critical as the performance of the disposal site depends solely on these aspects. These aspects are basically within the realms of geology. It is thus obvious that geology plays a leading role in the evaluation of waste disposal sites right from the site selection stage until the site is done with

  18. Groundwater monitoring and modelling of the “Vector” site for near-surface radioactive waste disposal in the Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    D. Bugai

    2017-12-01

    Full Text Available Results of purposeful groundwater monitoring and modelling studies are presented, which were carried out in order to better understand groundwater flow patterns from the “Vector” site for near-surface radioactive waste disposal and storage in the Chornobyl exclusion zone towards river network. Both data of observations at local-scale monitoring well network at “Vector” site carried out in 2015 - 2016 and modelling analyses using the regional groundwater flow model of Chornobyl exclusion zone suggest that the groundwater discharge contour for water originating from “Vector” site is Sakhan River, which is the tributary to Pripyat River. The respective groundwater travel time is estimated at 210 - 340 years. The travel times in subsurface for 90Sr, 137Cs, and transuranium radionuclides (Pu isotopes, 241Am are estimated respectively at thousands, tenths of thousands, hundreds of thousands – million of years. These results, as well as presented data of analyses of lithological properties of the geological deposits of the unsaturated zone at “Vector” site, provide evidence for good protection of surface water resources from radioactivity sources (e.g., radioactive wastes to be disposed in the near-sursface facilities at “Vector” site.

  19. Some legal aspects on high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    1997-01-01

    In Japan, it is considered to be an urgent problem to prepare the system for the research and execution of high level radioactive waste disposal. Under what regulation scheme the disposal should be done has not been sufficiently examined. In this research, the examination was carried out on the legal aspects of high level radioactive waste disposal as follows. First, the current legislation on the disposal in Japan was analyzed, and it was made clear that high level radioactive waste disposal has not been stipulated clearly. Next, on the legal choices which are conceivable on the way the legislation for high level radioactive waste disposal should be, from the aspects of applying the law on regulating nuclear reactors and others, applying the law on nuclear power damage reparation, and industrialization by changing the government ordinances, those were arranged in six choices, and the examination was carried out for each choice from the viewpoints of the relation with the base stipulation for waste-burying business, the speciality of high level radioactive waste disposal as compared with other actions of nuclear power business, the coordination with existing nuclear power of nuclear power business, the coordination with existing nuclear power law system and the formation of national consensus. In this research, it was shown that the execution of high level radioactive waste disposal as the business based on the separate legislation is the realistic choice. (K.I.)

  20. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    International Nuclear Information System (INIS)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H.

    1993-01-01

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m 3 of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m 3 and 10,000 m 3 of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation

  1. Disposal of liquid radioactive wastes through wells or shafts

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1982-01-01

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used

  2. Ground-water levels and precipitation data at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky, October 1988-September 2000

    Science.gov (United States)

    Zettwoch, Douglas D.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet--Department for Environmental Protection--Division of Waste Management, has an ongoing program to monitor water levels at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky. Ground-water-level and precipitation data were collected from 112 wells and 1 rain gage at the Maxey Flats low-level radioactive waste disposal site during October 1988-September 2000. Data were collected on a semi-annual basis from 62 wells, continuously from 6 wells, and monthly or bimonthly from 44 wells (13 of which had continuous recorders installed for the period October 1998-September 2000). One tipping-bucket rain gage was used to collect data at the Maxey Flats site for the period October 1988-September 2000.

  3. Application to transfer radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1992-01-01

    All waste described in this application has been, and will be, generated by LANL in support of the nuclear weapons test program at the NTS. All waste originates on the NTS. DOE Order 5820.2A states that low-level radioactive waste shall be disposed of at the site where it is generated, when practical. Since the waste is produced at the NTS, it is cost effective for LANL to dispose of the waste at the NTS

  4. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  5. Performance assessment for underground radioactive waste disposal systems

    International Nuclear Information System (INIS)

    1985-01-01

    A waste disposal system comprises a number of subsystems and components. The performance of most systems can be demonstrated only indirectly because of the long period that would be required to test them. This report gives special attention to performance assessment of subsystems within the total waste disposal system, and is an extension of an IAEA report on Safety Assessment for the Underground Disposal of Radioactive Wastes

  6. The view of the geotechnical engineering on the radioactive waste disposal

    International Nuclear Information System (INIS)

    Komada, Hiroya

    2004-01-01

    The state of radioactive waste disposal produced by the nuclear fuel cycle facilities and the future problems of geotechnical engineering are stated. Concept of classification of radioactive waste and their disposal, the present state of operating waste and TRU waste in the low level radioactive waste and the high level radioactive waste are explained. On the future problems, evaluation of ground water flow, long period estimation of natural phenomena, mixed earth with bentonite as a buffer and cement materials are discussed. The geological disposal of radioactive waste, which kept them at more than 200 m underground, has two important different points from the general geotechnical engineering such as a system covered inhomogeneous large space of natural geological features and very long time (some million year) considered. (S.Y.)

  7. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  8. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  9. Co-ordinated research and environmental surveillance programme related to sea disposal of radioactive waste

    International Nuclear Information System (INIS)

    1984-01-01

    Sea disposal operations of packaged low-level radioactive waste are carried out under the provisions of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, also referred to as the London Dumping Convention. The environmental impact of this disposal method is continuously kept under review, in particular within the IAEA which has provided the ''Definition of High-Level Radioactive Waste or Other High-Level Radioactive Matter Unsuitable for Dumping at Sea'' for the purpose of the Convention and within the OECD-NEA in the framework of its Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste. The NEA Co-Ordinated Research and Environmental Surveillance Programme (CRESP) is focussed on the actual North-East Atlantic dump site. Its objective is to increase the available scientific data base related to the oceanographic and biological characteristics of the dump site and elaborate a site specific model of the transfers of radionuclides to human populations. Future site suitability reviews, as periodically requested under the terms of the Multilateral Consultation and Surveillance Mechanism, will therefore be based on a more accurate and comprehensive scientific basis

  10. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    2007-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future

  11. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  12. Current practice of incineration of low-level institutional radioactive waste

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1981-02-01

    During 1972, 142 medical and academic institutions were surveyed to assess the current practice of incineration of low-level radioactive waste. This was one activity carried out by the University of Maryland as part of a contract with EG and G Idaho, Inc., to site a radioactive waste incineration system. Of those surveyed, 46 (approximately 32%) were presently incinerating some type of radioactive waste. All were using controlled-air, multistage incinerators. Incinerators were most often used to burn animal carcasses and other biological wastes (96%). The average size unit had a capacity of 113 kg/h. Disposal of liquid scintillation vials posed special problems; eight institutions incinerated full scintillation vials and five incinerated scintillation fluids in bulk form. Most institutions (87%) used the incinerator to dispose of other wastes in addition to radioactive wastes. About half (20) of the institutions incinerating radioactive wastes reported shortcomings in their incineration process; those most often mentioned were: problems with liquid scintillation wastes, ash removal, melting glass, and visible smoke. Frequently cited reasons for incinerating wastes were: less expensive than shipping for commercial shallow land burial, volume reduction, convenience, and closure of existing disposal sites

  13. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1980-01-01

    This compilation contains 4144 citations of foreign and domestic reports, journal articles, patents, conference proceedings, and books pertaining to radioactive waste processing and disposal. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  14. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  15. Preliminary criteria for shallow-land storage/disposal of low-level radioactive solid waste in an arid environment

    International Nuclear Information System (INIS)

    Shord, A.L.

    1979-09-01

    Preliminary criteria for shallow land storage/disposal of low level radioactive solid waste in an arid environment were developed. Criteria which address the establishment and operation of a storage/disposal facility for low-level radioactive solid wastes are discussed. These were developed from the following sources: (1) a literature review of solid waste burial; (2) a review of the regulations, standards, and codes pertinent to the burial of radioactive wastes; (3) on site experience; and (4) evaluation of existing burial grounds and practices

  16. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume V of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear energy research and the development, production, and testing of nuclear weapons at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives, which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for created (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the No Action Alternative, which includes only existing of approved waste management facilities, the alternatives for each of the waste-type configurations include Decentralized, Regionalized, and Centralized Alternatives for using existing and operating new waste management facilities. However, the siting, construction, and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  17. Radioactive waste storage facility and underground disposal method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Endo, Yoshihiro.

    1997-01-01

    A sealed container storage chamber is formed in underground rocks. A container storage pool is formed on the inner bottom of the sealed vessel storage chamber. A heat exchanger for cooling water and a recycling pump are disposed on an operation floor of the sealed vessel storage chamber. Radioactive wastes sealed vessels in which radioactive wastes are sealed are transferred from the ground to the sealed vessel storage chamber through a sealed vessel transferring shaft, and immersed in cooling water stored in the vessel storage pool. When after heat of the radioactive wastes is removed by the cooling water, the cooling water in the vessel storage pool is sucked up to the ground surface. After dismantling equipments, bentonite-type fillers are filled in the inside of the sealed vessel storage chamber, sealed vessel transferring shaft, air supplying shaft and air exhaustion shaft, and the radioactive waste-sealed vessels can be subjected stably to into underground disposal. (I.N.)

  18. State-of-the-art report on radioactive waste disposal

    International Nuclear Information System (INIS)

    Larsson, A.

    1989-01-01

    In view of the considerable work required to develop repositories for radioactive waste, an extensive international co-operation has evolved within the area. The work has also engaged the IAEA to a great extent. The Agency has published a number of reports, covering different aspects of waste disposal. Following a recommendation by its Technical Review Committee on Underground Disposal (TRCUD) the Agency will publish a ''state-of-the-art'' report on radioactive waste disposal. The report is still in the preparation stage. In this article the principal subjects of the future report are discussed

  19. Use of Multimedia for Enhancing Transparency in Radioactive Waste Disposal. Evaluations

    International Nuclear Information System (INIS)

    McNeish, Jerry; Avis, John; Freeze, Geoff; Miller, Debbie; Long, Lori

    2001-01-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste. The project is technically and politically complex, has multiple stakeholders, as well as schedule constraints. All of these factors contribute to a difficult environment in which to provide a transparent (clear and understandable) documentation of the analyses of the site. This paper describes the development and use of multimedia to present a summary of the results of the recent Total System Performance Assessment of the repository system in a transparent fashion, accessible to a variety of audiences. Transparency includes imparting a high level of understanding to the stakeholders, many of whom are not technically sophisticated in the nuances of radioactive waste disposal. The technical complexity of radioactive waste requires evaluation of uncertainties in the processes and rates that will occur in the disposal system in the future. Forecasting the performance of the system with models attempts to establish the limits of the possible performance outcomes of the disposal system. The forecasting is limited by available data and our current ability to assess what might happen to the disposal system through time. Coupled processes add uncertainty to the behavior of the system through time. The overall approach to developing the multimedia summary of the recent TSPA involved coordination of technical specialists, graphic specialists, multimedia experts, and technical editors. The ultimate product is contained on a single CD, with a single entry point, that allows the user full control in navigating through the information

  20. Use of Multimedia for Enhancing Transparency in Radioactive Waste Disposal. Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    McNeish, Jerry; Avis, John; Freeze, Geoff; Miller, Debbie [Duke Engineering and Services, Inc., Las Vegas, NV (United States); Long, Lori [Sean Lemons TRW, Inc, Albuquerque, NM (United States)

    2001-07-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste. The project is technically and politically complex, has multiple stakeholders, as well as schedule constraints. All of these factors contribute to a difficult environment in which to provide a transparent (clear and understandable) documentation of the analyses of the site. This paper describes the development and use of multimedia to present a summary of the results of the recent Total System Performance Assessment of the repository system in a transparent fashion, accessible to a variety of audiences. Transparency includes imparting a high level of understanding to the stakeholders, many of whom are not technically sophisticated in the nuances of radioactive waste disposal. The technical complexity of radioactive waste requires evaluation of uncertainties in the processes and rates that will occur in the disposal system in the future. Forecasting the performance of the system with models attempts to establish the limits of the possible performance outcomes of the disposal system. The forecasting is limited by available data and our current ability to assess what might happen to the disposal system through time. Coupled processes add uncertainty to the behavior of the system through time. The overall approach to developing the multimedia summary of the recent TSPA involved coordination of technical specialists, graphic specialists, multimedia experts, and technical editors. The ultimate product is contained on a single CD, with a single entry point, that allows the user full control in navigating through the information.

  1. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A.

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program

  2. Social and institutional evaluation report for Greater-Than-Class C Low-Level Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.L.; Lewis, B.E.; Turner, K.H.; Rozelle, M.A. [Dames and Moore, Denver, CO (United States)

    1993-10-01

    This report identifies and characterizes social and institutional issues that would be relevant to the siting, licensing, construction, closure, and postclosure of a Greater-Than-Class-C low-level radioactive waste (GTCC LLW) disposal facility. A historical perspective of high-level radioactive waste (HLW) and LLW disposal programs is provided as an overview of radioactive waste disposal and to support the recommendations and conclusions in the report. A characterization of each issue is provided to establish the basis for further evaluations. Where applicable, the regulatory requirements of 10 CFR 60 and 61 are incorporated in the issue characterizations. The issues are used to compare surface, intermediate depth, and deep geologic disposal alternatives. The evaluation establishes that social and institutional issues do not significantly discriminate among the disposal alternatives. Recommendations are provided for methods by which the issues could be considered throughout the lifecycle of a GTCC LLW disposal program.

  3. Development activities on shallow land disposal of solid radioactive waste. Progress report, January--December 1976

    International Nuclear Information System (INIS)

    1977-06-01

    Progress on projects focused on problems of shallow land burial of radioactively contaminated solid waste is summarized. Developments on a system to evaluate the containment adequacy of existing burial sites are described. Efforts to describe the environmental factors in monitoring the LASL disposal sites are discussed. The aim of a new program on radioactive waste burial technology is outlined

  4. Design and operational experience of low level radioactive waste disposal in the United Kingdom

    International Nuclear Information System (INIS)

    Grimwood, P. D.

    1997-01-01

    Low level radioactive wastes have been disposed of at the Drigg near-surface disposal site for over 30 years. These are carried out under a disposal authorization granted by the UK Environment Agency. This is augmented by a three tier comprehensive system of waste controls developed by BNFL involving wasteform specification, consignor and waste stream qualification and waste consignment verification. Until 1988 wastes were disposed of into trench facilities. However, based on a series of integrated optioneering studies, new arrangements have since been brought into operation. Central to these is a wasteform specification based principally on high force compaction of wastes, grouting within 20 m 3 steel overpack containers to essentially eliminate associated voidage and subsequent disposal in concrete lined vaults. These arrangements ensure efficient utilisation of the Drigg site capacity and a cost-effective disposal concept which meets both national and international standards. (author). 7 figs

  5. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  6. Engineering solutions to the management of solid radioactive waste

    International Nuclear Information System (INIS)

    1991-01-01

    The management of radioactive waste, its safe handling and ultimate disposal, is of vital concern to engineers in the nuclear industry. The international conference 'Engineering Solutions to the Management of Solid Radioactive Waste', organized by the Institution of Mechanical Engineers and held in Manchester in November 1991, provided a forum for the discussion and comparison of the different methods of waste management used in Europe and America. Papers presented and discussed included: the interaction between the design of containers for low level radioactive waste and the design of a deep repository, commercial low level waste disposal sites in the United States, and the development of radioactive waste monitoring systems at the Sellafield reprocessing complex. This volume is a collection of 22 papers presented at the conference. All are indexed separately. (author)

  7. Air-tight disposing device for solid radioactive waste

    International Nuclear Information System (INIS)

    Aoyama, Saburo.

    1976-01-01

    Object: In a construction for air-tightly connecting radioactive material handling equipment with a radioactive waste container through a vinyl bag, to use a multi-stage expansion tube to introduce the radioactive waste into the waste container in safe and positive manner. Structure: During normal operation in the radioactive material handling equipment, a multi-stage expansion cylinder is extended by operation of a remote shaft to suitably throw the waste in a state with a vinyl bag protected, whereas when the waste is disposed away from the equipment, the multi-stage expansion cylinder is contracted and received into a holder, and the vinyl bag is heated and sealed at a given position and cut, after which a cover of an outer container for disposal is closed and carried out. The vinyl bag remained on the side of the holder after sealed and cut is put into the waste container after a fresh vinyl bag, in which another waste container is received, has been secured to the holder. (Taniai, N.)

  8. A preliminary analysis of the risk of transporting nuclear waste to potential candidate commercial repository sites

    International Nuclear Information System (INIS)

    Madsen, M.M.

    1984-01-01

    In accordance with the provisions of the Nuclear Waste Policy Act of 1982, environmental assessments for potential candidate sites are required to provide a basis for selection of the first site for disposal of commercial radioactive waste in deep geologic repositories. A preliminary analysis of the impacts of transportation for each of the five potential sites will be described. Transportation was assumed to be entirely by truck or entirely by rail in order to obtain bounding impacts. This paper presents both radiological and nonradiological risks for the once-through fuel cycle

  9. Considerations for closure of low-level radioactive waste engineered disposal facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Proper stabilization and closure of low-level radioactive waste disposal facilities require detailed planning during the early stages of facility development. This report provides considerations for host States, compact regions, and unaffiliated States on stabilization and closure of engineered low-level radioactive waste and mixed waste disposal facilities. A time line for planning closure activities, which identifies closure considerations to be addressed during various stages of a facility's development, is presented. Current Federal regulatory requirements and guidance for closure and post-closure are outlined. Significant differences between host State and Federal closure requirements are identified. Design features used as stabilization measures that support closure, such as waste forms and containers, backfill materials, engineered barrier systems, and site drainage systems, are described. These design features are identified and evaluated in terms of how they promote long-term site stability by minimizing water infiltration, controlling subsidence and surface erosion, and deterring intrusion. Design and construction features critical to successful closure are presented for covers and site drainage. General considerations for stabilization and closure operations are introduced. The role of performance and environmental monitoring during closure is described

  10. Survey of microbiological effects in low-level radioactive waste disposed of to land

    International Nuclear Information System (INIS)

    McGahan, D.J.

    1987-01-01

    An evaluation of published literature was mounted to determine the current position of research into microbiological effects in low-level radioactive waste disposal sites and to assess the need for further research. It is concluded from the survey that the microbial activity present in domestic landfills also occurs in shallow land burial low-level radioactive waste disposal sites. The microbial activity results in the release of tritium as tritiated methane to the atmosphere and tritiated components to the leachate. Carbon-14 migration is also enhanced. It also accelerates the corrosion of steel and concrete used to contain the wastes. There is little evidence for enhanced migration of radionuclides as a result of their incorporation in bacteria but there is considerable evidence for enhancement resulting from the presence of complexing agents (such as ethylenediamine-tetraacetic acid and tributyl phosphate) in the waste. Research in this field has been observed to be very active in the United States. Its objective is to predict with more certainty the important parameters for future low-level radioactive waste site designs. Quantitative prediction of microbial effects and their magnitude is not easy to deduce from the published literature, and new site designs will differ markedly from those that have been in operation over the last thirty years. (author)

  11. Radioactive waste sea disposal practices and the need for international regulations

    International Nuclear Information System (INIS)

    Reyners, P.

    1975-01-01

    Radioactive waste is mainly disposed of as liquid releases in coastal waters or as solid wastes dumped in the high seas. The Geneva Convention on the high seas which lays down that Contracting States should not, by unilateral measures, pollute the seas by dumping radioactive wastes, and Article 37 of the Euratom Treaty on the Commission's control over radioactive waste disposal plans by Member States constitute the principal legal basis for such activities at international level. The competent international organisations, IAEA and the OECD Nuclear Energy Agency (NEA), have both made detailed studies on the scientific, technical and legal aspects of sea disposal of radioactive wastes. Following consideration of the possibilities of waste dumping in the Atlantic and the related hazard assessment, at its Member State's request, NEA in 1967 undertook an initial experimental packaged waste disposal operation in the high seas. This operation's technical success encouraged Member States to undertake further operations in subsequent years under NEA international control. At present, in view of the entry into force of the London Convention on prevention of marine pollution by dumping of wastes, it seems desirable that the international character of such operations be preserved and all countries concerned be encouraged to adopt an international code of practice for sea disposal of radioactive wastes [fr

  12. Summary review of rock mechanics workshop on radioactive waste disposal

    International Nuclear Information System (INIS)

    Carter, N.L.; Goodman, R.E.; Merrill, R.H.

    1977-01-01

    Presentations, critiques and recommendations for the disposal of commercial radioactive waste based upon an analysis of the information presented at the Rock Mechanics Review/Workshop, Denver, Colorado, December 16-17, 1976 are summarized. The workshop, comprised of both formal and informal sessions, with about 50 participants, was hosted by RE/SPEC Inc. and Dr. Paul F. Gnirk, President and was sponsored by the Office of Waste Isolation (OWI), led by Dr. William C. McClain. The panel of reviewers, responsible for this report, consisted of Neville L. Carter, Richard E. Goodman, and Robert H. Merrill. These panel members were selected not only on the basis of their experience in various aspects of Rock Mechanics and Mining Engineering but also because they have had no previous active participation in problems concerning disposal of radioactive waste. By way of a general comment, the review panel was very favorably impressed with the Rock Mechanics research efforts, supported by OWI, on this problem and with the level of technical competence of those carrying out the research. Despite the rather preliminary nature of the results presented and the youth of the program itself, it is clear that the essential ingredients for a successful program are at hand, especially as regards disposal in natural salt formations. These include laboratory studies of appropriate rock deformation, numerical analyses of thermal and mechanical stresses around openings, and in situ field tests. We shall comment on each of these three major areas in turn. We shall then offer recommendations for their improvement, and, finally, we shall make more general recommendations for future considerations of the OWI radioactive waste disposal program

  13. Modularized system for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Mallory, C.W.; DiSibio, R.

    1985-01-01

    A modularized system for the disposal of low-level radioactive waste is presented that attempts to overcome the past problems with shallow land burial and gain public acceptance. All waste received at the disposal site is packaged into reinforced concrete modules which are filled with grout, covered and sealed. The hexagonal shape modules are placed in a closely packed array in a disposal unit. The structural stability provided by the modules allow a protective cover constructed of natural materials to be installed, and the disposal units are decommissioned as they are filled. The modules are designed to be recoverable in the event remedial action is necessary. The cost of disposal with a facility of this type is comparable to current prices of shallow land burial facilities. The system is intended to address the needs of generators, regulators, communities, elected officials, licensees and future generations

  14. Active waste disposal monitoring at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-10-01

    This report describes an active waste disposal monitoring system proposed to be installed beneath the low-level radioactive disposal site at the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory, Idaho. The monitoring instruments will be installed while the waste is being disposed. Instruments will be located adjacent to and immediately beneath the disposal area within the unsaturated zone to provide early warning of contaminant movement before contaminants reach the Snake River Plain Aquifer. This study determined the optimum sampling techniques using existing monitoring equipment. Monitoring devices were chosen that provide long-term data for moisture content, movement of gamma-emitting nuclides, and gas concentrations in the waste. The devices will allow leachate collection, pore-water collection, collection of gasses, and access for drilling through and beneath the waste at a later time. The optimum monitoring design includes gas sampling devices above, within, and below the waste. Samples will be collected for methane, tritium, carbon dioxide, oxygen, and volatile organic compounds. Access tubes will be utilized to define the redistribution of radionuclides within, above, and below the waste over time and to define moisture content changes within the waste using spectral and neutron logging, respectively. Tracers will be placed within the cover material and within waste containers to estimate transport times by conservative chemical tracers. Monitoring the vadose zone below, within, and adjacent to waste while it is being buried is a viable monitoring option. 12 refs., 16 figs., 1 tab

  15. The social and special effects of siting a low-level radioactive waste disposal facility in rural Texas

    International Nuclear Information System (INIS)

    Murdock, S.H.; Hamm, R.R.

    1987-01-01

    As part of its assessment of the impacts of a low-level radioactive waste disposal facility in Hudspeth County, the Texas Low-Level Radioactive Waste Disposal Authority (TLLRWDA) sponsored an independent study of the social and special impacts of the facility. These impacts include ''standard'' social impacts (such as impacts on social structures and attitudes, values and perceptions and ''special'' social impacts (such as fear, anxiety, concerns related to equity, the health of future generations, etc.). This paper reports the results of this study. Personal interviews with 71 community leaders and 96 randomly selected county residents were conducted during the summer of 1986. The results suggest that the major concern relates to the contamination of ground water, but that suspicion about the equity of the siting process and about the safe management of wastes is extensive, even among the most knowledgeable respondents. Mitigation concerns center on health and safety issues for residents and on potential forms of mitigation for governmental jurisdictions for leaders. Responses were similar for leaders and residents and for persons in different parts of the county

  16. Operation and management plan of Rokkasho Low Level Radioactive Waste Disposal Center

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Z.; Tomozawa, T.; Mahara, Y.; Iimura, H. [Japan Nuclear Fuel Ltd., Tokyo (Japan). Radioactive Waste Management Dept.

    1993-12-31

    Japan Nuclear Fuel Limited (JNFL) started the operation of the Rokkasho Low-Level Radioactive Waste Disposal Center in December, 1992. This center is located at Rokkasho Village in Aomori Prefecture. The facility in this center will provide for the disposal of 40,000 m{sup 3} of the low-level radioactive waste (LLW) produced from domestic nuclear power stations. The facility will receive between 5,000 m{sup 3} and 10,000 m{sup 3} of waste every year. Strict and efficient institutional controls, such as the monitoring of the environment and management of the site, is required for about 300 years. This paper provides an outline of the LLW burial operation and management program at the disposal facility. The facility is located 14--19 meters below the ground surface in the hollowed out Takahoko Formation.

  17. Maintenance of records for radioactive waste disposal

    International Nuclear Information System (INIS)

    1999-07-01

    The safety of the radioactive waste disposal concepts does not rely on long term institutional arrangements. However, future generations may need information related to repositories and the wastes confined in them. The potentially needed information therefore has to be identified and collected. A suitable system for the preservation of that information needs to be created as a part of the disposal concept beginning with the planning phase. The IAEA has prepared this technical report to respond to the needs of Member States having repositories or involved in or considering the development of repositories. In many countries policies and systems for record keeping and maintenance of information related to disposal are the subjects of current interest. This report describes the requirements for presenting information about repositories for radioactive waste including long lived and transuranic waste and spent fuel if it is declared as a waste. The report discussed topics of identification, transfer and long term retention of high level information pertaining to the repository in a records management system (RMS) for retrieval if it becomes necessary in the future

  18. Radioactive waste material disposal

    Science.gov (United States)

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  19. Regulations for the disposal of radioactive waste in the Konrad repository - 59105

    International Nuclear Information System (INIS)

    Jung, Hagen G.; Bandt, Gabriele

    2012-01-01

    In Germany low / medium level waste, which is classified here as radioactive waste with negligible heat generation, will be disposed of in the Konrad underground repository. The construction and the operation of this nuclear facility required authorization by different fields of law, i.e., by nuclear law, mining law and water law. Whereas the nuclear law considers solely radiological aspects, the relevant permit issued according to the water law considers the impact of radioactive as well as non-radioactive harmful substances. The Federal Office for Radiation Protection (BfS) as operator of the repository and permit holder has (a) to record the disposed of radioactive and non-radioactive harmful substances and (b) to balance them. To meet these requirements BfS has developed a concept, which led to a site specific solution. Threshold values were defined for recording and for balancing the harmful substances. It had to be verified that by disposal of radioactive waste packages according to these values an adverse effect on the near-surface groundwater can be excluded. The Lower Saxony Water Management, Coastal Protection and Nature Conservation Agency (NLWKN) as the responsible water law regulatory authority approved the operator's concept as appropriate to comply with the requirements of the Water Law Permit. Nonetheless, collateral clauses were imposed to assure this. (authors)

  20. Prediction and assessment of environmental impacts of Guangdong low-and-intermediate level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Huang Yawen

    1996-01-01

    Guangdong Low-and Intermediate Level Radioactive Waste Disposal Site is located 5-7 km northeast to the Daya Bay Nuclear Power Plant. It is in a hilly area with strongly weathered light metamorphic quartz siltstone. The groundwater is 2 m below the repository bottom. The disposal unit is a U-shape concrete structure with drainage and water collecting system at the bottom. The designed cover is a multi-layer structure with functions of preventing from water infiltration, animal and plant intrusion. It is assumed that the engineered barriers would be effective to avoid waste immersion by surface water and groundwater within the first 100 years after closure. After 100 years, the engineered barriers would fail gradually. Radionuclides may release from the disposal unite. Some will enter the nearby stream, some will flow into the Daya Bay, and some will transport to groundwater through geologic media