WorldWideScience

Sample records for commercial office building

  1. A cash flow model of development activity and the scope for energy savings. [Commercial office buildings

    Leifer, D [Queensland Univ., St. Lucia (AU). Dept. of Architecture

    1991-01-01

    When proposing energy saving measures to the developers of large commercial office projects, it is necessary to appreciate what the developers' goals and perceptions are. This paper looks at a simple cash-flow model of development activity, and illustrates the potential for energy savings with reference to some data from two major Australian cities. This data was collected between July and November 1989 by surveys which were carried out on the basic design of 26 of the tallest Brisbane commercial office buildings. This survey followed an extensive investigation into the premises needs of modern office building tenants in Brisbane, in which over 200 CBD tenants were questioned. This investigation showed that there was an increasing need for air conditioning capacity and electrical power; greater tendencies for ''after hours'' office work; a desire for larger floor-plates to cater for expanding tenant organizations, and the emergence of ''professional tenants''. These observations have been documented elsewhere in the orbit reports amongst others. The buildings surveyed represent 60% of the estimated Brisbane central business district (CBD) office stock of area 1,256,000 m{sup 2}. (author).

  2. Valuation of Green Commercial Office Building: A Preliminary Study of Malaysian Valuers' Insight

    Tuti Haryati Jasimin; Hishamuddin Mohd Ali

    2015-01-01

    Malaysia's green building development is gaining momentum and green buildings have become a key focus area, especially within the commercial sector with the encouragement of government legislation and policy. Due to the emerging awareness among the market players' views of the benefits associated with the ownership of green buildings in Malaysia, there is a need for valuers to incorporate consideration of sustainability into their assessments of property market value to e...

  3. Understanding the potential of facilities managers to be advocates for energy efficiency retrofits in mid-tier commercial office buildings

    Curtis, Jim; Walton, Andrea; Dodd, Michael

    2017-01-01

    Realising energy efficiency opportunities in new commercial office buildings is an easier task than retrofitting older, mid-tier building stock. As a result, a number of government programs aim to support retrofits by offering grants, upgrades, and energy audits to facilitate energy efficiency opportunities. This study reports on a state government program in Victoria, Australia, where the uptake of such offerings was lower than expected, prompting the program team to consider whether targeting facilities managers (FMs), rather than building owners, might be a better way of delivering the program. The influences and practices of FMs that impact on their ability to be advocates for energy efficiency were explored. The results revealed that complex building ownership arrangements, poor communication skills, isolation from key decision making processes, a lack of credible business cases and information, split incentives, and the prospect of business disruptions can all impact on FMs’ ability to drive organizational change. Future program efforts should continue to interrogate the social context of retrofits in mid-tier buildings, including other influences and influencers beyond FMs, and adapt accordingly. - Highlights: • Energy efficiency retrofits of older commercial buildings can be a challenge. • Government support for retrofits is not always taken up by building owners. • Targeting facilities managers (FMs) to encourage retrofits is proposed. • FMs’ ability to be advocates for energy efficiency is constrained. • Government offerings need to better fit with the realities of the problem.

  4. Commercial Buildings Characteristics, 1992

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  5. Financing medical office buildings.

    Blake, J W

    1995-01-01

    This article discusses financing medical office buildings. In particular, financing and ownership options from a not-for-profit health care system perspective are reviewed, including use of tax-exempt debt, taxable debt, limited partnerships, sale, and real estate investment trusts (REITs).

  6. Characterization of commercial building appliances. Final report

    Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

    1993-08-01

    This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

  7. Tropical Zero Energy Office Building

    Reimann, Gregers Peter; Kristensen, Poul Erik

    2006-01-01

    The new headquarter for Pusat Tenaga Malaysia is designed to be a Zero Emission Office Building (ZEO). A full range of passive and active energy efficiency measures are implemented such that the building will need no more electricity than what can be produced via its own Building Integrated PV...... lighting. These measures include the use of high efficient lighting controlled according to demand, high efficiency pumps and fans, a high efficiency chiller, and use of energy efficient office equipment. The buildings PV system is connected to the grid. Solar electricity is exported to the grid during...... of 24 – 26 oC can be maintained throughout the office hours. The PV roof of the building serves multiple purposes. During daytime, the roof becomes the powerplant of the building, and during nighttime, the PV roof becomes the “cooling tower” for the chiller. The roof will be covered by a thin water film...

  8. Residential and commercial buildings

    Svendsen, Svend; Furbo, S.

    2012-11-15

    Low-energy buildings can make a major contribution to general sustainable development by providing a solution to problems related to the use of fossil fuels. The EPBD (EU Directive on Energy Performance of Buildings) requirements that by 2020 new building shall be constructed to use nearly zero energy, and no fossil fuels, can be accomplished by combining low-energy buildings with renewable energy via low-temperature district heating in cities and suburbs, and via heat pumps for low-density settlements. Based on experience with passive houses, low-energy buildings meeting the energy performance requirements of 2020 are expected to cost only a few percent more than conventional buildings. The very large and rapid changes needed in the energy performance of buildings is a challenge for the building sector, but one that can be overcome by better methods of developing products and designing, constructing and operating buildings. Simulation-based analysis and optimisation, and considerations of durability, will be important here. Building may thus be transformed from an experience-based sector to one based on knowledge and research, with high-quality sustainable products and good business opportunities. (Author)

  9. Challenges in Commercial Buildings | Buildings | NREL

    systems Assessing the energy and economic impacts of various technologies, giving priority to those that standardized language for commercial building energy audit data that can be used by software developers to exchange data between audit tools, and can be required by building owners and audit program managers to

  10. Energy use in office buildings

    None

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  11. Commercial building energy use in six cities in Southern China

    Xu, Peng; Huang, Joe; Shen, Pengyuan; Ma, Xiaowen; Gao, Xuefei; Xu, Qiaolin; Jiang, Han; Xiang, Yong

    2013-01-01

    With China’s continuing economic growth, the percentage of government offices and large commercial buildings has increased tremendously; thus, the impact of their energy usage has grown drastically. In this survey, a database with more than 400 buildings was created and analyzed. We researched energy consumption by region, building type, building size and vintage, and we determined the total energy use and performed end use breakdowns of typical buildings in six cities in southern China. The statistical analysis shows that, on average, the annual building electricity use ranged from 50 to 100 kW h/m 2 for office buildings, 120 to 250 kW h/m 2 for shopping malls and hotels, and below 40 kW h/m 2 for education facilities. Building size has no direct correlation with building energy intensity. Although modern commercial buildings built in the 1990s and 2000s did not use more energy on average than buildings built previously, the highest electricity intensive modern buildings used much more energy than those built prior to 1990. Commercial buildings in China used less energy than buildings in equivalent weather locations in the US and about the same amount of energy as buildings in India. However, commercial buildings in China provide comparatively less thermal comfort than buildings in comparable US climates. - Highlights: ► The worst modern buildings use more energy than the worst old buildings. ► Government office buildings did not use more energy than private office buildings. ► Commercial buildings in China use less energy than buildings in the US. ► Modern commercial buildings don't use more energy than old buildings.

  12. Daylight utilisation in office buildings

    Christoffersen, Jens

    This Ph.D. thesis presents the qualitative and quantitative consequences of full-scale measurements on two daylighting systems, light shelf and Venetian blinds. The systems were investigated to assess their ability to increase daylight penetration and improve daylight distribution in the interior...... the benefits and difficulties regarding use of daylight in office buildings, but it is hoped that the report will provide daylight conscious building design in forthcoming non-domestic buil dings....

  13. California commercial building energy benchmarking

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the

  14. Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)

    2013-04-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  15. Consumer Central Energy Flexibility in Office Buildings

    Billanes, Joy Dalmacio; Ma, Zheng; Jørgensen, Bo Nørregaard

    2017-01-01

    Energy flexibility in buildings will play an important role in the smart energy system. Office buildings have more potentials to provide energy flexibility to the grid compared to other types of buildings, due to the existing building management, control systems and large energy consumption....... Consumers in office buildings (building owners/managers and occupants) take a main role for adopting and engaging in building energy flexibility. In this paper provides a systematic review of consumer central energy flexibility in office buildings with the discussion of social, technical and business...... can boost energy flexibility in the office buildings....

  16. 11 CFR 300.35 - Office buildings.

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Office buildings. 300.35 Section 300.35 Federal... FUNDS State, District, and Local Party Committees and Organizations § 300.35 Office buildings. (a) General provision. For the purchase or construction of its office building, a State or local party...

  17. 2013 Building Technologies Office Program Peer Review Report

    none,

    2013-11-01

    The 2013 Building Technologies Office Program Peer Review Report summarizes the results of the 2013 Building Technologies Office (BTO) peer review, which was held in Washington, D.C., on April 2–4, 2013. The review was attended by over 300 participants and included presentations on 59 BTO-funded projects: 29 from BTO’s Emerging Technologies Program, 20 from the Commercial Buildings Integration Program, 6 from the Residential Buildings Integration Program, and 4 from the Building Energy Codes Program. This report summarizes the scores and comments provided by the independent reviewers for each project.

  18. High-performance commercial building systems

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  19. Commercial Buildings Energy Performance within Context

    Lazarova-Molnar, Sanja; Kjærgaard, Mikkel Baun; Shaker, Hamid Reza

    2015-01-01

    Existing commercial buildings represent a challenge in the energy efficiency domain. Energy efficiency of a building, very often equalized to a building’s performance should not be observed as a standalone issue. For commercial buildings, energy efficiency needs to be observed and assessed within...

  20. Solar-Heated Office Building -- Dallas, Texas

    1982-01-01

    Solar heating system designed to supply 87 percent of space heating and 100 percent of potable hot-water needs of large office building in Dallas, Texas. Unique feature of array serves as roofing over office lobby and gives building attractive triangular appearance. Report includes basic system drawings, test data, operating procedures, and maintenance instructions.

  1. Green commercial building insurance in Malaysia

    Yang, Yu Xin Ou; Chew, Boon Cheong; Loo, Heoy Shin; Tan, Lay Hong

    2017-03-01

    Green building construction is growing tremendously globally even in Malaysia. Currently, there are approximate 636 buildings have registered and to be certified with Green Building Index. Among these buildings, 45 buildings have already fulfilled the requirements and fully certified. The other buildings still under provisional certification stage. Malaysia had adopted Green Building Index in 2009 to support a move to promote green building concept. Malaysia starts to move towards green building because Malaysian construction and building industry realizes that both energy consumed and waste produced are reduced without irreversible impacts to ecosystems. Consequently, insurance companies such as Fireman's Fund from America has started the green building insurance policies for their green building in the year of 2006, while Malaysia still remain the coverage for green buildings using conventional property insurance. There are lacks of efforts to be seen from insurance companies to propose green building insurance for these green buildings. There are a few factors which can take into consideration for insurance companies to start the very first green building insurance in Malaysia. Although there are challenges, some efficient strategies have been identified to overcome the problems. The methods used in this research topic is qualitative research. The results obtained shows that green commercial building insurance has a huge business opportunity in Malaysia because the number of green commercial buildings are increasing tremendously in Malaysia. It is a favor to implement green building insurance in Malaysia. Furthermore, insurance companies can consider to add in extra coverage in standard building policy to provide extra protection for non-certified green buildings which have the intention to rebuilt in green when damage happens. Generally, it is very important to introduce green commercial buildings insurance into Malaysia so that all of the green commercial

  2. ISO 50001 for US Commercial Buildings - Current Status and Opportunities

    Liu, Jingjing; Sheaffer, Paul

    2017-12-01

    ''ISO 50001: 2011 Energy management systems – Requirements with guidance for use'' is a voluntary International Standard which provides organizations a proven framework to manage energy and continuously improve their energy performance. Implementing ISO 50001 in the commercial building sector has its unique opportunities and challenges in comparison with the industrial sector. The energy footprint of a portfolio of commercial buildings can be just as significant as a large industrial facility in comparison. There are many energy-saving opportunities in commercial buildings that can be addressed without capital investments, and the perceived risks for making energy improvements can be lower than in the industrial sector. In addition, the energy-consuming systems in commercial buildings are limited in types and have many similarities across buildings, which makes it much easier to standardize many ISO 50001 required processes, 5 procedures and documents to simplify implementation. There are also some sector-unique challenges, such as less familiar with ISO systems and the certification process. Another challenge arises from the complexity in some buildings’ ownership, tenancy, and O&M responsibilities. This whitepaper discusses these opportunities and issues in detail. The paper also recommends the characteristics of organizations in the commercial building sector that can benefit the most from adopting the ISO 50001 standard – namely the “suitable market”. Eight segments (education, food sales, retail, inpatient health care, hospitality, office buildings, laboratories and data centers) within the commercial building sector are highlighted.

  3. Project materials [Commercial High Performance Buildings Project

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  4. 2017 Building Technologies Office Peer Review Report

    None, None

    2017-11-01

    The 2017 Building Technologies Office Peer Review Report summarizes the feedback submitted by reviewers for the 109 Building Technologies Office (BTO) projects presented at the 2017 BTO Peer Review. The report presents an overview of the goals and activities under each technology program area, a summary of project scores for each program, and a brief analysis of general evaluation trends within each program area or its constituent subprograms.

  5. Advanced Energy Retrofit Guide Office Buildings

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  6. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  7. Commercial Building Partnership General Merchandise Energy Savings Overview

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  8. Utilizing Commercial Real Estate Owner and Investor Data to Analyze the Financial Performance of Energy Efficient, High-Performance Office Buildings

    Cloutier, Deborah [JDM Associates, Falls Church, VA (United States); Hosseini, Farshid [JDM Associates, Falls Church, VA (United States); White, Andrew [JDM Associates, Falls Church, VA (United States)

    2017-05-01

    Evidence has shown that owning and operating energy-efficient, high-performance, “green” properties results in multiple benefits including lower utility bills, higher rents, improved occupancy, and greater net operating income. However, it is difficult to isolate and control moderating factors to identify the specific drivers behind improved financial performance and value to investors that results from sustainability in real estate. DOE is interested in facilitating deeper investigation of the correlation between energy efficiency and financial performance, reducing data acquisition and matching challenges, and developing a stronger understanding of how sustainable design and energy efficiency impact value. DOE commissioned this pilot study to test the logistical and empirical procedures required to establish a Commercial Real Estate Data Aggregation & Trends Analysis lab, determine the potential benefits available through the lab, and contribute to the existing body of evidence in this field.

  9. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  10. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-01-01

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards

  11. Energy efficiency evaluation of hospital building office

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  12. Energy efficiency evaluation of hospital building office

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S.A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings. (paper)

  13. Radical Sustainable Innovation of office buildings

    Koch, Christian; Berker, Thomas; Koch-Ørvad, Nina

    2017-01-01

    by high degrees of newness in the entire life cycle. RSI should offer significant enhancements of known benefits, entirely new benefits, or substantial cost reductions, leading to the transformation of existing markets, the creation of sustainable growth, and global sustainability. Thus, if buildings were....../could be radically new. How to evaluate radicality is a major challenge. It is tentatively proposed, to use standards for sustainable office buildings. Standards are developed to accelerate the sustainable development but has to some extent come to constrain possibilities of radical innovation. As the criteria...... of newness is incorporated in standards, going beyond them, could be viewed as radical. Empirically a selection of international cases of office buildings with very high scores of BREEAM, LEED and DGNB are examined. Six selected cases were analysed more in detail, one of them, Geelens...

  14. Commercial Building Energy Saver: An energy retrofit analysis toolkit

    Hong, Tianzhen; Piette, Mary Ann; Chen, Yixing; Lee, Sang Hoon; Taylor-Lange, Sarah C.; Zhang, Rongpeng; Sun, Kaiyu; Price, Phillip

    2015-01-01

    Highlights: • Commercial Building Energy Saver is a powerful toolkit for energy retrofit analysis. • CBES provides benchmarking, load shape analysis, and model-based retrofit assessment. • CBES covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • CBES includes a web app, API, and a database of energy efficiency performance. • CBES API can be extended and integrated with third party energy software tools. - Abstract: Small commercial buildings in the United States consume 47% of the total primary energy of the buildings sector. Retrofitting small and medium commercial buildings poses a huge challenge for owners because they usually lack the expertise and resources to identify and evaluate cost-effective energy retrofit strategies. This paper presents the Commercial Building Energy Saver (CBES), an energy retrofit analysis toolkit, which calculates the energy use of a building, identifies and evaluates retrofit measures in terms of energy savings, energy cost savings and payback. The CBES Toolkit includes a web app (APP) for end users and the CBES Application Programming Interface (API) for integrating CBES with other energy software tools. The toolkit provides a rich set of features including: (1) Energy Benchmarking providing an Energy Star score, (2) Load Shape Analysis to identify potential building operation improvements, (3) Preliminary Retrofit Analysis which uses a custom developed pre-simulated database and, (4) Detailed Retrofit Analysis which utilizes real-time EnergyPlus simulations. CBES includes 100 configurable energy conservation measures (ECMs) that encompass IAQ, technical performance and cost data, for assessing 7 different prototype buildings in 16 climate zones in California and 6 vintages. A case study of a small office building demonstrates the use of the toolkit for retrofit analysis. The development of CBES provides a new contribution to the field by providing a straightforward and uncomplicated decision

  15. Commercial Building Partnerships Replication and Diffusion

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  16. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  17. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Yazdanian, Mehry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2009-10-01

    Windows play a significant role in commercial buildings targeting the goal of net zero energy. This report summarizes research methodology and findings in evaluating the energy impact of windows technologies for commercial buildings. The large office prototypical building, chosen from the DOE commercial building benchmarks, was used as the baseline model which met the prescriptive requirements of ASHRAE Standard 90.1-2004. The building simulations were performed with EnergyPlus and TMY3 weather data for five typical US climates to calculate the energy savings potentials of six windows technologies when compared with the ASHRAE 90.1-2004 baseline windows. The six windows cover existing, new, and emerging technologies, including ASHRAE 189.1 baseline windows, triple pane low-e windows, clear and tinted double pane highly insulating low-e windows, electrochromic (EC) windows, and highly insulating EC windows representing the hypothetically feasible optimum windows. The existing stocks based on average commercial windows sales are included in the analysis for benchmarking purposes.

  18. Office Rental Determinants in WUSE Commercial District of Abuja ...

    This paper examines the determinants of office rents in Wuse commercial district of Abuja, Nigeria. Primary and secondary data were utilized for the study. Primary data obtained for the study include office rental levels and office space data in the study area for the period between 2001 and 2012. Secondary data obtained ...

  19. 76 FR 63913 - Commercial Building Workforce Job/Task Analyses

    2011-10-14

    ... were developed for the following six job classifications: Commercial Building Energy Auditor.... Workshops were held for each of the following job classifications: Commercial Building Energy Auditor... field (e.g., commercial building energy auditor, commercial building energy modeler, commissioning/retro...

  20. Using DOE Commercial Reference Buildings for Simulation Studies: Preprint

    Field, K.; Deru, M.; Studer, D.

    2010-08-01

    The U.S. Department of Energy developed 256 EnergyPlus models for use in studies that aim to characterize about 70% of the U.S. commercial building stock. Sixteen building types - including restaurants, health care, schools, offices, supermarkets, retail, lodging, and warehouses - are modeled across 16 cities to represent the diversity of U.S. climate zones. Weighting factors have been developed to combine the models in proportions similar to those of the McGraw-Hill Construction Projects Starts Database for 2003-2007. This paper reviews the development and contents of these models and their applications in simulation studies.

  1. 78 FR 69839 - Building Technologies Office Prioritization Tool

    2013-11-21

    ... standards and building codes to ensure energy savings within buildings. BTO has developed a new technology... DEPARTMENT OF ENERGY Building Technologies Office Prioritization Tool AGENCY: Office of Energy....S. Department of Energy's (DOE) Building Technologies Office (BTO) developed the Prioritization Tool...

  2. Commercial Lighting Solutions Webtool Peer Review Report, Office Solutions

    Beeson, Tracy A.; Jones, Carol C.

    2010-02-01

    The Commercial Lighting Solutions (CLS) project directly supports the U.S. Department of Energy’s Commercial Building Energy Alliance efforts to design high performance buildings. CLS creates energy efficient best practice lighting designs for widespread use, and they are made available to users via an interactive webtool that both educates and guides the end user through the application of the Lighting Solutions. This report summarizes the peer review of the CLS webtool for offices. The methodology for the peer review process included data collection (stakeholder input), analysis of the comments, and organization of the input into categories for prioritization of the comments against a set of criteria. Based on this process, recommendations were developed for the release of version 2.0 of the webtool at the Lightfair conference in Las Vegas in May 2010. The report provides a list of the top ten most significant and relevant improvements that will be made within the webtool for version 2.0 as well as appendices containing the comments and short-term priorities in additional detail. Peer review comments that are considered high priority by the reviewers and the CLS team but cannot be completed for Version 2.0 are listed as long-term recommendations.

  3. 2016 Building Technologies Office Peer Review Report

    Building Technologies Office

    2016-12-01

    The 2016 Building Technologies Office Peer Review Report summarizes the feedback submitted by reviewers of the 67 BTO projects presented at the 2016 BTO Peer Review. The report presents an overview of the goals and activities under each technology program area, a summary of project scores for each program, and a brief analysis of general evaluation trends within each program area or its constituent subprograms.

  4. Commercial Buildings Partnerships - Overview of Higher education projects

    Parrish, Kristen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-02-01

    The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems – including some considered too costly or technologically challenging – and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions. CBP design goals aimed to achieve 50 percent energy savings compared to ANSI/ASHRAE/IES Standard 90.1-2004 for new construction, while retrofits are designed to consume at least 30 percent less energy than either Standard 90.1-2004 or current consumption. After construction and commissioning of the project, laboratory staff continued to work with partners to collect and analyze data for verification of the actual energy reduction. CBP projects represent diverse building types in commercial real estate, including lodging, grocery, retail, higher education, office, and warehouse/storage facilities. Partners also commit to replicating low-energy technologies and strategies from their CBP projects throughout their building portfolios. As a result of CBP projects, five sector overviews (Lodging, Food Sales, General Merchandise, Higher Education, Offices) were created to capture successful strategies and recommended energy efficiency measures that could broadly be applied across these sectors. These overviews are supplemented with individual case studies providing specific details on the decision criteria, modeling results, and lessons learned on specific projects. Sector overviews and CBP case studies will also be updated to reflect verified data and replication strategies as they become available.

  5. Commercializing Government-sponsored Innovations: Twelve Successful Buildings Case Studies

    Brown, M. A.; Berry, L. G.; Goel, R. K.

    1989-01-01

    This report examines the commercialization and use of R and D results funded by DOE's Office of Buildings and Community Systems (OBCS), an office that is dedicated to improving the energy efficiency of the nation's buildings. Three goals guided the research described in this report: to improve understanding of the factors that hinder or facilitate the transfer of OBCS R and D results, to determine which technology transfer strategies are most effective and under what circumstances each is appropriate, and to document the market penetration and energy savings achieved by successfully-commercialized innovations that have received OBCS support. Twelve successfully-commercialized innovations are discussed here. The methodology employed involved a review of the literature, interviews with innovation program managers and industry personnel, and data collection from secondary sources. Six generic technology transfer strategies are also described. Of these, contracting R and D to industrial partners is found to be the most commonly used strategy in our case studies. The market penetration achieved to date by the innovations studied ranges from less than 1% to 100%. For the three innovations with the highest predicted levels of energy savings (i.e., the flame retention head oil burner, low-E windows, and solid-state ballasts), combined cumulative savings by the year 2000 are likely to approach 2 quads. To date the energy savings for these three innovations have been about 0.2 quads. Our case studies illustrate the important role federal agencies can play in commercializing new technologies.

  6. Strategies for Demand Response in Commercial Buildings

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  7. Regression Tree-Based Methodology for Customizing Building Energy Benchmarks to Individual Commercial Buildings

    Kaskhedikar, Apoorva Prakash

    According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI

  8. Ergonomics evaluation of a government office building.

    Pentikis, John; Lopez, Mary S; Thomas, Robert E

    2002-01-01

    An ergonomics team from the US Army Center for Health Promotion and Preventive medicine evaluated 465 video display terminal (VDT) workstations in a Government office building over an 18-day period. Each workstation evaluation involved an assessment of the worker, the chair, the desk, the keyboard, the pointing device, the monitor, and the office environmental conditions. The team also collected worker pain and injury information. The problems seen during the evaluation were characteristic of most office environments where VDT workstation furniture was purchased before the advent of mouse-driven software. The majority of furniture evaluated was not designed to meet the demands of intensive mouse use for prolonged periods of time. Much of the workstation furniture was not adjustable, chairs lacked adequate back support, and workers assumed non-neutral postures. As a result, more than 35% of the workers evaluated complained of on-the-job pain. New office furniture that is adjustable, adequate desk space and storage space were among the solutions recommended by the ergonomics team.

  9. The development of preliminary energy bench marking for office buildings in Malaysia

    Azah Ahmad; Asfaazam Kasbani

    2006-01-01

    Benchmarking energy consumption in buildings means comparing how much energy is used in a building to an average or theoretical standard relative to a set of similar buildings. Building energy benchmarking is a useful starting point for commercial building owners to target energy saving opportunities. Building owners can determine the energy performance efficiency level of their buildings and compare it to the entire group of office buildings of its class. It is also useful during the design stage of a new building or retrofit to determine if a design is relatively efficient. The energy performance of a building can be assessed using Building Energy Index (BEI) regardless of building's size, height or age. In the development of preliminary energy benchmarking for office buildings in Malaysia, Malaysia Energy Centre (PTM) has taken a step through its involvement with The Energy Efficiency and Conservation Network, via the Association of Southeast Asia Nations (ASEAN) Centre for Energy (ACE) through a project a develop a similar benchmarking system for various ASEAN members. Through data collection of 54 office building throughout Malaysia, preliminary or baseline energy consumption could be determined. This paper discusses the findings of current energy consumption of office buildings. I will also examine the overall trends of energy consumption among office buildings in Malaysia

  10. Zero energy office building renovation; Energieneutrale kantoorrenovatie

    Deguelle, D.; Krijnen, M. [DHV, Amersfoort (Netherlands); Heijnis, J. [cepezed, Delft (Netherlands)

    2011-04-15

    Building Brains has been set up by TNO as a cooperative and started September 21, 2009. The aim of the project was to answer the question how the energy consumption in the Netherlands can be reduced by 50% up to 2030 or how the built environment can be made energy-neutral. This issue of the magazine is dedicated to Building Brains project. Four different renovation concepts are compared: energy-neutral renovation that involves the exclusive use of sustainable generated energy;.the application of the passive construction principles; the use of Double Skin Facades; and decentralized facade-integrated installation techniques. Following the results of this study two optimized refurbishment approaches for a zero energy office are designed. [Dutch] Building Brains is een door TNO opgezet samenwerkingsproject dat op 21 september 2009 van start ging. Het doel van het project is antwoord te geven op de vraag hoe tot 2030 het energiegebruik in Nederland kan worden gehalveerd of hoe de gebouwde omgeving energieneutraal kan worden gemaakt. Deze aflevering van het tijdschrift TVVL is vrijwel geheel gewijd aan het Building Brains project. Er is onderzocht hoe verschillende renovatieconcepten scoren. Er zijn vier renovatieconcepten met elkaar vergeleken: energie neutraal renoveren door middel van duurzame energieopwekking, toepassen van het passiefhuisprincipe, toepassen van een tweedehuidfacade en toepassen van een decentrale, gevel-geintegreerde installatie. Uit de studie kwamen twee geoptimaliseerde concepten voor een energieneutrale kantoorrenovatie naar voren.

  11. Commercial Building Energy Asset Rating Program -- Market Research

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

  12. 77 FR 24494 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    2012-04-24

    ... Federal High-Performance Green Buildings; Green Building Advisory Committee; Notification of Upcoming... agenda for the May 9, 2012, meeting of the Green Building Advisory Committee Meeting (the Committee). The... Sandler, Designated Federal Officer, Office of Federal High-Performance Green Buildings, Office of...

  13. 77 FR 2296 - Office of Federal High-Performance Green Buildings; the Green Building Advisory Committee...

    2012-01-17

    ... Federal High-Performance Green Buildings; the Green Building Advisory Committee; Notification of Upcoming... teleconference meetings of the Green Building Advisory Committee (the Committee). The teleconference meetings are... Federal High Performance Green Buildings, Office of Governmentwide Policy, General Services Administration...

  14. Energy retrofit of commercial buildings. Case study and applied methodology

    Aste, N.; Del Pero, C. [Department of Building Environment Science and Technology (BEST), Politecnico di Milano, Via Bonardi 3, 20133 Milan (Italy)

    2013-05-15

    Commercial buildings are responsible for a significant share of the energy requirements of European Union countries. Related consumptions due to heating, cooling, and lighting appear, in most cases, very high and expensive. Since the real estate is renewed with a very small percentage each year and current trends suggest reusing the old structures, strategies for improving energy efficiency and sustainability should focus not only on new buildings, but also and especially on existing ones. Architectural renovation of existing buildings could provide an opportunity to enhance their energy efficiency, by working on the improvement of envelopes and energy supply systems. It has also to be noted that the measures aimed to improve the energy performance of buildings should pay particular attention to the cost-effectiveness of the interventions. In general, there is a lack of well-established methods for retrofitting, but if a case study achieves effective results, the adopted strategies and methodologies can be successfully replicated for similar kinds of buildings. In this paper, an iterative methodology for energy retrofit of commercial buildings is presented, together with a specific application on an existing office building. The case study is particularly significant as it is placed in an urban climatic context characterized by cold winters and hot summers; consequently, HVAC energy consumption is considerable throughout the year. The analysis and simulations of energy performance before and after the intervention, along with measured data on real energy performance, demonstrate the validity of the applied approach. The specifically developed design and refurbishment methodology, presented in this work, could be also assumed as a reference in similar operations.

  15. Building the Commercial Education Professional Competency Profile

    Isabel Araya-Muñoz

    2012-12-01

    Full Text Available This paper provides a complete description of the Commercial Education Professional Competency Profile that resulted from the curricular diagnosis of the Licenciatura en Educación Comercial , at the Universidad Nacional, Costa Rica.  The methodological strategy used relies on the principles of research on education. Upon expert validation, written questionnaires were applied to first-year students, students of the licenciatura, practicing professionals and employers. The objective was to describe a particular education situation. Data was analyzed according to two categories: intentions/principles and scope/development. The findings resulted in the characteristics of the Commercial Education professionals, i.e. characteristics related to the discipline, characteristics related to the administrative management of teaching, specific and general characteristics of education and pedagogy, and characteristics associated to human development. Based on those criteria, on the curricular requirements of the information sources and on the curricular perspectives of the Academic Unit, ideas were put into practice to build the competency profile. The ideas proposed comprise the curricular fundamentals of the educational project on which the profile is set out, which include the subject of the study program, the global competency or training goal, the generic competencies as cross-cutting approaches, as well as the –pedagogical and disciplinary− specific competencies. The specific competencies of the discipline are focused on four competency areas: document production, organizational support, technological resources and information management. (1 Translator’s Note: One-year post-Bachelor study program in Commercial Education.

  16. Pusat Tenaga Malaysia's Zero Energy Office (ZEO) Building

    Tang, C.K.; Reimann, Gregers Peter; Kristensen, Poul Erik

    Technical Review of the Zero Energy Office building in Malaysia. The building, which has an energy index of 50 kWh/m2/year, reaches a net annual energy of zero through the use of building integrated photovoltaic panels. For reference, ordinary offices in Malaysia consume 200 - 300 kWh/m2/year...

  17. Commercializing government-sponsored innovations: Twelve successful buildings case studies

    Brown, M.A.; Berry, L.G.; Goel, R.K.

    1989-01-01

    This report examines the commercialization and use of R and D results funded by DOE's Office of Buildings and Community Systems (OBCS), an office that is dedicated to improving the energy efficiency of the nation's buildings. Three goals guided the research described in this report: to improve understanding of the factors that hinder or facilitate the transfer of OBCS R and D results, to determine which technology transfer strategies are most effective and under what circumstances each is appropriate, and to document the market penetration and energy savings achieved by successfully-commercialized innovations that have received OBCS support. Twelve successfully-commercialized innovations are discussed here. The methodology employed involved a review of the literature, interviews with innovation program managers and industry personnel, and data collection from secondary sources. Six generic technology transfer strategies are also described. Of these, contracting R and D to industrial partners is found to be the most commonly used strategy in our case studies. The market penetration achieved to date by the innovations studied ranges from less than 1% to 100%. For the three innovations with the highest predicted levels of energy savings (i.e., the flame retention head oil burner, low-E windows, and solid-state ballasts), combined cumulative savings by the year 2000 are likely to approach 2 quads. To date the energy savings for these three innovations have been about 0.2 quads. Our case studies illustrate the important role federal agencies can play in commercializing new technologies. 27 refs., 21 figs., 4 tabs.

  18. Energy savings potential from improved building controls for the US commercial building sector

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Xie, Yulong; Zhao, Mingjie

    2017-09-27

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) sponsored a study to determine the potential national savings achievable in the commercial building sector through widespread deployment of best practice controls, elimination of system and component faults, and use of better sensing. Detailed characterization of potential savings was one source of input to set research, development, and deployment (RD&D) goals in the field of building sensors and controls. DOE’s building energy simulation software, EnergyPlus, was employed to estimate the potential savings from 34 measures in 9 building types and across 16 climates representing almost 57% of commercial building sector energy consumption. In addition to estimating savings from individual measures, three packages of measures were created to estimate savings from the packages. These packages represented an 1) efficient building, 2) typical building, and 3) inefficient building. To scale the results from individual measures or a package to the national scale, building weights by building type and climate locations from the Energy Information Administration’s 2012 Commercial Building Energy Consumption Survey (CBECS) were used. The results showed significant potential for energy savings across all building types and climates. The total site potential savings from individual measures by building type and climate location ranged between 0% and 25%. The total site potential savings by building type aggregated across all climates (using the CBECS building weights) for each measure varied between 0% and 16%. The total site potential savings aggregated across all building types and climates for each measure varied between 0% and 11%. Some individual measures had negative savings because correcting underlying operational problems (e.g., inadequate ventilation) resulted in increased energy consumption. When combined into packages, the overall national savings potential is estimated to be 29

  19. The impact of green building approach to office property value

    Sitanggang, Yosephine; Susanto, Dalhar

    2017-12-01

    A real estate development often produces negative impacts towards the environment such as the reduction of the ecological capacity in the site and its surroundings, energy exploitation, and excessive pollutant emission. To overcome these issues, the green building concept or approach has been adapted by several real estate businesses in Indonesia especially in the office sector. According to the data provided by GBCI in 2017, there are 17 buildings listed as a certified green building office in various levels. As what has been known, the green building approach results in the increase of price in the planning, construction and the building's maintenance. This paper will discuss about the research results regarding the effect of the green building approach towards the property value of office buildings especially in Jakarta. The research will be executed through the comparison method, which is the process of comparing office building that have already adapted the green building concept with the one that have not, or in other words, the conventional office buildings. Data gathering is done through observation and interviews with developers and building managers. The research results show that by adapting the green building approach for office buildings in Jakarta, the property value regarding the utility, scarcity, effective demands, and transferability aspect can increase.

  20. Sensory evaluation of the air in 14 office buildings

    Pejtersen, Jan; Schwab, R.; Mayer, E.

    1999-01-01

    The perceived air quality was assessed in eight mechanically and six naturally ventilated office buildings. On average, 44 offices were investigated in each building. A panel of 11 trained subjects assessed the perceived air quality in the spaces directly in the sensory unit decipol. The average...... perceived air quality in the 14 office buildings ranged from 3.4 to 7.8 decipol. The perceived air quality averaged 4.1 decipol in the mechanically ventilated buildings and 6.0 decipol in the naturally ventilated buildings. Within the buildings there was a large variation in perceived air quality between...... the offices. The results indicate that the occupants' behaviour is important for the pollution load and the air quality in offices....

  1. 77 FR 43084 - Office of Federal High-Performance Green Buildings; Federal Buildings Personnel Training Act...

    2012-07-23

    ... Federal High-Performance Green Buildings; Federal Buildings Personnel Training Act; Notification of... High- Performance Green Buildings, Office of Governmentwide Policy, General Services Administration... download from the Office of Federal High-Performance Green Building Web site Library at-- http://www.gsa...

  2. 78 FR 56703 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    2013-09-13

    ... Federal High-Performance Green Buildings; Green Building Advisory Committee; Notification of Upcoming... Green Building Advisory Committee Meeting (the Committee) and the schedule for a series of conference..., Designated Federal Officer, [[Page 56704

  3. Benchmarking the energy efficiency of commercial buildings

    Chung, William; Hui, Y.V.; Lam, Y. Miu

    2006-01-01

    Benchmarking energy-efficiency is an important tool to promote the efficient use of energy in commercial buildings. Benchmarking models are mostly constructed in a simple benchmark table (percentile table) of energy use, which is normalized with floor area and temperature. This paper describes a benchmarking process for energy efficiency by means of multiple regression analysis, where the relationship between energy-use intensities (EUIs) and the explanatory factors (e.g., operating hours) is developed. Using the resulting regression model, these EUIs are then normalized by removing the effect of deviance in the significant explanatory factors. The empirical cumulative distribution of the normalized EUI gives a benchmark table (or percentile table of EUI) for benchmarking an observed EUI. The advantage of this approach is that the benchmark table represents a normalized distribution of EUI, taking into account all the significant explanatory factors that affect energy consumption. An application to supermarkets is presented to illustrate the development and the use of the benchmarking method

  4. Typical load shapes for six categories of Swedish commercial buildings

    Noren, C.

    1997-01-01

    In co-operation with several Swedish electricity suppliers, typical load shapes have been developed for six categories of commercial buildings located in the south of Sweden. The categories included in the study are: hotels, warehouses/grocery stores, schools with no kitchen, schools with kitchen, office buildings, health, health buildings. Load shapes are developed for different mean daily outdoor temperatures and for different day types, normally standard weekdays and standard weekends. The load shapes are presented as non-dimensional normalized 1-hour load. All measured loads for an object are divided by the object`s mean load during the measuring period and typical load shapes are developed for each category of buildings. Thus errors were kept lower as compared to use of W/m{sup 2}-terms. Typical daytime (9 a.m. - 5 p.m.) standard deviations are 7-10% of the mean values for standard weekdays but during very cold or warm weather conditions, single objects can deviate from the typical load shape. On weekends, errors are higher and depending on very different activity levels in the buildings, it is difficult to develop weekend load shapes with good accuracy. The method presented is very easy to use for similar studies and no building simulation programs are needed. If more load data is available, a good method to lower the errors is to make sure that every category only consists of objects with the same activity level, both on weekdays and weekends. To make it easier to use the load shapes, Excel load shape workbooks have been developed, where it is even possible to compare typical load shapes with measured data. 23 refs, 53 figs, 20 tabs

  5. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  6. Development of a California commercial building benchmarking database

    Kinney, Satkartar; Piette, Mary Ann

    2002-01-01

    Building energy benchmarking is a useful starting point for commercial building owners and operators to target energy savings opportunities. There are a number of tools and methods for benchmarking energy use. Benchmarking based on regional data can provides more relevant information for California buildings than national tools such as Energy Star. This paper discusses issues related to benchmarking commercial building energy use and the development of Cal-Arch, a building energy benchmarking database for California. Currently Cal-Arch uses existing survey data from California's Commercial End Use Survey (CEUS), a largely underutilized wealth of information collected by California's major utilities. Doe's Commercial Building Energy Consumption Survey (CBECS) is used by a similar tool, Arch, and by a number of other benchmarking tools. Future versions of Arch/Cal-Arch will utilize additional data sources including modeled data and individual buildings to expand the database

  7. Development of a California commercial building benchmarking database

    Kinney, Satkartar; Piette, Mary Ann

    2002-05-17

    Building energy benchmarking is a useful starting point for commercial building owners and operators to target energy savings opportunities. There are a number of tools and methods for benchmarking energy use. Benchmarking based on regional data can provides more relevant information for California buildings than national tools such as Energy Star. This paper discusses issues related to benchmarking commercial building energy use and the development of Cal-Arch, a building energy benchmarking database for California. Currently Cal-Arch uses existing survey data from California's Commercial End Use Survey (CEUS), a largely underutilized wealth of information collected by California's major utilities. Doe's Commercial Building Energy Consumption Survey (CBECS) is used by a similar tool, Arch, and by a number of other benchmarking tools. Future versions of Arch/Cal-Arch will utilize additional data sources including modeled data and individual buildings to expand the database.

  8. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  9. Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California.

    Bennett, D H; Fisk, W; Apte, M G; Wu, X; Trout, A; Faulkner, D; Sullivan, D

    2012-08-01

    This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale. © 2012 John Wiley & Sons A/S.

  10. Procedure for Measuring and Reporting Commercial Building Energy Performance

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  11. Natural phenomena evaluation of the Department of Energy-field office Oak Ridge office buildings

    Rucker, R.W.; Fricke, K.E.; Hunt, R.J.

    1991-01-01

    The Department of Energy - Field Office Oak Ridge (DOE-OR) is performing natural phenomena evaluations of existing office buildings located in the city of Oak Ridge, Tennessee. The natural phenomena considered are earthquake, wind, and flood. The evaluations are being performed to determine if the facilities are in compliance with DOE General Design Criteria 6430.IA. This paper presents results of the evaluations for three of the office buildings

  12. Industry Research and Recommendations for New Commercial Buildings

    Hendron, B.; Leach, M.; Gregory, N.; Pless, S.; Selkowitz, S.; Matthew, P.

    2014-05-01

    Researchers evaluated industry needs and developed logic models to support possible future commercial new construction research and deployment efforts that could be led or supported by DOE's Commercial Building Integration program or other national initiatives. The authors believe that these recommendations support a proposed course of action from the current state of commercial building energy efficiency to a possible long-term goal of achieving significant market penetration of cost-effective NZE buildings in all building sectors and climates by 2030.

  13. A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks

    Azar, Elie; Menassa, Carol C.

    2014-01-01

    While studies highlight the significant impact of actions performed by occupants and facility managers on building energy performance, current policies ignore the importance of human actions and the potential energy savings from a more efficient operation of building systems. This is mainly attributed to the lack of methods that evaluate non-technological drivers of energy use for large stocks of commercial buildings to support policy making efforts. Therefore, this study proposes a scientific approach to quantifying the energy savings potential due to improved operations of any stock of commercial buildings. The proposed framework combines energy modeling techniques, studies on human actions in buildings, and surveying and sampling methods. The contributions of this study to energy policy are significant as they reinforce the role of human actions in energy conservation, and support efforts to integrate operation-focused solutions in energy conservation policy frameworks. The framework's capabilities are illustrated in a case study performed on the stock of office buildings in the United States (US). Results indicate a potential 21 percent reduction in the current energy use levels of these buildings through realistic changes in current building operation patterns. - Highlights: • Human actions highly influence energy performance of commercial building stocks. • It is challenging to quantify operation-related energy savings potential. • The proposed framework quantifies potential energy savings from improved operations. • The framework can be applied on any stock of commercial buildings. • Applications include support for operation-focused solutions in energy policies

  14. Solar shading control strategy for office buildings in cold climate

    Røseth Karlsen, Line; Heiselberg, Per Kvols; Bryn, Ida

    2016-01-01

    Highlights •Solar shading control strategy for office buildings in cold climate is developed. •Satisfying energy and indoor environmental performance is confirmed. •Importance of integrated evaluations when selecting shading strategy is illustrated.......Highlights •Solar shading control strategy for office buildings in cold climate is developed. •Satisfying energy and indoor environmental performance is confirmed. •Importance of integrated evaluations when selecting shading strategy is illustrated....

  15. Essential Approach of Maintenance Management System of Office Building

    Masyatul Husna Othman

    2013-09-01

    Full Text Available Buildings will be worn-out, dilapidated and dirty as time goes by; but with good maintenance management we can at least prolong the lifespan of building longer as well as provide the building services and keep the building performance at it ultimate level. The importance of carrying out a systematic and routine maintenance works as part of works to conserve building performance is often neglected due to various factors including due to misunderstanding on the needs of the maintenance works itself and budget allocated. Thus, the purpose of the present study was to evaluating the level of maintenance management and quality of services in office buildings. This study also sought to answer the following question to determine the basic approach of maintenance management system used for office buildings.

  16. Assessing and Reducing Plug and Process Loads in Office Buildings (Brochure)

    2011-06-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  17. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  18. 77 FR 66616 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    2012-11-06

    ... Federal High-Performance Green Buildings; Green Building Advisory Committee; Notification of Upcoming... and agenda for the November 27, 2012, meeting of the Green Building Advisory Committee Meeting (the... Green Buildings, Office of Government-wide Policy, General Services Administration, 1275 First Street NE...

  19. 78 FR 21368 - Office of Federal High-Performance Green Buildings; Green Building Advisory Committee...

    2013-04-10

    ... Federal High-Performance Green Buildings; Green Building Advisory Committee; Notification of Upcoming... and agenda for the May 1, 2013, meeting of the Green Building Advisory Committee Meeting (the... Green Buildings, Office of Government-wide Policy, General Services Administration, 1275 First Street NE...

  20. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  1. High-performance commercial building facades

    Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

    2002-06-01

    This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to

  2. Energy optimization of office buildings; Energioptimering af kontorbyggeri

    Wittchen, K.B.; Place Hansen, E.J. de (Statens Byggeforskningsinstitut (SBi), Hoersholm (Denmark)); Radisch, N.H.; Treldal, J. (Ramboell A/S, Koebenhavn (Denmark))

    2011-07-01

    The project analysed two main office building types - high-rises and low-rises - and calculated a number of parameters, using the simulation program BSim. Calculations showed that the overall building design and orientation effect is moderate compared with, for instance, use of daylight control and low-energy lighting, computers, etc. Considerable energy savings can be achieved by use of natural ventilation in the summer, thus only using mechanical ventilation with heat recovery during the day in the winter. Open-plan offices result in a better indoor climate and lower energy consumption than cubicle offices. (LN)

  3. A new life : Transformation of vacant office buildings into housing

    Remøy, HT; van der Voordt, Theo; Haugen, Tore I.; Moum, Anita; Brochner, Jan

    2006-01-01

    Office buildings are experiencing vacancy. This leads to financial problems for the owners and social problems for the community, e.g. vandalism and deterioration. A solution may be found in transformation of vacant buildings and changing the buildings’ program. In the Dutch situation, housing is a

  4. 76 FR 65511 - Office of Governmentwide Policy; Office of Federal High-Performance Green Buildings; the Green...

    2011-10-21

    ... Governmentwide Policy; Office of Federal High- Performance Green Buildings; the Green Building Advisory Committee... meeting of the Green Building Advisory Committee Meeting (the Committee). The meeting is open to the..., Office of Federal High-Performance Green Buildings, Office of Governmentwide Policy, General Services...

  5. 14 CFR 401.1 - The Office of Commercial Space Transportation.

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false The Office of Commercial Space Transportation. 401.1 Section 401.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL ORGANIZATION AND DEFINITIONS § 401.1 The Office of Commercial Space Transportation. The Office of...

  6. Recovery Act: Training Program Development for Commercial Building Equipment Technicians

    Leah Glameyer

    2012-07-12

    The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how to best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project

  7. The Role of Energy Storage in Commercial Building

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of

  8. Study and constructive analysis of an office building

    CORT AZCÁRRAGA, PAULA

    2015-01-01

    [EN] The development is based on the study and analysis of an office building located in Drongsesteenweg, Gent 9000. The building has 4 levels and basement. The structure is with prefabricated concrete, a very typical way to build in Belgium, only the basement was built in situ. Typology floor is hollow core slab, it is a prefabricated unidirectional floor. Stairs are prefabricated too, executed by a company specialized in this type works. To the facade they use two types of bricks, ceramic a...

  9. Sources of indoor air contamination on the ground floor of a high-rise commercial building

    Nayebzadeh, A.; Cragg-Elkouh, S.; Rancy, R.; Dufresne, A.

    1999-01-01

    Indoor air quality is a subject of growing concern in the developed world. Many sources of indoor air contamination in commercial and office buildings are recognised and have been investigated. In addition to the usual internal sources of air contaminants, other external sources from attached facilities can find their way into the building. This report presents the results of an indoor air quality survey in a high-rise office building which demonstrated an obvious seasonal change in regard to the concentrations of carbon dioxide (CO 2 ), nitric oxide (NO) and nitrogen dioxide (NO 2 ). Furthermore, a complementary survey in the same building was carried out to identify the relevant sources of air contamination in the building and the results indicated that an attached train station and the nearby street traffic had a significant impact on indoor air quality. (author)

  10. Designing of zero energy office buildings in hot arid climate

    Abdel-Gwad, Mohamed

    2011-07-01

    The designing of office buildings by using large glass areas to have a transparent building is an attractive approach in the modern office building architecture. This attitude increases the energy demand for cooling specially in the hot arid region which has long sun duration time, while the use of small glazing areas increases the energy demand for lighting. The use of uncontrolled natural ventilation increases the rate of hot ambient air flow which increases the building energy demand for cooling. At the same time, the use of mechanical ventilation to control the air change rate may increase the energy demand for fans. Some ideas such as low energy design concept are introduced for improving the building energy performance and different rating systems have been developed such as LEED, BREEAM and DGNB for evaluating building energy performance system. One of the new ideas for decreasing the dependence on fossil fuels and improving the use of renewable energy is the net zero-energy building concept in which the building generates enough renewable energy on site to equal or exceed its annual energy use. This work depends on using the potentials of mixing different energy strategies such as hybrid ventilation strategy, passive night cooling, passive chilled ceiling side by side with the integrating of photovoltaic modules into the building facade to produce energy and enrich the architectural aesthetics and finally reaching the Net Zero Energy Building. There are different definitions for zero energy buildings, however in this work the use of building-integrated Photovoltaic (BIPV) to provide the building with its annual energy needs is adopted, in order to reach to a Grid-Connected Net-Zero Energy Office Building in the hot arid desert zone represented by Cairo, Egypt. (orig.)

  11. Investigation of Indoor Climate in a Naturally Ventilated Office Building

    Larsen, Tine Steen; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    A measuring program in a naturally ventilated office building in Copenhagen was carried out to document the indoor climate and ventilation system performance during a year. It included a questionnaire regarding the perceived indoor environmental quality and physical measurements of thermal comfort...... to a combination of poor control of solar shading and a very high local heat load that was above the Danish recommendations for naturally ventilated office buildings. Both measured and perceived indoor air quality in the building was in general very high. The measured air flow rates was relatively high due...... to the need for cooling in the office building, while the level of infiltration was quite low indicating an airtight construction....

  12. Automated Continuous Commissioning of Commercial Buildings

    2011-10-01

    through an Ethernet connection. The sampling interval is 5 minutes. The data then is transferred to the Postgre structured query language (SQL...and how corrective actions should be prioritized. BACnet Interface EnergyPlus Interface EnergyPlus Building Model Matlab Data Diagnostics Postgre

  13. Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings

    Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

    2006-11-30

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with

  14. Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Systems

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Petritchenko, Oxana [Navigant Consulting, Burlington, MA (United States); Ringo, Decker [Navigant Consulting, Burlington, MA (United States); McClive, Sam [Navigant Consulting, Burlington, MA (United States)

    2017-12-01

    The Building Technologies Office (BTO) commissioned this characterization and technology assessment of heating, ventilation, and air-conditioning (HVAC) systems for commercial buildings. The main objectives of this study: Identify a wide range of technology options in varying stages of development that could reduce commercial HVAC energy consumption; Characterize these technology options based on their technical energy-savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and the ability to compete with conventional HVAC technologies; Make specific recommendations to DOE and other stakeholders on potential research, development, and demonstration (RD&D) activities that would support further development of the most promising technology options.

  15. Overview of Commercial Building Partnerships in Higher Education

    Schatz, Glenn [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-03-01

    Higher education uses less energy per square foot than most commercial building sectors. However, higher education campuses house energy-intensive laboratories and data centers that may spend more than this average; laboratories, in particular, are disproportionately represented in the higher education sector. The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems–including some considered too costly or technologically challenging–and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions.

  16. Transactive Control of Commercial Buildings for Demand Response

    Hao, He; Corbin, Charles D.; Kalsi, Karanjit; Pratt, Robert G.

    2017-01-01

    Transactive control is a type of distributed control strategy that uses market mechanism to engage self-interested responsive loads to achieve power balance in the electrical power grid. In this paper, we propose a transactive control approach of commercial building Heating, Ventilation, and Air- Conditioning (HVAC) systems for demand response. We first describe the system models, and identify their model parameters using data collected from Systems Engineering Building (SEB) located on our Pacific Northwest National Laboratory (PNNL) campus. We next present a transactive control market structure for commercial building HVAC system, and describe its agent bidding and market clearing strategies. Several case studies are performed in a simulation environment using Building Control Virtual Test Bed (BCVTB) and calibrated SEB EnergyPlus model. We show that the proposed transactive control approach is very effective at peak clipping, load shifting, and strategic conservation for commercial building HVAC systems.

  17. Indoor particle levels in small- and medium-sized commercial buildings in California.

    Wu, Xiangmei May; Apte, Michael G; Bennett, Deborah H

    2012-11-20

    This study monitored indoor and outdoor particle concentrations in 37 small and medium commercial buildings (SMCBs) in California with three buildings sampled on two occasions, resulting in 40 sampling days. Sampled buildings included offices, retail establishments, restaurants, dental offices, and hair salons, among others. Continuous measurements were made for both ultrafine and fine particulate matter as well as black carbon inside and outside of the building. Integrated PM(2.5), PM(2.5-10), and PM(10) samples were also collected inside and outside the building. The majority of the buildings had indoor/outdoor (I/O) particle concentration ratios less than 1.0, indicating that contributions from indoor sources are less than removal of outdoor particles. However, some of the buildings had I/O ratios greater than 1, indicating significant indoor particle sources. This was particularly true of restaurants, hair salons, and dental offices. The infiltration factor was estimated from a regression analysis of indoor and outdoor concentrations for each particle size fraction, finding lower values for ultrafine and coarse particles than for submicrometer particles, as expected. The I/O ratio of black carbon was used as a relative measure of the infiltration factor of particles among buildings, with a geometric mean of 0.62. The contribution of indoor sources to indoor particle levels was estimated for each building.

  18. Transactive Control of Commercial Building HVAC Systems

    Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ngo, Hung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-30

    This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus for validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.

  19. Energy consumption in commercial buildings: A comparison with BEPS budgets

    1980-09-01

    Metered energy consumption data were collected on existing commercial buildings to help establish the proposed building energy performance standards (BEPS). The search has identified 84 buildings whose metered energy consumption is equal to or less than that proposed for their BEPS budgets and another 7 buildings whose metered consumption is less than 20 percent above their BEPS budgets. The methodology used to identify the buildings and to collect their metered energy consumption data are described. The data are analyzed and summarized and conclusions are drawn.

  20. Building Green: The Adoption Process of LEED- and Energy Star-Rated Office Buildings

    Malkani, Arvin P.

    2012-01-01

    There are opportunities for green building technology in office buildings to produce energy savings and cost efficiencies that can produce a positive economic and environmental impact. In order for these opportunities to be realized, however, decision makers must appreciate the value of green building technology. The objective of this research is…

  1. Establishing a commercial building energy data framework for India

    Iyer, Maithili [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumar, Satish [Alliance for an Energy Efficient Economy, New Delhi (India); Mathew, Sangeeta [Alliance for an Energy Efficient Economy, New Delhi (India); Stratton, Hannah [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathew, Paul A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singh, Mohini [Synurja, Inc. (India)

    2018-04-18

    Buildings account for over 40% of the world’s energy consumption and are therefore a key contributor to a country’s energy as well as carbon budget. Understanding how buildings use energy is critical to understanding how related policies may impact energy use. Data enables decision making, and good quality data arms consumers with the tools to compare their energy performance to their peers, allowing them to differentiate their buildings in the real estate market on the basis of their energy footprint. Good quality data are also essential for policy makers to prioritize their energy saving strategies and track implementation. The United States’ Commercial Building Energy Consumption Survey (CBECS) is an example of a successful data framework that is highly useful for governmental and nongovernmental initiatives related to benchmarking energy forecasting, rating systems and metrics, and more. The Bureau of Energy Efficiency (BEE) in India developed the Energy Conservation Building Code (ECBC) and launched the Star Labeling program for a few energy-intensive building segments as a significant first step. However, a data driven policy framework for systematically targeting energy efficiency in both new construction and existing buildings has largely been missing. There is no quantifiable mechanism currently in place to track the impact of code adoption through regular reporting/survey of energy consumption in the commercial building stock. In this paper we present findings from our study that explored use cases and approaches for establishing a commercial buildings data framework for India.

  2. Building-related symptoms and inflammatory potency of dust from office buildings

    Allermann, Leila; Pejtersen, Jan; Gunnarsen, Lars Bo

    2007-01-01

    Abstract The aim was to investigate the association between building-related symptoms (BRS) in office buildings and the inflammatory potency of dust (PD). Furthermore, the association between dust potency and various building characteristics was investigated. Occupants of 22 office buildings...... received a retrospective questionnaire about BRS (2301 respondents). Dust was collected from groups of offices and building characteristics were recorded. The potency of a dust sample to induce interleukin-8 (IL-8) secretion from the lung epithelial cell line A549 was measured as the slope of the initial...... linear part of the concentration- response curve. Symptoms of the central nervous system (CNS) were associated with the potency of surface dust (OR ¼ 1.4). This association may be due to an association between an index of CNS symptoms and dust potency in offices of 1-6 occupants (OR ¼ 1.5). No single...

  3. Building-related symptoms and inflammatory potency of dust from office buildings

    Allermann, L; Pejtersen, J; Gunnarsen, L

    2007-01-01

    UNLABELLED: The aim was to investigate the association between building-related symptoms (BRS) in office buildings and the inflammatory potency of dust (PD). Furthermore, the association between dust potency and various building characteristics was investigated. Occupants of 22 office buildings...... received a retrospective questionnaire about BRS (2301 respondents). Dust was collected from groups of offices and building characteristics were recorded. The potency of a dust sample to induce interleukin-8 (IL-8) secretion from the lung epithelial cell line A549 was measured as the slope of the initial...... linear part of the concentration-response curve. Symptoms of the central nervous system (CNS) were associated with the potency of surface dust (OR = 1.4). This association may be due to an association between an index of CNS symptoms and dust potency in offices of 1-6 occupants (OR = 1.5). No single...

  4. Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China

    Hou, Jing; Liu, Yisheng; Wu, Yong; Zhou, Nan; Feng, Wei

    2016-01-01

    The energy efficiency of existing commercial buildings is more challenging to regulate and improve than the energy efficiency of new constructions. In 2011 and 2012, the Chinese Government selected four cities- Shanghai, Tianjin, Shenzhen, and Chongqing- to implement pilot commercial building energy efficiency retrofit program. Based on site surveys and expert interviews in these pilot cities, this research conducted a comparative analysis on incentive policies of local city level. The analysis results show that policy designs of existing commercial buildings should be further improved. The aspects that influence the implementation effect in the future, such as subsidy level, installments, and business model promotion, should be specified in the policy clauses. Referring to the technical solution and cost-benefit in Chongqing, we found that lighting system is the most common retrofit objects while envelope system is the least common one. And the subsidy incentive is greatest for educational buildings, followed by office buildings. In the end, we further discussed the problems and obstacles in commercial building retrofit market, and provided a series of recommendations. - Highlights: • Data and information were collected through site surveys to the four pilot cities. • Policy design and effectiveness in four cities were comparatively analyzed. • Well-designed policy increases market response, energy savings and EMC adoption. • Lighting is the most common retrofit while envelope is the least common one. • Subsidy incentive is greatest for educational buildings due to the utility tariff.

  5. Predictive Solar-Integrated Commercial Building Load Control

    Glasgow, Nathan [EdgePower Inc., Aspen, CO (United States)

    2017-01-31

    This report is the final technical report for the Department of Energy SunShot award number EE0007180 to EdgePower Inc., for the project entitled “Predictive Solar-Integrated Commercial Building Load Control.” The goal of this project was to successfully prove that the integration of solar forecasting and building load control can reduce demand charge costs for commercial building owners with solar PV. This proof of concept Tier 0 project demonstrated its value through a pilot project at a commercial building. This final report contains a summary of the work completed through he duration of the project. Clean Power Research was a sub-recipient on the award.

  6. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-02-28

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

  7. Wall envelopes in office buildings: design trend and implications on cooling load of buildings

    Ibrahim, N.; Ahmed, A.Z.; Ahmed, S.S.

    2006-01-01

    The wall envelope is a vital element of a building especially to a high rise building where its wall to building volume ratio is higher compared to other building forms. As well as a means of architectural expression, the wall envelope protects and regulates the indoor environment. In recent years there have been many applications of glass products and cladding systems in high-rise buildings built in Kuala Lumpur. This paper describes a recent research and survey on wall envelope designs adopted in 33 high-rise office buildings built in the central business district of Kuala Lumpur since 1990. This research adopts component design analysis to identify dominant trends on wall envelope design for the surveyed buildings. The paper seeks to discourse the implications of this design trend on energy consumption of high-rise office buildings in the country

  8. "Watts per person" paradigm to design net zero energy buildings: Examining technology interventions and integrating occupant feedback to reduce plug loads in a commercial building

    Yagi Kim, Mika

    As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.

  9. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  10. Hybrid Ventilation in New and Retrofitted Office Buildings

    Heiselberg, Per

    The scope of this annex is to obtain better knowledge of the use of hybrid ventilation technologies. The annex will focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on development...

  11. Office Building Occupant's Guide to Indoor Air Quality

    ... about physical aspects of the workplace: location, work environment, availability of natural light and the aesthetics of office design, such ... people can do to ensure that their indoor environment is a healthy one. IAQ Building Education and Assessment Model (I-BEAM) : EPA's I-BEAM software program ...

  12. Solar-Heated and Cooled Office Building--Columbus, Ohio

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  13. European indoor air quality audit project in 56 office buildings

    Bluyssen, P.M.; Oliveira Fernandes, E. de; Groes, L.; Clausen, G.H.; Fanger, F.O.; Valbjorn, O.; Bernhard, C.A.; Roulet, C.A.

    1996-01-01

    A European project started at the end of 1992, in which, in addition to current methods, trained sensory panels were used to investigate office buildings all over Europe. The main aim of this EC-Audit was to develop assessment procedures and guid-ance on ventilation and source control, to help

  14. Lighting energy efficiency in office buildings: Sri Lanka

    Wijayatunga, Priyantha D.C.; Fernando, W.J.L.S.; Ranasinghe, S.

    2003-01-01

    This paper describes a study conducted in the lighting sector of office buildings as a part of a broader research study aimed at developing building codes for Sri Lanka addressing lighting as well as thermal comfort in order to optimise the use of electricity within these buildings. The study covered different tasks performed in office buildings and the optimum lighting levels required to perform these tasks in the office environment in Sri Lanka. Also, it included assessing the visual performance of people involved in different activities under varying illumination levels in a controlled environment and a comparison of these optimum lighting levels with international standards. It can be seen that the required optimum lighting levels are generally lower in Sri Lanka in comparison to specified standard levels, and this scenario is likely to be similar in other developing countries too. These findings clearly emphasise the need to adopt lighting standards most appropriate to local conditions, in turn helping improve the energy efficiency within buildings

  15. Analysis of institutional mechanisms affecting residential and commercial buildings retrofit

    1980-09-01

    Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

  16. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  17. Dynamic Analysis of an Office Building due to Vibration from Road Construction Activities

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.; Ibrahim, M. H. W.

    2018-04-01

    Construction activities are widely known as one of the predominant sources of man-made vibrations that able to create nuisance towards any adjacent building, and this includes the road construction operations. Few studies conclude the construction-induced vibration may be harmful directly and indirectly towards the neighbouring building. This lead to the awareness of study the building vibration response of concrete masonry load bearing system and its vibrational performance towards the road construction activities. This study will simulate multi-storey office building of Sekolah Menengah Kebangsaan (SMK) Bandar Enstek at Negeri Sembilan by using finite element vibration analyses. The excitation of transient loads from ground borne vibrations which triggered by the road construction activities are modelled into the building. The vibration response was recorded during in-situ ambient vibration test by using Laser Doppler Vibrometer (LDV), which specifically performed on four different locations. The finite element simulation process was developed in the commercial FEA software ABAQUS. Then, the experimental data was processed and evaluated in MATLAB ModalV to assess the vibration criteria of the floor in building. As a result, the vibration level of floor in building is fall under VC-E curve which was under the maximum permissible level for office building (VC-ISO). The vibration level on floor is acceptable within the limit that have been referred.

  18. A generalized window energy rating system for typical office buildings

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming [Research Center for Building Environmental Engineering, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China)

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of

  19. Development of a Training Program for Commercial Building Technicians

    Rinholm, Rod

    2013-05-31

    This project focused on developing and deploying a comprehensive program of 22 training modules, including certification requirements, and accreditation standards for commercial building technicians, to help achieve the full savings potential of energy efficient buildings, equipment, and systems. This curriculum extended the currently available commercial building technician programs -- training a labor force in a growing market area focused on energy efficiency. The program helps to remove a major market impediment to low energy/zero energy commercial building system acceptance, namely a lack of operating personnel capable of handling more complex high efficiency systems. The project developed a training curriculum for commercial building technicians, with particular focus on high-efficiency building technology, and systems. In Phase 1, the project team worked collaboratively in developing a draft training syllabus to address project objectives. The team identified energy efficiency knowledge gaps in existing programs and plans and plans to address the gaps with either modified or new curricula. In Phase 2, appropriate training materials were developed to meet project objectives. This material was developed for alternative modes of delivery, including classroom lecture materials, e-learning elements, video segments, exercises, and hands-on training elements. A Certification and Accreditation Plan and a Commercialization and Sustainability Plan were also investigated and developed. The Project Management Plan was updated quarterly and provided direction on the management approaches used to accomplish the expected project objectives. GTI project management practices tightly coordinate project activities using management controls to deliver optimal customer value. The project management practices include clear scope definition, schedule/budget tracking, risk/issue resolution and team coordination.

  20. Effect of facade components on energy efficiency in office buildings

    Ihara, Takeshi; Gustavsen, Arild; Jelle, Bjørn Petter

    2015-01-01

    Highlights: • Investigation of facade properties for energy efficiency of Tokyo office buildings. • Higher reflectance for opaque parts may slightly reduce energy demand. • Lower window U-value and solar heat gain coefficient are potential solutions. • Decreased heating due to insulation did not always compensate increased cooling. • Fundamental data for adjustment of facade properties of buildings are provided. - Abstract: Properties of facade materials should be considered to determine which of them strongly affect building energy performance, regardless of the building shapes, scales, ideal locations, and building types, and thus may be able to promote energy efficiency in buildings. In this study, the effects of four fundamental facade properties related to the energy efficiency of office buildings in Tokyo, Japan, were investigated with the purpose of reducing the heating and cooling energy demands. Some fundamental design factors such as volume and shape were also considered. It was found that the reduction in both the solar heat gain coefficient and window U-value and increase in the solar reflectance of the opaque parts are promising measures for reducing the energy demand. Conversely, the reduction in the U-value of the opaque parts decreased the heating energy demand, and this was accompanied by an increase in the cooling energy demand in some cases because the total energy demands were predominantly for cooling. The above-mentioned promising measures for reducing building energy demands are thus recommended for use, and an appropriate U-value should be applied to the opaque parts based on careful considerations. This study provides some fundamental ideas to adjust the facade properties of buildings.

  1. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatten, Mike [Solarc Energy Group, LLC, Seattle, WA (United States); Jones, Dennis [Group 14 Engineering, Inc., Denver, CO (United States); Cooper, Matthew [Group 14 Engineering, Inc., Denver, CO (United States)

    2017-03-24

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research is to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.

  2. Accuracy of CO2 sensors in commercial buildings: a pilotstudy

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2006-10-01

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used to automatically modulate rates of outdoor air supply. The goal is to keep ventilation rates at or above code requirements, but to also to save energy by avoiding over ventilation relative to code requirements. However, there have been many anecdotal reports of poor CO{sub 2} sensor performance in actual commercial building applications. This study evaluated the accuracy of 44 CO{sub 2} sensors located in nine commercial buildings to determine if CO{sub 2} sensor performance, in practice, is generally acceptable or problematic. CO{sub 2} measurement errors varied widely and were sometimes hundreds of parts per million. Despite its small size, this study provides a strong indication that the accuracy of CO{sub 2} sensors used in commercial buildings is frequently less than is needed to measure peak indoor-outdoor CO{sub 2} concentration differences with less than a 20% error. Thus, we conclude that there is a need for more accurate CO{sub 2} sensors and/or better sensor maintenance or calibration procedures.

  3. Office building with an underground storage system. Operational experiences after one year; Buerogebaeude mit Erdspeicher. Betriebserfahrungen nach einem Jahr

    Braun, Dorothee; Wehrli, Stefan [Basler und Hofmann AG, Zuerich (Switzerland)

    2011-07-01

    Self-sufficient heating and cooling - that was the principle of Basler paragraph Hofmann AG (Zuerich, Switzerland) and Stuecheli Architects (Zuerich, Switzerland) in the planning and constructing of a new office building in the Canton of Zuerich. For the first time an underground storage system was implemented in a commercial building. This underground storage refuels the solar energy in summer and supplies heating energy in winter. The office building was settled in in September, 2010. The pioneering project now delivers first empirical values with the underground storage system. These empirical values show: The concept comes up, but needs time.

  4. Office of Codes and Standards resource book. Section 1, Building energy codes and standards

    Hattrup, M.P.

    1995-01-01

    The US Department of Energy`s (DOE`s) Office of Codes and Standards has developed this Resource Book to provide: A discussion of DOE involvement in building codes and standards; a current and accurate set of descriptions of residential, commercial, and Federal building codes and standards; information on State contacts, State code status, State building construction unit volume, and State needs; and a list of stakeholders in the building energy codes and standards arena. The Resource Book is considered an evolving document and will be updated occasionally. Users are requested to submit additional data (e.g., more current, widely accepted, and/or documented data) and suggested changes to the address listed below. Please provide sources for all data provided.

  5. To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate

    Kini, Pradeep G.; Garg, Naresh Kumar; Kamath, Kiran

    2017-07-01

    India’s commercial building sector is witnessing robust growth. India continues to be a key growth market among global corporates and this is reflective in the steady growth in demand for prime office space. A recent trend that has been noted is the increase in demand for office spaces not just in major cities but also in smaller tier II and Tier III cities. Growth in the commercial building sector projects a rising trend of energy intensive mechanical systems in office buildings in India. The air conditioning market in India is growing at 25% annually. This is due to the ever increasing demand to maintain thermal comfort in tropical regions. Air conditioning is one of the most energy intensive technologies which are used in buildings. As a result India is witnessing significant spike in energy demand and further widening the demand supply gap. Challenge in India is to identify passive measures in building envelope design in office buildings to reduce the cooling loads and conserve energy. This paper investigates the overall heat gain through building envelope components and natural ventilation in warm and humid climate region through experimental and simulation methods towards improved thermal environmental performance.

  6. BEPS redesign of 168 commercial buildings: summary report

    Stoops, J.L.; Deringer, J.J.; Moreno, S.; Misuriello, H.P.

    1984-05-01

    The objective of this report is to present, in usable form, summary data from the Building Energy Performance Standards (BEPS) Phase II commercial buildings energy research conducted in 1978-1979. Summary data presented were obtained from two major research efforts: the BEPS Phase II Redesign experiment; and the related research on ASHRAE Standard 90-75R. The bulk of this report consists of data tabulations of key energy parameters for the 168 sample buildings, which were tabulated from computer-stored files of the 1978-1979 data. Two kinds of tabulations are included: numerical tabulations that extracted information from the computer-stored data base for the 168 sample buildings; and graphic presentations of the computer-generated data, plus data extracted from other sources. The intent is to provide a single data compendium of key energy-related factors from the 1978 redesign experiment and the associated 1978-1979 ASHRAE Standard 90-75R research. This report also supplements the information for which there was not space in the magazine articles. Thus, for some building types, additional analysis, comments, and data tabulations are included that could not be included in the articles because space was limited. These additional analysis items are not consistent across building types because both the energy conservation opportunities and the design strategies applied by the building designers varied considerably by building type. The chapters have been entered individually into EDB and ERA.

  7. Regulation proposal for voluntary energy efficiency labelling of commercial buildings

    Lamberts, Roberto; Goulart, Solange; Carlo, Joyce; Westphal, Fernando

    2006-01-01

    Despite of Brazil not being between the major world energy consumers, the consumption of electricity has significantly increased in the late years. The National Energy Balance of 2005, published by the Brazilian Ministry of Energy, showed an increasing of the participation of electricity in the final energy consumption of 15.7% in 2002 to 16.2% in 2004. Initially, a brief review of the initiatives taken by Brazilian Government aiming to limit and control the energy consumption in buildings is presented. Then, the regulation proposal containing the technical requirements to classify the energy efficiency level of buildings is shown. The purpose of this voluntary regulation is to provide conditions to certify the energy efficiency level of Brazilian buildings (commercial and public). It specifies the methods for energy efficiency rating of buildings and includes requirements to attend energy conservation measures in three main issues: lighting system; air conditioning system and envelope. The regulation applies to large buildings (minimum total area of 500 m 2 or when the energy demand is greater than or equal to 2,3 kV, including: Conditioned buildings; Partially conditioned buildings and Naturally ventilated buildings. (author)

  8. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  9. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  10. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  11. Energy consumption quota management of Wanda commercial buildings in China

    Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.

    2016-08-01

    There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.

  12. Maintenance and Safety Practices of Escalator in Commercial Buildings

    Afida Isnaini Janipha, Nurul; Nur Aina Syed Alwee, Sharifah; Ariff, Raihan Mohd; Ismail, Faridah

    2018-02-01

    The escalator is very crucial to transport a person from one place to another. Nevertheless, there are many cases recorded the accidents in relation to escalator. These may occur due to lack of maintenance which leads to systems breakdown, poor safety practices, wear and tear, users’ negligence and others. Thus, proper maintenance systems need to be improvised to prevent and reduce escalator accident in future. This research was aimed to determine the escalator maintenance activities and safety practices in a commercial building. Three case studies were selected within Selangor area. Semi-structured interviews were conducted for collecting data from these three case studies. To achieve the aim of this research, the study was carried out on the maintenance activities, safety practices and cost related to escalator maintenance. As one of the important means of access in building, it is very crucial to increase effectiveness of escalator particularly in commercial building. It is expected that readers will get clear information on the maintenance activities and safety practices of escalator in commercial building.

  13. Building-related risk factors and work-related lower respiratory symptoms in 80 office buildings

    Mendell, M.J.; Naco, G.M.; Wilcox, T.G.; Sieber, W.K.

    2002-01-01

    We assessed building-related risk factors for lower respiratory symptoms in office workers. The National Institute for Occupational Safety and Health in 1993 collected data during indoor environmental health investigations of workplaces. We used multivariate logistic regression analyses to assess relationships between lower respiratory symptoms in office workers and risk factors plausibly related to microbiologic contamination. Among 2,435 occupants in 80 office buildings, frequent, work-related multiple lower respiratory symptoms were strongly associated, in multivariate models, with two risk factors for microbiologic contamination: poor pan drainage under cooling coils and debris in outside air intake. Associations tended to be stronger among those with a history of physician-diagnosed asthma. These findings suggest that adverse lower respiratory health effects from indoor work environments, although unusual, may occur in relation to poorly designed or maintained ventilation systems, particularly among previously diagnosed asthmatics. These findings require confirmation in more representative buildings.

  14. Building-related risk factors and work-related lower respiratory symptoms in 80 office buildings

    Mendell, M.J.; Naco, G.M.; Wilcox, T.G.; Sieber, W.K.

    2002-01-01

    We assessed building-related risk factors for lower respiratory symptoms in office workers. The National Institute for Occupational Safety and Health in 1993 collected data during indoor environmental health investigations of workplaces. We used multivariate logistic regression analyses to assess relationships between lower respiratory symptoms in office workers and risk factors plausibly related to microbiologic contamination. Among 2,435 occupants in 80 office buildings, frequent, work-related multiple lower respiratory symptoms were strongly associated, in multivariate models, with two risk factors for microbiologic contamination: poor pan drainage under cooling coils and debris in outside air intake. Associations tended to be stronger among those with a history of physician-diagnosed asthma. These findings suggest that adverse lower respiratory health effects from indoor work environments, although unusual, may occur in relation to poorly designed or maintained ventilation systems, particularly among previously diagnosed asthmatics. These findings require confirmation in more representative buildings

  15. Best Practices Guide for High-Performance Indian Office Buildings

    Singh, Reshma [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sartor, Dale [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ghatikar, Girish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    This document provides best practice guidance and energy- efficiency recommendations for the design, construction, and operation of high-­performance office buildings in India. Through a discussion of learnings from exemplary projects and inputs from experts, it provides recommendations that can potentially help achieve (1) enhanced working environments, (2) economic construction/faster payback, (3) reduced operating costs, and (4) reduced greenhouse gas (GHG) emissions. It also provides ambitious (but achievable) energy performance benchmarks, both as adopted targets during building modeling (design phase) and during measurement and verification (operations phase). These benchmarks have been derived from a set of representative best-in-class office buildings in India. The best practices strategies presented in this guide would ideally help in delivering high-­performance in terms of a triad—of energy efficiency, cost efficiency, and occupant comfort and well-­being. These best practices strategies and metrics should be normalized—that is, corrected to account for building characteristics, diversity of operations, weather, and materials and construction methods.

  16. Application of BIM technology in green scientific research office building

    Ni, Xin; Sun, Jianhua; Wang, Bo

    2017-05-01

    BIM technology as a kind of information technology, has been along with the advancement of building industrialization application in domestic building industry gradually. Based on reasonable construction BIM model, using BIM technology platform, through collaborative design tools can effectively improve the design efficiency and design quality. Vanda northwest engineering design and research institute co., LTD., the scientific research office building project in combination with the practical situation of engineering using BIM technology, formed in the BIM model combined with related information according to the energy energy model (BEM) and the application of BIM technology in construction management stage made exploration, and the direct experience and the achievements gained by the architectural design part made a summary.

  17. Lux level enhancement and reduction in electricity cost in commercial buildings by retrofitting with PMR luminaries

    Mariun, N.; Mohibullah; Jasni, J.; Lam, S.Y.

    2006-01-01

    Most of the existing commercial buildings are illuminated by luminaries systems during broad daylight and night which is provided by the renowned lighting industry. However, back in 1980s, the installed luminaries within the office compound were limited in choice of luminaire selection and cost factor impact. Some of the old commercial building are still using prismatic acrylic lens diffuser luminaries in order to brighten up the building for their business activities and a large number of luminaries are needed to illuminate equivalent illumination level as per requirement of the building bye-laws code. With the advancement in luminaries technology, the lighting industries have offered better solution to reduce energy costs by 50% or more, also able to improve the quality of light and reducing the quantity of luminaries requirement by introducing the parabolic mirror reflector (PMR) luminaries system. The selected commercial building as a case study to support this luminaries retrofitting program by comparing the existing luminaries with the retrofit luminaries in terms of the lux measurement and energy cost saving calculation is presented in this paper. Nevertheless, some general lighting design principle rules are also discussed

  18. Active buildings: modelling physical activity and movement in office buildings. An observational study protocol.

    Smith, Lee; Ucci, Marcella; Marmot, Alexi; Spinney, Richard; Laskowski, Marek; Sawyer, Alexia; Konstantatou, Marina; Hamer, Mark; Ambler, Gareth; Wardle, Jane; Fisher, Abigail

    2013-11-12

    Health benefits of regular participation in physical activity are well documented but population levels are low. Office layout, and in particular the number and location of office building destinations (eg, print and meeting rooms), may influence both walking time and characteristics of sitting time. No research to date has focused on the role that the layout of the indoor office environment plays in facilitating or inhibiting step counts and characteristics of sitting time. The primary aim of this study was to investigate associations between office layout and physical activity, as well as sitting time using objective measures. Active buildings is a unique collaboration between public health, built environment and computer science researchers. The study involves objective monitoring complemented by a larger questionnaire arm. UK office buildings will be selected based on a variety of features, including office floor area and number of occupants. Questionnaires will include items on standard demographics, well-being, physical activity behaviour and putative socioecological correlates of workplace physical activity. Based on survey responses, approximately 30 participants will be recruited from each building into the objective monitoring arm. Participants will wear accelerometers (to monitor physical activity and sitting inside and outside the office) and a novel tracking device will be placed in the office (to record participant location) for five consecutive days. Data will be analysed using regression analyses, as well as novel agent-based modelling techniques. The results of this study will be disseminated through peer-reviewed publications and scientific presentations. Ethical approval was obtained through the University College London Research Ethics Committee (Reference number 4400/001).

  19. Comfort Study of Office Buildings with Large Glazed Areas

    Violeta Motuzienė

    2017-09-01

    Full Text Available In the buildings with large glazed areas the biggest problem is the space overheating during the warm season. This causes increased energy demand for cooling. The survey was carried out during the warm and cold seasons in two office buildings with large glazed areas. The methodology was prepared for evaluating indoor climate parameters using objective and subjective evaluation. The measurements have shown that there are problems with lighting in workplaces of both buildings during both the warm and cold seasons. The biggest problem is too dry air during the cold period, an acceptable temperature is also not always in the building No. 2. The survey has shown that some employees are dissatisfied with the indoor climate in the workplace, the bigger dissatisfaction is in building No. 2. Assessing according to the O. Fanger methodology was obtained that the number of PPD is in the normal range during the cold period, whereas close to the limit when the building can not be operated in the warm period.

  20. Revealing Occupancy Patterns in Office Buildings Through the use of Annual Occupancy Sensor Data

    Carlos Duarte; Kevin Van Den Wymelenberg; Craig Rieger

    2013-06-01

    Energy simulation programs like DOE-2 and EnergyPlus are tools that have been proven to aid with energy calculations to predict energy use in buildings. Some inputs to energy simulation models are relatively easy to find, including building size, orientation, construction materials, and HVAC system size and type. Others vary with time (e.g. weather and occupancy) and some can be a challenge to estimate in order to create an accurate simulation. In this paper, the analysis of occupancy sensor data for a large commercial, multi-tenant office building is presented. It details occupancy diversity factors for private offices and summarizes the same for open offices, hallways, conference rooms, break rooms, and restrooms in order to better inform energy simulation parameters. Long-term data were collected allowing results to be presented to show variations of occupancy diversity factors in private offices for time of day, day of the week, holidays, and month of the year. The diversity factors presented differ as much as 46% from those currently published in ASHRAE 90.1 2004 energy cost method guidelines, a document referenced by energy modelers regarding occupancy diversity factors for simulations. This may result in misleading simulation results and may introduce inefficiencies in the final equipment and systems design.

  1. The thermal environment and occupant perceptions in European office buildings

    Stoops, J L [Chalmers Univ. of Tech., Goeteborg (Sweden). Dept. of Building Services Engineering

    2002-02-01

    The results from a large field study of thermal comfort in European office buildings are reported. Environmental conditions and occupant perceptions were collected over fourteen months from twenty-six different office buildings located in France, Greece, Portugal, Sweden and the UK. This thesis focuses on the thermal measurements and occupant perceptions; however, some of the additional variables with strong connections to thermal sensation are also examined. A summary of human comfort is presented to help place this thesis in appropriate context. The summary presents thermal comfort issues within a broad framework of environmental comfort including physical, physiological, behavioural, psychological and other variables. A more narrowly focused overview of current thermal comfort research is also included. The work attempts to show relationships and produce useful information from the data set by using rather simple statistics and graphical methods. The objective is to quite literally use the data set to illustrate the actual thermal conditions in European office buildings and the occupant perceptions of those conditions. The data are examined in some detail with key relationships identified and explored. Significant differences between countries, both for the physical conditions and the perceptions of those conditions are identified. In addition, the variation over the course of the year for each country is explored. The variations occur in complex ways, which make simple, all encompassing explanations impossible. The nature and size of the variations make the application of simple Europe wide models of thermal comfort questionable. It appears that individuals in different European countries have different expectations for their indoor office thermal environment. This data set will be further explored in a more complete study, which will examine the other measured variables.

  2. Towards critical performance considerations for using office buildings as a power flexibility resource-a survey

    Aduda, K.O.; Labeodan, T.; Zeiler, W.

    2018-01-01

    The continued growth in variable renewable energy sources (VRES) has created increased focus on the use of office buildings for power flexibility activities. Office buildings uniquely present opportunities for relatively easy control adaptation during power flexibility activities given their large

  3. Leverkusen revenue office building with geothermal and district heating; Finanzamt Leverkusen setzt auf Geothermie und Fernwaerme

    Keveloh, Holger [Depenbrock Systembau GmbH und Co. KG, Bielefeld (Germany); Paterak, Anette; Wiemer, Bianca; Foerschler, Eberhard [Assmann Beraten+Planen GmbH, Dortmund (Germany)

    2011-07-01

    Efficient air conditioning of office buildings is possible with concrete core activation via a geothermal heat pump. The new building of the revenue office at Leverkusen will use this technology. (orig.)

  4. Accelerating the energy retrofit of commercial buildings using a database of energy efficiency performance

    Lee, Sang Hoon; Hong, Tianzhen; Piette, Mary Ann; Sawaya, Geof; Chen, Yixing; Taylor-Lange, Sarah C.

    2015-01-01

    Small and medium-sized commercial buildings can be retrofitted to significantly reduce their energy use, however it is a huge challenge as owners usually lack of the expertise and resources to conduct detailed on-site energy audit to identify and evaluate cost-effective energy technologies. This study presents a DEEP (database of energy efficiency performance) that provides a direct resource for quick retrofit analysis of commercial buildings. DEEP, compiled from the results of about ten million EnergyPlus simulations, enables an easy screening of ECMs (energy conservation measures) and retrofit analysis. The simulations utilize prototype models representative of small and mid-size offices and retails in California climates. In the formulation of DEEP, large scale EnergyPlus simulations were conducted on high performance computing clusters to evaluate hundreds of individual and packaged ECMs covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and service hot water. The architecture and simulation environment to create DEEP is flexible and can expand to cover additional building types, additional climates, and new ECMs. In this study DEEP is integrated into a web-based retrofit toolkit, the Commercial Building Energy Saver, which provides a platform for energy retrofit decision making by querying DEEP and unearthing recommended ECMs, their estimated energy savings and financial payback. - Highlights: • A DEEP (database of energy efficiency performance) supports building retrofit. • DEEP is an SQL database with pre-simulated results from 10 million EnergyPlus runs. • DEEP covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • DEEP accelerates retrofit of small commercial buildings to save energy use and cost. • DEEP can be expanded and integrated with third-party energy software tools.

  5. On variations of space-heating energy use in office buildings

    Lin, Hung-Wen; Hong, Tianzhen

    2013-01-01

    Highlights: • Space heating is the largest energy end use in the U.S. building sector. • A key design and operational parameters have the most influence on space heating. • Simulated results were benchmarked against actual results to analyze discrepancies. • Yearly weather changes have significant impact on space heating energy use. • Findings enable stakeholders to make better decisions on energy efficiency. - Abstract: Space heating is the largest energy end use, consuming more than seven quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However

  6. Characterization of changes in commercial building structure, equipment, and occupants: End-Use Load and Consumer Assessment Program

    Lucas, R.G.; Taylor, Z.T.; Miller, N.E.; Pratt, R.G.

    1990-12-01

    Changes in commercial building structure, equipment, and occupants result in changes in building energy use. The frequency and magnitude of those changes have substantial implications for conservation programs and resource planning. For example, changes may shorten the useful lifetime of a conservation measure as well as impact the savings from that measure. This report summarizes the frequency of changes in a commercial building sample that was end-use metered under the End-Use Load and Consumer Assessment Program (ELCAP). The sample includes offices, dry good retails, groceries, restaurants, warehouses, schools, and hotels. Two years of metered data, site visit records, and audit data were examined for evidence of building changes. The observed changes were then classified into 12 categories, which included business type, equipment, remodel, vacancy, and operating schedule. The analysis characterized changes in terms of frequency of types of change; relationship to building vintage and floor area; and variation by building type. The analysis also examined the energy impacts of various changes. The analysis determined that the rate of change in commercial buildings is high--50% of the buildings experienced one type of change during the 2 years for which monitoring data were examined. Equipment changes were found to be most frequent in offices and retail stores. Larger, older office buildings tend to experience a wider variety of changes more frequently than the smaller, newer buildings. Key findings and observations are presented in Section 2. Section 3 provides the underlying motivation and objectives. In Section 4, the methodology used is documented, including the commercial building sample and the data sources used. Included are the definitions of change events and the overall approach taken. Results are analyzed in Section 5, with additional technical details in Appendixes. 2 refs., 46 figs., 22 tabs. (JF)

  7. Pollution prevention opportunity assessment for Building 922 solid office waste

    Phillips, N.M.

    1995-01-01

    Building 922 houses all of SNL/California's ES and H Departments: Health Protection, Environmental Protection, Safety, and Environmental Operations. It covers approximately 10,000 square feet and houses about 80 people. The office personnel generate nonhazardous solid office wastes in their daily activities. To determine the types and amounts of waste generated, a special PPOA sorting team sorted all of the trash collected from the building for a period of one-week (including paper and aluminum cans in the recycling bins). The team sorted the trash into major categories: paper, plastic, metals, glass, wet garbage, rest room waste, and miscellaneous materials. They then sorted it into subcategories within each major category. Rest room waste was collected but not sorted. The waste in each category was weighed separately. The total amount of trash collected during the week was approximately 168.8 kg (371.4 lbs). The results of this PPOA indicate that SNL/California is minimizing most nonhazardous office waste and reductions planned for the near future will add significantly to the minimization efforts

  8. Competing explanations for adopting energy innovations for new office buildings

    Vermeulen, Walter J.V.; Hovens, Jeroen

    2006-01-01

    An integrative model to explain potential adopters' decisions to adopt energy innovations was adapted and applied in the field of new office building construction. We tested the relative effects of competing theoretical explanations (derived from economics, innovation science and policy science) on the decision to adopt. The research covered 35 projects representing 9% of the total volume of new office construction in the Netherlands between 2000 and mid-2002. Two levels of explanations for adopting innovations were derived: (a) the potential adopter's weighed assessments of the innovations and his or her nature of decision making and (b) explanation of those first-level variables. Using multiple regression techniques, we determined the relative influence on innovation-adoption of variables covering economy and technology, government intervention, company characteristics, and influences from market and society. The decision to adopt 'mature' innovations, in contrast to 'young' innovations, is based more on routine procedures than project-specific considerations. Policies need to take this difference into consideration. We also show evidence that in promoting adoption of E-innovations for new office buildings the Dutch system of applying Energy Performance Standards and subsidies proofs to be effective

  9. Occupant evaluation of commercial office lighting: Volume 3, Data archive and database management system

    Gillette, G.; Brown, M. (ed.)

    1987-08-01

    This report documents a database of measured lighting environmental data. The database contains four different types of data on more than 1000 occupied work stations: (1) subjective data on attitudes and ratings of selected lighting and other characteristics, (2) photometric and other direct environmental data, including illuminances, luminances, and contrast conditions, (3) indirect environmental measures obtained from the architectural drawings and the work station photographs, and (4) descriptive characteristics of the occupants. The work stations were sampled from thirteen office buildings located in various cities in the United States. In the database, each record contains data on a single work station with its individual fields comprising characteristics of that work station and its occupant. The relational database runs on an IBM or IBM compatible personal computer using commercially available software. As a supplement to the database, an independent ASCII-8 bit data file is available.

  10. Results and Lessons Learned From the DOE Commercial Building Partnerships: Preprint

    Hirsch, A.; Deru, M.; Langner, R.; Stark, G.; Doebber, I.; Scheib, J.; Sheppy, M.; Bonnema, E.; Pless, S.; Livingood, B.; Torcellini, P.

    2014-09-01

    Over the course of 5 years, NREL worked with commercial building owners and their design teams in the DOE Commercial Building Partnerships (CBP) to cut energy consumption by 50% in new construction (versus code) and by 30% in existing building pilot projects (versus code or pre-retrofit operational energy use depending on the preference of the Partner) using strategies that could be replicated across their building portfolios. A number of different building types were addressed, including supermarket, retail merchandise, combination big box (general merchandise and food sales), high rise office space, and warehouse. The projects began in pre-design and included a year of measurement data to evaluate performance against design expectations. Focused attention was required throughout the entire process to achieve a design with the potential to hit the energy performance target and to operate the resulting building to reach this potential. This paper will report quantitative results and cover both the technical and the human sides of CBP, including the elements that were required to succeed and where stumbling blocks were encountered. It will also address the impact of energy performance goals and intensive energy modeling on the design process innovations and best practices.

  11. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  12. Assessment Framework of Building Facade in Optimizing Indoor Thermal Comfort of Green Building Index (GBI Certified Office Building

    Abdul Tharim Asniza Hamimi

    2016-01-01

    Full Text Available During the past decade, the construction industry has seen a new trend in the development of “green” or “sustainable” construction concept around the world with vast support from prominent organization, together with the introduction of sustainable building codes. The establishment of green building certification systems worldwide is seen as one of the most efforts in the emerging green building movement. In order to support the development of the “green” and “sustainable” concept in Malaysia, Green Building Index (GBI was launched by the government on 21 May 2009 that created to promote sustainability in the built environment and raise awareness of environmental issues. However, the construction industry seems to have focused only on findings the “right mechanism” for an environmentally sustainable “final result” in order for the building to be certified as green with the lacking of continuous assessment on the building performance after the certifications. This study is purposely conducted to investigate the performance of various rated Green Building Index (GBI Non-Residential New Construction office buildings and the influence on Indoor Thermal Comfort (ITC of the selected buildings. The aim is to develop an assessment framework for optimum green building architectural façade to be used for office buildings in Malaysia as well as to analyse the occupants’ perception, satisfaction and performance in the selected Green Building Index (GBI rated office indoor environment. This research is still in its infancy; therefore the paper is focused on research aims, research scope and methodology, and expected deliverables for the proposed research.

  13. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    Kamal, Rajeev

    part load operation. The study highlighted the need for optimum system sizing for GEHP/HVAC systems to meet the building load to obtain better performance in buildings. The second part of this study focusses on using chilled water or ice as thermal energy storage for shifting the air conditioning load from peak to off-peak in a commercial building. Thermal energy storage can play a very important role in providing demand-side management for diversifying the utility demand from buildings. Model of a large commercial office building is developed with thermal storage for cooling for peak power shifting. Three variations of the model were developed and analyzed for their performance with 1) ice storage, 2) chilled water storage with mixed storage tank and 3) chilled water storage with stratified tank, using EnergyPlus 8.5 software developed by the US Department of Energy. Operation strategy with tactical control to incorporate peak power schedule was developed using energy management system (EMS). The modeled HVAC system was optimized for minimum cost with the optimal storage capacity and chiller size using JEPlus. Based on the simulation, an optimal storage capacity of 40-45 GJ was estimated for the large office building model along with 40% smaller chiller capacity resulting in higher chiller part-load performance. Additionally, the auxiliary system like pump and condenser were also optimized to smaller capacities and thus resulting in less power demand during operation. The overall annual saving potential was found in the range of 7-10% for cooling electricity use resulting in 10-17% reduction in costs to the consumer. A possible annual peak shifting of 25-78% was found from the simulation results after comparing with the reference models. Adopting TES in commercial buildings and achieving 25% peak shifting could result in a reduction in peak summer demand of 1398 MW in Tampa.

  14. 2020 Leadership Agenda for Existing Commercial and Multifamily Buildings

    Burr, Andrew [Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy; Goldthwaite, Carolyn Sarno [Northeast Energy Efficiency Partnerships (NEEP), Boston, MA (United States). High Performance Buildings; Coffman, Eric [Montgomery County Dept. of General Services, Rockville, MD (United States). Office of Energy and Sustainability

    2016-01-21

    Leadership by state and local governments is critical to unlock national energy efficiency opportunities and deliver the benefits of efficiency to all Americans. But related to building energy efficiency, what will it mean to be a public sector leader over the next several years? What are the energy efficiency solutions that cities, counties, and states are implementing today that will make their communities more affordable, livable, healthy, and economically competitive? The SEE Action Network 2020 Leadership Agenda for Existing Commercial and Multifamily Buildings establishes a benchmark for state and local government leadership on improving the energy efficiency of buildings and seeks two-way collaboration among state, local, and federal officials. It defines a suite of innovative, yet practical policies and programs for policymakers to consider implementing by 2020, focusing on six important areas.

  15. Integrated Building Energy Design of a Danish Office Building Based on Monte Carlo Simulation Method

    Sørensen, Mathias Juul; Myhre, Sindre Hammer; Hansen, Kasper Kingo

    2017-01-01

    The focus on reducing buildings energy consumption is gradually increasing, and the optimization of a building’s performance and maximizing its potential leads to great challenges between architects and engineers. In this study, we collaborate with a group of architects on a design project of a new...... office building located in Aarhus, Denmark. Building geometry, floor plans and employee schedules were obtained from the architects which is the basis for this study. This study aims to simplify the iterative design process that is based on the traditional trial and error method in the late design phases...

  16. Sensitivity analysis of water consumption in an office building

    Suchacek, Tomas; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    This article deals with sensitivity analysis of real water consumption in an office building. During a long-term real study, reducing of pressure in its water connection was simulated. A sensitivity analysis of uneven water demand was conducted during working time at various provided pressures and at various time step duration. Correlations between maximal coefficients of water demand variation during working time and provided pressure were suggested. The influence of provided pressure in the water connection on mean coefficients of water demand variation was pointed out, altogether for working hours of all days and separately for days with identical working hours.

  17. Relationship between Quality of Building Maintenance System and Occupant Satisfaction for Office Buildings

    Hamid A.H.A

    2014-03-01

    Full Text Available Buildings will be weary, decaying and dirty as time goes by; but with highquality maintenance management we can prolong the life-span of building, provide building services and keep the building performance at its ultimate level. The importance of carrying out a systematic and routine maintenance is to conserve building performance. However, this task is often neglected due to various factors including misunderstanding the needs of the maintenance works and lack of budget allocation. This paper highlights the current practice of maintenance management that are being implemented in 6 office buildings located in Kuala Lumpur, Johor, Kedah and Pulau Pinang. Using the responses of questionnaire answered by 150 respondents employed from these selected offices, personal interviews and visual inspection the following findings were made: the occupants were satisfied with the maintenance management of their buildings elements and the delivery characteristics of maintenance works. Visual inspection however showed that some elements are not in a good condition. In conclusion, some recommendations are made to improve the existing system including the establishment of a maintenance plan, selection of experienced contractors and the provision of a service desk.

  18. Building envelope influence on the annual energy performance in office buildings

    Harmati Norbert L.

    2016-01-01

    Full Text Available The objective of the research is to determine the quantitative influence of building envelope on the annual heating and cooling energy demand in office buildings demonstrated on a reference office-tower building located in Novi Sad, Serbia. The investigation intended to find preferable and applicable solutions for energy performance improvement in currently inefficient office buildings. A comparative and evaluative analysis was performed among the heating energy expenses and simulated values from the multi-zone model designed in EnergyPlus engine. The research determines an improved window to wall ratio using dynamic daylight simulation and presents the influence of glazing parameters (U-value, Solar heat gain coefficient - SHGC on the annual energy performance. Findings presented window to wall ratio reduction down to 30% and point out the significance of the SHGC parameter on the overall energy performance of buildings with high internal loads. The calculation of the air-ventilation energy demand according to EN 15251 is included respectively. Results offer effective methods for energy performance improvement in temperate climate conditions.

  19. Factsheet on Energy Neutral School Buildings and Office Buildings; Infoblad Energieneutrale scholen en kantoren

    NONE

    2012-07-15

    A brief overview is given of all aspects of energy-neutral building and renovating school and office buildings. Besides technique, also attention is given to process, financing, management and maintenance. This factsheet is part of a series of three factsheets on energy neutral construction of houses and buildings. The other two are: 'Factsheet on Energy Neutral Building : Definition and ambition' and 'Factsheet on Energy Neutral Building' [Dutch] Een kort overzicht wordt gegeven van alle aspecten van energieneutraal bouwen en renoveren van woningen. Naast techniek komen ook proces, financiering en beheer en onderhoud aan de orde. Dit Infoblad maakt deel uit van een serie van drie Infobladen over energieneutraal bouwen voor woningen en gebouwen. De andere twee zijn: 'Infoblad Energieneutraal bouwen: definitie en ambitie' en 'Infoblad Energieneutrale Woningbouw'.

  20. Potential for energy technologies in residential and commercial buildings

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  1. Saving energy by using underfloor-air-distribution (UFAD) system in commercial buildings

    Alajmi, Ali; El-Amer, Wid

    2010-01-01

    The number of attempts by researchers to reduce building energy consumption has increased, ever since global warming became a serious issue. In this trend, a relatively new approach of air distribution, underfloor-air-distribution system (UFAD), has been widely used in new commercial buildings. This technique is simply accomplished by supplying air through a raised floor using different types of distribution configurations and outlets. In UFAD, the air is directly supplied to the occupants' area (occupied zone) causing occupants plumes and zone heat load stratify to the upper layer of the zone (unoccupied zone), which are later extracted from return points at high level. This flow pattern gives UFAD the advantage of using less energy than a conventional air-distribution system, ceiling-based air distribution (CBAD) due to lower pressure drop and lower air flow rate. This paper investigates the effectiveness of UFAD systems in commercial buildings for various types of application and at different air supply temperatures in a hot climate (The State of Kuwait). The findings show that UFAD has a significant saving of energy compared to CBAD (∼30%); in particular with high ceiling building types, as well as providing satisfactory comfort conditions for the occupants. Ultimately, more investigations should be done on conventional building heights (offices) to optimize the utilization of thermal stratification at design and operation stages.

  2. Office Rental Performance in the Commercial Property Market in ...

    and policies towards sustained tax benefits of office property rental growth in the city. Keywords: Abuja ... estate returns. They found significant differences between correlation coefficient of returns among the areas. This suggests that there are real estate market differences between ..... Singapore, Hong Kong, Taipei, Kuala.

  3. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  4. Compliance With the Federal Managers' Financial Integrity Act at the Defense Commercial Communications Office

    Ugone, Mary

    1993-01-01

    ...; Integrity Act of 1982 (FMFIA) at the Defense Commercial Communications Office (DECCO). The FMFIA requires each executive agency to periodically evaluate its system of internal controls and to report annually to the President and the Congress...

  5. Technical Support Document: 50% Energy Savings for Small Office Buildings

    Thornton, Brian A.; Wang, Weimin; Huang, Yunzhi; Lane, Michael D.; Liu, Bing

    2010-04-30

    The Technical Support Document (TSD) for 50% energy savings in small office buildings documents the analysis and results for a recommended package of energy efficiency measures (EEMs) referred to as the advanced EEMs. These are changes to a building design that will reduce energy usage. The package of advanced EEMs achieves a minimum of 50% energy savings and a construction area weighted average energy savings of 56.6% over the ANSI/ASHRAE/IESNA Standard 90.1-2004 for 16 cities which represent the full range of climate zones in the United States. The 50% goal is for site energy usage reduction. The weighted average is based on data on the building area of construction in the various climate locations. Cost-effectiveness of the EEMs is determined showing an average simple payback of 6.7 years for all 16 climate locations. An alternative set of results is provided which includes a variable air volume HVAC system that achieves at least 50% energy savings in 7 of the 16 climate zones with a construction area weighted average savings of 48.5%. Other packages of EEMs may also achieve 50% energy savings; this report does not consider all alternatives but rather presents at least one way to reach the goal. Design teams using this TSD should follow an integrated design approach and utilize additional analysis to evaluate the specific conditions of a project.

  6. Measurement Issues for Energy Efficient Commercial Buildings: Productivity and Performance Uncertainties

    Jones, D.W.

    2002-05-16

    In previous reports, we have identified two potentially important issues, solutions to which would increase the attractiveness of DOE-developed technologies in commercial buildings energy systems. One issue concerns the fact that in addition to saving energy, many new technologies offer non-energy benefits that contribute to building productivity (firm profitability). The second issue is that new technologies are typically unproven in the eyes of decision makers and must bear risk premiums that offset cost advantages resulting from laboratory calculations. Even though a compelling case can be made for the importance of these issues, for building decision makers to incorporate them in business decisions and for DOE to use them in R&D program planning there must be robust empirical evidence of their existence and size. This paper investigates how such measurements could be made and offers recommendations as to preferred options. There is currently little systematic information on either of these concepts in the literature. Of the two there is somewhat more information on non-energy benefits, but little as regards office buildings. Office building productivity impacts can be observed casually, but must be estimated statistically, because buildings have many interacting attributes and observations based on direct behavior can easily confuse the process of attribution. For example, absenteeism can be easily observed. However, absenteeism may be down because a more healthy space conditioning system was put into place, because the weather was milder, or because firm policy regarding sick days had changed. There is also a general dearth of appropriate information for purposes of estimation. To overcome these difficulties, we propose developing a new data base and applying the technique of hedonic price analysis. This technique has been used extensively in the analysis of residential dwellings. There is also a literature on its application to commercial and industrial

  7. 76 FR 35894 - Office of Federal High-Performance Green Buildings; Establishment of the Green Building Advisory...

    2011-06-20

    ... Federal High-Performance Green Buildings; Establishment of the Green Building Advisory Committee AGENCY... announces the establishment of the Green Building Advisory Committee (the Committee), pursuant to Section... strategic plans, products and activities of the Office of Federal High-Performance Green Buildings and...

  8. Building energy, building leadership : recommendations for the adoption, development, and implementation of a commercial building energy code in Manitoba

    Akerstream, T. [Manitoba Hydro, Winnipeg, MB (Canada); Allard, K. [City of Thompson, Thompson, MB (Canada); Anderson, N.; Beacham, D. [Manitoba Office of the Fire Commissioner, Winnipeg, MB (Canada); Andrich, R. [The Forks North Portage Partnership, MB (Canada); Auger, A. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency; Downs, R.G. [Shindico Realty Inc., Winnipeg, MB (Canada); Eastwood, R. [Number Ten Architectural Group, Winnipeg, MB (Canada); Hewitt, C. [SMS Engineering Ltd., Winnipeg, MB (Canada); Joshi, D. [City of Winnipeg, Winnipeg, MB (Canada); Klassen, K. [Manitoba Dept. of Energy Science and Technology, Winnipeg, MB (Canada); Phillips, B. [Unies Ltd., Winnipeg, MB (Canada); Wiebe, R. [Ben Wiebe Construction Ltd., Winnipeg, MB (Canada); Woelk, D. [Bockstael Construction Ltd., Winnipeg, MB (Canada); Ziemski, S. [CREIT Management LLP, Winnipeg, MB (Canada)

    2006-09-15

    This report presented a strategy and a set of recommendations for the adoption, development and implementation of an energy code for new commercial construction in Manitoba. The report was compiled by an advisory committee comprised of industry representatives and government agency representatives. Recommendations were divided into 4 categories: (1) advisory committee recommendations; (2) code adoption recommendations; (3) code development recommendations; and (4) code implementation recommendations. It was suggested that Manitoba should adopt an amended version of the Model National Energy Code for Buildings (1997) as a regulation under the Buildings and Mobile Homes Act. Participation in a national initiative to update the Model National Energy Code for Buildings was also advised. It was suggested that the energy code should be considered as the first step in a longer-term process towards a sustainable commercial building code. However, the code should be adopted within the context of a complete market transformation approach. Other recommendations included: the establishment of a multi-stakeholder energy code task group; the provision of information and technical resources to help build industry capacity; the establishment of a process for energy code compliance; and an ongoing review of the energy code to assess impacts and progress. Supplemental recommendations for future discussion included the need for integrated design by building design teams in Manitoba; the development of a program to provide technical assistance to building design teams; and collaboration between post-secondary institutions to develop and deliver courses on integrated building design to students and professionals. 17 refs.

  9. Energy optimization methodology of multi-chiller plant in commercial buildings

    Thangavelu, Sundar Raj; Myat, Aung; Khambadkone, Ashwin

    2017-01-01

    This study investigates the potential energy savings in commercial buildings through optimized operation of a multi-chiller plant. The cooling load contributes 45–60% of total power consumption in commercial and office buildings, especially at tropics. The chiller plant operation is not optimal in most of the existing buildings because the chiller plant is either operated at design condition irrespective of the cooling load or optimized locally due to lack of overall chiller plant behavior. In this study, an overall energy model of chiller plant is developed to capture the thermal behavior of all systems and their interactions including the power consumption. An energy optimization methodology is proposed to derive optimized operation decisions for chiller plant at regular intervals based on building thermal load and weather condition. The benefits of proposed energy optimization methodology are examined using case study problems covering different chiller plant configurations. The case studies result confirmed the energy savings achieved through optimized operations is up to 40% for moderate size chiller plant and around 20% for small chiller plant which consequently reduces the energy cost and greenhouse gas emissions. - Highlights: • Energy optimization methodology improves the performance of multi-chiller plant. • Overall energy model of chiller plant accounts all equipment and the interactions. • Operation decisions are derived at regular interval based on time-varying factors. • Three case studies confirmed 20 to 40% of energy savings than conventional method.

  10. Requirements of air conditioners for office buildings. Pt. 2

    Radtke, W

    1988-02-01

    Presenting numerous explanatory diagrams part two of the report deals with auxiliary ventilation systems (mechanical systems); the influence of different ventilation circuits on the air quality (particle concentration, floor and ceiling air outlets); the requirements of heating systems (dimensioning of heating systems, effects of ventilation systems on the heat demand, reduced heat demand owing to auxiliary ventilation systems); the requirements of cooling (cooling loads in office buildings, room temperatures in the case of natural cooling, auxiliary ventilation systems, and cooling by means of refrigerators, floor/ceiling cooling systems); permissible ambient air velocities (complaints about draughts). Bottom-to-top ventilation circuits were found to provide for better air qualities and lower ambient air velocities without increasing the systems' energy demand. (HWJ).

  11. Double Skin Facades for Office Buildings. Literature Review

    Poirazis, Harris

    2004-07-01

    The aim of this report is to describe the concept of Double Skin Facades based on different sources of literature. Although the concept is not new, there is a growing tendency from the architects to put it into practice. Its complexity and adaptability to different climatic conditions increase the need for careful design. Since the construction types can differ from one location to another, it is obvious that the comparison of different literature sources is not always relevant. Since the concept of Double Skin Facades is complicated and its use and function affects different parameters of the building, the literature studied is from different fields. It is clear that the design of the system is crucial for the performance of the building. It is the opinion of the author that the Double Skin Facades can provide both improved indoor climate and reduced use of energy in the same time if designed properly. If the approach is overall and the goals to be achieved are clear, then the mentioned system is flexible enough to meet climatic changes for most types of building use. The classification of the Double Skin Facades is important since the initial approach can influence the design stage. After selecting the type of Double Facade appropriate for the building, it is necessary to define the design and the technical parameters (such as the materials used) that can influence the function and the performance of the system and the physical properties of the cavity. The accuracy of calculations of the facade performance in the design stage will lead to more precise predictions. It is clear that by prioritizing the main goals of the double facade system in different ways, the building design and construction can differ adapting to the performance requirements of the designers, and the needs of the users. The advantages and disadvantages of double skin facades found in different literature sources are mentioned and described. Furthermore, examples of office buildings with

  12. Thermal energy storage for cooling of commercial buildings

    Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  13. Pilot project for a commercial buildings Energy Analysis and Diagnostic Center (EADC) program. Final report

    Capehart, B.L.

    1996-02-01

    Commercial energy use costs businesses around $70 billion annually. Many of these businesses are small and medium sized organizations that do not have the resources to help themselves, or to pay for professional engineering services to help reduce their energy costs and improve their economic competitiveness. Energy cost reduction actions with payback times of around two years could save the commercial sector 15--20%, or $10--$15 billion per year. This project was initially intended to evaluate the feasibility of performing commercial energy audits as an adjunct to the industrial audit program run by the US Department of Energy Industrial Office. This program is housed in 30 universities throughout the United States. Formerly known as Energy Analysis and Diagnostic Centers (EADC`s), the university programs are now called Industrial Assessment Centers (IAC`s) to reflect their expansion from energy use analyses to include waste and productivity analyses. The success of the EADC/IAC program in helping the manufacturing sector provides an excellent model for a similar program in the commercial buildings sector. This project has investigated using the EADC/IAC approach to performing energy audits for the commercial sector, and has determined that such an approach is feasible and cost effective.

  14. Using EMIS to Identify Top Opportunities for Commercial Building Efficiency

    Lin, Guanjing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singla, Rupam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    Energy Management and Information Systems (EMIS) comprise a broad family of tools and services to manage commercial building energy use. These technologies offer a mix of capabilities to store, display, and analyze energy use and system data, and in some cases, provide control. EMIS technologies enable 10–20 percent site energy savings in best practice implementations. Energy Information System (EIS) and Fault Detection and Diagnosis (FDD) systems are two key technologies in the EMIS family. Energy Information Systems are broadly defined as the web-based software, data acquisition hardware, and communication systems used to analyze and display building energy performance. At a minimum, an EIS provides daily, hourly or sub-hourly interval meter data at the whole-building level, with graphical and analytical capability. Fault Detection and Diagnosis systems automatically identify heating, ventilation, and air-conditioning (HVAC) system or equipment-level performances issues, and in some cases are able to isolate the root causes of the problem. They use computer algorithms to continuously analyze system-level operational data to detect faults and diagnose their causes. Many FDD tools integrate the trend log data from a Building Automation System (BAS) but otherwise are stand-alone software packages; other types of FDD tools are implemented as “on-board” equipment-embedded diagnostics. (This document focuses on the former.) Analysis approaches adopted in FDD technologies span a variety of techniques from rule-based methods to process history-based approaches. FDD tools automate investigations that can be conducted via manual data inspection by someone with expert knowledge, thereby expanding accessibility and breath of analysis opportunity, and also reducing complexity.

  15. Functional Testing Protocols for Commercial Building Efficiency Baseline Modeling Software

    Jump, David; Price, Phillip N.; Granderson, Jessica; Sohn, Michael

    2013-09-06

    This document describes procedures for testing and validating proprietary baseline energy modeling software accuracy in predicting energy use over the period of interest, such as a month or a year. The procedures are designed according to the methodology used for public domain baselining software in another LBNL report that was (like the present report) prepared for Pacific Gas and Electric Company: ?Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing Protocols? (referred to here as the ?Model Analysis Report?). The test procedure focuses on the quality of the software?s predictions rather than on the specific algorithms used to predict energy use. In this way the software vendor is not required to divulge or share proprietary information about how their software works, while enabling stakeholders to assess its performance.

  16. Intelligent Facades in Buildings Facades of local Office Buildings - Case Study

    Al-Qaraghuli Anwar Subhi

    2016-01-01

    Full Text Available In order to meet the functional performance and requirements on the environmental, ecological, social and aesthetical aspects, it became a necessity to develop another options of building that would be more efficient in the provision of those requirements, so a new generation have appeared called “Smart Buildings” or “Intelligent Buildings” with their sophisticated parts and various details, one of those essential parts is the “Intelligent Façade” for it’s being the essential and primary defensive line for the building against the environmental and climatic variations.This research focused on presenting the most clearly and comprehensive perception of the intelligent façades, in a manner that serves the ability of the designer to apply them in his designs or while developing an existing façades in local (Iraqi office buildings.To achieve such goal, it has been a necessity to adopt a descriptive and analytical Method for the previous knowledge and take a sequential researching steps, the first step was to build a comprehensive theoretical framework by defining the intelligent façade. Down to abstracting three main vocabularies of the theoretical framework represented by: integrated intelligent façade design, intelligent façade techniques, and effective response.The next research steps focused on applying the vocabularies of the theoretical framework on the elected local office buildings that have been adopted the matter of intelligent façades in one of their forms, and then analyze/discuss the results of the applicable study, to be able to draw the final conclusions, and by this the research presented a determined recommendations.

  17. Peak reduction for commercial buildings using energy storage

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  18. Quantification protocol for energy efficiency in commercial and institutional buildings

    NONE

    2010-10-15

    Alberta Environment has developed an approved methodology that can be used to quantify the reduction of direct and indirect greenhouse gas emission observed after the implementation of energy efficiency measures in commercial and institutional buildings. This methodology concerns energy conservation measures that target the heating system, the ventilation, the air conditioning and lightning systems, but also includes building envelope, tap water heating, elevators, occupant small electrical equipment, outdoor lighting, swimming pool pumping or heating. Calculation methodologies for energy conservation proposed by the Efficiency Valuation Organization were adapted by Alberta Environment. The protocol detailed in this document is based on the fact that emissions reductions are represented by the difference between the energy use in the project condition and a baseline. This approach proposes simple and advanced calculation methodologies that allow project developers to use one or the other, depending on the availability of data and on the limitations of the project, to maximize the greenhouse gas emissions reductions quantified. 14 refs., 11 tabs., 5 figs.

  19. Energy-Efficient Office Buildings at High Latitudes

    Lerum, V.

    1996-12-31

    This doctoral thesis describes a method for energy efficient office building design at high latitudes and cold climates. The method combines daylighting, passive solar heating, solar protection, and ventilative cooling. The thesis focuses on optimal design of an equatorial-facing fenestration system. A spreadsheet framework linking existing simplified methods is used. The daylight analysis uses location specific data on frequency distribution of diffuse daylight on vertical surfaces to estimate energy savings from optimal window and room configurations in combination with a daylight-responsive electric lighting system. The passive solar heating analysis is a generalization of a solar load ratio method adapted to cold climates by combining it with the Norwegian standard NS3031 for winter months when the solar savings fraction is negative. The emphasis is on very high computational efficiency to permit rapid and comprehensive examination of a large number of options early in design. The procedure is illustrated for a location in Trondheim, Norway, testing the relative significance of various design improvement options relative to a base case. The method is also tested for two other locations in Norway, at latitudes 58 and 70 degrees North. The band of latitudes between these limits covers cities in Alaska, Canada, Greenland, Iceland, Scandinavia, Finland, Russia, and Northern Japan. A comprehensive study of the ``whole building approach`` shows the impact of integrated daylighting and low-energy design strategies. In general, consumption of lighting electricity may be reduced by 50-80%, even at extremely high latitudes. The reduced internal heat from electric lights is replaced by passive solar heating. 113 refs., 85 figs., 25 tabs.

  20. A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures

    NONE

    1998-10-01

    The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

  1. Commercial Building Energy Asset Rating Tool User's Guide

    Wang, Na; Makhmalbaf, Atefe; Matsumoto, Steven W.

    2012-05-01

    The U.S. Department of Energy’s Commercial Building Energy Asset Rating Tool is a web-based system that is designed to allow building owners, managers, and operators to more accurately assess the energy performance of their commercial buildings. This document provide a step-by-step instruction on how to use the tool.

  2. An Examination of the Performance Based Building Code on the Design of a Commercial Building

    John Greenwood

    2012-11-01

    Full Text Available The Building Code of Australia (BCA is the principal code under which building approvals in Australia are assessed. The BCA adopted performance-based solutions for building approvals in 1996. Performance-based codes are based upon a set of explicit objectives, stated in terms of a hierarchy of requirements beginning with key general objectives. With this in mind, the research presented in this paper aims to analyse the impact of the introduction of the performance-based code within Western Australia to gauge the effect and usefulness of alternative design solutions in commercial construction using a case study project. The research revealed that there are several advantages to the use of alternative designs and that all parties, in general, are in favour of the performance-based building code of Australia. It is suggested that change in the assessment process to streamline the alternative design path is needed for the greater use of the performance-based alternative. With appropriate quality control measures, minor variations to the deemed-to-satisfy provisions could easily be managed by the current and future building surveying profession.

  3. VOLTTRON™: Tech-to-Market Best-Practices Guide for Small- and Medium-Sized Commercial Buildings

    Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haack, Jereme N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nicholls, Andrew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-11

    VOLTTRON™ is an open-source distributed control and sensing platform developed by Pacific Northwest National Laboratory for the U.S. Department of Energy. It was developed to be used by the Office of Energy Efficiency and Renewable Energy to support transactive controls research and deployment activities. VOLTTRON is designed to be an overarching integration platform that could be used to bring together vendors, users, and developers and enable rapid application development and testing. The platform is designed to support modern control strategies, including the use of agent- and transaction-based controls. It also is designed to support the management of a wide range of applications, including heating, ventilation, and air-conditioning systems; electric vehicles; and distributed-energy and whole-building loads. This report was completed as part of the Building Technologies Office’s Technology-to-Market Initiative for VOLTTRON’s Market Validation and Business Case Development efforts. The report provides technology-to-market guidance and best practices related to VOLTTRON platform deployments and commercialization activities for use by entities serving small- and medium-sized commercial buildings. The report characterizes the platform ecosystem within the small- and medium-sized commercial building market and articulates the value proposition of VOLTTRON for three core participants in this ecosystem: 1) platform owners/adopters, 2) app developers, and 3) end-users. The report also identifies key market drivers and opportunities for open platform deployments in the small- and medium-sized commercial building market. Possible pathways to the market are described—laboratory testing to market adoption to commercialization. We also identify and address various technical and market barriers that could hinder deployment of VOLTTRON. Finally, we provide “best practice” tech-to-market guidance for building energy-related deployment efforts serving small- and

  4. 49 CFR 1242.21 - Station and office buildings (account XX-19-23).

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Station and office buildings (account XX-19-23). 1242.21 Section 1242.21 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... Structures § 1242.21 Station and office buildings (account XX-19-23). If the sum of the direct freight and...

  5. Environmental satisfaction in multi-tenant office buildings : a holistic approach

    Rovers, N.; Appel - Meulenbroek, H.A.J.A.; Kemperman, A.D.A.M.; Appel-Meulenbroek, R.; Jylhä, T.

    2017-01-01

    PurposeIn the current office market office providers are obligated to meet as many wishes of the (future) tenants and end-users of their buildings as possible in order to keep their buildings from becoming vacant. In order to do so it is necessary to gain more insight in these wishes. The aim of

  6. 11 CFR 100.84 - Office building for State, local, or district party committees or organizations.

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Office building for State, local, or district party committees or organizations. 100.84 Section 100.84 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) Exceptions to Contributions § 100.84 Office building for...

  7. 11 CFR 100.144 - Office building for State, local, or district party committees or organizations.

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Office building for State, local, or district party committees or organizations. 100.144 Section 100.144 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) Exceptions to Expenditures § 100.144 Office building for...

  8. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-01-01

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  9. Techno-Economic Analysis of Solar Absorption Cooling for Commercial buildings in India

    Muthalagappan Narayanan

    2017-11-01

    Full Text Available Space cooling and heating always tends to be a major part of the primary energy usage. By using fossil fuel electricity for these purposes, the situation becomes even worse. One of the major electricity consumptions in India is air conditioning. There are a lot of different technologies and few researchers have come up with a debate between solar absorption cooling and PV electric cooling. In a previous paper, PV electric cooling was studied and now as a continuation, this paper focuses on solar thermal absorption cooling systems and their application in commercial/office buildings in India. A typical Indian commercial building is taken for the simulation in TRNSYS. Through this simulation, the feasibility and operational strategy of the system is analysed, after which parametric study and economic analysis of the system is done. When compared with the expenses for a traditional air conditioner unit, this solar absorption cooling will take 13.6 years to pay back and will take 15.5 years to payback the price of itself and there after all the extra money are savings or profit.  Although the place chosen for this study is one of the typical tropical place in India, this payback might vary with different places, climate and the cooling demand. Article History: Received May 12th 2017; Received in revised form August 15th 2017; Accepted 1st Sept 2017; Available online How to Cite This Article: Narayanan, M. (2017. Techno-Economic Analysis of Solar Absorption Cooling for Commercial Buildings in India.  International Journal of Renewable Energy Development, 6(3, 253-262. https://doi.org/10.14710/ijred.6.3.253-262

  10. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of

  11. Small Commercial Building Re-tuning: A Primer

    Cort, Katherine A.; Hostick, Donna J.; Underhill, Ronald M.; Fernandez, Nicholas; Katipamula, Srinivas

    2013-09-30

    To help building owners and managers address issues related to energy-efficient operation of small buildings, DOE has developed a Small Building Re-tuning training curriculum. This "primer" provides additional background information to understand some of the concepts presented in the Small Building Re-tuning training. The intent is that those who are less familiar with the buidling energy concepts will review this material before taking the building re-tuning training class.

  12. Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings

    Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

    2009-09-01

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  13. Ready to Retrofit: The Process of Project Team Selection, Building Benchmarking, and Financing Commercial Building Energy Retrofit Projects

    Sanders, Mark D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parrish, Kristen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    This guide presents a process for three key activities for the building owner in preparing to retrofit existing commercial buildings: selecting project teams, benchmarking the existing building, and financing the retrofit work. Although there are other essential steps in the retrofit process, the three activities presented in this guide are the critical elements where the building owner has the greatest influence on the outcome of the project.

  14. What Role Does The Executive Officer Play In Ensuring Senior Officer Success Building An Organization Of Trust Is Key

    2016-02-16

    AIR WAR COLLEGE AIR UNIVERSITY WHAT ROLE DOES THE EXECUTIVE OFFICER PLAY IN ENSURING SENIOR OFFICER SUCCESS? BUILDING AN ORGANIZATION OF...talk, demonstrate respect, create transparency, right wrongs, show loyalty , deliver results, get better, confront reality, clarify expectations...When speaking for the senior leader, the exec must ensure commander’s intent is conveyed clearly and accurately. It is for this reason that execs

  15. Suitability assessment of building energy saving technologies for office buildings in cold areas of China based on an assessment framework

    Geng, Geng; Wang, Zhaoxia; Zhao, Jing; Zhu, Neng

    2015-01-01

    Highlights: • An assessment method considering economy, environment and technology is proposed. • Office buildings are classified into 3 types and weights are calculated respectively. • BESTs were summed up as 3 suitability levels. • Recommendations are proposed for adopting in design stage. - Abstract: Blind application and extensive copy of building energy saving technologies have been found very common through investigation in China. Emphases should be put on the suitability assessment when selecting and optimizing building energy saving technologies. This paper created an assessment method, namely an assessment framework to assess the suitability level of building energy saving technologies from a holistic point of view. Fuzzy analytic hierarchy process was adopted. 3 factors and 8 sub-factors were included in the framework. The office buildings were classified into 3 types to calculate weights of factors and sub-factors. The assessment framework was established for each type of office buildings. 20 energy saving technologies from surveyed cases was selected as case study. Ranks of suitability level of the assessment objects were obtained for each type of office buildings. The assessment results could be referred when selecting building energy saving technologies in the design stage

  16. Office Building, Roskilde, Denmark. Parkvænget 25, 4000 Roskilde

    Rose, Jørgen; Thomsen, Kirsten Engelund

    Built in 1968 the office building was a typical precast concrete building with a very limited level of insulation. In 1991 the building envelope was renovated and insulation was added to the wall (175 mm) and windows were replaced with traditional double-glazed windows. The main objective...

  17. Commercial Building Tenant Energy Usage Aggregation and Privacy

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

    2014-10-31

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

  18. Energy consumption in office buildings. Trends and drivers; Energibruk i kontorbygg. Trender og drivere

    Langseth, Benedicte

    2013-02-01

    This report focuses on the energy usage of Norwegian office buildings. Historic data on the subject is limited, so qualitative input is gathered through interviews with property owners and contractors for energy solutions. We have looked at what affects the total area of office buildings in Norway, and realized that it more or less follows the inland gross domestic product. The report also includes cross-sectional analyses from various data sources to find what affects the specific energy usage of office buildings. The actual measured consumption deviates from estimated consumption, especially in newer buildings and especially within ventilation and cooling. Additionally, a model has been developed for projective purposes. It is well suited to test the effect of various input parameters and assumptions on the total area of office buildings and their energy consumption. Though as of yet the quality of data is not good enough to make a profound and credible estimate of total energy usage.(eb)

  19. Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota

    Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

    2005-03-04

    The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

  20. 40 CFR 745.228 - Accreditation of training programs: public and commercial buildings, bridges and superstructures...

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Accreditation of training programs: public and commercial buildings, bridges and superstructures. [Reserved] 745.228 Section 745.228... Accreditation of training programs: public and commercial buildings, bridges and superstructures. [Reserved] ...

  1. Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework

    Mendell, Mark J.; Fisk, William J.

    2014-02-01

    Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each

  2. Pathways to Commercial Success: Technologies and Innovations Enabled by the U.S. Department of Energy Fuel Cell Technologies Office

    None, None

    2017-10-11

    This report published in October 2017 updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  3. Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle with Electric Energy Storage in Different Commercial Buildings

    Emily Spayde

    2018-01-01

    Full Text Available This paper presents an analysis to determine the economic, energetic, and environmental benefits that could be obtained from the implementation of a combined solar-power organic Rankine cycle (ORC with electric energy storage (EES to supply electricity to several commercial buildings including a large office, a small office, and a full service restaurant. The operational strategy for the ORC-EES system consists in the ORC charging the EES when the irradiation level is sufficient to generate power, and the EES providing electricity to the building when there is not irradiation (i.e., during night time. Electricity is purchased from the utility grid unless it is provided by the EES. The potential of the proposed system to reduce primary energy consumption (PEC, carbon dioxide emission (CDE, and cost was evaluated. Furthermore, the available capital cost for a variable payback period for the ORC-EES system was determined for each of the evaluated buildings. The effect of the number of solar collectors on the performance of the ORC-EES is also studied. Results indicate that the proposed ORC-EES system is able to satisfy 11%, 13%, and 18% of the electrical demand for the large office, the small office and the restaurant, respectively.

  4. Performance of office buildings from a user's perspective

    van der Voordt, Theo; Maarleveld, M.

    2006-01-01

    In the field of environmental psychology a long tradition exists in Post-Occupancy Evaluation (POE) or building-in-use studies. Nowadays facility managers and real estate managers seem to show a growing interest in ex post evaluation of buildings, too, particularly in connection to ex ante

  5. Use of standalone photovoltaic system for office building: the case ...

    This paper presents the design of a cost effective energy system for National Centre for Hydropower Research and Development (NACHRED) building to supply its daily energy requirements. The daily hourly load demand of the building was measured with FLUKE 434 Series II Energy Analyzer. The measurement was ...

  6. Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2007-12-01

    This report summarizes the findings from research conducted at NREL to assess the technical potential for zero-energy building technologies and practices to reduce the impact of commercial buildings on the U.S. energy system. Commercial buildings currently account for 18% of annual U.S. energy consumption, and energy use is growing along with overall floor area. Reducing the energy use of this sector will require aggressive research goals and rapid implementation of the research results.

  7. Workplace building design and office-based workers' activity: a study of a natural experiment.

    Jancey, Jonine M; McGann, Sarah; Creagh, Robyn; Blackford, Krysten D; Howat, Peter; Tye, Marian

    2016-02-01

    This opportunistic natural study investigated the effects of relocation of office workers from a 30-year-old building to a new purpose-built building. The new building included an attractive central staircase that was easily accessed and negotiated, as well as breakout spaces and a centralised facilities area. The researchers aimed to determine the impact of the purpose-built office building on the office workers' sedentariness and level of physical activity. In 2013, a natural pre-post study was undertaken with office-based workers in their old conventional 1970s building and on relocating to a new purpose-built 'activity permissive' building. Objective movement data was measured using accelerometers. Anthropometric and demographic data was also collected. Forty-two office-based workers significantly decreased their percentage of daily sitting time (T1 = 84.9% to T2=79.7%; pbuilding. Moderate activity significantly declined (T1=3.9% to 3.2%=T2; p=0.038). There was a significant decrease in mean minutes of sitting time (19.62 minutes; pbuilding can influence activity. This opportunistic study on the impact of workplace relocation on office-based workers' activity showed modest positive outcomes in sitting and standing. Evidence is required to inform building design policy and practice that supports physical activity and reduces levels of sedentariness in the workplace. © 2015 The Authors.

  8. Perceived air quality and sensory pollution loads in six Danish office buildings

    Wargocki, Pawel; Krupicz, P.; Szczecinski, A.

    2002-01-01

    Perceived air quality and sensory pollution loads were measured in 6 office buildings with mechanical ventilation without recirculation, in each buildings in 6 representative non-smoking medium-sized and small offices with mixing ventilation. An untrained panel of 43 subjects assessed the air...... quality on a normal weekday when the building was occupied, and on a weekend without occupants in the building. On both occasions the ventilation system was in operation as on a normal working day. Outdoor air supply rate, air temperature, relative humidity, concentration of carbon dioxide and ultrafine...

  9. 76 FR 13617 - Office of Federal High-Performance Green Buildings (OFHPGB); Notice of GSA Bulletin OFHPGB 2011...

    2011-03-14

    ...-Performance Green Buildings (OFHPGB); Notice of GSA Bulletin OFHPGB 2011-OGP-1 AGENCY: Office of.... Procedures Bulletins regarding the Office of Federal High-Performance Green Building are located on the... Washington, DC 20405 OFFICE OF FEDERAL HIGH-PERFORMANCE GREEN BUILDINGS GSA Bulletin 2011-OGP-1 TO: Heads of...

  10. Decision-making aids for the rational use of energy in office buildings

    Daniels, K [HL-Technik G.m.b.H., Muenchen (Germany, F.R.)

    1979-11-01

    The rational use of energy in office buildings can be assured by intensifying cooperation between owner, architect, structural designer, and installer with a view to the employment of technical aids and the interdependence of design concept and structural configuration. As can be seen from a comparison of different types of buildings, there are considerable differences in the anticipated energy consumption and the potential use of energy. It is important to note that continued serviceability of an office building must be assured at times of crisis when only a minimum of energy is available and that modern office buildings are so supplied with utilities that energy is only used if this is required for comfort and office work.

  11. How can new technology, improve façade construction of office building, in Iran

    Saberi, Akbar

    2014-01-01

    It is evident that available technologies on office building sector in Shiraz relay on traditional construction especially on wet methods. Wet system process depends on human interpretation (The human interpretation is the basics of the systems) which cause major problems in construction quality. For this propose this dissertation focus on construction method in office building in Iran. Compared to wet construction, dry system is new technology in the construction industry. ...

  12. Post-occupancy evaluation of office buildings in a Johannesburg ...

    -Occupancy ... when the British Ministry of Education, in agreement with local ... indoor air quality (IAQ), temperature, daytime lighting, work space and noise. ... choose the type of clothing that is suitable to the temperature of the building ...

  13. Low-energy office buildings using existing technology. Simulations with low internal heat gains

    Flodberg, Kajsa; Blomsterberg, Aake; Dubois, Marie-Claude [Lund Univ. (Sweden). Div. of Energy and Building Design

    2012-11-01

    Although low-energy and nearly zero-energy residential houses have been built in Sweden in the past decade, there are very few examples of low-energy office buildings. This paper investigates the design features affecting energy use in office buildings and suggests the optimal low-energy design from a Swedish perspective. Dynamic simulations have been carried out with IDA ICE 4 on a typical narrow office building with perimeter cell rooms. The results from the parametric study reveal that the most important design features for energy saving are demand-controlled ventilation as well as limited glazing on the facade. Further energy-saving features are efficient lighting and office equipment which strongly reduce user-related electricity and cooling energy. Together, the simulation results suggest that about 48% energy can be saved compared to a new office building built according to the Swedish building code. Thus, it is possible, using a combination of simple and well-known building technologies and configurations, to have very low energy use in new office buildings. If renewable energy sources, such as solar energy and wind power, are added, there is a potential for the annual energy production to exceed the annual energy consumption and a net zero-energy building can be reached. One aspect of the results concerns user-related electricity, which becomes a major energy post in very low-energy offices and which is rarely regulated in building codes today. This results not only in high electricity use, but also in large internal heat gains and unnecessary high cooling loads given the high latitude and cold climate. (orig.)

  14. Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy

    Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na

    2014-11-17

    In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level of aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.

  15. Lost opportunities: Modeling commercial building energy code adoption in the United States

    Nelson, Hal T.

    2012-01-01

    This paper models the adoption of commercial building energy codes in the US between 1977 and 2006. Energy code adoption typically results in an increase in aggregate social welfare by cost effectively reducing energy expenditures. Using a Cox proportional hazards model, I test if relative state funding, a new, objective, multivariate regression-derived measure of government capacity, as well as a vector of control variables commonly used in comparative state research, predict commercial building energy code adoption. The research shows little political influence over historical commercial building energy code adoption in the sample. Colder climates and higher electricity prices also do not predict more frequent code adoptions. I do find evidence of high government capacity states being 60 percent more likely than low capacity states to adopt commercial building energy codes in the following year. Wealthier states are also more likely to adopt commercial codes. Policy recommendations to increase building code adoption include increasing access to low cost capital for the private sector and providing noncompetitive block grants to the states from the federal government. - Highlights: ► Model the adoption of commercial building energy codes from 1977–2006 in the US. ► Little political influence over historical building energy code adoption. ► High capacity states are over 60 percent more likely than low capacity states to adopt codes. ► Wealthier states are more likely to adopt commercial codes. ► Access to capital and technical assistance is critical to increase code adoption.

  16. Towards a new procedure for identifying causes of health and comfort problems in office buildings

    Bluyssen, P.M.; Fossati, S.; Mandin, C.; Cattaneo, A.; Carrer, P.

    2012-01-01

    In the European project OFFICAIR a procedure has been prepared for the inventory and identification of associations between possible characteristics of European modern offices (building, sources and events) and health and comfort of office workers, via a questionnaire and a checklist including

  17. Effect of renovating an office building on occupants' comfort and health

    Pejtersen, Jan; Brohus, H.; Hyldgaard, C. E.

    2001-01-01

    . Before the floor material was installed in the office building, a full-scale exposure experiment was performed in the laboratory. The new ventilation strategy and renovation of the HVAC system were selected on the basis of laboratory experiments on a full-scale mock-up of a cellular office. The severity...

  18. Prevalence and risk factors for Sick Building Syndrome among Italian correctional officers: A pilot study

    Francesco Chirico; Giuseppe Ferrari; Giuseppe Taino; Enrico Oddone; Ines Giorgi; Marcello Imbriani

    2017-01-01

    Introduction: Over the past two decades, numerous studies on indoor air and the Sick Building Syndrome (SBS) have been conducted, mostly in office environments. However, there is little knowledge about SBS in police officers. This study was aimed to fill this gap. Methods: A cross-sectional questionnaire survey was conducted in 2016 at the Triveneto Penitentiary Center, Northern Italy. Chi-square was used to test the difference of prevalence between office workers (OWs) and correctional of...

  19. A review study of maintenance and management issues in Malaysian commercial building towards sustainable future practice

    Nawi, Mohd Nasrun Mohd; Baharum, Faizal; Ibrahim, Siti Halipah; Riazi, Salman Riazi Mehdi

    2017-10-01

    Good management of the building will be able to influence the quality of the buildings that remain long, safe and beautiful without any damage and problems. This research paper aims to explore the issue of maintenance and management that appear in managing the commercial building in Malaysian construction and property industry. The data in this research has been gathered through the reviewing process of secondary data such as journals, proceeding, thesis etc. in the area that related to maintenance and management issue in commercial building. As highlighted by previous study, building a good management can ensure that the facilities available in the building are well and meet the standard. Thus, exposure to the problems and needs in the management of the building would be able to improve the quality of building management systems to be more effective and fulfil the client needs and features.

  20. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    Zhao Jing; Wu Yong; Zhu Neng

    2009-01-01

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end.

  1. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    Zhao Jing [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)], E-mail: zhaojing@tju.edu.cn; Wu Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Zhu Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2009-06-15

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end.

  2. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    Zhao, Jing; Zhu, Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Wu, Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end. (author)

  3. 76 FR 67480 - Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB...

    2011-11-01

    ...] Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB) Approval... Commercial Diving Operations Standard (29 CFR part 1910, subpart T). DATES: Comments must be submitted... existing Standard on Commercial Diving Operations (29 CFR part 1910, Subpart [[Page 67481

  4. 76 FR 48152 - Commercial Building Asset Rating Program

    2011-08-08

    ... European Union, although the meaning of each grade could be very different across regions. A series of.... Year built. Climate zone. Building type. Year rating is issued. Report serial number (for tracking...

  5. An analysis of heating and cooling conservation features in commercial buildings

    Sutherland, R.J.

    1990-01-01

    One purpose of this study is to estimate the relationship in commercial buildings between conservation investments, fuel prices, building occupancy and building characteristics for new buildings and for existing buildings. The data base is a nationwide survey of energy in commercial buildings conducted by the Energy Information Administration (EIA) in 1986. Some simple cross-tabulations indicate that conservation measures vary with building size, building age, type of building, and fuel used for building heating. Regression estimates of a conservation model indicate that the number of conservation features installed during construction is a positive function of the price of the heating fuel at the time of construction. Subsequent additions of conservation features are positively correlated with increases in heating fuel prices. Given the EIA projection of relatively stable future energy prices, the number of retrofits may not increase significantly. Also, energy efficiency in new buildings may not continue to increase relative to current new buildings. If fuel prices affect consumption via initial conservation investments, current fuel prices, marginal or average, are not the appropriate specification. The fuel price regression results indicate that conservation investments in new buildings are responsive to market signals. Retrofits are less responsive to market signals. The number of conservation features in a building is not statistically related to the type of occupancy (owner versus renter), which implies that conservation strategies are not impeded by the renting or leasing of buildings

  6. Building spatial layout that supports healthier behavior of office workers: a new performance mandate for sustainable buildings.

    Hua, Ying; Yang, Eunhwa

    2014-01-01

    The pursuit of efficiency and the permeation of communication technologies in modern workplace have increased prolonged sitting and physical inactivity among the white-collar workforce. Physical inactivity is a major risk factor for developing various chronic diseases and obesity. This study intends to understand the impact of physical environment on both voluntary and imperative physical activity levels in an office building, and to collect evidence for design suggestions to encourage office workers' activity level on a daily basis. This study examined how proximity from individual workstations to various shared service and amenity spaces in the workplace (e.g., meeting spaces, copy areas, kitchens, restrooms, elevators, and stairs) is associated with office workers' physical activity level (e.g., sedentary and non-sedentary behavior) and their environmental and job satisfaction. To objectively measure physical activity, twenty-six office workers, in a three-story office building, wore accelerometers for three consecutive days at work. Environmental and job satisfaction of office workers was measured by a questionnaire. Proximity variables were measured using the floor plans of the subject building. Participants on average were sedentary for 80% of the time during the study. Proximity to several service and amenity areas was positively associated with step counts and job satisfaction.

  7. Strategies for Controlling Plug Loads. A Tool for Reducing Plug Loads in Commercial Buildings

    Torcellini, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bonnema, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sheppy, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Plug loads are often not considered as part of the energy savings measures in Commercial Buildings; however, they can account for up to 50% of the energy used in the building. These loads are numerous and often scattered throughout a building. Some of these loads are purchased by the owner and some designed into the building or the tenant finishes for a space. This document provides a strategy and a tool for minimizing these loads.

  8. Energy analysis of an improved concept of integrated PV panels in an office building in central Greece

    Zogou, Olympia; Stapountzis, Herricos [University of Thessaly, Mechanical Engineering Department, Volos (Greece)

    2011-03-15

    During the last decade, steel constructions with glazed facades became popular for commercial buildings in Greece. Moreover, expensive metal, natural stone, marble, ceramic, granite as well as special glass is employed for aesthetic and energy efficiency reasons. This creates opportunities for the introduction of Photovoltaic (PV) modules in double facades. PV modules on south-facing building walls are better placed at a distance from the wall to allow heat rejection and avoid overheating and efficiency loss. Exploiting the rejected heat of the PV modules is also a challenge. In this paper, we examine an improved concept of incorporating PV modules to the south facades of an office building, exploiting both the electricity produced and the heat rejected by the module, to increase building energy efficiency. The PV modules are integrated to the building wall by means of a double facade, which employs intervening ducts for ventilation purposes. The ducts are heating outdoor air, which is employed to cover the ventilation needs of the building, as well as a part of the heating loads. Simulations for typical winter and summer weather and solar insolation conditions are carried out to investigate the building's energy performance improvements. (author)

  9. Energy analysis of an improved concept of integrated PV panels in an office building in central Greece

    Zogou, Olympia; Stapountzis, Herricos

    2011-01-01

    During the last decade, steel constructions with glazed facades became popular for commercial buildings in Greece. Moreover, expensive metal, natural stone, marble, ceramic, granite as well as special glass is employed for aesthetic and energy efficiency reasons. This creates opportunities for the introduction of Photovoltaic (PV) modules in double facades. PV modules on south-facing building walls are better placed at a distance from the wall to allow heat rejection and avoid overheating and efficiency loss. Exploiting the rejected heat of the PV modules is also a challenge. In this paper, we examine an improved concept of incorporating PV modules to the south facades of an office building, exploiting both the electricity produced and the heat rejected by the module, to increase building energy efficiency. The PV modules are integrated to the building wall by means of a double facade, which employs intervening ducts for ventilation purposes. The ducts are heating outdoor air, which is employed to cover the ventilation needs of the building, as well as a part of the heating loads. Simulations for typical winter and summer weather and solar insolation conditions are carried out to investigate the building's energy performance improvements.

  10. Environmental Conditions and Occupant Perceptions in European Office Buildings

    Stoops, J.L. [Chalmers Univ. of Tech., Goeteborg (Sweden). Dept. of Building Services Engineering

    2003-03-01

    This is a preliminary report regarding a portion of the environmental conditions and occupant comfort perceptions from a five nation, 26 building European field data collection effort. Approximately 1,000 participants were involved in this project which included twelve monthly visits to each building. Climate, building and cultural variation will be illustrated for the five countries involved - France, Greece, Portugal, Sweden and the United Kingdom (UK). Each country used identical instrumentation; questionnaires and experimental protocols imbedded in a custom hardware/software system. The comfort survey was based on the ASHRAE model. The physical measurements included air temperature, globe temperature, relative humidity, air movement, CO{sub 2}, light, and sound levels. Where possible, connections and explanations between variables are made. Potential energy and policy ramifications are illustrated. (The publication includes two reports from EU JOULE III projects JOE3CT970066 'Smart controls and thermal comfort project)

  11. Spatial and temporal variation of particulate matter characteristics within office buildings - The OFFICAIR study.

    Szigeti, Tamás; Dunster, Christina; Cattaneo, Andrea; Spinazzè, Andrea; Mandin, Corinne; Le Ponner, Eline; de Oliveira Fernandes, Eduardo; Ventura, Gabriela; Saraga, Dikaia E; Sakellaris, Ioannis A; de Kluizenaar, Yvonne; Cornelissen, Eric; Bartzis, John G; Kelly, Frank J

    2017-06-01

    In the frame of the OFFICAIR project, office buildings were investigated across Europe to assess how the office workers are exposed to different particulate matter (PM) characteristics (i.e. PM 2.5 mass concentration, particulate oxidative potential (OP) based on ascorbate and reduced glutathione depletion, trace element concentration and total particle number concentration (PNC)) within the buildings. Two offices per building were investigated during the working hours (5 consecutive days; 8h per day) in two campaigns. Differences were observed for all parameters across the office buildings. Our results indicate that the monitoring of the PM 2.5 mass concentration in different offices within a building might not reflect the spatial variation of the health relevant PM characteristics such as particulate OP or the concentration of certain trace elements (e.g., Cu, Fe), since larger differences were apparent within a building for these parameters compared to that obtained for the PM 2.5 mass concentration in many cases. The temporal variation was larger for almost all PM characteristics (except for the concentration of Mn) than the spatial differences within the office buildings. These findings indicate that repeated or long-term monitoring campaigns are necessary to have information about the temporal variation of the PM characteristics. However, spatial variation in exposure levels within an office building may cause substantial differences in total exposure in the long term. We did not find strong associations between the investigated indoor activities such as printing or windows opening and the PNC values. This might be caused by the large number of factors affecting PNC indoors and outdoors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Analysis on Zero Energy Consumption Strategy for Office Buildings Lighting in Lianyungang Area

    Wu, Dongmei

    2018-01-01

    In recent years, the energy-saving environmental protection has aroused the people’s high concern, and set off a new application practice in China. By analyzing the advantages of the illumination condition in Lianyungang area and combining the content and form of office space, the author puts forward a series of ways and means of energy saving in office building lighting, in order to provide a way for reference to the goal of building Zero energy consumption in the office space environment under the background of green architecture.

  13. Façade system for existing office buildings in Copenhagen

    Hannoudi, Loay Akram; Christensen, Jørgen Erik; Lauring, Michael

    2015-01-01

    This study investigates solutions for facade renovation of general office buildings built between 1960 and 1980 in the Copenhagen Municipality. 44 buildings are used for the study. They share common structural and construction principles like the use of beams and columns and prefabricated elements...

  14. Building automation and perceived control : a field study on motorized exterior blinds in Dutch offices

    Meerbeek, B.W.; te Kulve, Marije; Gritti, T.; Aarts, M.P.J.; Loenen, van E.J.; Aarts, E.H.L.

    2014-01-01

    As a result of the technological advances and increasing focus on energy efficient buildings, simple forms of building automation including automatic motorized blinds systems found their ways into today's office environments. In a five-month field study, qualitative and quantitative methods were

  15. Thermal comfort in office buildings: Two case studies commented

    Hens, Hugo S.L.C. [Laboratory of Building Physics, Department of Civil Engineering, K.U. Leuven, Kasteelpark Arenberg 40, B-3001 Leuven (Heverlee) (Belgium)

    2009-07-15

    Air conditioning in offices has become a current practice in North Western Europe. The main reasons for that are high internal loads, solar gains and increased comfort expectations. Hence, the move away from the naturally ventilated cellular office increased thermal comfort complaints. The paper presents two cases. In both the results of a comfort enquiry are compared with measurements. The enquiries gave numbers of dissatisfied at a PMV zero that were much higher than the standard PMV/PPD curve does. Measurements instead showed that in one of the two offices only comfort complaints could be expected in summer. But even then, the enquired severity of complaints could not be related to the measured data. Several hypotheses are forwarded to explain the results. Individuals interpret the -3 to +3 scale for thermal sensation differently, which has a direct impact on the number of dissatisfied. The standard curve further-on is a most significant mean of thousands of steady state comfort votes under well-controlled conditions while an on site enquiry involves much smaller numbers of people. These have a clear expectation: an improvement of comfort condition, thanks to the study. For that reason they may exaggerate their complaints when enquired. And finally, an alternative PMV versus PPD curve, published in literature, shows more people complaining at a given PMV than the standard curve forwards. (author)

  16. Energy savings due to daylight and artificial lighting integration in office buildings in hot climate

    Al-Ashwal, Nagib T. [Sana' a University, Sana' a (Yemen); Budaiwi, Ismail M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-07-01

    Reducing energy consumption while maintaining acceptable environmental quality in buildings has been a challenging task for building professionals. In office buildings, artificial lighting systems are a major consumer of energy and can significantly contribute to building cooling load. Furthermore, although reliable, artificial lighting does not necessarily provide the required quality of lighting. Significant improvement in lighting quality and energy consumption can be achieved by proper integration of daylight and artificial lighting. The objective of this study is to investigate the energy performance of office buildings resulting from daylight and artificial lighting integration in hot climates. A parametric analysis is conducted to find the impact of different window design parameters, including window area, height and glazing type, on building energy performance. Results have shown that as much as 35% reduction in lighting energy consumption and 13% reduction in total energy consumption can be obtained when proper daylighting and artificial lighting integration is achieved.

  17. Sensitivity Analysis Applied in Design of Low Energy Office Building

    Heiselberg, Per; Brohus, Henrik

    2008-01-01

    satisfies the design requirements and objectives. In the design of sustainable Buildings it is beneficial to identify the most important design parameters in order to develop more efficiently alternative design solutions or reach optimized design solutions. A sensitivity analysis makes it possible...

  18. Comfort of workers in office buildings: The European HOPE project

    Bluyssen, P.M.; Aries, M.; Dommelen, P. van

    2011-01-01

    Previous studies have shown that building, social and personal factors can influence one's perceived health and comfort. The aim of the underlying study was to get a better understanding of the relationships between these factors and perceived comfort. Self-administered questionnaires from 5732

  19. Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study

    Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.; Taasevigen, Danny J.; Piette, M. A.; Granderson, J.; Brown, Rich E.; Lanzisera, Steven M.; Kuruganti, T.

    2012-10-31

    Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), about 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.

  20. The methodology of technical due diligence report preparation for an office, residential and industrial buildings

    Kutera Beata

    2016-01-01

    Full Text Available The methodology of a technical due diligence preparation is presented in this paper. It comprises actions that have to be undertaken prior to formal agreement with party ordering due diligence preparation, building a team of consultants, data collecting, preparing analysis and handing over the report to the client. All important issues were described and supported by examples. As there are many types of building objects this paper is limited to office, residential and industrial buildings.

  1. Energy Efficiency Trends in Residential and Commercial Buildings - August 2010

    none,

    2010-08-01

    This report overviews trends in the construction industry, including profiles of buildings and the resulting impacts on energy consumption. It begins with an executive summary of the key findings found in the body of the report, so some of the data and charts are replicated in this section. Its intent is to provide in a concise place key data points and conclusions. The remainder of the report provides a specific profile of the construction industry and patterns of energy use followed by sections providing product and market insights and information on policy efforts, such as taxes and regulations, which are intended to influence building energy use. Information on voluntary programs is also offered.

  2. Simulation of temperature in office with building integrated heating and cooling system

    Weitzmann, Peter

    2002-01-01

    In this paper a numerical investigation of the thermal indoor environment has been performed for an office with building integrated hydronic heating and cooling system. Today office buildings are designed in such a way, and have such high internal heat loads and solar gains, that some kind...... of cooling is normally necessary for most of the year. Even in as cool climates as in the Nordic countries. The way the cooling is often achieved is through air conditioning. This can in many cases lead to sick building syndrome (SBS) symptoms, and furthermore it results in high energy consumption periods...... the temperature of the concrete to a level slightly below the desired room temperature, the concrete will work as an absorber for the excess heat in the office. This can significantly reduce the need for air conditioning, which will give both improved indoor climate and lower energy costs in the building...

  3. The analysis of energy consumption of a commercial building in Tianjin, China

    Zhao Jing; Zhu Neng; Wu Yong

    2009-01-01

    According to statistics and field investigation, the energy consumption situation and reality of commercial building is described in this paper. As the first step of large-scale public building energy efficiency supervision system encouraged by central government of China, the energy consumption of several typical commercial buildings and public buildings was analyzed in detail. The main contents of investigation are as follows: basic information of building, operational record of energy consumption equipment, energy consumption of indoor equipments, energy-efficiency assessment of energy consumption systems and equipments, investigation of behavior energy saving, etc. On this basis further analysis and diagnosis including indoor thermal and humid environment, operation state of air-conditioning water system, operation state of air-conditioning duct system and operation management of air-conditioning system were implemented. The results show that the most energy consumption of buildings in this city is commercial buildings, which can reach to about 240 W/m 2 per year. Further analysis tells that air conditioning systems play the major role of building energy consumption, and building energy saving has great potential in this city. In this paper, the ways of diagnosis work for building energy consumption are also described and discussed. Reasonable test, diagnosis and analysis are meaningful for building energy efficiency retrofit and management.

  4. Effects of bedrock type on the indoor radon concentrations at the office buildings in Gyeongju, Korea

    Park Hee Chan

    2011-01-01

    Full Text Available This study measured the indoor radon concentrations at 23 administrative office buildings in Gyeongju, Korea, which consists of 23 administrative districts. Using the Korean geological information system, the type of bedrock under the administrative office buildings was identified and classified in 3 major types: granite, sedimentary rock, and sedimentary rock-based fault. The changes in the indoor concentrations at the 23 administrative office buildings were analyzed according to the type of bedrock. As a result, the radon concentration in the areas with the granite bedrock was generally higher than that in the region of two other types of bedrock. In addition, the radon concentration was evaluated according to surface area and construction timing of the building. The indoor radon concentration generally increased with decreasing surface area of the building, particularly in granite distributed areas. For a building aged more than 15 years, the radon concentration in the building in the granite area was much higher. For the building aged 1 or 2 years, the radon concentration was high regardless of the type of the bedrock due to radon emanation from the building material, such as concrete.

  5. Occupant satisfaction with the acoustical environment : green office buildings before and after treatment

    Hodgson, M. [British Columbia Univ., Vancouver, BC (Canada). School of Occupational and Environmental Hygiene, Acoustics and Noise Research Group

    2009-07-01

    Sustainable architecture is meant to preserve the environment and conserve natural resources, as well as provide an environment for the occupants that promotes wellbeing and productivity. Occupants generally claim that the acoustical environment is the least satisfactory aspect of green office buildings. They are dissatisfied with excessive noise and poor speech privacy. This paper reported on the results of 2 studies of the acoustical environments in green office buildings before and after acoustical-control measures were installed. Acoustical quality was evaluated by occupant-satisfaction surveys and acoustical-parameter measurements. The first study, which involved 6 green office buildings, showed that buildings designed to obtain LEED ratings are unlikely to have satisfactory acoustical environments. A naturally-ventilated, green university building with a poor acoustical environment was examined in the second study. The results of this study suggest that improving acoustical environments in green buildings requires good acoustical design, with input from an acoustical specialist from the beginning of the design process. The design should consider site selection and building orientation; external envelope and penetrations in it; building layout and internal partitions; HVAC systems; appropriate dimensioning of spaces; and the amount and location of sound absorbing treatments. The study also showed that a building's energy efficiency, lighting, ventilation, air-quality and acoustics are interconnected, and that no aspect can be successfully designed in isolation. It was concluded that optimized engineering-control measures can improve poor acoustical environments. 11 refs., 1 tab., 1 fig.

  6. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  7. Buildings for the 21st Century, Summer 2001. Office of Building Technology, State and Community Programs (BTS) Newsletter

    Burgert, S.

    2001-01-01

    The Buildings for the 21st Century newsletter is produced by the Office of Building Technology, State and Community Programs and contains information on building programs, events, products, and initiatives, with a focus on energy efficiency and renewable energy. The summer issue includes information on technology roadmap initiatives, new energy computer simulation software, an educational CD with energy lessons for teachers, a CD with energy-saving tips, a study on the efficiency of clothes washers, a loan program in New York, and a calendar of meetings and conferences

  8. Buildings for the 21st Century, Summer 2001. Office of Building Technology, State and Community Programs (BTS) Newsletter

    Burgert, S.

    2001-07-11

    The Buildings for the 21st Century newsletter is produced by the Office of Building Technology, State and Community Programs and contains information on building programs, events, products, and initiatives, with a focus on energy efficiency and renewable energy. The summer issue includes information on technology roadmap initiatives, new energy computer simulation software, an educational CD with energy lessons for teachers, a CD with energy-saving tips, a study on the efficiency of clothes washers, a loan program in New York, and a calendar of meetings and conferences.

  9. Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction

    Fernandez, Nicholas E.P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-30

    Commercial buildings in the United States use about 18 Quadrillion British thermal units (Quads) of primary energy annually . Studies have shown that as much as 30% of building energy consumption can be avoided by using more accurate sensing, using existing controls better, and deploying advanced controls; hence, the motivation for the work described in this report. Studies also have shown that 10% to 20% of the commercial building peak load can be temporarily managed/curtailed to provide grid services. Although many studies have indicated significant potential for reducing the energy consumption in commercial buildings, very few have documented the actual savings. The studies that did so only provided savings at the whole building level, which makes it difficult to assess the savings potential of each individual measure deployed.

  10. Performance Assessment of Maintenance Practices in Government Office Buildings: Case Study of Parcel E, Putrajaya

    Awg Husaini A.I.

    2014-03-01

    Full Text Available Building maintenance practices must be taken into consideration by building facility managers or building owners. They involve daily operations to ensure that end users can work or live comfortably and safely. Through effective maintenance practices, the functions of the existing building facilities can be maintained and meet the needs of the building users. Maintenance practices must be effective in aspects such as planning, organization and supervision in order to maintain the building at a satisfactory level of performance all the time. A study was conducted on a Federal government office building in Parcel E, Putrajaya to determine the maintenance aspects of the management of the facility. To achieve the objectives of this study a questionnaire survey was used to obtain the required data. The outcomes indicate that the aspects of building maintenance practice and the effectiveness of the maintenance management in government office buildings can influence the satisfaction of the end user. However, some aspects of the current building maintenance practices seem to need improvements in order to enhance the building maintenance management. The recommendations of this study will help in the effective management of the facility and maintenance management practices.

  11. Indoor environmental quality differences between office types in LEED-certified buildings in the US

    Lee, Young S. [School of Planning, Design, and Construction, Michigan State University, East Lansing, MI 48823 (United States); Guerin, Denise A. [College of Design, University of Minnesota, Twin Cities, MN 55108 (United States)

    2010-05-15

    The study compared IAQ, thermal quality, and lighting quality between 5 different office types in LEED-certified buildings in relation to employees' environmental satisfaction and their job performance. This was to provide workplaces where workers in each specific office environment could be provided with appropriate office settings regarding these IEQ criteria when organizations comply with LEED standards. The five types of office included private enclosed, private shared, open-plan with high cubicle over 5', open-plan with low cubicle lower than 5', and open-plan with no partitions (bullpen) offices. The study found IAQ enhanced workers' job performance in enclosed private offices more than both high cubicles and low cubicles. All four office types had higher satisfaction with the amount of light and visual comfort of light as well as more enhancement with job performance due to lighting quality than high cubicles. There was no difference in thermal quality between the five office types. IAQ and lighting quality were not different between enclosed private, enclosed shared, and bullpen office types, either. The study findings suggest a careful workplace design considering the height of partitions in LEED-certified buildings to improve employee's environmental satisfaction and job performance. (author)

  12. Commercial Building Energy Asset Score Program Overview and Technical Protocol (Version 1.1)

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    2013-08-09

    The U.S. Department of Energy (DOE) is developing a voluntary national scoring system for commercial buildings to help building owners and managers assess a building’s energy-related systems independent of operations. The goal of the score is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system, known as the Commercial Building Energy Asset Score, will allow building owners and managers to compare their building infrastructure against peers and track building upgrades over time. The system will also help other building stakeholders (e.g., building investors, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset scoring tool. The alternative methods that were considered prior to developing the current approach are described in the Program Overview and Technical Protocol Version 1.0.

  13. Commercial Building Loads Providing Ancillary Services in PJM

    MacDonald, Jason; Kiliccote, Sila; Boch, Jim; Chen, Jonathan; Nawy, Robert

    2014-06-27

    The adoption of low carbon energy technologies such as variable renewable energy and electric vehicles, coupled with the efficacy of energy efficiency to reduce traditional base load has increased the uncertainty inherent in the net load shape. Handling this variability with slower, traditional resources leads to inefficient system dispatch, and in some cases may compromise reliability. Grid operators are looking to future energy technologies, such as automated demand response (DR), to provide capacity-based reliability services as the need for these services increase. While DR resources are expected to have the flexibility characteristics operators are looking for, demonstrations are necessary to build confidence in their capabilities. Additionally, building owners are uncertain of the monetary value and operational burden of providing these services. To address this, the present study demonstrates the ability of demand response resources providing two ancillary services in the PJM territory, synchronous reserve and regulation, using an OpenADR 2.0b signaling architecture. The loads under control include HVAC and lighting at a big box retail store and variable frequency fan loads. The study examines performance characteristics of the resource: the speed of response, communications latencies in the architecture, and accuracy of response. It also examines the frequency and duration of events and the value in the marketplace which can be used to examine if the opportunity is sufficient to entice building owners to participate.

  14. SMALL OFFICE BUILDING ENTERPRISE: CRITERIA FOR EFFICIENCY AND COMPETITIVENESS

    E. V. Folomeev

    2011-01-01

    Full Text Available Main efficiency and competitiveness assessment criteria applicable to small construction organizations operating under market conditions are minimization of reduced costs and maximal conformity with quality requirements to building and structures under construction. Small enterprisefinance organization principles are as follows: independence, self-financing, responsibility for the company’s financial and economic activity results and control thereof. A method of investment option efficiency assessment with due account of construction project specifics is proposed. It is recommended to develop and use strategic cards to provide for balanced enterprise development.

  15. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 1, Final report

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-04-01

    This report describes background research for preparation of a plan for development of whole-building energy targets for new commercial buildings. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research development, and technology transfer activities with other interested organizations are actively pursued.

  16. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    Wang, Na

    2013-03-13

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  17. Solar-Energy System for a Commercial Building--Topeka, Kansas

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  18. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    2010-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION...

  19. SUPERVISORY CONTROL FOR PEAK REDUCTION IN COMMERCIAL BUILDINGS WHILE MAINTAINING COMFORT

    Nutaro, James J [ORNL; Olama, Mohammed M [ORNL; Kuruganti, Teja [ORNL

    2016-01-01

    This paper describes a supervisory control strategy for limiting peak power demand by small and medium commercial buildings while still meeting the business needs of the occupants. This control strategy has two features that make it relevant to new and existing buildings. First, it is designed to operate with building equipment, such as air conditioning and refrigeration systems, as they are presently installed in most small and medium commercial buildings. Because of this, the supervisory control could be realized as a software-only retrofit to existing building management systems. Second, the proposed control acts as a supervisory management layer over existing control systems, rather than replacing them outright. The primary idea of this approach is that the controls for individual building equipment request energy resources for a control action and the supervisory control examines the requests and decides which control actions to allow while satisfying a limit on peak power demand.

  20. Evaluation and analysis of energy consumption in office buildings; Feldstudie zum Energieverbrauch von Buerogebaeuden

    Maas, Stefan; Scholzen, Frank; Thewes, Andreas; Waldmann, Daniele [Universitaet Luxemburg, Campus Kirchberg, Fakultaet fuer Naturwissenschaften, Technologie und Kommunikation, Forschungseinheit Ingenieurswissenschaften, Luxemburg (Luxembourg); Zuerbes, Arno [Fachhochschule Bingen, Fachbereich Technik, Informatik und Wirtschaft, Bingen am Rhein (Germany)

    2011-06-15

    During the last years the national energy consumption of Luxembourg shifted noticeable towards the building sector. In 1990 71 % of the total domestic end energy consumption was ascribed to industrial sector and only 20 % to the building sector. The distribution changed significantly and in 2005 the energy consumption dedicated to industrial sector represented only 44 %, transport 25 % and the tertiary sector 31 % [1], which includes private and public households as well as non-residential buildings. The buildings account for 40 % of total energy consumption in the EU and there is an enormous energy saving potential. Therefore the EUdirective 2002/91/EG [2] requires from all EU Member States to save energy in this sector. Hence the energy saving of buildings present an essential part of climate protection. Furthermore the new directive 2010/31/EG [3] requires from the Member States to tighten national standards and to draw up national plans for increasing the number of nearly zero-energy buildings. But for a better understanding of energy flows in buildings and to develop energy saving concepts as well as to estimate possible energy savings of buildings a detailed analysis of energy consumption databases is an important precondition. The following field survey monitors 47 office buildings in Luxembourg. A separate gathering of electricity, heat and cooling energy consumptions allowed a detailed energetic analysis. A statistical analysis and interpretation of new buildings differentiated by energy sources as well as definition of energy relevant parameters like the window ratio, the construction method, the type of use or the kind of technical installations show the problems of typical existing office buildings. A final extrapolation to the population of all new office buildings in Luxembourg helps to estimate the energy saving potential.

  1. Efficient utilization of energy in office buildings. Planning manual; Effiziente Energienutzung in Buerogebaeuden. Planungsleitfaden

    NONE

    2008-07-15

    Regarding to the energy efficiency of office buildings, a high standard is set to architects: Office buildings need more energy for the cooling in the summer than for the heating in the winter. Additionally, there is an energy consumption for lighting, ventilation and operation of office equipment. Under this aspect, in the planning manual under consideration ten demands for an efficient energy utilization at office buildings are described: (a) Integral concept for the minimization of the entire power demand; (b) Compact building method and very good structural thermal protection; (c) Adapted glass areas and quality of vitrifications; (d) Integrals ventilation planning; (e) Efficient ventilation systems; (f) Efficient room climate concept and minimization of internal and outside heat loads; (g) Utilization of daylight with adapted architectural draft; (h) Efficient artificial lighting; (i) Supply of warmth and coldness with minimum characteristic values for primary energy; (j) Energy monitoring and optimization of operation. This manual also is valid for other buildings such as schools, administration buildings or swimming pools.

  2. Optimization of annual energy demand in office buildings under the influence of climate change in Chile

    Rubio-Bellido, Carlos; Pérez-Fargallo, Alexis; Pulido-Arcas, Jesús A.

    2016-01-01

    Numerous studies about climate change have emerged in recent years because of their potential impact on many activities of human life, amongst which, the building sector is no exception. Changes in climate conditions have a direct influence on the external conditions for buildings and, thus, on their energy demand. In this context, computer aided simulation provides handy tools that help in assessing this impact. This paper investigates climate data for future scenarios and the effect on energy demand in office buildings in Chile. This data has been generated in the 9 climatic zones that are representative of the main inhabited areas, for the years 2020, 2050 and 2080. Predictions have been produced for the acknowledged A2 ‘medium-high’ Greenhouse Gases emissions GHG scenario, pursuant the Intergovernmental Panel on Climate Change (IPCC). The effect of climate change on the energy demand for office buildings is optimized by implementing the calculation procedure of ISO-13790:2008, based on iterations of its envelope and form. As a result, this research clarifies how future climate scenarios will affect the energy demand for different types of office buildings in Chile, and how their shape and enclosure can be optimized. - Highlights: • Forecast of 9 Chilean climate zones under Greenhouse Gases Scenario A2. • Influence of envelope and form on future energy demand in office buildings. • Multiple iterations on Form Ratio (FR) and Window-to-Wall Ratio (WWR). • Optimization in early stages of design considering global warming.

  3. Evaluation of a energy consumption index for commercial buildings in Brazil

    Silva, Jose Eduardo Correa Santana; Hernandez Neto, Alberto [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica], Emails: jose.edu@gmail.com, ahneto@usp.br

    2010-07-01

    The present paper proposes a energy consumption index for commercial buildings located in four different Brazilian climates. For such evaluations, the building simulation tool EnergyPlus was used and a sensitivity analysis was made for some of the main parameters of an air-conditioned building. The analysis showed that the electrical power and lighting density as well as the COP of the air conditioning system promotes the higher variations on the proposed energy index. (author)

  4. India Commercial Buildings Data Framework: A Summary of Potential Use Cases

    Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Sangeeta [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kumar, Satish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singh, Mohini [Synurja, LLC, Vienna, VA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Iyer, Maithili [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    This report details a potential set of use cases for India’s Commercial Buildings Data Framework. The use cases are aimed at enabling data-driven, evidence-based policy making and at transforming the market for energy efficiency in the building sector by facilitating the adoption of (1) superior energy-efficient building design and operation and maintenance practices, and (2) better specification and procurement of end-use equipment and systems.

  5. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Ahlfeldt, Christopher [Navigant Consulting, Inc., Burlington, MA (United States); Hiraiwa, Hirokazu [Navigant Consulting, Inc., Burlington, MA (United States); Sathe, Amul [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States)

    2009-12-01

    This study characterizes and assesses the appliances used in commercial buildings. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development and demonstration (RD&D) opportunities for efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration equipment, and distributed generation systems. The study included equipment descriptions, characteristics of the equipment’s market, national energy consumption, estimates of technical potential for energy-saving technologies, and recommendations for U.S. Department of Energy programs that can promote energy savings in commercial appliances.

  6. Energy Code Compliance in a Detailed Commercial Building Sample: The Effects of Missing Data

    Biyani, Rahul K.; Richman, Eric E.

    2003-09-30

    Most commercial buildings in the U.S. are required by State or local jurisdiction to meet energy standards. The enforcement of these standards is not well known and building practice without them on a national scale is also little understood. To provide an understanding of these issues, a database has been developed at PNNL that includes detailed energy related building characteristics of 162 commercial buildings from across the country. For this analysis, the COMcheck? compliance software (developed at PNNL) was used to assess compliance with energy codes among these buildings. Data from the database for each building provided the program input with percentage energy compliance to the ASHRAE/IESNA Standard 90.1-1999 energy as the output. During the data input process it was discovered that some essential data for showing compliance of the building envelope was missed and defaults had to be developed to provide complete compliance information. This need for defaults for some data inputs raised the question of what the effect on documenting compliance could be due to missing data. To help answer this question a data collection effort was completed to assess potential differences. Using the program Dodge View, as much of the missing envelope data as possible was collected from the building plans and the database input was again run through COMcheck?. The outputs of both compliance runs were compared to see if the missing data would have adversely affected the results. Both of these results provided a percentage compliance of each building in the envelope and lighting categories, showing by how large a percentage each building either met or fell short of the ASHRAE/IESNA Standard 90.1-1999 energy code. The results of the compliance runs showed that 57.7 % of the buildings met or exceeded envelope requirements with defaults and that 68 % met or exceeded envelope requirements with the actual data. Also, 53.6 % of the buildings met or surpassed the lighting requirements

  7. Job/Task Analysis: Enhancing the Commercial Building Workforce Through the Development of Foundational Materials; Preprint

    Studer, D.; Kemkar, S.

    2012-09-01

    For many commercial building operation job categories, industry consensus has not been reached on the knowledge, skills, and abilities that practitioners should possess. The goal of this guidance is to help streamline the minimum competencies taught or tested by organizations catering to building operations and maintenance personnel while providing a basis for developing and comparing new and existing training programs in the commercial building sector. The developed JTAs will help individuals identify opportunities to enhance their professional skills, enable industry to identify an appropriately skilled workforce, and allow training providers to ensure that they are providing the highest quality product possible.

  8. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  9. Energy Efficiency Potential in Existing Commercial Buildings: Review of Selected Recent Studies

    Belzer, David B.

    2009-04-03

    This report reviews six recent studies (from 2002 through 2006) by states and utilities to assess the energy saving potential in existing commercial buildings. The studies cover all or portions of California, Connecticut, Vermont, Colorado, Illinois, and the Pacific Northwest. The studies clearly reveal that lighting remains the single largest and most cost effective end use that can be reduced to save energy. Overall the study indicated that with existing technologies and costs, a reasonable range of economic savings potential in existing commercial buildings is between 10 and 20 percent of current energy use. While not a focus of the study, an additional conclusion is that implementation of commercial building monitoring and controls would also play an important role in the nation’s efforts to improve energy efficiency of existing buildings.

  10. Indoor environmental quality and ventilation in U.S. office buildings: A view of current issues

    Fisk, W.J.

    1994-11-01

    Much of the current focus on indoor environmental quality and ventilation in US office buildings is a response to sick building syndrome and occupant complaints about building-related health symptoms, poor indoor air quality, and thermal discomfort. The authors know that serious ``sick-building`` problems occur in a significant number of US office buildings and that a significant proportion of the occupants in many normal (non-sick) buildings report building-related health symptoms. Concerns about the health effects of environmental tobacco smoke have also focused attention on the indoor environment. The major responses of industry and governments, underway at the present time, are to restrict smoking in offices, to attempt to reduce the emissions of indoor pollutants, and to improve the operation of heating, ventilating and air conditioning (HVAC) systems. Better air filtration, improved HVAC commissioning and maintenance, and increased provisions for individual control of HVAC are some of the improvements in HVAC that are currently being, evaluated. In the future, the potential for improved productivity and reduced airborne transmission of infectious disease may become the major driving force for improved indoor environments.

  11. Analysis of Plug Load Capacities and Power Requirements in Commercial Buildings: Preprint

    Sheppy, M.; Torcellini, P.; Gentile-Polese, L.

    2014-08-01

    Plug and process load power requirements are frequently overestimated because designers often use estimates based on 'nameplate' data, or design assumptions are high because information is not available. This generally results in oversized heating, ventilation, and air-conditioning systems; increased initial construction costs; and increased energy use caused by inefficiencies at low, part-load operation. Rightsizing of chillers in two buildings reduced whole-building energy use by 3%-4%. If an integrated design approach could enable 3% whole-building energy savings in all U.S. office buildings stock, it could save 34 TBtu of site energy per year.

  12. Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report

    Morris, R.

    1996-05-01

    Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2

  13. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document

  14. A Prospective Study of Ventilation Rates and Illness Absence in California Office Buildings

    Eliseeva, Ekaterina A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spears, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cohn, Sebastian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-07

    Background – This study investigated the associations of ventilation rates (VRs), estimated from indoor CO2 concentrations, in offices with the amount of respiratory infections, illness absences, and building-related health symptoms in occupants. Methods – Office buildings were recruited from three California climate zones. In one or more study spaces within each building, real-time logging sensors measured carbon dioxide, temperature, and relative humidity for one year. Ventilation rates were estimated using daily peak CO2 levels, and also using an alternative metric. Data on occupants and health outcomes were collected through web-based surveys every three months. Multivariate models were used to assess relationships between metrics of ventilation rate or CO2 and occupant outcomes. For all outcomes, negative associations were hypothesized with VR metrics, and positive associations with CO2 metrics. Results – Difficulty recruiting buildings and low survey response limited sample size and study power. In 16 studied spaces within 9 office buildings, VRs were uniformly high over the year, from twice to over nine times the California office VR standard (7 L/s or 15 cfm per person). VR and CO2 metrics had no statistically significant relationships with occupant outcomes, except for a small significantly positive association of the alternative VR metric with respiratory illness-related absence, contrary to hypotheses. Conclusions– The very high time-averaged VRs in the California office buildings studied presumably resulted from “economizer cycles” bringing in large volumes of outdoor air; however, in almost all buildings even the estimated minimum VRs supplied (without the economizer) substantially exceeded the minimum required VR. These high VRs may explain the absence of hypothesized relationships with occupant outcomes. Among uniformly high VRs, little variation in contaminant concentration and occupant effects would be expected. These findings may

  15. 76 FR 9817 - Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB...

    2011-02-22

    ...] Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB) Approval... Commercial Diving Operations Standard (29 CFR part 1910, subpart T). DATES: Comments must be submitted... obtaining information (29 U.S.C. 657). Subpart T applies to diving and related support operations conducted...

  16. Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions for Buildings in 2016 and Later

    Deru, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Field-Macumber, Kristin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); and service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.

  17. Assessment of indoor air quality in office buildings across Europe - The OFFICAIR study.

    Mandin, Corinne; Trantallidi, Marilena; Cattaneo, Andrea; Canha, Nuno; Mihucz, Victor G; Szigeti, Tamás; Mabilia, Rosanna; Perreca, Erica; Spinazzè, Andrea; Fossati, Serena; De Kluizenaar, Yvonne; Cornelissen, Eric; Sakellaris, Ioannis; Saraga, Dikaia; Hänninen, Otto; De Oliveira Fernandes, Eduardo; Ventura, Gabriela; Wolkoff, Peder; Carrer, Paolo; Bartzis, John

    2017-02-01

    The European project OFFICAIR aimed to broaden the existing knowledge regarding indoor air quality (IAQ) in modern office buildings, i.e., recently built or refurbished buildings. Thirty-seven office buildings participated in the summer campaign (2012), and thirty-five participated in the winter campaign (2012-2013). Four rooms were investigated per building. The target pollutants were twelve volatile organic compounds, seven aldehydes, ozone, nitrogen dioxide and particulate matter with aerodynamic diameter indoor air concentrations of formaldehyde and ozone did not exceed their respective WHO air quality guidelines, and those of acrolein, α-pinene, and d-limonene were lower than their estimated thresholds for irritative and respiratory effects. PM 2.5 indoor concentrations were higher than the 24-h and annual WHO ambient air quality guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Radon concentrations inside public and commercial buildings in the Pittsburgh area

    Cohen, B L; Kulwicki, D R; Warner, Jr, K R; Grassi, C L

    1984-09-01

    Radon concentrations in ambient air from numerous schools, stores and other public and commercial buildings in the Pittsburgh, PA, area were measured by grab sampling. This is more appropriate than using long-term integrating monitors because of the correlation between times of occupancy and Rn levels. Results indicate that Rn concentrations in these buildings are nearly an order of magnitude less than in homes, and not much higher than outdoors. Variations among sites is also much less than for homes, probably because there is less variability in ventilation and building maintenance practices. Colleges and universities have somewhat higher Rn levels and a larger degree of variability than commercial buildings or hospitals. There was no indication of higher Rn levels in cold weather than in warm weather, or of correlations with the age of the building.

  19. Radon concentrations inside public and commercial buildings in the Pittsburgh area.

    Cohen, B L; Kulwicki, D R; Warner, K R; Grassi, C L

    1984-09-01

    Radon concentrations in ambient air from numerous schools, stores and other public and commercial buildings in the Pittsburgh, PA, area were measured by grab sampling. This is more appropriate than using long-term integrating monitors because of the correlation between times of occupancy and Rn levels. Results indicate that Rn concentrations in these buildings are nearly an order of magnitude less than in homes, and not much higher than outdoors. Variations among sites is also much less than for homes, probably because there is less variability in ventilation and building maintenance practices. Colleges and universities have somewhat higher Rn levels and a larger degree of variability than commercial buildings or hospitals. There was no indication of higher Rn levels in cold weather than in warm weather, or of correlations with the age of the building.

  20. Weather Correlations to Calculate Infiltration Rates for U. S. Commercial Building Energy Models.

    Ng, Lisa C; Quiles, Nelson Ojeda; Dols, W Stuart; Emmerich, Steven J

    2018-01-01

    As building envelope performance improves, a greater percentage of building energy loss will occur through envelope leakage. Although the energy impacts of infiltration on building energy use can be significant, current energy simulation software have limited ability to accurately account for envelope infiltration and the impacts of improved airtightness. This paper extends previous work by the National Institute of Standards and Technology that developed a set of EnergyPlus inputs for modeling infiltration in several commercial reference buildings using Chicago weather. The current work includes cities in seven additional climate zones and uses the updated versions of the prototype commercial building types developed by the Pacific Northwest National Laboratory for the U. S. Department of Energy. Comparisons were made between the predicted infiltration rates using three representations of the commercial building types: PNNL EnergyPlus models, CONTAM models, and EnergyPlus models using the infiltration inputs developed in this paper. The newly developed infiltration inputs in EnergyPlus yielded average annual increases of 3 % and 8 % in the HVAC electrical and gas use, respectively, over the original infiltration inputs in the PNNL EnergyPlus models. When analyzing the benefits of building envelope airtightening, greater HVAC energy savings were predicted using the newly developed infiltration inputs in EnergyPlus compared with using the original infiltration inputs. These results indicate that the effects of infiltration on HVAC energy use can be significant and that infiltration can and should be better accounted for in whole-building energy models.

  1. Load shape development for Swedish commercial and public buildings - methodologies and results

    Noren, C.

    1999-06-01

    The knowledge concerning electricity consumption, and especially load demand, in Swedish commercial buildings is very limited. The current study deals with methods for electricity consumption indicator development and application of the different methodologies on measured data. Typical load shapes and consumption indicators are developed for four different types of commercial buildings: schools, hotels, grocery stores and department stores. Two different methodologies for consumption indicator development are presented and discussed. The influence on load demand from different factors such as, installations, outdoor temperature and building activities is studied. It is suggested that building floor area is not an accurate determinant of building electricity consumption and it is necessary to consider other factors as those just mentioned to understand commercial building electricity consumption. The application of the two methodologies on measured data shows that typical load shapes can be developed with reasonable accuracy. For most of the categories it is possible to use the typical load shapes for approximation of whole-building load shapes with error rates about 10-25% depending on day-type and building type. Comparisons of the developed load shapes with measured data show good agreement 49 refs, 22 figs, 3 tabs

  2. End-use energy consumption estimates for U.S. commercial buildings, 1992

    Belzer, D.B.; Wrench, L.E.

    1997-03-01

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs of the US Department of Energy, utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1992 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Statistical Adjusted Engineering (SAE) models were estimated by building type. The nonlinear SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption (based upon utility billing information). End-use consumption by fuel was estimated for each of the 6,751 buildings in the 1992 CBECS. The report displays the summary results for 11 separate building types as well as for the total US commercial building stock. 4 figs., 15 tabs.

  3. Health effects associated with energy conservation measures in commercial buildings

    Stenner, R.D.; Baechler, M.C.

    1990-09-01

    Indoor air quality can be impacted by hundreds of different chemicals. More than 900 different organic compounds alone have been identified in indoor air. Health effects that could arise from exposure to individual pollutants or mixtures of pollutants cover the full range of acute and chronic effects, including largely reversible responses, such as rashes and irritations, to the irreversible toxic and carcinogenic effects. These indoor contaminants are emitted from a large variety of materials and substances that are widespread components of everyday life. Pacific Northwest Laboratory conducted a search of the peer-reviewed literature on health effects associated with indoor air contaminants for the Bonneville Power Administration to aid the agency in the preparation of environmental documents. Results are reported in two volumes. Volume 1 summarizes the results of the search of the peer-reviewed literature on health effects associated with a selected list of indoor air contaminants. In addition, the report discusses potential health effects of polychlorinated biphenyls and chlorofluorocarbons. All references to the literature reviewed are found in this document Volume 2. Volume 2 provides detailed information from the literature reviewed, summarizes potential health effects, reports health hazard ratings, and discusses quantitative estimates of carcinogenic risk in humans and animals. Contaminants discussed in this report are those that; have been measured in the indoor air of a public building; have been measured (significant concentrations) in test situations simulating indoor air quality (as presented in the referenced literature); and have a significant hazard rating. 38 refs., 7 figs., 23 tabs

  4. Health effects associated with energy conservation measures in commercial buildings

    Stenner, R.D.; Baechler, M.C.

    1990-09-01

    Indoor air quality can be impacted by hundreds of different chemicals. More than 900 different organic compounds alone have been identified in indoor air. Health effects that could arise from exposure to individual pollutants or mixtures of pollutants cover the full range of acute and chronic effects, including largely reversible responses, such as rashes and irritations, to the irreversible toxic and carcinogenic effects. These indoor contaminants are emitted from a large variety of materials and substances that are widespread components of everyday life. Pacific Northwest Laboratory conducted a search of the peer-reviewed literature on health effects associated with indoor air contaminants for the Bonneville Power Administration to aid the agency in the preparation of environmental documents. Results are reported in two volumes. Volume 1 summarizes the results of the search of the peer-reviewed literature on health effects associated with a selected list of indoor air contaminants. In addition, the report discusses potential health effects of polychlorinated biphenyls and chlorofluorocarbons. All references to the literature reviewed are found in this document Volume 2. Volume 2 provides detailed information from the literature reviewed, summarizes potential health effects, reports health hazard ratings, and discusses quantitative estimates of carcinogenic risk in humans and animals. Contaminants discussed in this report are those that; have been measured in the indoor air of a public building; have been measured (significant concentrations) in test situations simulating indoor air quality (as presented in the referenced literature); and have a significant hazard rating. 38 refs., 7 figs., 23 tabs.

  5. Issues to Be Solved for Energy Simulation of An Existing Office Building

    Ki Uhn Ahn

    2016-04-01

    Full Text Available With the increasing focus on low energy buildings and the need to develop sustainable built environments, Building Energy Performance Simulation (BEPS tools have been widely used. However, many issues remain when applying BEPS tools to existing buildings. This paper presents the issues that need to be solved for the application of BEPS tools to an existing office building. The selected building is an office building with 33 stories above ground, six underground levels, and a total floor area of 91,898 m2. The issues to be discussed in this paper are as follows: (1 grey data not ready for simulation; (2 subjective assumptions and judgments on energy modeling; (3 stochastic characteristics of building performance and occupants behavior; (4 verification of model fidelity-comparison of aggregated energy; (5 verification of model fidelity-calibration by trial and error; and (6 use of simulation model for real-time energy management. This study investigates the aforementioned issues and explains the factors that should be considered to address these issues when developing a dynamic simulation model for existing buildings.

  6. Buildings move. The benefit of sustainable renovation of office buildings; Gebouwen bewegen. De winst van duurzame kantoorrenovatie

    Van Miert, M. [Bureau Van Miert, Breda (Netherlands); De Ruiter, P. [Architectenbureau Paul de Ruiter, Amsterdam (Netherlands); Verburgt, P.

    2012-05-15

    Within the programme 'EnergieSprong' the development of the so-called Transition Formula was initiated that shows how existing offices can be renovated into energy efficient or even energy neutral buildings. A multidisciplinary view on the existing office buildings stock and users' demand has led to four renovation strategies which are described in this book [Dutch] EnergieSprong heeft het initiatief genomen dit boek te ontwikkelen waarin de Transitieformule laat zien hoe het vandaag de dag mogelijk is om bestaande kantoren heel energiezuinig of zelfs energieneutraal te renoveren. Een multidisciplinaire kijk op de bestaande kantorenvoorraad en de huidige vraag van gebruikers heeft geleid tot een viertal renovatiestrategieen die in dit boek beschreven worden.

  7. Energy-efficient and low CO{sub 2} office building

    Airaksinen, M., Email: miimu.airaksinen@vtt.fi

    2012-06-15

    Current office buildings are becoming more and more energy efficient. In particular the importance of heating is decreasing, but the share of electricity use is increasing. When the CO{sub 2} equivalent emissions are considered, the emissions from embodied energy make up an important share of the total, indicating that the building materials have a high importance which is often ignored when only the energy efficiency of running the building is considered. This paper studies a new office building in design phase. The results showed that the reduction of energy use reduces both the primary energy use and CO{sub 2} eq. emissions. Especially the reduction of electricity use has a high importance for both primary energy use and CO{sub 2} emissions when fossil fuels are used. The lowest CO{sub 2} eq. emissions were achieved when bio-based, renewable energies or nuclear power was used to supply energy for the office building. Evidently then the share of CO{sub 2} eq. emissions from the embodied energy of building materials and products became the dominant source of CO{sub 2} eq. emissions. (orig.)

  8. Benchmarking the energy performance of office buildings: A data envelopment analysis approach

    Molinos-Senante, María

    2016-12-01

    Full Text Available The achievement of energy efficiency in buildings is an important challenge facing both developed and developing countries. Very few papers have assessed the energy efficiency of office buildings using real data. To overcome this limitation, this paper proposes an energy efficiency index for buildings having a large window-to-wall ratio, and uses this index to identify the main architectural factors affecting energy performance. This paper assesses, for the first time, the energy performances of 34 office buildings in Santiago, Chile, by using data envelopment analysis. Overall energy efficiency is decomposed into two indices: the architectural energy efficiency index, and the management energy efficiency index. This decomposition is an essential step in identifying the main drivers of energy inefficiency and designing measures for improvement. Office buildings examined here have significant room for improving their energy efficiencies, saving operational costs and reducing greenhouse gas emissions. The methodology and results of this study will be of great interest to building managers and policymakers seeking to increase the sustainability of cities.

  9. Project Management Plan/Progress Report UT/GTKS Training Program Development for Commercial Building Operators

    None, None

    2013-03-31

    Universidad del Turabo (UT), in a collaborative effort with Global Turn Key Services, Inc. (GTKS), proposed to develop a training program and a commercialization plan for the development of Commercial Building Operators (CBOs). The CBOs will operate energy efficient buildings to help maintain existing buildings up to their optimal energy performance level, and ensure that net-zero-energy buildings continuously operate at design specifications, thus helping achieve progress towards meeting BTP Strategic Goals of creating technologies and design approaches that enable net-zero-energy buildings at low incremental costs by 2025. The proposed objectives were then: (1) Develop a Commercial Building Operator (CBO) training program and accreditation that will in turn provide a certification to participants recognized by Accreditation Boards such as the North American Board of Certified Energy Practitioners (NABCEP) and Leadership in Energy & Environmental Designs (LEED). (2) Develop and implement a commercialization and sustainability plan that details marketing, deployment, financial characterization, job placement, and other goals required for long-term sustainability of the project after the funding period. (3) After program development and deployment, provide potential candidates with the knowledge and skill sets to obtain employment in the commercial building green energy (net-zero-energy building) job market. The developed CBO training program will focus on providing skills for participants, such as displaced and unemployed workers, to enter the commercial building green energy (net-zeroenergy building) job market. This course was designed to allow a participant with minimal to no experience in commercial building green technology to obtain the required skill sets to enter the job market in as little as 12 weeks of intensive multi-faceted learning. After completion of the course, the CBO staff concluded the participant will meet minimum established accreditation

  10. Solar Shading in Low Energy Office Buildings - Design Strategy and User Perception

    Steinar Grynning

    2017-06-01

    Full Text Available The objective of this paper is to investigate the visual comfort and quality of daylight in modern office buildings in the Nordic climate. A study of various daylight-related aspects and qualities was carried out for three different office buildings, using a combination of quantitative and qualitative methods. The focus was on a combination of user perception of daylight quality and assessment of the daylight amount and quality, by using the daylight factor (DF and useful daylight illuminance parameters. Previous studies and experiences from construction examples indicate that users, in general, complain about lack of manual control of systems and too low daylight levels, even if the requirements in the building codes are satisfied. Furthermore, they complain about control algorithms of the shading devices, which cause undesired automatic opening and closure of such devices. Thus, causing disturbances and irritation amongst the users. Hence, interviews with key personnel in a modern and architecturally acclaimed office building were carried out in addition to an in-depth analysis of previous surveys of a zero-energy office building. It was found that automatic moveable shading can be regarded as a source of discomfort. This is due to the lack of manual-control override possibilities, which causes disturbances due to the system moving up and down. In one of the offices, the users disabled the exterior shading system. However, the external fixed shading and the internal manually operated roller blinds were found to be satisfactory. The results from a previous study showed that the users in the Marche building are in general satisfied with the daylight. One of the main reasons for this, according to the users, is that they have manual control of the shading system. Manual control of the shading systems is preferred by users in the office buildings studied. Daylight simulations showed that the external fixed shading system combined with internal

  11. Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening Process and Results

    Parthasarathy, Srinandini [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); McKone, Thomas E. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Apte, Michael G. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2011-04-29

    This report summarizes the screening procedure and its results for selecting contaminants of concern (COC), whose concentrations are affected by ventilation in commercial buildings. Many pollutants comprising criteria pollutants, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and biological contaminants are found in commercial buildings. In this report, we focus primarily on identifying potential volatile organic COC, which are impacted by ventilation. In the future we plan to extend this effort to inorganic gases and particles. Our screening considers compounds detected frequently in indoor air and compares the concentrations to health-guidelines and thresholds. However, given the range of buildings under consideration, the contaminant sources and their concentrations will vary depending on the activity and use of the buildings. We used a literature review to identify a large list of chemicals found in commercial-building indoor air. The VOCs selected were subject to a two stage screening process, and the compounds of greater interest are included in priority List A. Other VOCs that have been detected in commercial buildings are included in priority List B. The compounds in List B, were further classified into groups B1, B2, B3, B4 in order of decreasing interest.

  12. Energy retrofit analysis toolkits for commercial buildings: A review

    Lee, Sang Hoon; Hong, Tianzhen; Piette, Mary Ann; Taylor-Lange, Sarah C.

    2015-01-01

    Retrofit analysis toolkits can be used to optimize energy or cost savings from retrofit strategies, accelerating the adoption of ECMs (energy conservation measures) in buildings. This paper provides an up-to-date review of the features and capabilities of 18 energy retrofit toolkits, including ECMs and the calculation engines. The fidelity of the calculation techniques, a driving component of retrofit toolkits, were evaluated. An evaluation of the issues that hinder effective retrofit analysis in terms of accessibility, usability, data requirement, and the application of efficiency measures, provides valuable insights into advancing the field forward. Following this review the general concepts were determined: (1) toolkits developed primarily in the private sector use empirically data-driven methods or benchmarking to provide ease of use, (2) almost all of the toolkits which used EnergyPlus or DOE-2 were freely accessible, but suffered from complexity, longer data input and simulation run time, (3) in general, there appeared to be a fine line between having too much detail resulting in a long analysis time or too little detail which sacrificed modeling fidelity. These insights provide an opportunity to enhance the design and development of existing and new retrofit toolkits in the future. - Highlights: • Retrofit analysis toolkits can accelerate the adoption of energy efficiency measures. • A comprehensive review of 19 retrofit analysis toolkits was conducted. • Retrofit toolkits have diverse features, data requirement and computing methods. • Empirical data-driven, normative and detailed energy modeling methods are used. • Identified immediate areas for improvement for retrofit analysis toolkits

  13. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  14. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  15. Energy edge post-occupancy evaluation project: the Hollywood Office Building, Portland, Oregon

    1990-06-01

    The Hollywood Office Park Building Survey for the Energy Post- Occupancy Project was administered to nine building occupants. The nine respondents answered the questions which rated building features in the areas of (1) thermal factors; (2) air quality; (3) lighting; (4) acoustics; and, (5) overall workspace satisfaction. In addition to rating these ambient environmental features, these respondents also rated their satisfaction of various functional and aesthetic features and specific kinds of workspaces. Data was also collected on heath characteristics and occupational demographics of the respondents. No analysis is made of the survey findings which are reported in graphic format. 15 figs. (BN)

  16. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran

    2013-01-01

    Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings. The buil...

  17. Fieldwork measurement of indoor environmental quality (IEQ) in Malaysian platinum-rated green office buildings

    Tharim, Asniza Hamimi Abdul; Samad, Muna Hanim Abdul; Ismail, Mazran

    2017-10-01

    An Indoor Environmental Quality (IEQ) fieldwork assessment was conducted in the Platinum-rated GBI office building located in Putrajaya Malaysia. The aim of the study is to determine the current indoor performance of the selected green office building. The field measurement consists of several IEQ parameters counted under the GBI Malaysia namely the Thermal Comfort of temperature, relative humidity, air movement and heat transfer as well as solar radiation. This field measurement also comprises of the measurement for the background noise, visual lighting and Indoor Air Quality (IAQ) focusing on the aspect of carbon dioxide concentration. All the selected indoor parameters were measured for the period of five working days and the results were compared to the Malaysian Standard. Findings of the field measurement show good indoor performance of the Platinum rated office building that complies with the GBI standard. It is hoped that the research findings will be beneficial for future design and construction of office building intended to be rated under the GBI Malaysia.

  18. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...

  19. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  20. A research on indoor environments of an office building by occupants' subjective evaluation

    Moon, S.W.; Kim, T.W.; Hong, W.H.

    2008-01-01

    Since modern workers spend more than 80 per cent of their time in indoor environments, it is important to make a comfortable indoor environment in order to maintain occupational health and to improve work efficiency and productivity. Not only are new offices bigger than ever before, the internal heat and air are controlled by a central air conditioning system, which do not allow occupant control. This study evaluated indoor environments of office buildings in an effort to understand how the indoor environment influences work efficiency. The study involved the use of a survey questionnaire to obtain occupants' subjective evaluation of indoor working environments of an office building in terms of thermal comfort, lighting, noise and air quality. The survey results indicated that the indoor environment interrupts the work of many workers. Neck, eye, skin and nasal symptoms were found to be the symptoms most related to the indoor environment, with temperature and humidity posing the greatest challenge. 9 refs., 9 tabs., 7 figs

  1. Monitoring-based HVAC commissioning of an existing office building for energy efficiency

    Wang, Liping; Greenberg, Steve; Fiegel, John; Rubalcava, Alma; Earni, Shankar; Pang, Xiufeng; Yin, Rongxin; Woodworth, Spencer; Hernandez-Maldonado, Jorge

    2013-01-01

    Highlights: ► Demonstrated monitoring-based HVAC commissioning using an existing office building. ► Diagnosed various types of faulty operation in the HVAC system by trend data analyses. ► Identified a list of energy saving measures for the HVAC system. ► Quantified energy saving potential for each commissioning measure using calibrated energy simulation model. ► Achieved an actual energy saving of 10% after the implementations of cost-effective measures. -- Abstract: The performance of Heating, Ventilation and Air Conditioning (HVAC) systems may fail to satisfy design expectations due to improper equipment installation, equipment degradation, sensor failures, or incorrect control sequences. Commissioning identifies and implements cost-effective operational and maintenance measures in buildings to bring them up to the design intent or optimum operation. An existing office building is used as a case study to demonstrate the process of commissioning. Building energy benchmarking tools are applied to evaluate the energy performance for screening opportunities at the whole building level. A large natural gas saving potential was indicated by the building benchmarking results. Faulty operations in the HVAC systems, such as improper operations of air-side economizers, simultaneous heating and cooling, and ineffective optimal start, were identified through trend data analyses and functional testing. The energy saving potential for each commissioning measure is quantified with a calibrated building simulation model. An actual energy saving of 10% was realized after the implementations of cost-effective measures.

  2. Impacts of orientation on daylighting in high-rise office buildings in Malaysia

    AbdolHamid Mahdavi

    2015-12-01

    Full Text Available Orientation is one of the important factors in building design to use daylight and ‎conserve energy. Well-orientated buildings maximise daylight reception through ‎building facades and reduce the need for artificial lighting. Reasonable daylighting usage in office buildings is an important part of an architect’s designing process, which leads to lesser electricity consumption as well as providing a visual and thermal comfort for the occupants. Orientation is an important factor in passive design strategies. This paper focuses on the orientation effect on daylighting into office rooms. The research method of this study was simulation which is performed on a hypothetical model on a 25 storey high-rise office building in Malaysia. All simulations were carried out in the IES-VE software that uses RADIANCE program for illuminance calculations. To evaluate the daylight in various conditions, a new index SAZ was introduced which assesses daylight factor (DF and absolute Lux. Results showed similar SAZ in CIE overcast sky in various orientations; whereas, in sunny sky due to sun path in Malaysia, different results showed northern and southern rooms have the best illuminance distribution. However, the similar window form and size in four orientations lead to more energy consumption for artificial lighting and cooling loads.

  3. Sick-building symptoms in office workers in northeastern France: a pilot study.

    Teculescu, D B; Sauleau, E A; Massin, N; Bohadana, A B; Buhler, O; Benamghar, L; Mur, J M

    1998-07-01

    To verify that sick building symptoms are present in north-eastern France office workers; to try to identify new confounding factors. The design was that of a cross-sectional study with control group. We studied with the same methods the personnel of an air-conditioned building (n=425), and of a naturally ventilated building (n=351). Air temperature and humidity, bacterial and fungal densities were measured by the same technical staff in the two buildings. A standard questionnaire on irritative and respiratory symptoms, personal and family history, and lifestyle was completed by the participants. In univariate analysis, exposure to air-conditioning was associated with an increased prevalence of symptoms (odds ratios-OR-between 1.54 and 2.84). A significant increase in sickness absence was also found among subjects working in air-conditioned offices. As a series of factors were suspected to interfere with these associations, logistic regression was applied. This method confirmed exposure to be an independent determinant of 7 symptoms, and also identified two determinants not previously described: a family history of respiratory diseases and "do-it-yourself' activities. we found the sick building symptoms to be present in a group of French office workers exposed to air-conditioning. We confirmed the influence of a number of confounding factors and described two further confounders - do-it-yourself activities at home and a history of familial respiratory disease.

  4. Acoustic classification of buildings in Europe – Main characteristics of national schemes for housing, schools, hospitals and office buildings

    Rasmussen, Birgit

    2018-01-01

    schemes define limit values for a number of acoustic performance areas, typically airborne and impact sound insulation, service equipment noise, traffic noise and reverberation time, i.e. the same as in regulations. Comparative studies of the national acoustic classification schemes in Europe show main......Building regulations specify minimum requirements, and more than ten countries in Europe have published national acoustic classification schemes with quality classes, the main purpose being to introduce easy specification of stricter acoustic criteria than defined in regulations. The very first...... classification schemes were published in the mid 1990’es and for dwellings only. Since then, more countries have introduced such schemes, some including also other building categories like e.g. schools, hospitals and office buildings, and the first countries have made updates more times. Acoustic classification...

  5. Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

    Peffer, Therese [Univ. of California, Berkeley, CA (United States); Council on International Education Exchange (CIEE), Portland, ME (United States); Blumstein, Carl [Council on International Education Exchange (CIEE), Portland, ME (United States); Culler, David [Univ. of California, Berkeley, CA (United States). Electrical Engineering and Computer Sciences (EECS); Modera, Mark [Univ. of California, Davis, CA (United States). Western Cooling Efficiency Center (WCEC); Meier, Alan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-10

    The Project uses state-of-the-art computer science to extend the benefits of Building Automation Systems (BAS) typically found in large buildings (>100,000 square foot) to medium-sized commercial buildings (<50,000 sq ft). The BAS developed in this project, termed OpenBAS, uses an open-source and open software architecture platform, user interface, and plug-and-play control devices to facilitate adoption of energy efficiency strategies in the commercial building sector throughout the United States. At the heart of this “turn key” BAS is the platform with three types of controllers—thermostat, lighting controller, and general controller—that are easily “discovered” by the platform in a plug-and-play fashion. The user interface showcases the platform and provides the control system set-up, system status display and means of automatically mapping the control points in the system.

  6. The potential for energy efficiency gains in the Canadian commercial building sector: A stochastic frontier study

    Buck, J.; Young, D.

    2007-01-01

    The achievement of energy efficiency in commercial buildings is a function of the activities undertaken, the technology in place, and the extent to which those technologies are used efficiently. We study the factors that affect efficient energy use in the Canadian commercial sector by applying a stochastic frontier approach to a cross-section of Canadian commercial buildings included in the Commercial and Institutional Building Energy Use Survey (CIBEUS). Structural and climate-control features of the buildings as well as climatic conditions are assumed to determine the location of the frontier, while management-related variables including such factors as ownership type and activities govern whether or not the maximally attainable efficiency along the frontier is achieved. Our results indicate that although, on average, buildings appear to be fairly efficient, certain types of operations are more likely than others to exhibit energy efficiencies that are significantly worse than average. These results, along with those related to the effects of physical characteristics on the stochastic efficiency frontier, suggest that there is scope for focused policy initiatives to increase energy efficiency in this sector

  7. Design of an atrium for a passive-solar retrofit of an office buildings

    Peterson, J.L.; Hunn, B.D.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) has proposed to retrofit one of its administrative office buildings with a solar atrium. A 334 m/sup 2/ courtyard will be enclosed with a roof-mounted system of clerestory windows to maximize winter solar gain. This sunspace will thermally buffer the adjoining offices and also will preheat air supplied to the building's conventional heating, ventilating, and air-conditioning (HVAC) system. The use of the DOE-2 building energy analysis computer program in the design of the solar atrium is described. The results of a series of simulations are reported detailing the tradeoffs inherent in the selection of an optimal glazing area, the maintenance of acceptable comfort levels within the sunspace, and intergration of passive-solar devices with the conventional HVAC system. Potential energy savings are also discussed.

  8. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in North Dakota

    Cort, Katherine A.; Belzer, David B.; Winiarski, David W.; Richman, Eric E.

    2004-04-30

    The state of North Dakota is considering updating its commercial building energy code. This report evaluates the potential costs and benefits to North Dakota residents from updating and requiring compliance with ASHRAE Standard 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in the analysis. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST simulation combined with a Life-cycle Cost (LCC) approach to assess correspodning economic costs and benefits.

  9. Perceived Indoor Environment and Occupants' Comfort in European "Modern" Office Buildings: The OFFICAIR Study.

    Sakellaris, Ioannis A; Saraga, Dikaia E; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G; Bluyssen, Philomena M

    2016-04-25

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers' comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants' comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 "modern" office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants' comfort. The highest association with occupants' overall comfort was found for "noise", followed by "air quality", "light" and "thermal" satisfaction. Analysis of detailed parameters revealed that "noise inside the buildings" was highly associated with occupants' overall comfort. "Layout of the offices" was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building's location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.

  10. Analysis of variables that influence electric energy consumption in commercial buildings in Brazil

    Carvalho, M.M.Q. [Technical Drawing Department, Fluminense Federal University, Niteroi, Rio de Janeiro (Brazil); Energy Planning Program, Alberto Luiz Coimbra Institute for Research and Graduate Studies in Engineering - COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); La Rovere, E.L. [Energy Planning Program, Alberto Luiz Coimbra Institute for Research and Graduate Studies in Engineering - COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Goncalves, A.C.M. [Program for Graduate Studies in Architecture, School of Architecture and Urbanism, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil)

    2010-12-15

    Air conditioning systems in commercial buildings in Brazil are responsible for about 70% share of their energy consumption. According to BEN 2009 (The Brazilian Energy Balance), energy consumption in the residential, commercial and public sectors, where most buildings are found, represents 9.3% of the final energy consumption in Brazil. This paper aims to examine design factors that could contribute to greater reductions of electric energy consumption in commercial buildings, with emphasis on air conditioning. Simulations were carried out using shades and different types of glass, walls, flooring and roofing. The VisualDOE 2.61 was used as a simulation tool for calculating energy consumption of the analyzed building. This paper shows that the energy performance of the building is considerably influenced by the facade protection and shows, through tables, the impact that decisions related to the top-level and facades have on the energy consumption of the building. The authors concluded that the results confirm the importance of taking energy use into account in the very first design stages of the project, since appropriate choices of types of glass, external shading and envelope materials have a significant impact on energy consumption. (author)

  11. Forecasting uptake of retrofit packages in office building stock under government incentives

    Higgins, Andrew; Syme, Mike; McGregor, James; Marquez, Leorey; Seo, Seongwon

    2014-01-01

    As government and industry plan to reduce energy consumption in building stock, there is a need to forecast the uptake of retrofit packages across building stock over time. To address this challenge a diffusion model was set up and applied to office building stock across New South Wales (NSW) in Australia, accommodating a high spatial resolution and temporal capability for projecting uptake of technology packages characterised by multiple variables. Six retrofit packages were set up for the diffusion model, which ranged from inexpensive services and manuals through to mid-priced packages involving energy efficient T5 lighting and solar hot water through to expensive packages such as chilled beams and Solar PV. We evaluated the model using a base case and two policy programs, representing the Green Building Fund and Environmental Upgrade Agreements. These were recent incentive programs funded by the Australian government to accelerate the uptake of retrofit packages, by providing financial support to upfront expenditures and removing barriers to retrofit. By forecasting uptake of each retrofit package to 2032 under each program, we demonstrate how the model can be a valuable resource in tailoring expensive government programs and increasing their effectiveness. - Highlights: • Diffusion model for uptake of building retrofits. • Case study with New South Wales office buildings. • Forecast uptake of government policy programs

  12. Simulation Study of Active Ceilings with Phase Change Material in Office Buildings for Different National Building Regulations

    Farhan, Hajan; Stefansen, Casper; Bourdakis, Eleftherios

    2018-01-01

    The aim of this study was to examine the performance of phase change material (PCM) in active ceilings for an office room under different Danish building regulations for both heating and cooling purposes. A model of a two-person office room was simulated with the only heating and cooling source...... being radiant ceiling panels containing PCM. The target was to reduce energy use for the simulation models and still meet the recommended criteria of Category II for the European Standard EN 15251:2007 namely, 23°C – 26°C (73.4°F – 78.8°F) during summer and between 20°C – 24°C (68.0°F – 73.4°F) during...... winter. The office model was simulated for a whole year and analyzed for three Danish building regulations BR10 (2010), BR15 (2015) and BR20 (2020). The results show that the indoor environment was within the desired Category II, according to EN 15251 for the whole occupancy period. The predicted...

  13. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    2014-09-01

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.

  14. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  15. Building construction materials effect in tropical wet and cold climates: A case study of office buildings in Cameroon

    Modeste Kameni Nematchoua

    2016-03-01

    Full Text Available This paper presents the results of an experimental study that was conducted in 15 office buildings in the humid and cold tropics during the working hours of the dry and rainy seasons in Cameroon. This was with the aim to study the effects that local and imported materials had on indoor air quality. To achieve this objective, the adaptive model approach has been selected. In accordance with the conditions of this model, all workers were kept in natural ventilation and, in accordance with the general procedure, a questionnaire was distributed to them, while variables, like air temperature, wind speed, and relative humidity were sampled. The results showed a clear agreement between expected behaviour, in accordance with the characteristics of building construction, and its real indoor ambience once they were statistically analysed. On the other hand, old buildings showed a higher percentage of relative humidity and a lower degree of indoor air temperature. Despite this, local thermal comfort indices and questionnaires showed adequate indoor ambience in each group of buildings, except when marble was used for external tiling. The effect of marble as an external coating helps to improve indoor ambience during the dry season. This is due to more indoor air and relative humidity being accumulated. At the same time, these ambiences are degraded when relative humidity is higher. Finally, these results should be taken cognisance of by architects and building designers in order to improve indoor environment, and overcome thermal discomfort in the Saharan area.

  16. Identifying Critical Factors in the Cost-Effectiveness of Solar and Battery Storage in Commercial Buildings

    McLaren, Joyce A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, Katherine H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laws, Nicholas D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DiOrio, Nicholas A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Li, Xiangkun [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-21

    This analysis elucidates the emerging market for distributed solar paired with battery energy storage in commercial buildings across the United States. It provides insight into the near-term and future solar and solar-plus-storage market opportunities as well as the variables that impact the expected savings from installing behind-the-meter systems.

  17. Enabling VOLTTRON: Energy Management of Commercial Buildings at the University of Maryland

    Ebhojiaye, Itohan Omisi

    Buildings waste approximately 30% of energy they consume due to inefficient HVAC and lighting operation. Building Automation Systems (BAS) can aid in reducing such wasted energy, but 90% of U.S. commercial buildings lack a BAS due to their high capital costs. This thesis demonstrates how VOLTTRON, an open source operating system developed by Pacific Northwest National Laboratory, was used to disable the mechanical cooling of a rooftop unit (RTU) during unoccupied hours, on a building without a BAS. With cooling off, the RTU's electricity dropped from 18 kW to 7kW. These results indicate 450 to 550 can be saved on the monthly electric bill of the building during the summer, compared to when the RTU operated in cooling mode continuously. The installation cost of the equipment that enabled the RTU to be controlled via VOLTTRON was $6,400, thus the project has a payback period of 13 months.

  18. Cost-benefit analysis of improved air quality in an office building

    Djukanovic, R.; Wargocki, Pawel; Fanger, Povl Ole

    2002-01-01

    A cost-benefit analysis of measures to improve air quality in an existing air-conditoned office building (11581 m2, 864 employees) was carried out for hot, temperate and cold climates and for two operating modes: Variable Air Volume (VAV) with economizer; and Constant Air Volume (CAV) with heat...... recovery. The annual energy cost and first cost of the HVAC system were calculat4ed using DOE 2.1E for different levels of air quality (10-50% dissatisfied). This was achieved by changing the outdoor air supply rate and the pollution loads. Previous studies have documented a 1.1% increase in office...

  19. The costs and benefits of using daylight guidance to light office buildings

    Mayhoub, M.S.; Carter, D.J. [School of Architecture, University of Liverpool (United Kingdom)

    2011-03-15

    Daylight guidance systems are linear devices that channel daylight into the core of a building. This paper analyses costs and benefits of using the two main classes of daylight guidance to light offices as an alternative to conventional electric lighting. The work demonstrates that daylight guidance is generally not economical using conventionally accepted measures of both cost and benefit. It is shown that if intangible benefits associated with the delivery of daylight to offices are included in an analysis, a more favourable balance of cost and benefit is obtained. The implications of this for practical use of the systems are discussed. (author)

  20. All around ecological. Administrative building of the district office Goeppingen; Rundum oekologisch. Verwaltungsgebaeude des Landratsamts Goeppingen

    Anon.

    2011-07-15

    This district office in Goeppingen (Federal Republic of Germany) just had ten months in order to build a completely new administrative building. For the employees of the district's waste company, a house was needed with a gross floor area of 2,020 m{sup 2}. Despite the tight time frame, one correlated to an environmentally friendly and energy-saving concept: The building should consume energy as little as possible in future. The new building was constructed extremely rapidly and is now regarded as a flagship project: it is heated using a geothermal heat pump and seven geothermal probes. A sophisticated system provides for storage and recycling of excess energy.

  1. Plug-Load Control and Behavioral Change Research in GSA Office Buildings

    Metzger, I.; Cutler, D.; Sheppy, M.

    2012-10-01

    The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.

  2. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

    2010-05-14

    California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

  3. Implementation of life cycle costing for a commercial building: case of a residential apartment at Yogyakarta

    Kaming Peter F

    2017-01-01

    Full Text Available Analysis of a design process is very important in controlling the initial costs and future costs in possession of an investment project such as commercial building. Therefore, it should be wise to perform a life cycle cost analysis to determine the cost of any category contained in future cost of the building. The analysis also provide information to see how much the total cost incurred by a development project from initial to the future cost by implementing BS ISO 15686 part 5: 2008, regarding life cycle costing. The purpose of this study is to identify the cost proportion and make long-term plans of a commercial building in term of its life cycle costing from a case of a residential apartment in Yogyakarta, Indonesia. Results of the study show that there are three groups that make up the life cycle cost: the cost of development of the building, the operating costs, and the cost of maintenance and replacement. For a long-term plan the life cycle cost for 25 years the percentage obtained as follows, initial development cost of 42%, operational costs 39%, maintenance and replacement costs 19%. The results would also make comparison with other existing commercial buildings.

  4. Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings

    Chung, William

    2012-01-01

    Highlights: ► Fuzzy linear regression method is used for developing benchmarking systems. ► The systems can be used to benchmark energy efficiency of commercial buildings. ► The resulting benchmarking model can be used by public users. ► The resulting benchmarking model can capture the fuzzy nature of input–output data. -- Abstract: Benchmarking systems from a sample of reference buildings need to be developed to conduct benchmarking processes for the energy efficiency of commercial buildings. However, not all benchmarking systems can be adopted by public users (i.e., other non-reference building owners) because of the different methods in developing such systems. An approach for benchmarking the energy efficiency of commercial buildings using statistical regression analysis to normalize other factors, such as management performance, was developed in a previous work. However, the field data given by experts can be regarded as a distribution of possibility. Thus, the previous work may not be adequate to handle such fuzzy input–output data. Consequently, a number of fuzzy structures cannot be fully captured by statistical regression analysis. This present paper proposes the use of fuzzy linear regression analysis to develop a benchmarking process, the resulting model of which can be used by public users. An illustrative example is given as well.

  5. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings: Preprint

    Frank, Stephen; Heaney, Michael; Jin, Xin; Robertson, Joseph; Cheung, Howard; Elmore, Ryan; Henze, Gregor

    2016-08-01

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energy models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.

  6. Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)

    Wang, Na; Gorrissen, Willy J.

    2013-01-11

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.

  7. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings: Preprint

    Long, Matthew; Simpkins, Travis; Cutler, Dylan; Anderson, Katie

    2016-11-01

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape of the load profile is the most significant predictor of the size of the battery.

  8. Energy consumptions in existing buildings; Les consommations d'energie des batiments existants

    Nuss, St. [Ecole Nationale Superieure des Arts et Industries de Strasbourg, 78 - Saint-Remy-Les-Chevreuse (France)]|[Costic, 78 - Sainte Remy les Chevreuses (France)

    2002-05-01

    This document presents a sectoral analysis of the energy consumptions in existing French buildings: 1) - residential sector: social buildings, private dwellings; 2) - tertiary sector: office buildings, hotels, commercial buildings, school buildings, hospitals; 3) - industry; 4) - general status. (J.S.)

  9. A Laboratory for studying radon mitigation methods in high-rise office buildings in Hong Kong

    Leung, J.K.C.; Hung, L.C.; Tso, M.Y.W.

    1996-01-01

    A territory-wide survey of indoor radon level in 1993 showed that 17% of offices Hong Kong have radon concentrations above 200 Bq m -3 compared with 4% for dwellings. Consequently, the Radioisotope Unit Radon Analysis Laboratory (RURAL) is being built for studying radon mitigation methods applicable to high-rise office buildings. The laboratory consists of three rooms; the main exposure room is built of concrete and is surrounded by the buffer room; and all controls and operations are done inside the control room. The exposure room can, with the aid of the buffer room, simulate any environmental conditions that can be faced by a real building. The pressure, temperature and humidity can be adjusted to any meteorological conditions that can be found in Hong Kong. Pressure differential and temperature differential can be adjusted to simulate the arrival of fronts, troughs or typhoons. Aerosol concentration and distribution inside the exposure room are controllable as well as the ventilation conditions. Various mitigation methods will be tested under different conditions. Passive methods include application of radon barriers to building structures and active methods include the use of air cleaners; techniques to increase radon daughters plateout or reduce their attachment to aerosols; and various modifications to the ventilation systems. Mitigation techniques involving modifications to the building strictures and building services will also be developed with the help of the RURAL. (author)

  10. Modeling of a Novel Low-Exergy System for Office Buildings with Modelica

    Maccarini, Alessandro; Afshari, Alireza; Hultmark, Göran

    2016-01-01

    This paper aims to investigate the thermal behavior of a novel low-exergy system for office buildings. The main characteristic of the system is its ability to provide simultaneous heating and cooling by operating one water circuit. Inlet water temperature of about 22 °C is delivered to all...... the thermal zones in the building, no matter whether a single zone needs heating or cooling. This approach clearly differs from conventional systems where simultaneous heating and cooling is provided by two separated water circuits. A detailed model of the novel system was developed with Dymola, a modeling...

  11. Economic feasibility of maximising daylighting of a standard office building with efficient electric lighting

    Fontoynont, Marc; Ramananarivo, Karine; Soreze, Thierry Silvio Claude

    2016-01-01

    This paper investigates the cost of developing various daylighting strategies for a standard office building in relation to their ability to reduce electric lighting consumption. The reference building design for this study corresponds to a typical configuration that minimises the construction...... costs and is typical of the French market. We have compared scenarios that entail moving service spaces to the periphery, increasing ceiling height and adding light wells of various shapes. These special features increased the proportion of the indoor area with sufficient daylight by up to 40...

  12. Assessment of the Fire Risk Levels in an Office Building and a Nightclub with Prescriptive Designs

    Yilmaz, D.; Steffensen, F.B.; Jomaas, Grunde

    2014-01-01

    A comparison of the risk level of an office building and a nightclub with code compliant prescriptive designs was conducted in order to evaluate whether an uniform safety level of the two occupancy types can be established. A risk assessment method using Monte Carlo simulations and 1- and 2-zone......-movement time and the movement time were adjusted for the required safe egress time (RSET) of the nightclub. The number of simulations required in order to obtain reliable results was considered sufficient at 20,000. The comparison of the risk profiles of the nightclub and the office building showed significant...... difference in risk levels, with that of the nightclub being substantially higher. The higher risk level in the nightclub is caused by a relatively fast mean value of the fire growth rate and the high number of occupants. Hence, the requirements in the prescriptive code do not ensure a similar safety level...

  13. The Analysis of Applying Different Coolants for Cooling Systems in the Office Building

    Rasa Kanapienytė

    2011-12-01

    Full Text Available The paper analyzes air conditioning systems of different coolants on the basis of an example of a typical office building. Depending on the type of a coolant fan coil unit, active chilled beams, variable refrigerant volumes and air cooling systems were designed. The article suggests hydraulic and aerodynamic calculations and evaluates initial investments, energy expenditures and operating costs of the compared systems. Considering economic calculations, the pay-back time of the systems was assessed and the sensitivity analysis of electricity prices was carried out. The results of the conducted investigation show the most appropriate analysed system for office buildings taking into account the efficient use of electricity and initial investments.Article in Lithuanian

  14. Measuring Instrument Constructs of Return Factors for Green Office Building Investments Variables Using Rasch Measurement Model

    Isa Mona

    2016-01-01

    Full Text Available This paper is a preliminary study on rationalising green office building investments in Malaysia. The aim of this paper is attempt to introduce the application of Rasch measurement model analysis to determine the validity and reliability of each construct in the questionnaire. In achieving this objective, a questionnaire survey was developed consists of 6 sections and a total of 106 responses were received from various investors who own and lease office buildings in Kuala Lumpur. The Rasch Measurement analysis is used to measure the quality control of item constructs in the instrument by measuring the specific objectivity within the same dimension, to reduce ambiguous measures, and a realistic estimation of precision and implicit quality. The Rasch analysis consists of the summary statistics, item unidimensionality and item measures. A result shows the items and respondent (person reliability is at 0.91 and 0.95 respectively.

  15. Energy and comfort performance evaluation after renovation of an office building

    Renzi, V.; Burgun, F. [Inst. National de l' Energie Solaire, Le Bourget du Lac (France)

    2009-07-01

    Buildings constitute 42.5 per cent of the energy consumption in Europe. As such, the building sector represents a high potential for innovation in terms of reducing global energy consumption. Since existing buildings represent a large part of the built environment, refurbishment is an important issue to consider. However, efficient processes of renovation must be well defined. France's National Institute of Solar Energy has developed a methodology to reduce consumption of primary energy use and decrease greenhouse gas emissions in the built environment, while increasing user comfort. The methodology places much emphasis on the health and comfort of occupants from the very beginning of the process. The methodology was developed to make the building renovation process more efficient by elaborating generic guidelines and tools. In this study, an office building from the 1970s was refurbished and monitored for both energy performance and comfort. The objective was to better understand the technological and psychosocial aspects involved in refurbishing an old building. Measurements were compared with the perception of the occupants. The impacts of human interaction on the building behaviour was also evaluated. 6 refs., 1 tab., 4 figs.

  16. European indoor air quality survey in 56 office buildings; Europees binnenluchtkwaliteitsonderzoek in 56 kantoorgebouwen

    Bluyssen, P.M. [Afdeling Binnenmilieu, Bouwfysica en Installaties, TNO Bouw, Delft (Netherlands)

    1996-12-01

    The title survey started at the end of 1992. Trained sensory panels were used to investigate office buildings all over Europe. Measurements were performed at five selected locations in each building. The buildings were studied while normally occupied and ventilated to identify the pollution sources in the spaces and to quantify the total pollution load caused by the occupants and their activities and the ventilation systems. The investigation included physical and chemical measurements, assessment of the perceived air quality in the spaces by a trained sensory panel, and measurement of the outdoor air supply to the spaces. A questionnaire for evaluating retrospective and immediate symptoms and perceptions was given to the occupants of the buildings. The building characteristics were described by use of a check-list. The annual energy consumption of the buildings and the weather conditions were registered. Results and conclusions of the audit in 56 buildings in Europe are presented. The analysis and discussion of the results are a summary of the work done and show that ventilation is not the solution for the removal of pollutants, but that source control is the first method to be applied. Furthermore, the analysis and discussions are focused mainly on the comparison between sensory assessments and the other measurements performed. 13 figs., 7 tabs., 25 refs.

  17. Solar heating and cooling system for an office building at Reedy Creek Utilities

    1978-01-01

    The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

  18. [Biological contamination in office buildings related to ventilation/air conditioning system].

    Bródka, Karolina; Sowiak, Małgorzata; Kozajda, Anna; Cyprowski, Marcin; Irena, Szadkowska-Stańczyk

    2012-01-01

    Indoor air is contaminated with microorganisms coming from both the atmospheric air and sources present in premises. The aim of this study was to analyze the concentrations of biological agents in office buildings, dependending on ventilation/air conditioning system and season. The study covered office buildings (different in the system of ventila-tion/air conditioning). Air samples for assessing the levels of inhalable dust, endotoxins and (1-->3)-beta-D-glucans, were taken at the selected stationary points of each building during summer and winter. The air was sampled for 6 h, using portable sets consisting of the GilAir 5 pump and the head filled with a filter of fiber glass. The samples for the presence of airborne bacteria and fungi were collected twice during the day using the impaction method. Average concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans in office premises were 0.09 mg/m3, 6.00 x 10(2) cfu/m3, 4.59 x 10(1) cfu/m3, 0.42 ng/m3 and 3.91 ng/m3, respectively. Higher concentrations of the investigated agents were found in summer. In premises with air conditioning concentrations of airborne fungi, (1-->3)-beta-D-glucans and inhalable dust were significantly lower in winter. In summer the trend was reverse except for (1-->3)-beta-D-glucans. Concentrations of biological agents were affected by the season and the presence of air conditioning. Concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans, observed inside the office buildings, were significantly higher in summer than in winter. The presence of the air conditioning system modified in various ways the levels of biological agents. Its influence was greater on the concentration of fungi and (1-->3)-beta-D-glucans than on that of bacteria and endotoxins.

  19. THE DESIGN OF A MODULAR WIND TURBINE MEANT FOR HOUSES AND OFFICE BUILDINGS

    RĂDUICĂ Felix

    2016-11-01

    Full Text Available This paper describes a new wind turbine design which can be implemented for home, office and public buildings. Also, this article presents specific steps taken by the designer to develop the product. A honeycomb design has been implemented for modularity reasons. Certain measures have been taken to ensure the quality of the design including, but not limited to: an emphasis on design principles, product development and shapes described by and found in nature.

  20. Energy Performance and CO2 Emissions of HVAC Systems in Commercial Buildings

    Rafat Al-Waked

    2017-10-01

    Full Text Available Energy performance of buildings has attracted much attention among building physicists and engineers worldwide. The effects of building heating; ventilation; and air conditioning (HVAC systems’ design upgrade on the building energy performance are the focus of the current study. The adopted HVAC system consisted of chilled ceiling and chilled beam systems served by a centrifugal water chiller. An energy simulation study was undertaken in accordance with the national Australian built environment rating system-rules for collecting and using data. A three-dimensional simulation study was carried out utilizing the virtual environment-integrated environmental solutions software. Results from the current study have shown the importance of utilizing energy-efficient HVAC systems and HVAC strategies for achieving a high building energy star rating. Recommended strategies in order to achieve the nominated star rating; as predicted by the simulation analysis; were presented. Moreover; the effects of solar radiation inside the building atrium were significant; which cannot be overcome by simply installing a low shading coefficient glazing type at the atrium skylight. In addition to providing chilled ceiling technology; a high efficiency chiller and low energy lighting; it is recommended that the building be well tuned during the commissioning period. The current approach could be extended to accommodate higher energy ratings of commercial buildings at different locations worldwide.

  1. Thermal and lighting perception in four fully glazed office buildings in Santiago, Chile

    Claudio Vásquez Záldivar

    2013-12-01

    Full Text Available This paper is part of a general research project whose main objective is to establish a baseline for post-occupancy energy consumption and indoor environmental quality for office buildings in Santiago, Chile. This study aims at understanding how architectonical variables relate to, and can even determine, user comfort perception.  Thus, one-year continuous monitoring in several floors at four office buildings was performed and seasonal surveys were completed.  Survey participants were asked a series of questions regarding spatial orientation and comfort perception in their workspace.The data from the comfort survey and onsite measurements such as season of the year, case study, type of workspace and possibility of an outdoor view from the workstation were contrasted with the components obtained by a Principal Component Analysis (PCA. Three components were selected from the PCA, and three Maps of Perception (MP were produced. These maps were then analyzed and interpreted so as to obtain information on the general perception of thermal and lighting comfort at workspaces within several office buildings in Santiago.

  2. Thermal and lighting perception in four fully glazed office buildings in Santiago, Chile

    Claudio Vásquez

    2013-12-01

    Full Text Available Corresponding author: Claudio Vásquez, School of Architecture, Catholic University of Chile. 1916 El Comendador str. Providencia, Santiago, ZIP: 7530091, Chile. Tel.: +56 9 92826305; E-mail: clvasque@uc.cl This paper is part of a general research project whose main objective is to establish a baseline for post-occupancy energy consumption and indoor environmental quality for office buildings in Santiago, Chile. This study aims at understanding how architectonical variables relate to, and can even determine, user comfort perception. Thus, one-year continuous monitoring in several floors at four office buildings was performed and seasonal surveys were completed. Survey participants were asked a series of questions regarding spatial orientation and comfort perception in their workspace. The data from the comfort survey and onsite measurements such as season of the year, case study, type of workspace and possibility of an outdoor view from the workstation were contrasted with the components obtained by a Principal Component Analysis (PCA. Three components were selected from the PCA, and three Maps of Perception (MP were produced. These maps were then analyzed and interpreted so as to obtain information on the general perception of thermal and lighting comfort at workspaces within several office buildings in Santiago.

  3. Energy Conservation in an Office Building Using an Enhanced Blind System Control

    Edorta Carrascal-Lekunberri

    2017-02-01

    Full Text Available The two spaces office module is usually considered as a representative case-study to analyse the energetic improvement in office buildings. In this kind of buildings, the use of a model predictive control (MPC scheme for the climate system control provides energy savings over 15% in comparison to classic control policies. This paper focuses on the influence of solar radiation on the climate control of the office module under Belgian weather conditions. Considering MPC as main climate control, it proposes a novel distributed enhanced control for the blind system (BS that takes into account part of the predictive information of the MPC. In addition to the savings that are usually achieved by MPC, it adds a potential 15% improvement in global energy use with respect to the usually proposed BS hysteresis control. Moreover, from the simulation results it can be concluded that the thermal comfort is also improved. The proposed BS scheme increases the energy use ratio between the thermally activated building system (TABS and air-handling unit (AHU; therefore increasing the use of TABS and allowing economic savings, due to the use of more cost-effective thermal equipment.

  4. Architectural qualities of Danish office buildings built between 1960 and 1980, seen in a contemporary sustainable perspective

    Hannoudi, L.; Lauring, M.; Christensen, Jørgen Erik

    2016-01-01

    This study is about evaluating the past and present architectural quality of office buildings built between1960 and 1980 in Denmark. The evaluation will focus on the expression of these buildings in relation to their context, combined with the present sustainable performance of the buildings...

  5. 76 FR 1192 - Standard on Powered Platforms for Building Maintenance; Extension of the Office of Management and...

    2011-01-07

    ...] Standard on Powered Platforms for Building Maintenance; Extension of the Office of Management and Budget's... specified in its Standard on Powered Platforms for Building Maintenance (29 CFR 1910.66). DATES: Comments... Building Maintenance (29 CFR 1910.66). The Agency is requesting to retain its current burden hour total of...

  6. In-Depth Analysis of Energy Efficiency Related Factors in Commercial Buildings Using Data Cube and Association Rule Mining

    Byeongjoon Noh

    2017-11-01

    Full Text Available Significant amounts of energy are consumed in the commercial building sector, resulting in various adverse environmental issues. To reduce energy consumption and improve energy efficiency in commercial buildings, it is necessary to develop effective methods for analyzing building energy use. In this study, we propose a data cube model combined with association rule mining for more flexible and detailed analysis of building energy consumption profiles using the Commercial Buildings Energy Consumption Survey (CBECS dataset, which has accumulated over 6700 existing commercial buildings across the U.S.A. Based on the data cube model, a multidimensional commercial sector building energy analysis was performed based upon on-line analytical processing (OLAP operations to assess the energy efficiency according to building factors with various levels of abstraction. Furthermore, the proposed analysis system provided useful information that represented a set of energy efficient combinations by applying the association rule mining method. We validated the feasibility and applicability of the proposed analysis model by structuring a building energy analysis system and applying it to different building types, weather conditions, composite materials, and heating/cooling systems of the multitude of commercial buildings classified in the CBECS dataset.

  7. Comparison of Standard 90.1-2007 and the 2009 IECC with Respect to Commercial Buildings

    Conover, David R.; Bartlett, Rosemarie; Halverson, Mark A.

    2009-12-11

    The U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP) has been asked by some states and energy code stakeholders to address the comparability of the 2009 International Energy Conservation Code® (IECC) as applied to commercial buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 (hereinafter referred to as Standard 90.1-07). An assessment of comparability will help states respond to and implement conditions specified in the State Energy Program (SEP) Formula Grants American Recovery and Reinvestment Act Funding Opportunity, Number DE-FOA-0000052, and eliminate the need for the states individually or collectively to perform comparative studies of the 2009 IECC and Standard 90.1-07. The funding opportunity announcement contains the following conditions: (2) The State, or the applicable units of local government that have authority to adopt building codes, will implement the following: (A) A residential building energy code (or codes) that meets or exceeds the most recent International Energy Conservation Code, or achieves equivalent or greater energy savings. (B) A commercial building energy code (or codes) throughout the State that meets or exceeds the ANSI/ASHRAE/IESNA Standard 90.1-2007, or achieves equivalent or greater energy savings . (C) A plan to achieve 90 percent compliance with the above energy codes within eight years. This plan will include active training and enforcement programs and annual measurement of the rate of compliance. With respect to item (B) above, many more states, regardless of the edition date, directly adopt the IECC than Standard 90.1-07. This is predominately because the IECC is a model code and part of a coordinated set of model building codes that state and local government have historically adopted to regulate building design and construction. This report compares the 2009 IECC to Standard 90.1-07 with the intent of helping states address whether the adoption and application of the 2009 IECC for commercial

  8. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  9. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Zhang, Jian [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-09-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  10. Energy consumption, energy savings, and emission analysis in Malaysian office buildings

    Saidur, R.

    2009-01-01

    This paper is concerned with the estimation of energy use in office buildings in Malaysia and with the energy use of major equipment. Energy intensity (EI) - a measure of a building's energy performance - is estimated for Malaysia and compared with a number of selected countries. Air conditioners are shown to be the major energy users (57%) in office buildings, followed by lighting (19%), lifts and pumps (18%) and other equipment (6%). It is estimated that 77,569 MWh of energy can be saved and a huge reduction of emissions achieved through the application of advance glazing, compact fluorescent lamps (CFL), insulation, housekeeping, and by raising thermostat set point temperature of air conditioners, and reducing EI. It is also estimated that a very substantial amount of energy can be saved by making use of energy-efficient motors in building systems with different motor loading percentages. Finally, it can be shown that the use of variable speed drives (VSDs) and energy-efficient motors leads to substantial energy savings and an enormous reduction in emissions.

  11. Building-Related Symptoms, Energy, and Thermal Control in the Workplace: Personal and Open Plan Offices

    Sally S. Shahzad

    2016-04-01

    Full Text Available This study compared building-related symptoms in personal and open plan offices, where high and low levels of control over the thermal environment were provided, respectively. The individualized approach in Norway provided every user with a personal office, where they had control over an openable window, door, blinds, and thermostat. In contrast, the open plan case studies in the United Kingdom provided control over openable windows and blinds only for limited occupants seated around the perimeter of the building, with users seated away from the windows having no means of environmental control. Air conditioning was deployed in the Norwegian case study buildings, while displacement ventilation and natural ventilation were utilized in the British examples. Field studies of thermal comfort were applied with questionnaires, environmental measurements, and interviews. Users’ health was better in the Norwegian model (28%, while the British model was much more energy efficient (up to 10 times. The follow-up interviews confirmed the effect of lack of thermal control on users’ health. A balanced appraisal was made of energy performance and users’ health between the two buildings.

  12. Building communities and social potential: Between and beyond organizations and individuals in commercial properties

    Janda, Kathryn B.

    2014-01-01

    Axon et al., (2012) argue that maximizing the potential for energy efficiency and demand reduction in tenanted commercial properties requires a “building communities” approach. This paper develops and extends Axon et al.′s proposed framework in two ways. First, by extending its applicability from tenanted to owner-occupied properties. Second, by situating it within the literature related to organizational culture, occupant behaviours, and technology adoption. The paper begins with a brief review of the existing research on people, energy and commercial buildings. This literature tends to address either organizational choices, or occupant behavior, but it rarely crosses the analytical boundaries between these two groups. The paper then explores these different levels of analysis within a 3Cs – “concern, capacity, and conditions” – framework, which was developed to describe and distinguish organizational responses to an energy crisis. The combination of the “building communities” and 3Cs frames reveals gaps and grey areas between organizational culture, occupant behaviour, and technology adoption where further conservation opportunities may lie. These understudied areas suggest that there may be “social potential” for change that is between and beyond the frames used by previous research in the field. - Highlights: • We discuss literature on occupant behaviour and organisational factors in commercial buildings. • We introduce two frameworks drawn from previous research: “3Cs” (concern, capacity, and conditions) and “building communities”. • Gaps in the literature call for a “building communities” approach to the 3Cs, which we recommend for near-term research. • We introduce the concept of “social potential” as a counterpoint to technical potential for longer-term research

  13. Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances (2015 Update)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Foley, Kevin [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Chung, Greg [Navigant Consulting, Burlington, MA (United States)

    2016-06-01

    The Department of Energy commissioned a technology characterization and assessment of appliances used in commercial buildings for cooking, cleaning, water heating, and other end-uses. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development, and demonstration opportunities to improve energy efficiency in each end-use. This report serves as an update to a 2009 report of the same name by incorporating updated data and sources where possible and updating the available technology options that provide opportunities for efficiency improvements.

  14. As- built inventory of the office building with the use of terrestrial laser scanning

    Przyborski, Marek; Tysiąc, Paweł

    2018-01-01

    Terrestrial Laser Scanning (TLS) is an efficient tool for building inventories. Based on the red- laser beam technology it is possible to provide the high accuracy data with complete spatial information about a scanned object. In this article, authors present the solution of use a TLS in as-built inventory of the office building. Based on the provided data, it is possible to evaluate the correctness of built details of a building and provide information for further construction works, for example an area needed for Styrofoam installation. The biggest problem in this research is that an error which equals over 1cm could generate costs, which could be a problem to cover by a constructor. Based on a complicated place of the construction works (centre of a city) it was a challenge to maintain the accuracy.

  15. As- built inventory of the office building with the use of terrestrial laser scanning

    Przyborski Marek

    2018-01-01

    Full Text Available Terrestrial Laser Scanning (TLS is an efficient tool for building inventories. Based on the red- laser beam technology it is possible to provide the high accuracy data with complete spatial information about a scanned object. In this article, authors present the solution of use a TLS in as-built inventory of the office building. Based on the provided data, it is possible to evaluate the correctness of built details of a building and provide information for further construction works, for example an area needed for Styrofoam installation. The biggest problem in this research is that an error which equals over 1cm could generate costs, which could be a problem to cover by a constructor. Based on a complicated place of the construction works (centre of a city it was a challenge to maintain the accuracy.

  16. Metamorphosis of Shell's office buildings in The Hague, Netherlands; Metamorfose Shell Den Haag

    Lambert, G.F.A. [Valstar Simonis, Apeldoorn (Netherlands); Van Mierlo, W.J.M. [Shell, Den Haag (Netherlands)

    2008-07-15

    In a project to renovate the Shell office buildings in The Hague, Netherlands, the new buildings are served by a new power plant based on a heat pump and an underground thermal storage system. Use of a heating curve in the high-temperature heating system of the renovated building sections made it possible to create a link between the new low-temperature heating system and the existing high-temperature heating system. A similar link was created for cooling. [Dutch] Bij de herstructurering van het gebouwencomplex van Shell in Den Haag is voor de nieuwe gebouwen een energiecentrale met een warmtepomp en ondergronds energieopslagsysteem gerealiseerd. Door gebruik te maken van een stooklijn in het hooggestookte verwarmingssysteem van de gerenoveerde bouwdelen, is een koppeling aangebracht tussen het nieuwe Iaagtemperatuur verwarmingssysteem en het bestaande hooggestookte verwarmingssysteem. Ook voor de koeling is een dergelijke koppeling gemaakt.

  17. Field Experience with and Potential for Multi-time Scale Grid Transactions from Responsive Commercial Buildings

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2014-08-01

    The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis is based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.

  18. Opportunities for low carbon sustainability in large commercial buildings in China

    Jiang Ping; Keith Tovey, N.

    2009-01-01

    China's building sector consumes one quarter of total energy consumption in the country and plays an important role in long-term ability of the country to achieve sustainable development. This paper discusses a comprehensive approach to achieving low carbon sustainability in large commercial buildings in China incorporating both energy and carbon-reduction strategies. The approach concentrates primarily on three complementary aspects: (a) the introduction of an effective energy management system; (b) the incorporation of relevant advanced energy saving technologies and measures and (c) the promotion of awareness among occupants to make changes in their behaviour towards a more environmental-friendly behaviour. However, reference is also made to the role that renewable energy and offsetting may have in the effective management and environmental performance of buildings. Nine examples of large commercial buildings in Beijing and Shanghai were studied and the average electricity consumption of around 153 kWh/m 2 per annum is about 5 times higher than average electricity use in residential buildings. At the same time the associated green house gas (GHG) emissions are around 158 kg/m 2 per annum.

  19. Correlation between temperature satisfaction and unsolicited complaint rates in commercial buildings.

    Wang, D; Federspiel, C C; Arens, E

    2005-02-01

    This paper analyzes the relation between temperature satisfaction ratings expressed on a questionnaire and unsolicited complaint rates recorded in a maintenance database. The key findings are as follows: (i) the satisfaction ratings and complaint rates are negatively correlated with a moderate magnitude (r(s) = -0.31 to -0.36), and the correlation is statistically significant (P = 0.01-0.005), and (ii) the percent dissatisfied with temperature and the complaint rate are positively correlated with moderate magnitude (r(s) = 0.31-0.36), and the correlation is statistically significant (P = 0.01-0.004). Both data sets contain 'real-world' measures of temperature satisfaction, with the complaints contributing directly to the cost of operations and maintenance. The relationship between two validates a new method of assessing the economic cost of thermal discomfort in commercial buildings. Complaints in commercial buildings indicate occupants' dissatisfaction to their environments. It not only deteriorates occupants' performance and organization productivity, but also increases building maintenance and operating cost. Nailing economic consequences of complaints will enable monetary comparison of discomfort cost with building and operating costs. This comparison may be desirable for building owners and tenants to make well-informed decisions on construction, rental, and retrofit. It may also be used to evaluate complaint diagnostic and eliminating techniques.

  20. Eawag Forum Chriesbach - Simulation and measurement of energy performance and comfort in a sustainable office building

    Lehmann, B.; Dorer, V.; Frank, Th. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Building Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Guettinger, H. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf (Switzerland); van Velsen, S.; Thiemann, A. [3-Plan Haustechnik AG, Winterthur (Switzerland)

    2010-10-15

    The Eawag's new headquarters ''Forum Chriesbach'' is an exemplary illustration of a 'sustainable' construction design for office buildings. With a unique combination of architectural and technical elements the building reaches a very low 88 kWh/m{sup 2} overall primary energy consumption, which is significantly lower than the Swiss Passive House standard, Minergie-P. A monitoring and evaluation project shows that the building is heated mainly by using the sun and internal heat gains from lighting, electrical appliances and occupants, resulting in an extremely low space heating demand. Cooling is provided by natural night time ventilation and the earth-coupled air intake, which pre-cools supply air and provides free cooling for computer servers. However, values for embodied energy and electricity consumption remain significant, even with partial on-site electricity production using photovoltaics. TRNSYS computer simulations show the contributions of individual building services to the overall energy balance and indicate that the building is resilient towards changes in parameters such as climate or occupancy density. Measurements confirm comfortable room temperatures below 26 C, even during an extremely hot summer period, and 20-23 C in the winter season. An economic analysis reveals additional costs of only 5% compared to a conventionally constructed building and a payback-time of 13 years. (author)

  1. Technical basis for radiological release of Grand Junction Office Building 2. Volume 1, dose assessment

    Morris, R.; Warga, J.; Thorne, D.

    1997-07-01

    Building 2 on the US Department of Energy (DOE) Grand Junction Office (GJO) site is part of the GJO Remedial Action Program (GJORAP). During evaluation of Building 2 for determination of radiological release disposition, some inaccessible surface contamination measurements were detected to be greater than the generic surface contamination guidelines of DOE Order 5400.5 (which are functionally equivalent to US Nuclear Regulatory Commission [NRC] Regulatory Guide 1.86). Although the building is nominal in size, it houses the site telecommunications system, that is critical to continued GJO operations, and demolition is estimated at $1.9 million. Because unrestricted release under generic surface contamination guidelines is cost-prohibitive, supplemental standards consistent with DOE Order 5400.5 are being pursued. This report describes measurements and dose analysis modeling efforts to evaluate the radiation dose to members of the public who might occupy or demolish Building 2, a 2,480 square-foot (ft) building constructed in 1944. The north portion of the building was used as a shower facility for Manhattan Project uranium-processing mill workers and the south portion was a warehouse. Many originally exposed surfaces are no longer accessible for contamination surveys because expensive telecommunications equipment have been installed on the floors and mounted on panels covering the walls. These inaccessible surfaces are contaminated above generic contamination limits

  2. Assessment of energy and economic performance of office building models: a case study

    Song, X. Y.; Ye, C. T.; Li, H. S.; Wang, X. L.; Ma, W. B.

    2016-08-01

    Energy consumption of building accounts for more than 37.3% of total energy consumption while the proportion of energy-saving buildings is just 5% in China. In this paper, in order to save potential energy, an office building in Southern China was selected as a test example for energy consumption characteristics. The base building model was developed by TRNSYS software and validated against the recorded data from the field work in six days out of August-September in 2013. Sensitivity analysis was conducted for energy performance of building envelope retrofitting; five envelope parameters were analyzed for assessing the thermal responses. Results indicated that the key sensitivity factors were obtained for the heat-transfer coefficient of exterior walls (U-wall), infiltration rate and shading coefficient (SC), of which the sum sensitivity factor was about 89.32%. In addition, the results were evaluated in terms of energy and economic analysis. The analysis of sensitivity validated against some important results of previous studies. On the other hand, the cost-effective method improved the efficiency of investment management in building energy.

  3. Analysis of Government Accountability Office and Department of Defense Inspector General Reports and Commercial Sources on Service Contracts

    2010-06-01

    Acquisition Research Program BIM Building Information Modeling COR Contracting Officer Representative DoD Department of Defense FPDS...WBS), performance work statements (PWS) and statement of work (SOW), market research, budget and cost estimates, determining contract type, and...contracting within this project. The recurrent best practices in contracting among all sources emphasized planning, defining requirements, market research

  4. Realization of a demand response in office-buildings; Umsetzung eines Lastmangements in Buerogebaeuden

    Jungwirth, Johannes; Berger, Christian [TU Muenchen (Germany). Lehrstuhl fuer Energiewirtschaft und Anwendungstechnik; Roessel, Timm [TU Muenchen (Germany). Lehrstuhl fuer Bauklimatik und Haustechnik

    2011-07-01

    Due to the mostly fluctuating feed-in characteristics, the strong expansion of renewable energy producers lets expect a paradigm shift in the structure of the power supply concept. The integration of renewables into the electricity grid requires new ways to compensate the temporal discrepancy between production and consumption. Such a load management or demand response requires electrical devices that can be varied with time in their mode of operation. The results of a feasibility study show that amongst other things a lot of electric devices being suitable for the implementation of the load management are present in office buildings and administration buildings. As an already existing communication structure one may refer to the equipment automation for the control of the individual devices. In order to realize the existing potentials, an innovative control strategy based on the existing hardware is necessary. This control strategy may adapt the mode of operation to an external signal. In order to allow a realistic development of such control strategies, a hardware-in-the-loop (HIL) testing environment was created which allows a development of control strategies by means of a real building automation controller under defined and reproducible conditions without adverse effects on the users of a building. The controller is connected to a personal computer which models the building and systems engineering taking into account the user behaviour in real time. All gates of the building automation are tapped and provided as input data to the simulation. Based on this information, in the simulation the reaction of the building is calculated for each time step. The current spatial conditions are reported back to the building automation. Thus, the controller can be tested with all the functionality in the HIL environment. Any locations and environmental conditions in the development process can be compared and evaluated by means of the simulation. The goal is to develop an

  5. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in Iowa

    Cort, Katherine A.; Belzer, David B.; Richman, Eric E.; Winiarski, David W.

    2002-09-07

    The state of Iowa is considering adpoting ASHRAE 90.1-1999 as its commercial building energy code. In an effort to evaluate whether or not this is an appropraite code for the state, the potential benefits and costs of adopting this standard are considered. Both qualitative and quantitative benefits are assessed. The energy simulation and economic results suggest that adopting ASHRAE 90.1-1999 would provide postitive net benefits to the state relative to the building and design requirements currently in place.

  6. Modeling and Analysis of Commercial Building Electrical Loads for Demand Side Management

    Berardino, Jonathan

    In recent years there has been a push in the electric power industry for more customer involvement in the electricity markets. Traditionally the end user has played a passive role in the planning and operation of the power grid. However, many energy markets have begun opening up opportunities to consumers who wish to commit a certain amount of their electrical load under various demand side management programs. The potential benefits of more demand participation include reduced operating costs and new revenue opportunities for the consumer, as well as more reliable and secure operations for the utilities. The management of these load resources creates challenges and opportunities to the end user that were not present in previous market structures. This work examines the behavior of commercial-type building electrical loads and their capacity for supporting demand side management actions. This work is motivated by the need for accurate and dynamic tools to aid in the advancement of demand side operations. A dynamic load model is proposed for capturing the response of controllable building loads. Building-specific load forecasting techniques are developed, with particular focus paid to the integration of building management system (BMS) information. These approaches are tested using Drexel University building data. The application of building-specific load forecasts and dynamic load modeling to the optimal scheduling of multi-building systems in the energy market is proposed. Sources of potential load uncertainty are introduced in the proposed energy management problem formulation in order to investigate the impact on the resulting load schedule.

  7. LEARNING FROM COMMERCIAL VERNACULAR BUILDING TYPES: A NORTH AMERICAN CASE STUDY

    Stephen Verderber

    2016-07-01

    Full Text Available A substantial literature exists on commercial vernacular architecture in North America. This literature has examined everyday places and iconic building types including suburbia, roadside motels, vintage diners, fast food franchises, residential trailer parks, signage, unique commercial establishments, and shopping malls. These places and buildings are generally classified as expressions of folk vernacular culture. In response, Attention Restoration Theory, an environmental cognition perspective based in human information processing research, provided the foundation for an investigation of the food truck/ trailer and its immediate installation context within a North American case study context. Visual documentation, interviews, and archival fieldwork provided the basis for the articulation of a typology. These structures were found to express automaticity, as satisfying the timeless human preference for association with nature, a sense of psychological respite, and as a physical setting visually distinct from its larger urban environment context. Directions for future research on this topic are outlined together with insights for application by architects and urban planners.

  8. Assessing Potential Energy Cost Savings from Increased Energy Code Compliance in Commercial Buildings

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Wang, Weimin

    2016-02-15

    The US Department of Energy’s most recent commercial energy code compliance evaluation efforts focused on determining a percent compliance rating for states to help them meet requirements under the American Recovery and Reinvestment Act (ARRA) of 2009. That approach included a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. With its binary approach to compliance determination, the previous methodology failed to answer some important questions. In particular, how much energy cost could be saved by better compliance with the commercial energy code and what are the relative priorities of code requirements from an energy cost savings perspective? This paper explores an analytical approach and pilot study using a single building type and climate zone to answer those questions.

  9. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Liu, Pei; Pistikopoulos, Efstratios N. [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li, Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach. (author)

  10. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Liu Pei; Pistikopoulos, Efstratios N.; Li Zheng

    2010-01-01

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  11. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Liu Pei [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Pistikopoulos, Efstratios N., E-mail: e.pistikopoulos@imperial.ac.u [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  12. Perceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study

    Sakellaris, Ioannis A.; Saraga, Dikaia E.; Mandin, Corinne; Roda, Célina; Fossati, Serena; de Kluizenaar, Yvonne; Carrer, Paolo; Dimitroulopoulou, Sani; Mihucz, Victor G.; Szigeti, Tamás; Hänninen, Otto; de Oliveira Fernandes, Eduardo; Bartzis, John G.; Bluyssen, Philomena M.

    2016-01-01

    Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 “modern” office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain). Occupants assessed indoor environmental quality (IEQ) using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality), and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor) of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants’ comfort. The highest association with occupants’ overall comfort was found for “noise”, followed by “air quality”, “light” and “thermal” satisfaction. Analysis of detailed parameters revealed that “noise inside the buildings” was highly associated with occupants’ overall comfort. “Layout of the offices” was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index), and building characteristics (office type and building’s location). Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants. PMID:27120608

  13. Perceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study

    Ioannis A. Sakellaris

    2016-04-01

    Full Text Available Indoor environmental conditions (thermal, noise, light, and indoor air quality may affect workers’ comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants’ comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of the European project OFFICAIR, a questionnaire survey was administered to 7441 workers in 167 “modern” office buildings in eight European countries (Finland, France, Greece, Hungary, Italy, The Netherlands, Portugal, and Spain. Occupants assessed indoor environmental quality (IEQ using both crude IEQ items (satisfaction with thermal comfort, noise, light, and indoor air quality, and detailed items related to indoor environmental parameters (e.g., too hot/cold temperature, humid/dry air, noise inside/outside, natural/artificial light, odor of their office environment. Ordinal logistic regression analyses were performed to assess the relations between perceived IEQ and occupants’ comfort. The highest association with occupants’ overall comfort was found for “noise”, followed by “air quality”, “light” and “thermal” satisfaction. Analysis of detailed parameters revealed that “noise inside the buildings” was highly associated with occupants’ overall comfort. “Layout of the offices” was the next parameter highly associated with overall comfort. The relations between IEQ and comfort differed by personal characteristics (gender, age, and the Effort Reward Imbalance index, and building characteristics (office type and building’s location. Workplace design should take into account both occupant and the building characteristics in order to provide healthier and more comfortable conditions to their occupants.

  14. Development and Evaluation of Algorithms to Improve Small- and Medium-Size Commercial Building Operations

    Kim, Woohyun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutes, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Underhill, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Small- and medium-sized (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. commercial building stock and consume over 60% of total site energy consumption. Many of these buildings use rudimentary controls that are mostly manual, with limited scheduling capability, no monitoring or failure management. Therefore, many of these buildings are operated inefficiently and consume excess energy. SMBs typically utilize packaged rooftop units (RTUs) that are controlled by an individual thermostat. There is increased urgency to improve the operating efficiency of existing commercial building stock in the U.S. for many reasons, chief among them is to mitigate the climate change impacts. Studies have shown that managing set points and schedules of the RTUs will result in up to 20% energy and cost savings. Another problem associated with RTUs is short-cycling, where an RTU goes through ON and OFF cycles too frequently. Excessive cycling can lead to excessive wear and lead to premature failure of the compressor or its components. The short cycling can result in a significantly decreased average efficiency (up to 10%), even if there are no physical failures in the equipment. Also, SMBs use a time-of-day scheduling is to start the RTUs before the building will be occupied and shut it off when unoccupied. Ensuring correct use of the zone set points and eliminating frequent cycling of RTUs thereby leading to persistent building operations can significantly increase the operational efficiency of the SMBs. A growing trend is to use low-cost control infrastructure that can enable scalable and cost-effective intelligent building operations. The work reported in this report describes three algorithms for detecting the zone set point temperature, RTU cycling rate and occupancy schedule detection that can be deployed on the low-cost infrastructure. These algorithms only require the zone temperature data for detection. The algorithms have been tested and validated using

  15. Prevalence and risk factors for Sick Building Syndrome among Italian correctional officers: A pilot study

    Francesco Chirico

    2017-03-01

    Full Text Available Introduction: Over the past two decades, numerous studies on indoor air and the Sick Building Syndrome (SBS have been conducted, mostly in office environments. However, there is little knowledge about SBS in police officers. This study was aimed to fill this gap. Methods: A cross-sectional questionnaire survey was conducted in 2016 at the Triveneto Penitentiary Center, Northern Italy. Chi-square was used to test the difference of prevalence between office workers (OWs and correctional officers (COs of personal characteristics, cases of SBS, and general and mucocutaneous symptoms associated with SBS. A binary logistic regression was used to identify among individual, environmental, and psychosocial characteristics, factors associated with correctional officers’ Sick Building Syndrome. Results: Chi-squared analyses revealed that there were statistically significant differences in the estimated prevalence of SBS general symptoms (χ2 (1 = 12.22, P < .05, SBS mucocutaneous symptoms (χ2 (1 = 9.04, P < .05, and cases of SBS (χ2 (1 = 4.39, P <.05 between COs and OWs. COs reported that their health had been affected by the passive smoking (β = 2.34, P < .05 and unpleasant odour (β = 2.51, P < .05 as environmental risk factors; work-family conflict (β = 2.14, P < .05, psychological and physical isolation (β = 2.07, P < .05, and negative public image (β = 2.06, P < .05 as psychosocial risk factors. Finally, atopy (β = 2.02, P < .05 and to be current smoker (β = 2.02, P < .05 were statistically significant behavioral predictors of SBS among correctional officers. Discussion: Our survey showed that symptoms compatible with the sick building syndrome are common in correctional officers and that psychosocial work climate and exposure to passive smoking could have a strong influence on the prevalence of both general and mucocutaneous symptoms associated with SBS. A health policy for passive tobacco smoking within prisons, and for work-related stress

  16. Review of California and National Methods for Energy PerformanceBenchmarking of Commercial Buildings

    Matson, Nance E.; Piette, Mary Ann

    2005-09-05

    This benchmarking review has been developed to support benchmarking planning and tool development under discussion by the California Energy Commission (CEC), Lawrence Berkeley National Laboratory (LBNL) and others in response to the Governor's Executive Order S-20-04 (2004). The Executive Order sets a goal of benchmarking and improving the energy efficiency of California's existing commercial building stock. The Executive Order requires the CEC to propose ''a simple building efficiency benchmarking system for all commercial buildings in the state''. This report summarizes and compares two currently available commercial building energy-benchmarking tools. One tool is the U.S. Environmental Protection Agency's Energy Star National Energy Performance Rating System, which is a national regression-based benchmarking model (referred to in this report as Energy Star). The second is Lawrence Berkeley National Laboratory's Cal-Arch, which is a California-based distributional model (referred to as Cal-Arch). Prior to the time Cal-Arch was developed in 2002, there were several other benchmarking tools available to California consumers but none that were based solely on California data. The Energy Star and Cal-Arch benchmarking tools both provide California with unique and useful methods to benchmark the energy performance of California's buildings. Rather than determine which model is ''better'', the purpose of this report is to understand and compare the underlying data, information systems, assumptions, and outcomes of each model.

  17. Energy efficient glazed office buildings with double skin facades in Europe

    Eriksson, Bo; Blomsterberg, Aake (WSP Environmental (Sweden)). e-mail: bo.eriksson@wspgroup.se

    2009-07-01

    Many modern office buildings have highly glazed facades. Their energy efficiency and indoor climate are, however, being questioned. Therefore more and more of these buildings are being built with double skin facades, which can provide improvements: A project BESTFACADE, with participants from Austria, Germany, Greece, Portugal (France) and Sweden, was therefore funded by the European Commission (IEE) to actively promote well-performing concepts of double skin facades. Included were best practice guidelines, which included the determination of the energy use and thermal comfort by simulations for warm, mild and cold climates. The main conclusion is that the choice of glazing properties such as glazing area, U-value (thermal transmittance) of the glazing and its profiles, g-value (the total solar energy transmittance) of the glazing and type of solar shading are crucial for the energy and indoor climate performance of an office. The choice of control strategies for ventilation of the cavity and operation of solar shading are crucial. The above choices are very dependant on the climate. Choices which are optimal in a cold climate, will not work very well in a warm climate, and vice versa. From an energy and indoor climate point of view a highly glazed office with a double skin facade is often preferred to a single

  18. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  19. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  20. Incidence of polybrominated diphenyl ethers in central air conditioner filter dust from a new office building

    Ni Honggang; Cao Shanping; Chang Wenjing [Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055 (China); Zeng Hui, E-mail: huizeng0608@gmail.com [Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055 (China); Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)

    2011-07-15

    This study examined polybrominated diphenyl ethers (PBDEs) in central air conditioner filter (CACF) dust from a new office building in Shenzhen, China. Human exposure to PBDE via dust inhalation and ingestion were also estimated. PBDEs level in CACF dust was lower than those in the other countries and regions. Approximately 0.671 pg/kg bw/day PM{sub 2.5} (Particulate Matter up to 2.5 {mu}m in size) bounded {Sigma}{sub 15}PBDEs can be inhaled deep into the lungs and 4.123 pg/kg bw/day PM{sub 10} (Particulate Matter up to 10 {mu}m in size) bounded {Sigma}{sub 15}PBDEs tend to be deposited in the upper parts of the respiratory system. The average total intake of {Sigma}{sub 15}PBDEs via dust inhalation and ingestion for adults reached {approx}141 pg/kg bw/day in this building. This value was far below the reference dose (RfD) recommended by United States Environmental Protection Agency. Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than the old ones. - Highlights: > Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than that in the old ones. > PBDE emissions from indoor sources can be expected to continue for a long time as the PBDE-containing products in offices were to be kept many years. > The household consumer products, especially computers, are the main sources of PBDEs in central air conditioner filter dust. > Further studies are needed to fully understand the emission mechanism of PBDE from indoor consumer products. - PBDEs in central air conditioner filter dust from a new building were investigated

  1. Incidence of polybrominated diphenyl ethers in central air conditioner filter dust from a new office building

    Ni Honggang; Cao Shanping; Chang Wenjing; Zeng Hui

    2011-01-01

    This study examined polybrominated diphenyl ethers (PBDEs) in central air conditioner filter (CACF) dust from a new office building in Shenzhen, China. Human exposure to PBDE via dust inhalation and ingestion were also estimated. PBDEs level in CACF dust was lower than those in the other countries and regions. Approximately 0.671 pg/kg bw/day PM 2.5 (Particulate Matter up to 2.5 μm in size) bounded Σ 15 PBDEs can be inhaled deep into the lungs and 4.123 pg/kg bw/day PM 10 (Particulate Matter up to 10 μm in size) bounded Σ 15 PBDEs tend to be deposited in the upper parts of the respiratory system. The average total intake of Σ 15 PBDEs via dust inhalation and ingestion for adults reached ∼141 pg/kg bw/day in this building. This value was far below the reference dose (RfD) recommended by United States Environmental Protection Agency. Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than the old ones. - Highlights: → Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than that in the old ones. → PBDE emissions from indoor sources can be expected to continue for a long time as the PBDE-containing products in offices were to be kept many years. → The household consumer products, especially computers, are the main sources of PBDEs in central air conditioner filter dust. → Further studies are needed to fully understand the emission mechanism of PBDE from indoor consumer products. - PBDEs in central air conditioner filter dust from a new building were investigated

  2. Multiple regression models for energy use in air-conditioned office buildings in different climates

    Lam, Joseph C.; Wan, Kevin K.W.; Liu Dalong; Tsang, C.L.

    2010-01-01

    An attempt was made to develop multiple regression models for office buildings in the five major climates in China - severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter. A total of 12 key building design variables were identified through parametric and sensitivity analysis, and considered as inputs in the regression models. The coefficient of determination R 2 varies from 0.89 in Harbin to 0.97 in Kunming, indicating that 89-97% of the variations in annual building energy use can be explained by the changes in the 12 parameters. A pseudo-random number generator based on three simple multiplicative congruential generators was employed to generate random designs for evaluation of the regression models. The difference between regression-predicted and DOE-simulated annual building energy use are largely within 10%. It is envisaged that the regression models developed can be used to estimate the likely energy savings/penalty during the initial design stage when different building schemes and design concepts are being considered.

  3. Final report of the radiological release survey of Building 11 at the Grand Junction Office Facility

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 11 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building

  4. Final report of the radiological release survey of Building 29 at the Grand Junction Office Facility

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailing during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 29 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building

  5. Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building

  6. Experience implementing energy standards for commercial buildings and its lessons for the Philippines

    Busch, John; Deringer, Joseph

    1998-10-01

    Energy efficiency standards for buildings have been adopted in over forty countries. This policy mechanism is pursued by governments as a means of increasing energy efficiency in the buildings sector, which typically accounts for about a third of most nations' energy consumption and half of their electricity consumption. This study reports on experience with implementation of energy standards for commercial buildings in a number of countries and U.S. states. It is conducted from the perspective of providing useful input to the Government of the Philippines' (GOP) current effort at implementing their building energy standard. While the impetus for this work is technical assistance to the Philippines, the intent is to shed light on the broader issues attending implementation of building energy standards that would be applicable there and elsewhere. The background on the GOP building energy standard is presented, followed by the objectives for the study, the approach used to collect and analyze information about other jurisdictions' implementation experience, results, and conclusions and recommendations.

  7. Economic analysis of solar assisted absorption chiller for a commercial building

    Antonyraj, Gnananesan

    Dwindling fossil fuels coupled with changes in global climate intensified the drive to make use of renewable energy resources that have negligible impact on the environment. In this attempt, the industrial community produced various devices and systems to make use of solar energy for heating and cooling of building space as well as generate electric power. The most common components employed for collection of solar energy are the flat plate and evacuated tube collectors that produce hot water that can be employed for heating the building space. In order to cool the building, the absorption chiller is commonly employed that requires hot water at high temperatures for its operation. This thesis deals with economic analysis of solar collector and absorption cooling system to meet the building loads of a commercial building located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly building loads and performance of the flat plate and evacuated tube solar collectors using the hourly weather data. The key variables affecting the economic evaluation of such system are identified and the influence of these parameters is presented. The results of this investigation show that the flat plate solar collectors yield lower payback period compared to the evacuated tube collectors and economic incentives offered by the local and federal agencies play a major role in lowering the payback period.

  8. A simplified model of dynamic interior cooling load evaluation for office buildings

    Ding, Yan; Zhang, Qiang; Wang, Zhaoxia; Liu, Min; He, Qing

    2016-01-01

    Highlights: • The core interior disturbance was determined by principle component analysis. • Influences of occupants on cooling load should be described using time series. • A simplified model was built to evaluate dynamic interior building cooling load. - Abstract: Predicted cooling load is a valuable tool for assessing the operation of air-conditioning systems. Compared with exterior cooling load, interior cooling load is more unpredictable. According to principle components analysis, occupancy was proved to be a typical factor influencing interior cooling loads in buildings. By exploring the regularity of interior disturbances in an office building, a simplified evaluation model for interior cooling load was established in this paper. The stochastic occupancy rate was represented by a Markov transition model. Equipment power, lighting power and fresh air were all related to occupancy rate based on time sequence. The superposition of different types of interior cooling loads was also considered in the evaluation model. The error between the evaluation results and measurement results was found to be lower than 10%. In reference to the cooling loads calculated by the traditional design method and area-based method in case study office rooms, the evaluated cooling loads were suitable for operation regulation.

  9. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review

    Sun, Yongjun; Wang, Shengwei; Xiao, Fu; Gao, Diance

    2013-01-01

    Highlights: • Little study reviews the load shifting control using different facilities. • This study reviews load shifting control using building thermal mass. • This study reviews load shifting control using thermal energy storage systems. • This study reviews load shifting control using phase change material. • Efforts for developing more applicable load shifting control are addressed. - Abstract: For decades, load shifting control, one of most effective peak demand management methods, has attracted increasing attentions from both researchers and engineers. Different load shifting control strategies have been developed when diverse cold thermal energy storage facilities are used in commercial buildings. The facilities include building thermal mass (BTM), thermal energy storage system (TES) and phase change material (PCM). Little study has systematically reviewed these load shifting control strategies and therefore this study presents a comprehensive review of peak load shifting control strategies using these thermal energy storage facilities in commercial buildings. The research and applications of the load shifting control strategies are presented and discussed. The further efforts needed for developing more applicable load shifting control strategies using the facilities are also addressed

  10. Louisiana State Lands and Buildings, Geographic NAD83, LA State Land Office (2007) [slabs_slo_2007

    Louisiana Geographic Information Center — This dataset represents land and/or building areas for the state of Louisiana. This dataset was compiled by the State Land Office from Historical Records (SLABS)...

  11. Methodology of CO{sub 2} emission evaluation in the life cycle of office building facades

    Taborianski, Vanessa Montoro; Prado, Racine T.A., E-mail: racine.prado@poli.usp.br

    2012-02-15

    The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO{sub 2} emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO{sub 2} throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO{sub 2} is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. - Highlights: Black-Right-Pointing-Pointer We develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. Black-Right-Pointing-Pointer This methodology is based in LCA. Black-Right-Pointing-Pointer We use an uncertainty analysis to verify the accuracy of the results

  12. Multi-angled Façade System for Office Building Renovation

    Hannoudi, Loay Akram; Christensen, Jørgen Erik; Lauring, Michael

    renovating office buildings. The architectural potential is presented with the help of AutoCAD software. The energy efficiency and indoor climate are investigated and evaluated by using correlational research and simulation research methods with the software IDA ICE. From a functional perspective, the multi......-angled façade increases the area of the office room and provides more space. There are many potential aesthetic benefits provided by multi-angled façades such as improved optical and visual quality from inside the office room and the possibility for daylight penetration and a view to outside from one part...... compared to a renovated flat façade varies between 4.9 and 6.5 kWh/(m2.year), depending on the orientation of the façade. The increase in the office room area, when renovated with a multi-angled façade, is by 19%, while the increase of the yearly primary energy consumption (not area weighted), is by 4...

  13. Office layout affecting privacy, interaction, and acoustic quality in LEED-certified buildings

    Lee, Young S. [School of Planning, Design, and Construction, Michigan State University, East Lansing, MI 48823 (United States)

    2010-07-15

    The study investigated differences in worker satisfaction and perceived job performance regarding privacy, interaction, and acoustic quality issues in personal workspaces between five office types in LEED-certified buildings. It finds that people in high cubicles showed significantly lower satisfaction and job performance in relation to visual privacy and interaction with co-workers than both enclosed private and enclosed shared office types. They also showed significantly lower satisfaction with noise level and sound privacy and lower job performance perceived by acoustic quality than enclosed private, enclosed shared, and bullpen types. The bullpen type, open-plan office without partitions, presented significantly higher satisfaction with noise level and higher performance perceived by acoustic quality than both high and low cubicles. Considering the bullpen type also showed higher satisfaction with sound privacy than the high cubicle type, high partitions don't seem to contribute to creating workspaces where people can have a secure conversation. The bullpen type didn't show any difference from the enclosed shared type in all privacy, interaction, and acoustic quality questions, indicating it may be a good option for a small office space instead of the enclosed shared type. (author)

  14. Economic analysis of the daylight-linked lighting control system in office buildings

    Yang, In-Ho; Nam, Eun-Ji [Department of Architectural Engineering, College of Engineering, Dongguk University, 26-3, Pil-dong, Chung-gu, Seoul 100-715 (Korea)

    2010-08-15

    The objective of this study is to perform an economic analysis of the daylight-linked automatic on/off lighting control system installed for the purpose of energy savings in office buildings. For this, a building was chosen as a typical example, and the energy cost was calculated by using the daylight and building energy analysis simulation. When the lighting control was utilized, an economic analysis was performed using a payback period that was calculated by comparing the initial cost of installing the lighting control system with the annual energy cost which was reduced thanks to the application of the lighting control. The results showed that the lighting energy consumption, when the lighting control was applied, was reduced by an average of 30.5% compared with the case that there was not lighting control applied. Also, the result for total energy consumption showed that, when lighting control was applied, this was reduced by 8.5% when the glazing ratio was 100%, 8.2% for 80%, and 7.6% for 60% when compared to non-application. The payback period was analyzed in terms of the number of floors in a building; 10 floors, 20 floors, 30 floors, and 40 floors. Hence, the building with 40 floors and glazing ratio 100% resulted in the shortest payback period of 8.8 years, the building with 10 floors and glazing ratio 60% resulted in the longest period of 12.7 years. In other words, the larger the glazing ratio and the number of building floors are, the shorter the payback period is. (author)

  15. An office building used as a federal test bed for energy-efficient roofs

    McLain, H.A.; Christian, J.E.

    1995-08-01

    The energy savings benefits of re-covering the roof of an existing federal office building with a sprayed polyurethane foam system are documented. The building is a 12,880 ft{sup 2} (1,197 m{sup 2}), 1 story, masonry structure located at the Oak Ridge National Laboratory (ORNL), Oak Ridge, TN. Prior to re-covering, the roof had a thin fiberglass insulation layer, which had become partially soaked because of water leakage through the failed built-up roof membrane. The average R-value for this roof measured at 2 hr{center_dot}ft{sup 2}{center_dot}{degrees}F/Btu (0.3 m{sup 2} {center_dot}K/W). After re-covering the roof, it measured at 13 hr{center_dot}ft{sup 2}{degrees}F/Btu (2.3 m{sup 2}{center_dot}K/W). The building itself is being used as a test bed to document the benefits of a number of energy efficiency improvements. As such, it was instrumented to measure the half-hourly energy consumption of the whole building and of the individual rooftop air conditioners, the roof heat fluxes and the interior air and roof temperatures. These data were used to evaluate the energy effectiveness of the roof re-covering action. The energy savings analysis was done using the DOE-2.lE building simulation program, which was calibrated to match the measured data. The roof re-covering led to around 10% cooling energy savings and around 50% heating energy savings. The resulting energy cost reductions alone are not sufficient to justify re-covered roofs for buildings having high internal loads, such as the building investigated here. However the energy savings do contribute significantly to the measure`s Savings-to-Investment Ratio (SIR).

  16. The Power of Flexibility: Autonomous Agents That Conserve Energy in Commercial Buildings

    Kwak, Jun-young

    Agent-based systems for energy conservation are now a growing area of research in multiagent systems, with applications ranging from energy management and control on the smart grid, to energy conservation in residential buildings, to energy generation and dynamic negotiations in distributed rural communities. Contributing to this area, my thesis presents new agent-based models and algorithms aiming to conserve energy in commercial buildings. More specifically, my thesis provides three sets of algorithmic contributions. First, I provide online predictive scheduling algorithms to handle massive numbers of meeting/event scheduling requests considering flexibility , which is a novel concept for capturing generic user constraints while optimizing the desired objective. Second, I present a novel BM-MDP ( Bounded-parameter Multi-objective Markov Decision Problem) model and robust algorithms for multi-objective optimization under uncertainty both at the planning and execution time. The BM-MDP model and its robust algorithms are useful in (re)scheduling events to achieve energy efficiency in the presence of uncertainty over user's preferences. Third, when multiple users contribute to energy savings, fair division of credit for such savings to incentivize users for their energy saving activities arises as an important question. I appeal to cooperative game theory and specifically to the concept of Shapley value for this fair division. Unfortunately, scaling up this Shapley value computation is a major hindrance in practice. Therefore, I present novel approximation algorithms to efficiently compute the Shapley value based on sampling and partitions and to speed up the characteristic function computation. These new models have not only advanced the state of the art in multiagent algorithms, but have actually been successfully integrated within agents dedicated to energy efficiency: SAVES, TESLA and THINC. SAVES focuses on the day-to-day energy consumption of individuals and

  17. Start point to savings - Better load demand analysis in commercial buildings

    Abaravicius, Juozas; Pyrko, Jurek [Lund Univ., Dept of Energy Sciences (Sweden)

    2007-07-01

    Existing installations and energy systems in most commercial buildings could be used in a more efficient way to provide savings - both in terms of energy and load demand. The key for effective operation is a thorough and detailed analysis of energy use patterns that creates essential baseline for energy savings and the development of demand response (DR) strategies. The knowledge of energy demand variations is still very limited and the use of methods to analyse the load demand is rare. Many utilities have recently installed interval (hourly) metering even for smaller commercial users and households. This is a big step forward; however, experience shows that the data is being used only to a limited extent, mostly for billing purposes only. This paper reports about a study conducted with the objective of developing a detailed load demand analysis for commercial buildings. The study results should provide essential information for the formation and evaluation of future DR and energy efficiency strategies. This study was performed in collaboration with IKEA and E.ON and contributes to an ongoing IKEA energy efficiency programme. Two sample department stores in Sweden were selected and analysed within this project. The demand data analysis covers almost 3 years period, 2004-2006.This study contributes to new knowledge of energy use patterns (load demand) in commercial buildings. It proposes solutions of load-related problems, evaluates energy and load savings potential, identifies and analyses the needs, motives and barriers for participation in DR programmes. The study provides recommendations for ongoing and future efficiency and DR strategies and discusses the potential economic benefits from the DR measures.

  18. Performance of a daylight redirecting glass shading system demonstration in an office building

    Appelfeld, David; Svendsen, Svend; Traberg-Borup, Steen

    2011-01-01

    This paper evaluates the daylighting performance of a prototype external dynamic integrated shading and light redirecting system. The demonstration project was carried out on a building with an open-plan office. The prototype and original façades were placed on the same floor with the same...... orientation and similar surroundings. The existing façade was used as the reference for measurements and simulations. The focus of this research project was to employ available simulation tools for the system performance evaluation. This was accompanied by measurements of the daylight conditions...... in the investigated space. The prototype system improved daylighting conditions compared to the existing shading system....

  19. Web-based energy information systems for energy management and demand response in commercial buildings

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS

  20. Low Carbon Design Research on the Space Layout Types of Office Buildings

    Xia, Bing

    2018-01-01

    It is beneficial to find out the relationship of the spatial layout and low-carbon design in order to reduce buildings’ carbon emissions in the conceptual design phase. This paper analyzes and compares shape coefficient values, annual energy consumption and lighting performance of office buildings of different space layout types in Shanghai. Based on morphological characteristics of different types, the study also analyzes and presents low-carbon design strategies for each single type. This study assumes that architects should conduct passive and active design according to the specific building space layout, so that to make best use of the advantages and bypassing the disadvantages, in order to maximally reduce buildings’ carbon emissions.

  1. Development of a new controller for simultaneous heating and cooling of office buildings

    Maccarini, Alessandro; Afshari, Alireza; Hultmark, Göran

    2016-01-01

    by signals of actual room air temperatures and return water temperature. Depending on the minimum and maximum air temperatures in the rooms, the supply water temperature was set by adjusting the return water temperature with two offsets, one for heating demand and one for cooling demand. The behaviour......This paper aims to develop a new controller to regulate the supply water temperature of a room-temperature loop integrated in a novel HVAC for office buildings. The main feature of the room-temperature loop is its ability to provide simultaneous heating and cooling by circulating water...... with a temperature of about 22 °C. Therefore, the same supply water temperature is delivered to all the thermal zones in the building, no matter whether a single zone needs heating or cooling. In previous studies, the supply water temperature varied between 20 °C and 23 °C, according to outdoor air temperature...

  2. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  3. Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings

    Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

    1992-12-01

    The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

  4. Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings

    Leach, M.; Lobato, C.; Hirsch, A.; Pless, S.; Torcellini, P.

    2010-09-01

    This Technical Support Document (TSD) documents technical analysis that informs design guidance for designing and constructing large office buildings that achieve 50% net site energy savings over baseline buildings defined by minimal compliance with respect to ANSI/ASHRAE/IESNA Standard 90.1-2004. This report also represents a step toward developing a methodology for using energy modeling in the design process to achieve aggressive energy savings targets. This report documents the modeling and analysis methods used to identify design recommendations for six climate zones that capture the range of U.S. climate variability; demonstrates how energy savings change between ASHRAE Standard 90.1-2007 and Standard 90.1-2004 to determine baseline energy use; uses a four-story 'low-rise' prototype to analyze the effect of building aspect ratio on energy use intensity; explores comparisons between baseline and low-energy building energy use for alternate energy metrics (net source energy, energy emissions, and energy cost); and examines the extent to which glass curtain construction limits achieve energy savings by using a 12-story 'high-rise' prototype.

  5. Energy and cost associated with ventilating office buildings in a tropical climate.

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.

  6. Final report of the radiological release survey of Building 54 at the Grand Junction Office Facility

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 54 and the underlying soil were found not to be radiologically contaminated, and can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual release report for each GJO building

  7. A hybrid decision support system for sustainable office building renovation and energy performance improvement

    Juan, Yi-Kai [Department of Architecture, National Taiwan University of Science and Technology (NTUST) (China); Center for Sustainable Development and Global Competitiveness, Stanford University (United States); Gao, Peng [Department of Traffic and Transportation Engineering, Tongji University (China); Wang, Jie [Center for Sustainable Development and Global Competitiveness, Stanford University (United States)

    2010-03-15

    Energy consumption of buildings accounts for around 20-40% of all energy consumed in advanced countries. Over the last decade, more and more global organizations are investing significant resources to create sustainably built environments, emphasizing sustainable building renovation processes to reduce energy consumption and carbon dioxide emissions. This study develops an integrated decision support system to assess existing office building conditions and to recommend an optimal set of sustainable renovation actions, considering trade-offs between renovation cost, improved building quality, and environmental impacts. A hybrid approach that combines A* graph search algorithm with genetic algorithms (GA) is used to analyze all possible renovation actions and their trade-offs to develop the optimal solution. A two-stage system validation is performed to demonstrate the practical application of the hybrid approach: zero-one goal programming (ZOGP) and genetic algorithms are adopted to validate the effectiveness of the algorithm. A real-world renovation project is introduced to validate differences in energy performance projected for the renovation solution suggested by the system. The results reveal that the proposed hybrid system is more computationally effective than either ZOGP or GA alone. The system's suggested renovation actions would provide substantial energy performance improvements to the real project if implemented. (author)

  8. Commercial mitigation techniques used in remediating a 2200 pCi/L public building

    Davidson, J.G.

    1990-01-01

    This paper reports on commercial mitigation techniques used in remediating a 2200 pCi/L public building. In March of 1989 EPA and Pa. DER officials were amazed to discover a school in Pennsylvania with levels in its library of 2200 pCi/L. The library was a 30 year old, three story slab-on-grade structure more like a commercial building than a typical school structure. It had three separate and complex HVAC systems. Initial diagnostics indicated radon levels under the slab at over 80,000 pCi/L. Further investigations revealed major entry routes and a HVAC system terribly out of balance. Remediation consisted of installing a complex sub-slab depressurization system with an exterior commercial fan unit, major entry route sealing, and working closely with a mechanical contractor to bring the HVAC systems back into balance. Initial post remediation testing showed a 99% drop in radon levels. Refinements to the system are still in progress

  9. Analysis of impact of large commercial aircraft on a prestressed containment building

    Lee, Kyoungsoo, E-mail: kylee@pvamu.edu [Center for Energy and Environmental Sustainability, Prairie View A and M University, Prairie view, TX, 77446 (United States); Han, Sang Eul, E-mail: hsang@inha.ac.kr [Department of Architectural Engineering, School of Architecture, Inha University, 253 Yonghyundong Nam-gu, Incheon, 402-751 (Korea, Republic of); Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr [Department of Civil and Environmental Engineering, KAIST, 373-1 Guseon-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2013-12-15

    Highlights: • Aircraft impact analyses are performed using the missile–target interaction method. • A large commercial B747 aircraft is considered with erosion effect. • The rigid wall impact test shows the validity of the developed aircraft model. • The parametric studies on the fictitious containment building are performed. • The plastic failure of the target is governed by the impulse of aircraft at the first momentum peak. - Abstract: In this paper, the results of nonlinear dynamic analyses of a concrete containment building under extreme loads are presented. The impact of a large commercial B747 airliner is investigated as the extreme load, and a rigid wall impact test is performed using commercial nonlinear finite element codes. The impact forces exerted by the aircraft are verified compared with the time-dependent impact force provided by OECD/NEA (2002), which was calculated based on the so-called Riera method. The rigid wall impact analysis shows that the finite element model of a B747 is appropriate for the purpose of the aircraft crash analysis exposed to the external hazard of “Beyond Design-Basis Events” defined by U.S. Nuclear Regulatory Commission. Finally, the applicability of this methodology is further studied and verified by conducting parametric studies on the critical infrastructures of nuclear power plant containment structures.

  10. Analysis of impact of large commercial aircraft on a prestressed containment building

    Lee, Kyoungsoo; Han, Sang Eul; Hong, Jung-Wuk

    2013-01-01

    Highlights: • Aircraft impact analyses are performed using the missile–target interaction method. • A large commercial B747 aircraft is considered with erosion effect. • The rigid wall impact test shows the validity of the developed aircraft model. • The parametric studies on the fictitious containment building are performed. • The plastic failure of the target is governed by the impulse of aircraft at the first momentum peak. - Abstract: In this paper, the results of nonlinear dynamic analyses of a concrete containment building under extreme loads are presented. The impact of a large commercial B747 airliner is investigated as the extreme load, and a rigid wall impact test is performed using commercial nonlinear finite element codes. The impact forces exerted by the aircraft are verified compared with the time-dependent impact force provided by OECD/NEA (2002), which was calculated based on the so-called Riera method. The rigid wall impact analysis shows that the finite element model of a B747 is appropriate for the purpose of the aircraft crash analysis exposed to the external hazard of “Beyond Design-Basis Events” defined by U.S. Nuclear Regulatory Commission. Finally, the applicability of this methodology is further studied and verified by conducting parametric studies on the critical infrastructures of nuclear power plant containment structures

  11. An annotated bibliography of completed and in-progress behavioral research for the Office of Buildings and Community Systems. [About 1000 items, usually with abstracts

    Weijo, R.O.; Roberson, B.F.; Eckert, R.; Anderson, M.R.

    1988-05-01

    This report provides an annotated bibliography of completed and in-progress consumer decision research useful for technology transfer and commercialization planning by the US Department of Energy's (DOE) Office of Buildings and Community Systems (OBCS). This report attempts to integrate the consumer research studies conducted across several public and private organizations over the last four to five years. Some of the sources of studies included in this annotated bibliography are DOE National Laboratories, public and private utilities, trade associations, states, and nonprofit organizations. This study divides the articles identified in this annotated bibliography into sections that are consistent with or similar to the system of organization used by OBCS.

  12. Human Perception, SBS Sympsoms and Performance of Office Work during Exposure to Air Polluted by Building Materials and Personal Computers

    Bako-Biro, Zsolt

    The present thesis deals with the impact of polluted air from building materials and personal computers on human perception, Sick Building Syndrome (SBS) symptoms and performance of office work. These effects have been studies in a series of experiments that are described in two different chapters...

  13. Method for Cost-Benefit Analysis of Improved Indoor Climate Conditions and Reduced Energy Consumption in Office Buildings

    Viktoras Dorosevas

    2013-09-01

    Full Text Available Indoor climate affects health and productivity of the occupants in office buildings, yet in many buildings of this type indoor climate conditions are not well-controlled due to insufficient heating or cooling capacity, high swings of external or internal heat loads, improper control or operation of heating, ventilation and air conditioning (HVAC equipment, etc. However, maintenance of good indoor environmental conditions in buildings requires increased investments and possible higher energy consumption. This paper focuses on the relation between investment costs for retrofitting HVAC equipment as well as decreased energy use and improved performance of occupants in office buildings. The cost-benefit analysis implementation algorithm is presented in this paper, including energy survey of the building, estimation of occupants dissatisfied by key indoor climate indicators using questionnaire survey and measurements. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS analysis is used in the proposed method for data processing. A case study of an office building is presented in order to introduce an application example of the proposed method. Results of the study verify the applicability of the proposed algorithm and TOPSIS analysis as a practical tool for office building surveys in order to maximize productivity by means of cost efficient technical building retrofitting solutions.

  14. Indoor air quality and occupant satisfaction in five mechanically and four naturally ventilated open-plan office buildings

    Hummelgaard, J.; Juhl, P.; Saebjornsson, K.O.

    2007-01-01

    Occupant responses and indoor environment characteristics were recorded and compared in five mechanically and four naturally ventilated open-plan office buildings by using a simple approach that enabled us to survey many buildings simultaneously. All occupant responses were obtained during one...

  15. Optimizing plug-in electric vehicle charging in interaction with a small office building

    Momber, Ilan; Gomez, Tomas [Instituto de Investigacion Tecnologica (IIT), Madrid (Spain); Dallinger, David; Beer, Sebastian; Wietschel, Martin [Fraunhofer Institute for Systems and Innovation Research, Karlsruhe (Germany). Competence Center Energy Policy and Energy Systems; Marnay, Chris; Stadler, Michael [Lawrence Berkeley Lab., CA (United States)

    2011-07-01

    This paper considers the integration of plug-in electric vehicles (PEVs) in micro-grids. Extending a theoretical framework for mobile storage connection, the economic analysis here turns to the interactions of commuters and their driving behavior with office buildings. An illustrative example for a real office building is reported. The chosen system includes solar thermal, photovoltaic, combined heat and power generation as well as an array of plug-in electric vehicles with a combined aggregated capacity of 864 kWh. With the benefit-sharing mechanism proposed here and idealized circumstances, estimated cost savings of 5% are possible. Different pricing schemes were applied which include flat rates, demand charges, as well as hourly variable final customer tariffs and their effects on the operation of intermittent storage were revealed and examined in detail. Because the plug-in electric vehicle connection coincides with peak heat and electricity loads as well as solar radiation, it is possible to shift energy demand as desired in order to realize cost savings. (orig.)

  16. Performance analysis of air source heat pump system for office building

    Han, Dong Won; KIm, Yong Chan [Korea University, Seoul (Korea, Republic of); Chang, Young Soo [School of Mechanical System Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-11-15

    In this study, the performance of an air source heat pump system installed in a commercial building is analyzed using the developed heat pump performance model and building load simulation data of several regions in Korea. The performance test of an air source heat pump system with a variable speed compressor is tested to develop model that considers changes in the performance characteristics of the heat pump system under various operating conditions. The heat pump system is installed in an environmental chamber, and the experimental equipment is set up according to the manufacturer' specifications as well as the AHRI 1230 test specifications. The performance test conditions of the heat pump system are selected using a central composite design method, in which 29 points for each cooling and heating mode are selected. The developed performance model based on experimental data predicts experimental values with an error of ±5 %. Building cooling and heating loads in three regions in Korea are analyzed using TRNSYS software, which includes standard building and weather data from Seoul, Daejeon and Busan in Korea. The effects of outdoor air temperature and part load ratio on the performance and regional monthly average power consumption of the heat pump system are analyzed.

  17. ISO 50001 for Commercial Buildings: Lessons Learned From U.S. DOE Pilot Project: Preprint

    Deru, M.; Field, K.; Punjabi, S.

    2014-08-01

    In the U.S., the ISO 50001 Standard, which establishes energy management systems (EnMSs) and processes, has shown uptake primarily in the industrial sector. The U.S. Department of Energy (DOE) undertook a pilot program to explore ISO 50001 implementation in commercial buildings. Eight organizations participated as pilots, with technical assistance provided by DOE, the National Renewable Energy Laboratory (NREL), the Lawrence Berkeley National Laboratory (LBNL), and the Georgia Institute of Technology (Georgia Tech). This paper shares important lessons learned from the pilot. Staff time was the most critical resource required to establish effective EnMSs in commercial buildings. The pilot also revealed that technical support and template/example materials were essential inputs. Crucial activities included evaluating performance, identifying goals, making connections, communicating operational controls, and tracking/reviewing progress. Benefits realized included enhanced intra-organizational connections, greater energy awareness, increased process efficiencies, and improved ability to make business cases. Incremental benefits for ISO 50001 certification were greater accountability, assurance of best practices, public relations opportunities, and potential to unlock verified savings credits or incentive money. Incremental certification costs included more staff/consultant time, money for certification, and a tendency to limit EnMS scope in order to ensure favorable audit results. Five best practices were identified - utilizing expert technical assistance, training, and other resources; focusing on implementation over documentation; keeping top management involved; considering organizational structure when selecting EnMS scope; and matching the implementation level to an EnMS's scope and scale. The last two practices are particularly relevant to the commercial buildings sector.

  18. Networked Lighting Power and Control Platform for Solid State Lighting in Commercial Office Applications

    Covaro, Mark [Redwood Systems, Inc., Fremont, CA (United States)

    2012-08-15

    Redwood Systems' objective is to further accelerate the acceptance of solid state lighting (SSL) with fine grain and easy-to-use control. In addition, increased and improved sensor capability allows the building owner or user to gather data on the environment within the building. All of this at a cost equal to or less than that of code-compliant fluorescent lighting. The grant we requested and received has been used to further enhance the system with power conversion efficiency improvements and additional features. Some of these features, such as building management system (BMS) control, allow additional energy savings in non-lighting building systems.

  19. Enabling Energy Efficiency in South Africa's Commercial Buildings

    2016-04-01

    South Africa is leading a number of efforts to support a thriving economy while also reducing energy use. Increasing energy demand coupled with a highly energy intensive economy and energy inefficient industries provide the backdrop for strong government action underway in South Africa. This brochure details how the Clean Energy Solutions Center supported development of the Regulations on Allowance for the Energy Efficiency Savings legislation designed to provide a framework for effective energy efficiency regulation, incentives and energy reduction targets for South Africa's commercial buildings sector.

  20. Air movement, gender and risk of sick building headache among employees in a Jakarta office

    Margaretha Winarti

    2003-09-01

    Full Text Available Even though office buildings are usually equipped with ventilation system or air conditioning to create a comfortable working environment, yet there is still found a number of sick building syndrome (SBS symptoms. One of the symptoms of SBS is SBS headache. Therefore, it is crucial to identify risk factors related to SBS headache. Cases were subjects who have suffered SBS headache, and controls were subjects who did not suffered headache for the last one month. Cases and controls were selected through a survey on all of employees in the said office during the period of May to August 2002. Total respondents were 240 employees including 36 people suffered SBS headache (15%. Compared to the normal air movement, faster air movement decreased the risk of SBS headache by 57% [adjusted odds ratio (OR = 0.43; 95% confidence intervals (CI: 0.19-0.95]. Female employees, compared to the males ones, had a higher risk of getting SBS headache by almost three times (adjusted OR = 2.96: 95% CI: 1.29-6.75. Employees who had breakfast irregularly, had a lower risk to SBS headache than those who have breakfast regularly (adjusted OR=0.31; 95% CI: 0.09-0.84. Temperature, humidity and smoking habits were not noted correlated to SBS headache. Female workers had greater risk of suffering SBS headache. In addition slower air movement increased the risk of SBS headache. Therefore, it is recommended to improve the progress of air in order to reduce the risk of SBS headache, especially for female workplace. (Med J Indones 2003; 12: 171-7Keywords: sick building syndrome headache, gender, air movement

  1. The Analysis Of Capillary Tube System For Office Buildings In Africa. A Case Study Of Nigerian And Namibian Climate

    Sulaiman Muhammad kabir

    2017-01-01

    Full Text Available The change in climate and the rise in energy rates have become a necessary consideration in the construction industry which has made architects and engineers to arise with improved building design concepts. A focus on creating a comfortable indoor climate in office buildings ensures productive working conditions for the users and reduces global warming. Specific climatic design principles are often disregarded when designing to create a comfortable indoor climate. Sustainable design methods in buildings has been replicated from one zone to another zone without adjustments which results to buildings that do not provide adequate comfort. Capillary tube system is used to provide a comfortable indoor climate for office buildings making an interesting use of geothermal energy. This paper aims to explain its principle using geothermal energy and the effect of climate on the use of this system in office buildings in Africa. A case study of Lagos state lying on the coast of the Atlantic Ocean which is challenged with high rise in sea level as a result of global warming in Nigeria and Windhoek in Namibia is to be taken into consideration as the business hub of its country. These regions comprises of many office buildings to facilitate the countries trade internationally and locally.

  2. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings.

    MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph

    2015-11-18

    Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption-Economic and environmental costs. We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8

  3. Evaluating the use heat pipe for dedicated ventilation of office buildings in Hong Kong

    Zhang Lian [Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom (Hong Kong); Lee, W.L., E-mail: bewll@polyu.edu.h [Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom (Hong Kong)

    2011-04-15

    Research highlights: {yields} Heat pipe dedicated for outdoor air treatment (HPDV system) was investigated. {yields} Investigations were based on cooling demand of 10 existing office buildings in HK. {yields} HPDV system could save energy use for 70% of the air-conditioned hours. {yields} HPDV system could save 1.2% to 7.9% of annual energy use for air-conditioning. {yields} Heat pipe of 57% effectiveness is the best in achieving energy saving objectives. -- Abstract: Recent research studies advocates decoupling dehumidification from cooling to improve indoor air quality and reduce energy consumption. The feasible use of heat pipe at the air handler dedicated for outdoor air treatment (HPDV system) in accomplishing this objective is investigated in this study. To evaluate the performance and the energy saving potential of the proposed HPDV system, the design parameters of 75 Grade A office buildings in Hong Kong were collected. Ten representative buildings were subsequently identified for further study to achieve a confidence level of 95%. The annual cooling load profiles of the 10 representative buildings were simulated by the use of HTB2. Based on the realistic cooling load profiles and the heat pipes of effectiveness 0.35-0.6, the proposed HPDV system in achieving the intended objectives were evaluated. It was found that the savings for the 10 representative buildings were comparable. The reduction in cooling and reheating energy was between 23 and 44 kWh/m{sup 2}, which corresponds to 1.2% and 7.9% saving in annual energy use for air-conditioning. The results indicate that HP of different effectiveness can be applied to save energy for over 70% of the air-conditioned hours; of which only 0.03-6.3% of the time the decoupling objective cannot be achieved (abbreviated as NHRS). Based on the results of the study, a simplified model relating NHRS with heat pipe effectiveness has been established. The model can help designers more quickly determine how NHRS can be

  4. Improving PAQ and comfort conditions in Spanish office buildings with passive climate control

    Orosa, Jose A.; Baalina, A. [Departamento de Energia y P.M. Escuela Tecnica Superior de N. y M, Universidade da Coruna, Paseo de Ronda 51, P.C.:15011 A Coruna (Spain)

    2009-03-15

    Some researchers have demonstrated that passive moisture transfer between indoor air and hygroscopic structures has the potential to moderate variations of indoor air relative humidity and, thus, to improve comfort and PAQ [Simonson CJ, Salonvaara M, Ojalen T. The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air 2002; 12: 243-51; Simonson CJ, Salonvaara M, Ojalen T. Improving indoor climate and comfort with wooden structures. Espoo 2001. Technical Research Centre of Finland, VTT Publications 431.200p+app 91p]. The main objective of this study is to show the internal wall coating effect on indoor air conditions and, as a consequence of this, in comfort conditions and PAQ. In a previous paper [Orosa JA, Baalina A. Passive climate control in Spanish office buildings for long periods of time. Building and Environment 2008], we analysed the influence of permeable and impermeable materials on indoor air conditions, during the unoccupied period, in 25 office buildings in different seasons. Results obtained lead us to conclude that real coverings such as permeable, semi-permeable and impermeable types, present different behavioural patterns in indoor air conditions. Furthermore, we concluded that an absorbent structure will moderate relative humidity indoors. In this paper, we study this indoor relative humidity effect on local thermal discomfort, due to decreased respiratory cooling, and indoor ambience acceptability for the early hours of morning applying PD and Acc models [Toftum J, Jorgensen AS, Fanger PO. Upper limits for indoor air humidity to avoid uncomfortably humid skin. Energy and buildings 1998; 28: 1-13; Toftum J, Jorgensen AS, Fanger PO. Upper limits of air humidity for preventing warm respiratory discomfort. Energy and Buildings 1998; 28: 15-23] such as that proposed by Simonson et al. [The effect of structures on indoor humidity-possibility to improve comfort and perceived air quality. Indoor Air

  5. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings

    Piers MacNaughton

    2015-11-01

    Full Text Available Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person, 30% enhanced ventilation, and 40 cfm/person and four different heating, ventilation and air conditioning (HVAC system strategies (Variable Air Volume (VAV with reheat and a Fan Coil Unit (FCU, both with and without an energy recovery ventilator. We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities. The same change in ventilation

  6. Incidence of polybrominated diphenyl ethers in central air conditioner filter dust from a new office building.

    Ni, Hong-Gang; Cao, Shan-Ping; Chang, Wen-Jing; Zeng, Hui

    2011-07-01

    This study examined polybrominated diphenyl ethers (PBDEs) in central air conditioner filter (CACF) dust from a new office building in Shenzhen, China. Human exposure to PBDE via dust inhalation and ingestion were also estimated. PBDEs level in CACF dust was lower than those in the other countries and regions. Approximately 0.671 pg/kg bw/day PM(2.5) (Particulate Matter up to 2.5 μm in size) bounded Σ(15)PBDEs can be inhaled deep into the lungs and 4.123 pg/kg bw/day PM(10) (Particulate Matter up to 10 μm in size) bounded Σ(15)PBDEs tend to be deposited in the upper parts of the respiratory system. The average total intake of Σ(15)PBDEs via dust inhalation and ingestion for adults reached ∼ 141 pg/kg bw/day in this building. This value was far below the reference dose (RfD) recommended by United States Environmental Protection Agency. Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than the old ones. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. IMPACT ON THE APPLICATION OF INSULATION IN BUILDINGS TO ACHIEVE THERMAL COMFORT (A CASE STUDY: LAUSER OFFICE BUILDING IN BANDA ACEH

    Nova Purnama Lisa

    2014-12-01

    Full Text Available From the results of research studies on the impact of the use of insulation in buildings, reducing solar radiation on buildings to improve indoor comfort by applying the Principles of radiation reduction in buildings naturally using insulation application that serves as an insulator against the building materials, use of thermal insulation in particular mounted on the roof of the building and the walls are located on second floor and the third floor Lauser office building, Calculate the cooling load for each room that was on second floor and the third floor based on the geographical location or position of the building, climate data, building material data , and the intensity of the spatial characteristics which include lighting, solar radiation, user activity and electrical appliances being used. The calculation is done with the help of Ecotech v.5, 2011. The location and position on the third floor of a building with a flat roof cast concrete, so that the heat absorbed by the platform, and two times greater than the amount of heat radiation is absorbed by the material in the direction of the light falling the sun is at an angle <30°C. The simulation results on the building with the addition of thermal insulation on all walls and the roof of the inside of the foam material ultrafolmadehid, without changing the model building and similar activities in accordance with the existing condition and the condition of the room using the air conditioner at a temperature of 18-26°C, indicating a decrease in cooling load signifinikan in any space reaches 40% of the total cooling load required on the lauser office building. Comparing the simulation results Ecotech temperature v.5 2011 with field measurements as a validation of the simulation results in order to achieve thermal comfort in buildings and can menggurangi use energy consumption in buildings and can be used as a reference in planning space-based conditioning systems energy efficient.

  8. The role of grid-connected, building-integrated photovoltaic generation in commercial building energy and power loads in a warm and sunny climate

    Braun, P.; Ruether, R.

    2010-01-01

    For large commercial buildings, power load delivery limits are contracted with the local electricity distribution utility, and are usually fixed at one or more levels over the year, according to the seasonal building loads, and depending on the specific country regulations. Especially in warm and sunny climates, solar electricity generation using building-integrated photovoltaics (BIPV) can assist in reducing commercial building loads, offering peak-shaving (power) benefits on top of the on-site generation of electricity (energy). This on-site power delivery capability gives these consumers the possibility of renegotiating demand contracts with their distribution utility. Commercial buildings that operate during daytime quite often have an energy consumption profile that is well matched by solar radiation availability, and depending on the building's available surface areas, BIPV can generate considerable portions of the energy requirements. In this work we present the role of grid-connected BIPV in reducing the load demands of a large and urban commercial building located in a warm climate in Brazil. The building and adjacent car parking lots can accommodate a 1 MWp BIPV generator, which closely matches the building's typical maximum power demands. Based on real solar radiation data and simultaneous building electricity demands for the year 2007, simulation of the annual solar generation profile of this on-site generator showed that the 1 MWp BIPV system could account for around 30% of the total building's energy consumption. In addition to the energy benefit, maximum power demands were reduced due to a good match between midday air-conditioning cooling loads and solar radiation availability on both a daily and seasonal basis. Furthermore, we have simulated the effect of this considerably large urban-sited generator on the local distribution network load, and have shown that the 1 MWp BIPV installation can also offer considerable benefits to the local utility in

  9. Evaluating the benefits of commercial building energy codes and improving federal incentives for code adoption.

    Gilbraith, Nathaniel; Azevedo, Inês L; Jaramillo, Paulina

    2014-12-16

    The federal government has the goal of decreasing commercial building energy consumption and pollutant emissions by incentivizing the adoption of commercial building energy codes. Quantitative estimates of code benefits at the state level that can inform the size and allocation of these incentives are not available. We estimate the state-level climate, environmental, and health benefits (i.e., social benefits) and reductions in energy bills (private benefits) of a more stringent code (ASHRAE 90.1-2010) relative to a baseline code (ASHRAE 90.1-2007). We find that reductions in site energy use intensity range from 93 MJ/m(2) of new construction per year (California) to 270 MJ/m(2) of new construction per year (North Dakota). Total annual benefits from more stringent codes total $506 million for all states, where $372 million are from reductions in energy bills, and $134 million are from social benefits. These total benefits range from $0.6 million in Wyoming to $49 million in Texas. Private benefits range from $0.38 per square meter in Washington State to $1.06 per square meter in New Hampshire. Social benefits range from $0.2 per square meter annually in California to $2.5 per square meter in Ohio. Reductions in human/environmental damages and future climate damages account for nearly equal shares of social benefits.

  10. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  11. Occupancy pattern in office buildings : consequences for HVAC system design and operation

    Halvarsson, Johan

    2011-07-01

    The main objectives with the work presented in this thesis have been: (a) to contribute to an increased understanding of the consequences that the occupancy pattern can have on the indoor climate and for Heating, Ventilation and Air Conditioning (HVAC) system design and operation; and (b) to investigate how typical occupancy patterns can look like in office buildings. The occupancy pattern in an office is a function of the floor layout of the building, and the user organisation(s) occupying it and their way of working. The combination of these two, will decide how the users occupy the building, which in turn is an important design prerequisite/constraint for the HVAC system design process. There are many assessments related to indoor climate and HVAC that involve considerations of the occupancy pattern, reaching from estimates of internal heat and pollution loads to deciding on an appropriate control strategy of HVAC systems, or estimating the energy saving potential with demand controlled ventilation. A few numerical measures have been used to describe different aspects of the occupancy pattern. The zone based occupancy factor (OFz) expresses the ratio between the number of occupied sub-zones/rooms in a zone and the total number of sub-zones/rooms in the zone. OFz does not take the number of people into account, only whether a sub-zone/room is occupied or unoccupied. OFz can be used both to express instantaneous occupancy levels and averages over time. Superscript is used to specify the time, or time period, that the measure refers to. For instance, 06 18,wd OFz means the average OFz between 6 a.m. and 6 p.m. on working days, while the 95th percentile of OFz6{sub 1}8,wd , means the 95th percentile of all instantaneous values (one or five minute averages in the case studies) of OFz that have occurred during the same time period. The utilisation rate (UR) expresses the fraction of time that a room is occupied, within a specific time period. It is important to

  12. BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy

    Gulbinas, R.; Jain, R.K.; Taylor, J.E.

    2014-01-01

    Highlights: • We developed a socio-technical commercial building energy management system. • It was designed for directly engaging and connecting building occupants via feedback. • We collected an array of clickstream data for internal design validation. • A pilot study validated its ability to drive energy savings in commercial buildings. - Abstract: Commercial buildings represent a significant portion of energy consumption and environmental emissions worldwide. To help mitigate the environmental impact of building operations, building energy management systems and behavior-based campaigns designed to reduce energy consumption are becoming increasingly popular. In this paper, we describe the development of a modular socio-technical energy management system, BizWatts, which combines the two approaches by providing real-time, appliance-level power management and socially contextualized energy consumption feedback. We describe in detail the physical and virtual architecture of the system, which simultaneously engages building occupants and facility managers, as well as the main principles behind the interface design and component functionalities. A discussion about how the data collection capabilities of the system enable insightful commercial building energy efficiency studies and quantitative network analysis is also included. We conclude by commenting on the validation of the system, identifying current system limitations and introducing new research avenues that the development and deployment of BizWatts enables

  13. 78 FR 78467 - Office of Commercial Space Transportation; Notice of Intent to Prepare an Environmental Impact...

    2013-12-26

    ..., lightning protection systems, deluge water systems, and other launch-related facilities and systems. In... facility, a payload processing facility, and a control center building. There are two proposed off-site...

  14. Symptoms prevalence among office workers of a sealed versus a non-sealed building: associations to indoor air quality.

    Rios, José Luiz de Magalhães; Boechat, José Laerte; Gioda, Adriana; dos Santos, Celeste Yara; de Aquino Neto, Francisco Radler; Lapa e Silva, José Roberto

    2009-11-01

    An increasing number of complaints related to time spent in artificially ventilated buildings have been progressively reported and attributed, at least in part, to physical and chemical exposures in the office environment. The objective of this research was to investigate the association between the prevalence of work-related symptoms and the indoor air quality, comparing a sealed office building with a naturally ventilated one, considering, specially, the indoor concentration of TPM, TVOCs and the main individual VOCs. A cross-sectional study was performed to compare the prevalence of sick building syndrome (SBS) symptoms among 1736 office workers of a sealed office building and 950 of a non-sealed one, both in Rio de Janeiro's downtown. The prevalence of symptoms was obtained by a SBS standardized questionnaire. The IAQ of the buildings was evaluated through specific methods, to determine the temperature, humidity, particulate matter and volatile organic compound (VOC) concentrations. Upper airways and ophthalmic symptoms, tiredness and headache were highly prevalent in both buildings. Some symptoms were more prevalent in the sealed building: "eye dryness" 33.3% and 27.1% (p: 0.01); "runny nose" 37.3% and 31.3% (p: 0.03); "dry throat" 42% and 36% (p: 0.02); and "lethargy" 58.5% and 50.5% (p: 0.03) respectively. However, relative humidity and indoor total particulate matter (TPM) concentration as well as total volatile organic compounds (TVOCs) were paradoxically greater in the non-sealed building, in which aromatic compounds had higher concentration, especially benzene. The analysis between measured exposure levels and resulting symptoms showed no association among its prevalence and TPM, TVOCs, benzene or toluene concentration in none of the buildings. Other disregarded factors, like undetected VOCs, mites, molds and endotoxin concentrations, may be associated to the greater prevalence of symptoms in the sealed building.

  15. Sustainable enterprise in office buildings of small businesses; Duurzaam ondernemen in het kantoorhoudende MKB

    Bertens, C. [Panteia/EIM, Zoetermeer (Netherlands); Muizer, A. [Panteia/Consult, Zoetermeer (Netherlands)

    2012-05-15

    SMEs in the Netherlands will increasingly face stricter sustainability criteria in procurement procedures. A study has been carried out among 375 small businesses that will provide insight into the state of sustainability in office buildings of SMEs. Attention is paid to the importance of sustainability, measures taken with regard to sustainable enterprising, plans and ambitions; and required support [Dutch] Het MKB krijgt in toenemende mate te maken met strengere duurzaamheidseisen in aanbestedingsprocedures. Er is onderzoek gedaan onder 375 bedrijven waarmee inzicht wordt gegeven in de stand van zaken van duurzaam ondernemen in het kantoorhoudend MKB. Het gaat in grote lijnen om de volgende aspecten: het belang van duurzaam ondernemen; genomen maatregelen op het gebied van duurzaam ondernemen; plannen en ambities; benodigde ondersteuning.

  16. Solar heating and cooling system for an office building at Reedy Creek Utilities

    1978-08-01

    This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.

  17. Biological dynamic lighting in an office building; Biologisch dynamische verlichting in een kantoorgebouw

    Visser, R. [Professional Lighting Designers' Association PLDA, Guetersloh (Germany)

    2011-12-15

    The aim of so-called biodynamic lighting systems is to influence human biological rhythms such that productivity, alertness, wellbeing and health are improved. In the office building of Grontmij in Amersfoort, Netherlands, experiments were carried out with biodynamic lighting systems. [Dutch] In de afgelopen jaren hebben verschillende fabrikanten biologisch dynamische verlichtingssystemen op de markt gebracht. Uitgangspunt voor dergelijke systemen is om biologische ritmen van de mens zodanig te beinvloeden dat productiviteit, alertheid, welbevinden en ook de gezondheid in meer of mindere mate verbeteren. Om ervaring in de kantooromgeving op te doen, is een aantal van deze systemen op diverse locaties in het gebouw van de Grontmij in Amersfoort aangebracht. Vervolgens is onderzoek gedaan naar de toepassingsmogelijkheden en eigenschappen ervan in de praktijk.

  18. Experimental and CFD modelling for thermal comfort and CO2 concentration in office building

    Kabrein, H.; Hariri, A.; Leman, A. M.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Computational fluid dynamic CFD was used for simulating air flow, indoor air distribution and contamination concentration. Gases pollution and thermal discomfort affected occupational health and productivity of work place. The main objectives of this study are to investigate the impact of air change rate in CO2 concentration and to estimate the profile of CO2 concentration in the offices building. The thermal comfort and gases contamination are investigated by numerical analysis CFD which was validated by experiment. Thus the air temperature, air velocity and CO2 concentration were measured at several points in the chamber with four occupants. Comparing between experimental and numerical results showed good agreement. In addition, the CO2 concentration around human recorded high, compared to the other area. Moreover, the thermal comfort in this study is within the ASHRAE standard 55-2004.

  19. Are Biophilic-Designed Site Office Buildings Linked to Health Benefits and High Performing Occupants?

    Tonia Gray

    2014-11-01

    Full Text Available This paper discusses the first phase of a longitudinal study underway in Australia to ascertain the broad health benefits of specific types of biophilic design for workers in a building site office. A bespoke site design was formulated to include open plan workspace, natural lighting, ventilation, significant plants, prospect and views, recycled materials and use of non-synthetic materials. Initial data in the first three months was gathered from a series of demographic questions and from interviews and observations of site workers. Preliminary data indicates a strong positive effect from incorporating aspects of biophilic design to boost productivity, ameliorate stress, enhance well-being, foster a collaborative work environment and promote workplace satisfaction, thus contributing towards a high performance workspace. The longitudinal study spanning over two years will track human-plant interactions in a biophilic influenced space, whilst also assessing the concomitant cognitive, social, psychological and physical health benefits for workers.

  20. Electricity use characteristics of purpose-built office buildings in subtropical climates

    Lam, Joseph C.; Chan, Ricky Y.C.; Tsang, C.L.; Li, Danny H.W.

    2004-01-01

    The electricity use characteristics of 20 air conditioned office buildings in the public sector in subtropical Hong Kong were investigated. Monthly electricity consumption data were gathered and analysed. The annual electricity use per unit gross floor area ranged from 163 to 389 kW h/m 2 , with a mean of 270 kW h/m 2 . Detailed energy audits and site surveys were conducted to obtain a breakdown of the energy use. The percentage consumption for the four major electricity end users, namely heating, ventilation and air conditioning, lighting, electrical equipment and lifts and escalators were 47.5%, 27.4%, 21.8% and 3.3%, respectively. Regression techniques were used to correlate the monthly electricity use with the design and climatic variables. This paper presents the work and discusses the energy use implications

  1. Energy and life-cycle cost analysis of a six-story office building

    Turiel, I.

    1981-10-01

    An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.

  2. Accuracy of automated measurement and verification (M&V) techniques for energy savings in commercial buildings

    Granderson, Jessica; Touzani, Samir; Custodio, Claudine; Sohn, Michael D.; Jump, David; Fernandes, Samuel

    2016-01-01

    Highlights: • A testing procedure and metrics to asses the performance of whole-building M&V methods is presented. • The accuracy of ten baseline models is evaluated on measured data from 537 commercial buildings. • The impact of reducing the training period from 12-months to shorter time horizon is examined. - Abstract: Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming manual data acquisition and often do not deliver results until years after the program period has ended. The rising availability of “smart” meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost, with comparable or improved accuracy. These meter- and software-based approaches, increasingly referred to as “M&V 2.0”, are the subject of surging industry interest, particularly in the context of utility energy efficiency programs. Program administrators, evaluators, and regulators are asking how M&V 2.0 compares with more traditional methods, how proprietary software can be transparently performance tested, how these techniques can be integrated into the next generation of whole-building focused efficiency programs. This paper expands recent analyses of public-domain whole-building M&V methods, focusing on more novel M&V 2.0 modeling approaches that are used in commercial technologies, as well as approaches that are documented in the literature, and/or developed by the academic building research community. We present a testing procedure and metrics to assess the performance of whole-building M&V methods. We then illustrate the test procedure

  3. The use of energy management and control systems to monitor the energy performance of commercial buildings

    Heinemeier, Kristin Elizabeth [Univ. of California, Berkeley, CA (United States). Dept. of Architecture

    1994-12-01

    Monitored data play a very important part in the implementation and evaluation of energy conservation technologies and programs. However, these data can be expensive to collect, so there is a need for lower-cost alternatives. In many situations, using the computerized Energy Management and Control Systems (EMCSs)--already installed in many buildings--to collect these commercial building performance data has advantages over more conventional methods. This method provides data without installing incremental hardware, and the large amounts of available operational data can be a very rich resource for understanding building performance. This dissertation addresses several of these issues. One specific objective is to describe a monitoring-project planning process that includes definition of objectives, constraints, resources and approaches for the monitoring. The choice of tools is an important part of this process. The dissertation goes on to demonstrate, through eight case studies, that EMCS monitoring is possible, and to identify and categorize the problems and issues that can be encountered. These issues lead to the creation, use, and testing of a set of methods for evaluation of EMCS monitoring, in the form of guidelines. Finally, EMCS monitoring is demonstrated and compared with conventional monitoring more methodically in a detailed case study.

  4. Comparison of Actual Costs to Integrate Commercial Buildings with the Grid

    Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Black, Doug [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Yin, Rongxin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2016-05-01

    During the past decade, the technology to automate demand response (DR) in buildings and industrial facilities has advanced significantly. Automation allows rapid, repeatable, reliable operation. This study focuses on costs for DR automation in commercial buildings with some discussion on residential buildings and industrial facilities. DR automation technology relies on numerous components, including communication systems, hardware and software gateways, standards-based messaging protocols, controls and integration platforms, and measurement and telemetry systems. This paper discusses the impact factors that contribute to the costs of automated DR systems, with a focus on OpenADR 1.0 and 2.0 systems. In addition, this report compares cost data from several DR automation programs and pilot projects, evaluates trends in the cost per unit of DR and kilowatts (kW) available from automated systems, and applies a standard naming convention and classification or taxonomy for system elements. In summary, median costs for the 56 installed automated DR systems studied here are about $200/kW. The deviation around this median is large with costs in some cases being an order of magnitude greater or less than median. Costs to automate fast DR systems for ancillary services are not fully analyzed in this report because additional research is needed to determine the total such costs.

  5. Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development concept stage report

    Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Deringer, J.J. (Deringer Group, Riva, MD (USA)); Hall, J.D. (American Inst. of Architects, Washington, DC (USA)) (comps.)

    1990-09-01

    The Whole-Building Energy Design Targets project is being conducted for the US Department of Energy (DOE) by the Pacific Northwest Laboratory (PNL). The objective of the project is to develop a flexible methodology for setting energy performance guidelines with which architects, engineers, planners, and owners can assess energy efficiency in commercial building design. This volume, the third in the four-volume report on the Targets project concept stage, contains the minutes of the workshops as well as summaries of the expert's written comments prepared at the close of each workshop. In Section 2, the building energy simulation workshop is summarized. Section 3 provides a summary of the building cost workshop.

  6. Safe space. How you can define fair market value for medical-office building lease agreements with hospitals.

    Murray, Chuck

    2007-04-01

    When entering into office-space lease agreements with hospitals, physician practice administrators need to pay close attention to the federal antikick-back statute and the Stark law. Compliance with these regulations calls for adherence to fair market value and commercial reasonableness--blurry terms open to interpretation. This article provides you with a framework for defining fair market value and commercial reasonableness in regard to real-estate transactions with hospitals.

  7. The occurrence of legionalla in hot water distribution systems of some Finnish apartment and office buildings

    Zacheus, O M; Kuittinen, M H; Martikainen, P J [National Public Health Institute, Dept. Environ. Hyg. and Toxicol., Kuopio (FI)

    1991-01-01

    A project concerning the effect of water temperature and water quality on the microbiology of hot water distribution systems in Finnish apartment and office buildings was started in 1989. Here we report preliminary results on the occurrence of legionella. Samples were taken from showerpipes and from hot water mains before and after calorifiers of 17 buildings. Water temperature in the showerpipes ranged from 39 to 55 deg. C. Water temperature before calorifiers ranged from 40 to 52 deg. C and after them from 39 to 59 deg. C. Water temperature did not explain well the occurrence of legionalla. Legionalla pneumophila was isolated from six systems. The isolates were serogroups 1, 5 and 6. Legionella concentrations in positive samples ranged from 100 to 350 000 CFU/l. Highest concentrations of legionalla were obtained from showerpipes and hot water mains before calorifiers. Four legionella positive distribution systems were decontaminated by raising the water temperature to 60-70 deg. C and cleaning taps and showerheads, and flushing them twice a day. The numbers of legionellas in the hot water mains fell below detection limit (50 CFU/l) and their numbers also decreased in showerpipes. Decontamination failed in some parts of the distribution systems where water temperature remained below 60 deg. C. (author) 26 refs.

  8. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  9. Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management

    Giovani Almeida Dávi

    2017-08-01

    Full Text Available On-site photovoltaic (PV and battery systems intend to improve buildings energy performance, however battery costs and monetary incentives are a major drawback for the introduction of these technologies into the electricity grids. This paper proposes an energy refurbishment of an office building based on multi-objective simulations. An innovative demand-side management approach is analyzed through the PV and battery control with the purpose of reducing grid power peaks and grid imported energy, as well as improving the project economy. Optimization results of load matching and grid interaction parameters, complemented with an economic analysis, are investigated in different scenarios. By means of battery use, the equivalent use of the grid connection is reduced by 12%, enhancing the grid interaction potential, and 10% of load matching rates can be increased. Project improvements indicate the grid connection capacity can be reduced by 13% and significant savings of up to 48% are achieved on yearly bills. The economy demonstrates the grid parity is only achieved for battery costs below 100 €/kWh and the payback period is large: 28 years. In the case with only PV system, the grid parity achieves better outcomes and the payback time is reduced by a half, making this a more attractive option.

  10. Characteristics of radon and its progeny concentrations in air-conditioned office buildings in Tokyo

    Tokonami, S.; Furukawa, M.; Shicchi, Y.; Sanada, T.; Yamada, Y.

    2003-01-01

    A series of measurements were carried out to understand the characteristics of radon and its progeny in air-conditioned office buildings. Long-term measurements of radon were made with etched track detectors. Continuous measurements of radon and its progeny concentrations were also conducted in some buildings to study their temporal variations. The results show that radon and its progeny concentrations routinely varied along with working activities. They are generally low while people are working, due to air conditioning, whereas they rise steadily after the air conditioning stops. When considering action levels not only in homes but also workplaces, attention should be paid to annual doses from the viewpoint of radiation protection. The annual dose is generally estimated with a long-term measurement of radon concentration using a passive device such as an etched track detector. Since its reading corresponds to a long-term average concentration regardless of working hours, the annual dose will be overestimated. When comparing a real dose after considering the working hours, they differ by a factor of more than 2. (author)

  11. Measured energy savings and cost-effectiveness of conservation retrofits in commercial buildings

    Greely, K.M.; Harris, J.P.; Hatcher, A.M.

    1990-01-01

    In this study, the authors examine the measured savings and cost-effectiveness of 447 commercial retrofit projects in the US, Canada, and Europe, representing over 1,700 buildings. For these projects, they examine savings and cost-effectiveness by building type and retrofit strategy, savings from individual measures, peak electric demand savings, comparisons of measured vs. predicted savings, and the persistence of savings in the years following a retrofit. Median annual site energy savings amounted to 20 kBtu/ft 2 , or 18% of whole-building usage; median retrofit cost was $0.56/ft 2 (1988 $), the median payback time was 3.1 years, and the median cost of conserved energy was $3.10/site MBtu. When examined by retrofit strategy, they found that projects with only HVAC and/or lighting retrofits had median payback times of one to three years, while those affecting the building shell, either alone or in combination with other types of measures, had payback times of five or more years. Projects in which only maintenance practices were changed typically saved 12% of their pre-retrofit consumption, often using in-house labor. Their research suggests that, despite significant savings and short payback times for the majority of projects, optimum savings are often not being achieved, due to limited owner willingness to invest in all cost-effective measures, as well as to improper retrofit installation and/or maintenance. A comprehensive understanding of energy management as a process is needed, including both inspection and commissioning of installed retrofits and ongoing tracking of energy consumption as an indicator of operating problems

  12. Psychological distress, job dissatisfaction, and somatic symptoms in office workers in 6 non-problem buildings in the Midwest.

    Black, Donald W; Manlick, Christopher F; Fuortes, Laurence J; Stein, Matthew A; Subramanian, P; Thorne, Peter S; Reynolds, Stephen J

    2014-08-01

    Researchers examined office worker characteristics and reports of non-specific somatic symptoms in 6 non-problem buildings in the Midwestern United States. We assessed office workers for demographic characteristics and somatic symptoms that occurred in the workplace. Sampling was conducted over a 1-week period in each building over 4 seasons. Our team administered the Medical Outcome Survey questionnaire, the Brief Symptom Inventory, and the Job Content Questionnaire to individuals at each site, comparing office workers reporting no symptoms to those reporting ≥4 symptoms. Self-reported nonspecific somatic symptoms were frequent in office workers in non-problem buildings. High symptom levels were associated with younger age, female sex, psychological distress, impaired quality of life, and poor job satisfaction. The findings suggest that office workers frequently report somatic symptoms they believe are related to the workplace even in buildings considered non-problematic. People with high symptom levels perceived as related to the workplace are psychologically distressed, have impaired quality of life, and feel dissatisfied and powerless in the workplace.

  13. Simulation of energy use, human thermal comfort and office work performance in buildings with moderately drifting operative temperatures

    Kolarik, Jakub; Toftum, Jørn; Olesen, Bjarne W.

    2011-01-01

    Annual primary energy use in a central module of an office building consisting of two offices separated with a corridor was estimated by means of dynamic computer simulations. The simulations were conducted for conventional all-air VAV ventilation system and thermo active building system (TABS) s....... The TABS working in a moderate climate kept the predicted percentage of dissatisfied (PPD) 10%; 1.4% in comparison to 17.5% h/yr. The highest estimated loss of occupants’ productivity related to their thermal sensation hasn’t exceeded 1% in whole year average....

  14. Feasibility of ground coupled heat pumps in office buildings: A China study

    Zhou, Zhihua; Zhang, Zhiming; Chen, Guanyi; Zuo, Jian; Xu, Pan; Meng, Chong; Yu, Zhun

    2016-01-01

    Highlights: • Feasibility of GCHPs in office buildings was assessed in various climatic regions. • Performance of GCHPs was compared with traditional heating and cooling techniques. • Ratio of the heating to cooling load has significant impacts on operation of GCHPs. - Abstract: Ground coupled heat pumps (GCHPs) have been widely applied in China due to its environmental friendliness and energy efficiency. However, it may not be appropriate in all geographical areas because a variety of factors (e.g. original soil temperature, peak cooling and heating load, and running time) vary significantly. Typical office buildings were selected from five cities that are located in different climatic regions. The QUick Energy Simulation Tool (e-QUEST) was utilized to simulate the cooling and heating load. Similarly, the Transient System Simulation Program (TRNSYS) was employed to simulate the 20-year variation of the average soil temperature and the Coefficient of Performance (COP) of GCHP units. Consequently, the feasibility of the GCHPs in different regions was analyzed. The results show that GCHP system is feasible in severe cold B regions such as Shenyang and cold regions such as Beijing as both cold and heat sources because of its energy efficiency. From the economy and operation performance’s perspective, GCHP system is not feasible in severe cold A regions such as Harbin; hot-summer and cold-winter regions such as Nanjing; and hot-summer and warm-winter region such as Guangzhou. This is due to the poor energy efficiency of the system, mainly attributed to a large gap between cumulative energy consumption for cooling and for heating. Comprehensive analysis of experiment results showed that the GCHP system of case building in cold region can operate stably in long term with a high efficiency when the ratio of annual cumulative cooling energy consumption to annual cumulative heating energy consumption ranges from 0.2:1 to 5:1. In severe cold B regions, GCHP system

  15. 25 Years of cooling research in office buildings : Review for the integration of cooling strategies into the building façade (1990–2014)

    Prieto Hoces, A.I.; Knaack, U.; Klein, T.; Auer, T

    2017-01-01

    This paper seeks to present a panorama of cooling related research in office buildings, categorising reported research experiences from the past 25 years in order to identify knowledge gaps and define current paths and trends for further exploration. The general goal behind this research is to

  16. Guide for the recovery of high grade waste paper from federal office buildings through at-source separation

    1978-01-01

    This guide is intended to serve as a manual for organizing and managing office waste paper recovery programs in Canadian federal buildings. Waste paper generated in such buildings is of particular interest for recycling as it is produced in sufficiently large amounts, and contains large amounts of high-grade waste paper which obtain good prices from paper mills. The key to successful recovery of such paper is separation, at the source of waste generation, from other less-valuable papers and non-paper materials. In recommending ways to do this, the manual covers assessment of the viability of a collection program in a particular building, estimating the quantities of waste generated, calculating storage space necessary, marketing the paper collected, using proper collection and storage containers, promoting employee awareness, and administering and monitoring the program. A sample cost-benefit analysis is given for a general office building with 1,000 employees. Includes glossary. 14 refs., 10 figs., 5 tabs.

  17. Technology transfer for DOE's office of buildings and community systems: assessment and strategies

    Brown, M.A.; Jones, D.W.; Kolb, J.O.; Snell, S.A.

    1986-07-01

    The uninterrupted availability of oil supplies over the past several years and the moderation of energy price increases has sent signals to consumers and decision-makers in the buildings industry that the ''energy crisis'' is over. As a result, efforts to promote energy-conserving technologies must emphasize benefits other than BTU savings. The improved ambience of daylit spaces and the lower first costs associated with installing down-sized HVAC systems in ''tight'' buildings are examples of benefits which are likely to more influential than estimates of energy saved. Successful technology transfer requires that an R and D product have intrinsic value and that these values be effectively communicated to potential users. Active technology transfer programs are more effective than passive ones. Transfer activities should involve more than simply making information available to those who seek it. Information should be tailored to meet the needs of specific user groups and disseminated through those channels which users normally employ. In addition to information dissemination, successful technology transfer involves the management of intellectual property, including patented inventions, copyrights, technical data, and rights to future inventions. When the public can best benefit from an invention through commercialization of a new product, the exclusivity necessary to protect the investment from copiers should be provided. Most federal technology transfer programs concentrate on information exchange and largely avoid intellectual property transfers.

  18. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  19. Destruction of Spores on Building Decontamination Residue in a Commercial Autoclave▿

    Lemieux, P.; Sieber, R.; Osborne, A.; Woodard, A.

    2006-01-01

    The U.S. Environmental Protection Agency conducted an experiment to evaluate the effectiveness of a commercial autoclave for treating simulated building decontamination residue (BDR). The BDR was intended to simulate porous materials removed from a building deliberately contaminated with biological agents such as Bacillus anthracis (anthrax) in a terrorist attack. The purpose of the tests was to assess whether the standard operating procedure for a commercial autoclave provided sufficiently robust conditions to adequately destroy bacterial spores bound to the BDR. In this study we investigated the effects of several variables related to autoclaving BDR, including time, temperature, pressure, item type, moisture content, packing density, packing orientation, autoclave bag integrity, and autoclave process sequence. The test team created simulated BDR from wallboard, ceiling tiles, carpet, and upholstered furniture, and embedded in the BDR were Geobacillus stearothermophilus biological indicator (BI) strips containing 106 spores and thermocouples to obtain time and temperature profile data associated with each BI strip. The results indicated that a single standard autoclave cycle did not effectively decontaminate the BDR. Autoclave cycles consisting of 120 min at 31.5 lb/in2 and 275°F and 75 min at 45 lb/in2 and 292°F effectively decontaminated the BDR material. Two sequential standard autoclave cycles consisting of 40 min at 31.5 lb/in2 and 275°F proved to be particularly effective, probably because the second cycle's evacuation step pulled the condensed water out of the pores of the materials, allowing better steam penetration. The results also indicated that the packing density and material type of the BDR in the autoclave could have a significant impact on the effectiveness of the decontamination process. PMID:17012597

  20. Destruction of spores on building decontamination residue in a commercial autoclave.

    Lemieux, P; Sieber, R; Osborne, A; Woodard, A

    2006-12-01

    The U.S. Environmental Protection Agency conducted an experiment to evaluate the effectiveness of a commercial autoclave for treating simulated building decontamination residue (BDR). The BDR was intended to simulate porous materials removed from a building deliberately contaminated with biological agents such as Bacillus anthracis (anthrax) in a terrorist attack. The purpose of the tests was to assess whether the standard operating procedure for a commercial autoclave provided sufficiently robust conditions to adequately destroy bacterial spores bound to the BDR. In this study we investigated the effects of several variables related to autoclaving BDR, including time, temperature, pressure, item type, moisture content, packing density, packing orientation, autoclave bag integrity, and autoclave process sequence. The test team created simulated BDR from wallboard, ceiling tiles, carpet, and upholstered furniture, and embedded in the BDR were Geobacillus stearothermophilus biological indicator (BI) strips containing 10(6) spores and thermocouples to obtain time and temperature profile data associated with each BI strip. The results indicated that a single standard autoclave cycle did not effectively decontaminate the BDR. Autoclave cycles consisting of 120 min at 31.5 lb/in2 and 275 degrees F and 75 min at 45 lb/in2 and 292 degrees F effectively decontaminated the BDR material. Two sequential standard autoclave cycles consisting of 40 min at 31.5 lb/in2 and 275 degrees F proved to be particularly effective, probably because the second cycle's evacuation step pulled the condensed water out of the pores of the materials, allowing better steam penetration. The results also indicated that the packing density and material type of the BDR in the autoclave could have a significant impact on the effectiveness of the decontamination process.

  1. Solar and Lighting Transmission through Complex Fenestration Systems of Office Buildings in a Warm and Dry Climate of Chile

    Waldo Bustamante

    2014-05-01

    Full Text Available Overheating, glare, and high-energy demand are recurrent problems in office buildings in Santiago, Chile (33°27'S; 70°42'W during cooling periods. Santiago climate is warm and dry, with high solar radiation and temperature during most of the year. The objective of this paper is to evaluate the thermal and daylighting performance of office buildings transparent façades composed of three different complex fenestration systems (CFS. Each CFS contains a different external shading device (ESD: (1 external roller, (2 vertical undulated and perforated screens, and (3 tilted undulated and perforated screens. The study was carried out by in situ monitoring in three office buildings in Santiago, Chile. Buildings were selected from a database of 103 buildings, representing those constructed between 2005 and 2011 in the city. The monitoring consisted of measuring the short wave solar and daylighting transmission through fenestration systemsby means of pyranometers and luxometers, respectively. This paper shows measurements that were carried out during summer period. A good performance is observed in a building with the external roller system. This system—applied to a northwest façade—shows a regular and high solar and daylighting control of incoming solar radiation. The other two ESD systems evidence a general good performance. However, some deficiencies at certain times of the day were detected, suggesting a non-appropriated design.

  2. Two-stage commercial evaluation of engineering systems production projects for high-rise buildings

    Bril, Aleksander; Kalinina, Olga; Levina, Anastasia

    2018-03-01

    The paper is devoted to the current and debatable problem of methodology of choosing the effective innovative enterprises for venture financing. A two-stage system of commercial innovation evaluation based on the UNIDO methodology is proposed. Engineering systems account for 25 to 40% of the cost of high-rise residential buildings. This proportion increases with the use of new construction technologies. Analysis of the construction market in Russia showed that the production of internal engineering systems elements based on innovative technologies has a growth trend. The production of simple elements is organized in small enterprises on the basis of new technologies. The most attractive for development is the use of venture financing of small innovative business. To improve the efficiency of these operations, the paper proposes a methodology for a two-stage evaluation of small business development projects. A two-stage system of commercial evaluation of innovative projects allows creating an information base for informed and coordinated decision-making on venture financing of enterprises that produce engineering systems elements for the construction business.

  3. Two-stage commercial evaluation of engineering systems production projects for high-rise buildings

    Bril Aleksander

    2018-01-01

    Full Text Available The paper is devoted to the current and debatable problem of methodology of choosing the effective innovative enterprises for venture financing. A two-stage system of commercial innovation evaluation based on the UNIDO methodology is proposed. Engineering systems account for 25 to 40% of the cost of high-rise residential buildings. This proportion increases with the use of new construction technologies. Analysis of the construction market in Russia showed that the production of internal engineering systems elements based on innovative technologies has a growth trend. The production of simple elements is organized in small enterprises on the basis of new technologies. The most attractive for development is the use of venture financing of small innovative business. To improve the efficiency of these operations, the paper proposes a methodology for a two-stage evaluation of small business development projects. A two-stage system of commercial evaluation of innovative projects allows creating an information base for informed and coordinated decision-making on venture financing of enterprises that produce engineering systems elements for the construction business.

  4. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies

  5. Closing the Loop with Sensors in Commercial Building Systems: Applying Lessons from Automotive Vehicles

    Mantese, Joseph

    2011-01-01

    Automotive systems have evolved extensively over the past 50 years, providing a fully integrated system of sub-systems that work in concert for optimal vehicle level closed loop control. In this talk we look at several automotive sub-systems: stability and control, safety and security, emissions and comfort, diagnostics and maintenance, infotainment and communications; with an eye toward understanding their technology drivers and associated value propositions. Conversely, we examine how commercial building systems currently are represented as a collection of sub-systems that often work independently of each other for local optimization, often relying upon open loop control systems developed and installed decades ago. Reasoning primarily by analogy we explore opportunities for energy and efficiency, comfort and environment, and safety/security; asking whether there is sufficient value associated with a new class of building sensors and how those technologies might be brought to bear in improving performance. Finally, we examine the fundamental architecture of detection systems built upon sensing elements, with the aim of understanding trade-offs between: detection, false alarm rate, power, and cost.

  6. Demand side management for commercial buildings using an in line heat pump water heating methodology

    Rankin, Riaan; Rousseau, Pieter G.; Eldik, Martin van

    2004-01-01

    Most of the sanitary hot water used in South African buildings is heated by means of direct electrical resistance heaters. This is one of the major contributors to the undesirably high morning and afternoon peaks imposed on the national electricity supply grid. For this reason, water heating continues to be of concern to the electricity supplier, ESCOM. Previous studies, conducted by the Potchefstroom University for Christian Higher Education in South Africa, indicated that extensive application of the so called inline heat pump water heating methodology in commercial buildings could result in significant demand side management savings to ESKOM. Furthermore, impressive paybacks can be obtained by building owners who choose to implement the design methodology on existing or new systems. Currently, a few examples exist where the design methodology has been successfully implemented. These installations are monitored with a fully web centric monitoring system that allows 24 h access to data from each installation. Based on these preliminary results, a total peak demand reduction of 108 MW can be achieved, which represents 18% of the peak load reduction target set by ESKOM until the year 2015. This represents an avoided cost of approximately MR324 (ZAR) [Int J Energy Res 25(4) (1999) 2000]. Results based on actual data from the monitored installations shows a significant peak demand reduction for each installation. In one installation, a hotel with an occupancy of 220 people, the peak demand contribution of the hot water installation was reduced by 86%, realizing a 36% reduction in peak demand for the whole building. The savings incurred by the building owner also included significant energy consumption savings due to the superior energy efficiency of the heat pump water heater. The combined savings result in a conservatively calculated straight payback period of 12.5 months, with an internal rate of return of 98%. The actual cost of water heating is studied by

  7. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  8. Simulation Study of Performance of Active Ceilings with Phase Change Material in Office Buildings under Extreme Climate Conditions

    Stefansen, Casper; Farhan, Hajan; Bourdakis, Eleftherios

    2018-01-01

    simulations were run with a building simulation software for eight climates. The chosen climates were Dubai –UAE, Istanbul – Turkey, Lima – Peru, Moscow – Russia, Nuuk – Greenland, Salvador – Brazil, Tokyo – Japan and Tromsø – Norway. Two models of a two-person office were made for each climate; one model...

  9. Energy analysis of under-floor air distribution (UFAD) system: An office building case study

    Alajmi, Ali F.; Abou-Ziyan, Hosny Z.; El-Amer, Wid

    2013-01-01

    Highlights: • The key issue for efficient performance of UFAD system is to ensure the thermal stratification establishment. • The unnecessarily excess air supplied to the room deteriorates the thermal stratification. • Improper UFAD operation increases the fan power and HVAC electric demand. • The proper UFAD system is typically more efficient than the existed UFAD system with energy savings of about 23–37%. • UFAD system shows over the CBAD system saving by about 37–39% during the peak months and 51% during October. - Abstract: This paper presents the results of an experimental and theoretical investigation to evaluate an under-floor air distribution (UFAD) system existed in an office building working on hot climate. Air temperature a distribution and supply air velocity are measured in two measuring stations; each consists of eight temperature sensors which were installed to measure room air temperatures along zone height. The obtained data shows an inefficient operation of the UFAD system which deteriorates the advantages of energy saving that presumed by UFAD system. The building energy simulation program, EnergyPlus, was used to identify the best setting of UFAD system and compare it with the existed UFAD and the conventional ceiling based air distribution (CBAD) system. The simulation results show that setting of room thermostat at 26 °C and supply air temperature at 18 °C provides the best efficient UFAD system. Due to improper operation of the tested UFAD system, its actual consumption is found to be higher than the best simulated UFAD by 23–37% during July to October. Also, the simulation results show that the HVAC demand of UFAD is lower than CBAD by 37–39% during July–September and 51% in October

  10. Light Pipe Transporter for High-rise Office Building in Tropical Climate

    Christopher Yii Sern Heng

    2016-01-01

    Full Text Available Daylight has known to bring benefits for human, psychologically and physiologically. It also provides better indoor environment quality and thus increase the performance and productivity of office workers as stated by Paevere (2009. However, due to economic reasons, the current practice of using deep open plan building has cause a dent to having daylight in the interior spaces, which cause a dependency on artificial lighting. Hence, to provide daylight in deep interior, light distribution system is needed. Although so, according to Hansen (2003, most of the systems can only illuminate up to 8m-10m depth. Therefore, light pipe (LP plays an essential role where it can illuminate up to 20m depth. LP’s efficiency depends on the 3 main components; collector, transporter and extractor. This research explores the effectiveness of horizontal LP through different type of transporter’s shapes which includes rectangular, triangular, square and semi-circle. Previous studies have shown differences of efficiency on the shaped while using vertical LP. This research’s analysis was done using a computer simulation, Integrated Environment Solution: Virtual Environment (IESVE, where DF of each shapes were compared to MS 1525:2007 benchmark. The viability of the software was also validated though an assessment with a physical scaled-model experiment that was conducted in an open car park in Universiti Teknologi Malaysia, Johor, Malaysia. The results from the simulation showed that semi-circle shaped transporter offered the same efficiency as rectangular shaped. These findings will promote the usage of LP in buildings as it decreases the costing for LP.

  11. Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning

    Coffey, Brian; Borgeson, Sam; Selkowitz, Stephen; Apte, Josh; Mathew, Paul; Haves, Philip

    2009-07-01

    This paper describes the origin, structure and continuing development of a model of time varying energy consumption in the US commercial building stock. The model is based on a flexible structure that disaggregates the stock into various categories (e.g. by building type, climate, vintage and life-cycle stage) and assigns attributes to each of these (e.g. floor area and energy use intensity by fuel type and end use), based on historical data and user-defined scenarios for future projections. In addition to supporting the interactive exploration of building stock dynamics, the model has been used to study the likely outcomes of specific policy and innovation scenarios targeting very low future energy consumption in the building stock. Model use has highlighted the scale of the challenge of meeting targets stated by various government and professional bodies, and the importance of considering both new construction and existing buildings.

  12. Real-Time Occupant Based Plug-in Device Control Using ICT in Office Buildings

    Woo-Bin Bae

    2016-03-01

    Full Text Available The purpose of this study is to reduce the unnecessary plug loads used by computers, monitors, and computer peripheral devices, all of which account for more than 95% of the entire plug loads of an office building. To this end, an occupant-based plug-in device control (OBC-P software was developed. The OBC-P software collects real-time information about the presence or absence of occupants who are connected to the access point through the Wifi and controls the power of monitors or computers, while a standby power off device controls computer peripheral devices. To measure the plug load saving of the occupant-based plug-in device control, an experiment was conducted, targeting 10 occupants of three research labs of the graduate school, for two weeks. The experiment results showed that it could save the plug loads of monitors and computer peripheral devices by 15% in the Awake mode, and by 26% in the Sleep mode.

  13. Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings

    Byung-Lip Ahn

    2015-06-01

    Full Text Available Light-emitting diode (LED lighting should be considered for lighting efficiency enhancement, however, waste heat from light-emitting diode (LED lighting increases the internal cooling load during the summer season. In order to solve this problem we propose a thermal management system for light-emitting diode (LED lighting with a heat exchanger module integrated with the building’s heating, ventilation, and air conditioning (HVAC system to move the lighting’s waste heat outdoors. An experiment was carried out to investigate the thermal effects in a test chamber and the heat exchange rate between the heat sink and the duct air. The heat generated by the light-emitting diode (LED lighting was calculated as 78.1% of light-emitting diode (LED input power and the heat exchange rate of the lighting heat exchange module was estimated to be between 86.5% and 98.1% according to the light-emitting diode (LED input power and the flow rate of air passing the heat sink. As a result, the average light-emitting diode (LED lighting heat contribution rate for internal heat gain was determined as 0.05; this value was used to calculate the heating and cooling energy demand of the office building through an energy simulation program. In the simulation results, the cooling energy demand was reduced by 19.2% compared with the case of conventionally installed light-emitting diode (LED lighting.

  14. Daylight Design of Office Buildings: Optimisation of External Solar Shadings by Using Combined Simulation Methods

    Javier González

    2015-05-01

    Full Text Available Integrating daylight and energy performance with optimization into the design process has always been a challenge for designers. Most of the building environmental performance simulation tools require a considerable amount of time and iterations for achieving accurate results. Moreover the combination of daylight and energy performances has always been an issue, as different software packages are needed to perform detailed calculations. A simplified method to overcome both issues using recent advances in software integration is explored here. As a case study; the optimization of external shadings in a typical office space in Australia is presented. Results are compared against common solutions adopted as industry standard practices. Visual comfort and energy efficiency are analysed in an integrated approach. The DIVA (Design, Iterate, Validate and Adapt plug-in for Rhinoceros/Grasshopper software is used as the main tool, given its ability to effectively calculate daylight metrics (using the Radiance/Daysim engine and energy consumption (using the EnergyPlus engine. The optimization process is carried out parametrically controlling the shadings’ geometries. Genetic Algorithms (GA embedded in the evolutionary solver Galapagos are adopted in order to achieve close to optimum results by controlling iteration parameters. The optimized result, in comparison with conventional design techniques, reveals significant enhancement of comfort levels and energy efficiency. Benefits and drawbacks of the proposed strategy are then discussed.

  15. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China

    Zhibin Wu

    2017-09-01

    Full Text Available Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC located in the hot summer and cold winter (HSCW climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET* was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  16. Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China.

    Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong

    2017-09-21

    Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.

  17. Improving indoor air quality and thermal comfort in office building by using combination filters

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  18. Life Cycle Assessment of Flat Roof Technologies for Office Buildings in Israel

    Svetlana Pushkar

    2016-01-01

    Full Text Available The goal of the current study was to evaluate the environmental damage from three flat roof technologies typically used in Israel: (i concrete, (ii ribbed slab with concrete blocks, and (iii ribbed slab with autoclaved aerated blocks. The roofs were evaluated using the Life Cycle Assessment (LCA methodology. The Production and Construction (P and C, Operational Energy (OE, and Maintenance to Demolition (MtoD stages were considered. The roofs were modeled based on an office building module located in the four climate zones of Israel, and the hierarchical ReCiPe2008 Life Cycle Impact Assessment (LCIA method was applied. The percent difference of one, which is the default methodological option of ReCiPe2008, and an ANOVA of the six methodological options of ReCiPe2008 were used. The results revealed that (i in a hot climate, the best roof technology can be selected by considering only the OE stage, whereas in a mild climate, both the OE and P and C stages must be considered; (ii in a hot climate, the best roof technology is a concrete roof, but in a mild climate, the best options are ribbed slab roofs with concrete blocks and autoclaved aerated blocks; and (iii the conjugation of ReCiPe2008 with a two-stage nested ANOVA is the appropriate approach to evaluate the differences in environmental damage in order to compare flat roof technologies.

  19. Evaluation of solar thermal driven cooling system in office buildings in Saudi Arabia

    Linjawi, Majid T.; Talal, Qazi; Al-Sulaiman, Fahad A.

    2017-11-01

    In this study solar driven absorption chiller is used to reduce the peak cooling load in office buildings in Saudi Arabia for different selected cities. The study is conducted for six cities of Abha, Dhahran, Hail, Jeddah, Nejran and Riyadh under three operating durations of 4, 6, and 8 hours using flat plate or evacuated tube collectors. The energy analysis concluded that flat plate collectors are better than evacuated tube collectors. However, the results from economic analysis suggest that while proposing a gas fired absorption chiller will reduce running costs, further reduction by using solar collectors is not feasible because of its high initial cost. At the best case scenario the Net Present Value of a 10 Ton Absorption chiller operated by natural gas boiler and two large flat plate collectors (12m2 each) running for 8 hours/day, 5days/week has a value of 117,000 and Internal Rate of Return (IRR) of 12%. Solar driven absorption chiller could be more feasible if the gas prices increases or the solar collector prices decreases significantly. Finally, government economic incentives and taxes are recommended to provide a boost for the feasibility of such projects.

  20. Overall efficiency of office buildings; Gesamtenergieeffizienz von Buero-Bauten. Optimierung des Heizwaermebedarfs vs. Optimierung der Gesamtenergieeffizienz - Schlussbericht

    Gadola, R.; Menti, U.-P.; Pluess, I.; Klauz, S. [Hochschule Luzern - Technik und Architektur Zentrum fuer Integrale Gebaeudetechnik (ZIG), Horw (Switzerland); Menard, M. [Lemon Consult GmbH, Zuerich (Switzerland)

    2010-04-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the overall efficiency of office buildings. The optimisation of heating requirements and the optimisation of overall energy efficiency are compared. The trend towards compact, very well insulated buildings as propagated by current energy regulations is examined in the light of other energy-saving aspects such as air-conditioning requirements and lighting. The Swiss 'Minergie-P' standard that calls for extremely low energy consumption is discussed in this connection. Primary energy requirements and greenhouse gas emissions are discussed and sensitivity analyses for various factors affecting buildings are looked at. Also 'grey energy' in materials is considered.

  1. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  2. What drives the carbon mitigation in Chinese commercial building sector? Evidence from decomposing an extended Kaya identity.

    Ma, Minda; Cai, Weiguang

    2018-09-01

    Energy efficiency in the building sector is expected to contribute >50% to the nationwide carbon mitigation efforts for achieving China's carbon emission peak in 2030, and carbon mitigation in Chinese commercial buildings (CMCCB) is an indicator of this effort. However, the CMCCB assessment has faced the challenge of ineffective and inadequate approaches; therefore, we have followed a different approach. Using the China Database of Building Energy Consumption and Carbon Emissions as our data source, our study is the first to employ the Logarithmic Mean Divisia Index (LMDI) to decompose five driving forces from the Kaya identity of Chinese commercial building carbon emissions (CCBCE) to assess the CMCCB values in 2001-2015. The results of our study indicated that: (1) Only two driving forces (i.e., the reciprocal of GDP per capita of Tertiary Industry in China and the CCBCE intensity) contributed negatively re m i to CCBCE during 2001-2015, and the quantified negative contributions denoted the CMCCB values. Specifically, the CMCCB values in 2001-2005, 2006-2010, and 2011-2015 were 123.96, 252.83, and 249.07 MtCO 2 , respectively. (2) The data quality control involving the CMCCB values proved the reliability of our CMCCB assessment model, and the universal applicability of this model was also confirmed. (3) The substantial achievements of the energy efficiency project in the Chinese commercial building sector were the root cause of the rapidly growing CMCCB. Overall, we believe that our model successfully bridges the research gap of the nationwide CMCCB assessment and that the proposed model is also suitable either at the provincial level or in different building climate zones in China. Meanwhile, a global-level assessment of the carbon mitigation in the commercial building sector is feasible through applying our model. Furthermore, we consider our contribution as constituting significant guidance for developing the building energy efficiency strategy in China in the

  3. Fungal colonization of fiberglass insulation in the air distribution system of a multi-story office building: VOC production and possible relationship to a sick building syndrome

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Noble, J. A.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Complaints characteristic of those for sick building syndrome prompted mycological investigations of a modern multi-story office building on the Gulf coast in the Southeastern United States (Houston-Galveston area). The air handling units and fiberglass duct liner of the heating, ventilating and air conditioning system of the building, without a history of catastrophic or chronic water damage, demonstrated extensive colonization with Penicillium spp and Cladosporium herbarum. Although dense fungal growth was observed on surfaces within the heating-cooling system, most air samples yielded fewer than 200 CFU m-3. Several volatile compounds found in the building air were released also from colonized fiberglass. Removal of colonized insulation from the floor receiving the majority of complaints of mouldy air and continuous operation of the units supplying this floor resulted in a reduction in the number of complaints.

  4. Building the institutional capacity for managing commercial high-level radioactive waste

    None

    1982-05-01

    In July 1981, the Office of Nuclear Waste Management of the Department of Energy contracted with the National Academy of Public Administration for a study of institutional issues associated with the commercial radioactive waste management program. The two major sets of issues which the Academy was asked to investigate were (1) intergovernmental relationships, how federal, state, local and Indian tribal council governments relate to each other in the planning and implementation of a waste management program, and (2) interagency relationships, how the federal agencies with major responsibilities in this public policy arena interact with each other. The objective of the study was to apply the perspectives of public administration to a difficult and controversial question - how to devise and execute an effective waste management program workable within the constraints of the federal system. To carry out this task, the Academy appointed a panel composed of individuals whose background and experience would provide the several types of knowledge essential to the effort. The findings of this panel are presented along with the executive summary. The report consists of a discussion of the search for a radioactive waste management strategy, and an analysis of the two major groups of institutional issues: (1) intergovernmental, the relationship between the three major levels of government; and (2) interagency, the relationships between the major federal agencies having responsibility for the waste management program.

  5. Building the institutional capacity for managing commercial high-level radioactive waste

    1982-05-01

    In July 1981, the Office of Nuclear Waste Management of the Department of Energy contracted with the National Academy of Public Administration for a study of institutional issues associated with the commercial radioactive waste management program. The two major sets of issues which the Academy was asked to investigate were (1) intergovernmental relationships, how federal, state, local and Indian tribal council governments relate to each other in the planning and implementation of a waste management program, and (2) interagency relationships, how the federal agencies with major responsibilities in this public policy arena interact with each other. The objective of the study was to apply the perspectives of public administration to a difficult and controversial question - how to devise and execute an effective waste management program workable within the constraints of the federal system. To carry out this task, the Academy appointed a panel composed of individuals whose background and experience would provide the several types of knowledge essential to the effort. The findings of this panel are presented along with the executive summary. The report consists of a discussion of the search for a radioactive waste management strategy, and an analysis of the two major groups of institutional issues: (1) intergovernmental, the relationship between the three major levels of government; and (2) interagency, the relationships between the major federal agencies having responsibility for the waste management program

  6. Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint

    Schott, M.; Scheib, J.; Long, N.; Fleming, K.; Benne, K.; Brackney, L.

    2012-06-01

    Many studies have reported energy savings after installing a dashboard, but dashboards provide neither individual feedback to the occupant nor the ability to report individual comfort. The Building Agent (BA) provides an interface to engage the occupant in a conversation with the building control system and the building engineer. Preliminary outcomes of the BA-enabled feedback loop are presented, and the effectiveness of the three display modes will be compared to other dashboard studies to baseline energy savings in future research.

  7. Walmart - Saving Energy, Saving Money Through Comprehensive Retrofits, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    None

    2015-03-01

    Walmart partnered with the U.S. Department of Energy (DOE) in 2009 to develop and demonstrate energy retrofits for existing buildings. The goal was to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2007, as part of DOE's Commercial Building Partnerships (CBP) Program. The project presented here, the retrofit of a 213,000 square foot store in Centennial, Colorado, withefficiency measures across multiple building systems, is part of Walmart's ongoing environmental sustainability program, which originated in 2005.

  8. Thermal performance of air-conditioned office buildings constructed with inclined walls in different climates in China

    Chan, A.L.S.; Chow, T.T.

    2014-01-01

    Highlights: • A generic fully air-conditioned office building with inclined walls was modeled. • Simulations were run under climatic conditions in three modern cities in China. • Reduction in cooling load can outweigh the increase in heating load for Hong Kong. • Inclined angle of 30° is appropriate for inverted pyramidal building in Hong Kong. • Building constructed with inclined walls is not encouraged in Shanghai and Beijing. - Abstract: An inverted pyramidal building is built with inclined walls instead of the traditional vertical façades. In terms of thermal performance, an inverted pyramidal building can provide a self-shading effect against the beam solar radiation, leading to a reduction in solar heat gain as well as building cooling load. On the other hand, the heating requirement of an inverted pyramidal building will be increased in winter. There is a strong dependency of building performance on the climatic condition. In this study, a generic air-conditioned office building with inclined walls set at different inclination angles was modeled using a building energy simulation program. Computer simulations were run to assess the thermal performance of the building constructed with inclined walls under different climatic conditions in three modern cities in China–Hong Kong, Shanghai and Beijing. The results reveal that for the building cases with inclined walls set at different inclination angles in subtropical Hong Kong, the saving in annual cooling load ranges from 0.6% to 10.9% and can outweigh the increase in heating load. Moreover, an inclination angle of 30° was found as a better design option for an inverted pyramidal building with symmetrical layout design under the climatic condition in Hong Kong. For the other two cities: Shanghai and Beijing, the saving in cooling load due to self-shading effect cannot offset the increased heating requirement. Design and construction of an inverted pyramidal building is not encouraged in these two

  9. Energy conservation in existing office buildings. Appendices to report, Phase I, Volume 2

    1977-06-01

    A blank form of Questionnaire No. 1 is first presented, followed by data compiled from that questionnaire. Then data are presented on the analyses of the 436 buildings, statistical validation for selection of the 44 building sample, and some examples of the matching buildings for the 44 building sample. Questionnaire No. 2 is then given, followed by additional data collected from the study concerning energy consumption and building characteristics. To complete the appendices, a simulation of a typical building and a hypothetical building is included. (MCW)

  10. Control of disturbing loads in residential and commercial buildings via geometric algebra.

    Castilla, Manuel-V

    2013-01-01

    Many definitions have been formulated to represent nonactive power for distorted voltages and currents in electronic and electrical systems. Unfortunately, no single universally suitable representation has been accepted as a prototype for this power component. This paper defines a nonactive power multivector from the most advanced multivectorial power theory based on the geometric algebra (GA). The new concept can have more importance on harmonic loads compensation, identification, and metering, between other applications. Likewise, this paper is concerned with a pioneering method for the compensation of disturbing loads. In this way, we propose a multivectorial relative quality index δ(~) associated with the power multivector. It can be assumed as a new index for power quality evaluation, harmonic sources detection, and power factor improvement in residential and commercial buildings. The proposed method consists of a single-point strategy based of a comparison among different relative quality index multivectors, which may be measured at the different loads on the same metering point. The comparison can give pieces of information with magnitude, direction, and sense on the presence of disturbing loads. A numerical example is used to illustrate the clear capabilities of the suggested approach.

  11. Capability and deficiency of the simplified model for energy calculation of commercial buildings in the Brazilian regulation

    Melo, A.P.; Lamberts, R.; Costola, D.; Hensen, J.L.M.

    2011-01-01

    This paper provides a preliminary assessment on the accuracy of the Brazilian regulation simplified model for commercial buildings. The first step was to compare its results with BESTEST. The study presents a straightforward approach to apply the BESTEST in other climates than the original one

  12. Sick building syndrome (SBS) among office workers in a Malaysian university--Associations with atopy, fractional exhaled nitric oxide (FeNO) and the office environment.

    Lim, Fang-Lee; Hashim, Zailina; Md Said, Salmiah; Than, Leslie Thian-Lung; Hashim, Jamal Hisham; Norbäck, Dan

    2015-12-01

    There are few studies on sick building syndrome (SBS) including clinical measurements for atopy and fractional exhaled nitric oxide (FeNO). Our aim was to study associations between SBS symptoms, selected personal factors, office characteristics and indoor office exposures among office workers from a university in Malaysia. Health data were collected by a questionnaire (n=695), skin prick test (SPT) (n=463) and FeNO test (n=460). Office settled dust was vacuumed and analyzed for endotoxin, (1,3)-β-glucan and house dust mites (HDM) allergens group 1 namely Dermatophagoides pteronyssinus (Der p 1) and Dermatophagoides farinae (Der f 1). Office indoor temperature, relative air humidity (RH), carbon monoxide (CO) and carbon dioxide (CO2) were measured by a direct reading instrument. Associations were studied by two-levels multiple logistic regression with mutual adjustment and stratified analysis. The prevalence of weekly dermal, mucosal and general symptoms was 11.9%, 16.0% and 23.0% respectively. A combination of SPT positivity (allergy to HDM or cat) and high FeNO level (≥25 ppb) was associated with dermal (p=0.002), mucosal (p<0.001) and general symptoms (p=0.05). Der f1 level in dust was associated with dermal (p<0.001), mucosal (p<0.001) and general (p=0.02) symptoms. Among those with allergy to D. farinae, associations were found between Der f 1 levels in dust and dermal (p=0.003), mucosal (p=0.001) and general symptoms (p=0.007). Office-related symptoms were associated with Der f 1 levels in dust (p=0.02), low relative air humidity (p=0.04) and high office temperature (p=0.05). In conclusion, a combination of allergy to cat or HDM and high FeNO is a risk factor for SBS symptoms. Der f 1 allergen in dust can be a risk factor for SBS in the office environment, particularly among those sensitized to Der f 1 allergen. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A Techno-Economic Analysis of Photovoltaic System Design as Specifically Applied to Commercial Buildings in Ireland

    Jonathan Blackledge

    2012-11-01

    Full Text Available This paper evaluates the viability of installing photovoltaic (PV systems in existing commercial buildings in Dublin. Data collected from previously installed photovoltaic systems at the Dublin Institute of Technology was analysed in order to determine the potential solar resource available in Ireland. A 1.1 kWp photovoltaic system installed in Dublin can produce over 900 kWh of electricity in a given year depending on the available solar resource for that year. A feasibility study was conducted in Dublin city centre in order to evaluate the technical, financial and environmental aspects of integrating a PV system into an existing building. The intention is that the results from this work will help in demonstrating the benefits and challenges associated with installing PV systems in existing commercial buildings in Ireland.

  14. The role of corporate reputation and employees' values in the uptake of energy efficiency in office buildings

    Pellegrini-Masini, Giuseppe, E-mail: gp89@hw.ac.uk [School of the Built Environment, Chadwick Building, Heriot-Watt University, Riccarton, EH14 4AS Edinburgh (United Kingdom); Leishman, Chris, E-mail: chris.leishman@glasgow.ac.uk [School of Social and Political Sciences, University of Glasgow, 25 Bute Gardens, G12 8RS Glasgow (United Kingdom)

    2011-09-15

    Although office market actors in the United Kingdom show a growing interest in energy efficiency, the pace of takeup of energy efficient office features is slow. Previous studies have highlighted the roles of limited direct financial costs and benefits ('efficiency gaps') and market barriers in limiting the rate of technology adoption. This study provides further evidence on the importance of these factors, but the primary contribution is focused on the role of corporate reputation and on the importance of individuals' values in shaping corporate behaviour. The paper presents a theoretical framework to explain environmental decision making in firms and we present qualitative evidence drawing from sixteen semi-structured individual and group interviews with office market stakeholders in London, Glasgow and Edinburgh. The research finds that companies, despite gradually becoming more energy conscious, still regard energy costs as a negligible part of their business costs. Nevertheless, an increasingly important driver is the reputational gain obtained by corporate businesses implementing sustainable practices. All the interviewees agreed that the pace of change in the office market is slow and that only further policy interventions will accelerate it. - Highlights: > Corporate reputation leads large businesses to seek energy efficient offices. > Investors show growing interest in green offices because of CSR and investment value. > Energy efficiency is not yet a top priority attribute in building choice. > Stakeholders believe that regulation is needed to accelerate the pace of change.

  15. The role of corporate reputation and employees' values in the uptake of energy efficiency in office buildings

    Pellegrini-Masini, Giuseppe; Leishman, Chris

    2011-01-01

    Although office market actors in the United Kingdom show a growing interest in energy efficiency, the pace of takeup of energy efficient office features is slow. Previous studies have highlighted the roles of limited direct financial costs and benefits ('efficiency gaps') and market barriers in limiting the rate of technology adoption. This study provides further evidence on the importance of these factors, but the primary contribution is focused on the role of corporate reputation and on the importance of individuals' values in shaping corporate behaviour. The paper presents a theoretical framework to explain environmental decision making in firms and we present qualitative evidence drawing from sixteen semi-structured individual and group interviews with office market stakeholders in London, Glasgow and Edinburgh. The research finds that companies, despite gradually becoming more energy conscious, still regard energy costs as a negligible part of their business costs. Nevertheless, an increasingly important driver is the reputational gain obtained by corporate businesses implementing sustainable practices. All the interviewees agreed that the pace of change in the office market is slow and that only further policy interventions will accelerate it. - Highlights: → Corporate reputation leads large businesses to seek energy efficient offices. → Investors show growing interest in green offices because of CSR and investment value. → Energy efficiency is not yet a top priority attribute in building choice. → Stakeholders believe that regulation is needed to accelerate the pace of change.

  16. Design methodology and criteria for daylight and thermal comfort in nearly-zero energy office buildings in Nordic climate

    Karlsen, Line Røseth

    The objective of this PhD thesis was to arrange for an integrated building design with respect to thermal comfort, daylighting and energy use, applicable for office buildings in Nordic climate. In order to achieve this, it is suggested that modelling of mean radiant temperature (MRT) should...... into the simulation tool IDA ICE. Furthermore, the control of solar shading is given attention, since it is a crucial link between the thermal and daylighting performance. The thesis presents results of an occupant survey with 46 subjects, which was carried out to investigate occupants’ preferences towards...

  17. Operation of a novel two-pipe active beam system in an office building: a thermal comfort study

    Maccarini, Alessandro; Hultmark, Göran; Bergsøe, Niels Christian

    2018-01-01

    This paper presents an investigation regarding a thermal comfort study carried out in an office building located in Jönköping, Sweden. The particularity is that, in authors’ knowledge, this is the first building equipped with a novel active beam system that operates a water loop with temperatures...... for a continuous period of 24 hours. The daily monitoring of the thermal environment showed that the room air temperature was between approximately 21 °C and 23 °C all year round. No significant vertical air temperature difference was noticed, and the draught rate was below 10% for most of the cases....

  18. Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers

    Pless, S.; Torcellini, P.

    2012-05-01

    This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

  19. Built sustainability. The office building of the Federal Ministry for the Environment in Berlin; Gebaute Nachhaltigkeit. Der Berliner Dienstsitz des Bundesumweltministeriums

    Mager, Hans; Schulz, Juergen; Weigand, Reinhold (comps.)

    2011-06-15

    With the move into the office building in the Stresemann Street in Berlin (Federal Republic of Germany), the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety adopts a remarkable new building in the new centre of Berlin. It is the first Federal authority at all which works in a low-energy and passive house. This brochure under consideration reports on the history and architecture of the new office building as well as its sustainable energy management and life cycle assessments.

  20. [Hygienic assessment of a recirculatory combined air-conditioning extract-and-input system in office building].

    Malysheva, A G; Abramov, E G

    2006-01-01

    The high concentrations of lead were reveled in the air and dust of some premises and on the filters of a combined air-conditioning extract-and-input system in the high-rise office buildings located in the ecologically lead favorable environment. The dust content of lead in some premises on the first floors dust was as high as 200 mg/kg, which was more than 6 times higher than that in the soil at the highway near the office buildings. The use of new technologies and devices for cleaning and optimizing the air in the premises requires analytical studies to assess the quality of the environment, by taking into account the optimal conditions of their operation.