WorldWideScience

Sample records for commercial motor gasoline

  1. 40 CFR 79.32 - Motor vehicle gasoline.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle gasoline. 79.32 Section...) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.32 Motor vehicle gasoline. (a) The following fuels commonly or commercially known or sold as motor vehicle gasoline are hereby...

  2. Motor Gasoline Market Model documentation report

    International Nuclear Information System (INIS)

    1993-09-01

    The purpose of this report is to define the objectives of the Motor Gasoline Market Model (MGMM), describe its basic approach and to provide detail on model functions. This report is intended as a reference document for model analysts, users, and the general public. The MGMM performs a short-term (6- to 9-month) forecast of demand and price for motor gasoline in the US market; it also calculates end of month stock levels. The model is used to analyze certain market behavior assumptions or shocks and to determine the effect on market price, demand and stock level

  3. Gasoline sales post minimal gain in 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-22

    Despite the continuing emphasis on conservation and the growing trend to smaller sized automobiles, sales of motor gasoline across Canada posted a gain of 0.4% in 1986. Figures are included in this survey for Canadian motor gasoline sales categorized by province, type of gasoline, and months of 1985 and 1986. Sales of refiners' diesel fuel oil are also categorized by province and by months of 1985 and 1986. Motor gasoline disposition for 1983-1986 is categorized into retail pump sales, road and urban transport, agriculture, public administration, and commercial and other institutional markets. Also included are figures for refiners' propane sales for 1983-1986 by province.

  4. Analyze Experiment For Vigas and Pertamax to Performance and Exhaust Gas Emission for Gasoline Motor 2000cc

    Science.gov (United States)

    As'adi, Muhamad; Chrisna Ayu Dwiharpini Tupan, Diachirta

    2018-02-01

    The purpose and target for this analyze experiment is we get the performance variabel from gasoline motor which used LGV for fuel and Pertamax, so can give knowledge to community if LGV can be using LGV for fuel to transportation industry and more economic. We used experiment method of engine gasoline motor with 2000 cc which is LGV and Pertamax for fuel. The experiment with static experiment tes above Dyno Test. The result is engine perform to subscribe Torque, power, fuel consumption. Beside the static test we did the Exhaust Steam Emission. The result is the used LGV with the commercial brand Vigas can increase the maximum Engine Power 20.86% and Average Power 14.1%, the maximum torque for Motor which is use LGV as fuel is smaller than Motor with Pertamax, the decrease is 0.94%.Using Vigas in Motor can increase the mileage until 6.9% compare with the Motor with pertamax.Air Fuel Ratio (AFR) for both of the fuels still below the standard, so still happen waste of fuel, specially in low compression.Using Vigas can reduce the Exhaust Steam Emission especially CO2

  5. Correlation of breast cancer incidence with the number of motor vehicles and consumption of gasoline in Korea.

    Science.gov (United States)

    Park, Boyoung; Shin, Aesun; Jung-Choi, Kyunghee; Ha, Eunhee; Cheong, Hae-Kwan; Kim, Hyun Jeong; Park, Kyung Hwa; Jang, Sungmi; Moon, Byung-In; Ha, Mina

    2014-01-01

    While several reproductive and lifestyle-related factors are already well-known as established risk factors for breast cancer, environmental factors have attracted attention only recently. The objective of the current study was to assess the association between the breast cancer incidences in females, the mortality rate and the number of motor vehicles on the one side and the consumption of gasoline which could work as a major source of air pollution at the other side. The breast cancer incidences and the mortality trends were compared with various indices of westernization like dietary patterns or industrialization with 10 years lag of time. Geographical variations with 10, 15 and 20 years lag of time were assessed between the breast cancer incidence in 2010 and the number of motor vehicles as well as the consumption of gasoline. The upward trend of motor vehicle numbers proved to be comparable to those of breast cancer incidence and mortality. However, the consumption of gasoline started to decrease since the mid-1990s. The geographic distribution of motor vehicle numbers and gasoline consumption in 1990 is in a positive correlation with the breast cancer incidence rates in 2010 and the 20-year lag time (R2 0.379 with the number of motor vehicles and 0.345 with consumption of gasoline). In a linear relationship between the breast cancer incidences in 2010 and the log transformed number of motor vehicles, the log transformed consumption of gasoline in 2000 also showed a positive relationship (R2 0.367 with the number of motor vehicles and 0.329 with consumption of gasoline). The results of the current study indicate that there may be a positive relation between the number of vehicles, gasoline consumption and the incidence of breast cancer from the aspects of long-term trends and geographical variation.

  6. Gasoline standard Motor monthly Prices, Projection and Impact, during 1999

    International Nuclear Information System (INIS)

    Unidad de Planeacion Minero Energetica, UPME

    1999-01-01

    The liberation of prices for the standard gasoline and ACPM, that was given starting from January of 1.999, it outlines uncertainties on the possible prices evolution, along the supply chain until the final user, in comparison with the system previous of control and adjustment. This article presents an approach to the possible evolution of the gasoline motor prices during 1.999, in their different components. It makes it from the entrance to the producer until when one sells the public to a maximum price that includes the super tax. Additionally, it makes a preliminary calculation of the impact of the prices prospective month to month on the cost of transport of ECOPETROL revenues and the Nation revenues. The prospective annual percentage variation is presented from the entrance to the producer and of the other components of the price of the standard gasoline motor in different scenarios of the rate variation. In the most probable scenario, a variation is expected from the entrance to the producing of 1,9% and an increment in the sale price to the public, without including the super tax, of 12,6%

  7. Optimization of the fluid catalytic cracking unit performance by application of a high motor Octane catalyst and reduction of gasoline vapour pressure

    International Nuclear Information System (INIS)

    Chavdarov, I.; Stratiev, D.; Shishkova, I.; Dinkov, R.; Petkov, P.

    2013-01-01

    Full text: The fluid catalytic cracking (FCC) gasoline is the main contributor to the refinery gasoline pool in the LUKOIL Neftohim Burgas (LNB) refinery. Next in quantity contributor in the refinery gasoline pool is the reformate. The FCC gasoline sensitivity (MON-RON) is about 12 points. The reformer gasoline sensitivity is 11 points. The high sensitivity of the main contributors to the LNB refinery gasoline pool leads to a shortage in the motor octane number. For that reason a selection of an FCC catalyst that is capable of increasing the motor octane number of the FCC gasoline was performed. The application of this catalyst in the LNB FCC unit has led to an increase of the motor octane number of the FCC gasoline by 0.5 points, which enabled the refinery to increase the production of automotive gasolines by 1.3 % and to increase the share of premium automotive gasoline by 5 %. This had an effect of improvement of the refinery economics by a six figure number of US $ per year. The optimization of the FCC gasoline Reid Vapor Pressure (RVP) during the winter season, consisting in a reduction of the RVP from 60 to 50 kPa and an increase of the FCC C 4 olefins yield, has led to an augmentation of high motor octane number alkylate production. As a result the refinery economics was improved by a five figure number of US $ per year. key words: FCC gasoline motor octane number, gasoline RVP, FCC operation profitability

  8. Effect of ZSM-5 on the production of reformulated gasoline. Comparison between FCC pilot plant and commercial results

    International Nuclear Information System (INIS)

    Lappas, A.A.; Iatridis, D.; Vasalos, I.A.; Phyxogios, G.

    1999-01-01

    One of the more interesting ways for production of light olefins and for minimization of Gasoline olefins is the use of catalytic additives in the FCC (fluid catalytic cracking) inventory. The most widely used additive for the FCC process is the ZSM-5 which is a shape selective zeolite. When this additive is added to FCC units, it boosts the yields of LPG's olefins at the expense of gasoline, while increasing gasoline RON. The addition of ZSM-5 offers a great flexibility to a refinery since, in a relatively simple and cheap way, it can increase the RON and produces higher yields of light olefins. For all the above reasons the last years more studies are carried out in order to investigate the effect of this additive. In study presented in this paper, main emphasis was given, for the investigation of the effect of ZSM- 5 addition on FCC product distribution and especially on gasoline olefins. Moreover, in the previous literature works the ZSM-5 influences were examined using mainly fixed bed reactors. In the present study the investigation was carried out in a FCC pilot plant. The additive was also added in a commercial FCC unit of a Greek refinery (Hellenic Aspropyrgos Refinery - HAR) and thus comparison results of commercial and pilot plant test are also presented. The above study is part of a research collaboration which exists the last 10 years between the laboratory of Environmental Fuels and hydrocarbons of Chemical Process Engineering Research Institute (LEFH/CPERI) and the main Greek refineries (HEL.PETROLEUM, Motor Oil Hellas Refinery). The target of this research collaboration is i) the development of technology for the production of reformulated fuels and hydrocarbons and ii) to assist the Greek refineries to face the new regulations for environmental friendly fuels

  9. 49 CFR 392.22 - Emergency signals; stopped commercial motor vehicles.

    Science.gov (United States)

    2010-10-01

    ... REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Stopped Commercial Motor Vehicles § 392.22 Emergency signals; stopped commercial motor vehicles. (a) Hazard warning signal flashers. Whenever a commercial motor vehicle... than necessary traffic stops, the driver of the stopped commercial motor vehicle shall immediately...

  10. Recovery of gasoline

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-27

    The abstract describes a process for recovering a maximum quantity of commercial gasoline from a composite hydrocarbon stream containing hydrocarbons within and below the gasoline boiling range, including olefins. The hydrocarbon stream is separated into low vapor pressure gasoline and a gas fraction consisting of hydrocarbons of the 4 carbon atom group and some of the 3 carbon atom group. The gas fraction is subjected to a polymerization operation, characterized by utilizing the products of the polymerization procedure - both liquid polymers and unconverted gases - to increase the yield of gasoline and to adjust the low vapor pressure gasoline to the vapor pressure of commercial gasoline. A fraction of the gaseous products of the polymerization procedure are used for this purpose. The remainder of the gaseous products are recycled through the polymerization operation.

  11. 50 CFR 35.5 - Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Commercial enterprises, roads, motor... Rules § 35.5 Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft... private rights, there shall be no commercial enterprise and no permanent road within a wilderness unit...

  12. Commercial-grade motors in safety-related applications: Final report

    International Nuclear Information System (INIS)

    Holzman, P.M.

    1988-04-01

    The objective of this project was to discuss the process necessary to utilize commercial grade equipment in safety related applications and to provide utilities with guidance for accepting commercial grade motors for safety-related applications. The generic commercial-grade concepts presented in this report can be successfully applied to motors. Commercial grade item utilization has the greatest applicability to motors in ''mild'' environments, because these motors are essentially similar to commercial grade motors in materials, construction methods, and capabilities. The acceptance process is less applicable to motors that are subject to ''harsh'' environments during postulated accidents, because of the unique design features and testing required to qualify these motors

  13. Evaluation of Motor Gasoline Stability

    Science.gov (United States)

    1990-12-01

    CAMPINNE AIR POLLUTION CONTROL I LABORATOIRE MECANIQUE TRANSPORT 2565 PLYMOUTH ROAD AVENUE DE LA RENAISSANCE, 3D ANN ARBOR MI 48105 B-1040 BRUSSELS 5...CUARTEL GENERAL DEL EJERCITO ATTN: MR K LAURINSEN ATTN: MAJ M ENGO NOGUES GADHOLTVEJ 11 DIVISION DE LOGISTICA (DIAM/LABCAMVE) DK-9900 FREDERIKSHAVN...Gum for Typical Civilian Gasolines Transported by CEPS and F-46 Gasolines Stored by CEPS ...................................... 47 B. Potential Gum

  14. Analysis of Physicochemical Properties of Mexican Gasoline and Diesel Reformulated with Ethanol

    Directory of Open Access Journals (Sweden)

    Porfirio Caballero-Mata

    2012-07-01

    Full Text Available High energy prices, environmental issues and increasing importation of fossil fuels has provoked, in some countries, a reorientation of resources towards the development of biofuels that can partially substitute the consumption of fossil fuels. Ethanol is one of the biofuels more commonly used in the world; in the United States, Brazil and Australia gasoline blends that reach up to 85% Ethanol are commercialized. This work presents the results of a physicochemical characterization of commercial Mexican gasoline (Magna and Premium and diesel blends with 10% vol. and 15% vol. anhydrous Ethanol. The analytical testing included: Research Octane Number, Motor Octane Number, Cetane Number, Reid Vapor Pressure, Distillation Curve and Heating Value. The stability of the blends was also evaluated. The theoretical emissions of CO2 were calculated based on the results of the physicochemical characterization. The ethanol-gasoline blends increased their Octane Number with respect to the commercial gasoline, while conserving an appropriate Distillation Index. The Cetane Number of the ethanol-diesel blends showed a substantial decrease, while the heating value of gasoline and diesel blends was negatively affected by the addition of ethanol. Nevertheless, taking into account the credits by the use of a renewable fuel, the use of the reformulated gasoline blends would imply a maximum theoretical reduction of 7.5% in CO2 emissions whereas in the case of ethanol-diesel blends it would represent a 9.2% decrease.

  15. Analytical Studies on the Quality and Environmental Impact of Commercial Motor Gasoline Available in Multan Region of Pakistan

    Directory of Open Access Journals (Sweden)

    Ghulam Yasin

    2008-12-01

    Full Text Available Physico-chemical characteristics such as specific gravity, reid vapour pressure, copper corrosion, distillation (I.B.P., F.B.P., Total recovery & residue and hydrocarbon contents (saturates, aromatics and polars of gasoline of different oil marketing companies collected from retail outlets in district Multan have been analysed using standard ASTM procedures. Results have been compared with the Pakistani, Indian and European specifications to assess the quality of Pakistani gasoline (petrol. The environmental impact of gasoline has also been assessed.

  16. Analytical studies on the quality and environmental impact of commercial motor gasoline available in multan region of pakistan

    International Nuclear Information System (INIS)

    Yasin, G.; Ansari, T.M.; Naqvi, S.M.S.R.

    2008-01-01

    Physico-chemical characteristics such as specific gravity, reid vapour pressure, copper corrosion, distillation (I.B.P., F.B.P., Total recovery and residue) and hydrocarbon contents (saturates, aromatics and polars) of gasoline of different oil marketing companies collected from retail outlets in district Multan have been analysed using standard ASTM procedures. Results have been compared with the Pakistani, Indian and European specifications to assess the quality of Pakistani gasoline (petrol). The environmental impact of gasoline has also been assessed. (author)

  17. 49 CFR 383.91 - Commercial motor vehicle groups.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Commercial motor vehicle groups. 383.91 Section 383.91 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS COMMERCIAL...

  18. Oxygenated gasolines according to European specifications for quality and ecological clean gasoline

    International Nuclear Information System (INIS)

    Panovska, Vesna; Tomanovikj, Violeta

    1999-01-01

    With the phasing out of lead additives from gasoline, the interest for oxygenates as a gasoline components grows up. However, since these materials are not hydrocarbons their behaviour in terms of blending differs from the gasoline which consists of hydrocarbons only. Therefore, it is important to explain their role in blending gasolines according to European specification for motor fuels. It is important to emphasize the oxygenate contribution in production more clean gasoline. In this paper, the oxygenate types and there basic specification features followed by manufacture, laboratory testing and blending specifications with refinery components is presented. (Author)

  19. 36 CFR 1005.4 - Commercial passenger-carrying motor vehicles.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Commercial passenger-carrying motor vehicles. 1005.4 Section 1005.4 Parks, Forests, and Public Property PRESIDIO TRUST COMMERCIAL AND PRIVATE OPERATIONS § 1005.4 Commercial passenger-carrying motor vehicles. Passenger-carrying motor...

  20. Draft regulatory analysis: notice of proposed rulemaking motor gasoline allocation revisions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The Draft Regulatory Analysis is prepared for those proposed regulations which either may have a major impact on the general economy, individual industries, or geographic regions and levels of government, or may be significant in that they affect important DOE policy concerns and are the object of public interest. The problems and proposed solutions for the Notice of Proposed Rulemaking and Public Hearings on the Motor Gasoline Allocation Program are examined. The ERA's mandate for this program is set out in the Emergency Petroleum Allocation Act of 1973. Under this Act, the President is empowered to enforce, at his discretion, price and allocation controls on petroleum and petroleum products, including gasoline, through September 30, 1981. The Act sets the following allocation goals: protect public health; maintain public services and agricultural operations; foster competition in the petroleum industry; distribute petroleum among industry sectors and US regions equitably; and minimize economic disruption and unnecessary interference wth market mechanisms.

  1. Gum forming olefinic precursors in motor gasoline: a model compound study

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.M.; Joshi, G.C.; Singh, J.; Rastogi, S.N. (Indian Institute of Petroleum, Dehradun (India))

    1994-01-01

    The source of the cracked components in motor gasoline are generally (Fluid Catalytic Cracking) FCC and thermal cracking naphthas incorporated in the gasoline pool. The FCC olefins are predominant in isostructures, while thermal cracking naphthas obtained from visbreaking and coking operations contain substantial amounts of cyclic structures. The contribution of various olefinic structures present in these naphthas are likely to vary. The gum forming tendencies of different types of olefinic structures have been studied by taking model compounds in a known sample matrix through potential gum measurements under accelerated test conditions. Peroxide number values have also been determined on aged sample. Cyclic and dicyclic structures have been found to contribute maximum, towards gum formation tendencies. Branching generally increases the gum formation. However, position of branching plays an important role besides the double bond. Synergistic effects of dienes with straight chain and branched olefins have also been studied. 11 refs., 10 figs., 2 tabs.

  2. Identifying constituents in commercial gasoline using Fourier transform-infrared spectroscopy and independent component analysis.

    Science.gov (United States)

    Pasadakis, Nikos; Kardamakis, Andreas A

    2006-09-25

    A new method is proposed that enables the identification of five refinery fractions present in commercial gasoline mixtures using infrared spectroscopic analysis. The data analysis and interpretation was carried out based on independent component analysis (ICA) and spectral similarity techniques. The FT-IR spectra of the gasoline constituents were determined using the ICA method, exclusively based on the spectra of their mixtures as a blind separation procedure, i.e. assuming unknown the spectra of the constituents. The identity of the constituents was subsequently determined using similarity measures commonly employed in spectra library searches against the spectra of the constituent components. The high correlation scores that were obtained in the identification of the constituents indicates that the developed method can be employed as a rapid and effective tool in quality control, fingerprinting or forensic applications, where gasoline constituents are suspected.

  3. Autoignition characteristics of oxygenated gasolines

    KAUST Repository

    Lee, Changyoul; Ahmed, Ahfaz; Nasir, Ehson Fawad; Badra, Jihad; Kalghatgi, Gautam; Sarathy, Mani; Curran, Henry; Farooq, Aamir

    2017-01-01

    Gasoline anti-knock quality, defined by the research and motor octane numbers (RON and MON), is important for increasing spark ignition (SI) engine efficiency. Gasoline knock resistance can be increased using a number of blending components

  4. Production of aviation gasoline

    Energy Technology Data Exchange (ETDEWEB)

    1938-05-25

    A process is described for preparing gasoline possessing properties for use as a fuel, particularly for aviation motors, beginning with gasolines composed among others of cyclic hydrocarbons, especially aromatics, consisting in treating the gasoline by means of selective solvents of aromatic hydrocarbons, especially aromatics, and preferably at the same time employing liquid hydrocarbons which are gaseous under normal conditions and adding to the refined product nonaromatics which boil in the range of the gasoline and have an actane number above 95 or which give the mixture an octane number of 82.5.

  5. Series hybrid vehicle system analysis using an in-wheel motor design

    NARCIS (Netherlands)

    Paulides, J.J.H.; Kazmin, Evgeny; Gysen, B.L.J.; Lomonova, E.

    2008-01-01

    Hybrid vehicles, which employ a technology combining gasoline and electric motors, are a hot item these days for transporters looking for ways to cut their fuel bills. To date, commercial systems implement diesel assisted electrical drives. As such the electrical motor is placed in a series or

  6. Carbon nuclear magnetic resonance spectroscopic fingerprinting of commercial gasoline: pattern-recognition analyses for screening quality control purposes.

    Science.gov (United States)

    Flumignan, Danilo Luiz; Boralle, Nivaldo; Oliveira, José Eduardo de

    2010-06-30

    In this work, the combination of carbon nuclear magnetic resonance ((13)C NMR) fingerprinting with pattern-recognition analyses provides an original and alternative approach to screening commercial gasoline quality. Soft Independent Modelling of Class Analogy (SIMCA) was performed on spectroscopic fingerprints to classify representative commercial gasoline samples, which were selected by Hierarchical Cluster Analyses (HCA) over several months in retails services of gas stations, into previously quality-defined classes. Following optimized (13)C NMR-SIMCA algorithm, sensitivity values were obtained in the training set (99.0%), with leave-one-out cross-validation, and external prediction set (92.0%). Governmental laboratories could employ this method as a rapid screening analysis to discourage adulteration practices. Copyright 2010 Elsevier B.V. All rights reserved.

  7. 40 CFR 1065.710 - Gasoline.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...

  8. Optimization of the octane response of gasoline/ethanol blends

    KAUST Repository

    Badra, Jihad; AlRamadan, Abdullah S.; Sarathy, Mani

    2017-01-01

    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.

  9. Optimization of the octane response of gasoline/ethanol blends

    KAUST Repository

    Badra, Jihad

    2017-07-04

    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.

  10. Bacterial contamination of motor gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Hill, E.C. [ECHA Microbiology Ltd., Cardiff (United Kingdom); Koenig, J.W.J. [Koerperschaft des Oeffentlichen Rechts, Hamburg (Germany)

    1995-05-01

    Microbiological growth is found frequently in the bottom of jet fuel, distillate, heavy gasoil and crude oil tanks. Experience shows that traces of water - though theoretically enough for an outbreak of growth - rarely cause problems, because the tank is most probably drained frequently. However when a water table builds up and remains untouched for some time, the likelihood for growth, leading to later operational problems, rapidly increases. Normal paraffin hydrocarbons with c{sub 8}-c{sub 16} chain length appear to be especially vulnerable; in other words the kerosene/jet fuel boiling range is mainly at risk. Heavier hydrocarbon products (diesel, light heating oils and gasoils) however have increasingly seen problems over the last 15-20 years. Lighter products - mainly the gasoline boiling range appear to have been protected from microbial problems over many years. In a laboratory it was of course possible to degrade certain kinds of naphthas and finished gasolines, but those results did not mirror the findings in the field.

  11. Standby Gasoline Rationing Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The final rules adopted by the President for a Standby Gasoline Rationing Plan are presented. The plan provides that eligibility for ration allotments will be determined primarily on the basis of motor vehicle registrations, taking into account historical differences in the use of gasoline among states. The regulations also provide authority for supplemental allotments to firms so that their allotment will equal a specified percentage of gasoline use during a base period. Priority classifications, i.e., agriculture, defense, etc., are established to assure adequate gasoline supplies for designated essential services. Ration rights must be provided by end-users to their suppliers for each gallon sold. DOE will regulate the distribution of gasoline at the wholesale level according to the transfer by suppliers of redeemed ration rights and the gasoline allocation regulations. Ration rights are transferable. A ration banking system is created to facilitate transfers of ration rights. Each state will be provided with a reserve of ration rights to provide for hardship needs and to alleviate inequities. (DC)

  12. 36 CFR 293.6 - Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft...

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Commercial enterprises, roads..., DEPARTMENT OF AGRICULTURE WILDERNESS-PRIMITIVE AREAS § 293.6 Commercial enterprises, roads, motor vehicles... National Forest Wilderness no commercial enterprises; no temporary or permanent roads; no aircraft landing...

  13. 36 CFR 13.1316 - Commercial transport of passengers by motor vehicles.

    Science.gov (United States)

    2010-07-01

    ... passengers by motor vehicles. 13.1316 Section 13.1316 Parks, Forests, and Public Property NATIONAL PARK... National Park General Provisions § 13.1316 Commercial transport of passengers by motor vehicles. Commercial transport of passengers by motor vehicles on Exit Glacier Road is allowed without a written permit. However...

  14. Standby Conservation Plan No. 1: emergency weekend gasoline sales restrictions. Economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The Emergency Weekend Sales Restrictions Plan has been designed to conserve gasoline and diesel fuel normally used for social and recreational purposes. The plan would authorize the Secretary of Energy to impose restrictions on the retail sale of motor fuels during weekend hours, defined as Friday noon to Sunday midnight. Only certain types of commercial vehicles and emergency vehicles could purchase fuel during these hours. The implementation of the measure is examined relative to a baseline economy characterized by a 15% petroleum shortfall. It is estimated that the measure would save 246,000 barrels per day of motor fuels, principally gasoline. Because the saved fuel can be made available to other sectors of the economy that are less petroleum intensive, it is projected that GNP would rise by approximately $7 billion as a result of the measure. The impact of the measure would vary sharply from one sector of the economy to another, however, with some industries experiencing losses in revenue. The cost of imposing the measure is preliminarily estimated at $5.2 million for nine months.

  15. Environment and Energy. Phase out of gasoline

    International Nuclear Information System (INIS)

    Magaudda, G.

    2000-01-01

    The european recommendation 98/07/EEC gives the technical specification of automotive fuels quality, gasoline and diesel fuel and forbid for member countries the commercialization of lead gasoline from 01/01/2001 [it

  16. Possible gasoline-induced chronic liver injury due to occupational malpractice in a motor mechanic: a case report.

    Science.gov (United States)

    Gunathilaka, Mahesh Lakmal; Niriella, Madunil Anuk; Luke, Nathasha Vihangi; Piyarathna, Chathura Lakmal; Siriwardena, Rohan Chaminda; De Silva, Arjuna Priyadarshin; de Silva, Hithanadura Janaka

    2017-07-03

    Hydrocarbon-induced occupational liver injury is a well-known clinical entity among petroleum industry workers. There are many types of hydrocarbon exposure, with inhalation being the most common. Hydrocarbon-induced occupational liver injury is a rarely suspected and commonly missed etiological agent for liver injury. We report a case of a non-petroleum industry worker with chronic liver disease secondary to hydrocarbon-induced occupational liver injury caused by chronic low-grade hydrocarbon ingestion due to occupational malpractice. A 23-year-old Sri Lankan man who was a motor mechanic presented to our hospital with decompensated cirrhosis. He had been chronically exposed to gasoline via inadvertent ingestion due to occupational malpractice. He used to remove gasoline from carburetors by sucking and failed to practice mouth washing thereafter. On evaluation, he had histologically proven established cirrhosis. A comprehensive history and workup ruled out other nonoccupational etiologies for cirrhosis. The patient's long-term occupational gasoline exposure and clinical course led us to a diagnosis of hydrocarbon-induced occupational liver injury leading to decompensated cirrhosis. Hydrocarbon-induced occupational liver injury should be considered as a cause when evaluating a patient with liver injury with possible exposure in relevant occupations.

  17. Motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    1937-09-14

    The abstract describes a process for obtaining a maximum quantity of commercial gasoline from a composite hydrocarbon stream containing hydrocarbons within and below the gasoline boiling range including gaseous olefins. The hydrocarbon stream is separated into low vapor pressure gasoline and a gas fraction consisting of the 4 carbon atom group and possibly some of the 3 carbon atom group. The fraction is subjected to a polymerization process utilizing the products of the operation, both liquid polymers and unconverted gases to increase the yield of the gasoline and to adjust the low vapor pressure of the gasoline to the equivalent of that of commercial gasoline. A small fraction of the gaseous products are used for this purpose. The remainder are recycled through the polymerization operation.

  18. Autoignition characteristics of oxygenated gasolines

    KAUST Repository

    Lee, Changyoul

    2017-08-14

    Gasoline anti-knock quality, defined by the research and motor octane numbers (RON and MON), is important for increasing spark ignition (SI) engine efficiency. Gasoline knock resistance can be increased using a number of blending components. For over two decades, ethanol has become a popular anti-knock blending agent with gasoline fuels due to its production from bio-derived resources. This work explores the oxidation behavior of two oxygenated certification gasoline fuels and the variation of fuel reactivity with molecular composition. Ignition delay times of Haltermann (RON = 91) and Coryton (RON = 97.5) gasolines have been measured in a high-pressure shock tube and in a rapid compression machine at three pressures of 10, 20 and 40 bar, at equivalence ratios of φ = 0.45, 0.9 and 1.8, and in the temperature range of 650–1250 K. The results indicate that the effects of fuel octane number and fuel composition on ignition characteristics are strongest in the intermediate temperature (negative temperature coefficient) region. To simulate the reactivity of these gasolines, three kinds of surrogates, consisting of three, four and eight components, are proposed and compared with the gasoline ignition delay times. It is shown that more complex surrogate mixtures are needed to emulate the reactivity of gasoline with higher octane sensitivity (S = RON–MON). Detailed kinetic analyses are performed to illustrate the dependence of gasoline ignition delay times on fuel composition and, in particular, on ethanol content.

  19. Ambitious coal to gasoline plan

    Energy Technology Data Exchange (ETDEWEB)

    Taffe, P

    1979-06-20

    A design study carried out by Badger Energy concludes that the first US commercial gasoline from coal facility could be completed in eight years. The cost of gasoline would be 1.09 US dollars/gal. in 1990 with coal at 25 US dollars/ton. The process involves oxygen-blown coal gasification, conversion to methanol by the Mobil process, gas fractionation and HF alkylation.

  20. Ozone-forming potential of reformulated gasoline

    National Research Council Canada - National Science Library

    Committee on Ozone-Forming Potential of Reformulated Gasoline, National Research Council

    ... and comparison of the emissions from motor vehicles using different reformulated gasolines based on their ozone-forming potentials and to assess the concomitant impact of that approach on air-quality benefits...

  1. Standby Gasoline Rationing Plan. Contingency gasoline rationing regulations

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The Economic Regulatory Administration issues final rules with respect to standby gasoline rationing. The plan is designed for and would be used only in the event of a severe gasoline shortage. The plan provides that eligibility for ration allotments will be primarily on the basis of motor vehicle registrations. DOE will mail government ration checks to the parties named in a national vehicle registration file to be maintained by DOE. Ration recipients may cash these checks for ration coupons at various designated coupon issuance points. Retail outlets and other suppliers will be required to redeem the ration coupons received in exchange for gasoline sold. Supplemental gas will be given to high-priority activities. A ration banking system will be established with two separate and distinct of ration accounts: retail outlets and other suppliers will open redemption accounts for the deposit of redeemed ration rights; and individuals or firms may open ration rights accounts, which will operate in much the same manner as monetary checking accounts. A white market will be permitted for the sale of transfer of ration rights. A percentage of the total ration rights to be issued will be reserved for distribution to the states as a State Ration Reserve, to be used by the states primarily for the relief of hardship. A National Ration Reserave will also be established. All sections of the Standby Gasoline Rationing Regulations are analyzed. (MCW)

  2. The crisis of gasoline consumption in the Iran's transportation sector

    International Nuclear Information System (INIS)

    Houri Jafari, H.; Baratimalayeri, A.

    2008-01-01

    Fossil fuels have the greatest share in supplying the world's energy demands. Regarding the limited natural resources, fuel consumption management and energy planning in the end-user sectors are two great matters of importance. Among the fossil fuels, gasoline is the principal fuel for light-duty vehicles. In Iran, fuel consumption, especially that of gasoline, has increased sharply with the growth rate of 10.2% for the year 2006 in comparison with that in 2005, turning into a big crisis in the recent years. On the other hand, enormous subsidies for importing 40% of domestic demands, which have reached more than 10 billion US$, are too much to be supplied. In this study, we have assessed the gasoline consumption, production, import and prices; reviewed main causes of the tremendous growth rate of consumption, current conservation policies and their advantages or disadvantages (SWOT analysis); proposed short- to long-term solutions and strategies for efficient gasoline consumption management; and finally, current strategies and proposed solutions are analyzed and evaluated. A foregone conclusion strongly suggests that not only the low price of motor gasoline but also mass production of vehicles with the conventional technology, likewise, affects motor gasoline demand. A second conclusion is that gasoline crisis in Iran has no straight solution, and that fundamental strategies and policies are needed to solve the problem. (author)

  3. 26 CFR 1.164-5 - Certain retail sales taxes and gasoline taxes.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Certain retail sales taxes and gasoline taxes. 1....164-5 Certain retail sales taxes and gasoline taxes. For taxable years beginning before January 1...) and tax on the sale of gasoline, diesel fuel or other motor fuel paid by the consumer (other than in...

  4. Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine

    KAUST Repository

    Ahmed, Ahfaz

    2016-10-17

    Commercial gasoline fuels are complex mixtures of numerous hydrocarbons. Their composition differs significantly owing to several factors, source of crude oil being one of them. Because of such inconsistency in composition, there are multiple gasoline fuel compositions with similar octane ratings. It is of interest to comparatively study such fuels with similar octane ratings and different composition, and thus dissimilar physical and chemical properties. Such an investigation is required to interpret differences in combustion behavior of gasoline fuels that show similar knock characteristics in a cooperative fuel research (CFR) engine, but may behave differently in direct injection spark ignition (DISI) engines or any other engine combustion modes. Two FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G with similar Research and Motor Octane Numbers but dissimilar physical properties were studied in a DISI engine under two sets of experimental conditions; the first set involved early fuel injection to allow sufficient time for fuel-air mixing hence permitting operation similar to homogenous DISI engines, while the second set consists of advance of spark timings to attain MBT (maximum brake torque) settings. These experimental conditions are repeated across different load points to observe the effect of increasing temperature and pressure on combustion and emission parameters. The differences in various engine-out parameters are discussed and interpreted in terms of physical and thermodynamic properties of the fuels.

  5. Obstructive sleep apnea among commercial motor vehicle drivers: using evidence-based practice to identify risk factors.

    Science.gov (United States)

    Olszewski, Kimberly; Wolf, Debra

    2013-11-01

    Commercial motor vehicle driving is a hazardous occupation, having the third highest fatality rate among common U.S. jobs. Among the estimated 14 million U.S. commercial motor vehicle drivers, the prevalence of obstructive sleep apnea is reported to be 17% to 28%. Despite the identified increased prevalence of obstructive sleep apnea among commercial motor vehicle drivers, federal law does not require that they be screened for obstructive sleep apnea. This article presents an evidence-based practice change project; the authors developed, implemented, and evaluated a screening program to identify commercial motor vehicle drivers' risk for obstructive sleep apnea during commercial driver medical examinations. The results of this practice change indicated screening for obstructive sleep apnea during the commercial driver medical examination led to improved identification of obstructive sleep apnea risk among commercial motor vehicle drivers and should be a clinical standard in occupational health clinics. Copyright 2013, SLACK Incorporated.

  6. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Reis, Callie [Navigant Consulting, Inc., Burlington, MA (United States)

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  7. Effects of gasoline and ethanol-gasoline exhaust exposure on human bronchial epithelial and natural killer cells in vitro.

    Science.gov (United States)

    Roth, Michèle; Usemann, Jakob; Bisig, Christoph; Comte, Pierre; Czerwinski, Jan; Mayer, Andreas C R; Beier, Konstantin; Rothen-Rutishauser, Barbara; Latzin, Philipp; Müller, Loretta

    2017-12-01

    Air pollution exposure, including passenger car emissions, may cause substantial respiratory health effects and cancer death. In western countries, the majority of passenger cars are driven by gasoline fuel. Recently, new motor technologies and ethanol fuels have been introduced to the market, but potential health effects have not been thoroughly investigated. We developed and verified a coculture model composed of bronchial epithelial cells (ECs) and natural killer cells (NKs) mimicking the human airways to compare toxic effects between pure gasoline (E0) and ethanol-gasoline-blend (E85, 85% ethanol, 15% gasoline) exhaust emitted from a flexfuel gasoline car. We drove a steady state cycle, exposed ECs for 6h and added NKs. We assessed exhaust effects in ECs alone and in cocultures by RT-PCR, flow cytometry, and oxidative stress assay. We found no toxic effects after exposure to E0 or E85 compared to air controls. Comparison between E0 and E85 exposure showed a weak association for less oxidative DNA damage after E85 exposure compared to E0. Our results indicate that short-term exposure to gasoline exhaust may have no major toxic effects in ECs and NKs and that ethanol as part of fuel for gasoline cars may be favorable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Commercial Motor Vehicle Driving Safety Website

    OpenAIRE

    Tidwell, Scott; Trimble, Tammy; Blanco, Myra

    2016-01-01

    This report documents the CMV Driving Safety website (http://cmvdrivingsafety.org/), which was created by the National Surface Transportation Safety Center for Excellence (NSTSCE) as an outreach effort to assist commercial motor vehicle (CMV) fleets and drivers, driver trainers, CMV training schools, and insurance companies. The website contains 15 unique pages and provides six downloadable training modules on driver distraction, driver health, hours of service, driver drowsiness and fatigue,...

  9. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A

    2012-03-01

    The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C(9) to C(16)n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Vision and commercial motor vehicle driver safety : vol. 1 : evidence report

    Science.gov (United States)

    2008-06-06

    The purpose of this evidence report is to address several key questions posed by the Federal Motor Carrier Safety Administration (FMCSA) that pertain to vision and commercial motor vehicle (CMV) driver safety. Each of these key questions was develope...

  11. Impact of unleaded gasoline in reducing emissions in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, S.H.

    2001-01-15

    Saudi Arabia is dealing progressively with tighter restrictions on refined product qualities. Efforts are ongoing within the country concerning the phase-out of lead in motor gasoline and the reduction of sulfur in diesel as well. The removal of lead is the main characteristic of environmental friendly gasoline. The detrimental health effects of using leaded gasoline are many, and lead exposure can cause kidney failure, brain dysfunction, behavioral problems, and neurological impairment. Saudi Arabia is moving towards using unleaded gasoline, and efforts are being put forward by research organizations to produce lead-free gasoline in the Kingdom. A high severity fluid catalytic cracking process is being developed for converting vacuum gas oil into high-octane gasoline components. This process requires high temperature and pressure and low contact time as compared to the conventional FCC process. (author)

  12. Low leaded motor gasoline of high knock rating having few pollution effects

    Energy Technology Data Exchange (ETDEWEB)

    Droste, W; Obenaus, F; Schoefer, W

    1975-11-13

    A carburator gasoline has been developed that has a high knock rating and few enviromental pollution effects. The gasoline contains 0.1 to 0.4 g of lead per liter, and up to 20 percent by volume of a mixture made up of 80 to 90 percent by weight methyl-tert.-butyl ether and 20 to 10 percent by weight methanol. Through tests it has been determined that the characteristics (particularly the octane number) of a gasoline having a lead content of 0.15 g/liter and one of the above mentioned additives are better than those of a gasoline with a lead content of 0.4 g/liter, but not containing an additive. The harmful emissions were also lower. In addition, the danger of carburator icing is decreased.

  13. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  14. Stepping motor adaptor actuator for a commercial uhv linear motion feedthrough

    International Nuclear Information System (INIS)

    Iarocci, M.; Oversluizen, T.

    1989-01-01

    An adaptor coupling has been developed that will allow the attachment of a standard stepping motor to a precision commercial (Varian) uhv linear motion feedthrough. The assembly, consisting of the motor, motor adaptor, limit switches, etc. is clamped to the feedthrough body which can be done under vacuum conditions if necessary. With a 500 step/rev. stepping motor the resolution is 1.27 μm per step. We presently use this assembly in a remote location for the precise positioning of a beam sensing monitor. 2 refs., 3 figs

  15. The butane as a component for the gasoline blending

    International Nuclear Information System (INIS)

    Gicheva, Ljubica

    2002-01-01

    In OKTA Crude Oil Refinery - Skopje the production of butane as a pure component is based on a liquid phase and it is used for both TNG (propane-butane gas) and motor gasoline production with a quality that satisfy the standard. By using the butane as a gasoline component the quality of the MB-98 and BMB has been improved. The butane itself ensures octane improvement of the pool, by what the content of the lead additives or the octane of the main component - reformat decreases. Also, the butane addition decreases the density of the final products by what the financial effects have been improved. It is also interesting to explain the usage of butane for gasoline production concerning the new proposed standard. The paper presents the practical results, through tables and diagrams, of the butane usage as a component for gasoline production, as well as the butane influence to the quality of the produced gasoline. (Original)

  16. Modeling the effects of reformulated gasoline usages on ambient concentrations of ozone and five air toxics

    International Nuclear Information System (INIS)

    Ligocki, M.P.; Schulhof, R.R.; Jackson, R.E.; Jimenez, M.M.; Atkinson, D.

    1993-01-01

    The use of reformulated gasolines to reduce motor-vehicle-related hydrocarbon emissions has been mandated by the 1990 Clean Air Act Amendments for nine severely polluted urban areas. Using a version of the Urban Airshed Model that includes explicit representation of five motor-vehicle-related air toxics, the effects of reformulated gasoline usage on ambient ozone and toxics concentrations were simulated. Simulations were conducted for two urban areas. Baltimore-Washington and Houston, for the year 1995. Additional simulation were conducted for Baltimore-Washington including winter and 1999 scenarios. In the Baltimore-Washington areas, the 1995 Federal reformulated gasoline scenario produce reductions of 1.1 percent in simulated peak ozone and 2.7 percent in the areal extent of simulated ozone exceedances. Simulated ozone reductions were much smaller in Houston. In the reformulated gasoline simulations, secondary formulation of formaldehyde and acetaldehyde was reduced, and decreases in ambient benzene and polycyclic organic matter (POM) concentrations were simulated. Larger reductions in ozone and toxics concentrations were simulated for reformulated gasolines meeting California Phase II standards than for those meeting Federal standards. The effects of reductions in motor-vehicle-related nitrogen oxides (NO x ) emissions, alone and in combination with hydrocarbon reductions, were also examined

  17. Degradation of tetraethyllead in leaded gasoline contaminated and uncontaminated soils

    International Nuclear Information System (INIS)

    Ou, L.; Jing, W.; Thomas, J.; Mulroy, P.

    1995-01-01

    For over 50 years, since its introduction in 1923 by General Motors, tetraethyllead (TEL) was the major antiknock agent used in leaded gasoline. Since the middle of 1970, use of leaded gasoline in automobiles was gradually phased out. The main objective of this study is to determine the degradation rates and metabolites of TEL in gasoline contaminated and uncontaminated soils. TEL in uncontaminated soils disappeared rapidly. Ionic triethyllead (TREL) was the major organolead metabolite in these soils, with ionic diethyllead (DEL) being the minor product. Nonsterile soils, but not autoclaved soils, had limited capacity to mineralize 14 C-TEL to 14 CO 2 , H 2 0, and Pb 2+ . Unlike TEL in uncontaminated soils, petroleum hydrocarbons protected TEL in leaded gasoline contaminated soils from being degraded. Both disappearance and mineralization rates of TEL in leaded gasoline contaminated soils decreased with the increase in gasoline concentration. It appears that TEL in leaded gasoline contaminated soils is relatively stable until the level of petroleum hydrocarbons falls below a critical value. TEL is then rapidly degraded. Hydrocarbon degrading microorganisms may be involved, to some extent, in the degradation of TEL

  18. Evaluación de un motor de encendido por chispa trabajando con mezclas etanol-gasolina; Evaluation of the spark-ignition engine fueled with ethanol–gasoline blends

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2012-07-01

    Full Text Available En la presente investigación se realiza un análisis del rendimiento de un motor de encendido por chispa (Lada 1300 al usar como combustible mezclas de etanol con gasolina en un 10%, 20% y 30%. Los parámetros analizados en cada experimento fueron el torque efectivo, la potencia efectiva, el consumo específico de combustible y las emisiones de monóxido de carbono. Los resultados obtenidos se analizaron estadísticamente mediante una comparación de muestras múltiples en el software estadístico Statgraphics Centurion XV.II. Este análisis fue hecho con él con el objetivo de analizar las posibles diferencias entre los parámetros evaluados para cada combustible a una misma rpm. A partir de los resultados obtenidos se pudieron establecer satisfactoriamente dos porcientos adecuados de la mezcla etanol-gasolina para ser utilizado en motores de encendido por chispa (Lada en las condiciones de Cuba y sin hacer modificacionesen el motor. In this investigation an analysis based on the performances of an engine when using blends of anhydrous ethanol with regular gasoline as fuels is carried out. The experiments of the Lada 1300 engine were carriedout for different blends in 10%, 20% and 30% of ethanol in gasoline. The analyzed parameters for each experiment were the effective torque, the effective power, the specific fuel consumption and the carbon monoxide exhausts emissions. The obtained results were statistically analyzed through multiple-sample comparison in the software Statgraphics Centurion XV.II. This analysis was made with the objective of analyzing the possible differences among the evaluated parameters for each fuel to the same rpm. The appropriate percent of the anhydrous ethanol - regular gasoline blends for use in engine (Lada under the Cuba conditions and without making modifications were satisfactorily established.

  19. Gasoline taxes and revenue volatility: An application to California

    International Nuclear Information System (INIS)

    Madowitz, M.; Novan, K.

    2013-01-01

    This paper examines how applying different combinations of excise and sales taxes on motor fuels impact the volatility of retail fuel prices and tax revenues. Two features of gasoline and diesel markets make the choice of tax mechanism a unique problem. First, prices are very volatile. Second, demand for motor fuels is extremely inelastic. As a result, fuel expenditures vary substantially over time. Tying state revenues to these expenditures, as is the case with a sales tax, results in a volatile stream of revenue which imposes real costs on agents in an economy. On July 1, 2010, California enacted Assembly Bill x8-6, the “Gas Tax Swap”, increasing the excise tax and decreasing the sales tax on gasoline purchases. While the initial motivation behind the revenue neutral swap was to provide the state with greater flexibility within its budget, we highlight that this change has two potentially overlooked benefits; it reduces retail fuel price volatility and tax revenue volatility. Simulating the monthly fuel prices and tax revenues under alternative tax policies, we quantify the potential reductions in revenue volatility. The results reveal that greater benefits can be achieved by going beyond the tax swap and eliminating the gasoline sales tax entirely. - Highlights: • We examine how gasoline taxes affect government revenue volatility. • We simulate the impact of California's Gasoline Tax Swap policy. • Sales taxes are shown to magnify price volatility and government revenue volatility. • A pure excise tax policy results in less volatile fuel prices and state revenues. • We argue that reductions in both forms of volatility are welfare enhancing

  20. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40{degrees}C temperature range with removal being completely inhibited at 54{degrees}C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  1. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40[degrees]C temperature range with removal being completely inhibited at 54[degrees]C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  2. Commercializing a U.S. piezoceramic linear motor

    Science.gov (United States)

    Diehl, Rick W.

    2000-06-01

    A small low-cost piezoceramic linear motor has been developed in the US and is being commercialized by EDO Corporation, working with a leading motion control OEM and with a prominent US corporate research laboratory. First generation motor design has emphasized high displacement at up to 200mm per second velocity with 3.5 Newtons force with high resolution, short time constant and a 15 volt power supply at a cost of less than 100 dollars. Motor dimensions of 30 by 50 by 4 mm allow broad configuration choices, al hidden within the motion control slide. The EDO approach was to build on its core competence in high reliability electroceramic material engineering and production, and to use a strategy of back-integrating, or outsourcing of recent advances outside Edo in piezoceramics, while forward- integrating into specific emerging applications known intimately by the OEM in the market. The strategy provided design focus that has led to a cost-effective advance in 'solid-state actuation and control'. This is considered a classic case of successful industrial integration of an enabling technology across organizations in order to access the needed mix of technology for development of an innovative and competitive solution.

  3. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Motor fuel demand analysis - applied modelling in the European union

    International Nuclear Information System (INIS)

    Chorazewiez, S.

    1998-01-01

    Motor fuel demand in Europe amounts to almost half of petroleum products consumption and to thirty percent of total final energy consumption. This study considers, Firstly, the energy policies of different European countries and the ways in which the consumption of motor gasoline and automotive gas oil has developed. Secondly it provides an abstract of demand models in the energy sector, illustrating their specific characteristics. Then it proposes an economic model of automotive fuel consumption, showing motor gasoline and automotive gas oil separately over a period of thirty years (1960-1993) for five main countries in the European Union. Finally, forecasts of consumption of gasoline and diesel up to the year 2020 are given for different scenarios. (author)

  5. Feedback controlled fuel injection system can accommodate any alcohol-gasoline blend

    Energy Technology Data Exchange (ETDEWEB)

    Pefley, R K; Pullman, J B; Suga, T P; Espinola, S

    1980-01-01

    A fuel metering system has been adapted and permits operation on all blends of alcohols and gasoline ranging from pure gasoline to pure ethanol and methanol. It is a closed loop electronic feedback controlled fuel injection system (EFI) with exhaust oxygen sensor. The system is used by Toyota Motor Company in their Supra and Cressida models in conjunction with a 3-way catalytic exhaust system. These models meet California exhaust and evaporative emission standards. An unmodified model has been tested on alcohol gasoline blends from pure gasoline to 50% ethanol-50% gasoline and 30% methanol-70% gasoline and found to meet all exhaust and evaporative emissions standards. A Cressida with modified EFI system is currently being tested. It is capable of operating on pure gasoline, pure methanol or ethanol and all intermediate blends. The testing to date shows that the vehicle meets all exhaust emissions standards while operating over the blend range from pure gasoline to pure ethanol while maintaining driveability and energy based fuel economy. The paper will present the total test evidence for all gasoline-alcohol blends. This will include exhaust and evaporative emissions, fuel economy and driveability as determined in accordance with United States Federal Test Procedures. Additionally, the paper will report experiences accumulated from road operation of the vehicle over a six-month period.

  6. Gasoline marketing

    International Nuclear Information System (INIS)

    England-Joseph, J.

    1991-06-01

    This paper is a discussion of two reports. One, issued in April 1990, addresses gasoline octane mislabeling, and the other, issued in February 1991, addresses possible consumer overbuying of premium gasoline. Consumers can purchase several grades of unleaded gasoline with different octane ratings regular (87 octane), mid-grade (89 octane), and premium (91 octane or above). A major concern of consumer buying gasoline is that they purchase gasoline with an octane rating that meets their vehicles' octane requirements. In summary, it was found that consumers may unknowingly be purchasing gasoline with lower octane than needed because octane ratings are mislabeled on gasoline pumps. At the same time, other consumers, believing they may get better performance, may be knowingly buying higher priced premium gasoline when regular gasoline would meet their vehicles' needs. These practices could be coasting consumers hundred of millions of dollars each year

  7. Gasoline marketing

    International Nuclear Information System (INIS)

    Metzenbaum, H.M.

    1991-02-01

    Consumers have the option of purchasing several different grades of unleaded gasoline regular, mid-grade, and premium which are classified according to an octane rating. Because of concern that consumers may be needlessly buying higher priced premium unleaded gasoline for their automobiles when regular unleaded gasoline would meet their needs, this paper determines whether consumers were buying premium gasoline that they may not need, whether the higher retail price of premium gasoline includes a price mark-up added between the refinery and the retail pump which is greater than that included in the retail price for regular gasoline, and possible reasons for the price differences between premium and regular gasoline

  8. 26 CFR 48.4081-4 - Gasoline; special rules for gasoline blendstocks.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Gasoline; special rules for gasoline blendstocks..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4081-4 Gasoline; special rules for gasoline blendstocks... gasoline blendstocks. Generally, under prescribed conditions, tax is not imposed on gasoline blendstocks...

  9. 40 CFR 600.206-86 - Calculation and use of fuel economy values for gasoline-fueled, diesel, and electric vehicle...

    Science.gov (United States)

    2010-07-01

    ... values for gasoline-fueled, diesel, and electric vehicle configurations. 600.206-86 Section 600.206-86...-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year... values for gasoline-fueled, diesel, and electric vehicle configurations. (a) Fuel economy values...

  10. The Hepatoprotective Effect of Vitamin A against Gasoline Vapor Toxicity in Rats.

    Science.gov (United States)

    Uboh, Friday E; Ekaidem, Itemobong S; Ebong, Patrick E; Umoh, Ime B

    2009-06-01

    Changes in the activities of plasma alanine amino transferase (ALT), aspartate amino transferase (AST), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP) are used to assess the functional state of the liver. Significant increase in the activities of these enzymes commonly indicates the hepatotoxicity of chemical agent(s) in the body. Exposure of male and female rats to 17.8 cm 3 h -1 m -3 of Premium Motor Spirit (PMS) blend unleaded gasoline (UG) vapors for 6 hr/day, 5 days/week for 20 weeks have been observed to cause hepatotoxicity. In this study, the potential hepatoprotective effect of vitamin A (retinol) against gasoline vapours-induced toxicity was investigated in male and female rats. Retinol (400 IU/kg/day) was orally administered to the test rats concomitant with the gasoline vapor exposure in the last two weeks of the experiment. The results obtained from this study showed that exposure to gasoline vapors caused significant increase (P produced a significant decrease (P gasoline vapours hepatotoxicity in male and female rats, thereby suggesting that retinol may be used to prevent hepatotoxicity in individuals frequently exposed to gasoline vapours.

  11. Emissions from Road Vehicles Fuelled by Fischer Tropsch Based Diesel and Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, U; Lundorf, P; Ivarsson, A; Schramm, J [Technical University of Denmark (Denmark); Rehnlund, B [Atrax Energi AB (Sweden); Blinge, M [The Swedish Transport Institute (Sweden)

    2006-11-15

    The described results were carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT and an alkylate fuel (Aspen), which was supposed to be very similar, in many ways, to FT fuel. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline vehicle.

  12. [Inhalation of gasoline and damage to health in workers at gas stations].

    Science.gov (United States)

    Pranjić, Nurka; Mujagić, H; Pavlović, S

    2003-01-01

    The aim of this study was to made assessment of chronic health effects in 37 workers exposed to gasoline, and its constituents at gasoline stations between 1985 and 1996. By the study we have involved thirty-seven persons who had been exposed to gasoline for more than five years were examined. The evaluation included a medical/occupational history, hematological and biochemical examination, a physical exam, standardized psychological tests, and ultrasound examination of kidneys and liver. The groups were identical in other common parameters including age, gender (all men), and level of education (P gasoline unexposed controls and 25 workers at gasoline stations exposed to organic lead for only nine months. Peripheral smear revealed basophilic punctuated eritrocytes and reticulocytosis. We found in chronic exposed gasoline workers haematological disorders: mild leukocytosis (7 of 37), lymphocytosis (20 of 37), mild lymhocytopenia (3 of 37), decrease of red blood cells count (11 of 37). Results indicated that they have suffered from liver disorders: lipoid degeneration of liver (14 of 37), chronic functional damages of liver (3 of 37), cirrhosis (1 of 37). Ultrasound examination indicated chronic kidney damages (8 of 37). These results significantly differed from those of controls (P gasoline stations exposed to gasoline for more than 5 years the symptom of depression and decreased reaction time and motor abilities were identified. The summary of diseases of workers exposed to organic lead and gasoline are discussed.

  13. An evidence-based analysis of epidemiologic associations between lymphatic and hematopoietic cancers and occupational exposure to gasoline.

    Science.gov (United States)

    Keenan, J J; Gaffney, S; Gross, S A; Ronk, C J; Paustenbach, D J; Galbraith, D; Kerger, B D

    2013-10-01

    The presence of benzene in motor gasoline has been a health concern for potential increased risk of acute myelogenous leukemia and perhaps other lymphatic/hematopoietic cancers for approximately 40 years. Because of the widespread and increasing use of gasoline by consumers and the high exposure potential of occupational cohorts, a thorough understanding of this issue is important. The current study utilizes an evidence-based approach to examine whether or not the available epidemiologic studies demonstrate a strong and consistent association between occupational exposure to gasoline and lymphatic/hematopoietic cancers. Among 67 epidemiologic studies initially identified, 54 were ranked according to specific criteria relating to the relevance and robustness of each study for answering the research question. The 30 highest-ranked studies were sorted into three tiers of evidence and were analyzed for strength, specificity, consistency, temporality, dose-response trends and coherence. Meta statistics were also calculated for each general and specific lymphatic/hematopoietic cancer category with adequate data. The evidence-based analysis did not confirm any strong and consistent association between occupational exposure to gasoline and lymphatic/hematopoietic cancers based on the epidemiologic studies available to date. These epidemiologic findings, combined with the evidence showing relatively low occupational benzene vapor exposures associated with gasoline formulations during the last three decades, suggest that current motor gasoline formulations are not associated with increased lymphatic/hematopoietic cancer risks related to benzene.

  14. A new kind of Molotov? Gasoline-pool chlorinator mixtures.

    Science.gov (United States)

    Hutches, Katherine; Lord, James

    2012-07-01

    This paper investigates the reaction between pool chlorinators and gasoline. In particular, the propensity for self-ignition and the resulting chemical products were studied. An organic pool chlorinator was combined with gasoline in varying proportions in an attempt to form a hypergolic mixture. None of the combinations resulted in self-ignition, but larger quantities of chlorinator produced vigorous light-colored smoke and a solid mass containing isocyanuric acid and copper chloride. Additionally, the chlorinating abilities of different commercially available pool chlorinators were explored. When Ca(ClO)(2) and sodium dichloro-s-triazinetrione-based chlorinators were used, the presence of gasoline was still visible after 10 days, despite limited chlorination. The trichloro-s-triazinetrione-based chlorinator, however, caused efficient chlorination of the C(2)- and C(3)-alkylbenzenes, making gasoline no longer identifiable. 2012 American Academy of Forensic Sciences. Published 2012. This article is a U.S. Government work and is in the public domain in the U.S.A.

  15. Brushless traction PM Machines using commercial drive technology, part I: Design methodology and motor design

    NARCIS (Netherlands)

    Kazmin, Evgeny; Lomonova, E.A.; Paulides, J.J.H.

    2008-01-01

    A concept design approach for the brushless PM traction motor, which has crucial constraints on volume envelope and on the drive, is presented. The considered motor drive is the three-phase DC/AC converter, which is commercially available on the modern market of the standard variable frequency

  16. Epidemic gasoline exposures following Hurricane Sandy.

    Science.gov (United States)

    Kim, Hong K; Takematsu, Mai; Biary, Rana; Williams, Nicholas; Hoffman, Robert S; Smith, Silas W

    2013-12-01

    Major adverse climatic events (MACEs) in heavily-populated areas can inflict severe damage to infrastructure, disrupting essential municipal and commercial services. Compromised health care delivery systems and limited utilities such as electricity, heating, potable water, sanitation, and housing, place populations in disaster areas at risk of toxic exposures. Hurricane Sandy made landfall on October 29, 2012 and caused severe infrastructure damage in heavily-populated areas. The prolonged electrical outage and damage to oil refineries caused a gasoline shortage and rationing unseen in the USA since the 1970s. This study explored gasoline exposures and clinical outcomes in the aftermath of Hurricane Sandy. Prospectively collected, regional poison control center (PCC) data regarding gasoline exposure cases from October 29, 2012 (hurricane landfall) through November 28, 2012 were reviewed and compared to the previous four years. The trends of gasoline exposures, exposure type, severity of clinical outcome, and hospital referral rates were assessed. Two-hundred and eighty-three gasoline exposures were identified, representing an 18 to 283-fold increase over the previous four years. The leading exposure route was siphoning (53.4%). Men comprised 83.0% of exposures; 91.9% were older than 20 years of age. Of 273 home-based calls, 88.7% were managed on site. Asymptomatic exposures occurred in 61.5% of the cases. However, minor and moderate toxic effects occurred in 12.4% and 3.5% of cases, respectively. Gastrointestinal (24.4%) and pulmonary (8.4%) symptoms predominated. No major outcomes or deaths were reported. Hurricane Sandy significantly increased gasoline exposures. While the majority of exposures were managed at home with minimum clinical toxicity, some patients experienced more severe symptoms. Disaster plans should incorporate public health messaging and regional PCCs for public health promotion and toxicological surveillance.

  17. Impact of noise on hearing amongst commercial motor bike riders in ...

    African Journals Online (AJOL)

    Impact of noise on hearing amongst commercial motor bike riders in Benin- City, Nigeria. ... While there was no NIHI in control group, a significant hearing impairment for both air conduction (AC) and Bone conduction (BC) was observed in the study group. Unlike previous observations AC and BC impairment were ...

  18. Analysis of physicochemical properties of Mexican gasoline and diesel reformulated with ethanol; Analisis de las propiedades fisicoquimicas de gasolina y diesel mexicanos reformulados con etanol

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Hernandez, Patricia; Mendoza-Dominguez, Alberto; Caballero-Mata, Porfirio [Tecnologico de Monterrey, Campus Monterrey, Nuevo Leon (Mexico)]. E-mails: pcastillohdz@gmail.com; mendoza.alberto@itesm.mx; pcaballe@itesm.mx

    2012-07-15

    High energy prices, environmental issues and increasing importation of fossil fuels has provoked, in some countries, a reorientation of resources towards the development of biofuels that can partially substitute the consumption of fossil fuels. Ethanol is one of the biofuels more commonly used in the world; in the United States, Brazil and Australia gasoline blends that reach up to 85% Ethanol are commercialized. This work presents the results of a physicochemical characterization of commercial Mexican gasoline (Magna and Premium) and diesel blends with 10% vol. and 15% vol. anhydrous Ethanol. The analytical testing included: Research Octane Number, Motor Octane Number, Cetane Number, Reid Vapor Pressure, Distillation Curve and Heating Value. The stability of the blends was also evaluated. The theoretical emissions of CO{sub 2} were calculated based on the results of the physicochemical characterization. The ethanol-gasoline blends increased their Octane Number with respect to the commercial gasoline, while conserving an appropriate Distillation Index. The Cetane Number of the ethanol-diesel blends showed a substantial decrease, while the heating value of gasoline and diesel blends was negatively affected by the addition of ethanol. Nevertheless, taking into account the credits by the use of a renewable fuel, the use of the reformulated gasoline blends would imply a maximum theoretical reduction of 7.5% in CO{sub 2} emissions whereas in the case of ethanol-diesel blends it would represent a 9.2% decrease. [Spanish] Los altos precios de los energeticos, la problematica ambiental y las importaciones de combustibles continuamente a la alza, han ocasionado que algunos paises redirijan sus esfuerzos al desarrollo de biocombustibles con la finalidad de sustituir parcialmente a los combustibles fosiles. El Etanol es uno de los biocombustibles mas usados; Estados Unidos, Brasil y Australia comercializan gasolina con Etanol con una concentracion de hasta 85% en volumen. El

  19. 40 CFR 80.219 - Designation and downstream requirements for GPA gasoline.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Designation and downstream requirements for GPA gasoline. 80.219 Section 80.219 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... sold or dispensed for use in motor vehicles at a retail outlet or wholesale purchaser-consumer facility...

  20. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    Science.gov (United States)

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...... found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT...

  2. Short-term inhalation toxicity of methanol, gasoline, and methanol/gasoline in the rat.

    Science.gov (United States)

    Poon, R; Chu, I; Bjarnason, S; Vincent, R; Potvin, M; Miller, R B; Valli, V E

    1995-01-01

    Four- to five-week-old male and female Sprague Dawley rats were exposed to vapors of methanol (2500 ppm), gasoline (3200 ppm), and methanol/gasoline (2500/3200 ppm, 570/3200 ppm) six hours per day, five days per week for four weeks. Control animals were exposed to filtered room air only. Depression in body weight gain and reduced food consumption were observed in male rats, and increased relative liver weight was detected in rats of both sexes exposed to gasoline or methanol/gasoline mixtures. Rats of both sexes exposed to methanol/gasoline mixtures had increased relative kidney weight and females exposed to gasoline and methanol/gasoline mixtures had increased kidney weight. Decreased serum glucose and cholesterol were detected in male rats exposed to gasoline and methanol/gasoline mixtures. Decreased hemoglobin was observed in females inhaling vapors of gasoline and methanol/gasoline at 570/3200 ppm. Urine from rats inhaling gasoline or methanol/gasoline mixtures had up to a fourfold increase in hippuric acid, a biomarker of exposure to the toluene constituent of gasoline, and up to a sixfold elevation in ascorbic acid, a noninvasive biomarker of hepatic response. Hepatic mixed-function oxidase (aniline hydroxylase, aminopyrine N-demethylase and ethoxyresorufin O-deethylase) activities and UDP-glucuronosyltransferase activity were elevated in rats exposed to gasoline and methanol/gasoline mixtures. Histopathological changes were confined to very mild changes in the nasal passages and in the uterus, where decreased incidence or absence of mucosal and myometrial eosinophilia was observed in females inhaling gasoline and methanol/gasoline at 570/3200 ppm. It was concluded that gasoline was largely responsible for the adverse effects, the most significant of which included depression in weight gain in the males, increased liver weight and hepatic microsomal enzyme activities in both sexes, and suppression of uterine eosinophilia. No apparent interactive effects

  3. Rancang Bangun Konverter Biogas Untuk Motor Bensin Silinder Tunggal

    Directory of Open Access Journals (Sweden)

    Desrial

    2014-02-01

    Full Text Available The need for energy continues to increase along with the increase of population in Indonesia . This is in contrast with the fact that the main oil energy source is reducing day by. To overcome this problem renewable energy sources such as biogas becomes very important. Methane content in the biogas ranged between 60-65 % , where the value is large enough to be used as an energy source replacement of gasoline. The purpose of this study is to design a converter that is capable to perform biogas and air mixing for optimum use of biogas in gasoline engine. The main parts of biogas converter are the venturi, choke valves , throttle valves, as well as the coupler to the engine. Testing was done by applying converter on a gasoline engine with biogas fuel. Engine performance was tested using a dynamometer and the results are compared with the performance of the motor using gasoline fuel . Test results show that the optimal power is achieved at 0979 kW at 3146 rpm and a torque of 4.3 Nm, while the motor power with gasoline kW and a torque of 1.86 Nm at 6:21.

  4. 26 CFR 41.4482(a)-1 - Definition of highway motor vehicle.

    Science.gov (United States)

    2010-04-01

    ... of its own motor, whether such motor is powered by gasoline, diesel fuel, special motor fuels... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Definition of highway motor vehicle. 41.4482(a... (CONTINUED) MISCELLANEOUS EXCISE TAXES EXCISE TAX ON USE OF CERTAIN HIGHWAY MOTOR VEHICLES Tax on Use of...

  5. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  6. Do biofuel blending mandates reduce gasoline consumption? Implications of state-level renewable fuel standards for energy security

    Science.gov (United States)

    Lim, Shinling

    In an effort to keep America's addiction to oil under control, federal and state governments have implemented a variety of policy measures including those that determine the composition of motor gasoline sold at the pump. Biofuel blending mandates known as Renewable Fuel Standards (RFS) are designed to reduce the amount of foreign crude oil needed to be imported as well as to boost the local ethanol and corn industry. Yet beyond looking at changes in gasoline prices associated with increased ethanol production, there have been no empirical studies that examine effects of state-level RFS implementation on gasoline consumption. I estimate a Generalized Least Squares model for the gasoline demand for the 1993 to 2010 period with state and time fixed effects controlling for RFS. States with active RFS are Minnesota, Hawaii, Missouri, Florida, Washington, and Oregon. I find that, despite the onset of federal biofuel mandates across states in 2007 and the lower energy content of blended gasoline, being in a state that has implemented RFS is associated with 1.5% decrease in gasoline consumption (including blended gasoline). This is encouraging evidence for efforts to lessen dependence on gasoline and has positive implications for energy security.

  7. Biofiltration of gasoline and ethanol-amended gasoline vapors.

    Science.gov (United States)

    Soares, Marlene; Woiciechowski, Adenise L; Kozliak, Evguenii I; Paca, Jan; Soccol, Carlos R

    2012-01-01

    Assuming the projected increase in use of ethanol as a biofuel, the current study was conducted to compare the biofiltration efficiencies for plain and 25% ethanol-containing gasoline. Two biofilters were operated in a downflow mode for 7 months, one of them being compost-based whereas the other using a synthetic packing material, granulated tire rubber, inoculated with gasoline-degrading microorganisms. Inlet concentrations measured as total hydrocarbon (TH) ranged from 1.9 to 5.8 g m(-3) at a constant empty bed retention time of 6.84 min. Contrary to the expectations based on microbiological considerations, ethanol-amended gasoline was more readily biodegraded than plain hydrocarbons, with the respective steady state elimination capacities of 26-43 and 14-18 gTH m(-3) h(-1) for the compost biofilter. The efficiency of both biofilters significantly declined upon the application of higher loads of plain gasoline, yet immediately recovering when switched back to ethanol-blended gasoline. The unexpected effect of ethanol in promoting gasoline biodegradation was explained by increasing hydrocarbon partitioning into the aqueous phase, with mass transfer being rate limiting for the bulk of components. The tire rubber biofilter, after a long acclimation, surpassed the compost biofilter in performance, presumably due to the 'buffering' effect of this packing material increasing the accessibility of gasoline hydrocarbons to the biofilm. With improved substrate mass transfer, biodegradable hydrocarbons were removed in the tire rubber biofilter's first reactor stage, with most of the remaining poorly degradable smaller-size hydrocarbons being degraded in the second stage.

  8. Motor vehicle-related air toxics study. Final report

    International Nuclear Information System (INIS)

    1993-04-01

    Section 202 (1)(1) of the Clean Air Act (CAA), as amended (Section 206 of the Clean Air Act Amendments) (CAAA) of 1990 added paragraph (1) to Section 202 of the (CAA), directs the Environmental Protection Agency (EPA) to complete a study by May 15, 1992 of the need for, and feasibility of, controlling emissions of toxic air pollutants which are unregulated under the Act and associated with motor vehicles and motor vehicle fuels. The report has been prepared in response to Section 202 (1)(1). Specific pollutants or pollutant categories which are discussed in the report include benezene, formaldehyde, 1,3-butadiene, acetaldehyde, diesel particulate matter, gasoline particulate matter, and gasoline vapors as well as certain of the metals and motor vehicle-related pollutants identified in Section 112 of the Clean Air Act. The focus of the report is on carcinogenic risk. The study attempts to summarize what is known about motor vehicle-related air toxics and to present all significant scientific opinion on each issue

  9. Terpineol as a novel octane booster for extending the knock limit of gasoline

    KAUST Repository

    Vallinayagam, R.

    2016-09-16

    Improving the octane number of gasoline offers the potential of improved engine combustion, as it permits spark timing advancement without engine knock. This study proposes the use of terpineol as an octane booster for gasoline in a spark ignited (SI) engine. Terpineol is a bio-derived oxygenated fuel obtained from pine tree resin, and has the advantage of higher calorific value than ethanol. The ignition delay time (IDT) of terpineol was first investigated in an ignition quality tester (IQT). The IQT results demonstrated a long ignition delay of 24.7 ms for terpineol and an estimated research octane number (RON) of 104, which was higher than commercial European (Euro V) gasoline. The octane boosting potential of terpineol was further investigated by blending it with a non-oxygenated gasoline (FACE F), which has a RON (94) lower than Euro V gasoline (RON = 97). The operation of a gasoline direct injection (GDI) SI engine fueled with terpineol-blended FACE F gasoline enabled spark timing advancement and improved engine combustion. The knock intensity of FACE F + 30% terpineol was lower than FACE F gasoline at both maximum brake torque (MBT) and knock limited spark advance (KLSA) operating points. Increasing proportions of terpineol in the blend caused peak heat release rate, in-cylinder pressure, CA50, and combustion duration to be closer to those of Euro V gasoline. Furthermore, FACE F + 30% terpineol displayed improved combustion characteristics when compared to Euro V gasoline. © 2016

  10. Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels

    KAUST Repository

    Bhavani Shankar, Vijai Shankar; Sajid, Muhammad Bilal; Al-Qurashi, Khalid; Atef, Nour; Al Khesho, Issam; Ahmed, Ahfaz; Chung, Suk-Ho; Roberts, William L.; Morganti, Kai; Sarathy, Mani

    2016-01-01

    This study presents an experimental evaluation of PRF surrogates for four real gasoline fuels termed FACE (Fuels for Advanced Combustion Engines) A, C, I, and J in a motored CFR (Cooperative Fuels Research) engine. This approach enables the surrogate mixtures to be evaluated purely from a chemical kinetic perspective. The gasoline fuels considered in this study have very low sensitivities, S (RON-MON), and also exhibit two-stage ignition behavior. The first stage heat release, which is termed Low Temperature Heat Release (LTHR), controls the combustion phasing in this operating mode. As a result, the performance of the PRF surrogates was evaluated by its ability to mimic the low temperature chemical reactivity of the real gasoline fuels. This was achieved by comparing the LTHR from the engine pressure histories. The PRF surrogates were able to consistently reproduce the amount of LTHR, closely match the phasing of LTHR, and the compression ratio for the start of hot ignition of the real gasoline fuels. This suggests that the octane quality of a surrogate fuel is a good indicator of the fuel’s reactivity across low (LTC), negative temperature coefficient (NTC), and high temperature chemical (HTC) reactivity regimes.

  11. Post-Traumatic Stress Disorder: A Neglected Health Concern among Commercial Motor Vehicle Drivers

    Directory of Open Access Journals (Sweden)

    HR Saberi

    2013-10-01

    Full Text Available Background: Post-traumatic stress disorder (PTSD is an anxiety disorder that may develop following a trauma. Iranian commercial motor vehicle drivers experience many road traffic accidents during their working life; this may increase the probability for developing PTSD, which in turn may lead to increased human errors as well as decreased work efficiency. Objective: To examine the prevalence of PTSD and its associated factors among a group of Iranian commercial motor vehicle drivers. Methods: In a cross-sectional study, 424 drivers who referred to participate in an annually training program were selected using a simple random sampling technique. They were requested to complete the Persian version of PCL-C and a data collection sheet about their occupational and demographic features. Results: 385 (90.8% of 424 studied drivers completed the study. 265 (68.8% of the drivers had first-grade driving license. The mean±SD on-the-job daily driving was 10.2±2.8 h. 74 of 385 (19.2%; 95% CI: 15.3%–23.2% met the PTSD criteria. Higher age and job experience as a professional driver, and having past history or past familial history of psychiatric disorders, were independent predictors of developing PTSD. The disease was more prevalent among drivers with first-grade driving license. Conclusion: The prevalence of PTSD among Iranian commercial motor vehicle drivers is higher than the figures reported elsewhere. Measures to diagnose of such drivers and to ensure optimum follow-up of victims before return to professional driving should be considered.

  12. Volatile organic compounds in a residential and commercial urban area with a diesel, compressed natural gas and oxygenated gasoline vehicular fleet.

    Science.gov (United States)

    Martins, Eduardo Monteiro; Arbilla, Graciela; Gatti, Luciana Vanni

    2010-02-01

    Air samples were collected in a typical residential and commercial area in Rio de Janeiro, Brazil, where buses and trucks use diesel and light duty vehicles use compressed natural gas, ethanol, and gasohol (gasoline blended with ethanol) as fuel. A total of 66 C3-C12 volatile organic compounds (VOCs) were identified. The most abundant compounds, on a mass concentration basis, included propane, isobutane, i-pentane, m,p-xylene, 1,3,5-trimethylbenzene, toluene, styrene, ethylbenzene, isopropylbenzene, o-xylene and 1,2,4-trimethylbenzene. Two VOCs photochemical reactivity rankings are presented: one involves reaction with OH and the other involves production of ozone.

  13. Gasoline sniffing multifocal neuropathy.

    Science.gov (United States)

    Burns, T M; Shneker, B F; Juel, V C

    2001-11-01

    The polyneuropathy caused by chronic gasoline inhalation is reported to be a gradually progressive, symmetric, sensorimotor polyneuropathy. We report unleaded gasoline sniffing by a female 14 years of age that precipitated peripheral neuropathy. In contrast with the previously reported presentation of peripheral neuropathy in gasoline inhalation, our patient developed multiple mononeuropathies superimposed on a background of sensorimotor polyneuropathy. The patient illustrates that gasoline sniffing neuropathy may present with acute multiple mononeuropathies resembling mononeuritis multiplex, possibly related to increased peripheral nerve susceptibility to pressure in the setting of neurotoxic components of gasoline. The presence of tetraethyl lead, which is no longer present in modern gasoline mixtures, is apparently not a necessary factor in the development of gasoline sniffer's neuropathy.

  14. Gasoline poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002806.htm Gasoline poisoning To use the sharing features on this ... This article discusses the harmful effects from swallowing gasoline or breathing in its fumes. This article is ...

  15. 40 CFR 80.35 - Labeling of retail gasoline pumps; oxygenated gasoline.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Labeling of retail gasoline pumps; oxygenated gasoline. 80.35 Section 80.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Oxygenated Gasoline § 80.35 Labeling...

  16. 78 FR 41852 - Hours of Service for Commercial Motor Vehicle Drivers; Regulatory Guidance Concerning Off-Duty Time

    Science.gov (United States)

    2013-07-12

    ... provided: 1. The driver is relieved of all duty and responsibility for the care and custody of the vehicle... Service for Commercial Motor Vehicle Drivers; Regulatory Guidance Concerning Off-Duty Time AGENCY: Federal... motor vehicle (CMV) driver to record meal and other routine stops made during a work shift as off-duty...

  17. 78 FR 43262 - Use of Wireless Mobile Data Devices as Transponders for the Commercial Motor Vehicle Information...

    Science.gov (United States)

    2013-07-19

    ... FMCSA's regulations prohibiting texting and the use of hand-held wireless mobile phones by commercial... part 392 prohibiting texting and the use of hand-held wireless mobile phones by commercial motor vehicle (CMV) drivers. Benefits Use of wireless mobile data devices as transponders with CMRS provides...

  18. Health assessment of gasoline and fuel oxygenate vapors: neurotoxicity evaluation.

    Science.gov (United States)

    O'Callaghan, James P; Daughtrey, Wayne C; Clark, Charles R; Schreiner, Ceinwen A; White, Russell

    2014-11-01

    Sprague-Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential neurotoxicity of evaporative emissions. Test articles included vapor condensates prepared from "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/mg(3) and exposures were for 6h/day, 5days/week for 13weeks. The functional observation battery (FOB) with the addition of motor activity (MA) testing, hematoxylin and eosin staining of brain tissue sections, and brain regional analysis of glial fibrillary acidic protein (GFAP) were used to assess behavioral changes, traditional neuropathology and astrogliosis, respectively. FOB and MA data for all agents, except G/TBA, were negative. G/TBA behavioral effects resolved during recovery. Neuropathology was negative for all groups. Analyses of GFAP revealed increases in multiplebrain regions largely limited to males of the G/EtOH group, findings indicative of minor gliosis, most significantly in the cerebellum. Small changes (both increases and decreases) in GFAP were observed for other test agents but effects were not consistent across sex, brain region or exposure concentration. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Determinação de benzeno, tolueno, etilbenzeno e xilenos em gasolina comercializada nos postos do estado do Piauí Determination of benzene, toluene, ethylbenzene and xylenes in commercial gasoline from Piaui state

    Directory of Open Access Journals (Sweden)

    Flamys Lena do N. Silva

    2009-01-01

    Full Text Available Automotive gasoline consists of a complex mixture of flammable and volatile hydrocarbons derived from crude oil with carbon numbers within the range of 4-12 and boiling points range of 30-225 ºC. Its composition varies with the kind of crude oil and the type of refinery process that they undergone. Aromatics hydrocarbons, in particular benzene, toluene, ethylbenzene and isomeric xylenes (BTEX are the toxic group constituents presents. GC-FID was employed to quantify these hydrocarbons in 50 commercial gasoline samples from Piauí state. Statistical analysis techniques, such as PCA and HCA were used to analyze the data. Moreover, several validation parameters were evaluated.

  20. Biofuels policy and the US market for motor fuels: Empirical analysis of ethanol splashing

    Energy Technology Data Exchange (ETDEWEB)

    Walls, W.D., E-mail: wdwalls@ucalgary.ca [Department of Economics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 (Canada); Rusco, Frank; Kendix, Michael [US GAO (United States)

    2011-07-15

    Low ethanol prices relative to the price of gasoline blendstock, and tax credits, have resulted in discretionary blending at wholesale terminals of ethanol into fuel supplies above required levels-a practice known as ethanol splashing in industry parlance. No one knows precisely where or in what volume ethanol is being blended with gasoline and this has important implications for motor fuels markets: Because refiners cannot perfectly predict where ethanol will be blended with finished gasoline by wholesalers, they cannot know when to produce and where to ship a blendstock that when mixed with ethanol at 10% would create the most economically efficient finished motor gasoline that meets engine standards and has comparable evaporative emissions as conventional gasoline without ethanol blending. In contrast to previous empirical analyses of biofuels that have relied on highly aggregated data, our analysis is disaggregated to the level of individual wholesale fuel terminals or racks (of which there are about 350 in the US). We incorporate the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city-terminal. The empirical analysis illustrates how ethanol and gasoline prices affect ethanol usage, controlling for fuel specifications, blend attributes, and city-terminal-specific effects that, among other things, control for differential costs of delivering ethanol from bio-refinery to wholesale rack. - Research Highlights: > Low ethanol prices and tax credits have resulted in discretionary blending of ethanol into fuel supplies above required levels. > This has important implications for motor fuels markets and vehicular emissions. > Our analysis incorporates the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city

  1. Biofuels policy and the US market for motor fuels: Empirical analysis of ethanol splashing

    International Nuclear Information System (INIS)

    Walls, W.D.; Rusco, Frank; Kendix, Michael

    2011-01-01

    Low ethanol prices relative to the price of gasoline blendstock, and tax credits, have resulted in discretionary blending at wholesale terminals of ethanol into fuel supplies above required levels-a practice known as ethanol splashing in industry parlance. No one knows precisely where or in what volume ethanol is being blended with gasoline and this has important implications for motor fuels markets: Because refiners cannot perfectly predict where ethanol will be blended with finished gasoline by wholesalers, they cannot know when to produce and where to ship a blendstock that when mixed with ethanol at 10% would create the most economically efficient finished motor gasoline that meets engine standards and has comparable evaporative emissions as conventional gasoline without ethanol blending. In contrast to previous empirical analyses of biofuels that have relied on highly aggregated data, our analysis is disaggregated to the level of individual wholesale fuel terminals or racks (of which there are about 350 in the US). We incorporate the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city-terminal. The empirical analysis illustrates how ethanol and gasoline prices affect ethanol usage, controlling for fuel specifications, blend attributes, and city-terminal-specific effects that, among other things, control for differential costs of delivering ethanol from bio-refinery to wholesale rack. - Research highlights: → Low ethanol prices and tax credits have resulted in discretionary blending of ethanol into fuel supplies above required levels. → This has important implications for motor fuels markets and vehicular emissions. → Our analysis incorporates the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city-terminal.

  2. Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels

    KAUST Repository

    Bhavani Shankar, Vijai Shankar

    2016-04-05

    Primary Reference Fuels (PRFs) - binary mixtures of n-heptane and iso-octane based on Research Octane Number (RON) - are popular gasoline surrogates for modeling combustion in spark ignition engines. The use of these two component surrogates to represent real gasoline fuels for simulations of HCCI/PCCI engines needs further consideration, as the mode of combustion is very different in these engines (i.e. the combustion process is mainly controlled by the reactivity of the fuel). This study presents an experimental evaluation of PRF surrogates for four real gasoline fuels termed FACE (Fuels for Advanced Combustion Engines) A, C, I, and J in a motored CFR (Cooperative Fuels Research) engine. This approach enables the surrogate mixtures to be evaluated purely from a chemical kinetic perspective. The gasoline fuels considered in this study have very low sensitivities, S (RON-MON), and also exhibit two-stage ignition behavior. The first stage heat release, which is termed Low Temperature Heat Release (LTHR), controls the combustion phasing in this operating mode. As a result, the performance of the PRF surrogates was evaluated by its ability to mimic the low temperature chemical reactivity of the real gasoline fuels. This was achieved by comparing the LTHR from the engine pressure histories. The PRF surrogates were able to consistently reproduce the amount of LTHR, closely match the phasing of LTHR, and the compression ratio for the start of hot ignition of the real gasoline fuels. This suggests that the octane quality of a surrogate fuel is a good indicator of the fuel’s reactivity across low (LTC), negative temperature coefficient (NTC), and high temperature chemical (HTC) reactivity regimes.

  3. Speed-dependent emission of air pollutants from gasoline-powered passenger cars.

    Science.gov (United States)

    Jung, Sungwoon; Lee, Meehye; Kim, Jongchoon; Lyu, Youngsook; Park, Junhong

    2011-01-01

    In Korea emissions from motor vehicles are a major source of air pollution in metropolitan cities, and in Seoul a large proportion of the vehicle fleet is made up of gasoline-powered passenger cars. The carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and carbon dioxide (CO2) contained in the exhaust emissions from 76 gasoline-powered passenger cars equipped with three-way catalysts has been assessed by vehicle speed, vehicle mileage and model year. The results show that CO, HC, NOx and CO2 emissions remained almost unchanged at higher speeds but decreased rapidly at lower speeds. While a reduction in CO, HC and NOx emissions was noticeable in vehicles of recent manufacture and lower mileage, CO2 emissions were found to be insensitive to vehicle mileage, but strongly dependent on gross vehicle weight. Lower emissions from more recent gasoline-powered vehicles arose mainly from improvements in three-way catalytic converter technology following strengthened emission regulations. The correlation between CO2 emission and fuel consumption has been investigated with a view to establishing national CO2 emission standards for Korea.

  4. Volatilization of gasoline from soil

    International Nuclear Information System (INIS)

    Arthus, P.

    1993-05-01

    Gasoline contaminated soil threatens water resources and air quality. The extent of the threat depends on gasoline behavior in soil, which is affected by various mechanisms such as volatilization. To quantify volatilization, gasoline spills were simulated in the laboratory using a synthetic gasoline and three dry soils. Total gasoline and individual gasoline compound concentrations in soil were monitored as a function of depth and time. The time to reduce overall gasoline concentration in coarse sand, sandy loam, and silt loam to 40% of initial concentration, averaged between surface and a 200-mm depth, ranged from 0.25 d to 10 d. A wicking phenomenon which contributed to gasoline flux toward the atmosphere was indicated by behavior of a low-volatility gasoline compound. Based on separate wicking experiments, this bulk immiscible movement was estimated at an upward velocity of 0.09 m/d for Delhi sandy loam and 0.05 m/d for Elora silt loam. 70 refs., 24 figs., 34 tabs

  5. Impact of reformulated fuels on motor vehicle emissions

    Science.gov (United States)

    Kirchstetter, Thomas

    Motor vehicles continue to be an important source of air pollution. Increased vehicle travel and degradation of emission control systems have offset some of the effects of increasingly stringent emission standards and use of control technologies. A relatively new air pollution control strategy is the reformulation of motor vehicle fuels, both gasoline and diesel, to make them cleaner- burning. Field experiments in a heavily traveled northern California roadway tunnel revealed that use of oxygenated gasoline reduced on-road emissions of carbon monoxide (CO) and volatile organic compounds (VOC) by 23 +/- 6% and 19 +/- 8%, respectively, while oxides of nitrogen (NOx) emissions were not significantly affected. The introduction of reformulated gasoline (RFG) in California led to large changes in gasoline composition including decreases in alkene, aromatic, benzene, and sulfur contents, and an increase in oxygen content. The combined effects of RFG and fleet turnover between summers 1994 and 1997 were decreases in on-road vehicle exhaust emissions of CO, non-methane VOC, and NOx by 31 +/- 5, 43 +/- 8, and 18 +/- 4%, respectively. Although it was difficult to separate the fleet turnover and RFG contributions to these changes, it was clear that the effect of RFG was greater for VOC than for NOx. The RFG effect on exhaust emissions of benzene was a 30-40% reduction. Use of RFG reduced the reactivity of liquid gasoline and gasoline headspace vapors by 23 and 19%, respectively. Increased use of methyl tert-butyl ether in gasoline led to increased concentrations of highly reactive formaldehyde and isobutene in vehicle exhaust. As a result, RFG reduced the reactivity of exhaust emissions by only about 5%. Per unit mass of fuel burned, heavy-duty diesel trucks emit about 25 times more fine particle mass and 15-20 times the number of fine particles compared to light-duty vehicles. Exhaust fine particle emissions from heavy-duty diesels contain more black carbon than particulate

  6. Diagnostico de un motor de gasolina de cuatro cilindros mediante el análisis de vibraciones//Diagnostic of a four cylinder gasoline engine using vibration analysis

    Directory of Open Access Journals (Sweden)

    Jairo Andrés-Grajales

    2015-09-01

    Full Text Available Este trabajo presenta el análisis de vibraciones de un motor de combustión interna, operando con diferentes mezclas de combustible, para identificar condiciones de operación con falla, utilizando un banco de pruebas y la falla estudiada fue el “misfire”. Tres mezclas de combustible fueron probadas: E8, E20 y E30. Aplicando la transformada rápida de Fourier a las señales, se compararon las condiciones de operación normal y con falla entre combustibles, buscando componentes de frecuencia característicos para evaluar la validez de los estudios realizados hasta ahora en gasolina pura. Los resultados muestran que el comportamiento utilizando las diferentes mezclas de combustible es similar al reportado con gasolina pura, y los componentes de frecuencia que diferencian la condición normal y con falla también están presentes en las mezclas de combustible. Se extrajeron características estadísticas de las señales en el dominio de la frecuencia para simplificar el proceso de identificación. Palabras clave: motor de combustión interna, vibraciones, detección de fallas, problema de encendido, mezclas gasolina-etanol.______________________________________________________________________________AbstractThis paper presents the vibration analysis of an internal combustion engine, using different fuel blends, to identify fault operating conditions. A purpose built engine test bench was used and the fault studied was misfire. Three fuel blends were used: E8, E20 and E30. Fast Fourier transform was applied to the signals. A comparison between normal and faulty operating conditions was carried with every fuel used, looking for characteristic frequency components, to assess the validity of past studies on misfire performed on pure gasoline. The results show that the behavior using the different fuel blends is similar to the one reported on pure gasoline, and that the frequency components that differentiate normal and faulty conditions are also

  7. Measurements of ion concentration in gasoline and diesel engine exhaust

    Science.gov (United States)

    Yu, Fangqun; Lanni, Thomas; Frank, Brian P.

    The nanoparticles formed in motor vehicle exhaust have received increasing attention due to their potential adverse health effects. It has been recently proposed that combustion-generated ions may play a critical role in the formation of these volatile nanoparticles. In this paper, we design an experiment to measure the total ion concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported in this study and for the specific engines used, the total ion concentration is ca. 3.3×10 6 cm -3 with almost all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7×10 8 cm -3 with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion properties is interpreted as a result of the different residence times of exhaust inside the tailpipe/connecting pipe and the different concentrations of soot particles in the exhaust. The measured ion concentrations appear to be within the ranges predicted by a theoretical model describing the evolution of ions inside a pipe.

  8. Fiscal 2000 report of investigation. Research study on reduction of carbon dioxide discharge by increase in octane number in gasoline through use of biomass; 2000 nendo biomass wo riyoshita gasoline no octane ka kojo ni yoru nisanka tanso haishutsu sakugen ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigative research was conducted on the means of reducing fuel consumption of motor vehicles and reducing greenhouse effect gases, by making octane boosters for gasoline through the use of alcohol derived from biomass feedstock. As a result of the investigation, the following proposals were made. In present gasoline-fueled motor vehicles, an increase in the octane number by 5 will allow a higher compression by 1, thereby reducing fuel consumption by 2.5% during running. The suitable octane boosters are MTBE (methyl tertiary butylether) and ETBE (ethyl tertiary butylether) both of which can be produced from either methanol or ethanol derived from biomass feedstock. Blending regular gasoline with an octane number of 90 and either MTBE or ETBE by 18% may make gasoline having an octane number of 95, leading to a reduction of carbon dioxide emission by 4.8% and 6.8% respectively. The amount of alcohol needed for these octane boosters is 2.2 megatons of methanol per year for MTBE production and 2.7 megatons of ethanol per year for ETBE; this requires 12 plants nationwide for producing the octane boosters at 0.5 megatons per year; and, in view of the cost of transportation, alcohol producing plants are desirably located near the octane booster producing plants. (NEDO)

  9. Effects of gasoline aromatic content on emissions of volatile organic compounds and aldehydes from a four-stroke motorcycle.

    Science.gov (United States)

    Yao, Yung-Chen; Tsai, Jiun-Horng

    2013-01-01

    A new four-stroke carburettor motorcycle engine without any engine adjustments was used to study the impact of fuel aromatic content on the exhaust emissions of organic air pollutants (volatile organic compounds and carbonyls). Three levels of aromatic content, i.e. 15, 25, and 50% (vol.) aromatics mixed with gasoline were tested. The emissions of aromatic fuel were compared with those of commercial unleaded gasoline. The results indicated that the A 15 (15 vol% aromatics in gasoline) fuel exhibited the greatest total organic emission improvement among these three aromatic fuels as compared with commercial gasoline, reaching 59%. The highest emission factors of alkanes, alkenes, and carbonyl groups appeared in the reference fuel (RF) among all of the test fuels. A 15 showed the highest emission reduction in alkanes (73%), aromatics (36%), and carbonyls (28%), as compared to those of the RF. The highest emission reduction ofalkenes was observed when using A25 as fuel. A reduction in fuel aromatic content from 50 to 25 and 15 vol% in gasoline decreased benzene and toluene emissions, but increased the aldehyde emissions. In general, the results showed that the highest emission reductions for the most of measured organic pollutants appeared when using A 15 as the fuel.

  10. Motor fuel demand analysis - applied modelling in the European union; Modelisation de la demande de carburant appliquee a l`europe

    Energy Technology Data Exchange (ETDEWEB)

    Chorazewiez, S

    1998-01-19

    Motor fuel demand in Europe amounts to almost half of petroleum products consumption and to thirty percent of total final energy consumption. This study considers, Firstly, the energy policies of different European countries and the ways in which the consumption of motor gasoline and automotive gas oil has developed. Secondly it provides an abstract of demand models in the energy sector, illustrating their specific characteristics. Then it proposes an economic model of automotive fuel consumption, showing motor gasoline and automotive gas oil separately over a period of thirty years (1960-1993) for five main countries in the European Union. Finally, forecasts of consumption of gasoline and diesel up to the year 2020 are given for different scenarios. (author) 330 refs.

  11. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  12. Evaporation characteristics of ETBE-blended gasoline

    International Nuclear Information System (INIS)

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-01-01

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  13. Evaporation characteristics of ETBE-blended gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Katsuhiro, E-mail: okamoto@nrips.go.jp [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan); Hiramatsu, Muneyuki [Yamanashi Prefectural Police H.Q., 312-4 Kubonakajima, Isawa-cho, Usui, Yamanashi 406-0036 (Japan); Hino, Tomonori; Otake, Takuma [Metropolitan Police Department, 2-1-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8929 (Japan); Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan)

    2015-04-28

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  14. Assessment in rats of the reproductive toxicity of gasoline from a gasoline vapor recovery unit.

    Science.gov (United States)

    McKee, R H; Trimmer, G W; Whitman, F T; Nessel, C S; Mackerer, C R; Hagemann, R; Priston, R A; Riley, A J; Cruzan, G; Simpson, B J; Urbanus, J H

    2000-01-01

    Gasoline (CAS 86290-81-5) is one of the world's largest volume commercial products. Although numerous toxicology studies have been conducted, the potential for reproductive toxicity has not been directly assessed. Accordingly, a two-generation reproductive toxicity study in rats was conducted to provide base data for hazard assessment and risk characterization. The test material, vapor recovery unit gasoline (68514-15-8), is the volatile fraction of formulated gasoline and the material with which humans are most likely to come in contact. The study was of standard design. Exposures were by inhalation at target concentrations of 5000, 10 000, and 20 000 mg/m(3). The highest exposure concentration was approximately 50% of the lower explosive limit and several orders of magnitude above anticipated exposure during refueling. There were no treatment-related clinical or systemic effects in the parental animals, and no microscopic changes other than hyaline droplet nephropathy in the kidneys of the male rats. None of the reproductive parameters were affected, and there were no deleterious effects on offspring survival and growth. The potential for endocrine modulation was also assessed by analysis of sperm count and quality as well as time to onset of developmental landmarks. No toxicologically important differences were found. Therefore, the NOAEL for reproductive toxicity in this study was > or =20 000 mg/m(3). The only systemic effects, in the kidneys of the male rats, were consistent with an alpha-2 u-globulin-mediated process. This is a male rat-specific effect and not relevant to human health risk assessment.

  15. Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries

    International Nuclear Information System (INIS)

    Burke, Paul J.; Nishitateno, Shuhei

    2013-01-01

    Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 1995–2008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between − 0.2 and − 0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of + 0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes. - Highlights: ► We estimate the determinants of gasoline demand and new-vehicle fuel economy. ► Estimates are for a large sample of countries for the period 1995–2008. ► We instrument for gasoline prices using oil reserves and the world crude oil price. ► Gasoline demand and fuel economy are inelastic with respect to the gasoline price. ► Large energy efficiency gains are possible via higher gasoline prices

  16. Experimental investigation on SI engine using gasoline and a hybrid iso-butanol/gasoline fuel

    International Nuclear Information System (INIS)

    Elfasakhany, Ashraf

    2015-01-01

    Highlights: • iso-Butanol–gasoline blends (iB) using up to 10 vol.% butanol were examined in SIE. • iB extensively decrease the greenhouse effect of SI engine. • iB without engine tuning led to a drop in engine performance at all speeds. • iB provide higher performance and lower CO and CO 2 emissions than n-butanol blends. • iB grant lower CO and UHC than gasoline at <2900 r/min, but overturn at >2900 r/min. - Abstract: Experimental investigation on pollutant emissions and performance of SI engine fueled with gasoline and iso-butanol–gasoline blends is carried out. Engine was operated at speed range of 2600–3400 r/min for each blend (3, 7 and 10 vol.% iso-butanol) and neat gasoline. Results declare that the CO and UHC emissions of neat gasoline are higher than those of the blended fuels for speeds less than or equal to 2900 r/min; however, for speeds higher than 2900 r/min, we have an opposite impact where the blended fuels produce higher level of CO and UHC emissions than the gasoline fuel. The CO 2 emission at using iso-butanol–gasoline blends is always lower than the neat gasoline at all speeds by up to 43%. The engine performance results demonstrate that using iso-butanol–gasoline blends in SI engine without any engine tuning lead to a drop in engine performance within all speed range. Without modifying the engine system, overall fuel combustion of iso-butanol–gasoline blends was quasi-complete. However, when engine system is optimized for blended fuels, iso-butanol has significant oxygen content and that can lead to a leaner combustion, which improves the completeness of combustion and therefore high performance and less emissions would be obtained. Finally, the performance and emissions of iso-butanol–gasoline blends are compared with those of n-butanol–gasoline blends at similar blended rates and engine working conditions. Such comparison is directed to evaluate the combustion dissimilarity of the two butanol isomers and also to

  17. Comparison of the composition between coal-liquid naphtha and petroleum gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Y.; Sugimoto, Y.; Ono, S.; Machida, M. [National Chemical Laboratory for Industry, Tsukuba (Japan)

    1997-08-01

    Compositional characterization was performed using a gas chromatography-mass spectrometry-atomic emission detector technique on coal-liquid raw naphtha, coal-liquid refined naphtha, coal-liquid reformate and commercial petroleum gasoline. The chemical composition of these oils are divided into five groups: chain hydrocarbons, monocyclic hydrocarbons, bicyclic hydrocarbons, oxygen-containing compounds and other compounds (containing unidentified compounds). Compared to petroleum gasoline, the coal-liquid raw naphtha contains higher concentrations of straight paraffins, cycloparaffins, cycloolefins, bicycloparaffins and oxygen-containing compounds, and contains lower concentrations of brached paraffins and monocyclic aromatic compounds. Phenols and ketones are the major components of oxygen-containing compounds. The total concentration of paraffins and cycloparaffins increased after refining. The hydrogenation of olefins and the hydrodeoxygenation of oxygen-containing compounds are suggested to proceed during the refining process. The reforming treatment increased the concentrations of branched paraffins and monocyclic aromatic compounds; this suggests that coal-liquid reformat could be used as a major blending substance with petroleum gasoline.

  18. Evaporation characteristics of ETBE-blended gasoline.

    Science.gov (United States)

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Activated coal of tomato seeds for adsorption of vapors of ammonia, benzene and gasoline

    International Nuclear Information System (INIS)

    Márquez-Montesino, Francisco; Aguiar-Trujillo, Leonardo; Ramos-Robaina, Boris Abel; Zanzi-Vigouroux, Rolando; Birbas, Daniella

    2013-01-01

    The objective was to prove the adsorption possibilities of ammonia, benzene and vapors of gasoline in activated coals with phosphoric acid, of tomato seed. An immediate analysis to the biomass was carried out. It was concluded that the vapors adsorption of ammonia, is related with the physical adsorption and the presence of functional groups of acid character in the active surface of the coal that form weak connections with the molecules of ammonia. Experiments of adsorption of benzene and gasoline were carried out, these substances haven't functional groups as the ammonia, so they were less adsorbed, and it was confirmed a chemical adsorption preferably. The activation temperature, the relationship of impregnation (RI) and the concentration of the acid dissolution haven't a significant influence in the capacity of adsorption of benzene, but they have in the adsorption of ammonia and vapors of gasoline, it's of great application for the elimination of vapors' escape in the motors of vehicles. (author)

  20. Price changes in the gasoline market: Are Midwestern gasoline prices downward sticky?

    International Nuclear Information System (INIS)

    1999-03-01

    This report examines a recurring question about gasoline markets: why, especially in times of high price volatility, do retail gasoline prices seem to rise quickly but fall back more slowly? Do gasoline prices actually rise faster than they fall, or does this just appear to be the case because people tend to pay more attention to prices when they're rising? This question is more complex than it might appear to be initially, and it has been addressed by numerous analysts in government, academia and industry. The question is very important, because perceived problems with retail gasoline pricing have been used in arguments for government regulation of prices. The phenomenon of prices at different market levels tending to move differently relative to each other depending on direction is known as price asymmetry. This report summarizes the previous work on gasoline price asymmetry and provides a method for testing for asymmetry in a wide variety of situations. The major finding of this paper is that there is some amount of asymmetry and pattern asymmetry, especially at the retail level, in the Midwestern states that are the focus of the analysis. Nevertheless, both the amount asymmetry and pattern asymmetry are relatively small. In addition, much of the pattern asymmetry detected in this and previous studies could be a statistical artifact caused by the time lags between price changes at different points in the gasoline distribution system. In other words, retail gasoline prices do sometimes rise faster than they fall, but this is largely a lagged market response to an upward shock in the underlying wholesale gasoline or crude oil prices, followed by a return toward the previous baseline. After consistent time lags are factored out, most apparent asymmetry disappears

  1. Feasibility study on reduction of gasoline emissions from oil depots and gasoline stations in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A field survey was conducted of oil shipment depots in Java and Bali islands owned by Indonesia's state-run oil company to study measures for reduction in greenhouse effect gas emissions. Studies were made on the grasp of the amount of the hydrocarbon vapor emitted into the air, the amount of the gasoline recovered in case of adopting the vapor emission preventive technology, equipment cost/operational cost, etc. Concretely, the following three were studied: change of the gasoline storage tank to the inner floating roof type, and prevention of evaporation loss at the time of receiving and breathing loss caused by temperature changes; replacement with the vapor recovery type loading arm to recover gasoline vapor generated at the time of shipment/filling, and installation of the vapor recovery unit to recover vapor as gasoline; vapor balance system to recover in underground tank the gasoline vapor generated at the time of filling gasoline at gas station. As a result of the study, the recovered gasoline amount was 66,393 Kl/y and the CO2 reduction amount was 14,474 t/y at oil shipment depots and approximately 650 gasoline stations in Jakarta and Surabaya. (NEDO)

  2. Leaded gasoline - an environmental problem

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica

    2001-01-01

    In the European countries it is a clear trend towards the increasing consumption of unleaded gasolines. Driving force of this trend is, on the one hand the high toxicity of lead compounds and on the other, the necessity of purification of exhaust gases by catalytic converters, for which the lead represent a catalyst poison. In Macedonia, the limit lead content in the leaded gasolines is relatively high (0,6 g/l), as well as the consumption of the leaded gasolines. Rapid and complete transition to unleaded gasolines can be realized by the concept of step by step reduction of lead in our gasolines. (Original)

  3. A gasoline vapor monitoring program for a major underground long-term leak

    International Nuclear Information System (INIS)

    Boehler, W.F.; Huttie, R.L.; Hill, K.M.; Ames, P.R.

    1991-01-01

    In January of 1988, a large petroleum distributor located in Long Island, New York, reported that a gasoline leak had occurred, and unfortunately, had gone undetected for a number of years. Since the initial discovery of the greater than 1 million gallon gasoline spill, approximately 110 Vapor Monitoring Wells and more than 120 Water Monitoring Wells have been installed in and around an impacted residential community. This paper will focus on the air monitoring aspects of the gasoline spill project including: (1) air sampling methodology - discussion of strategies, techniques, problems and solutions; (2) analytical methodology - development of a Non-Cryogenic Automated Thermal Desorption GC/MS System for the analysis of Air Toxics; (3) work load requirements for the governmental laboratory; (4) establishment of quality assurance program for participating commercial laboratories; (5) establishment of a computerized quality assured project data base; (6) and interactions with the petroleum distributor, consultants and the residential community

  4. Light-absorbing organic carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions.

    Science.gov (United States)

    Xie, Mingjie; Hays, Michael D; Holder, Amara L

    2017-08-04

    Light-absorbing organic carbon (OC), also termed brown carbon (BrC), from laboratory-based biomass burning (BB) has been studied intensively to understand the contribution of BB to radiative forcing. However, relatively few measurements have been conducted on field-based BB and even fewer measurements have examined BrC from anthropogenic combustion sources like motor vehicle emissions. In this work, the light absorption of methanol-extractable OC from prescribed and laboratory BB and gasoline vehicle emissions was examined using spectrophotometry. The light absorption of methanol extracts showed a strong wavelength dependence for both BB and gasoline vehicle emissions. The mass absorption coefficients at 365 nm (MAC 365 , m 2 g -1 C) - used as a measurement proxy for BrC - were significantly correlated (p burn conditions and fuel types may impact BB BrC characteristics. The average MAC 365 of gasoline vehicle emission samples is 0.62 ± 0.76 m 2  g -1 C, which is similar in magnitude to the BB samples (1.27 ± 0.76 m 2  g -1 C). These results suggest that in addition to BB, gasoline vehicle emissions may also be an important BrC source in urban areas.

  5. Air emissions scenarios from ethanol as a gasoline oxygenate in Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Carlos A. [Posgrado en Ingenieria Energetica, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/n, Col. Centro, Apartado Postal 34, 62580 Temixco, Morelos (Mexico); Manzini, Fabio; Islas, Jorge [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/n, Col. Centro, Apartado Postal 34, 62580 Temixco, Morelos (Mexico)

    2010-12-15

    The Mexican Biofuel Introduction Program states that during year 2010 the three biggest Mexican cities will have a gasoline blending with 6% ethanol available for all gasoline on-road vehicle fleet. Also in 2010 Mexican government has programmed to start the substitution of Tier 1 - the adopted US emission standards - by Tier 2, which are more stringent emission standards for motor vehicles and gasoline sulfur control requirements. How will the air emissions in the Mexico City Metropolitan Area (MCMA) be modified by using this blending? Four scenarios up to year 2030 were constructed and simulated using the Long-Range Energy Alternatives Planning model. Beginning with a BAU or reference scenario, in this scenario the current available fuel is a blending composed by 5% methyl tertiary butyl ether and 95% gasoline (MTBE5). Then, three alternative scenarios that use ethanol as an oxygenate are considered, one with the already programmed E6 blending (6% anhydride ethanol, 94% gasoline), for the sake of comparison the E10 blending (10% anhydride ethanol, 90% gasoline), and the other alternative to compare, ETBE13.7 (13.7% ethyl tertiary butyl ether, 86.3% gasoline; where ETBE is an ether composed by 48% anhydride ethanol and 52% isobutene). Emissions of carbon dioxide (CO{sub 2}), carbon monoxide (CO), nitrogen oxides (NOx), particulate matter (PM10), sulfur dioxide (SO{sub 2}), total hydrocarbons (THC), benzene, formaldehyde, acetaldehyde and 1,3-butadiene were calculated using emission factors previously calculated using the adapted US-EPA computer model called MOBILE6-Mexico. Results show that Tier 1 and Tier 2 standards effectively lowers all emissions in all studied scenarios with the exception of PM10 and CO{sub 2} emissions. The alternative scenario E10 has the most total avoided emissions by weight but it is not the best when considering some individual pollutants. The greatest environmental benefit of ethanol in its final use as a gasoline oxygenate is for

  6. Toward the development of Raman spectroscopy as a nonperturbative online monitoring tool for gasoline adulteration.

    Science.gov (United States)

    Tan, Khay M; Barman, Ishan; Dingari, Narahara C; Singh, Gajendra P; Chia, Tet F; Tok, Wee L

    2013-02-05

    There is a critical need for a real-time, nonperturbative probe for monitoring the adulteration of automotive gasoline. Running on adulterated fuel leads to a substantive increase in air pollution, because of increased tailpipe emissions of harmful pollutants, as well as a reduction in engine performance. Consequently, both classification of the gasoline type and quantification of the adulteration content are of great significance for quality control. Gasoline adulteration detection is currently carried out in the laboratory with gas chromatography, which is time-consuming and costly. Here, we propose the application of Raman spectroscopic measurements for on-site rapid detection of gasoline adulteration. In this proof-of-principle report, we demonstrate the effectiveness of Raman spectra, in conjunction with multivariate analysis methods, in classifying the base oil types and simultaneously detecting the adulteration content in a wide range of commercial gasoline mixtures, both in their native states and spiked with different adulterants. In particular, we show that Raman spectra acquired with an inexpensive noncooled detector provides adequate specificity to clearly discriminate between the gasoline samples and simultaneously characterize the specific adulterant content with a limit of detection below 5%. Our promising results in this study illustrate, for the first time, the capability and the potential of Raman spectroscopy, together with multivariate analysis, as a low-cost, powerful tool for on-site rapid detection of gasoline adulteration and opens substantive avenues for applications in related fields of quality control in the oil industry.

  7. The gasoline retail market in Quebec

    International Nuclear Information System (INIS)

    Lapointe, A.

    1998-06-01

    A comprehensive study of the current status of the gasoline market in Quebec was presented. The study includes: (1) a review of the evolution of the retail market since the 1960s, (2) the development of a highly competitive sales environment, (3) a discussion of governmental interventions in the retail sales of gasoline, and (4) a discussion of the problems associated with the imposition of a minimum gasoline price. The low increase in demand for gasoline in Quebec since the 1980s has led to a considerable restructuring of the gasoline market. Consumers have little loyalty to specific brands but seek the lowest prices or prefer the outlets that offer the widest variety of associated services such as convenience stores, fast-food and car washes. Gasoline has clearly become a commodity in Quebec. An econometric model of gasoline price adjustments for the Montreal and Toronto urban areas and a summary of government interventions in the retail marketing of gasoline in Canada and the USA are included as appendices. tabs

  8. Conversion of a gasoline internal combustion engine to operate on hydrogen fuel

    International Nuclear Information System (INIS)

    Bates, M.; Dincer, I.

    2009-01-01

    This study deals with the conversion of a gasoline spark ignition internal combustion engine to operate on hydrogen fuel while producing similar power, economy and reliability as gasoline. The conversion engine will have the fuel system redesigned and ignition and fuel timing changed. Engine construction material is of great importance due to the low ignition energy of hydrogen, making aluminum a desirable material in the intake manifold and combustion chamber. The engine selected to convert is a 3400 SFI dual over head cam General Motors engine. Hydrogen reacts with metals causing hydrogen embrittlement which leads to failure due to cracking. There are standards published by American Society of Mechanical Engineers (ASME) to avoid such a problem. Tuning of the hydrogen engine proved to be challenging due to the basic tuning tools of a gasoline engine such as a wide band oxygen sensor that could not measure the 34:1 fuel air mixture needed for the hydrogen engine. Once the conversion was complete the engine was tested on a chassis dynamometer to compare the hydrogen horsepower and torque produced to that of a gasoline engine. Results showed that the engine is not operating correctly. The engine is not getting the proper amount of fuel needed for complete combustion when operated in a loaded state over 3000 rpm. The problem was found to be the use of the stock injector driver that could not deliver enough power for the proper operation of the larger CM4980 injectors. (author)

  9. Estimation of CO2 reduction by parallel hard-type power hybridization for gasoline and diesel vehicles.

    Science.gov (United States)

    Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook

    2017-10-01

    The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO 2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Asian gasoline and diesel fuel quality

    International Nuclear Information System (INIS)

    Yamaguchi, Nancy D.

    2000-01-01

    Despite the economic slowdown in the late 1990s, gasoline and diesel demand in the Asia-Pacific region has increased significantly. Regional demand is the highest in the world and most new refinery projects worldwide during the 1990s have been here. Generalisations are difficult because the region contains countries at different stages of economic development and environmental quality standards. Gasoline and diesel demand for 1985-2005 for Australasia, Southeast Asia, South Asia and East Asia is shown in four histograms. The trend towards unleaded gasoline, average gasoline aromatics levels and the quality of gasoline in Australasia, South Asia, Southeast Asia and East Asia are examined. A further three histograms show the growth in Asia-Pacific unleaded gasoline market share 1991-2000, the rise in octane levels as lead levels fall (1991-2005) and the calculated aromatics content of gasoline in 11 Asia-Pacific countries

  11. Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) fuelled with naphtha and gasoline in wide load range

    International Nuclear Information System (INIS)

    Wang, Buyu; Wang, Zhi; Shuai, Shijin; Yang, Hongqiang; Wang, Jianxin

    2014-01-01

    Highlights: • Naphtha MPCI can operate stably in wide load range from 0.4 MPa to 1.4 MPa of IMEP. • Naphtha MPCI can achieve high thermal efficiency due to low exhaust loss. • Gasoline MPCI has low heat transfer loss than CDC and naphtha MPCI. • MPCI can produce low NO x emissions (<0.4 g/kW h) with the EGR ratio less than 30%. - Abstract: This paper investigates the effect of naphtha (RON = 65.6) and commercial gasoline (RON = 94.0) on Multiple Premixed Compression Ignition (MPCI) mode. The experiment is conducted on a single cylinder research diesel engine with compression ratio of 16.7. The engine is operated at an engine speed of 1600 rpm for the IMEP from 0.4 to 1.4 MPa. Commercial diesel (CN = 56.5) is also tested in Conventional Diesel Combustion (CDC) mode as a baseline. At each operating point, the injection strategy and intake conditions are adjusted to meet with the criteria (NO x < 0.4 g/kW h, soot < 0.06 m −1 , MPRR < 1 MPa/deg and CA50 < 20 CAD ATDC). The typical two-stage combustion characteristics of MPCI are obtained in both naphtha and gasoline. Stable combustion is achieved by naphtha in wide load range, while the engine fuelled with gasoline cannot operate stably at 0.4 MPa IMEP. The COV of IMEP of gasoline MPCI is higher than that of naphtha and diesel. However, gasoline has the low MPRR and the retarded CA50 at medium and high loads due to its longest ignition delay. As a result of low exhaust loss for naphtha and low heat transfer loss for gasoline, the thermal efficiencies are higher for both naphtha and gasoline in MPCI mode than diesel in CDC mode, even though diesel has the highest combustion efficiency. The separated combustion in MPCI leads to low cylinder temperature, and moderate EGR ratio (less than 30%) is needed to control NO x emissions under the limit of EURO VI

  12. Reformulated gasoline: lessons from America

    International Nuclear Information System (INIS)

    Seymour, A.

    1995-01-01

    Regulating fuel quality is one of the few politically feasible options for improving air quality in the short and medium term. This book explores and studies the reformulated gasoline programme currently underway in the USA. Despite the smoothness of the initial implementation of the programme, difficulties may arise in the future. It is concluded that reformulated gasoline prices are more independent of crude oil price changes than conventional unleaded gasoline. Finally, the study suggests that refiners will not reap great profit from investment in the supply of reformulated gasoline because of government restrictions. (UK)

  13. 27 CFR 21.109 - Gasoline.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gasoline. 21.109 Section 21.109 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Gasoline. (a) Distillation range. When 100 ml of gasoline are distilled, none shall distill below 90 °F...

  14. Study of brushless fuel pump (improvement of pump and motor parts). 2nd Report. Blushless dendo fuel pump no kento. 2

    Energy Technology Data Exchange (ETDEWEB)

    Mine, K; Takada, S; Tatematsu, M; Takeuchi, H [Aisan Industry Co. Ltd., Aichi (Japan)

    1992-10-01

    A methanol use electrically driven fuel pump was developed as reported in the present report. Mixed fuel of gasoline with alcohol can be handled by a brushless fuel pump which was proposed and improved as reported. The flow rate performance was heightened to 25g/sec by heightening in output power of motor, while the high temperature performance was 17% heightened against the conventional ratio of lowering in flow rate by heightening in vapor jet capacity. Against the corrosiveness of methanol, an in-tank type was applied to the pump, and all its electrically conductive and other mechanical parts were made to be both anti-corrosive and anti-abrasive. It is structurally of a two-stage series turbine type of non-volume form. A sensor method was applied to the motor by confining the miniaturized control circuit of brushless motor in the motor so that the transistor is controlled against the heightening in temperature. The motor is a three-phase half-wave driving motor. Also developed was a fuel supply system which is useful for the mixed fuel covering a range of 100% methanol through 100% gasoline. The present pump is dimensionally interchangeable with the conventional gasoline use one. Its operational life is more than 10000 hours. 3 refs., 17 figs., 1 tab.

  15. Oxygenates to hike gasoline price

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that cost of achieving required US gasoline formulations this winter in Environmental Protection Agency carbon monoxide (CO) nonattainment areas could reach 3-5 cents/gal, an Energy Information Administration analysis has found. EIA says new winter demand for gasoline blending oxygenates such as methyl tertiary butyl ether (MTBE) or ethanol created by 190 amendments to the Clean Air Act (CAA) will exceed US oxygenate production by 140,000-220,000 b/d. The shortfall must be made up from inventory or imports. EIA estimates the cost of providing incremental oxygenate to meet expected gasoline blending demand likely will result in a price premium of about 20 cents/gal of MTBE equivalent over traditional gasoline blend octane value. That cost likely will be added to the price of oxygenated gasoline

  16. Danger of the participate matter emitted by gasoline-engine cars

    International Nuclear Information System (INIS)

    Abdul-Razzaq, W.; Ismael, N.

    2005-01-01

    Inhaling magnetic particles could be hazardous as they could interact with man-made electromagnetic signals producing resonance of the inhaled particles inside lung cells causing cell damage. Since many epidemiologic studies have shown associations between pollutants from motor vehicle traffic and adverse health effects, it becomes necessary to investigate these pollutants for magnetic particles. In this preliminary study, magnetic particles were detected in the particulate matter collected from the exhaust of a gasoline engine. Magnetization measurements were used to identify critical magnetic particulate matter that could explain some of the health hazards

  17. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Science.gov (United States)

    2010-07-01

    ... EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year Automobiles-Procedures... equivalent petroleum-based fuel economy value exists for an electric vehicle configuration, all values for... values for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual...

  18. Commercial Building Motor Protection Response Report

    Energy Technology Data Exchange (ETDEWEB)

    James, Daniel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kueck, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-17

    When voltages recover, motors may immediately reenergize and reaccelerate, or delay for a few minutes, or stay stalled. The estimated motor response is given for both the voltage sag magnitude and voltage sag duration. These response estimates are based on experience and available test data. Good data is available for voltage sag response for many components such as relays and contactors, but little data is available for both voltage sag and recovery response. The tables in Appendix A include data from recent voltage sag and recovery tests performed by SCE and BPA on air conditioners and energy management systems. The response of the motor can vary greatly depending on the type of protection and control. The time duration for the voltage sag consists of those times that are of interest for bulk power system modelers.

  19. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  20. Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production.

    Science.gov (United States)

    Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A

    2013-10-15

    Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.

  1. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Science.gov (United States)

    2010-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  2. Improving commercial motor vehicle safety in Oregon.

    Science.gov (United States)

    2010-08-01

    This study addressed the primary functions of the Oregon Department of Transportations (ODOTs) Motor Carrier Safety Assistance Program (MCSAP), which is administered by the Motor Carrier Transportation Division (MCTD). The study first documente...

  3. Gasoline engine management systems and components

    CERN Document Server

    2015-01-01

    The call for environmentally compatible and economical vehicles necessitates immense efforts to develop innovative engine concepts. Technical concepts such as gasoline direct injection helped to save fuel up to 20 % and reduce CO2-emissions. Descriptions of the cylinder-charge control, fuel injection, ignition and catalytic emission-control systems provides comprehensive overview of today´s gasoline engines. This book also describes emission-control systems and explains the diagnostic systems. The publication provides information on engine-management-systems and emission-control regulations. Contents History of the automobile.- Basics of the gasoline engine.- Fuels.- Cylinder-charge control systems.- Gasoline injection systems over the years.- Fuel supply.- Manifold fuel injection.- Gasoline direct injection.- Operation of gasoline engines on natural gas.- Ignition systems over the years.- Inductive ignition systems.- Ignition coils.- Spark plugs.- Electronic control.- Sensors.- Electronic control unit.- Exh...

  4. Emissions characteristics of higher alcohol/gasoline blends

    International Nuclear Information System (INIS)

    Gautam, M.; Martin, D.W.; Carder, D.

    2000-01-01

    An experimental investigation was conducted to determine the emissions characteristics of higher alcohols and gasoline (UTG96) blends. While lower alcohols (methanol and ethanol) have been used in blends with gasoline, very little work has been done or reported on higher alcohols (propanol, butanol and pentanol). Comparisons of emissions and fuel characteristics between higher alcohol/gasoline blends and neat gasoline were made to determine the advantages and disadvantages of blending higher alcohols with gasoline. All tests were conducted on a single-cylinder Waukesha Cooperative Fuel Research engine operating at steady state conditions and stoichiometric air-fuel (A/F) ratio. Emissions test were conducted at the optimum spark timing-knock limiting compression ratio combination for the particular blend being tested. The cycle emission [mass per unit time (g/h)] of CO, CO 2 and organic matter hydrocarbon equivalent (OMHCE) from the higher alcohol/gasoline blends were very similar to those from neat gasoline. Cycle emissions of NO x from the blends were higher than those from neat gasoline. However, for all the emissions species considered, the brake specific emissions (g/kW h) were significantly lower for the higher alcohol/gasoline blends than for neat gasoline. This was because the blends had greater resistance to knock and allowed higher compression ratios, which increased engine power output. The contribution of alcohols and aldehydes to the overall OMHCE emissions was found to be minimal. Cycle fuel consumption (g/h) of higher alcohol/gasoline blends was slightly higher than with neat gasoline due to the lower stoichiometric A/F ratios required by the blends. However, the brake specific fuel consumption (g/kW h) for the blends was significantly lower than that for neat gasoline. (Author)

  5. Long-run gasoline demand for passenger cars: the role of income distribution

    International Nuclear Information System (INIS)

    Storchmann, Karl

    2005-01-01

    It is commonly agreed that the level of income and prices are crucial determinants of the consumption of motor gasoline. The respective long run price and income elasticities are regularly calculated using cross sectional models. Despite the acknowledgement of the role of income distribution, it plays no role in intercountry cross sectional models. This is due to a lack of appropriate data. This paper shows that the omission of distributional characteristics provides misleading elasticities. Using available distributional measures this paper is referring to an income threshold, which is crucial to the acquisition of an automobile. It is shown that on the one hand, in poor countries an unequal income distribution is needed to enable at least some people to buy automobiles. On the other hand, in wealthy countries an unequal income distribution would exclude some people from acquiring automobiles. Hence, depending on the income level, inequality has a diverging impact on the ability to buy durable goods. The second part of this paper develops a pooled 90-country model to examine this approach empirically. It could be shown that distribution variables are highly significant to explain the demand for automobiles and motor gasoline. Moreover, the consideration of the distribution of income leads to a considerable decrease in income elasticity values. This is mainly due to the positive correlation between income level and income equality within the sample

  6. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  7. 77 FR 30919 - Commercial Driver's License Testing and Commercial Learner's Permit Standards

    Science.gov (United States)

    2012-05-24

    ..., and 385 [Docket No. FMCSA-2007-27659] Commercial Driver's License Testing and Commercial Learner's... published a final rule titled ``Commercial Driver's License Testing and Commercial Learner's Permit... additional drivers, primarily those transporting certain tanks temporarily attached to the commercial motor...

  8. Toxicological assessments of rats exposed prenatally to inhaled vapors of gasoline and gasoline-ethanol blends.

    Science.gov (United States)

    Bushnell, Philip J; Beasley, Tracey E; Evansky, Paul A; Martin, Sheppard A; McDaniel, Katherine L; Moser, Virginia C; Luebke, Robert W; Norwood, Joel; Copeland, Carey B; Kleindienst, Tadeusz E; Lonneman, William A; Rogers, John M

    2015-01-01

    The primary alternative to petroleum-based fuels is ethanol, which may be blended with gasoline in the United States at concentrations up to 15% for most automobiles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ethanol vapors from these fuels. The well-known sensitivity of the developing nervous and immune systems to ingested ethanol and the lack of information about the neurodevelopmental toxicity of ethanol-blended fuels prompted the present work. Pregnant Long-Evans rats were exposed for 6.5h/day on days 9-20 of gestation to clean air or vapors of gasoline containing no ethanol (E0) or gasoline blended with 15% ethanol (E15) or 85% ethanol (E85) at nominal concentrations of 3000, 6000, or 9000 ppm. Estimated maternal peak blood ethanol concentrations were less than 5mg/dL for all exposures. No overt toxicity in the dams was observed, although pregnant dams exposed to 9000 ppm of E0 or E85 gained more weight per gram of food consumed during the 12 days of exposure than did controls. Fuel vapors did not affect litter size or weight, or postnatal weight gain in the offspring. Tests of motor activity and a functional observational battery (FOB) administered to the offspring between post-natal day (PND) 27-29 and PND 56-63 revealed an increase in vertical activity counts in the 3000- and 9000-ppm groups in the E85 experiment on PND 63 and a few small changes in sensorimotor responses in the FOB that were not monotonically related to exposure concentration in any experiment. Neither cell-mediated nor humoral immunity were affected in a concentration-related manner by exposure to any of the vapors in 6-week-old male or female offspring. Systematic concentration-related differences in systolic blood pressure were not observed in rats tested at 3 and 6 months of age in any experiment. No systematic differences were observed in serum glucose or glycated hemoglobin A1c (a marker of long-term glucose

  9. Recent progress in gasoline surrogate fuels

    KAUST Repository

    Sarathy, Mani; Farooq, Aamir; Kalghatgi, Gautam T.

    2017-01-01

    Petroleum-derived gasoline is currently the most widely used fuel for transportation propulsion. The design and operation of gasoline fuels is governed by specific physical and chemical kinetic fuel properties. These must be thoroughly understood in order to improve sustainable gasoline fuel technologies in the face of economical, technological, and societal challenges. For this reason, surrogate mixtures are formulated to emulate the thermophysical, thermochemical, and chemical kinetic properties of the real fuel, so that fundamental experiments and predictive simulations can be conducted. Early studies on gasoline combustion typically adopted single component or binary mixtures (n-heptane/isooctane) as surrogates. However, the last decade has seen rapid progress in the formulation and utilization of ternary mixtures (n-heptane/isooctane/toluene), as well as multicomponent mixtures that span the entire carbon number range of gasoline fuels (C4–C10). The increased use of oxygenated fuels (ethanol, butanol, MTBE, etc.) as blending components/additives has also motivated studies on their addition to gasoline fuels. This comprehensive review presents the available experimental and chemical kinetic studies which have been performed to better understand the combustion properties of gasoline fuels and their surrogates. Focus is on the development and use of surrogate fuels that emulate real fuel properties governing the design and operation of engines. A detailed analysis is presented for the various classes of compounds used in formulating gasoline surrogate fuels, including n-paraffins, isoparaffins, olefins, naphthenes, and aromatics. Chemical kinetic models for individual molecules and mixtures of molecules to emulate gasoline surrogate fuels are presented. Despite the recent progress in gasoline surrogate fuel combustion research, there are still major gaps remaining; these are critically discussed, as well as their implications on fuel formulation and engine

  10. Recent progress in gasoline surrogate fuels

    KAUST Repository

    Sarathy, Mani

    2017-12-06

    Petroleum-derived gasoline is currently the most widely used fuel for transportation propulsion. The design and operation of gasoline fuels is governed by specific physical and chemical kinetic fuel properties. These must be thoroughly understood in order to improve sustainable gasoline fuel technologies in the face of economical, technological, and societal challenges. For this reason, surrogate mixtures are formulated to emulate the thermophysical, thermochemical, and chemical kinetic properties of the real fuel, so that fundamental experiments and predictive simulations can be conducted. Early studies on gasoline combustion typically adopted single component or binary mixtures (n-heptane/isooctane) as surrogates. However, the last decade has seen rapid progress in the formulation and utilization of ternary mixtures (n-heptane/isooctane/toluene), as well as multicomponent mixtures that span the entire carbon number range of gasoline fuels (C4–C10). The increased use of oxygenated fuels (ethanol, butanol, MTBE, etc.) as blending components/additives has also motivated studies on their addition to gasoline fuels. This comprehensive review presents the available experimental and chemical kinetic studies which have been performed to better understand the combustion properties of gasoline fuels and their surrogates. Focus is on the development and use of surrogate fuels that emulate real fuel properties governing the design and operation of engines. A detailed analysis is presented for the various classes of compounds used in formulating gasoline surrogate fuels, including n-paraffins, isoparaffins, olefins, naphthenes, and aromatics. Chemical kinetic models for individual molecules and mixtures of molecules to emulate gasoline surrogate fuels are presented. Despite the recent progress in gasoline surrogate fuel combustion research, there are still major gaps remaining; these are critically discussed, as well as their implications on fuel formulation and engine

  11. Low grade bioethanol for fuel mixing on gasoline engine using distillation process

    Science.gov (United States)

    Abikusna, Setia; Sugiarto, Bambang; Suntoro, Dedi; Azami

    2017-03-01

    Utilization of renewable energy in Indonesia is still low, compared to 34% oil, 20% coal and 20% gas, utilization of energy sources for water 3%, geothermal 1%, 2% biofuels, and biomass 20%. Whereas renewable energy sources dwindling due to the increasing consumption of gasoline as a fuel. It makes us have to look for alternative renewable energy, one of which is bio ethanol. Several studies on the use of ethanol was done to the researchers. Our studies using low grade bio ethanol which begins with the disitillation independently utilize flue gas heat at compact distillator, produces high grade bio ethanol and ready to be mixed with gasoline. Stages of our study is the compact distillator design of the motor dynamic continued with good performance and emission testing and ethanol distilled. Some improvement is made is through the flue gas heat control mechanism in compact distillator using gate valve, at low, medium, and high speed engine. Compact distillator used is kind of a batch distillation column. Column design process using the shortcut method, then carried the tray design to determine the overall geometry. The distillation is done by comparing the separator with a tray of different distances. As well as by varying the volume of the feed and ethanol levels that will feed distilled. In this study, we analyzed the mixing of ethanol through variation between main jet and pilot jet in the carburetor separately interchangeably with gasoline. And finally mixing mechanism bio ethanol with gasoline improved with fuel mixer for performance.

  12. Stabilizing motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    1935-07-12

    Motor fuel is stabilized by adding less than 2% of a tar fraction from peat, coal, torbanite or shale, said fraction containing sufficient constituents boiling between 200 and 325/sup 0/C, to inhibit gum formation. Low-temperature coal-tar fractions are specified. The preferred boiling ranges are from 225 or 250/sup 0/ to 275/sup 0/C. In examples, the quantity added was 0.01%. The fuel may be a cracked distillate of gasoline boiling-point range or containing gasoline, and may contain relatively large proportions of di- and tri-olefines. The material added to the fuel may be (1) the tar fraction itself; (2) its alkali-soluble constituents; (3) its acid-soluble constituents; (4) a mixture of (2) and (3); (5) a blend of (2), (3) or (4) with a normal tar fraction; (6) the residue after extraction with alkali; (7) the residue after extraction with acid and alkali.

  13. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first

  14. Gasoline compression ignition approach to efficient, clean and affordable future engines

    KAUST Repository

    Kalghatgi, Gautam

    2017-04-03

    The worldwide demand for transport fuels will increase significantly but will still be met substantially (a share of around 90%) from petroleum-based fuels. This increase in demand will be significantly skewed towards commercial vehicles and hence towards diesel and jet fuels, leading to a probable surplus of lighter low-octane fuels. Current diesel engines are efficient but expensive and complicated because they try to reduce the nitrogen oxide and soot emissions simultaneously while using conventional diesel fuels which ignite very easily. Gasoline compression ignition engines can be run on gasoline-like fuels with a long ignition delay to make low-nitrogen-oxide low-soot combustion very much easier. Moreover, the research octane number of the optimum fuel for gasoline compression ignition engines is likely to be around 70 and hence the surplus low-octane components could be used without much further processing. Also, the final boiling point can be higher than those of current gasolines. The potential advantages of gasoline compression ignition engines are as follows. First, the engine is at least as efficient and clean as current diesel engines but is less complicated and hence could be cheaper (lower injection pressure and after-treatment focus on control of carbon monoxide and hydrocarbon emissions rather than on soot and nitrogen oxide emissions). Second, the optimum fuel requires less processing and hence would be easier to make in comparison with current gasoline or diesel fuel and will have a lower greenhouse-gas footprint. Third, it provides a path to mitigate the global demand imbalance between heavier fuels and lighter fuels that is otherwise projected and improve the sustainability of refineries. The concept has been well demonstrated in research engines but development work is needed to make it feasible on practical vehicles, e.g. on cold start, adequate control of exhaust carbon monoxide and hydrocarbons and control of noise at medium to high loads

  15. 40 CFR 80.141 - Interim detergent gasoline program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Interim detergent gasoline program. 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.141 Interim detergent gasoline... apply to: (i) All gasoline sold or transferred to a party who sells or transfers gasoline to the...

  16. 27 CFR 21.110 - Gasoline, unleaded.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gasoline, unleaded. 21.110....110 Gasoline, unleaded. Conforms to specifications as established by the American Society for Testing...-79. Any of the “seasonal and geographical” volatility classes for unleaded gasoline are considered...

  17. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel

    International Nuclear Information System (INIS)

    Luo, Yueqi; Zhu, Lei; Fang, Junhua; Zhuang, Zhuyue; Guan, Chun; Xia, Chen; Xie, Xiaomin; Huang, Zhen

    2015-01-01

    Ethanol-gasoline blended fuels have been widely applied in markets recently, as ethanol reduces life-cycle greenhouse gas emissions and improves anti-knock performance. However, its effects on particulate matter (PM) emissions from gasoline direct injection (GDI) engine still need further investigation. In this study, the effects of ethanol-gasoline blended fuels on particle size distributions, number concentrations, chemical composition and soot oxidation activity of GDI engine were investigated. It was found that ethanol-gasoline blended fuels increased the particle number concentration in low-load operating conditions. In higher load conditions, the ethanol-gasoline was effective for reducing the particle number concentration, indicating that the chemical benefits of ethanol become dominant, which could reduce soot precursors such as large n-alkanes and aromatics in gasoline. The volatile organic mass fraction in ethanol-gasoline particulates matter was higher than that in gasoline particulate matter because ethanol reduced the amount of soot precursors during combustion and thereby reduced the elemental carbon proportions in PM. Ethanol addition also increased the proportion of small particles, which confirmed the effects of ethanol on organic composition. Ethanol-gasoline reduced the concentrations of most PAH species, except those with small aromatic rings, e.g., naphthalene. Soot from ethanol-gasoline has lower activation energy of oxidation than that from gasoline. The results in this study indicate that ethanol-gasoline has positive effects on PM emissions control, as the soot oxidation activity is improved and the particle number concentrations are reduced at moderate and high engine loads. - Highlights: • Ethanol-gasoline reduces elemental carbon in PM. • Ethanol-gasoline increases volatile organic fraction in PM. • Soot generated from ethanol-gasoline has higher oxidation activity.

  18. Gasoline from Kumkol deposit petroleum

    International Nuclear Information System (INIS)

    Nadirov, A.N.; Zhizhin, N.I.; Musaeva, Z.G.

    1997-01-01

    Samples of gasoline from petroleum of Kumkol deposit are investigated by chromatographic analysis. It is found, that gasoline is characterizing by increased content of iso-paraffin hydrocarbons. (author)

  19. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  20. New technologies in the production of motor fuels from renewable materials

    Directory of Open Access Journals (Sweden)

    Adnađević Borivoj K.

    2012-01-01

    Full Text Available This work presents resources of the Autonomous Province of Vojvodina available for bioethanol and motor fuels (gasoline and diesel fuel from sustainable resources: corn-stalks, straw, sweet sorghum, pork fat. The physicochemical basis for novel processes for motor fuel production is coupling microwave pyrolysis of oil shale and catalytic cracking of purified pyrolysis oil, hydrothermal liquefaction of algae and swine manure. The effects of the degree of purification of crude pyrolysis oil and oil shale on the degree of their conversion to gasoline and diesel fuel, as well as the product distribution are investigated. The effects of the duration and temperature of hydrothermal liquefaction of microalga, Botryoccocus braunii, and swine manure on their degrees of conversion into bio-oil and its thermal properties are investigated. The development of novel strategy of biofuel in the Autonomous Province of Vojvodina is presented.

  1. The advancement of electric vehicles - case: Tesla Motors. Disruptive technology requiring systemic innovating

    OpenAIRE

    Lehtinen, Petri

    2015-01-01

    Electric vehicles have existed for over 100 years as a disruptive innovation. Even though they have always been easier to use, quieter and cleaner, gasoline cars have beaten it in price, range and faster fueling. As gasoline cars have been the technological standard for the past 150 years there has been no motivation by car manufacturers to advance electric vehicles. By producing electric vehicles Tesla Motors has appropriately become the first successful startup car manufacturer in over 100 ...

  2. The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine

    OpenAIRE

    Xiaochen Wang; Zhenbin Chen; Jimin Ni; Saiwu Liu; Haijie Zhou

    2015-01-01

    Comparative experiments were conducted on a port injection gasoline engine fueled with hydrous ethanol gasoline (E10W), ethanol gasoline (E10) and pure gasoline (E0). The effects of the engine loads and the additions of ethanol and water on combustion and emission characteristics were analyzed deeply. According to the experimental results, compared with E0, E10W showed higher peak in-cylinder pressure at high load. Increases in peak heat release rates were observed for E10W fuel at all the op...

  3. Emulsification as an approach to the introduction of methanol/gasoline blends as a motor fuel in Canada

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-29

    This report summarizes the work on a phase of a program which concentrates on the utilization of methanol-gasoline mixtures in spark-ignition engines. A fuel system having components for a 2.5 liter engine equipped with an oxygen sensor controlled carburetor, described in another report, was further developed. Extended cold start tests were carried out and the maximum amount of methanol that could be tolerated by the fuel system , without imparing engine operation, was 30% methanol in gasoline on a volume basis. The engine was installed in an automobile and road tests were conducted concentrating on cold starts and warm-up, fuel system performance, fuel economy and materials compatibility of components exposed to the methanol-gasoline blend. A second phase separation control system was developed for a 2.1 liter displacement engine equipped with a mechanical fuel injection system. The proportioning and pick-up components for the tank were incorporated in the existing fuel system. Cold start tests were performed and 20% methanol was found to be the upper limit. The engine was installed and the vehicle were road tested. Minor shortcomings identified during road testing were corrected. Overall performance and driveability of both vehicles were found acceptable. However, testing under low ambient temperature conditions remains to be done. 2 refs., 37 figs., 8 tabs.

  4. Batteries: Lower cost than gasoline?

    International Nuclear Information System (INIS)

    Werber, Mathew; Fischer, Michael; Schwartz, Peter V.

    2009-01-01

    We compare the lifecycle costs of an electric car to a similar gasoline-powered vehicle under different scenarios of required driving range and cost of gasoline. An electric car is cost competitive for a significant portion of the scenarios: for cars of lower range and for higher gasoline prices. Electric cars with ∼150 km range are a technologically viable, cost competitive, high performance, high efficiency alternative that can presently suit the vast majority of consumers' needs.

  5. Air pollution from lead added to gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Dingeon, B; Collombel, C

    1973-01-01

    General hygienic and toxicological problems of lead added to gasoline are discussed. Lead emitted by motor vehicles pollutes the air especially in cities and along highways, and is accumulated by soil and plants. The lead levels found in the blood of subjects living in cities and near highways was significantly higher than in rural dwellers. Close correlation between the atmospheric lead concentration and the carbon monoxide concentration as well as the traffic density was established, indicating traffic as the source of atmospheric lead. The effect of traffic on the atmospheric lead concentration extended over a distance of up to 4 km. The lead, emitted by motor vehicles in the form of submicron particles, is retained in the organism at rates of 5-10 percent following ingestion, and at rates of 30-50 percent when inhaled. Lead is partially excreted by the liver, kidney, hair, and nails. Some 95 percent of the retained lead is found in the blood, and accumulation in the bones with potential mobilization due to increases in the corticosteroid level was observed. Exposure to lead can be diagnosed by basophil granulation test, urine delta-aminolevulinic acid test, and delta-aminolevulinic acid dehydratase test.

  6. North America markets for alcohol and alcohol-derived motor fuels and need for tax incentives

    International Nuclear Information System (INIS)

    Haigwood, B.

    1991-01-01

    The U.S. fuel alcohol and ether industry has grown from its infancy in 1979 to approximately 2.9 billion gallons of production capacity in 1991. With the emphasis on clean air, the uncertainties in the Middle East, and fluctuating oil prices, IRI believes the demand for alcohol-derived motor fuels is poised to begin a second phase of expansion. Historically, the two primary alcohol-derived motor fuels sold in the U.S. have been methyl tertiary butyl ether (MTBE) and ethanol. There is also a limited but growing use of methanol as 85% blendstock for gasoline. Since 1978, fuel ethanol has provided the U.S. petroleum industry with an additional source of supply, octane, and profit. Its price was based on the price of wholesale gasoline plus available federal and state tax incentives. These incentives allowed ethanol, with production costs of $1.00 to $1.25 per gallon, to compete with gasoline at prices of 40 to 65 per gallon. Without the federal and state tax incentives, it would not be economically feasible to sell or manufacture fuel ethanol. On the other hand, the largest consumption of methanol has been as a feedstock for the production of MTBE, the world's fastest growing chemical over the past seven years. MTBE prices are based on the cost of raising the octane level of gasoline, and this commodity does not receive subsidies. Beginning in 1992, IRI predicts the price relationship between ethanol, MTBE, and gasoline will change as U.S. refiners and marketers are required to include oxygenated fuels (alcohol-derived) in their gasoline. In total, over 60 billion gallons of gasoline will need to be reformulated by the year 2000. The increased demand for oxygen will result in a 2.5-billion gallon deficit of MTBE and 1.2-billion gallon deficit of ethanol by the year 2000. 2 tabs

  7. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  8. Who Pays the Gasoline Tax?

    OpenAIRE

    Chernick, Howard; Reschovsky, Andrew

    1997-01-01

    Analyzes panel data over 11 years (both backward from 1982 and forward from 1982) to determine the average gasoline tax burden. Considers links between economic mobility, gasoline consumption, and excise tax increases.

  9. Aging Management Guideline for commercial nuclear power plants: Motor control centers

    International Nuclear Information System (INIS)

    Toman, G.; Gazdzinski, R.; O'Hearn, E.

    1994-02-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  10. Combustion Kinetic Studies of Gasolines and Surrogates

    KAUST Repository

    Javed, Tamour

    2016-11-01

    Future thrusts for gasoline engine development can be broadly summarized into two categories: (i) efficiency improvements in conventional spark ignition engines, and (ii) development of advance compression ignition (ACI) concepts. Efficiency improvements in conventional spark ignition engines requires downsizing (and turbocharging) which may be achieved by using high octane gasolines, whereas, low octane gasolines fuels are anticipated for ACI concepts. The current work provides the essential combustion kinetic data, targeting both thrusts, that is needed to develop high fidelity gasoline surrogate mechanisms and surrogate complexity guidelines. Ignition delay times of a wide range of certified gasolines and surrogates are reported here. These measurements were performed in shock tubes and rapid compression machines over a wide range of experimental conditions (650 – 1250 K, 10 – 40 bar) relevant to internal combustion engines. Using the measured the data and chemical kinetic analyses, the surrogate complexity requirements for these gasolines in homogeneous environments are specified. For the discussions presented here, gasolines are classified into three categories: (i)\\tLow octane gasolines including Saudi Aramco’s light naphtha fuel (anti-knock index, AKI = (RON + MON)/2 = 64; Sensitivity (S) = RON – MON = 1), certified FACE (Fuels for Advanced Combustion Engines) gasoline I and J (AKI ~ 70, S = 0.7 and 3 respectively), and their Primary Reference Fuels (PRF, mixtures of n-heptane and iso-octane) and multi-component surrogates. (ii)\\t Mid octane gasolines including FACE A and C (AKI ~ 84, S ~ 0 and 1 respectively) and their PRF surrogates. Laser absorption measurements of intermediate and product species formed during gasoline/surrogate oxidation are also reported. (iii)\\t A wide range of n-heptane/iso-octane/toluene (TPRF) blends to adequately represent the octane and sensitivity requirements of high octane gasolines including FACE gasoline F and G

  11. Gasoline ingestion: a rare cause of pancytopenia.

    Science.gov (United States)

    Rahman, Ifad; Narasimhan, Kanakasabai; Aziz, Shahid; Owens, William

    2009-11-01

    The majority of reported cases of gasoline intoxication involves inhalation or percutaneous absorption. Data are scarce on complications and outcomes after gasoline poisoning by oral ingestion. The major cause of mortality and morbidity associated with the ingestion of gasoline is related to pulmonary aspiration. Despite the high frequency of the ingestions, there is little documentation of nonpulmonary toxic effects of gasoline. After ingestion, the principal toxicity is aspiration pneumonia, but any documented extra pulmonary manifestations of this condition may be important in the overall management of these patients. We are reporting a rare case of pancytopenia along with aspiration pneumonia and multisystem organ failure in a 58-year-old male after prolonged intentional ingestion of gasoline. To our knowledge, this is the only reported case of gasoline toxicity causing pancytopenia.

  12. Dynamic behavior of gasoline fuel cell electric vehicles

    Science.gov (United States)

    Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien

    As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.

  13. Suicidal inhalation of motorbike exhaust: adding new data to the literature about the contribution of gasoline in the cause of death.

    Science.gov (United States)

    Martínez, María A; Ballesteros, Salomé

    2006-01-01

    We would like to alert toxicologists to the importance of testing for gasoline, and for volatile hydrocarbons in general, in deaths involving inhalation of exhaust fumes occurring in closed spaces with running motors or machinery. We present here a case of suicidal inhalation of motorbike exhaust, a mixture of carbon monoxide (CO) and gasoline vapor, by a 38-year-old female. She was found in her closed home garage with a hose extending from the exhaust pipe of a motorbike through a cellophane plastic device into a closed tent in which the victim lay. She left two suicide notes nearby. The carboxyhemoglobin (COHb) was measured using visible spectrophotometry. The toxicological screening and quantitation of gasoline was performed by means of gas chromatography with flame-ionization detector and confirmation was performed using gas chromatography-mass spectrometry. The %COHb determined in blood was 73%. Gasoline concentrations in heart blood and vitreous humor were 22.3 and 1.0 mg/L, respectively. Although fatalities with CO at this rate are common, we would like to highlight the role of gasoline and add new quantitative data of this toxic substance to the scarce literature. Based upon the toxicological data, along with the information provided by the medical examiner, the cause of death was determined to be CO and gasoline poisoning and the manner of death suicide.

  14. 40 CFR 63.11088 - What requirements must I meet for gasoline loading racks if my facility is a bulk gasoline...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false What requirements must I meet for gasoline loading racks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... § 63.11088 What requirements must I meet for gasoline loading racks if my facility is a bulk gasoline...

  15. Biomass to Gasoline and Diesel Using Integrated Hydropyrolysis and Hydroconversion

    Energy Technology Data Exchange (ETDEWEB)

    Marker, Terry [Gas Technology Inst., Des Plaines, IL (United States); Roberts, Michael [Gas Technology Inst., Des Plaines, IL (United States); Linck, Martin [Gas Technology Inst., Des Plaines, IL (United States); Felix, Larry [Gas Technology Inst., Des Plaines, IL (United States); Ortiz-Toral, Pedro [Gas Technology Inst., Des Plaines, IL (United States); Wangerow, Jim [Gas Technology Inst., Des Plaines, IL (United States); Kraus, Larry [CRI-Criterion, Houston, TX (United States); McLeod, Celeste [CRI-Criterion, Houston, TX (United States); DelPaggio, Alan [CRI-Criterion, Houston, TX (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gephart, John [Johnson Timber, Hayward, WI (United States); Gromov, Dmitri [Cargill, Wayzata, MN (United States); Purtle, Ian [Cargill, Wayzata, MN (United States); Starr, Jack [Cargill, Wayzata, MN (United States); Hahn, John [Cargill, Wayzata, MN (United States); Dorrington, Paul [Aquaflow Bionomic Corporation, Nelson (New Zealand); Stevens, James [Blue Marble Biomaterials, Missoula, MT (United States); Shonnard, David [Michigan Technological Univ., Houghton, MI (United States); Maleche, Edwin [Michigan Technological Univ., Houghton, MI (United States)

    2013-01-02

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  16. Ignition studies of two low-octane gasolines

    KAUST Repository

    Javed, Tamour

    2017-07-24

    Low-octane gasolines (RON ∼ 50–70 range) are prospective fuels for gasoline compression ignition (GCI) internal combustion engines. GCI technology utilizing low-octane fuels has the potential to significantly improve well-to-wheel efficiency and reduce the transportation sector\\'s environmental footprint by offsetting diesel fuel usage in compression ignition engines. In this study, ignition delay times of two low-octane FACE (Fuels for Advanced Combustion Engines) gasolines, FACE I and FACE J, were measured in a shock tube and a rapid compression machine over a broad range of engine-relevant conditions (650–1200 K, 20 and 40 bar and ϕ = 0.5 and 1). The two gasolines are of similar octane ratings with anti-knock index, AKI = (RON + MON)/2, of ∼ 70 and sensitivity, S = RON–MON, of ∼ 3. However, the molecular compositions of the two gasolines are notably different. Experimental ignition delay time results showed that the two gasolines exhibited similar reactivity over a wide range of test conditions. Furthermore, ignition delay times of a primary reference fuel (PRF) surrogate (n-heptane/iso-octane blend), having the same AKI as the FACE gasolines, captured the ignition behavior of these gasolines with some minor discrepancies at low temperatures (T < 700 K). Multi-component surrogates, formulated by matching the octane ratings and compositions of the two gasolines, emulated the autoignition behavior of gasolines from high to low temperatures. Homogeneous charge compression ignition (HCCI) engine simulations were used to show that the PRF and multi-component surrogates exhibited similar combustion phasing over a wide range of engine operating conditions.

  17. 40 CFR 80.595 - How does a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the...

    Science.gov (United States)

    2010-07-01

    ... for a motor vehicle diesel fuel volume baseline for the purpose of extending their gasoline sulfur... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the purpose of...

  18. Understanding gasoline pricing in Canada

    International Nuclear Information System (INIS)

    2001-04-01

    This brochure is designed to help consumers understand how gasoline is priced and explained why prices increase, fluctuate and vary by location, city or region. The price of a litre of gasoline reflects the costs of crude oil, refining, retailing and taxes. Taxes are usually the largest single component of gasoline prices, averaging 40 to 50 per cent of the pump price. The cost of crude oil makes up another 35 to 45 per cent of the price. Refining costs make up 10 to 15 per cent while the remaining 5 to 10 per cent represents retail costs. Gasoline retailers make a profit of about 1 cent per litre. The latest network technology allows national and regional retail chains to constantly monitor price fluctuations to change their prices at gasoline stations at a moments notice to keep up with the competition and to protect their market shares. Several government studies, plus the Conference Board of Canada, have reported that competition is working in favour of Canadian motorists. This brochure also explained the drawbacks of regulating crude and pump prices with the reminder that crude prices were regulated in the 1970s with many negative consequences. 2 tabs., 1 fig

  19. Evaporative Gasoline Emissions and Asthma Symptoms

    Science.gov (United States)

    Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S

    2010-01-01

    Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR’s minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. PMID:20948946

  20. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed

  1. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps

  2. Numerical studies of a compact gasoline reformer for fuel cell vehicle applications

    International Nuclear Information System (INIS)

    McIntyre, C.S.; Harrison, S.J.; Oosthuizen, P.H.; Peppley, B.A.

    2004-01-01

    There has been recent interest in the development of compact fuel processors to produce hydrogen for fuel cell powered vehicles. Gasoline is a promising candidate for distributed or on-board processing because of its high energy density and well-developed infrastructure. A compact fuel processor is under development which utilizes autothermal reforming (ATR) to extract hydrogen from iso-octane, which is used as a surrogate for gasoline. The processor consists of a double-pass packed-bed catalytic reactor to promote partial oxidation, steam reforming, and water-gas-shift reactions. As part of this system development, a commercial computational fluid dynamics (CFD) package was used to model flow and chemical reactions. Reformer performance is presented in terms of hydrogen content in the product stream, reformer efficiency (LHV efficiency) and iso-octane conversion. Results are compared to on-going experimental studies. (author)

  3. Model predictive control of a lean-burn gasoline engine coupled with a passive selective catalytic reduction system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pingen [Tennessee Technological University (TTU); Lin, Qinghua [Tennessee Technological University (TTU); Prikhodko, Vitaly Y. [ORNL

    2017-10-01

    Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuel penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.

  4. Cointegration and the demand for gasoline

    International Nuclear Information System (INIS)

    Bhaskara Rao, B.; Rao, Gyaneshwar

    2009-01-01

    Since the early 1970s, there has been a worldwide upsurge in the price of energy and in particular of gasoline. Therefore, demand functions for energy and its components like gasoline have received much attention. However, since confidence in the estimated demand functions is important for use in policy and forecasting, following [Amarawickrama, H.A., Hunt, L.C., 2008. Electricity demand for Sri Lanka: A time series analysis. Energy Economics 33, 724-739], this paper estimates the demand for gasoline is estimated with five alternative time series techniques with data from Fiji. Estimates with these alternative techniques are very close, and thus increase our confidence in them. We found that gasoline demand is both price and income inelastic.

  5. Cointegration and the demand for gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskara Rao, B. [University of Western Sydney, Sydney1797 (Australia); Rao, Gyaneshwar [University of the South Pacific (Fiji)

    2009-10-15

    Since the early 1970s, there has been a worldwide upsurge in the price of energy and in particular of gasoline. Therefore, demand functions for energy and its components like gasoline have received much attention. However, since confidence in the estimated demand functions is important for use in policy and forecasting, following [Amarawickrama, H.A., Hunt, L.C., 2008. Electricity demand for Sri Lanka: A time series analysis. Energy Economics 33, 724-739], this paper estimates the demand for gasoline is estimated with five alternative time series techniques with data from Fiji. Estimates with these alternative techniques are very close, and thus increase our confidence in them. We found that gasoline demand is both price and income inelastic. (author)

  6. 40 CFR 80.540 - How may a refiner be approved to produce gasoline under the GPA gasoline sulfur standards in 2007...

    Science.gov (United States)

    2010-07-01

    ... produce gasoline under the GPA gasoline sulfur standards in 2007 and 2008? 80.540 Section 80.540... Marine Fuel Geographic Phase-in Provisions § 80.540 How may a refiner be approved to produce gasoline under the GPA gasoline sulfur standards in 2007 and 2008? (a) A refiner that has been approved by EPA...

  7. Successful outcome after intravenous gasoline injection.

    Science.gov (United States)

    Domej, Wolfgang; Mitterhammer, Heike; Stauber, Rudolf; Kaufmann, Peter; Smolle, Karl Heinz

    2007-12-01

    Gasoline, ingested intentionally or accidentally, is toxic. The majority of reported cases of gasoline intoxication involve oral ingestion or inhalation. Data are scarce on complications and outcomes following hydrocarbon poisoning by intravenous injection. Following a suicide attempt by intravenous self-injection of 10 ml of gasoline, a 26-year-old medical student was admitted to the intensive care unit (ICU) with hemoptysis, symptoms of acute respiratory failure, chest pain, and severe abdominal cramps. Gas exchange was severely impaired and a chest x-ray indicated chemical pneumonitis. Initial treatment consisted of mechanical ventilation, supportive hyperventilation, administration of nitrogen oxide (NO), and prednisone. Unfortunately, the patient developed multi-organ dysfunction syndrome (MODS) complicated by life-threatening severe vasoplegia within 24 hours after gasoline injection. High doses of vasopressors along with massive amounts of parenteral fluids were necessary. Despite fluid replacement, renal function worsened and required hemofiltration on 5 sequential days. After 12 days of intensive care management, the patient recovered completely and was discharged to a psychiatric care facility. Intravenous gasoline injection causes major injury to the lungs, the organ bearing the first capillary bed encountered. Treatment of gasoline poisoning is symptomatic because no specific antidote is available. Early and aggressive supportive care may be conducive to a favorable outcome with minimal residual pulmonary sequelae.

  8. Effectiveness of commercial video gaming on fine motor control in chronic stroke within community-level rehabilitation.

    Science.gov (United States)

    Paquin, Kate; Ali, Suzanne; Carr, Kelly; Crawley, Jamie; McGowan, Cheri; Horton, Sean

    2015-01-01

    The purpose of this study was to investigate the effectiveness of commercial gaming as an intervention for fine motor recovery in chronic stroke. Ten chronic phase post-stroke participants (mean time since CVA = 39 mos; mean age = 72 yrs) completed a 16-session program using the Nintendo Wii for 15 min two times per week with their more affected hand (10 right handed). Functional recovery (Jebsen Hand Function Test (JHFT), Box and Block Test (BBT), Nine Hole Peg Test (NHPT)), and quality of life (QOL; Stroke Impact Scale (SIS)) were measured at baseline (pre-testing), after 8 sessions (mid-testing) and after 16 sessions (post-testing). Significant improvements were found with the JHFT, BBT and NHPT from pre-testing to post-testing (p = 0.03, p = 0.03, p = 0.01, respectively). As well, there was an increase in perceived QOL from pre-testing to post-testing, as determined by the SIS (p = 0.009). Commercial gaming may be a viable resource for those with chronic stroke. Future research should examine the feasibility of this as a rehabilitation tool for this population. Stroke survivors often live with lasting effects from their injury, however, those with chronic stroke generally receive little to no rehabilitation due to a perceived motor recovery plateau. Virtual reality in the form of commercial gaming is a novel and motivating way for clients to complete rehabilitation. The Nintendo Wii may be a feasible device to improve both functional ability and perceived quality of life in chronic stroke survivors.

  9. Motor fuel prices in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2014-01-01

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO 2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  10. Toxicological Assessments of Rats Exposed Prenatally to Inhaled Vapors of Gasoline and Gasoline-Ethanol Blends

    Science.gov (United States)

    The primary alternative to petroleum-based fuels is ethanol, which is blended with gasoline in the United States at concentrations up to 15% for most automobiles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ...

  11. Life cycle assessment of gasoline and diesel

    International Nuclear Information System (INIS)

    Furuholt, Edgar

    1995-01-01

    A life cycle assessment (LCA) has been carried out to compare production and use of three different fuel products: regular gasoline, gasoline with MTBE and diesel. The study quantifies energy consumption and emissions through the production chain and assesses the potential impacts to the environment. Some of the methodological problems performing the LCA are discussed. The study indicates that production of gasoline with MTBE has potentially larger environmental impacts than production of regular gasoline, caused by the extra facilities for production of MTBE. The study also shows that the results are highly sensitive to the actual product specifications and assumptions that are made. Different product specifications can therefore lead to other conclusions. The results also indicate that production of diesel leads to significantly lower potential impacts than the gasolines

  12. Production of high anti-knock gasoline

    Energy Technology Data Exchange (ETDEWEB)

    1935-09-20

    A process is described for producing gasoline of high antiknock value by separating from the gasoline of low antiknock value by treating the gasoline in the vapor phase under pressure equal to or slightly above atmospheric and at a temperature at which it does not form essentially hydrocarbons gaseous at the operating temperature and in contact with catalysts, the process being characterized by the utilization of catalysts of silicates or phosphates except pumice stone and fullers earth.

  13. S.790: This Act may be cited as the Motor Fuel Consumer Protection Act of 1991, introduced in the Senate of the United States, One Hundred Second Congress, First Session, April 9, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This bill would amend the antitrust laws in order to preserve and promote wholesale and retail competition in the retail gasoline market. The bill describes limits on the ownership and operation of service stations. The main provision is the it shall be unlawful for any producer or refiner to require any retail motor fuel dealer to purchase more than 70% of the monthly retail sales of motor fuel from such refiner or producer. Motor fuel refers to gasoline, diesel fuel, alcohol, or any mixture of these sold for use in automobiles and related vehicles

  14. Investigation of fatalities due to acute gasoline poisoning.

    Science.gov (United States)

    Martínez, María A; Ballesteros, Salomé

    2005-10-01

    This paper presents a simple, rapid, reliable, and validated method suited for forensic examination of gasoline in biological samples. The proposed methodology has been applied to the investigation of four fatal cases due to gasoline poisoning that occurred in Spain in 2003 and 2004. Case histories and pathological and toxicological findings are described in order to illustrate the danger of gasoline exposure under several circumstances. Gasoline's tissular distribution, its quantitative toxicological significance, and the possible mechanisms leading to death are also discussed. The toxicological screening and quantitation of gasoline was performed by means of gas chromatography (GC) with flame-ionization detection, and confirmation was performed using GC-mass spectrometry in total ion chromatogram mode. m,p-Xylene peak was selected to estimate gasoline in all biological samples. Gasoline analytical methodology was validated at five concentration levels from 1 to 100 mg/L. The method provided extraction recoveries between 77.6% and 98.3%. The limit of detection was 0.3 mg/L, and the limit of quantitation was 1.0 mg/L. The linearity of the blood calibration curves was excellent with r2 values of > 0.997. Intraday and interday precisions had a coefficient of variation inhalation of gasoline vapor inside a small enclosed space. Case 3 is a death by recreational gasoline inhalation in a male adolescent. Heart blood concentrations were 28.4, 18.0, and 38.3 mg/L, respectively; liver concentrations were 41.4, 52.9, and 124.2 mg/kg, respectively; and lung concentrations were 5.6, 8.4, and 39.3 mg/kg, respectively. Case 4 was an accidental death due to gasoline ingestion of a woman with senile dementia. Peripheral blood concentration was 122.4 mg/L, the highest in our experience. Because pathological findings were consistent with other reports of gasoline intoxication and constituents of gasoline were found in the body, cause of death was attributed to acute gasoline

  15. 46 CFR 169.613 - Gasoline fuel systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Gasoline fuel systems. 169.613 Section 169.613 Shipping... Machinery and Electrical Fuel Systems § 169.613 Gasoline fuel systems. (a) Except as provided in paragraph (b) each gasoline fuel system must meet the requirements of § 56.50-70 of this chapter (b) Each...

  16. The US gasoline situation and crude oil prices

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Before and during the United States' summer driving season, concern over the country's gasoline supply can potentially influence the direction of the petroleum market. There are three causes of concern: a persistent lack of gasoline-producing capacity; a patchwork of as many as 18 different kinds of gasoline specifications; and the introduction of stringent new specifications for reformulated gasoline. However, gasoline stocks should be able to meet the needs of this year's driving season, at a time of ample crude oil availability, with strong imports. But, unplanned outages in the US logistics system and refining centres, or major disruptions in external gasoline supplies, could trigger price spikes that would, in turn, lead to frequently stronger crude oil prices, especially with the observed robust oil demand growth in China. (Author)

  17. New high expansion ratio gasoline engine for the TOYOTA hybrid system. Improving engine efficiency with high expansion ratio cycle; Hybrid system yo kobochohi gasoline engine. Kobochohi cycle ni yoru engine no kokoritsuka

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K; Takaoka, T; Ueda, T; Kobayashi, Y [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    50% reduction of CO2 and fuel consumption have been achieved with the newly developed gasoline engine for the Toyota Hybrid System. This is achieved due to the combination of electric motors and the internal combustion engine which is optimized in the size, swept volume and heat cycle. By delaying the intake valve close timing a high expansion ratio (13.5:1) cycle has been realized. Electricmotor assist enable to cut the maximum engine speed, and friction loss. A best fuel consumption figure better than 230 g/kWh has been achieved. Elimination of lightload firing, motor assisted quick start and improvement of catalyst warm up makes to achieve the clean emission level such as 1/10 of Japanese `78 regulation limit. 10 refs., 16 figs., 1 tab.

  18. Gasoline Prices and Their Relationship to Drunk-Driving Crashes

    OpenAIRE

    Guangqing Chi; Xuan Zhou; Timothy McClure; Paul Gilbert; Arthur Cosby; Li Zhang; Angela Robertson; David Levinson

    2010-01-01

    This study investigates the relationship between changing gasoline prices and drunk-driving crashes. Specifically, we examine the effects of gasoline prices on drunk-driving crashes in Mississippi by age, gender, and race from 2004Ð2008, a period experiencing great fluctuation in gasoline prices. An exploratory visualization by graphs shows that higher gasoline prices are generally associated with fewer drunk-driving crashes. Higher gasoline prices depress drunk- driving crashes among younger...

  19. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    Science.gov (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  20. Optical fiber smart sensor for conformity analysis of Brazilian gasoline; Sensor inteligente a fibra otica para analise da conformidade da gosolina brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Possetti, Gustavo R.C.; Camilotti, Emmanuelle; Arruda, Lucia V.R. de; Muller, Marcia; Fabris, Jose L. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Cocco, Lilian C.; Yamamoto, Carlos I. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Falate, Rosane [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil)

    2008-07-01

    The conventional techniques employed to monitor the gasoline quality are expensive, time-consuming and demands on specialized workers to its execution. A study about the applicability of a long period grating, a fiber optic device, as an auxiliary tool for the analysis of Brazilian gasoline conformity is presented in this work. The long period grating spectral response was measured with the device immersed in samples of gasoline A with different proportions of hydrated ethyl alcohol fuel. A resolution of 0.23 % was obtained for the concentrations range of commercial interest, between 20 % and 40 %. The device performance was also tested with a set of conform and non-conform gasoline C samples. The device spectral response for these samples, as well as the samples densities and the conformity status were employed to train and to validate an artificial neural network with radial base function. The obtained results show that fiber optic sensors supervised by artificial neural networks can constitute systems for smart measurement with high applicability in the analyses of gasoline conformity, reducing costs and time related to conventional tests. (author)

  1. Evaluation for leaded and unleaded Gasoline as Hazardous Waste

    International Nuclear Information System (INIS)

    Abou El Naga, H.H.

    1999-01-01

    With the phase out of alkyl lead compounds as necessary additives for gasoline in order to raise its octane number , the alternative is to reformulate gasoline to have nearly same octane number but with other chemical structures. Such reformulated gasoline (RFG) is found to contain higher aromatics, benzene, iso paraffins, in comparison to leaded gasoline. Additionally, this reformulated gasoline can also contain oxygenated additives. Accordingly, this paper is aiming at evaluation of emitted hazardous chemical compounds from car engines at fuel combustion. Role of chemical structures for reformulated gasoline in emission of volatile organic compounds (VOC) and poisoning materials are considered

  2. 26 CFR 48.4081-6 - Gasoline; gasohol.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Gasoline; gasohol. 48.4081-6 Section 48.4081-6... Fuel Taxable Fuel § 48.4081-6 Gasoline; gasohol. (a) Overview. This section provides rules for determining the applicability of reduced rates of tax on a removal or entry of gasohol or of gasoline used to...

  3. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Terrance [Ford Motor Co., Dearborn, MI (United States)

    2015-12-31

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, and to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.

  4. Gasoline toxicology: overview of regulatory and product stewardship programs.

    Science.gov (United States)

    Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb

    2014-11-01

    Significant efforts have been made to characterize the toxicological properties of gasoline. There have been both mandatory and voluntary toxicology testing programs to generate hazard characterization data for gasoline, the refinery process streams used to blend gasoline, and individual chemical constituents found in gasoline. The Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) is the primary tool for the U.S. Environmental Protection Agency (EPA) to regulate gasoline and this supplement presents the results of the Section 211(b) Alternative Tier 2 studies required for CAA Fuel and Fuel Additive registration. Gasoline blending streams have also been evaluated by EPA under the voluntary High Production Volume (HPV) Challenge Program through which the petroleum industry provide data on over 80 refinery streams used in gasoline. Product stewardship efforts by companies and associations such as the American Petroleum Institute (API), Conservation of Clean Air and Water Europe (CONCAWE), and the Petroleum Product Stewardship Council (PPSC) have contributed a significant amount of hazard characterization data on gasoline and related substances. The hazard of gasoline and anticipated exposure to gasoline vapor has been well characterized for risk assessment purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Anticipation, Tax Avoidance, and the Price Elasticity of Gasoline Demand

    OpenAIRE

    Coglianese, John; Davis, Lucas W; Kilian, Lutz; Stock, James H

    2015-01-01

    Traditional least squares estimates of the responsiveness of gasoline consumption to changes in gasoline prices are biased toward zero, given the endogeneity of gasoline prices. A seemingly natural solution to this problem is to instrument for gasoline prices using gasoline taxes, but this approach tends to yield implausibly large price elasticities. We demonstrate that anticipatory behavior provides an important explanation for this result. We provide evidence that gasoline buyers increase g...

  6. Persulfate injection into a gasoline source zone

    Science.gov (United States)

    Sra, Kanwartej S.; Thomson, Neil R.; Barker, Jim F.

    2013-07-01

    One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O82 -, SO42 -, Na+, dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for > 10 months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in M indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M increased by > 100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone.

  7. MVMA's 1991 summer gasoline survey and air quality

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In a previous newsletter (September 1991 issue of this journal), the results of MVMA's 1990 Summer Gasoline Survey were discussed. It was noted that many gasolines containing high concentrations of olefins (over 15 percent volume) were being marketed in the northeast corridor between Washington, D.C. and Boston. Also noted was the finding that the composition of gasoline plays an important role in determining the emissions from vehicles on the road. In this newsletter, the potential effects on air quality of the more recently surveyed gasolines are discussed. Three grades of unleaded gasoline were covered in the survey (premium, intermediate, and regular). 1 tab

  8. 75 FR 32983 - Commercial Driver's License (CDL) Standards: Exemption

    Science.gov (United States)

    2010-06-10

    ...-28480] Commercial Driver's License (CDL) Standards: Exemption AGENCY: Federal Motor Carrier Safety... commercial driver's license (CDL) as required by current regulations. FMCSA reviewed NAAA's application for... demonstrate alternatives its members would employ to ensure that their commercial motor vehicle (CMV) drivers...

  9. Evaluation of Solid Rocket Motor Component Data Using a Commercially Available Statistical Software Package

    Science.gov (United States)

    Stefanski, Philip L.

    2015-01-01

    Commercially available software packages today allow users to quickly perform the routine evaluations of (1) descriptive statistics to numerically and graphically summarize both sample and population data, (2) inferential statistics that draws conclusions about a given population from samples taken of it, (3) probability determinations that can be used to generate estimates of reliability allowables, and finally (4) the setup of designed experiments and analysis of their data to identify significant material and process characteristics for application in both product manufacturing and performance enhancement. This paper presents examples of analysis and experimental design work that has been conducted using Statgraphics®(Registered Trademark) statistical software to obtain useful information with regard to solid rocket motor propellants and internal insulation material. Data were obtained from a number of programs (Shuttle, Constellation, and Space Launch System) and sources that include solid propellant burn rate strands, tensile specimens, sub-scale test motors, full-scale operational motors, rubber insulation specimens, and sub-scale rubber insulation analog samples. Besides facilitating the experimental design process to yield meaningful results, statistical software has demonstrated its ability to quickly perform complex data analyses and yield significant findings that might otherwise have gone unnoticed. One caveat to these successes is that useful results not only derive from the inherent power of the software package, but also from the skill and understanding of the data analyst.

  10. Evaluation of technological alternative for low emission gasoline in PETROBRAS; Avaliacao de alternativas tecnologicas para gasolina de baixa emissao na PETROPBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, William Richard [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Gerencia de Tecnologia de Catalisadores de FCC - TFCC

    2004-07-01

    More than 30% of the total NO and CO emitted to the atmosphere and up to 20% of the CO{sub 2} are produced by automobiles. New smart fuel injection systems and the three-way catalytic converter in the automobile tail pipes have dramatically reduced NO and CO emissions, but have also required a profound change in gasoline specifications, particularly in the case of sulfur content. In Brazil, the refining of Campos basin heavy crude oils with a high concentration of nitrogen and the gasoline production strongly dependent of the FCC process, have introduced additional challenges. In this work, classic solutions such as FCC feed hydrotreatment, cracked naphta post-treatment, and the use of FCC gasoline sulfur reduction catalyst additives applied to the PETROBRAS scenario will be discussed. Changes to the FCC process to produce future fuels with lower aromaticity and lower emissions in new HCCI motors, which have hybrid characteristics between Diesel and Otto power-trains will also be discussed. (author)

  11. New Approaches for Estimating Motor Vehicle Emissions in Megacities

    Science.gov (United States)

    Marr, L. C.; Thornhill, D. A.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Kolb, C. E.; Knighton, W. B.; Mazzoleni, C.; Zavala, M. A.; Molina, L. T.

    2007-12-01

    The rapid proliferation of megacities and their air quality problems is producing unprecedented air pollution health risks and management challenges. Quantifying motor vehicle emissions in the developing world's megacities, where vehicle ownership is skyrocketing, is critical for evaluating the cities' impacts on the atmosphere at urban, regional, and global scales. The main goal of this research is to quantify gasoline- and diesel-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA). We apply positive matrix factorization to fast measurements of gaseous and particulate pollutants made by the Aerodyne Mobile Laboratory as it drove throughout the MCMA in 2006. We consider carbon dioxide; carbon monoxide; volatile organic compounds including benzene and formaldehyde; nitrogen oxides; ammonia; fine particulate matter; particulate polycyclic aromatic hydrocarbons; and black carbon. Analysis of the video record confirms the apportionment of emissions to different engine types. From the derived source profiles, we calculate fuel-based fleet-average emission factors and then estimate the total motor vehicle emission inventory. The advantages of this method are that it can capture a representative sample of vehicles in a variety of on-road driving conditions and can separate emissions from gasoline versus diesel engines. The results of this research can be used to help assess the accuracy of emission inventories and to guide the development of strategies for reducing vehicle emissions.

  12. Phase-out of leaded gasoline: a prescription for Lebanon

    International Nuclear Information System (INIS)

    Hashisho, Z.; El-Fadel, M.; Ayoub, G.; Baaj, H.

    2000-01-01

    Full text.Lead is a toxic heavy metal. Nevertheless, it has been mined and used for more than 800 years. Among the different contemporary sources of lead pollution, emissions from the combustion of leaded gasoline is of particular concern, as it can constitutes more than 90 percent of total lead emissions into the atmosphere in congested urban areas. Concentrations of lead in air and blood are strongly correlated with gasoline lead content and traffic volume. As a result of the increasing awareness about the dangers of lead to human health and the measures to manage urban air pollution, the use of leaded gasoline has been decreasing worldwide. In Lebanon, in the absence of policies to reduce the use of lead in gasoline or to favor the use of unleaded gasoline, leaded gasoline is the predominant grade. The objective of this research work is to analyze the current status of gasoline, and to assess the feasibility and prospect of such action. For this purpose, background information are presented, data about gasoline usage and specifications have been collected, field measurements have been performed and a public survey has been conducted. The comparison of the expected cost savings from phasing out leaded gasoline with the potential costs indicates that such action is economically highly justified. If effective regulatory measures are undertaken, leaded gasoline can be phased-out immediately without a significant cost

  13. Review of the Federal Motor Carrier Safety Regulations for Automated Commercial Vehicles: Preliminary Assessment of Interpretation and Enforcement Challenges, Questions, and Gaps

    Science.gov (United States)

    2018-03-01

    The Volpe National Transportation Systems Center (Volpe) reviewed the Federal Motor Carrier Safety Regulations (FMCSRs) to identify compliance and enforcement challenges related to the operation of automated commercial vehicles (CMVs) in interstate c...

  14. Survey of benzene and aromatics in Canadian Gasoline - 1994

    International Nuclear Information System (INIS)

    Tushingham, M.

    1996-01-01

    A comprehensive database of the benzene and aromatics levels of gasoline produced in or imported into Canada during 1994, was presented. Environment Canada conducted a survey that requested refineries and importers to report quarterly on benzene and aromatics levels in gasoline. Benzene, which has been declared toxic by the Canadian Environmental Protection Act, is found in gasoline and is formed during the combustion of the aromatic components of gasoline. It was shown that benzene and aromatics levels differ regionally and seasonally. There are also variations in benzene levels between batches of gasoline produced at any one refinery. This report listed the responses to the benzene/aromatics survey. It also described the analytical procedures used to measure benzene and aromatics levels in gasoline, and provided guidelines for reporting gasoline benzene and total aromatics data. 7 tabs., 21 figs

  15. New evidence on the asymmetry in gasoline price: volatility versus margin?

    International Nuclear Information System (INIS)

    Abosedra, S.; Radchenko, S.

    2006-01-01

    This paper examines recent evidence on the role that gasoline margins and volatility play in the asymmetric response of gasoline prices to changes in oil prices at different stages of distribution process. In a regression model with margins, we find that margins are statistically significant in explaining asymmetry between crude oil and spot gasoline prices, spot gasoline prices and wholesale gasoline prices, and wholesale gasoline prices and retail prices. In a regression model with input volatility, we find evidence that volatility is responsible for asymmetry between wholesale gasoline prices and retail gasoline prices. When both, gasoline margins and gasoline volatility are included in the regression, we find evidence supporting margins, the search theory, volatility, the oligopolistic coordination theory and an explanation of asymmetry. (author)

  16. Gasoline Prices, Transport Costs, and the U.S. Business Cycles

    OpenAIRE

    Hakan Yilmazkuday

    2014-01-01

    The e¡èects of gasoline prices on the U.S. business cycles are investigated. In order to distinguish between gasoline supply and gasoline demand shocks, the price of gasoline is endogenously determined through a transportation sector that uses gasoline as an input of production. The model is estimated for the U.S. economy using five macroeconomic time series, including data on transport costs and gasoline prices. The results show that although standard shocks in the literature (e.g., technolo...

  17. Tiered gasoline pricing: A personal carbon trading perspective

    International Nuclear Information System (INIS)

    Li, Yao; Fan, Jin; Zhao, Dingtao; Wu, Yanrui; Li, Jun

    2016-01-01

    This paper proffers a tiered gasoline pricing method from a personal carbon trading perspective. An optimization model of personal carbon trading is proposed, and then, an equilibrium carbon price is derived according to the market clearing condition. Based on the derived equilibrium carbon price, this paper proposes a calculation method of tiered gasoline pricing. Then, sensitivity analyses and consumers' surplus analyses are conducted. It can be shown that a rise in gasoline price or a more generous allowance allocation would incur a decrease in the equilibrium carbon price, making the first tiered price higher, but the second tiered price lower. It is further verified that the proposed tiered pricing method is progressive because it would relieve the pressure of the low-income groups who consume less gasoline while imposing a greater burden on the high-income groups who consume more gasoline. Based on these results, implications, limitations and suggestions for future studies are provided. - Highlights: • Tiered gasoline pricing is calculated from the perspective of PCT. • Consumers would be burdened with different actual gasoline costs. • A specific example is provided to illustrate the calculation of TGP. • The tiered pricing mechanism is a progressive system.

  18. Persulfate injection into a gasoline source zone.

    Science.gov (United States)

    Sra, Kanwartej S; Thomson, Neil R; Barker, Jim F

    2013-07-01

    One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O8(2-), SO4(2-), Na(+), dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for >10months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in [Formula: see text] indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M˙DIC increased by >100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Hydrogen production by onboard gasoline processing – Process simulation and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Bisaria, Vega; Smith, R.J. Byron,

    2013-12-15

    Highlights: • Process flow sheet for an onboard fuel processor for 100 kW fuel cell output was simulated. • Gasoline fuel requirement was found to be 30.55 kg/hr. • The fuel processor efficiency was found to be 95.98%. • An heat integrated optimum flow sheet was developed. - Abstract: Fuel cell vehicles have reached the commercialization stage and hybrid vehicles are already on the road. While hydrogen storage and infrastructure remain critical issues in stand alone commercialization of the technology, researchers are developing onboard fuel processors, which can convert a variety of fuels into hydrogen to power these fuel cell vehicles. The feasibility study of a 100 kW on board fuel processor based on gasoline fuel is carried out using process simulation. The steady state model has been developed with the help of Aspen HYSYS to analyze the fuel processor and total system performance. The components of the fuel processor are the fuel reforming unit, CO clean-up unit and auxiliary units. Optimization studies were carried out by analyzing the influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, temperature and pressure on the process equipments. From the steady state model optimization using Aspen HYSYS, an optimized reaction composition in terms of hydrogen production and carbon monoxide concentration corresponds to: oxygen to carbon ratio of 0.5 and steam to carbon ratio of 0.5. The fuel processor efficiency of 95.98% is obtained under these optimized conditions. The heat integration of the system using the composite curve, grand composite curve and utility composite curve were studied for the system. The most appropriate heat exchanger network from the generated ones was chosen and that was incorporated into the optimized flow sheet of the100 kW fuel processor. A completely heat integrated 100 kW fuel processor flow sheet using gasoline as fuel was thus successfully simulated and optimized.

  20. Hydrogen production by onboard gasoline processing – Process simulation and optimization

    International Nuclear Information System (INIS)

    Bisaria, Vega; Smith, R.J. Byron

    2013-01-01

    Highlights: • Process flow sheet for an onboard fuel processor for 100 kW fuel cell output was simulated. • Gasoline fuel requirement was found to be 30.55 kg/hr. • The fuel processor efficiency was found to be 95.98%. • An heat integrated optimum flow sheet was developed. - Abstract: Fuel cell vehicles have reached the commercialization stage and hybrid vehicles are already on the road. While hydrogen storage and infrastructure remain critical issues in stand alone commercialization of the technology, researchers are developing onboard fuel processors, which can convert a variety of fuels into hydrogen to power these fuel cell vehicles. The feasibility study of a 100 kW on board fuel processor based on gasoline fuel is carried out using process simulation. The steady state model has been developed with the help of Aspen HYSYS to analyze the fuel processor and total system performance. The components of the fuel processor are the fuel reforming unit, CO clean-up unit and auxiliary units. Optimization studies were carried out by analyzing the influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, temperature and pressure on the process equipments. From the steady state model optimization using Aspen HYSYS, an optimized reaction composition in terms of hydrogen production and carbon monoxide concentration corresponds to: oxygen to carbon ratio of 0.5 and steam to carbon ratio of 0.5. The fuel processor efficiency of 95.98% is obtained under these optimized conditions. The heat integration of the system using the composite curve, grand composite curve and utility composite curve were studied for the system. The most appropriate heat exchanger network from the generated ones was chosen and that was incorporated into the optimized flow sheet of the100 kW fuel processor. A completely heat integrated 100 kW fuel processor flow sheet using gasoline as fuel was thus successfully simulated and optimized

  1. Process and catalysts for hydrocarbon conversion. [high antiknock motor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1940-02-14

    High anti-knock motor fuel is produced from hydrocarbons by subjecting it at an elevated temperature to contact with a calcined mixture of hydrated silica, hydrated alumina, and hydrated zirconia, substantially free from alkali metal compounds. The catalyst may be prepared by precipitating silica gel by the acidification of an aqueous solution of an alkali metal silicate, intimately mixing hydrated alumina and hydrated zirconia therewith, drying, purifying the composite to substantially remove alkali metal compounds, again drying, forming the dried material into particles, and finally calcining. The resultant conversion products may be fractionated to produce gasoline, hydrocarbon oil above gasoling boiling point range, and a gaseous fraction of olefins which are polymerized into gasoline boiling range polymers.

  2. Dispensing Equipment Testing with Mid-Level Ethanol/Gasoline Test Fluid: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, K.; Chapin, J. T.

    2010-11-01

    The National Renewable Energy Laboratory's (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy's (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

  3. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall be...

  4. 40 CFR 52.787 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  5. Development of tartaric esters as bifunctional additives of methanol-gasoline.

    Science.gov (United States)

    Zhang, Jie; Yang, Changchun; Tang, Ying; Zhou, Rui; Wang, Xiaoli; Xu, Lianghong

    2014-01-01

    Methanol has become an alternative fuel for gasoline, which is facing a rapidly rising world demand with a limited oil supply. Methanol-gasoline has been used in China, but phase stability and vapor lock still need to be resolved in methanol-gasoline applications. In this paper, a series of tartaric esters were synthesized and used as phase stabilizers and saturation vapor pressure depressors for methanol-gasoline. The results showed that the phase stabilities of tartaric esters for methanol-gasoline depend on the length of the alkoxy group. Several tartaric esters were found to be effective in various gasoline-methanol blends, and the tartaric esters display high capacity to depress the saturation vapor pressure of methanol-gasoline. According to the results, it can be concluded that the tartaric esters have great potential to be bifunctional gasoline-methanol additives.

  6. Unleaded gasoline with reduction in benzene and aromatics

    International Nuclear Information System (INIS)

    Ahmed, I.

    2003-01-01

    The trend today is towards making gasoline more environment and human friendly or in other words making gasoline a really clean fuel. This paper covers the ill effects of benzene and aromatics and the driving force behind their reduction in gasoline worldwide. It addresses health concerns specifically, and the theme is unleaded gasoline without simultaneously addressing reduction in benzene and aromatics is more harmful. The paper cites worldwide case studies, and also the World Bank (WB), Government of Pakistan (GoP), and United Nations (UN) efforts in this area in Pakistan. (author)

  7. 40 CFR 80.375 - What requirements apply to California gasoline?

    Science.gov (United States)

    2010-07-01

    ... gasoline? 80.375 Section 80.375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Exemptions § 80.375 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart California gasoline...

  8. 40 CFR 80.1236 - What requirements apply to California gasoline?

    Science.gov (United States)

    2010-07-01

    ... gasoline? 80.1236 Section 80.1236 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1236 What requirements apply to California gasoline? (a) Definition. For purposes of this subpart...

  9. 40 CFR 80.845 - What requirements apply to California gasoline?

    Science.gov (United States)

    2010-07-01

    ... gasoline? 80.845 Section 80.845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.845 What requirements apply to California gasoline? (a) Definition. For purposes of this...

  10. Piezoelectric Motors, an Overview

    OpenAIRE

    Karl Spanner; Burhanettin Koc

    2016-01-01

    Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ult...

  11. 46 CFR 56.50-70 - Gasoline fuel systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Gasoline fuel systems. 56.50-70 Section 56.50-70... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-70 Gasoline fuel systems. (a) Material.... Outlets in fuel lines for drawing gasoline for any purpose are prohibited. Valved openings in the bottom...

  12. Understanding gasoline pricing in Canada

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Pricing policies for gasoline by Canadian oil companies are discussed. An attempt is made to demonstrate that competition between oil companies is extremely keen, and markups are so small that to stay in business, retail outlets have to sell huge volumes and sell non-fuel products, as a means to increase revenues and margins. An explanation is provided for why gasoline prices move in unison, and why what appears to the public as collusion and gouging is, in fact, the result of retail dealers attempting to stay in business. The high prices are attributed mainly to taxes by municipalities, the provinces and the federal government; taxes are said to account for 40 to 50 per cent of the pump price. The cost of crude makes up another 35 to 45 per cent, refining adds 10 to 15 per cent, with the remaining 5 to 10 per cent representing retail costs. (Taxes in the United States average 20 to 30 per cent). Over the longer term, gasoline prices consistently reflect the cost of crude oil, dominated by the OPEC countries which supply about 41 per cent of daily world production. Another factor is the rise of global and regional commodity markets for refined products such as gasoline. Commodity traders buy wholesale gasoline cheaply whenever it is in oversupply, and sell it for a profit into markets where the demand is greater. While this is claimed to ensure competitive prices in all markets, the practice can also trigger abrupt changes in regional markets

  13. The elasticity of demand for gasoline in China

    International Nuclear Information System (INIS)

    Lin, C.-Y. Cynthia; Zeng, Jieyin

    2013-01-01

    This paper estimates the price and income elasticities of demand for gasoline in China. Our estimates of the intermediate-run price elasticity of gasoline demand range between −0.497 and −0.196, and our estimates of the intermediate-run income elasticity of gasoline demand range between 1.01 and 1.05. We also extend previous studies to estimate the vehicle miles traveled (VMT) elasticity and obtain a range from −0.882 to −0.579. - highlights: • The price elasticity of demand for gasoline in China is between −0.497 and −0.196. • The income elasticity of demand for gasoline in China is between 1.01 and 1.05. • The price elasticity of demand for VMT in China is between −0.882 and −0.579

  14. 46 CFR 58.50-5 - Gasoline fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Gasoline fuel tanks. 58.50-5 Section 58.50-5 Shipping... AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-5 Gasoline fuel tanks. (a) Construction—(1) Shape...) Installation. (1) Gasoline fuel tanks used for propulsion shall be located in water-tight compartments separate...

  15. The Commercial Vehicle Information Systems and Network program, 2012.

    Science.gov (United States)

    2014-03-01

    The Commercial Vehicle Information Systems and : Networks (CVISN) program supports that safety : mission by providing grant funds to States for: : Improving safety and productivity of motor : carriers, commercial motor vehicles : (CMVs), and thei...

  16. Gasoline taxes or efficiency standards? A heterogeneous household demand analysis

    International Nuclear Information System (INIS)

    Liu, Weiwei

    2015-01-01

    Using detailed consumer expenditure survey data and a flexible semiparametric dynamic demand model, this paper estimates the price elasticity and fuel efficiency elasticity of gasoline demand at the household level. The goal is to assess the effectiveness of gasoline taxes and vehicle fuel efficiency standards on fuel consumption. The results reveal substantial interaction between vehicle fuel efficiency and the price elasticity of gasoline demand: the improvement of vehicle fuel efficiency leads to lower price elasticity and weakens consumers’ sensitivity to gasoline price changes. The offsetting effect also differs across households due to demographic heterogeneity. These findings imply that when gasoline taxes are in place, tightening efficiency standards will partially offset the strength of taxes on reducing fuel consumption. - Highlights: • Model household gasoline demand using a semiparametric approach. • Estimate heterogeneous price elasticity and fuel efficiency elasticity. • Assess the effectiveness of gasoline taxes and efficiency standards. • Efficiency standards offset the impact of gasoline taxes on fuel consumption. • The offsetting effect differs by household demographics

  17. Improvement of the environmental and operational characteristics of vehicles through decreasing the motor fuel density.

    Science.gov (United States)

    Magaril, Elena

    2016-04-01

    The environmental and operational characteristics of motor transport, one of the main consumers of motor fuel and source of toxic emissions, soot, and greenhouse gases, are determined to a large extent by the fuel quality which is characterized by many parameters. Fuel density is one of these parameters and it can serve as an indicator of fuel quality. It has been theoretically substantiated that an increased density of motor fuel has a negative impact both on the environmental and operational characteristics of motor transport. The use of fuels with a high density leads to an increase in carbonization within the engine, adversely affecting the vehicle performance and increasing environmental pollution. A program of technological measures targeted at reducing the density of the fuel used was offered. It includes a solution to the problem posed by changes in the refining capacities ratio and the temperature range of gasoline and diesel fuel boiling, by introducing fuel additives and adding butanes to the gasoline. An environmental tax has been developed which allows oil refineries to have a direct impact on the production of fuels with improved environmental performance, taking into account the need to minimize the density of the fuel within a given category of quality.

  18. Real-world fuel use and gaseous emission rates for flex fuel vehicles operated on E85 versus gasoline.

    Science.gov (United States)

    Delavarrafiee, Maryam; Frey, H Christopher

    2018-03-01

    Flex fuel vehicles (FFVs) typically operate on gasoline or E85, an 85%/15% volume blend of ethanol and gasoline. Differences in FFV fuel use and tailpipe emission rates are quantified for E85 versus gasoline based on real-world measurements of five FFVs with a portable emissions measurement system (PEMS), supplemented chassis dynamometer data, and estimates from the Motor Vehicle Emission Simulator (MOVES) model. Because of inter-vehicle variability, an individual FFV may have higher nitrogen oxide (NO x ) or carbon monoxide (CO) emission rates on E85 versus gasoline, even though average rates are lower. Based on PEMS data, the comparison of tailpipe emission rates for E85 versus gasoline is sensitive to vehicle-specific power (VSP). For example, although CO emission rates are lower for all VSP modes, they are proportionally lowest at higher VSP. Driving cycles with high power demand are more advantageous with respect to CO emissions, but less advantageous for NO x . Chassis dynamometer data are available for 121 FFVs at 50,000 useful life miles. Based on the dynamometer data, the average difference in tailpipe emissions for E85 versus gasoline is -23% for NO x , -30% for CO, and no significant difference for hydrocarbons (HC). To account for both the fuel cycle and tailpipe emissions from the vehicle, a life cycle inventory was conducted. Although tailpipe NO x emissions are lower for E85 versus gasoline for FFVs and thus benefit areas where the vehicles operate, the life cycle NO x emissions are higher because the NO x emissions generated during fuel production are higher. The fuel production emissions take place typically in rural areas. Although there are not significant differences in the total HC emissions, there are differences in HC speciation. The net effect of lower tailpipe NO x emissions and differences in HC speciation on ozone formation should be further evaluated. Reported comparisons of flex fuel vehicle (FFV) tailpipe emission rates for E85 versus

  19. Inventories and upstream gasoline price dynamics

    NARCIS (Netherlands)

    Kuper, Gerard H.

    This paper sheds new light on the asymmetric dynamics in upstream U.S. gasoline prices. The model is based on Pindyck's inventory model of commodity price dynamics. We show that asymmetry in gasoline price dynamics is caused by changes in the net marginal convenience yield: higher costs of marketing

  20. Gasoline Prices and Their Relationship to Rising Motorcycle Fatalities, 1990–2007

    Science.gov (United States)

    Stimpson, Jim P.; Hilsenrath, Peter E.

    2009-01-01

    Motor vehicle accidents are the leading cause of death among young adults. Although automobile fatalities have declined in recent years, motorcycle fatalities are rapidly increasing. The purpose of our research was to quantify the relationship between changing fuel prices and motorcycle fatalities. Our findings suggest that people increasingly rely on motorcycles to reduce their fuel costs in response to rising gasoline prices. We estimate that use of motorcycles and scooters instead of 4-wheeled vehicles results in over 1500 additional motorcycle fatalities annually for each dollar increase in gas prices. Motorcycle safety should receive more attention as a leading public health issue. PMID:19696374

  1. Projected reformulated gasoline and AFV use in California

    International Nuclear Information System (INIS)

    Bemis, G.R.

    1995-01-01

    In the spring to summer of 1996, California will switch from conventional and oxygenated gasolines to reformulated gasoline. This gasoline will be a designer fuel, and generally not available from sources outside California, since California's fuel specifications then will be unique. Thus, it will be important for California refiners to be able to meet the California reformulated gasoline (Cal-RFG) demand. California refiners are investing over $4 billion to upgrade their facilities for Cal-RFG. This represents approximately 40% of the total cost of making Cal-RFG, and is expected to cost 5--15 cents/gallon more than conventional gasoline to produce. Starting in the year 2000, EPA will require use of a similar fuel in seven geographical areas outside of California. The discussion below focuses on the supply, demand and price projections for Cal-RFG

  2. Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON

    KAUST Repository

    Mannaa, Ossama

    2015-06-01

    The development and validation of a new gasoline surrogate using laminar flame speed as a target parameter is presented. Laminar burning velocities were measured using a constant-volume spherical vessel with ignition at the center of the vessel. Tested fuels included iso-octane, n-heptane, toluene, various mixtures of primary reference fuels (PRFs) and toluene reference fuels (TRFs) and three gasoline fuels of 70, 85 and 95 RON (FACE J, C and F) at the initial temperature of 358K and pressures up to 0.6MPa in the equivalence ratio ranging from 0.8 to 1.6. Normalized laminar burning velocity data were mapped into a tri-component mixture space at different experimental conditions to allocate different gasoline surrogates for different gasoline fuels, having RON of 70, 85 and 95. The surrogates of TRF-70-4 (17.94% iso-C8H18 +42.06% n-C7H16 +40% C7H8), TRF-85-1 (77.4% iso-C8H18 +17.6% n-C7H16 +5% C7H8), and TRF-95-1 (88.47% iso-C8H18 +6.53% n-C7H16 +5% C7H8) of RON 70, 85 and 95, respectively, are shown to successfully emulate the burning rate characteristics of the gasoline fuels associated with these RONs under the various experimental conditions investigated. An empirical correlation was derived to obtain laminar burning velocities at pressures that are experimentally unattainable as high as 3.0MPa. Laminar burning velocities were comparable to the simulated values for lean and stoichiometric flames but they were relatively higher than the simulated values for rich flames. A flame instability assessment was conducted by determining Markstein length, critical Pecklet number, and critical Karlovitz number at the onset of flame instability.

  3. adaptation of natural gas for motor fuels in nigeria transport system

    African Journals Online (AJOL)

    In recent years, as a result of limiting reserve of crude oil and the clamour for the deregulation of the petroleum sector of the nation's economy, there is need to look beyond liquid fuel (gasoline, diesel) as vehicular fuels. The viability of adapting natural gas for motor fuels had been presented. Natural gas as automobile fuel ...

  4. Graphene deposited onto aligned zinc oxide nanorods as an efficient coating for headspace solid-phase microextraction of gasoline fractions from oil samples.

    Science.gov (United States)

    Wen, Congying; Li, Mengmeng; Li, Wangbo; Li, Zizhou; Duan, Wei; Li, Yulong; Zhou, Jie; Li, Xiyou; Zeng, Jingbin

    2017-12-29

    The content of gasoline fraction in oil samples is not only an important indicator of oil quality, but also an indispensable fundamental data for oil refining and processing. Before its determination, efficient preconcentration and separation of gasoline fractions from complicated matrices is essential. In this work, a thin layer of graphene (G) was deposited onto oriented ZnO nanorods (ZNRs) as a SPME coating. By this approach, the surface area of G was greatly enhanced by the aligned ZNRs, and the surface polarity of ZNRs was changed from polar to less polar, which were both beneficial for the extraction of gasoline fractions. In addition, the ZNRs were well protected by the mechanically and chemically stable G, making the coating highly durable for use. With headspace SPME (HS-SPME) mode, the G/ZNRs coating can effectively extract gasoline fractions from various oil samples, whose extraction efficiency achieved 1.5-5.4 and 2.1-8.2 times higher than those of a G and commercial 7-μm PDMS coating respectively. Coupled with GC-FID, the developed method is sensitive, simple, cost effective and easily accessible for the analysis of gasoline fractions. Moreover, the method is also feasible for the detection of gasoline markers in simulated oil-polluted water, which provides an option for the monitoring of oil spill accident. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hydrocarbon control strategies for gasoline marketing operations

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R.L.; Sakaida, R.R.; Yamada, M.M.

    1978-05-01

    This informational document provides basic and current descriptions of gasoline marketing operations and methods that are available to control hydrocarbon emissions from these operations. The three types of facilities that are described are terminals, bulk plants, and service stations. Operational and business trends are also discussed. The potential emissions from typical facilities, including transport trucks, are given. The operations which lead to emissions from these facilities include (1) gasoline storage, (2) gasoline loading at terminals and bulk plants, (3) gasoline delivery to bulk plants and service stations, and (4) the refueling of vehicles at service stations. Available and possible methods for controlling emissions are described with their estimated control efficiencies and costs. This report also includes a bibliography of references cited in the text, and supplementary sources of information.

  6. Programmable dc motor controller

    Science.gov (United States)

    Hopwood, J. E.

    1982-11-01

    A portable programmable dc motor controller, with features not available on commercial instruments was developed for controlling fixtures during welding processes. The controller can be used to drive any dc motor having tachometer feedback and motor requirements not exceeding 30 volts, 3 amperes. Among the controller's features are delayed start time, upslope time, speed, and downslope time.

  7. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  8. Transport gasoline demand in Canada

    International Nuclear Information System (INIS)

    Eltony, M.N.

    1993-01-01

    This paper provides an estimate of household gasoline demand in Canada by applying a detailed model to pool time-series (1969-1988) and cross-sectional provincial data. The model recognises three major behavioural changes that households can make in response to gasoline price changes: drive fewer miles, purchase fewer cars, and buy more fuel-efficient vehicles. In the model, fuel economy is treated in considerable detail. The two components of the fuel economy of new cars sold-the technical fuel efficiency of various classes of cars and the distribution of new car sales according to their interior volume rather than their weight - are estimated as functions of economic variables. Car manufacturers are assumed to improve the technical fuel economy according to their expectation of consumer's response to future changes in gasoline prices and general economic conditions. (author)

  9. 40 CFR 80.66 - Calculation of reformulated gasoline properties.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of reformulated gasoline... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.66 Calculation of reformulated gasoline properties. (a) All volume measurements required by these regulations shall be...

  10. The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine

    Directory of Open Access Journals (Sweden)

    Xiaochen Wang

    2015-09-01

    Full Text Available Comparative experiments were conducted on a port injection gasoline engine fueled with hydrous ethanol gasoline (E10W, ethanol gasoline (E10 and pure gasoline (E0. The effects of the engine loads and the additions of ethanol and water on combustion and emission characteristics were analyzed deeply. According to the experimental results, compared with E0, E10W showed higher peak in-cylinder pressure at high load. Increases in peak heat release rates were observed for E10W fuel at all the operating conditions. The usage of E10W increased NOX emissions at a wide load range. However, at low load conditions, E10W reduced HC, CO and CO2 emissions significantly. E10W also produced slightly less HC and CO emissions, while CO2 emissions were not significantly affected at higher operating points. Compared with E10, E10W showed higher peak in-cylinder pressures and peak heat release rates at the tested operating conditions. In addition, decreases in NOX emissions were observed for E10W from 5 Nm to 100 Nm, while HC, CO and CO2 emissions were slightly higher at low and medium load conditions. From the results, it can be concluded that E10W fuel can be regarded as a potential alternative fuel for gasoline engine applications.

  11. Taking the mystery out of gasoline prices

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Gasoline price variations in different markets of Canada are primarily driven by market forces, not necessarily by costs, according to a petroleum valuation consultant of the Newfoundland Department of Mines and Energy. Market forces include wholesale prices, the number and efficiency of stations in an area, companies' marketing strategies and customer buying preferences. Prices can be affected by any one of these forces at any time. The prediction is that wholesale prices will continue to be volatile in the next few months as the market adjusts to the changes in crude oil prices determined by OPEC as well as the summer season for gasoline. Changes in crude oil prices are usually reflected in the price of gasoline at the pump, although they do not necessarily move together. Demand which is an important factor in price, is cyclical in both the US and Canada, being lowest in the first quarter of the year, picking up during the second and third quarters with increased driving during good weather, and usually declining again in the fourth quarter with the onset of colder weather. Taxes are also a very significant component of the retail price of gasoline; in July 1998 the combined federal and provincial taxes accounted for 54 per cent of the average retail price of regular unleaded gasoline in Canada. Refining and marketing costs, the distance gasoline has to be transported to market, also influence prices at the pump

  12. Development of synthetic gasoline production process

    Energy Technology Data Exchange (ETDEWEB)

    Imai, T; Fujita, H; Yamada, K; Suzuki, T; Tsuchida, Y

    1986-01-01

    As oil deposits are limited, it is very important to develop techniques for manufacturing petroleum alternatives as substitute energy sources to brighten the outlook for the future. The Research Association for Petroleum Alternatives Development (RAPAD) in Japan is engaged in the research and development of production techniques for light hydrocarbon oils such as gasoline, kerosene, and light oil from synthesis gas (CO, H/sub 2/) obtained from the raw materials of natural gas, coal, etc. Regarding the MTG process of synthesizing gasoline via methanol from synthesis gas and the STG process of directly synthesizing gasoline from synthesis gas, Cosmo Oil Co., Ltd. and Mitsubishi Heavy Industries, Ltd., members of RAPAD, have sought jointly to develop catalysts and processes. As a result of this co-operation, the authors have recently succeeded in developing a new catalyst with a long life span capable of providing a high yield and high selectivity. Additionally, the authors are currently on the verge of putting into effect a unique two-step STG process of synthesizing high octane gasoline via dimethyl ether, referred to as the AMSTG process.

  13. 40 CFR 80.81 - Enforcement exemptions for California gasoline.

    Science.gov (United States)

    2010-07-01

    ... gasoline. 80.81 Section 80.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.81 Enforcement exemptions for California gasoline. (a)(1) The requirements of subparts D, E, F, and J of this part are...

  14. Competition in the retail gasoline industry

    Science.gov (United States)

    Brewer, Jedidiah

    2007-05-01

    This dissertation examines competition in the retail gasoline industry. The first chapter highlights the importance of gasoline in modern society, introduces my work, and places it in the context of the existing academic literature. The second chapter details the institutional structure and profitability of the industry. The vast majority of retail gasoline stations are not directly owned and operated by major oil companies. Instead, most stations are set up under other contractual relationships: lessee-dealer, open-dealer, jobber-owned-and-operated, and independent. Gasoline retailers make relatively low profits, as is the case in many other retail industries, and are substantially less profitable than major oil companies. Gas stations also make less money when retail prices are climbing than when they are falling. As prices rise, total station profits are near zero or negative. When retail prices are constant or falling, retailers can make positive profits. The third chapter describes the entry of big-box stores into the retail gasoline industry over the last decade. The growth of such large retailers, in all markets, has led to a great deal of controversy as smaller competitors with long-term ties to the local community have become less common. I estimate the price impact that big-box stores have on traditional gasoline retailers using cross-sectional data in two geographically diverse cities. I also examine changes in pricing following the entry of The Home Depot into a local retail gasoline market. The results show that big-box stores place statistically and economically significant downward pressure on the prices of nearby gas stations, offering a measure of the impact of the entry of a big-box store. Chapter 4 examines the nature of price competition in markets where some competing retailers sell the same brand. The price effect of having more retailers selling the same brand is theoretically unclear. High brand diversity could give individual retailers

  15. Guidance Document for Alternative Diesel Fuels Proposed as Drop-In Fuels to Displace Diesel Fuels as Specified By ASTM Specification D975

    Science.gov (United States)

    2014-07-01

    includes both direct contact with the fuel and inhalation of fuel engine exhaust. The first source of information regarding the hazards associated...maintain its registration. Only gasoline and diesel fuel and fuel additives produced and commercially distributed for use in highway motor

  16. Recent Trends and Patterns of Gasoline Consumption in Nigeria ...

    African Journals Online (AJOL)

    This article analyses recent trends and spatial patterns of gasoline consumption in Nigeria. In particular, it shows that the volume of gasoline consumption in the country fluctuates with changes in economic growth. The pattern of distribution of gasoline consumption indicates that the largest consumption centres are in the ...

  17. Degradation of tetraethyllead during the degradation of leaded gasoline hydrocarbons in soil

    International Nuclear Information System (INIS)

    Mulroy, P.T.; Ou, L.T.

    1998-01-01

    For over 50 years, leaded gasoline was the only fuel for automobiles, and tetraethyllead (TEL) was the major octane number enhancer used in leaded gasoline. Ample information is available on the fate and remediation of gasoline hydrocarbons in contaminated subsoils and groundwater. However, little is known regarding the fate of TEL in leaded gasoline-contaminated subsoils and groundwater. In soil not contaminated with gasoline, TEL was rapidly degraded and completely disappeared in 14 d. In gasoline-contaminated soil, TEL degradation was slower; after 77 d, 4 to 17% of the applied TEL still remained in the contaminated soil. Disappearance of total petroleum hydrocarbons (TPH) was initially rapid but slowed appreciably after 7 to 14 d. As a result, after 77 d, 33 to 51% of the applied gasoline still remained in soil. The retardation of TEL degradation in leaded gasoline-contaminated soil is due to the presence of gasoline hydrocarbons. As long as gasoline hydrocarbons remain in soil, TEL may also remain in soil, most likely in the gasoline hydrocarbon phase

  18. Stabilization of gasoline from shale

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, L

    1929-03-14

    A process is described of stabilizing gasoline from shale, consisting in treating by agitating the gasoline freshly distilled from shale oil with 1.5 percent of its weight of sulfuric acid diluted to more than 10 times its volume, after which separating the pyridine, then treating by agitating with sulfuric acid which treatment separates the unsaturated hydrocarbons and finally treating by agitating with 1.5 percent of its weight of saturated caustic soda solution and washing with water.

  19. Piezoelectric motor development at AlliedSignal Inc., Kansas City Division

    Science.gov (United States)

    Pressly, Robert B.; Mentesana, Charles P.

    1994-11-01

    The Kansas City Division of AlliedSignal Inc. has been investigating the fabrication and use of piezoelectric motors in mechanisms for United States Department of Energy (DOE) weapons applications for about four years. These motors exhibit advantages over solenoids and other electromagnetic actuators. Prototype processes have been developed for complete fabrication of motors from stock materials, including abrasive machining of piezoelectric ceramics and more traditional machining of other motor components, electrode plating and sputtering, electric poling, cleaning, bonding and assembly. Drive circuits have been fabricated and motor controls are being developed. Laboratory facilities have been established for electrical/mechanical testing and evaluation of piezo materials and completed motors. Recent project efforts have focused on the potential of piezoelectric devices for commercial and industrial use. A broad range of various motor types and application areas has been identified, primarily in Japan. The Japanese have been developing piezo motors for many years and have more recently begun commercialization. Piezoelectric motor and actuator technology is emerging in the United States and quickly gaining in commercial interest. The Kansas City Division is continuing development of piezoelectric motors and actuators for defense applications while supporting and participating in the commercialization of piezoelectric devices with private industry through various technology transfer and cooperative development initiatives.

  20. High octane gasoline components from catalytic cracking gasoline, propylene, and isobutane by disproportionation, clevage and alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, R.

    1980-07-08

    A process is described for producing high octane value gasoline which comprises in a disproportionation zone subjecting propylene and a mixture of propylene and ethylene obtained as hereinafter delineated to disproportionation conditions to produce a stream containing ethylene and a stream containing butenes, passing the ethylene-containing stream from said disproportionation zone together with a catalytic cracking gasoline to a cleavage zone under disproportionation conditions and subjecting the mixture of hydrocarbons therin to cleavage to produce said mixture of propylene and ethylene, a C/sub 5//sup +/ gasoline-containing product and butenes and wherein the butenes obtained in the overall operation of the disproportionation zone and the cleavage zone are passed to an alkylation zone wherein said butenes are used to alkylate an isoparaffin to produce additional high octane value product.

  1. Performance of a hybrid hydrogen–gasoline engine under various operating conditions

    International Nuclear Information System (INIS)

    Ji, Changwei; Wang, Shuofeng; Zhang, Bo

    2012-01-01

    Highlights: ► We develop a combustion strategy for the hybrid hydrogen–gasoline engine (HHGE). ► The HHGE produced much lower HC and CO emissions at cold start. ► The H 2 -gasoline blends were effective for improving engine performance at idle and part loads. ► The HHGE could run smoothly at lean conditions. -- Abstract: This paper proposed a new combustion strategy for the spark-ignited (SI) engines. A gasoline engine was converted into a hybrid hydrogen–gasoline engine (HHGE) by adding a hydrogen injection system and a hybrid electronic control unit. Different from the conventional gasoline and hydrogen–enriched gasoline engines, the HHGE is fueled with the pure hydrogen at cold start to produce almost zero emissions, with the hydrogen–gasoline blends at idle and part loads to further improve thermal efficiency and reduce emissions, and with the pure gasoline to ensure the engine power output at high loads. Because the HHGE is fueled with the pure gasoline at high loads and speeds, experiments are only conducted at clod start, idle and part load conditions. Since lean combustion avails the further improvement of the engine performance, the HHGE was fueled with the lean mixtures in all tests. The experimental results showed that the hybrid hydrogen–gasoline engine was started successfully with the pure hydrogen, which produced 94.7% and 99.5% reductions in HC and CO emissions within 100 s from the onset of the cold start, compared with the original gasoline engine. At an excess air ratio of 1.37 and idle conditions, indicated thermal efficiency of the 3% hydrogen–blended gasoline engine was 46.3% higher than that of the original engine. Moreover, the engine cyclic variation was eased, combustion duration was shortened and HC, CO and NOx emissions were effectively reduced for the hybrid hydrogen–gasoline engines.

  2. Gasoline tax best path to reduced emissions

    International Nuclear Information System (INIS)

    Brinner, R.E.

    1991-01-01

    Lowering gasoline consumption is the quickest way to increase energy security and reduce emissions. Three policy initiatives designed to meet such goals are current contenders in Washington, DC: higher gasoline taxes; higher CAFE (Corporate Average Fuel Economy) standards; and an auto registration fee scheme with gas-guzzler taxes and gas-sipper subsidies. Any of these options will give us a more fuel-efficient auto fleet. The author feels, however, the gasoline tax holds several advantages: it is fair, flexible, smart, and honest. But he notes that he is proposing a substantial increase in the federal gasoline tax. Real commitment would translate into an additional 50 cents a gallon at the pump. While the concept of increasing taxes at the federal level is unpopular with voters and, thus, with elected officials, there are attractive ways to recycle the $50 billion in annual revenues that higher gas taxes would produce

  3. Combustion characteristics of a gasoline engine with independent intake port injection and direct injection systems for n-butanol and gasoline

    International Nuclear Information System (INIS)

    He, Bang-Quan; Chen, Xu; Lin, Chang-Lin; Zhao, Hua

    2016-01-01

    Highlights: • Different injection approaches for n-butanol and gasoline affect combustion events. • High n-butanol percentage in the total energy of fuels improves combustion stability. • N-butanol promotes ignition and shortens combustion duration. • Lean burn increases indicated mean effective pressure at fixed total energy of fuels. • Different fuel injection methods slightly affect indicated mean effective pressure. - Abstract: N-butanol, as a sustainable biofuel, is usually used as a blend with gasoline in spark ignition engines. In this study, the combustion characteristics were investigated on a four-cylinder spark ignition gasoline engine with independent port fuel injection and direct injection systems for n-butanol and gasoline in different operating conditions. The results show that in the case of port fuel injection of n-butanol with direct injection gasoline at a given total energy released in a cycle, indicated mean effective pressure is slightly affected by spark timing at stoichiometry while it changes much more with delayed spark timing in lean burn conditions and is much higher in lean burn conditions compared to stoichiometry at given spark timings. With the increase of n-butanol percentage in a fixed total energy released in a cycle at given spark timings, ignition timing advances, combustion duration shortens, indicated mean effective pressure and indicated thermal efficiency increase. For the cases of port fuel injection of n-butanol with direction injection gasoline and port fuel injection of gasoline with direction injection n-butanol at a fixed total energy released in a cycle, their indicated mean effective pressures are close. But their combustion processes are dependent on fuel injection approaches.

  4. Vapor recovery system in the gasolines commercialization; Sistema de recuperacion de vapores en la comercializacion de las gasolinas

    Energy Technology Data Exchange (ETDEWEB)

    Casas Barba, R.; Molina Gallegos, J.R. [Instituto Mexicano del Petroleo (IMP), Mexico, D. F. (Mexico)

    1995-12-31

    In the last years the studies performed with respect to the environmental pollution show that the ozone is one of the most problematic contaminants in the Metropolitan Zone of Mexico City (MZMC) and that the hydrocarbons are the main forerunners of it. The main source of hydrocarbon vapor emissions originates from the handling and distribution operations. In this paper a description is made of the involved stages in the commercialization of gasolines in the MZMC and a description is also made of the systems employed to control the emissions in the three stages of the fuels storage and distribution cycle and explains the degree the hydrocarbon emissions to the atmosphere will be reduced, once the recovery systems are installed in all of the involved stages. [Espanol] En los ultimos anos los estudios realizados con respecto a contaminacion ambiental reflejan que el ozono es uno de los contaminantes mas problematicos de la zona metropolitana de la ciudad de Mexico (ZMCM), y los hidrocarburos son los principales precursores de este. La principal fuente de emision de vapores de hidrocarburos proviene de las operaciones de manejo y distribucion de combustibles. En este articulo se hace una descripcion de las etapas involucradas en la comercializacion de las gasolinas en la ZMCM, se describen tambien los sistemas utilizados para controlar las emisiones en las tres etapas del ciclo de almacenamiento y distribucion de combustibles y se explica en que grado se reduciran las emisiones de hidrocarburos a la atmosfera, una vez que se instalen los sistemas de recuperacion en todas las etapas involucradas.

  5. Vapor recovery system in the gasolines commercialization; Sistema de recuperacion de vapores en la comercializacion de las gasolinas

    Energy Technology Data Exchange (ETDEWEB)

    Casas Barba, R; Molina Gallegos, J R [Instituto Mexicano del Petroleo (IMP), Mexico, D. F. (Mexico)

    1996-12-31

    In the last years the studies performed with respect to the environmental pollution show that the ozone is one of the most problematic contaminants in the Metropolitan Zone of Mexico City (MZMC) and that the hydrocarbons are the main forerunners of it. The main source of hydrocarbon vapor emissions originates from the handling and distribution operations. In this paper a description is made of the involved stages in the commercialization of gasolines in the MZMC and a description is also made of the systems employed to control the emissions in the three stages of the fuels storage and distribution cycle and explains the degree the hydrocarbon emissions to the atmosphere will be reduced, once the recovery systems are installed in all of the involved stages. [Espanol] En los ultimos anos los estudios realizados con respecto a contaminacion ambiental reflejan que el ozono es uno de los contaminantes mas problematicos de la zona metropolitana de la ciudad de Mexico (ZMCM), y los hidrocarburos son los principales precursores de este. La principal fuente de emision de vapores de hidrocarburos proviene de las operaciones de manejo y distribucion de combustibles. En este articulo se hace una descripcion de las etapas involucradas en la comercializacion de las gasolinas en la ZMCM, se describen tambien los sistemas utilizados para controlar las emisiones en las tres etapas del ciclo de almacenamiento y distribucion de combustibles y se explica en que grado se reduciran las emisiones de hidrocarburos a la atmosfera, una vez que se instalen los sistemas de recuperacion en todas las etapas involucradas.

  6. 40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine dynamometer... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.340-79 Gasoline-fueled engine dynamometer test run. (a) This section applies to gasoline...

  7. Stream remediation following a gasoline spill

    International Nuclear Information System (INIS)

    Owens, E.H.; Reiter, G.A.; Challenger, G.

    2000-01-01

    On June 10, 1999, a pipe ruptured on the Olympic Pipe Line causing the release, explosion and fire of up to one million litres of gasoline in Bellingham, Washington. It affected approximately 5 km of the Whatcom Creek ecosystem. Following the incident, several concurrent activities in the source area and downstream occurred. This paper discussed the remediation of the affected stream bed sections. During the period July 6 - August 16, an interagency project was implemented. It involved mechanical, manual, and hydraulic in-situ treatment techniques to remove the gasoline from the stream bed and the banks. In addition, a series of controlled, hydraulic flushes were conducted. The sluice or control gates at the head of the Whatcom Creek were opened each night, and bigger flushes took place before and after the treatments. Simultaneously, water and sediment were sampled and analysed. The data obtained provided information on the state of the initial stream water and stream sediment and on the effects that the remediation had had. The residual gasoline was successfully removed from the sediments and river banks in six weeks. No downstream movement of the released gasoline towards Bellingham was detected. 3 refs., 2 tabs., 11 figs

  8. Health assessment of gasoline and fuel oxygenate vapors: Neurotoxicity evaluation

    OpenAIRE

    O?Callaghan, James P.; Daughtrey, Wayne C.; Clark, Charles R.; Schreiner, Ceinwen A.; White, Russell

    2014-01-01

    Sprague?Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential neurotoxicity of evaporative emissions. Test articles included vapor condensates prepared from ?baseline gasoline? (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrati...

  9. Do Daily Retail Gasoline Prices adjust Asymmetrically?

    NARCIS (Netherlands)

    L.J.H. Bettendorf (Leon); S.A. van der Geest (Stéphanie); G. Kuper

    2005-01-01

    textabstractThis paper analyzes adjustments in the Dutch retail gasoline prices. We estimate an error correction model on changes in the daily retail price for gasoline (taxes excluded) for the period 1996-2004 taking care of volatility clustering by estimating an EGARCH model. It turns out the

  10. Understanding retail gasoline pricing : An empirical approach

    NARCIS (Netherlands)

    Bruzikas, Tadas

    2017-01-01

    Retail gasoline markets offer an abundance of price data at the daily and, more recently, hourly level. Firms in this industry use sophisticated price strategies. Moreover, there have been a number of important recent market developments. All this makes retail gasoline a promising industry to study

  11. The Impact of Ethanol Blending on U.S. Gasoline Prices

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the United States today and the potential impact of ethanol on gasoline prices at higher blending concentrations (10%, 15% and 20% of the total U.S. gasoline consumption).

  12. Economic and environmental benefits of higher-octane gasoline.

    Science.gov (United States)

    Speth, Raymond L; Chow, Eric W; Malina, Robert; Barrett, Steven R H; Heywood, John B; Green, William H

    2014-06-17

    We quantify the economic and environmental benefits of designing U.S. light-duty vehicles (LDVs) to attain higher fuel economy by utilizing higher octane (98 RON) gasoline. We use engine simulations, a review of experimental data, and drive cycle simulations to estimate the reduction in fuel consumption associated with using higher-RON gasoline in individual vehicles. Lifecycle CO2 emissions and economic impacts for the U.S. LDV fleet are estimated based on a linear-programming refinery model, a historically calibrated fleet model, and a well-to-wheels emissions analysis. We find that greater use of high-RON gasoline in appropriately tuned vehicles could reduce annual gasoline consumption in the U.S. by 3.0-4.4%. Accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19-35 Mt/y in 2040 (2.5-4.7% of total direct LDV CO2 emissions). For the strategies studied, the annual direct economic benefit is estimated to be $0.4-6.4 billion in 2040, and the annual net societal benefit including the social cost of carbon is estimated to be $1.7-8.8 billion in 2040. Adoption of a RON standard in the U.S. in place of the current antiknock index (AKI) may enable refineries to produce larger quantities of high-RON gasoline.

  13. Flow of gasoline-in-water microemulsion through water-saturated soil columns

    International Nuclear Information System (INIS)

    Ouyang, Y.; Mansell, R.S.; Rhue, R.D.

    1995-01-01

    Much consideration has been given to the use of surfactants to clean up nonaqueous phase liquids (NAPLs) from contaminated soil and ground water. Although this emulsification technique has shown significant potential for application in environmental remediation practices, a major obstacle leading to low washing efficiency is the potential formation of macroemulsion with unfavorable flow characteristics in porous media. This study investigated influences of the flow of leaded-gasoline-in-water (LG/W) microemulsion upon the transport of gasoline and lead (Pb) species in water-saturated soil columns. Two experiments were performed: (1) the immiscible displacement of leaded gasoline and (2) the miscible displacement of LG/W microemulsion through soil columns, followed by sequentially flushing with NaCl solution and a water/surfactant/cosurfactant (W/S/CoS) mixture. Comparison of breakthrough curves (BTC) for gasoline between the two experiments shows that about 90% of gasoline and total Pb were removed from the soil columns by NaCl solution in the LG/W microemulsion experiment as compared to 40% removal of gasoline and 10% removal of total Pb at the same process in the leaded gasoline experiment. Results indicate that gasoline and Pb species moved much more effectively through soil during miscible flow of LG/W microemulsion than during immiscible flow of leaded gasoline. In contrast to the adverse effects of macroemulsion on the transport of NAPLs, microemulsion was found to enhance the transport of gasoline through water-saturated soil. Mass balance analysis shows that the W/S/CoS mixture had a high capacity for removing residual gasoline and Pb species from contaminated soil. Comparison of water-pressure differences across the soil columns for the two experiments indicates that pore clogging by gasoline droplets was greatly minimized in the LG/W microemulsion experiment

  14. Do daily retail gasoline prices adjust asymmetrically?

    NARCIS (Netherlands)

    Bettendorf, L.; van der Geest, S. A.; Kuper, G. H.

    2009-01-01

    This paper analyses adjustments in the Dutch retail gasoline prices. We estimate an error correction model on changes in the daily retail price for gasoline (taxes excluded) for the period 1996-2004, taking care of volatility clustering by estimating an EGARCH model. It turns out that the volatility

  15. Gasoline, Ethanol and Methanol (GEM) Ternary Blends utilization as an Alternative to Conventional Iraqi Gasoline to Suppress Emitted Sulfur and Lead Components to Environment

    OpenAIRE

    Miqdam Tariq Chaichan

    2016-01-01

    Iraqi conventional gasoline characterized by its low octane number not exceed 82 and high lead and sulfur content. In this paper tri-component or ternary, blends of gasoline, ethanol, and methanol presented as an alternative fuel for Iraqi conventional gasoline. The study conducted by using GEM blend that equals E85 blend in octane rating. The used GEM selected from Turner, 2010 collection. G37 E20 M43 (37% gasoline + 20% ethanol+ 43% methanol) was chosen as GEM in present study. This blend u...

  16. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    OpenAIRE

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-01-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as d...

  17. 40 CFR 80.78 - Controls and prohibitions on reformulated gasoline.

    Science.gov (United States)

    2010-07-01

    ... reformulated gasoline. 80.78 Section 80.78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.78 Controls and prohibitions on reformulated gasoline. (a) Prohibited activities. (1) No person may manufacture...

  18. Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends

    KAUST Repository

    Al-Khodaier, Mohannad

    2017-03-28

    Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes. The synergistic blending nature of DCPD was apparent and appeared to be greater than that of ethanol. The data presented suggests that DCPD has the potential to be a high octane blending component in gasoline; one which can substitute alkylates, isomerates, reformates, and oxygenates.

  19. Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends

    KAUST Repository

    Al-Khodaier, Mohannad; Bhavani Shankar, Vijai Shankar; Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Johansson, Bengt

    2017-01-01

    Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes. The synergistic blending nature of DCPD was apparent and appeared to be greater than that of ethanol. The data presented suggests that DCPD has the potential to be a high octane blending component in gasoline; one which can substitute alkylates, isomerates, reformates, and oxygenates.

  20. Used motor oil as a source of MTBE, TAME, and BTEX to ground water

    Science.gov (United States)

    Baker, R.J.; Best, E.W.; Baehr, A.L.

    2002-01-01

    Methyl tert-butyl ether (MTBE), the widely used gasoline oxygenate, has been identified as a common ground water contaminant, and BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) have long been associated with gasoline spills. Because not all instances of ground water contamination by MTBE and BTEX can be attributed to spills or leaking storage tanks, other potential sources need to be considered. In this study, used motor oil was investigated as a potential source of these contaminants. MTBE in oil was measured directly by methanol extraction and gas chromatography using a flame ionization detector (GC/FID). Water was equilibrated with oil samples and analyzed for MTBE, BTEX, and the oxygenate tert-amyl methyl ether (TAME) by purge-and-trap concentration followed by GC/FID analysis. Raoult's law was used to calculate oil-phase concentrations of MTBE, BTEX, and TAME from aqueous-phase concentrations. MTBE, TAME, and BTEX were not detected in any of five new motor oil samples, whereas these compounds were found at significant concentrations in all six samples of the used motor oil tested for MTBE and all four samples tested for TAME and BTEX. MTBE concentrations in used motor oil were on the order of 100 mg/L. TAME concentrations ranged from 2.2 to 87 mg/L. Concentrations of benzene were 29 to 66 mg/L, but those of other BTEX compounds were higher, typically 500 to 2000 mg/L.

  1. Closing the gasoline system

    International Nuclear Information System (INIS)

    Hutcheson, R.C.

    1992-01-01

    In this paper, a representative of the Oil Companies' European Organization for Environmental and Health Protection (CONCAWE), argues the advantages of closing the gasoline system. Because this decouples the product from the environment, health risks and environmental damage are reduced. It is also more effective than changing the composition of gasoline because it offers better cost effectiveness, energy efficiency and the minimization of carbon dioxide release into the environment. However it will take time and political will to change until all European vehicles are fitted with three way catalysts and carbon canisters: control systems to monitor such systems will also need to be set up. However CONCAWE still recommends its adoption. (UK)

  2. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad; Bakor, Radwan; AlRamadan, Abdullah; Almansour, Mohammed; Sim, Jaeheon; Ahmed, Ahfaz; Viollet, Yoann; Chang, Junseok

    2018-01-01

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  3. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad

    2018-04-03

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  4. Gasoline prices and traffic crashes in Alabama, 1999-2009.

    Science.gov (United States)

    Chi, Guangqing; McClure, Timothy E; Brown, David B

    2012-09-01

    The price of gasoline has been found to be negatively associated with traffic crashes in a limited number of studies. However, most of the studies have focused either on fatal crashes only or on all crashes but measured over a very short time period. In this study, we examine gasoline price effects on all traffic crashes by demographic groups in the state of Alabama from 1999 to 2009. Using negative binomial regression techniques to examine monthly data from 1999 to 2009 in the state of Alabama, we estimate the effects of changes in gasoline price on changes in automobile crashes. We also examine how these effects differ by age group (16-20, 21-25, 26-30, 31-64, and 65+), gender (male and female), and race/ethnicity (non-Hispanic white, non-Hispanic black, and Hispanic). The results show that gasoline prices have both short-term and long-term effects on reducing total traffic crashes and crashes of each age, gender, and race/ethnicity group (except Hispanic due to data limitations). The short-term and long-term effects are not statistically different for each individual demographic group. Gasoline prices have a stronger effect in reducing crashes involving drivers aged 16 to 20 than crashes involving drivers aged 31 to 64 and 65+ in the short term; the effects, however, are not statistically different across other demographic groups. Although gasoline price increases are not favored, our findings show that gasoline price increases (or decreases) are associated with reductions (or increases) in the incidence of traffic crashes. If gasoline prices had remained at the 1999 level of $1.41 from 1999 to 2009, applying the estimated elasticities would result in a predicted increase in total crashes of 169,492 (or 11.3%) from the actual number of crashes. If decision makers wish to reduce traffic crashes, increasing gasoline taxes is a possible option-however, doing so would increase travel costs and lead to equity concerns. These findings may help to shape transportation

  5. Environmental Statement for Proposed Continental Operations Range.

    Science.gov (United States)

    1974-12-17

    sq ft building. Commercial power will be used where available; otherwise gasoline or diesel powered motor-generator sets will be provided. The...80:620-630. Malar, T. and H. Kleerekoper, 1968. Observations on some effects of sound intensity on locomotor patterns of naive goldfish. Am. Zool., 8

  6. Long Term Processing Using Integrated Hydropyrolysis plus Hydroconversion (IH2) for the Production of Gasoline and Diesel from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Marker, Terry [Gas Technology Institute; Roberts, Michael [Gas Technology Institute; Linck, Martin [Gas Technology Institute; Felix, Larry [Gas Technology Institute; Ortiz-Toral, Pedro [Gas Technology Institute; Wangerow, Jim [Gas Technology Institute; McLeod, Celeste [CRI Catalyst; Del Paggio, Alan [CRI Catalyst; Gephart, John [Johnson Timber; Starr, Jack [Cargill; Hahn, John [Cargill

    2013-06-09

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of a new, economical, technology named integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The life cycle analysis (LCA) shows that the use of the IH2 process to convert wood to gasoline and diesel results in a greater than 90% reduction in greenhouse gas emission compared to that found with fossil derived fuels. The technoeconomic analysis showed the conversion of wood using the IH2 process can produce gasoline and diesel at less than $2.00/gallon. In this project, the previously reported semi-continuous small scale IH2 test results were confirmed in a continuous 50 kg/day pilot plant. The continuous IH2 pilot plant used in this project was operated round the clock for over 750 hours and showed good pilot plant operability while consistently producing 26-28 wt % yields of high quality gasoline and diesel product. The IH2 catalyst showed good stability, although more work on catalyst stability is recommended. Additional work is needed to commercialize the IH2 technology including running large particle size biomass, modeling the hydropyrolysis step, studying the effects of process variables and building and operating a 1-50 ton/day demonstration scale plant. The IH2 is a true game changing technology by utilizing U.S. domestic renewable biomass resources to create transportation fuels, sufficient in quantity and quality to substantially reduce our reliance on foreign crude oil. Thus, the IH2 technology offers a path to genuine energy independence for the U. S., along with the creation of a significant number of new U.S. jobs to plant, grow, harvest, and process biomass crops into fungible

  7. Gasoline risk management: a compendium of regulations, standards, and industry practices.

    Science.gov (United States)

    Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb

    2014-11-01

    This paper is part of a special series of publications regarding gasoline toxicology testing and gasoline risk management; this article covers regulations, standards, and industry practices concerning gasoline risk management. Gasoline is one of the highest volume liquid fuel products produced globally. In the U.S., gasoline production in 2013 was the highest on record (API, 2013). Regulations such as those pursuant to the Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) and many others provide the U.S. federal government with extensive authority to regulate gasoline composition, manufacture, storage, transportation and distribution practices, worker and consumer exposure, product labeling, and emissions from engines and other sources designed to operate on this fuel. The entire gasoline lifecycle-from manufacture, through distribution, to end-use-is subject to detailed, complex, and overlapping regulatory schemes intended to protect human health, welfare, and the environment. In addition to these legal requirements, industry has implemented a broad array of voluntary standards and best management practices to ensure that risks from gasoline manufacturing, distribution, and use are minimized. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. 40 CFR 80.27 - Controls and prohibitions on gasoline volatility.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Controls and prohibitions on gasoline... prohibitions on gasoline volatility. (a)(1) Prohibited activities in 1991. During the 1991 regulatory control... shall sell, offer for sale, dispense, supply, offer for supply, or transport gasoline whose Reid vapor...

  9. Permeation of gasoline, diesel, bioethanol (E85), and biodiesel (B20) fuels through six glove materials.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A

    2010-07-01

    Biofuels and conventional fuels differ in terms of their evaporation rates, permeation rates, and exhaust emissions, which can alter exposures of workers, especially those in the fuel refining and distribution industries. This study investigated the permeation of biofuels (bioethanol 85%, biodiesel 20%) and conventional petroleum fuels (gasoline and diesel) through gloves used in occupational settings (neoprene, nitrile, and Viton) and laboratories (latex, nitrile, and vinyl), as well as a standard reference material (neoprene sheet). Permeation rates and breakthrough times were measured using the American Society for Testing and Materials F739-99 protocol, and fuel and permeant compositions were measured by gas chromatography/mass spectrometry. In addition, we estimated exposures for three occupational scenarios and recommend chemical protective clothing suitable for use with motor fuels. Permeation rates and breakthrough times depended on the fuel-glove combination. Gasoline had the highest permeation rate among the four fuels. Bioethanol (85%) had breakthrough times that were two to three times longer than gasoline through neoprene, nitrile Sol-Vex, and the standard reference materials. Breakthrough times for biodiesel (20%) were slightly shorter than for diesel for the latex, vinyl, nitrile examination, and the standard neoprene materials. The composition of permeants differed from neat fuels, e.g., permeants were significantly enriched in the lighter aromatics including benzene. Viton was the best choice among the tested materials for the four fuels tested. Among the scenarios, fuel truck drivers had the highest uptake via inhalation based on the personal measurements available in the literature, and gasoline station attendants had highest uptake via dermal exposure if gloves were not worn. Appropriate selection and use of gloves can protect workers from dermal exposures; however, current recommendations from the National Institute for Occupational Safety and

  10. Quantifying the emissions reduction effectiveness and costs of oxygenated gasoline

    International Nuclear Information System (INIS)

    Lyons, C.E.

    1993-01-01

    During the fall, winter, and spring of 1991-1992, a measurement program was conducted in Denver, Colorado to quantify the technical and economic effectiveness of oxygenated gasoline in reducing automobile carbon monoxide (CO) emissions. Emissions from 80,000 vehicles under a variety of operating conditions were measured before, during, and after the seasonal introduction of oxygenated gasoline into the region. Gasoline samples were taken from several hundred vehicles to confirm the actual oxygen content of the fuel in use. Vehicle operating conditions, such as cold starts and warm operations, and ambient conditions were characterized. The variations in emissions attributable to fuel type and to operating conditions were then quantified. This paper describes the measurement program and its results. The 1991-1992 Colorado oxygenated gasoline program contributed to a reduction in carbon monoxide (CO) emissions from gasoline-powered vehicles. The measurement program demonstrated that most of the reduction is concentrated in a small percentage of the vehicles that use oxygenated gasoline. The remainder experience little or not reduction in emissions. The oxygenated gasoline program outlays are approximately $25 to $30 million per year in Colorado. These are directly measurable costs, incurred through increased government expenditures, higher costs to private industry, and losses in fuel economy. The measurement program determined the total costs of oxygenated gasoline as an air pollution control strategy for the region. Costs measured included government administration and enforcement, industry production and distribution, and consumer and other user costs. This paper describes the ability of the oxygenated gasoline program to reduce pollution; the overall cost of the program to government, industry, and consumers; and the effectiveness of the program in reducing pollution compared to its costs

  11. Gasoline prices and the public interest

    International Nuclear Information System (INIS)

    1997-12-01

    The concerns that have been raised about gasoline prices in Newfoundland were addressed and the reasons why they differ significantly from one part of Newfoundland to another were examined. A research and investigation program was established to identify the factors contributing to the price of, and price variation in gasoline sold in the province. Companies directly involved in the gasoline retail business in the province were invited to answer an extensive questionnaire which asked detailed, confidential information concerning the company's operations. This report contains the results of the analysis of the responses, and provides a comprehensive picture of the operation of the petroleum industry. It also contains a series of recommendations for the government with respect to monitoring price fluctuations, gathering data about the industry, and constructing an independently owned and operated terminal storage facility. The report recommends against direct regulation. tabs., figs

  12. Gasoline Biodesulfurization DE-FC07-97ID13570 FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Pienkos, Philip T.

    2002-01-15

    Nine strains were identified to grow with gasoline as sole sulfur source. Two different genes were cloned from Gordonia terrae KGB1 and tested for the ability to support gasoline BDS. The first of these, fmoA, was cloned by screening a KGB1 gene library for the ability to convert indole to indigo (a sulfur-regulated capability in KGB1). The fmoA gene was overexpressed in a gasoline tolerant strain of Pseudomonas putida PpG1 and the recombinant strain was shown to convert thiophene to a dimer of thiophene sulfoxide at rates nearly two orders of magnitude higher than KGB1 could catalyze the reaction. Despite this high activity the recombinant PpG1 was unable to demonstrate any activity against gasoline either in shake flask or in bench-scale gasoline BDS bioreactor. A second gene (toeA) was cloned from KGB1 and shown to support growth of Rhodococcus erythropolis JB55 on gasoline. The toeA gene was also identified in another gasoline strain T. wratislaviensis EMT4, and was identified as a homolog of dszA from R. erythropolis IGTS8. Expression of this gene in JB55 supported conversion of DBTO2 (the natural substrate for DszA) to HPBS, but activity against gasoline was low and BDS results were inconsistent. It appeared that activity was directed against C2- and C3-thiophenes. Efforts to increase gene expression by plasmid manipulation, by addition of flavin reductase genes, or by expression in PpG1 were unsuccessful. The DszC protein (DBT monooxygenase) from IGTS8 has very little activity against the sulfur compounds in gasoline, but a mutant enzyme with a substitution of phenylalanine for valine at position 261 was shown to have an altered substrate range. This alteration resulted in increased activity against gasoline, with activity towards mainly C3- and C4-thiophenes and benzothiophene. A mutant library of dszB was constructed by RACHITT (W. C. Coco et al., DNA shuffling method for generating highly recombined genes and evolved enzymes. 2001. Nature Biotech. 19

  13. Reporting a sudden death due to accidental gasoline inhalation.

    Science.gov (United States)

    Martínez, María Antonia; Ballesteros, Salomé; Alcaraz, Rafael

    2012-02-10

    The investigation of uncertain fatalities requires accurate determination of the cause of death, with assessment of all factors that may have contributed to it. Gasoline is a complex and highly variable mixture of aliphatic and aromatic hydrocarbons that can lead to cardiac arrhythmias due to sensitization of the myocardium to catecholamines or acts as a simple asphyxiant if the vapors displace sufficient oxygen from the breathing atmosphere. This work describes a sudden occupational fatality involving gasoline. The importance of this petroleum distillate detection and its quantitative toxicological significance is discussed using a validated analytical method. A 51 year-old Caucasian healthy man without significant medical history was supervising the repairs of the telephone lines in a manhole near to a gas station. He died suddenly after inhaling gasoline vapors from an accidental leak. Extensive blistering and peeling of skin were observed on the skin of the face, neck, anterior chest, upper and lower extremities, and back. The internal examination showed a strong odor of gasoline, specially detected in the respiratory tract. The toxicological screening and quantitation of gasoline was performed by means of gas chromatography with flame ionization detector and confirmation was performed using gas chromatography-mass spectrometry. Disposition of gasoline in different tissues was as follows: heart blood, 35.7 mg/L; urine, not detected; vitreous humor, 1.9 mg/L; liver, 194.7 mg/kg; lung, 147.6 mg/kg; and gastric content, 116,6 mg/L (2.7 mg total). Based upon the toxicological data along with the autopsy findings, the cause of death was determined to be gasoline poisoning and the manner of death was accidental. We would like to alert on the importance of testing for gasoline, and in general for volatile hydrocarbons, in work-related sudden deaths involving inhalation of hydrocarbon vapors and/or exhaust fumes. Copyright © 2011 Elsevier Ireland Ltd. All rights

  14. Comparisons of MOVES Light-duty Gasoline NOx Emission Rates with Real-world Measurements

    Science.gov (United States)

    Choi, D.; Sonntag, D.; Warila, J.

    2017-12-01

    Recent studies have shown differences between air quality model estimates and monitored values for nitrogen oxides. Several studies have suggested that the discrepancy between monitored and modeled values is due to an overestimation of NOx from mobile sources in EPA's emission inventory, particularly for light-duty gasoline vehicles. EPA's MOtor Vehicle Emission Simulator (MOVES) is an emission modeling system that estimates emissions for cars, trucks and other mobile sources at the national, county, and project level for criteria pollutants, greenhouse gases, and air toxics. Studies that directly measure vehicle emissions provide useful data for evaluating MOVES when the measurement conditions are properly accounted for in modeling. In this presentation, we show comparisons of MOVES2014 to thousands of real-world NOx emissions measurements from individual light-duty gasoline vehicles. The comparison studies include in-use vehicle emissions tests conducted on chassis dynamometer tests in support of Denver, Colorado's Vehicle Inspection & Maintenance Program and remote sensing data collected using road-side instruments in multiple locations and calendar years in the United States. In addition, we conduct comparisons of MOVES predictions to fleet-wide emissions measured from tunnels. We also present details on the methodology used to conduct the MOVES model runs in comparing to the independent data.

  15. Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Geisamanda Pedrini [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S. Vicente, 225, Gavea, 22453-900, Rio de Janeiro, RJ (Brazil); Calixto de Campos, Reinaldo [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S. Vicente, 225, Gavea, 22453-900, Rio de Janeiro, RJ (Brazil)]. E-mail: rccampos@rdc.puc-rio.br; Luna, Aderval Severino [Department of Analytical Chemistry, Rio de Janeiro State University, Rua S. Francisco Xavier, s/n, Maracana, 20550-900, Rio de Janeiro, RJ (Brazil)

    2005-06-30

    The determination of Hg in gasoline by cold vapor atomic absorption spectrometry, after direct aqueous NaBH{sub 4} reduction in a three-component (microemulsion) medium, was investigated. Microemulsions were prepared by mixing gasoline with propan-1-ol and 50% v / v HNO{sub 3} at a 20 : 15 : 1 volume ratio. A long-term homogeneous system was immediately formed this way. After reduction, the Hg vapor generated in a reaction flask was transported to an intermediate K{sub 2}Cr{sub 2}O{sub 7}/H{sub 2}SO{sub 4} trap solution in order to avoid poisoning of the Au-Pt trap by the gasoline vapors. A second reduction step was then conducted and the generated Hg vapor transported to the Au-Pt trap, followed by thermal release of Hg{sup 0} and atomic absorption measurement. Purified N{sub 2} was used as purge and transport gas. After multivariate optimization by central composite design calibration graphs showed coefficients of correlation of 0.9999 and a characteristic mass of 2 ng was obtained. Typical coefficients of variation of 5% and 6% were found for ten consecutive measurements at concentration levels of 1 and 8 {mu}g L{sup -1} of Hg{sup 2+}, respectively. The limit of detection was 0.10 {mu}g L{sup -1} (0.14 {mu}g kg{sup -1}) in the original sample. A total measurement cycle took 11 min, permitting duplicate analysis of 3 samples per hour. The results obtained with the proposed procedure in the analysis of commercial gasoline samples were in agreement with those obtained by a comparative procedure. Gasoline samples of the Rio de Janeiro city have shown Hg concentrations below 0.27 {mu}g L{sup -1}.

  16. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  17. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang; Wang, Libing; Badra, Jihad A.; Roberts, William L.; Fang, Tiegang

    2018-01-01

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  18. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang

    2018-03-20

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  19. Q-Sync Motors in Commercial Refrigeration. Preliminary Test Results and Projected Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Becker, Bryan R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    This report provides background information on various fractional-horsepower electric motor technologies, summarizes initial data from a DOE-sponsored Q-Sync motor demonstration project, and extrapolates that data to project the potential economic and environmental benefits resulting from upgrading the current installed base of 9–12 W evaporator fan motors to Q-Sync motors.

  20. Impact of reformulated gasoline on emissions from current and future vehicles

    International Nuclear Information System (INIS)

    Colucci, J.M.; Benson, J.D.

    1993-01-01

    Gasolines reformulated specifically for reducing vehicle emissions will result in the most significant changes in the U.S. refining industry since the advent of unleaded gasoline. This paper will review the results from the Auto/Oil Air Quality Improvement Research Program showing the beneficial effects on vehicle emissions of individually decreasing gasoline aromatic, olefin and sulfur contents, 90% distillation temperature, and Reid vapor pressure, and of adding oxygenates. The paper discusses the importance of reformulated gasolines for reducing emissions from existing vehicles by complying with requirements in the Clean Air Act and California's Low Emission Vehicle/Clean Fuels Program. It will show the importance of controlling Vehicle/Clean Fuels Program. It will show the importance of controlling specific aromatic and olefin compounds in gasoline, and it will discuss how automotive manufacturers will utilize reformulated gasolines to meet future stringent vehicle emission standards

  1. 46 CFR 25.01-3 - Incorporation by reference.

    Science.gov (United States)

    2010-10-01

    ....45-2 Standard A-16-97, Electric Navigation Lights, July 1997 25.10-3 National Fire Protection... Commercial Motor Craft, 1989 25.45-2 Society of Automotive Engineers (SAE) 400 Commonwealth Drive, Warrendale, PA 15096 SAE J-1928, Devices Providing Backfire Flame Control for Gasoline Engines in Marine...

  2. 16 CFR 1505.50 - Stalled motor testing.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Stalled motor testing. 1505.50 Section 1505... USE BY CHILDREN Policies and Interpretations § 1505.50 Stalled motor testing. (a) § 1505.6(e)(4)(ii) requires that a motor-operated toy be tested with the motor stalled if the construction of the toy is such...

  3. Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline

    International Nuclear Information System (INIS)

    Merola, Simona Silvia; Tornatore, Cinzia; Irimescu, Adrian; Marchitto, Luca; Valentino, Gerardo

    2016-01-01

    Given the instability in supply and finite nature of fossil fuels, alternative renewable energy sources are continuously investigated throughout the production–distribution-use chain. Within this context, the research presented in this work is focused on using butanol as gasoline replacement in a Direct Injection Spark Ignition engine. The impact of this fuel on the combustion processes was investigated using optical diagnostics and conventional methods in a transparent single cylinder engine. Three different load settings were investigated at fixed engine speed, with combined throttling and mixture strength control. The engine was operated in homogenous charge mode, with commercial gasoline and pure n-butanol fueling. High spatial and temporal resolution visualization was applied in the first phase of the combustion process in order to follow the early flame development for the two fuels. The optical data were completed with conventional measurements of thermodynamic data and pollutants emission at the exhaust. Improved performance was obtained in throttled stoichiometric mode when using the alternative fuel, while at wide open throttle, gasoline featured higher indicated mean effective pressure at both air–fuel ratio settings. These overall findings were correlated to flame characteristics; the alcohol was found to feature more distorted flame contour compared to gasoline, especially in lean conditions. Differences were reduced during throttled stoichiometric operation, confirming that mass transfer processes, along with fuel chemistry and physical properties, exert a significant influence on local phenomena during combustion. - Highlights: • Butanol can replace gasoline without performance penalties in throttled, stoichiometric operation. • Butanol induces higher flame contour distortion than gasoline, especially in lean case. • Fuel chemical–physical properties strongly influence local phenomena during combustion. • Butanol ensured lower smoke

  4. 78 FR 73589 - Energy Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric...

    Science.gov (United States)

    2013-12-06

    ... Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric Motors; Proposed... Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric Motors AGENCY... proposes energy conservation standards for a number of different groups of electric motors that DOE has not...

  5. Polycaprolactone-Polydiacetylene Electrospun Fibers for Colorimetric Detection of Fake Gasoline

    Directory of Open Access Journals (Sweden)

    Shamshad Ali

    2016-04-01

    Full Text Available PCDA (Pentacosadiynoic Acid monomers were successfully embedded in PCL (Poly ?-Caprolactone polymer matrix by electrospinning process for the first time. The resultant EFM (Electrospun Fibers Mat was photo-polymerized under 254 nm UV light that enables colorimetric detection of fake gasoline. Results revealed that the fake gasoline develops a red color mat within 5 sec. FE-SEM images showed that the fake gasoline treatment dissolved the PCL EFM that give access to interact with PDA polymer. The proposed litmus-type sensor based on PCL-PDA EFM is highly sensitive to fake gasoline and can be fabricated easily

  6. 40 CFR 80.240 - What are the small refiner gasoline sulfur standards?

    Science.gov (United States)

    2010-07-01

    ... volume of gasoline produced by a small refiner's refinery up to the lesser of: (i) 105% of the baseline gasoline volume as determined under § 80.250(a)(1); or (ii) The volume of gasoline produced at that... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the small refiner gasoline...

  7. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jo, Young Suk [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lewis, Raymond [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bromberg, Leslie [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-01-29

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.

  8. 75 FR 74044 - Agency Information Collection Activities; Proposed Collection; Comment Request; Gasoline Volatility

    Science.gov (United States)

    2010-11-30

    ...; Gasoline Volatility AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: In compliance... entities: Entities potentially affected by this action are those who produce or import gasoline containing... Additives: Gasoline Volatility, Reporting Requirements for Parties Which Produce of Import Gasoline...

  9. The economics of gasoline subsidy cost reduction policy: Case study of Indonesia

    Science.gov (United States)

    Akimaya, Muhammad I.

    A gasoline subsidy distorts the gasoline market with the resulting inefficiencies and takes substantial revenues that arguably could be spent elsewhere with a better impact on economic growth. Governments with such subsidies are aware of their cost yet face difficulties in removing the policy because of strong resistance from the public. This thesis discusses in three essays the problem faced by the government in removing the gasoline subsidy and provides an alternative policy in reducing the subsidy cost applied to the case of Indonesia. In the first essay, we examine the decision-making process from the government's perspective that has an objective of generating savings to fund other programs while maintaining political power, and the influence that the general population has over the decision. Despite the immense literature on political power, there has yet to be any research that mathematically models the decision-making process of a government with influences from the general population. Under the benchmark scenario, the equilibrium strategy is to keep the subsidy intact. However, the results are found to be very sensitive to the magnitude of the shift in political power as well as the preferences of both the government and the people. In the second essay, we estimate the cross-price elasticity of regular gasoline with respect to premium gasoline price. The importance of such knowledge is to accurately determine the impact of fuel pricing policy that tends to have different rates of tax or subsidy depending on the grade of gasoline. Using data on the Mexican gasoline market, regular gasoline demand is estimated with an Autoregressive Distributed Lag (ARDL) model. Endogeneity of the price and structural break are also investigated. The cross-price elasticities between regular and premium gasoline is found to be -0.895, which confirms high substitutability among gasoline with different grades. In the third essay, we look at the unique case of Indonesia that

  10. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel fuel are hereby individually designated: (1) Motor vehicle diesel fuel, grade 1-D; (2) Motor vehicle diesel...

  11. UV-visible digital imaging of split injection in a Gasoline Direct Injection engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia

    2015-01-01

    Full Text Available Ever tighter limits on pollutant emissions and the need to improve energy conversion efficiency have made the application of gasoline direct injection (GDI feasible for a much wider scale of spark ignition engines. Changing the way fuel is delivered to the engine has thus provided increased flexibility but also challenges, such as higher particulate emissions. Therefore, alternative injection control strategies need to be investigated in order to obtain optimum performance and reduced environmental impact. In this study, experiments were carried out on a single-cylinder GDI optical engine fuelled with commercial gasoline in lean-burn conditions. The single-cylinder was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio and wall guided fuel injection. Optical accessibility was ensured through a conventional elongated hollow Bowditch piston and an optical crown, accommodating a fused-silica window. Experimental tests were performed at fixed engine speed and injection pressure, whereas the injection timing and the number of injections were adjusted to investigate their influence on combustion and emissions. UV-visible digital imaging was applied in order to follow the combustion process, from ignition to the late combustion phase. All the optical data were correlated with thermodynamic analysis and measurements of exhaust emissions. Split injection strategies (i.e. two injections per cycle with respect to single injection increased combustion efficiency and stability thanks to an improvement of fuel air mixing. As a consequence, significant reduction in soot formation and exhaust emission with acceptable penalty in terms of HC and NOx were measured.

  12. Rising gasoline prices increase new motorcycle sales and fatalities.

    Science.gov (United States)

    Zhu, He; Wilson, Fernando A; Stimpson, Jim P; Hilsenrath, Peter E

    2015-12-01

    We examined whether sales of new motorcycles was a mechanism to explain the relationship between motorcycle fatalities and gasoline prices. The data came from the Motorcycle Industry Council, Energy Information Administration and Fatality Analysis Reporting System for 1984-2009. Autoregressive integrated moving average (ARIMA) regressions estimated the effect of inflation-adjusted gasoline price on motorcycle sales and logistic regressions estimated odds ratios (ORs) between new and old motorcycle fatalities when gasoline prices increase. New motorcycle sales were positively correlated with gasoline prices (r = 0.78) and new motorcycle fatalities (r = 0.92). ARIMA analysis estimated that a US$1 increase in gasoline prices would result in 295,000 new motorcycle sales and, consequently, 233 new motorcycle fatalities. Compared to crashes on older motorcycle models, those on new motorcycles were more likely to be young riders, occur in the afternoon, in clear weather, with a large engine displacement, and without alcohol involvement. Riders on new motorcycles were more likely to be in fatal crashes relative to older motorcycles (OR 1.14, 95 % confidence interval (CI) 1.02-1.28) when gasoline prices increase. Our findings suggest that, in response to increasing gasoline prices, people tend to purchase new motorcycles, and this is accompanied with significantly increased crash risk. There are several policy mechanisms that can be used to lower the risk of motorcycle crash injuries through the mechanism of gas prices and motorcycle sales such as raising awareness of motorcycling risks, enhancing licensing and testing requirements, limiting motorcycle power-to-weight ratios for inexperienced riders, and developing mandatory training programs for new riders.

  13. Electrokinetic enhanced bioventing of gasoline in clayey soil: A case history

    International Nuclear Information System (INIS)

    Loo, W.W.; Wang, I.S.; Fan, J.

    1994-01-01

    This paper presents a case history on the bioventing of gasoline in soil with electrokinetic enhancement. The gasoline in soil was related to a 10,000-gallon underground storage tank spill, San Diego, California. The gasoline soil plume covers an area of about 2,400 square feet and to a depth of about 30 feet. The upper 15 feet of the soil plume consists of highly conductive marine clay. The lower 15 feet of the soil plume consists of dense cemented conglomerate sandstone. The gasoline concentration in the soil plume range from 100 to 2,200 mg/Kg(ppm) and the target cleanup level is below 100 ppm. Total gasoline in soil plume is estimated at about 1,000 pounds of gasoline in about 3,500 tons of soil. The soil remediation effort was completed after about 90 days of treatment. The concentration of gasoline in soil after treatment was way below the proposed cleanup level of less than 100 mg/Kg(ppm). The cost of treatment is about $50 per ton for this advanced soil treatment process which provides a cost effective solution to this soil plume with minimum disruption to business operation at the facility

  14. Impact of methanol and CNG fuels on motor-vehicle toxic emissions

    International Nuclear Information System (INIS)

    Black, F.; Gabele, P.

    1991-01-01

    The 1990 Clean Air Act Amendments require that the Environmental Protection Agency investigate the need for reduction of motor vehicle toxic emissions such as formaldehyde, acetaldehyde, benzene, 1,3-butadiene, and polycyclic organic matter. Toxic organic emissions can be reduced by utilizing the control technologies employed for regulated THC (NMHC) and CO emissions, and by changing fuel composition. The paper examines emissions associated with the use of methanol and compressed natural gas fuels. Both tailpipe and evaporative emissions are examined at varied ambient temperatures ranging from 20 C to 105 F. Tailpipe emissions are also examined over a variety of driving cycles with average speeds ranging from 7 to 48 mph. Results suggest that an equivalent ambient temperatures and average speeds, motor vehicle toxic emissions are generally reduced with methanol and compressed natural gas fuels relative to those with gasoline, except for formaldehyde emissions, which may be elevated. As with gasoline, tailpipe toxic emissions with methanol and compressed natural gas fuels generally increase when ambient temperature or average speed decreases (the sensitivity to these variables is greater with methanol than with compressed natural gas). Evaporative emissions generally increase when fuel volatility or ambient temperature increases (however, the relative contribution of evaporative sources to the aggregate toxic compound emissions is small)

  15. Atomization and spray characteristics of bioethanol and bioethanol blended gasoline fuel injected through a direct injection gasoline injector

    International Nuclear Information System (INIS)

    Park, Su Han; Kim, Hyung Jun; Suh, Hyun Kyu; Lee, Chang Sik

    2009-01-01

    The focus of this study was to investigate the spray characteristics and atomization performance of gasoline fuel (G100), bioethanol fuel (E100), and bioethanol blended gasoline fuel (E85) in a direct injection gasoline injector in a gasoline engine. The overall spray and atomization characteristics such as an axial spray tip penetration, spray width, and overall SMD were measured experimentally and predicted by using KIVA-3V code. The development process and the appearance timing of the vortices in the test fuels were very similar. In addition, the numerical results accurately described the experimentally observed spray development pattern and shape, the beginning position of the vortex, and the spray breakup on the spray surface. Moreover, the increased injection pressure induced the occurrence of a clear circular shape in the downstream spray and a uniform mixture between the injected spray droplets and ambient air. The axial spray tip penetrations of the test fuels were similar, while the spray width and spray cone angle of E100 were slightly larger than the other fuels. In terms of atomization performance, the E100 fuel among the tested fuels had the largest droplet size because E100 has a high kinematic viscosity and surface tension.

  16. Gasoline from natural gas by sulfur processing

    Energy Technology Data Exchange (ETDEWEB)

    Erekson, E.J.; Miao, F.Q. [Institute of Gas Technology, Des Plaines, IL (United States)

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  17. 40 CFR 63.650 - Gasoline loading rack provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Gasoline loading rack provisions. 63... loading rack provisions. (a) Except as provided in paragraphs (b) through (c) of this section, each owner or operator of a Group 1 gasoline loading rack classified under Standard Industrial Classification...

  18. 46 CFR 169.629 - Compartments containing gasoline machinery or fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing gasoline machinery or fuel tanks. 169.629 Section 169.629 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL... gasoline machinery or fuel tanks. Spaces containing gasoline machinery or fuel tanks must have natural...

  19. Misunderstood markets: The case of California gasoline

    Science.gov (United States)

    Thompson, Jennifer Ruth

    In 1996, the California Air Resources Board (CARB) implemented a new benchmark for cleaner burning gasoline that is unique to California. Since then, government officials have often expressed concern that the uniqueness of petroleum products in California segregates the industry, allowing for gasoline prices in the State that are too high and too volatile. The growing concern about the segmentation of the California markets lends itself to analysis of spatial pricing. Spatial price spreads of wholesale gasoline within the state exhibit some characteristics that seem, on the surface, inconsistent with spatial price theory. Particularly, some spatial price spreads of wholesale gasoline appear larger than accepted transportation rates and other spreads are negative, giving a price signal for transportation against the physical flow of product. Both characteristics suggest some limitation in the arbitrage process. Proprietary data, consisting of daily product prices for the years 2000 through 2002, disaggregated by company, product, grade, and location is used to examine more closely spatial price patterns. My discussion of institutional and physical infrastructure outlines two features of the industry that limit, but do not prohibit, arbitrage. First, a look into branding and wholesale contracting shows that contract terms, specifically branding agreements, reduces the price-responsiveness of would-be arbitrageurs. Second, review of maps and documents illustrating the layout of physical infrastructure, namely petroleum pipelines, confirms the existence of some connections among markets. My analysis of the day-of-the-week effects on wholesale prices demonstrates how the logistics of the use of transportation infrastructure affect market prices. Further examination of spatial price relationships shows that diesel prices follow closely the Augmented Law of One Price (ALOP), and that branding agreements cause gasoline prices to deviate substantially ALOP. Without branding

  20. Using stable isotope analysis to discriminate gasoline on the basis of its origin.

    Science.gov (United States)

    Heo, Su-Young; Shin, Woo-Jin; Lee, Sin-Woo; Bong, Yeon-Sik; Lee, Kwang-Sik

    2012-03-15

    Leakage of gasoline and diesel from underground tanks has led to a severe environmental problem in many countries. Tracing the production origin of gasoline and diesel is required to enable the development of dispute resolution and appropriate remediation strategies for the oil-contaminated sites. We investigated the bulk and compound-specific isotopic compositions of gasoline produced by four oil companies in South Korea: S-Oil, SK, GS and Hyundai. The relative abundance of several compounds in gasoline was determined by the peak height of the major ion (m/z 44). The δ(13)C(Bulk) and δD(Bulk) values of gasoline produced by S-Oil were significantly different from those of SK, GS and Hyundai. In particular, the compound-specific isotopic value (δ(13)C(CSIA)) of methyl tert-butyl ether (MTBE) in S-Oil gasoline was significantly lower than that of gasoline produced by other oil companies. The abundance of several compounds in gasoline, such as n-pentane, MTBE, n-hexane, toluene, ethylbenzene and o-xylene, differed widely among gasoline from different oil companies. This study shows that gasoline can be forensically discriminated according to the oil company responsible for its manufacture using stable isotope analysis combined with multivariate statistical analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Comparison Pore Aggregate Levels After Extraction With Solvents Pertamax Plus And Gasoline

    Science.gov (United States)

    Anggraini, Muthia

    2017-12-01

    Loss of asphalt content extraction results become problems in Field Work For implementing parties. The use of solvents with high octane (pertamax plus) for the extraction, dissolving the asphalt more than gasoline. By comparing the levels of aggregate pores after using solvent extraction pertamax plus compared to gasoline could answer that pertamax plus more solvent dissolves the bitumen compared to gasoline. This study aims to obtain comparative levels of porous aggregate mix AC-WC after using solvent extraction pertamax plus compared to gasoline. This study uses the aggregate that has been extracted from the production of asphalt mixtures, when finisher and after compaction field. The method used is the assay of coarse and fine aggregate pores, extraction of bitumen content to separate the aggregate with bitumen. Results of testing the total absorption after extraction using a solvent preta max plus in the production of asphalt mixtures 0.80%, while gasoline solvent 0.67% deviation occurs 0.13%. In the finisher after the solvent extraction preta max plus 0.77%, while 0.67% gasoline solvent occurs deviation of 0.1%. At the core after extraction and solvent pertamax plus 0.71%, while gasoline solvent 0.60% 0.11% deviation occurs. The total water absorption after extraction using a solvent pertamax plus greater than gasoline. This proves that the solvent dissolves pertamax plus more asphalt than gasoline.

  2. Experimental study on emissions and performance of an internal combustion engine fueled with gasoline and gasoline/n-butanol blends

    International Nuclear Information System (INIS)

    Elfasakhany, Ashraf

    2014-01-01

    Highlights: • Using of 3 and 7 vol.% n-butanol blends in SI engine is studied for the first time. • Engine performance and emissions depend on both engine speed and blend rates. • CO and UHC for blended fuels are maximum at 3000–3100 r/min. • The higher the rate of n-butanol, the lower the emissions and performance. • This study strongly supports using low blend rates of n-butanol (<10 vol.%) in ICE. - Abstract: In this paper, exhaust emissions and engine performance have been experimentally studied for neat gasoline and gasoline/n-butanol blends in a wide range of working speeds (2600–3400 r/min) without any tuning or modification on the gasoline engine systems. The experiment has the ability of evaluating performance and emission characteristics, such as break power, torque, in-cylinder pressure, volumetric efficiency, exhaust gas temperature and concentrations of CO 2 , CO and UHC. Results of the engine test indicated that using n-butanol–gasoline blended fuels slightly decrease the output torque, power, volumetric efficiency, exhaust gas temperature and in-cylinder pressure of the engine as a result of the leaning effect caused by the n-butanol addition; CO, CO 2 and UHC emissions decrease dramatically for blended fuels compared to neat gasoline because of the improved combustion since n-butanol has extra oxygen, which allows partial reduction of the CO and UHC through formation of CO 2 . It was also noted that the exhaust emissions depend on the engine speed rather than the n-butanol contents

  3. 40 CFR 52.255 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  4. Performance and emissions of gasoline blended with terpineol as an octane booster

    KAUST Repository

    Vallinayagam, R.

    2016-11-10

    This study investigates the effect of using terpineol as an octane booster for gasoline fuel. Unlike ethanol, terpineol is a high energy density biofuel that is unlikely to result in increased volumetric fuel consumption when used in engines. In this study, terpineol is added to non-oxygenated FACE F gasoline (Research Octane Number = 94.5) in volumetric proportions of 10%, 20% and 30% and tested in a single cylinder spark ignited engine. The performance of terpineol blended fuels are compared against a standard oxygenated EURO V (ethanol blended) gasoline. It was determined that the addition of terpineol to FACE F gasoline enhanced the octane number of the blend, resulting in improved brake thermal efficiency and total fuel consumption. For FACE F + 30% terpineol, break thermal efficiency was improved by 12.1% over FACE F gasoline at full load for maximum brake torque operating point, and similar performance as EURO V gasoline was achieved. Due to its high energy density, total fuel consumption was reduced by 6.2% and 9.7% with 30% terpineol in the blend when compared to FACE F gasoline at low and full load conditions, respectively. Gaseous emissions such as total hydrocarbon and carbon monoxide emission were reduced by 36.8% and 22.7% for FACE F + 30% terpineol compared to FACE F gasoline at full load condition. On the other hand, nitrogen oxide and soot emissions are increased for terpineol blended FACE F gasoline when compared to FACE F and EURO V gasoline. © 2016 Elsevier Ltd

  5. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers.

    Science.gov (United States)

    Shaikh, Amrin; Barot, Darshana; Chandel, Divya

    2018-04-01

    Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. The study groups included 70 petrol pump workers (exposed group) and 70 healthy age-matched individuals with no known exposure (comparison group). Buccal micronucleus cytome assay (BMCyt) was performed to check the genotoxicity caused due to inhalation of gasoline fumes. The frequencies of micronucleated cells, nuclear bud, condensed chromatin cells, karyorrhectic cells, pyknotic cells, and karyolytic cells were significantly higher in the exposed workers compared to the comparison group. Exposure to gasoline fumes is associated with increased frequency of cell abnormalities. This may lead to various health consequences including cancer in those occupationally exposed to gasoline fumes.

  6. Investigation of bifunctional ester additives for methanol-gasoline system

    International Nuclear Information System (INIS)

    Zhang, J.; Yang, C.; Tang, Y.; Du, Q.; Song, N.; Zhang, Z.

    2014-01-01

    To explore new and multifunctional additives for methanol-gasoline, tartaric ester were synthesized and screened as phase stabilizer and saturation vapor pressure depressor for methanol-gasoline. The effect of the esters structure on the efficiency was discussed. The results show that the stabilities of the blends depend on the length of the glycolic esters alkoxy group. In addition, the tartaric esters also can depress the saturation vapor pressure of methanol-gasoline effectively in M15. Effect of the structure on the efficiency was also discussed. (author)

  7. Gasoline Biodesulfurization DE-FC07-97ID13570 FINAL REPORT; FINAL

    International Nuclear Information System (INIS)

    Pienkos, Philip T.

    2002-01-01

    Nine strains were identified to grow with gasoline as sole sulfur source. Two different genes were cloned from Gordonia terrae KGB1 and tested for the ability to support gasoline BDS. The first of these, fmoA, was cloned by screening a KGB1 gene library for the ability to convert indole to indigo (a sulfur-regulated capability in KGB1). The fmoA gene was overexpressed in a gasoline tolerant strain of Pseudomonas putida PpG1 and the recombinant strain was shown to convert thiophene to a dimer of thiophene sulfoxide at rates nearly two orders of magnitude higher than KGB1 could catalyze the reaction. Despite this high activity the recombinant PpG1 was unable to demonstrate any activity against gasoline either in shake flask or in bench-scale gasoline BDS bioreactor. A second gene (toeA) was cloned from KGB1 and shown to support growth of Rhodococcus erythropolis JB55 on gasoline. The toeA gene was also identified in another gasoline strain T. wratislaviensis EMT4, and was identified as a homolog of dszA from R. erythropolis IGTS8. Expression of this gene in JB55 supported conversion of DBTO2 (the natural substrate for DszA) to HPBS, but activity against gasoline was low and BDS results were inconsistent. It appeared that activity was directed against C2- and C3-thiophenes. Efforts to increase gene expression by plasmid manipulation, by addition of flavin reductase genes, or by expression in PpG1 were unsuccessful. The DszC protein (DBT monooxygenase) from IGTS8 has very little activity against the sulfur compounds in gasoline, but a mutant enzyme with a substitution of phenylalanine for valine at position 261 was shown to have an altered substrate range. This alteration resulted in increased activity against gasoline, with activity towards mainly C3- and C4-thiophenes and benzothiophene. A mutant library of dszB was constructed by RACHITT (W. C. Coco et al., DNA shuffling method for generating highly recombined genes and evolved enzymes. 2001. Nature Biotech. 19

  8. Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine

    International Nuclear Information System (INIS)

    Wei, Haiqiao; Feng, Dengquan; Pan, Mingzhang; Pan, JiaYing; Rao, XiaoKang; Gao, Dongzhi

    2016-01-01

    Highlights: • N-butanol shows better knock resistance characterized by improved KLST. • Bu20 blend fuel slightly degrades the knock resistance compared with gasoline. • Knock oscillation frequency depends on combustion chamber resonance modes. • Probability distribution is applied to evaluate variation of knock intensity. - Abstract: n-Butanol is a very competitive alternative biofuel for spark ignition (SI) engines given its many advantages. Current researches are mainly concentrated on the overall combustion and emissions performance concerning the feasibility of n-butanol gasoline blends in SI engines. In this work, focus was given on the knocking combustion characteristics of operation with pure n-butanol as well as a blend fuel with 20% volume content of n-butanol (Bu20), which was investigated experimentally in a direct-injection spark ignition (DISI) single cylinder engine. Operation condition is fixed at a constant engine speed of 1500 r/min, using three throttle openings with stoichiometric air–fuel ratio. Spark timing was swept to achieve different knocking levels. The results of n-butanol and Bu20 were benchmarked against those obtained by the research octane number (RON) 92 commercial gasoline. Compared with the baseline fuel gasoline, neat n-butanol shows better anti-knock ability with more advanced knock limited spark timing, whereas slightly deteriorative knock resistance can be found for Bu20. It is hypothesized Bu20 has higher end gas temperature due to its higher brake mean effective pressure (BMEP) and faster burning rate compared with gasoline, which indicates the knock tendency depends not only on the fuel octane number, but also on the factors that affect the end gas thermodynamic state. The heavier knock propensity of Bu20 is furthermore confirmed by its more advanced knock onset and higher peak oscillation pressure. Results of fast fourier transform (FFT) indicate the knocking oscillation frequencies are mainly determined by the

  9. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats

    Science.gov (United States)

    2009-01-01

    Background This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. Results The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. Conclusion It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats. PMID:19930677

  10. Phasing out lead from gasoline in Pakistan: a benefit cost analysis

    International Nuclear Information System (INIS)

    Martin, R.P.; Zaman, Q.U.

    1999-01-01

    Medical research has established a clear link between elevated blood lead levels nd adverse health effects in humans including the retardation of neurological development, hypertension, and cardiovascular ailments. Due to this, a large number of countries now restrict the sale of leaded gasoline. In contrast, only highly leaded gasoline is readily available in Pakistan, resulting in serious health concerns in certain areas. This paper presents the findings of a study to evaluate consumers' perceived benefits and actual costs of switching to unleaded gasoline in Pakistan. Policy implications are noted. The study indicates a concentration of adverse health effects in the major urban centers. Of special interest is the loss of approximately 2,5000 IQ points annually in Karachi and Lahore as a result of gasoline linked lead exposure. Consumers' willingness to pay for the removal of lead from gasoline, as estimated using a contingent valuation technique, is shown to be positively related to both educational attainment and income. Once consumers are informed of the adverse health effects associated with lead exposure, their willingness to pay for a switch to unleaded gasoline for exceeds the costs incurred. This suggests that significant gains in social welfare may be obtained by phasing out lead from gasoline in Pakistan. The benefits are most pronounced in urban areas, while in rural villages and small cities the costs are likely to out weight the benefits. A flexible program to restrict the sale of leaded gasoline in urban areas is thus recommended. (author)

  11. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats.

    Science.gov (United States)

    Kinawy, Amal A

    2009-11-24

    This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats.

  12. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats

    Directory of Open Access Journals (Sweden)

    Kinawy Amal A

    2009-11-01

    Full Text Available Abstract Background This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel. The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD, acetylcholinesterase (AChE, total protein, reduced glutathione (GSH, and lipid peroxidation (TBARS in the cerebral cortex, and monoamine neurotransmitters dopamine (DA, norepinephrine (NE and serotonin (5-HT in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. Results The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. Conclusion It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats.

  13. Reformulated gasoline: Costs and refinery impacts

    International Nuclear Information System (INIS)

    Hadder, G.R.

    1994-02-01

    Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region

  14. Residential proximity to gasoline service stations and preterm birth.

    Science.gov (United States)

    Huppé, Vicky; Kestens, Yan; Auger, Nathalie; Daniel, Mark; Smargiassi, Audrey

    2013-10-01

    Preterm birth (PTB) is a growing public health problem potentially associated with ambient air pollution. Gasoline service stations can emit atmospheric pollutants, including volatile organic compounds potentially implicated in PTB. The objective of this study was to evaluate the relationship between residential proximity to gasoline service stations and PTB. Singleton live births on the Island of Montreal from 1994 to 2006 were obtained (n=267,478). Gasoline service station locations, presence of heavy-traffic roads, and neighborhood socioeconomic status (SES) were determined using a geographic information system. Multivariable logistic regression was used to analyze the association between PTB and residential proximity to gasoline service stations (50, 100, 150, 200, 250, and 500 m), accounting for maternal covariates, neighborhood SES, and heavy-traffic roads. For all distance categories beyond 50 m, presence of service stations was associated with a greater odds of PTB. Associations were robust to adjustment for maternal covariates for distance categories of 150 and 200 m but were nullified when adjusting for neighborhood SES. In analyses accounting for the number of service stations, the likelihood of PTB within 250 m was statistically significant in unadjusted models. Associations were, however, nullified in models accounting for maternal covariates or neighborhood SES. Our results suggest that there is no clear association between residential proximity to gasoline service stations in Montreal and PTB. Given the correlation between proximity of gasoline service stations and SES, it is difficult to delineate the role of these factors in PTB.

  15. Gasoline on hands: preliminary study on collection and persistence.

    Science.gov (United States)

    Darrer, Melinda; Jacquemet-Papilloud, Joëlle; Delémont, Olivier

    2008-03-05

    The identification of an arsonist remains one of the most difficult challenges a fire investigation has to face. Seeking and detection of traces of gasoline could provide a valuable information to link a suspect with an arson scene where gasoline was used to set-up the fire. In this perspective, a first study was undertaken to evaluate a simple, fast and efficient method for collecting gasoline from hands, and to assess its persistence over time. Four collection means were tested: PVC, PE and Latex gloves, as well as humidified filter paper. A statistical assessment of the results indicates that Latex and PVC gloves worn for about 20 min, as well as paper filter rubbed on hands, allow an efficient collection of gasoline applied to hands. Due to ease of manipulation and to a reduced amount of volatile compounds detected from the matrix, PVC gloves were selected for the second set of experiments. The evaluation of the persistence of gasoline on hands was then carried out using two initial quantities (500 and 1000 microl). Collection was made with PVC gloves after 0, 30 min, 1, 2 and 4h, on different volunteers. The results show a common tendency of massive evaporation of gasoline during the first 30 min: a continued but non-linear decrease was observed along different time intervals. The results of this preliminary study are in agreement with other previous researches conducted on the detection of flammable liquid residues on clothes, shoes and skin.

  16. 78 FR 20102 - Proposed Information Collection Request; Comment Request; Reformulated Gasoline Commingling...

    Science.gov (United States)

    2013-04-03

    ... Request; Comment Request; Reformulated Gasoline Commingling Provisions AGENCY: Environmental Protection... information collection request (ICR), ``Reformulated Gasoline Commingling Provisions'' (EPA ICR No.2228.04.... Abstract: EPA would like to continue collecting notifications from gasoline retailers and wholesale...

  17. Glutathione S-Transferase Gene Polymorphisms: Modulator of Genetic Damage in Gasoline Pump Workers.

    Science.gov (United States)

    Priya, Kanu; Yadav, Anita; Kumar, Neeraj; Gulati, Sachin; Aggarwal, Neeraj; Gupta, Ranjan

    2015-01-01

    This study investigated genetic damage in gasoline pump workers using the cytokinesis blocked micronucleus (CBMN) assay. Blood and urine samples were collected from 50 gasoline pump workers and 50 control participants matched with respect to age and other confounding factors except for exposure to benzene through gasoline vapors. To determine the benzene exposure, phenol was analyzed in urinary samples of exposed and control participants. Urinary mean phenol level was found to be significantly high (P gasoline pump workers (6.70 ± 1.78) when compared to control individuals (2.20 ± 0.63; P gasoline vapors can increase genotoxic risk in gasoline pump workers. © The Author(s) 2015.

  18. F1 style MGU-H applied to the turbocharger of a gasoline hybrid electric passenger car

    Science.gov (United States)

    Boretti, Albert

    2017-12-01

    We consider a turbocharged gasoline direct injection (DI) engine featuring a motor-generator-unit (MGU-H) fitted on the turbocharger shaft. The MGU-H receives or delivers energy to the same energy storage (ES) of the hybrid power unit that comprises a motor-generator unit on the driveline (MGU-K) in addition to the internal combustion engine (ICE). The energy supply from the ES is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, it also improves the ratio of engine crankshaft power to fuel flow power, as well as the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power. The energy supply to the ES is possible at high speeds and loads, where otherwise the turbine could have been waste gated, and during decelerations. This improves the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power.

  19. Gasoline-related injuries and fatalities in the United States, 1995-2014.

    Science.gov (United States)

    Drago, Dorothy A

    2018-02-12

    This descriptive study examines twenty years of gasoline-related fatalities and emergency department treated injuries in the United States, based on data from the US Consumer Product Safety Commission. Thermal burns consistently accounted for the majority (56%) of gasoline-related injuries and for most (82%) gasoline-related deaths, and were commonly (57-71%) associated with the use of gasoline as an accelerant. Poisoning accounted for 13% of injuries and 17% of deaths. The primary poisoning injury pattern was ingestion; the primary fatality pattern was inhalation, with about half of those associated with deliberate abuse. The estimated number of ingestions decreased from 60 to 23% of poisoning-related injuries, while injuries associated with inhalation abuse increased from 6 to 23%. Chemical burns and dermatitis were less represented in the injury data and were primarily associated with gasoline spills or splashes. Gasoline cans reportedly ignited or exploded in about 5% of thermal burn injuries and fatalities. While mandatory requirements for child resistant closures on gasoline cans (a primary intervention) have potentially impacted poisonings, the use of flame mitigation devices to address thermal injuries, if successful, would be a secondary intervention, and could address only a small percentage (about 5%) of injuries and deaths.

  20. Zinc-aluminates for an in situ sulfur reduction in cracked gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Quintana-Solorzano, R.; Valente, J.S.; Hernandez-Beltran, F.J.; Castillo-Araiza, C.O. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152 C.P., 07730 Mexico, D.F. (Mexico)

    2008-05-30

    Using additives remains as an attractive alternative for an in situ sulfur reduction in cracked gasoline since it is a practical, flexible and economical option. Zinc-aluminates prepared by the sol-gel method are used as additives for reducing sulfur in gasoline from the cracking of a high-sulfur feed in a fixed-bed bench reactor. Products distribution and feed conversion are not dramatically altered after incorporating the additive to the base catalyst with some effect on gasoline and its octane number and coke. A decrease in the gasoline sulfur content of up to 35 wt% including benzothiophene, and up to 50% excluding benzothiophene, is observed when blending the zinc-aluminates to the base catalyst, which is caused by lowering the C{sub 1} to C{sub 4} alkyl-thiophenes content. The zinc content of the zinc-aluminates has a positive effect on the gasoline sulfur reduction. It is suggested that together with the direct cracking of adsorbed thiophenic species on the additive, a further gasoline sulfur decrease is possible through cracking of saturated thiophenic species formed by hydrogenation of adsorbed thiophenic species with hydrogen produced in situ in the additive. The obtained results also demonstrate that solids with higher Lewis acidity are not unfailingly the most effective for gasoline sulfur reduction. (author)

  1. Lifecycle optimized ethanol-gasoline blends for turbocharged engines

    KAUST Repository

    Zhang, Bo

    2016-08-16

    This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission of ethanol blended gasoline mixtures in future engines. The optimal fuel blend (lowest CO2 emitting fuel) is identified. A range of gasoline fuels is studied, containing different ethanol volume percentages (E0–E40), research octane numbers (RON, 92–105), and octane sensitivities (8.5–15.5). Sugarcane-based and cellulosic ethanol-blended gasolines are shown to be effective in reducing lifecycle CO2 emission, while corn-based ethanol is not as effective. A refinery simulation of production emission was utilized, and combined with vehicle fuel consumption modeling to determine the lifecycle CO2 emissions associated with ethanol-blended gasoline in turbocharged engines. The critical parameters studied, and related to blended fuel lifecycle CO2 emissions, are ethanol content, research octane number, and octane sensitivity. The lowest-emitting blended fuel had an ethanol content of 32 vol%, RON of 105, and octane sensitivity of 15.5; resulting in a CO2 reduction of 7.1%, compared to the reference gasoline fuel and engine technology. The advantage of ethanol addition is greatest on a per unit basis at low concentrations. Finally, this study shows that engine-downsizing technology can yield an additional CO2 reduction of up to 25.5% in a two-stage downsized turbocharged engine burning the optimum sugarcane-based fuel blend. The social cost savings in the USA, from the CO2 reduction, is estimated to be as much as $187 billion/year. © 2016 Elsevier Ltd

  2. Development of fuel economy 5W-20 gasoline engine oil; Teinenpi 5W-20 gasoline engine yu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, K; Ueda, F; Kurono, K; Kawai, H; Sugiyama, S [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    A 5W-20 gasoline engine oil which improves vehicle fuel efficiency by more than 1.5% relative to a conventional 5W-30 gasoline engine oil was newly developed. Its high fuel economy performance lasts 10,000 km. The viscosity was optimized to satisfy both fuel economy and antiwear performances. Thiadiazole was used to retain the initial fuel economy performance provided by MoDTC. 5 refs., 7 figs., 2 tabs.

  3. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers

    Directory of Open Access Journals (Sweden)

    Amrin Shaikh

    2018-04-01

    Full Text Available Background: Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. Objective: To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. Methods: The study groups included 70 petrol pump workers (exposed group and 70 healthy age-matched individuals with no known exposure (comparison group. Buccal micronucleus cytome assay (BMCyt was performed to check the genotoxicity caused due to inhalation of gasoline fumes. Results: The frequencies of micronucleated cells, nuclear bud, condensed chromatin cells, karyorrhectic cells, pyknotic cells, and karyolytic cells were significantly higher in the exposed workers compared to the comparison group. Conclusion: Exposure to gasoline fumes is associated with increased frequency of cell abnormalities. This may lead to various health consequences including cancer in those occupationally exposed to gasoline fumes.

  4. 40 CFR Appendix B to Part 80 - Test Methods for Lead in Gasoline

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Test Methods for Lead in Gasoline B... in Gasoline Method 1—Standard Method Test for Lead in Gasoline by Atomic Absorption Spectrometry 1. Scope. 1.1. This method covers the determination of the total lead content of gasoline. The procedure's...

  5. Proposed standby gasoline rationing plan: public comments

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Under the proposed plan, DOE would allocate ration rights (rights to purchase gasoline) to owners of registered vehicles. All vehicles in a given class would receive the same entitlement. Essential services would receive supplemental allotments of ration rights as pririty firms. Once every 3 months, ration checks would be mailed out to all vehicle registrants, allotting them a certain amount of ration rights. These checks would then be cashed at Coupon Issuance Points, where the bearer would receive ration coupons to be used at gasoline stations. Large users of gasoline could deposit their allotment checks in accounts at ration banks. Coupons or checks would be freely exchangeable in a white market. A certain percentage of the gasoline supply would be set aside in reserve for use in national emergencies. When the plan was published in the Federal Register, public comments were requested. DOE also solicited comments from private citizens, public interest groups, business and industry, state and local governments. A total of 1126 responses were reveived and these are analyzed in this paper. The second part of the report describes how the comments were classified, and gives a statistical breakdown of the major responses. The last section is a discussion and analysis of theissue raised by commenting agencies, firms, associations, and individuals. (MCW)

  6. Utilization of Renewable Oxygenates as Gasoline Blending Components

    Energy Technology Data Exchange (ETDEWEB)

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  7. Pemanfaatan Biogas Sebagai Bahan Bakar Generator Set Motor Bensin

    OpenAIRE

    Kusairi S., Ach; Yangsen, Kelvin

    2015-01-01

    Biogas is a compound formed from the decomposition of organic substances in anaerobic condition, the main constituent of biogas is methane and carbon dioxide, biogas can be used as fuel or otto cycle engine with diesel. In this study, the use of biogas from the landfill Cahaya Kencana then to gasoline motor generator sets using this type with a capacity 1kVA four steps that have been previously modified in order to be able to use biogas, but no purification process before being used as fuel. ...

  8. 10 CFR 431.383 - Enforcement process for electric motors.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Enforcement process for electric motors. 431.383 Section... COMMERCIAL AND INDUSTRIAL EQUIPMENT Enforcement § 431.383 Enforcement process for electric motors. (a) Test... motor sold by a particular manufacturer or private labeler, which indicates that the electric motor may...

  9. Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation

    International Nuclear Information System (INIS)

    Iodice, Paolo; Senatore, Adolfo; Langella, Giuseppe; Amoresano, Amedeo

    2016-01-01

    Highlights: • This study assesses the effect of ethanol–gasoline blends on cold emissions. • A last generation motorcycle was operated on the chassis dynamometer. • A new calculation procedure was applied to model the cold transient behaviour. • The 20% v/v ethanol blend shows the highest reduction of CO and HC cold emissions. - Abstract: Urban areas in developed countries are characterized by an increasing decline in air quality state mainly due to the exhaust emissions from vehicles. Besides, due to catalyst improvements and electronic mixture control of last generation engines, nowadays CO and HC cold start extra-emissions are heavily higher than emissions exhausted in hot conditions, with a clear consequence on air quality of the urban contexts. Ethanol combined with gasoline can be widely used as an alternative fuel due to the benefit of its high octane number and its self-sustaining characteristics. Ethanol, in fact, is well known as potential alcohol alternative fuel for SI engines, since it can be blended with gasoline to increase oxygen content, then decreasing CO and HC emissions and the depletion of fossil fuels. Literature data about cold emissive behaviour of SI engines powered with ethanol/gasoline blended fuels are rather limited. For this reason, the aim of this study is to experimentally investigate the effect of ethanol/gasoline blends on CO and HC cold start emissions of four-stroke SI engines: a last generation motorcycle was operated on the chassis dynamometer for exhaust emission measurements without change to the engine design, while the ethanol was mixed with unleaded gasoline in different percentages (10, 20 and 30 vol.%). Results of the experimental tests and the application of a new calculation procedure, designed and optimised to model the cold transient behaviour of SI engines using different ethanol–gasoline blends, indicate that CO and HC cold start emissions decrease compared to the use of commercial gasoline, with the 20

  10. Long term durability tests of small engines fueled with bio-ethanol / gasoline blends

    International Nuclear Information System (INIS)

    Tippayawong, N.; Kundhawiworn, N.; Jompakdee, W.

    2006-01-01

    The paper presents the result of an ongoing research to evaluate performance and wear of small, single cylinder, naturally aspirated, agricultural spark ignition engines using biomass-derived ethanol and gasoline blends. The reference gasoline fuel was selected to be representative of gasoline typically available in Thailand. Long-term engine tests of 10% and 20% ethanol / gasoline blends as well as the reference fuel were performed at a constant speed of 2300 rpm under part load condition up to 200 operation hours for each fuel type. Engine brake power, specific fuel consumption, carbon deposits and surface wear were measured and compared between neat gasoline and ethanol/ gasoline blends. It was found that blended fuels appeared to affect the engine performance in a similar way and compared well with the base gasoline fuel. From the results obtained, it was found that engine brake power and specific fuel consumption changed slightly with running time and were not found to have any significant change between different fuel blends. There were carbon deposits buildup on the spark plug, the intake port and exhaust valve stem for all fuels used. Surface wear was not significantly different in the test engines between neat gasoline or ethanol/gasoline blend fuelling

  11. Off-Highway Gasoline Consuption Estimation Models Used in the Federal Highway Administration Attribution Process: 2008 Updates

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho-Ling [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01

    This report is designed to document the analysis process and estimation models currently used by the Federal Highway Administration (FHWA) to estimate the off-highway gasoline consumption and public sector fuel consumption. An overview of the entire FHWA attribution process is provided along with specifics related to the latest update (2008) on the Off-Highway Gasoline Use Model and the Public Use of Gasoline Model. The Off-Highway Gasoline Use Model is made up of five individual modules, one for each of the off-highway categories: agricultural, industrial and commercial, construction, aviation, and marine. This 2008 update of the off-highway models was the second major update (the first model update was conducted during 2002-2003) after they were originally developed in mid-1990. The agricultural model methodology, specifically, underwent a significant revision because of changes in data availability since 2003. Some revision to the model was necessary due to removal of certain data elements used in the original estimation method. The revised agricultural model also made use of some newly available information, published by the data source agency in recent years. The other model methodologies were not drastically changed, though many data elements were updated to improve the accuracy of these models. Note that components in the Public Use of Gasoline Model were not updated in 2008. A major challenge in updating estimation methods applied by the public-use model is that they would have to rely on significant new data collection efforts. In addition, due to resource limitation, several components of the models (both off-highway and public-us models) that utilized regression modeling approaches were not recalibrated under the 2008 study. An investigation of the Environmental Protection Agency's NONROAD2005 model was also carried out under the 2008 model update. Results generated from the NONROAD2005 model were analyzed, examined, and compared, to the extent that

  12. Process for conversion of lignin to reformulated hydrocarbon gasoline

    Science.gov (United States)

    Shabtai, Joseph S.; Zmierczak, Wlodzimierz W.; Chornet, Esteban

    1999-09-28

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  13. 40 CFR 80.131 - Agreed upon procedures for GTAB, certain conventional gasoline imported by truck, previously...

    Science.gov (United States)

    2010-07-01

    ..., certain conventional gasoline imported by truck, previously certified gasoline used to produce gasoline... gasoline used to produce gasoline, and butane blenders. (a) Attest procedures for GTAB. The following are... conventional gasoline and of RFG produced. Agree the volumes from the tank activity records to the batch volume...

  14. Experimental investigations of butanol-gasoline blends effects on the combustion process in a SI engine

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Simona Silvia; Tornatore, Cinzia; Machitto, Luca; Valentino, Gerardo; Corcione, Felice Esposito [Istituto Motori-CNR, Naples (Italy)

    2012-07-01

    Fuel blend of alcohol and conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline in a port fuel-injection, spark ignition engine was investigated. The experiments were realized in a single cylinder ported fuel injection SI engine with an external boosting device. The optical accessible engine was equipped with the head of commercial SI turbocharged engine with the same geometrical specifications (bore, stroke, compression ratio) as the research engine. The effect on the spark ignition combustion process of 20% and 40% of n-butanol blended in volume with pure gasoline was investigated through cycle resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Fuel injections both in closed valve and open valve conditions were considered. Comparisons between the parameters related to the flame luminosity and the pressure signals were performed. Butanol blends allowed working in more advanced spark timing without knocking occurrence. The duration of injection for Butanol blends was increased to obtain stoichiometric mixture. In open valve injection condition, the fuel deposits on intake manifold and piston surfaces decreased, allowing a reduction in fuel consumption. BU40 granted the performance levels of gasoline and in open valve injection allowed to minimize the abnormal combustion effects including the emission of ultrafine carbonaceous particles at the exhaust. In-cylinder investigations were correlated to engine out emissions. (orig.)

  15. On the road to recovery: Gasoline content regulations and child health.

    Science.gov (United States)

    Marcus, Michelle

    2017-07-01

    Gasoline content regulations are designed to curb pollution and improve health, but their impact on health has not been quantified. By exploiting both the timing of regulation and spatial variation in children's exposure to highways, I estimate the effect of gasoline content regulation on pollution and child health. The introduction of cleaner-burning gasoline in California in 1996 reduced asthma admissions by 8% in high exposure areas. Reductions are greatest for areas downwind from highways and heavy traffic areas. Stringent gasoline content regulations can improve child health, and may diminish existing health disparities. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. 40 CFR 80.73 - Inability to produce conforming gasoline in extraordinary circumstances.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Inability to produce conforming gasoline in extraordinary circumstances. 80.73 Section 80.73 Protection of Environment ENVIRONMENTAL... Gasoline § 80.73 Inability to produce conforming gasoline in extraordinary circumstances. In appropriate...

  17. Effect of honey supplementation on toxicity of gasoline vapor exposure in rats

    OpenAIRE

    M B Abubakar; W Z Abdullah; S A Sulaiman; F E Uboh; B S Ang

    2013-01-01

    Summary. Different health risks including haematotoxicity and weight loss have been reported for gasoline. Supplementation with antioxidants such as vitamins A, C, and E has been shown to ameliorate the toxicity effects of gasoline vapours exposure. Honey contains vitamins, and polyphenols that possess good antioxidant properties. The potential role of honey in preventing gasoline-induced haematotoxicity and weight loss was assessed in male rats. The rats were exposed to gasoline (11.13±1.1cm...

  18. 40 CFR 80.211 - What are the requirements for treating imported gasoline as blendstock?

    Science.gov (United States)

    2010-07-01

    ... imported gasoline as blendstock? 80.211 Section 80.211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.211 What are the requirements for treating imported gasoline as blendstock...

  19. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    KAUST Repository

    Sarathy, Mani

    2015-01-01

    Petroleum derived gasoline is the most used transportation fuel for light-duty vehicles. In order to better understand gasoline combustion, this study investigated the ignition propensity of two alkane-rich FACE (Fuels for Advanced Combustion Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from 715 to 1500 K, and two equivalence ratios. Rapid compression machine ignition delay times were measured for fuel/air mixtures at pressures of 20 and 40 bar, temperatures from 632 to 745 K, and two equivalence ratios. Detailed hydrocarbon analysis was also performed on the FACE gasoline fuels, and the results were used to formulate multi-component gasoline surrogate mixtures. Detailed chemical kinetic modeling results are presented herein to provide insights into the relevance of utilizing PRF and multi-component surrogate mixtures to reproduce the ignition behavior of the alkane-rich FACE gasoline fuels. The two FACE gasoline fuels and their corresponding PRF mixture displayed similar ignition behavior at intermediate and high temperatures, but differences were observed at low temperatures. These trends were mimicked by corresponding surrogate mixture models, except for the amount of heat release in the first stage of a two-stage ignition events, when observed. © 2014 The Combustion Institute.

  20. Benzene in Canadian gasoline : report on the effect of the benzene in gasoline regulations 2002

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, J. [Environment Canada, Ottawa, ON (Canada); Sabourin, R. [Carleton Univ., Ottawa, ON (Canada); Brunet, E. [Waterloo Univ., ON (Canada)

    2003-11-01

    The response of primary suppliers to Benzene in Gasoline Regulations was reviewed, and a summary of the effects of those regulations on the composition of gasoline in Canada in 2002 was offered. These regulations, effective July 1, 1999, were designed to provide a new approach to control fuel composition. It allowed suppliers, as a basis for compliance, the option to elect to use a yearly pool average. The benzene emission number (BEN) of gasoline was regulated, and a limit imposed on a per-litre limit for benzene at point of sale. The results indicated that reported benzene levels were significantly reduced, while aromatic levels remained practically unchanged from 1994. Since 1998, rural ambient benzene concentrations decreased by more than 32 per cent, while in urban areas, they decreased by 47 per cent over the same period. The regulated requirements for benzene concentration were met by primary suppliers in Canada in 2002 (with one exception), as were BEN levels. A number of instances of non-compliance with laboratory procedures were discovered during independent audits required for those suppliers who elected to be on on a yearly pool average. Corrective action designed to address these issues was implemented. 41 tabs., 24 figs.

  1. Prediction of gasoline yield in a fluid catalytic cracking (FCC riser using k-epsilon turbulence and 4-lump kinetic models: A computational fluid dynamics (CFD approach

    Directory of Open Access Journals (Sweden)

    Muhammad Ahsan

    2015-07-01

    Full Text Available Fluid catalytic cracking (FCC is an essential process for the conversion of gas oil to gasoline. This study is an effort to model the phenomenon numerically using commercial computational fluid dynamics (CFD software, heavy density catalyst and 4-lump kinetic model. Geometry, boundary conditions and dimensions of industrial riser for catalytic cracking unit are conferred for 2D simulation using commercial CFD code FLUENT 6.3. Continuity, momentum, energy and species transport equations, applicable to two phase solid and gas flow, are used to simulate the physical phenomenon as efficient as possible. This study implements and predicts the use of the granular Eulerian multiphase model with species transport. Time accurate transient problem is solved with the prediction of mass fraction profiles of gas oil, gasoline, light gas and coke. The output curves demonstrate the breaking of heavy hydrocarbon in the presence of catalyst. An approach proposed in this study shows good agreement with the experimental and numerical data available in the literature.

  2. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...

  3. Changes in the microbial community during bioremediation of gasoline-contaminated soil

    Directory of Open Access Journals (Sweden)

    Aline Jaime Leal

    Full Text Available Abstract We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50 g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50 g/kg of inoculants A and B led to the largest CO2 emission from soil. CO2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil.

  4. Changes in the microbial community during bioremediation of gasoline-contaminated soil.

    Science.gov (United States)

    Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patrícia Lopes; Júlio, Aline Daniela Lopes; Fernandes, Rita de Cássia Rocha; Borges, Arnaldo Chaer; Tótola, Marcos Rogério

    We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N-P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50g/kg of inoculants A and B led to the largest CO 2 emission from soil. CO 2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO 2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Science.gov (United States)

    2010-07-01

    ... specified in this paragraph (a). (5) Gasoline produced at foreign refineries that is subject to the gasoline... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline...

  6. Effects of policy characteristics and justifications on acceptance of a gasoline tax increase

    International Nuclear Information System (INIS)

    Kaplowitz, Stan A.; McCright, Aaron M.

    2015-01-01

    Many economists argue that increasing the gasoline tax is an effective way to reduce fuel consumption. Yet, public support for such a tax increase has been rather low among US residents. We performed eight survey experiments (total N approximately 3000) to examine how selected policy characteristics and persuasive messages influence support for a gasoline tax increase. Several policy characteristics significantly increased support for a gasoline tax increase. Having the increase phased in over five years modestly increased support. Compared with giving the extra revenue to the US Treasury’s General Fund, both refunding the extra revenue equally to all American families and having this revenue used for energy efficient transportation strongly increased support. Support for a gasoline tax increase was not affected by the nature of the mechanism to achieve revenue neutrality. Most people supported a 20 cent per gallon tax increase to repair roads and bridges. Explaining how the gasoline tax increase would reduce fuel consumption slightly increased support for a gasoline tax increase, but neither being informed of the high gasoline prices in other advanced industrial countries nor the actual pump price of gasoline at the time of the experiment influenced support for a gasoline tax increase. - Highlights: • Phasing in the tax increase modestly raised support. • Making the tax increase revenue-neutral increased support. • Using the extra revenue for energy efficiency increased support. • Information on high gasoline prices elsewhere did not influence support. • Variation in actual fuel prices did not influence support.

  7. 77 FR 75400 - Labeling Requirements for Commercial and Industrial Equipment

    Science.gov (United States)

    2012-12-20

    ...-intensity discharge lamps, distribution transformers, and small electric motors as covered equipment. (42 U... following: Electric motors and pumps; commercial HVAC and water heating equipment (small, large, and very... prescribed for certain types of covered equipment. Specific requirements are established for electric motors...

  8. PENINGKATAN KADAR GERANIOL DALAM MINYAK SEREH WANGI DAN APLIKASINYA SEBAGAI BIO ADDITIVE GASOLINE

    Directory of Open Access Journals (Sweden)

    Widi Astuti

    2014-10-01

    Full Text Available Sereh wangi merupakan salah satu tanaman penghasil minyak atsiri yang banyak mengandung geraniol. Geraniol merupakan senyawa penyedia oksigen sehingga minyak sereh wangi dimungkinkan dapat digunakan sebagai bio additive gasoline. Penelitian ini bertujuan  meningkatkan kadar geraniol dalam minyak sereh wangi dan menggunakannya sebagai bio additive gasoline.Penelitian dilakukan dalam  tiga tahap, yaitu  pemungutan minyak sereh wangi dari daun sereh wangi, peningkatan kadar geraniol dalam minyak sereh wangi dan aplikasi minyak sereh wangi yang mengandung geraniol tinggi sebagai bio aditive gasoline.Hasil penelitian menunjukkan bahwa pemungutan minyak sereh wangi yang dilakukan dengan metode distilasi uap menghasilkan rendemen sebesar 0,76% dengan kadar geraniol 5,36%.Kadar geraniol dapat ditingkatkan menjadi 21,78% melalui proses distilasi vakum pada suhu 120oC. Pengujian minyak sereh wangi dengan kadar geraniol tinggi sebagai bio additive gasoline meliputi uji performa dan efisiensi konsumsi bahan bakar dengan variasi perbandingan volume gasoline dengan bio additive. Hasilnya, penambahan minyak sereh wangi dengan perbandingan volume gasoline ; minyak sereh wangi = 1000:2 mampu meningkatkan power mesin dari 7,8HP menjadi 8,6HP. Sementara, pada pengujian efisiensi bahan bakar, penambahan minyak sereh wangi dengan perbandingan volume gasoline : minyak sereh wangi = 1000:2 dapat meningkatkan efisiensi mesin sebesar 10,8%. Citronella contains geraniol which is an oxygen provider substances, so it may be used as bio additive. The purpose of this research  is to increase geraniol content in citronella oil and use it as a gasoline bio additive. This research is conducted  in three steps including take the citronella oil from citronella leaf, increase geraniol content in citronella oil and use citronella oil as a gasoline bio additive. The result show that citronella oil produced from citronella leaf using vapor distillation method contains geraniol

  9. 40 CFR 80.195 - What are the gasoline sulfur standards for refiners and importers?

    Science.gov (United States)

    2010-07-01

    ...) The gasoline sulfur standards for refiners and importers, excluding gasoline produced by small... must include in its corporate pool all of the gasoline produced at any refineries owned by the parent... includes in its corporate pool the gasoline produced by any refineries owned by the parent company, and...

  10. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose of...

  11. the reproductive dysfunction effects of gasoline inhalation in albino

    African Journals Online (AJOL)

    admin

    exposure to inhalation gasoline, which generally saturate the ambient air of their workplaces. In this study, we challenged male and female albino rats with gasoline vapour and monitored the endocrine disruptive effects as part of a comprehensive study of the health risks faced by refinery workers in Nigeria. The ultimate.

  12. Testing the Alchian-Allen Theorem: A Study of Consumer Behavior in the Gasoline Market

    OpenAIRE

    Robert Lawson; Lauren Raymer

    2006-01-01

    This paper uses a data set of daily sales at a single gasoline station over a seven year period to determine if consumers respond to relative price changes among the three grades of gasoline. Based on the reasoning of Alchian and Allen (1964) and Barzel (1976), market shares of higher quality gasoline should increase at the expense of regular grade gasoline when overall gasoline prices increase. The empirical results do not conform to this expectation. We find instead that the consumers in th...

  13. Gasoline from Kumkol deposit petroleum; Benzin nefti Kumkol`skogo mestorozhdeniya

    Energy Technology Data Exchange (ETDEWEB)

    Nadirov, A N; Zhizhin, N I; Musaeva, Z G

    1997-11-04

    Samples of gasoline from petroleum of Kumkol deposit are investigated by chromatographic analysis. It is found, that gasoline is characterizing by increased content of iso-paraffin hydrocarbons. (author) 2 tabs., 1 fig. Suppl. Neft` i gaz Kazakhstana

  14. Optimal gasoline tax in developing, oil-producing countries: The case of Mexico

    International Nuclear Information System (INIS)

    Antón-Sarabia, Arturo; Hernández-Trillo, Fausto

    2014-01-01

    This paper uses the methodology of Parry and Small (2005) to estimate the optimal gasoline tax for a less-developed oil-producing country. The relevance of the estimation relies on the differences between less-developed countries (LDCs) and industrial countries. We argue that lawless roads, general subsidies on gasoline, poor mass transportation systems, older vehicle fleets and unregulated city growth make the tax rates in LDCs differ substantially from the rates in the developed world. We find that the optimal gasoline tax is $1.90 per gallon at 2011 prices and show that the estimate differences are in line with the factors hypothesized. In contrast to the existing literature on industrial countries, we show that the relative gasoline tax incidence may be progressive in Mexico and, more generally, in LDCs. - Highlights: • We estimate the optimal gasoline tax for a typical less-developed, oil-producing country like Mexico. • The relevance of the estimation relies on the differences between less-developed and industrial countries. • The optimal gasoline tax is $1.90 per gallon at 2011 prices. • Distance-related pollution damages, accident costs and gas subsidies account for the major differences. • Gasoline tax incidence may be progressive in less developed countries

  15. Product differentiation, competition and prices in the retail gasoline industry

    Science.gov (United States)

    Manuszak, Mark David

    This thesis presents a series of studies of the retail gasoline industry using data from Hawaii. This first chapter examines a number of pricing patterns in the data and finds evidence that gasoline stations set prices which are consistent with a number of forms of price discrimination. The second chapter analyzes various patterns of cross-sectional, cross-market and intertemporal variation in the data to investigate their suitability for use in structural econometric estimation. The remainder of the dissertation consists of specification and estimation of a structural model of supply and demand for retail gasoline products sold at individual gasoline stations. This detailed micro-level analysis permits examination of a number of important issues in the industry, most notably the importance of spatial differentiation in the industry. The third chapter estimates the model and computes new equilibria under a number of asymmetric taxation regimes in order to examine the impact of such tax policies on producer and consumer welfare as well as tax revenue. The fourth chapter examines whether there is any evidence of tacitly collusive behavior in the Hawaiian retail gasoline industry and concludes that, in fact, conduct is fairly competitive in this industry and market.

  16. THE EFFECT OF GASOLINE PRICE ON ECONOMIC SECTORS IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Philip Ifeakachukwu Nwosa

    2013-01-01

    Full Text Available This paper examined the long-run and short-run relationship between gasoline price and sectoral output in Nigeria for the period from 1980 to 2010. Six sectors (agriculture; manufacturing; building and construction; wholesale and retail; transportation and communication of the economy were examined. The long run regression estimate showed that gasoline price is a significant determinant output in all sectors examined with exception to the building and construction sector while the short run error correction estimate revealed that only output of the agriculture and the manufacturing sectors of the Nigerian economy is affect by gasoline price increase in the short run. The study recommended among others the need for the government to ensure adequate power supply in order to reduce the over reliance of economics sectors on gasoline as a prime source of power.

  17. Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis

    Directory of Open Access Journals (Sweden)

    Ashraf Elfasakhany

    2015-12-01

    Full Text Available This study discusses performance and exhaust emissions from spark-ignition engine fueled with ethanol–methanol–gasoline blends. The test results obtained with the use of low content rates of ethanol–methanol blends (3–10 vol.% in gasoline were compared to ethanol–gasoline blends, methanol–gasoline blends and pure gasoline test results. Combustion and emission characteristics of ethanol, methanol and gasoline and their blends were evaluated. Results showed that when the vehicle was fueled with ethanol–methanol–gasoline blends, the concentrations of CO and UHC (unburnt hydrocarbons emissions were significantly decreased, compared to the neat gasoline. Methanol–gasoline blends presented the lowest emissions of CO and UHC among all test fuels. Ethanol–gasoline blends showed a moderate emission level between the neat gasoline and ethanol–methanol–gasoline blends, e.g., ethanol–gasoline blends presented lower CO and UHC emissions than those of the neat gasoline but higher emissions than those of the ethanol–methanol–gasoline blends. In addition, the CO and UHC decreased and CO2 increased when ethanol and/or methanol contents increased in the fuel blends. Furthermore, the effects of blended fuels on engine performance were investigated and results showed that methanol–gasoline blends presents the highest volumetric efficiency and torque; ethanol–gasoline blends provides the highest brake power, while ethanol–methanol–gasoline blends showed a moderate level of volumetric efficiency, torque and brake power between both methanol–gasoline and ethanol–gasoline blends; gasoline, on the other hand, showed the lowest volumetric efficiency, torque and brake power among all test fuels.

  18. Gasoline demand in Europe. New insights

    International Nuclear Information System (INIS)

    Pock, Markus

    2010-01-01

    This study utilizes a panel data set from 14 European countries over the period 1990-2004 to estimate a dynamic model specification for gasoline demand. Previous studies estimating gasoline consumption per total passenger cars ignore the recent increase in the number of diesel cars in most European countries leading to biased elasticity estimates. We apply several common dynamic panel estimators to our small sample. Results show that specifications neglecting the share of diesel cars overestimate short-run income, price and car ownership elasticities. It appears that the results of standard pooled estimators are more reliable than common IV/GMM estimators applied to our small data set. (author)

  19. Gasoline demand in Europe. New insights

    Energy Technology Data Exchange (ETDEWEB)

    Pock, Markus [Department of Economics and Finance, HealthEcon IHS - Institute for Advanced Studies, Vienna Stumpergasse 56, 1060 Vienna (Austria)

    2010-01-15

    This study utilizes a panel data set from 14 European countries over the period 1990-2004 to estimate a dynamic model specification for gasoline demand. Previous studies estimating gasoline consumption per total passenger cars ignore the recent increase in the number of diesel cars in most European countries leading to biased elasticity estimates. We apply several common dynamic panel estimators to our small sample. Results show that specifications neglecting the share of diesel cars overestimate short-run income, price and car ownership elasticities. It appears that the results of standard pooled estimators are more reliable than common IV/GMM estimators applied to our small data set. (author)

  20. Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle

    Science.gov (United States)

    Zeng, Xiaohua; Li, Guanghan; Yin, Guodong; Song, Dafeng; Li, Sheng; Yang, Nannan

    2018-02-01

    Equipping a hydraulic hub-motor auxiliary system (HHMAS), which mainly consists of a hydraulic variable pump, a hydraulic hub-motor, a hydraulic valve block and hydraulic accumulators, with part-time all-wheel-drive functions improves the power performance and fuel economy of heavy commercial vehicles. The coordinated control problem that occurs when HHMAS operates in the auxiliary drive mode is addressed in this paper; the solution to this problem is the key to the maximization of HHMAS. To achieve a reasonable distribution of the engine power between mechanical and hydraulic paths, a nonlinear control scheme based on model predictive control (MPC) is investigated. First, a nonlinear model of HHMAS with vehicle dynamics and tire slip characteristics is built, and a controller-design-oriented model is simplified. Then, a steady-state feedforward + dynamic MPC feedback controller (FMPC) is designed to calculate the control input sequence of engine torque and hydraulic variable pump displacement. Finally, the controller is tested in the MATLAB/Simulink and AMESim co-simulation platform and the hardware-in-the-loop experiment platform, and its performance is compared with that of the existing proportional-integral-derivative controller and the feedforward controller under the same conditions. Simulation results show that the designed FMPC has the best performance, and control performance can be guaranteed in a real-time environment. Compared with the tracking control error of the feedforward controller, that of the designed FMPC is decreased by 85% and the traction efficiency performance is improved by 23% under a low-friction-surface condition. Moreover, under common road conditions for heavy commercial vehicles, the traction force can increase up to 13.4-15.6%.

  1. Effect Of Ginger Extract On Gasoline Associated Immunitoxicities In ...

    African Journals Online (AJOL)

    Effect of ginger extracts on gasoline associated immunotoxicities in wistar rats was studied. Fifteen wistar rats were randomly assigned into three study groups. Group 1 was the control, while groups 2 and 3 received daily treatment by inhalation of gasoline vapour. The animals in group3 were also treated with 100mg ...

  2. 76 FR 9013 - Agency Information Collection Activities; Proposed Collection; Comment Request; Detergent Gasoline

    Science.gov (United States)

    2011-02-16

    ... Activities; Proposed Collection; Comment Request; Detergent Gasoline AGENCY: Environmental Protection Agency... this action are those who (1) Manufacture gasoline, post-refinery component, or detergent additives, (2) blend detergent additives into gasoline or post-refinery component, or (3) transport or receive a...

  3. Motor Carrier Crash Data -

    Data.gov (United States)

    Department of Transportation — Contains data on large trucks and buses involved in Federally reportable crashes as per Title 49 U.S.C. Part 390.5 (crashes involving a commercial motor vehicle, and...

  4. The taxation effect on gasoline price asymmetry nexus: Evidence from both sides of the Atlantic

    International Nuclear Information System (INIS)

    Polemis, Michael L.; Fotis, Panagiotis N.

    2014-01-01

    This paper explores the degree of competition in various gasoline markets and infers possible causes of price asymmetry across the globe. For this purpose we use the Dynamic Ordinary Least Square method in order to estimate price asymmetry in twelve European countries and the United States for a sample of weekly observations which spans the period from June 1996 to August 2011. The results indicate the common perception that less competitive gasoline markets exhibit price asymmetry, while highly competitive gasoline markets follow a symmetric price adjustment path. Finally, the inclusion of taxes (VAT and excise tax) into retail gasoline prices, supports the existence of price asymmetry in many European countries. - Highlights: • We examine the possible causes of gasoline price asymmetry across the globe. • We investigate the effect of taxation on the retail gasoline price adjustments. • There is a symmetric gasoline price response in the EU wholesale level. • Less competitive gasoline markets exhibit price asymmetry. • The oligopolistic structure of the gasoline markets inflates price asymmetry

  5. Changes in the microbial community during bioremediation of gasoline-contaminated soil

    OpenAIRE

    Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patr?cia Lopes; J?lio, Aline Daniela Lopes; Fernandes, Rita de C?ssia Rocha; Borges, Arnaldo Chaer; T?tola, Marcos Rog?rio

    2016-01-01

    Abstract We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gas...

  6. Exposure to regular gasoline and ethanol oxyfuel during refueling in Alaska.

    OpenAIRE

    Backer, L C; Egeland, G M; Ashley, D L; Lawryk, N J; Weisel, C P; White, M C; Bundy, T; Shortt, E; Middaugh, J P

    1997-01-01

    Although most people are thought to receive their highest acute exposures to gasoline while refueling, relatively little is actually known about personal, nonoccupational exposures to gasoline during refueling activities. This study was designed to measure exposures associated with the use of an oxygenated fuel under cold conditions in Fairbanks, Alaska. We compared concentrations of gasoline components in the blood and in the personal breathing zone (PBZ) of people who pumped regular unleade...

  7. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats

    OpenAIRE

    Kinawy Amal A

    2009-01-01

    Abstract Background This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in ...

  8. physiological changes induced by inhalation of unleaded gasoline in adult male albino rats

    International Nuclear Information System (INIS)

    Ali, E.A.R.

    2006-01-01

    air pollution is the most dangerous form of pollution as it can expose a person to about 10.000 times more mass of an environmental pollutant than does food or water gasoline is the primary product of petroleum refining and it perhaps the most widely used energy source in the world. in addition to industrial applications, the ready availability of gasoline to power automotive engines, there are increasing opportunities for occupational and environment exposure to this liquid fuel. with the removal of lead from gasoline and the use of new technologies, it is very important to conduct studies of toxic effects of reformulated gasoline (unleaded gasoline) which will shed the light on this new formula and either it is more or less benefit than the old one. the objective of this work was to asses the health effects of unleaded gasoline refined and used in Egypt

  9. Comparative exergy analyses of gasoline and hydrogen fuelled ices

    International Nuclear Information System (INIS)

    Nieminen, J.; Dincer, I.; Yang, Y.

    2009-01-01

    Comparative exergy models for naturally aspirated gasoline and hydrogen fuelled spark ignition internal combustion engines were developed according to the second laws of thermodynamics. A thorough graphical analysis of heat transfer, work, thermo mechanical, and intake charge exergy functions was made. An irreversibility function was developed as a function of entropy generation and graphed. A second law analysis yielded a proportional exergy distribution as a fraction of the intake charge exergy. It was found that the hydrogen fuelled engine had a greater proportion of the intake charge exergy converted into work exergy, indicating a second law efficiency of 50.13% as opposed to 44.34% for a gasoline fuelled engine. The greater exergy due to heat transfer or thermal availability associated with the hydrogen fuelled engine is postulated to be a part of the reason for decreased work output of a hydrogen engine. Finally, a second law analysis of both hydrogen and gasoline combustion reactions indicate a greater combustion irreversibility associated with gasoline combustion. A percentage breakdown of the combustion irreversibilities were also constructed according to information found in literature searches. (author)

  10. The useful field of view assessment predicts simulated commercial motor vehicle driving safety.

    Science.gov (United States)

    McManus, Benjamin; Heaton, Karen; Vance, David E; Stavrinos, Despina

    2016-10-02

    The Useful Field of View (UFOV) assessment, a measure of visual speed of processing, has been shown to be a predictive measure of motor vehicle collision (MVC) involvement in an older adult population, but it remains unknown whether UFOV predicts commercial motor vehicle (CMV) driving safety during secondary task engagement. The purpose of this study is to determine whether the UFOV assessment predicts simulated MVCs in long-haul CMV drivers. Fifty licensed CMV drivers (Mage = 39.80, SD = 8.38, 98% male, 56% Caucasian) were administered the 3-subtest version of the UFOV assessment, where lower scores measured in milliseconds indicated better performance. CMV drivers completed 4 simulated drives, each spanning approximately a 22.50-mile distance. Four secondary tasks were presented to participants in a counterbalanced order during the drives: (a) no secondary task, (b) cell phone conversation, (c) text messaging interaction, and (d) e-mailing interaction with an on-board dispatch device. The selective attention subtest significantly predicted simulated MVCs regardless of secondary task. Each 20 ms slower on subtest 3 was associated with a 25% increase in the risk of an MVC in the simulated drive. The e-mail interaction secondary task significantly predicted simulated MVCs with a 4.14 times greater risk of an MVC compared to the no secondary task condition. Subtest 3, a measure of visual speed of processing, significantly predicted MVCs in the email interaction task. Each 20 ms slower on subtest 3 was associated with a 25% increase in the risk of an MVC during the email interaction task. The UFOV subtest 3 may be a promising measure to identify CMV drivers who may be at risk for MVCs or in need of cognitive training aimed at improving speed of processing. Subtest 3 may also identify CMV drivers who are particularly at risk when engaged in secondary tasks while driving.

  11. Emission consequences of introducing bio ethanol as a fuel for gasoline cars

    DEFF Research Database (Denmark)

    Winther, Morten Mentz; Møller, Flemming; Jensen, Thomas Christian

    2012-01-01

    This article describes the direct vehicle emission impact of the future use of bio ethanol as a fuel for gasoline cars in Denmark arising from the vehicle specific fuel consumption and emission differences between neat gasoline (E0) and E5/E85 gasoline-ethanol fuel blends derived from emission......% in 2030. As predicted by the vehicle specific emission differences the calculated emission impacts of using bio ethanol are small for NOx, VOC and CO. Instead, for FS, BS1 and BS2 large emission reductions are due to the gradually cleaner new sold gasoline cars and the decline in total mileage until...

  12. Comparative analysis of the Performance and Emission Characteristics of ethanol-butanol-gasoline blends

    Science.gov (United States)

    Taneja, Sumit; Singh, Perminderjit, Dr; Singh, Gurtej

    2018-02-01

    Global warming and energy security being the global problems have shifted the focus of researchers on the renewable sources of energy which could replace petroleum products partially or as a whole. Ethanol and butanol are renewable sources of energy which can be produced through fermentation of biomass. A lot of research has already been done to develop suitable ethanol-gasoline blends. In contrast very little literature available on the butanol-gasoline blends. This research focuses on the comparison of ethanol-gasoline fuels with butanol-gasoline fuels with regard to the emission and performance in an SI engine. Experiments were conducted on a variable compression ratio SI engine at 1600 rpm and compression ratio 8. The experiments involved the measurement of carbon monoxide, carbon dioxide, oxides of nitrogen and unburned hydrocarbons emission and among performance parameters brake specific fuel consumption and brake thermal efficiency were recorded at three loads of 2.5kgs (25%), 5kgs (50%) and 7.5kgs (75%). Results show that ethanol and butanol content in gasoline have decreased brake specific fuel consumption, carbon monoxide and unburned hydrocarbon emissions while the brake thermal efficiency and oxides of nitrogen are increased. Results indicate thatbutanol-gasoline blends have improved brake specific fuel consumption, carbon monoxide emissions in an SI engine as compared to ethanol-gasoline blends. The carbon dioxide emissions and brake thermal efficiencies are comparable for ethanol-gasoline blends and butanol-gasoline blends. The butanol content has a more adverse effect on emissions of oxides of nitrogen than ethanol.

  13. Gasoline reformulation to reduce exhaust emissions in Finnish conditions. Influence of sulphur and benzene contents of gasoline on exhaust emissions

    International Nuclear Information System (INIS)

    Kytoe, M.; Aakko, P.; Lappi, M.

    1994-01-01

    At earlier stages of the study it was found that the exhaust emissions from cars are reduced when using fuels with no more than 4 wt% of oxygen. At this stage of the study the work focused on impacts of the sulphur and benzene content of gasoline on exhaust emissions in Finland. Sulphur in gasoline retards the operation of the catalyst, and consequently the exhaust emissions of catalyst cars increase if the sulphur content of the fuel increases. In the present study, evaporation during refuelling were measured for fuels with varying vapour pressures and benzene contents of gasoline. The total hydrocarbon evaporation was reduced by 22 % (10 g) when the vapour pressure of gasoline was reduced from 85 kPa to 65 kPa. Correspondingly, benzene evaporation during refuelling was reduced to a third when the benzene content of the fuel was reduced from the level of 3 wt% to 1 wt%. The reduction of the sulphur content of gasoline from 500 ppm to 100 ppm affected regulated exhaust emissions from the catalyst car at +22 deg C as follows: CO emission was reduced on average by 14 % (0.175 g/km), CH emission by 7 % (0.010 g/km) and NO x emission by 9 % (0.011 g/km). At-7 deg C the percentual changes were smaller. When the benzene content of the fuel was reduced from 3 wt% to 1 wt%, the benzene emission from the catalyst cars was reduced by 20-30 % and from the non-catalyst cars on average by 30 % both at +22 deg C and -7 deg C. The benzene emission ranged 3-22 mg/km for the catalyst cars and 40-90 mg/km for the non-catalyst cars at +22 deg C in the FTP test

  14. Do gasoline prices exhibit asymmetry? Not usually

    International Nuclear Information System (INIS)

    Douglas, Christopher C.

    2010-01-01

    Previous studies have found evidence of asymmetric price adjustment in U.S. retail gasoline prices in that gasoline prices rise more rapidly in response to a cost increase than fall in response to a cost decrease. By estimating a threshold cointegration model that allows for multiple regimes, I am able to test how sensitive this result is to outlying observations. In contrast to previous studies, I find little evidence of asymmetry for the vast majority of observations and that the asymmetry is being driven by a small number of outlying observations. (author)

  15. Catalysts for producing high octane-blending value olefins for gasoline

    NARCIS (Netherlands)

    Golombok, M.; Bruijn, de J.N.H.

    2001-01-01

    New restrictions on gasoline components mean that oxygenates and aromatics must be replaced by other high octane components. The dimerization of linear butene to form high octane gasoline blending components is evaluated under liquid phase reaction conditions over a number of different heterogeneous

  16. 40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?

    Science.gov (United States)

    2010-07-01

    ... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...

  17. 40 CFR 80.1005 - What acts are prohibited under the gasoline toxics program?

    Science.gov (United States)

    2010-07-01

    ... gasoline toxics program? 80.1005 Section 80.1005 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1005 What acts are prohibited under the gasoline toxics program? No person shall: (a...

  18. The impact of ethanol production on US and regional gasoline markets

    International Nuclear Information System (INIS)

    Du Xiaodong; Hayes, Dermot J.

    2009-01-01

    This study quantifies the impact of increasing ethanol production on wholesale/retail gasoline prices employing pooled regional time-series data from January 1995 to March 2008. We find that the growth in ethanol production kept wholesale gasoline prices $0.14/gallon lower than would otherwise have been the case. The negative impact of ethanol on retail gasoline prices is found to vary considerably across regions. The Midwest region has the biggest impact at $0.28/gallon, while the Rocky Mountain region had the smallest impact at $0.07/gallon. The results also indicate that the ethanol-induced reduction in gasoline prices comes at the expense of refiners' profits. We find a net welfare loss of $0.5 billion from the ethanol support policies in multiple markets.

  19. Pollutant emissions from gasoline combustion. 1. Dependence on fuel structural functionalities.

    Science.gov (United States)

    Zhang, Hongzhi R; Eddings, Eric G; Sarofim, Adel F

    2008-08-01

    To study the formation of air pollutants and soot precursors (e.g., acetylene, 1,3-butadiene, benzene, and higher aromatics) from aliphatic and aromatic fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submechanisms of gasoline surrogate compounds using a set of mechanism generation techniques. The mechanism yields very good predictions of species concentrations in premixed flames of n-heptane, isooctane, benzene, cyclohexane, olefins, oxygenates, and gasoline using a 23-component surrogate formulation. The 1,3-butadiene emission comes mainly from minor fuel fractions of olefins and cyclohexane. The benzene formation potential of gasoline components shows the following trends as functions of (i) chemical class: n-paraffins produced by the real fuel should have priority when selecting candidate surrogate components for combustion simulations.

  20. 40 CFR 80.1235 - What gasoline is subject to the benzene requirements of this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline is subject to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1235 What gasoline is subject to the benzene requirements of...

  1. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  2. Analysis of the French gasoline market since the deregulation of prices

    International Nuclear Information System (INIS)

    Lantz, F.; Ioannidis, C.

    1992-01-01

    In this paper, we have investigated the behaviour of gasoline prices in France over the period 1980-1990. We have established that the price liberalization measures introduced in 1985 were successful in integrating the domestic market to the European one, but the process of integration is still in progress. The behaviour of the Tax Authorities did not inhibit price flexibility with final gasoline prices responding symmetrically to international gasoline price changes. 8 refs., 2 figs., 5 tabs

  3. Value of time: Speeding behavior and gasoline prices

    OpenAIRE

    Wolff, Hendrik

    2012-01-01

    Do drivers reduce speeds when gasoline prices are high? Previous research investigating this energy conservation hypothesis produced mixed results. We take a fresh look at the data and estimate a significant negative relationship between speeding and gasoline prices. This presents a new methodology of deriving the 'Value of Time' (VOT) based on the intensive margin (previous VOT studies compare across the extensive margin) which has important advantages to circumvent potential omitted variabl...

  4. Measuring global gasoline and diesel price and income elasticities

    International Nuclear Information System (INIS)

    Dahl, Carol A.

    2012-01-01

    Price and income elasticities of transport fuel demand have numerous applications. They help forecast increases in fuel consumption as countries get richer, they help develop appropriate tax policies to curtail consumption, help determine how the transport fuel mix might evolve, and show the price response to a fuel disruption. Given their usefulness, it is understandable why hundreds of studies have focused on measuring such elasticities for gasoline and diesel fuel consumption. In this paper, I focus my attention on price and income elasticities in the existing studies to see what can be learned from them. I summarize the elasticities from these historical studies. I use statistical analysis to investigate whether income and price elasticities seem to be constant across countries with different incomes and prices. Although income and price elasticities for gasoline and diesel fuel are not found to be the same at high and low incomes and at high and low prices, patterns emerge that allow me to develop suggested price and income elasticities for gasoline and diesel demand for over one hundred countries. I adjust these elasticities for recent fuel mix policies, and suggest an agenda of future research topics. - Research highlights: ► Surveyed econometric studies of transport fuel demand. ► Developed price elasticities of demand for gasoline and diesel fuel for 120 countries. ► Developed income elasticities of demand for gasoline and diesel fuel for 120 countries. ► Suggested a research agenda for future work.

  5. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Haemmerle, M.; Moos, R. [Functional Materials, University of Bayreuth, Bayreuth (Germany); Malkowsky, I.M.; Kiener, C. [BASF SE, Ludwigshafen (Germany); Achmann, S.

    2010-02-15

    Several materials in the class of metal-organic frameworks (MOF) were investigated to determine their sorption characteristics for sulfur compounds from fuels. The materials were tested using different model oils and common fuels such as low-sulfur gasoline or diesel fuel at room temperature and ambient pressure. Thiophene and tetrahydrothiophene (THT) were chosen as model substances. Total-sulfur concentrations in the model oils ranged from 30 mg/kg (S from thiophene) to 9 mg/kg (S from tetrahydrothiophene) as determined by elementary analysis. Initial sulfur contents of 8 mg/kg and 10 mg/kg were identified for low-sulfur gasoline and for diesel fuel, respectively, by analysis of the common liquid fuels. Most of the MOF materials examined were not suitable for use as sulfur adsorbers. However, a high efficiency for sulfur removal from fuels and model oils was noticed for a special copper-containing MOF (copper benzene-1,3,5-tricarboxylate, Cu-BTC-MOF). By use of this material, 78 wt % of the sulfur content was removed from thiophene containing model oils and an even higher decrease of up to 86 wt % was obtained for THT-based model oils. Moreover, the sulfur content of low-sulfur gasoline was reduced to 6.5 mg/kg, which represented a decrease of more than 22 %. The sulfur level in diesel fuel was reduced by an extent of 13 wt %. Time-resolved measurements demonstrated that the sulfur-sorption mainly occurs in the first 60 min after contact with the adsorbent, so that the total time span of the desulfurization process can be limited to 1 h. Therefore, this material seems to be highly suitable for sulfur reduction in commercial fuels in order to meet regulatory requirements and demands for automotive exhaust catalysis-systems or exhaust gas sensors. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Prices and taxes for gasoline and diesel in industrialized countries

    International Nuclear Information System (INIS)

    Davoust, R.

    2008-01-01

    This report present a comparative study on the prices and taxes of automotive fuels (gasoline and diesel fuel) in various industrialized countries, members of the OECD organization. Statistics are taken from a publication of the IEA (International Energy Agency), and concern the following fuel categories: regular gasoline, unleaded premium gasoline (SP 95 and SP 98), professional diesel fuel and domestic diesel fuel. It is shown that fuel prices are generally equivalent from one country to another, while taxes make all the difference for the retail final price. Somme global comparisons are also made between US and EU prices

  7. Pilot-scale studies of soil vapor extraction and bioventing for remediation of a gasoline spill at Cameron Station, Alexandria, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Joss, C.J.; Martino, L.E. [and others

    1994-07-01

    Approximately 10,000 gal of spilled gasoline and unknown amounts Of trichloroethylene and benzene were discovered at the US Army`s Cameron Station facility. Because the base is to be closed and turned over to the city of Alexandria in 1995, the Army sought the most rapid and cost-effective means of spill remediation. At the request of the Baltimore District of the US Army Corps of Engineers, Argonne conducted a pilot-scale study to determine the feasibility of vapor extraction and bioventing for resolving remediation problems and to critique a private firm`s vapor-extraction design. Argonne staff, working with academic and private-sector participants, designed and implemented a new systems approach to sampling, analysis and risk assessment. The US Geological Survey`s AIRFLOW model was adapted for the study to simulate the performance of possible remediation designs. A commercial vapor-extraction machine was used to remove nearly 500 gal of gasoline from Argonne-installed horizontal wells. By incorporating numerous design comments from the Argonne project team, field personnel improved the system`s performance. Argonne staff also determined that bioventing stimulated indigenous bacteria to bioremediate the gasoline spin. The Corps of Engineers will use Argonne`s pilot-study approach to evaluate remediation systems at field operation sites in several states.

  8. 40 CFR 80.815 - What are the gasoline toxics performance requirements for refiners and importers?

    Science.gov (United States)

    2010-07-01

    ... toxics requirements of this subpart apply separately for each of the following types of gasoline produced...) The gasoline toxics performance requirements of this subpart apply to gasoline produced at a refinery... not apply to gasoline produced by a refinery approved under § 80.1334, pursuant to § 80.1334(c). (2...

  9. Competition, regulation, and pricing behaviour in the Spanish retail gasoline market

    International Nuclear Information System (INIS)

    Contin-Pilart, Ignacio; Correlje, Aad F.; Blanca Palacios, M.

    2009-01-01

    The restructuring of the Spanish oil industry produced a highly concentrated oligopoly in the retail gasoline market. In June 1990, the Spanish government introduced a system of ceiling price regulation in order to ensure that 'liberalization' was accompanied by adequate consumer protection. By 1998, prices were left to the 'free' market. This paper examines the pricing behaviour of the retail gasoline market using multivariate error correction models over the period January 1993 (abolishment of the state monopoly)-December 2004. The results suggest that gasoline retail prices respond symmetrically to increases as well as to decreases in the spot price of gasoline both over the period of price regulation (January 1993-September 1998) and over the period of free market (October 1998-December 2004). However, once the ceiling price regulation was abolished, cooperation emerged between the government and the major operators, Repsol-YPF and Cepsa-Elf, to control the inflation rate. This resulted in a slower rate of adjustment of gasoline retail prices when gasoline spot prices went up, as compared with the European pattern. Finally, the Spanish retail margin was by the end of our timing period of analysis, as in the starting years after the abolishment of the state monopoly, above the European average. This pattern confirms our political economic hypothesis, which suggests that the Spanish government and the oil companies were working together in reducing the inflation, in periods of rising oil and gasoline prices. It is also inferred that explaining the pricing pattern in energy markets may require different hypothesis than the classical perspective, involving just firms taking advantage of market power

  10. Competition, regulation, and pricing behaviour in the Spanish retail gasoline market

    Energy Technology Data Exchange (ETDEWEB)

    Contin-Pilart, Ignacio [Departamento de Gestion de Empresas, Universidad Publica de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Correlje, Aad F. [Section Economics of Infrastructures, Faculty of Technology, Policy and Management, Delft University of Technology, P.O. Box 5015, 2600 GA Delft (Netherlands); Clingendael International Energy Programme (Netherlands); Blanca Palacios, M. [Departamento de Estadistica e Investigacion Operativa, Universidad Publica de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain)

    2009-01-15

    The restructuring of the Spanish oil industry produced a highly concentrated oligopoly in the retail gasoline market. In June 1990, the Spanish government introduced a system of ceiling price regulation in order to ensure that 'liberalization' was accompanied by adequate consumer protection. By 1998, prices were left to the 'free' market. This paper examines the pricing behaviour of the retail gasoline market using multivariate error correction models over the period January 1993 (abolishment of the state monopoly)-December 2004. The results suggest that gasoline retail prices respond symmetrically to increases as well as to decreases in the spot price of gasoline both over the period of price regulation (January 1993-September 1998) and over the period of free market (October 1998-December 2004). However, once the ceiling price regulation was abolished, cooperation emerged between the government and the major operators, Repsol-YPF and Cepsa-Elf, to control the inflation rate. This resulted in a slower rate of adjustment of gasoline retail prices when gasoline spot prices went up, as compared with the European pattern. Finally, the Spanish retail margin was by the end of our timing period of analysis, as in the starting years after the abolishment of the state monopoly, above the European average. This pattern confirms our political economic hypothesis, which suggests that the Spanish government and the oil companies were working together in reducing the inflation, in periods of rising oil and gasoline prices. It is also inferred that explaining the pricing pattern in energy markets may require different hypothesis than the classical perspective, involving just firms taking advantage of market power. (author)

  11. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Science.gov (United States)

    2010-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who produces...) The sulfur content and volume of each batch of gasoline produced is that of the butane the refiner...

  12. Increasing the octane number of gasoline using functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Sara Safari [Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran (Iran, Islamic Republic of); Rashidi, Alimorad, E-mail: rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, Tehran 14665-1998 (Iran, Islamic Republic of); Aghabozorg, Hamid Reza [Catalysis Research Center, Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Moradi, Leila [Faculty of Chemistry, Kashan University, Kashan (Iran, Islamic Republic of)

    2010-03-15

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  13. Increasing the octane number of gasoline using functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Kish, Sara Safari; Rashidi, Alimorad; Aghabozorg, Hamid Reza; Moradi, Leila

    2010-01-01

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  14. Testing and estimating time-varying elasticities of Swiss gasoline demand

    International Nuclear Information System (INIS)

    Neto, David

    2012-01-01

    This paper is intended to test and estimate time-varying elasticities for gasoline demand in Switzerland. For this purpose, a smooth time-varying cointegrating parameters model is investigated in order to describe smooth mutations of the Swiss gasoline demand. The methodology, based on Chebyshev polynomials, is rigorously outlined. Our empirical finding states that the time-invariance assumption does not hold for long-run price and income elasticities. Furthermore they highlight that gasoline demand passed through some periods of sensitivity and non sensitivity with respect to the price. Our empirical statements are of great importance to assess the performance of a gasoline tax as an instrument for CO 2 reduction policy. Indeed, such an instrument can contribute to reduce emissions of greenhouse gases only if the demand is not fully inelastic with respect to the price. Our results suggest that such a carbon-tax would not be always suitable since the price elasticity is found not stable over time and not always significant.

  15. Electrical impedance tomography of the 1995 OGI gasoline release

    International Nuclear Information System (INIS)

    Daily, W.; Ramirez, A.

    1996-01-01

    Electrical impedance tomography (EIT) was used to image the plume resulting from a release of 378 liters (100 gallons) of gasoline into a sandy acquifer. Images were made in 5 planes before and 5 times during the release, to generate a detailed picture of the spatial as well as the temporal development of the plume as it spread at the water table. Information of the electrical impedance (both in phase and out of phase voltages) was used or several different frequencies to produce images. We observed little dispersion in the images either before or after the gasoline entered the acquifer. Likewise, despite some laboratory measurements of impedances, there was no evidence of a change in the reactance in the soil because of the gasoline

  16. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  17. Kaolin and commercial fcc catalysts in the cracking of loads of polypropylene under refinary conditions

    Directory of Open Access Journals (Sweden)

    A. M. Ribeiro

    2013-12-01

    Full Text Available The efficiency of Commercial FCC catalysts (low, medium and high activities was evaluated by the catalytic cracking process of combined feeds of polypropylene (PP and vaseline, using a microactivity test unit (M.A.T. for the production of fuel fractions (gasoline, diesel and residue. The PP/vaseline loads, at 2.0% and 4.0% wt, were processed under refinery conditions (load/catalyst ratio and temperature of process. For the PP/vaseline load (4.0% wt, the production of the gasoline fraction was favored by all catalysts, while the diesel fraction was favored by PP/vaseline load (2.0% wt, showing a preferential contact of the zeolite external surface with the end of the polymer chains for the occurrence of the catalytic cracking. All the loads produced a bigger quantity of the gaseous products in the presence of highly active commercial FCC catalyst. The improvement in the activity of the commercial FCC catalyst decreased the production of the liquid fractions and increased the quantity of the solid fractions, independent of the concentration of the loads. These results can be related to the difficulty of the polymer chains to access the catalyst acid sites, occurring preferentially end-chain scission at the external surface of the catalyst.

  18. Comparative analysis by simulation for behavior of a spark-ignition engine fueled with gasoline and LPG in the transient regimes

    Science.gov (United States)

    Nisulescu, Valentin; Ivan, Florian; Iozsa, Daniel; Banca, Gheorghe

    2017-10-01

    It is known that current vehicles must meet stringent demands on pollution limits but also must meet and the dynamical and economical performances. In this context the transient regimes are those affecting this performances, in this paper are presenting the results of the simulations for these regimes using a vehicle powered with two energy sources gasoline and LPG. Have been selected the transient regimes characteristic for NMVEG cycle (New Motor Vehicle Emissions Group). The simulation is performed using AMESim platform and the results have allowed meticulous interpretations for the 16 regimes of acceleration. The results obtained from the simulation will be validated experimentally.

  19. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m -1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m -1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Effects of gasoline properties on exhaust emission and photochemical reactivity; Gasoline seijo ga haiki gas sosei, kokagaku hannosei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, R; Usui, K; Moriya, A; Sato, M; Nomura, T; Sue, H [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    In order to investigate the effects of fuel properties on emissions, four passenger cars were tested under Japanese 11 and 10-15 modes using two series gasoline fuels. The test results suggest that the distillation property (T90) affects A/F ratio which in turn influences exhaust emissions. The results of regression analysis show that both ozone forming potential and air toxics are highly corrected with the composition of aromatic hydrocarbons in gasoline. 3 refs., 10 figs., 6 tabs.

  1. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  2. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  3. Who is exposed to gas prices? How gasoline prices affect automobile manufacturers and dealerships

    OpenAIRE

    Silva-Risso, Jorge; Zettelmeyer, Florian; Busse, Meghan R.; Knittel, Christopher Roland

    2016-01-01

    Many consumers are keenly aware of gasoline prices, and consumer responses to gasoline prices have been well studied. In this paper, by contrast, we investigate how gasoline prices affect the automobile industry: manufacturers and dealerships. We estimate how changes in gasoline prices affect equilibrium prices and sales of both new and used vehicles of different fuel economies. We investigate the implications of these effects for individual auto manufacturers, taking into account differences...

  4. Who is exposed to gas prices? How gasoline prices affect automobile manufacturers and dealerships

    OpenAIRE

    Busse, Meghan R.; Kittel, Christopher R.; Zettelmeyer, Florian

    2012-01-01

    Many consumers are keenly aware of gasoline prices, and consumer responses to gasoline prices have been well studied. In this paper, by contrast, we investigate how gasoline prices affect the automobile industry: manufacturers and dealerships. We estimate how changes in gasoline prices affect equilibrium prices and sales of both new and used vehicles of different fuel economies. We investigate the implications of these effects for individual auto manufacturers, taking into account differences...

  5. The return of "Gasoline station-park" status into green-open space in DKI Jakarta Province

    Science.gov (United States)

    Kautsar, L. H. R.; Waryono, T.; Sobirin

    2017-07-01

    The development of gasoline stations in 1970 increased drastically due to the Government support through DKT Jaya Official Note (DKT Jakarta), resulting in a great number of the parks (green open space or RTH - Ruang Terbuka Hijau) converted into a gasoline station. Currently, to meet the RTH target (13.94 % RTH based RTRW [(Rencana Tata Ruang Wilayah) DKT Jakarta 2010], the policy was changed by Decree No.728 year 2009 and Governor Tnstruction No.75 year 2009. Land function of 27 gasoline stations unit must be returned. This study is to determine the appropriateness of gasoline Station-Park conversion into RTH based site and situation approach. The scope of this study was limited only to gasoline stations not converted into RTH. The methodology was the combination of AHP (Analytical Hierarchy Process) and ranking method. Site variables were meant for prone to flooding, the width of land for gasoline station, land status. Situation variables were meant for other public space, availability of other gasoline stations, gasoline stations service, road segments, and the proportions of built space. Analysis study used quantitative descriptive analysis. The results were three of the five gasoline stations were congruence to be converted into a green open space (RTH).

  6. Dissolution of multi-component LNAPL gasolines: The effects of weathering and composition

    Science.gov (United States)

    Lekmine, Greg; Bastow, Trevor P.; Johnston, Colin D.; Davis, Greg B.

    2014-05-01

    The composition of light non-aqueous phase liquid (LNAPL) gasoline and other petroleum products changes profoundly over their life once released into aquifers. However limited attention has been given to how such changes affect key parameters such as the activity coefficients which control partitioning of components of petroleum fuel into groundwater and are used to predict long-term risk from fuel releases. Laboratory experiments were conducted on a range of fresh, weathered and synthetic gasoline mixtures designed to mimic the expected changes in composition in an aquifer. Weathered gasoline created under controlled evaporation and water washing, and naturally weathered gasoline, were investigated. Equilibrium concentrations in water and molar fractions in the gasoline mixtures were compared with equilibrium concentrations predicted by Raoult's law assuming ideal behaviour of the solutions. The experiments carried out allowed the relative sensitivity of the activity coefficients of key risk drivers such as benzene, toluene, ethylbenzene and xylene (BTEX) compounds to be quantified with respect to the presence of other types of compounds and where the source LNAPL had undergone different types of weathering. Results differed for the mixtures examined but in some cases higher than predicted dissolved equilibrium concentrations showed non-ideal behaviour for toluene, benzene and xylenes. Comparison of the activity coefficients showed that the naturally weathered gasoline and a 50% evaporated unleaded gasoline present a similar range of values varying between 1.0 and 1.2, suggesting close to ideal partitioning between the LNAPL and water. The fresh and water-washed gasoline had higher values for the activity coefficient, from 1.2 to 1.4, indicating non-ideal partitioning. Results from synthetic mixtures demonstrated that these differences could be due to the different molar fractions of the nC5 and nC6 aliphatic hydrocarbons acting on the molecular interactions

  7. Performance Comparisons and Down Selection of Small Motors for Two-Blade Heliogyro Solar Sail 6U CubeSat

    Science.gov (United States)

    Wiwattananon, Peerawan; Bryant, Robert G.

    2015-01-01

    This report compiles a review of 130 commercial small scale motors (piezoelectric and electric motors) and almost 20 researched-type small scale piezoelectricmotors for potential use in a 2 blades Heliogyro Solar Sail 6U CubeSat. In this application, a motor and gearhead (drive system) will deploy a roll of solar sailthin film (2 um thick)accommodated in a 2U CubeSat (100 x 200 x 100 mm) housing. The application requirements are: space rated, output torque at fulldeployment of 0.8 Nm, reel speed of 3 rpm, drive system weight limited to 150 grams, diameter limited to 50 mm, and the length not to exceed 40 mm. The 50mm diameter limit was imposed as motors with larger diameters would likely weigh too much and use more space on the satellite wall. This would limit theamount of the payload. The motors performance are compared between small scale, volume within 3x102 cm3 (3x105 mm3), commercial electric DC motors,commercial piezoelectric motors, and researched-type (non-commercial) piezoelectric motors extracted from scientific and product literature. The comparisonssuggest that piezoelectric motors without a gearhead exhibit larger output torque with respect to their volume and weight and require less input power toproduce high torque. A commercially available electric motor plus a gearhead was chosen through a proposed selection process to meet the applications designrequirements.

  8. 76 FR 4155 - National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

    Science.gov (United States)

    2011-01-24

    ... 63 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities; and Gasoline Dispensing Facilities; Final...] RIN 2060-AP16 National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

  9. 78 FR 72033 - Approval and Promulgation of Implementation Plans; Florida: General Requirements and Gasoline...

    Science.gov (United States)

    2013-12-02

    ...] Approval and Promulgation of Implementation Plans; Florida: General Requirements and Gasoline Vapor Control... Protection (FDEP), related to the State's gasoline vapor recovery program. This correcting amendment corrects... . SUPPLEMENTARY INFORMATION: This action corrects inadvertent errors in a rulemaking related to Florida's gasoline...

  10. A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends

    Science.gov (United States)

    Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.

    2009-01-01

    A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…

  11. Health assessment of gasoline and fuel oxygenate vapors: subchronic inhalation toxicity.

    Science.gov (United States)

    Clark, Charles R; Schreiner, Ceinwen A; Parker, Craig M; Gray, Thomas M; Hoffman, Gary M

    2014-11-01

    Sprague Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess whether their use in gasoline influences the hazard of evaporative emissions. Test substances included vapor condensates prepared from an EPA described "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/m(3) and exposures were for 6h/day, 5days/week for 13weeks. A portion of the animals were maintained for a four week recovery period to determine the reversibility of potential adverse effects. Increased kidney weight and light hydrocarbon nephropathy (LHN) were observed in treated male rats in all studies which were reversible or nearly reversible after 4weeks recovery. LHN is unique to male rats and is not relevant to human toxicity. The no observed effect level (NOAEL) in all studies was 10,000mg/m(3), except for G/MTBE (<2000) and G/TBA (2000). The results provide evidence that use of the studied oxygenates are unlikely to increase the hazard of evaporative emissions during refueling, compared to those from gasoline alone. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Consumer choice between ethanol and gasoline: Lessons from Brazil and Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Pacini, Henrique, E-mail: henrique.pacini@energy.kth.se; Silveira, Semida, E-mail: semida.silveira@energy.kth.se

    2011-11-15

    The introduction of flex-fuel vehicles since 2003 has made possible for Brazilian drivers to choose between high ethanol blends or gasoline depending on relative prices and fuel economies. In Sweden, flex-fuel fleets were introduced in 2005. Prices and demand data were examined for both Brazil and Sweden. Bioethanol has been generally the most cost-efficient fuel in Brazil, but not for all states. In any case, consumers in Brazil have opted for ethanol even when this was not the optimal economic choice. In Sweden, a different behavior was observed when falling gasoline prices made E85 uneconomical in late 2008. In a context of international biofuels expansion, the example of E85 in Sweden indicates that new markets could experience different consumer behavior than Brazil: demand falls rapidly with reduced price differences between ethanol and gasoline. At the same time, rising ethanol demand and lack of an international market with multiple biofuel producers could lead to higher domestic prices in Brazil. Once the limit curve is crossed, the consumer might react by shifting back to the usage of gasoline. - Research Highlights: > Brazil and Sweden both have infrastructure for high fuel ethanol blends. > Flex-fuel vehicles enable competition between ethanol and gasoline in fuel markets. > Data suggests that consumers make their fuel choice based mainly on prices. > Consumers in Sweden appear to be more price-sensitive than their Brazilian counterparts. > In the absence of international markets, high ethanol prices may drive consumers back to gasoline.

  13. Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: A case study for gasoline hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Matthew; McKone, Thomas E.; Foster, Karen L.; Maddalena, Randy L.; Parkerton, Thomas F.; Mackay, Don

    2004-02-01

    Mass balance models of chemical fate and transport can be applied in ecological risk assessments for quantitative estimation of concentrations in air, water, soil and sediment. These concentrations can, in turn, be used to estimate organism exposures and ultimately internal tissue concentrations that can be compared to mode-of-action-based critical body residues that correspond to toxic effects. From this comparison, risks to the exposed organism can be evaluated. To illustrate the practical utility of fate models in ecological risk assessments of commercial products, the EQC model and a simple screening level biouptake model including three organisms, (a bird, a mammal and a fish) is applied to gasoline. In this analysis, gasoline is divided into 24 components or ''blocks'' with similar environmental fate properties that are assumed to elicit ecotoxicity via a narcotic mode of action. Results demonstrate that differences in chemical properties and mode of entry into the environment lead to profound differences in the efficiency of transport from emission to target biota. We discuss the implications of these results and insights gained into the regional fate and ecological risks associated with gasoline. This approach is particularly suitable for assessing mixtures of components that have similar modes of action. We conclude that the model-based methodologies presented are widely applicable for screening level ecological risk assessments that support effective chemicals management.

  14. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?

    International Nuclear Information System (INIS)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    2000-01-01

    Fuel cell vehicles can be powered directly by hydrogen or, with an onboard chemical processor, other liquid fuels such as gasoline or methanol. Most analysts agree that hydrogen is the preferred fuel in terms of reducing vehicle complexity, but one common perception is that the cost of a hydrogen infrastructure would be excessive. According to this conventional wisdom, the automobile industry must therefore develop complex onboard fuel processors to convert methanol, ethanol or gasoline to hydrogen. We show here, however, that the total fuel infrastructure cost to society including onboard fuel processors may be less for hydrogen than for either gasoline or methanol, the primary initial candidates currently under consideration for fuel cell vehicles. We also present the local air pollution and greenhouse gas advantages of hydrogen fuel cell vehicles compared to those powered by gasoline or methanol. (Author)

  15. Suicide attempt by intravenous injection of gasoline: a case report.

    Science.gov (United States)

    Fink, Katrin; Kuehnemund, Alexander; Schwab, Tilmann; Geibel-Zehender, Annette; Bley, Thorsten; Bode, Christoph; Busch, Hans-Joerg

    2010-11-01

    There is much experience with intoxication by aspiration of volatile hydrocarbon products, whereas intravenous injection of these distillates is rare. There are only few reports that describe a wide variety of associated pathological changes, predominantly in the pulmonary system. We report the case of an intravenous self-injection of gasoline by a young man in a suicide attempt. Immediately after injecting gasoline, the 22-year-old man developed bradycardia, hypotension, and increasing dyspnea. Computed tomography scan of the chest showed signs consistent with diffuse alveolar-toxic damage to the lung. These symptoms and radiological findings are similar to those commonly observed after inhalation of this type of substance. This may have been due to diffusion of gasoline into the alveoli, where its presence leads to this characteristic damage. In this patient, gasoline entered the intramuscular tissue, and the patient developed a soft-tissue phlegmon at the forearm. At operation, gas emanation and superficial necrosis were noted. Nevertheless, the patient's outcome was good, with full recovery within 3 weeks. The major changes in this patient after intravenous injection of gasoline were in the pulmonary system, including hypoxemia and radiological findings that could be related to an exhalation of the volatile substance. In addition, gas in the musculature of the injection area caused a soft-tissue phlegmon. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. 40 CFR 80.1348 - What gasoline sample retention requirements apply to refiners and importers?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Sampling, Testing and Retention Requirements § 80.1348 What gasoline sample retention requirements...

  17. Energy-efficient electric motors study

    Science.gov (United States)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  18. Impact of a new gasoline benzene regulation on ambient air pollutants in Anchorage, Alaska

    Science.gov (United States)

    Yano, Yuriko; Morris, Stephen S.; Salerno, Christopher; Schlapia, Anne M.; Stichick, Mathew

    2016-05-01

    The purpose of this study was to quantify the impact of a new U.S. Environmental Protection Agency (EPA) standard that limits the amount of benzene allowed in gasoline on ambient benzene concentrations. This new standard, together with two companion regulations that limit cold-temperature automotive emissions and the permeability of portable fuel containers, was expected to lower the levels of ambient benzene and other volatile organic compounds (VOCs) nationwide. In this study the impact of the gasoline benzene standard was evaluated in Anchorage, Alaska in a two-phase ambient air monitoring study conducted before and after the new gasoline standard was implemented. Gasoline sold by Anchorage retailers was also evaluated in each phase to determine the content of benzene and other gasoline components. The average benzene content in Anchorage gasoline was reduced by 70%, from 5.05% (w/w) to 1.53% (w/w) following the implementation of the standard. The annual mean ambient benzene concentration fell by 51%, from 0.99 ppbv in Phase 1 to 0.49 ppbv in Phase 2. Analysis suggests the change in gasoline benzene content alone reduced benzene emissions by 46%. The changes in toluene, ethylbenzene, and xylene content in gasoline between Phase 1 and 2 were relatively small and the differences in the mean ambient concentrations of these compounds between phases were modest. Our results suggest that cold winter communities in high latitude and mountainous regions may benefit more from the gasoline benzene standard because of high benzene emissions resulting from vehicle cold start and a tendency to develop atmospheric stagnation conditions in the winter.

  19. 40 CFR 86.335-79 - Gasoline-fueled engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine test cycle. 86....335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in... operating the engine at the higher approved load setting during cycle 1 and at the lower approved load...

  20. Causes of Accidents among Commercial Motorcyclists (Okada) in ...

    African Journals Online (AJOL)

    Motor cycle accidents have become the most serious problem threatening the entire Nigerian population. It is against this background that this study attempted to investigate the causes of accidents among commercial motorcyclists in Borno State, Nigeria. The population of the study consisted of all the commercial ...

  1. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Science.gov (United States)

    2010-07-01

    ... annual averaging period thereafter, gasoline produced at each refinery of a refiner or imported by an... annual averaging period thereafter, gasoline produced at each refinery of a refiner or imported by an... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL...

  2. 40 CFR 80.335 - What gasoline sample retention requirements apply to refiners and importers?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline sample retention... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention Requirements for Refiners and Importers § 80.335 What gasoline sample...

  3. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Science.gov (United States)

    2010-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...

  4. 40 CFR 80.1015 - Who is liable for violations under the gasoline toxics program?

    Science.gov (United States)

    2010-07-01

    ... gasoline toxics program? 80.1015 Section 80.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Violation Provisions § 80.1015 Who is liable for violations under the gasoline toxics program? (a) Persons liable for...

  5. 40 CFR 80.810 - Who shall register with EPA under the gasoline toxics program?

    Science.gov (United States)

    2010-07-01

    ... gasoline toxics program? 80.810 Section 80.810 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics General Information § 80.810 Who shall register with EPA under the gasoline toxics program? (a) Refiners and importers...

  6. Health assessment of gasoline and fuel oxygenate vapors: generation and characterization of test materials.

    Science.gov (United States)

    Henley, Michael; Letinski, Daniel J; Carr, John; Caro, Mario L; Daughtrey, Wayne; White, Russell

    2014-11-01

    In compliance with the Clean Air Act regulations for fuel and fuel additive registration, the petroleum industry, additive manufacturers, and oxygenate manufacturers have conducted comparative toxicology testing on evaporative emissions of gasoline alone and gasoline containing fuel oxygenates. To mimic real world exposures, a generation method was developed that produced test material similar in composition to the re-fueling vapor from an automotive fuel tank at near maximum in-use temperatures. Gasoline vapor was generated by a single-step distillation from a 1000-gallon glass-lined kettle wherein approximately 15-23% of the starting material was slowly vaporized, separated, condensed and recovered as test article. This fraction was termed vapor condensate (VC) and was prepared for each of the seven test materials, namely: baseline gasoline alone (BGVC), or gasoline plus an ether (G/MTBE, G/ETBE, G/TAME, or G/DIPE), or gasoline plus an alcohol (G/EtOH or G/TBA). The VC test articles were used for the inhalation toxicology studies described in the accompanying series of papers in this journal. These studies included evaluations of subchronic toxicity, neurotoxicity, immunotoxicity, genotoxicity, reproductive and developmental toxicity. Results of these studies will be used for comparative risk assessments of gasoline and gasoline/oxygenate blends by the US Environmental Protection Agency. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    International Nuclear Information System (INIS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-01-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 10 11 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m −3 , which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  8. 40 CFR 80.820 - What gasoline is subject to the toxics performance requirements of this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline is subject to the toxics... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Toxics Gasoline Toxics Performance Requirements § 80.820 What gasoline is subject to the toxics performance...

  9. Particle number emissions of gasoline hybrid electric vehicles; Partikelanzahl-Emission bei Hybridfahrzeugen mit Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Scott [Horiba Instruments Inc., Ann Arbor, MI (United States)

    2012-04-15

    Hybrid Electric Vehicles (HEV) are commonly reputed to be environmentally friendly. Different studies show that this assumption raises some questions in terms of particle number emissions. Against the background that upcoming emission standards will not only limit particle matter emissions but also particle number emissions for gasoline engines, the exhaust behaviour of downsized gasoline engines used in HEV should be investigated more extensively. A Horiba study compares the particle number emissions of a gasoline vehicle to those of a gasoline powered HEV. (orig.)

  10. An analysis of strategic price setting in retail gasoline markets

    Science.gov (United States)

    Jaureguiberry, Florencia

    This dissertation studies price-setting behavior in the retail gasoline industry. The main questions addressed are: How important is a retail station's brand and proximity to competitors when retail stations set price? How do retailers adjust their pricing when they cater to consumers who are less aware of competing options or have less discretion over where they purchase gasoline? These questions are explored in two separate analyses using a unique datasets containing retail pricing behavior of stations in California and in 24 different metropolitan areas. The evidence suggests that brand and location generate local market power for gasoline stations. After controlling for market and station characteristics, the analysis finds a spread of 11 cents per gallon between the highest and the lowest priced retail gasoline brands. The analysis also indicates that when the nearest competitor is located over 2 miles away as opposed to next door, consumers will pay an additional 1 cent per gallon of gasoline. In order to quantify the significance of local market power, data for stations located near major airport rental car locations are utilized. The presumption here is that rental car users are less aware or less sensitive to fueling options near the rental car return location and are to some extent "captured consumers". Retailers located near rental car locations have incentives to adjust their pricing strategies to exploit this. The analysis of pricing near rental car locations indicates that retailers charge prices that are 4 cent per gallon higher than other stations in the same metropolitan area. This analysis is of interest to regulators who are concerned with issues of consolidation, market power, and pricing in the retail gasoline industry. This dissertation concludes with a discussion of the policy implications of the empirical analysis.

  11. Dating gasoline releases using ground-water chemical analyses: Case studies

    International Nuclear Information System (INIS)

    Worthington, M.A.; Perez, E.J.

    1993-01-01

    This paper presents case studies where geochemical data were analyzed in spatial and temporal relation to documented gasoline releases at typical service station sites. In particular, the authors present ground-water analytical data for sites where (1) the date of the gasoline release is known with a good degree of confidence, (2) the release is confined to a relatively short period of time so as to be considered essentially instantaneous, (3) antecedent geochemical condition are known or can be reasonably expected to have been either unaffected by previous hydrocarbon impacts or minor in comparison to known release events, and (4) where geologic materials can be classified as to structure and composition. The authors' intent is to provide empirical data regarding the hydrogeological fate of certain gasoline components, namely the compounds benzene, toluene, ethylbenzene and xylene isomers (BTEX) and methyl-tertiary-butyl ether (MTBE). Particular emphasis is placed on analysis of gasoline weathering as a means of comparing releases in given hydrogeologic environments. Trends seen in a variety of comparative hydrocarbon compound ratios may provide a basis for evaluating relative release dates

  12. Oxidation of Alkane Rich Gasoline Fuels and their Surrogates in a Motored Engine

    KAUST Repository

    Shankar, Vijai S B

    2015-03-30

    The validation of surrogates formulated using a computational framework by Ahmed et al.[1]for two purely paraffinic gasoline fuels labelled FACE A and FACE C was undertaken in this study. The ability of these surrogate mixtures to be used in modelling LTC engines was accessed by comparison of their low temperature oxidation chemistry with that of the respective parent fuel as well as a PRF based on RON. This was done by testing the surrogate mixtures in a modified Cooperative Fuels Research (CFR) engine running in Controlled Autoignition Mode (CAI) mode. The engine was run at a constant speed of 600 rpm at an equivalence ratio of 0.5 with the intake temperature at 150 °C and a pressure of 98 kPa. The low temperature reactivity of the fuels were studied by varying the compression ratio of the engine from the point were very only small low temperature heat release was observed to a point beyond which auto-ignition of the fuel/air mixture occurred. The apparent heat release rates of different fuels was calculated from the pressure histories using first law analysis and the CA 50 times of the low temperature heat release (LTHR) were compared. The surrogates reproduced the cool flame behavior of the parent fuels better than the PRF across all compression ratios.

  13. Oxidation of Alkane Rich Gasoline Fuels and their Surrogates in a Motored Engine

    KAUST Repository

    Shankar, Vijai S B; Al-Qurashi, Khalid; Ahmed, Ahfaz; Atef, Nour; Chung, Suk-Ho; Roberts, William L.; Sarathy, Mani

    2015-01-01

    The validation of surrogates formulated using a computational framework by Ahmed et al.[1]for two purely paraffinic gasoline fuels labelled FACE A and FACE C was undertaken in this study. The ability of these surrogate mixtures to be used in modelling LTC engines was accessed by comparison of their low temperature oxidation chemistry with that of the respective parent fuel as well as a PRF based on RON. This was done by testing the surrogate mixtures in a modified Cooperative Fuels Research (CFR) engine running in Controlled Autoignition Mode (CAI) mode. The engine was run at a constant speed of 600 rpm at an equivalence ratio of 0.5 with the intake temperature at 150 °C and a pressure of 98 kPa. The low temperature reactivity of the fuels were studied by varying the compression ratio of the engine from the point were very only small low temperature heat release was observed to a point beyond which auto-ignition of the fuel/air mixture occurred. The apparent heat release rates of different fuels was calculated from the pressure histories using first law analysis and the CA 50 times of the low temperature heat release (LTHR) were compared. The surrogates reproduced the cool flame behavior of the parent fuels better than the PRF across all compression ratios.

  14. 40 CFR 80.553 - Under what conditions may the small refiner gasoline sulfur standards be extended for a small...

    Science.gov (United States)

    2010-07-01

    ... gasoline produced by the refinery must meet the gasoline sulfur standards under subpart H of this Part as... all succeeding compliance periods and all gasoline produced by the refinery must meet the gasoline... applicable). Upon such effective date, all gasoline produced by the refiner must meet the gasoline sulfur...

  15. 77 FR 44235 - Forms and Procedures for Submitting Compliance Reports: Requirements Pertaining to Reformulated...

    Science.gov (United States)

    2012-07-27

    ... Pending; DSF0900: Motor Vehicle Diesel Fuel Sulfur Pre-Compliance Report, OMB Control Number 2060-0308... information; Diesel fuel; Fuel additives; Gasoline; Imports; Motor vehicle pollution; Reporting and... requirements pertaining to reformulated gasoline, anti-dumping, gasoline sulfur, ultra-low sulfur diesel...

  16. Economical motor protection using microcomputer technology

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, N.

    1983-09-01

    A trend to design new motors closer to their design limits and the high cost of plant shutdown has increased the need for better protection of smaller three phase motors. A single chip microcomputer relay can be applied to replace thermal overloads which are of limited effectiveness on low and medium voltage machines with comprehensive, economical motor protection. The requirement for different protection features and how they are achieved is presented. All the protection features discussed are commercially available in a compact unit that uses a single chip microcomputer.

  17. Intermediate Volatility Organic Compound Emissions from On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines.

    Science.gov (United States)

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2016-04-19

    Dynamometer experiments were conducted to characterize the intermediate volatility organic compound (IVOC) emissions from a fleet of on-road gasoline vehicles and small off-road gasoline engines. IVOCs were quantified through gas chromatography/mass spectrometry analysis of adsorbent samples collected from a constant volume sampler. The dominant fraction (>80%, on average) of IVOCs could not be resolved on a molecular level. These unspeciated IVOCs were quantified as two chemical classes (unspeciated branched alkanes and cyclic compounds) in 11 retention-time-based bins. IVOC emission factors (mg kg-fuel(-1)) from on-road vehicles varied widely from vehicle to vehicle, but showed a general trend of lower emissions for newer vehicles that met more stringent emission standards. IVOC emission factors for 2-stroke off-road engines were substantially higher than 4-stroke off-road engines and on-road vehicles. Despite large variations in the magnitude of emissions, the IVOC volatility distribution and chemical characteristics were consistent across all tests and IVOC emissions were strongly correlated with nonmethane hydrocarbons (NMHCs), primary organic aerosol and speciated IVOCs. Although IVOC emissions only correspond to approximately 4% of NMHC emissions from on-road vehicles over the cold-start unified cycle, they are estimated to produce as much or more SOA than single-ring aromatics. Our results clearly demonstrate that IVOCs from gasoline engines are an important class of SOA precursors and provide observational constraints on IVOC emission factors and chemical composition to facilitate their inclusion into atmospheric chemistry models.

  18. Initial mandate concerning the problem of fluctuating gasoline prices and their effect on the Quebec economy : Final report

    International Nuclear Information System (INIS)

    Guillot, R.; Ford, N. ed.

    2002-06-01

    Over a three-year period covering May 1998 to May 2001, the average price of gasoline in Quebec slowly increased from 57.1 cent per litre to 82.6 cent per litre. This 45 per cent increase in the price of gasoline worried consumers and had an effect on commercial and industrial operations throughout the province. This situation prompted the Commission de l'economie et du travail (Commission on Labour and the Economy) to initiate a mandate to examine the problem. In October 2001, experts representing energy and taxation sectors were consulted and presentations made by 17 people and organizations. The Ministre des Ressources Naturelles (Minister of Natural Resources) and the President de la Regie de l'Energie were heard in a public consultation forum. In the first part of the document, the authors explained the mechanism by which the price of gasoline and its various components are determined, identified the elements responsible for the increases in prices, and compare the prices in the different parts of the province. In part two, the responsibilities and powers of the Ministry of Natural Resources and the Regie de l'Energie with regard to petroleum products were examined. Part three described the opinions expressed and proposed recommendations obtained during the public consultation process and they were grouped under four headings: taxation, competition, consumer information, and energy savings. The final part of the document presented the recommendations of the Commission on Labour and the Economy. 15 refs., 5 tabs

  19. One-pot aqueous phase catalytic conversion of sorbitol to gasoline over nickel catalyst

    International Nuclear Information System (INIS)

    Weng, Yujing; Qiu, Songbai; Xu, Ying; Ding, Mingyue; Chen, Lungang; Zhang, Qi; Ma, Longlong; Wang, Tiejun

    2015-01-01

    Highlights: • Directly production gasoline (C5–C12 alkanes) from biomass-derived sugar alcohol sorbitol. • Temperature of STG (553–593 K) was lower than that of traditional methanol to gasoline (MTG) (623–773 K). • Gasoline yield of 46.9% and C7–C12 hydrocarbons reached up to 45.5% in the gasoline products. - Abstract: The carbon chain extension and hydrodeoxygenation steps play critical roles in the high-energy-density hydrocarbons production. In this paper, a systematic study had been carried out to investigate one-pot aqueous phase catalytic conversion of sorbitol to gasoline (STG) over bifunctional Ni-based catalysts. Characterization technologies of N 2 physisorption, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and NH 3 temperature-programmed desorption (NH 3 -TPD) were used to study the textural properties, phase compositions, acid behavior and morphologies of the catalysts. The catalytic performances were tested in a fixed bed reactor. It was found that the physically mixed Ni/HZSM-5 and Ni/silica-gel (mesoporous SG) catalyst realized the carbon chain extension and exhibited excellent performances on hydrodeoxygenation (HDO) reaction (46.9% of gasoline (C5–C12) yield and 45.5% of C7–C12 hydrocarbons in the gasoline products). Especially, the temperature of STG (553–593 K) was lower obviously than that of the traditional methanol to gasoline (MTG) process (623–773 K). It provided a novel transformation of sorbitol to long-chain alkanes by one-pot process over the bifunctional catalyst (Ni@HZSM-5/SG), wherein hydrodeoxygenation, ketonization and aldol condensation steps were integrated

  20. Consumer choice between ethanol and gasoline: Lessons from Brazil and Sweden

    International Nuclear Information System (INIS)

    Pacini, Henrique; Silveira, Semida

    2011-01-01

    The introduction of flex-fuel vehicles since 2003 has made possible for Brazilian drivers to choose between high ethanol blends or gasoline depending on relative prices and fuel economies. In Sweden, flex-fuel fleets were introduced in 2005. Prices and demand data were examined for both Brazil and Sweden. Bioethanol has been generally the most cost-efficient fuel in Brazil, but not for all states. In any case, consumers in Brazil have opted for ethanol even when this was not the optimal economic choice. In Sweden, a different behavior was observed when falling gasoline prices made E85 uneconomical in late 2008. In a context of international biofuels expansion, the example of E85 in Sweden indicates that new markets could experience different consumer behavior than Brazil: demand falls rapidly with reduced price differences between ethanol and gasoline. At the same time, rising ethanol demand and lack of an international market with multiple biofuel producers could lead to higher domestic prices in Brazil. Once the limit curve is crossed, the consumer might react by shifting back to the usage of gasoline. - Research highlights: → Brazil and Sweden both have infrastructure for high fuel ethanol blends. → Flex-fuel vehicles enable competition between ethanol and gasoline in fuel markets. → Data suggests that consumers make their fuel choice based mainly on prices. → Consumers in Sweden appear to be more price-sensitive than their Brazilian counterparts. → In the absence of international markets, high ethanol prices may drive consumers back to gasoline.

  1. Green Gasoline from Wood using Carbona Gasification and Topsoe TIGAS Process

    Energy Technology Data Exchange (ETDEWEB)

    Udengaard, Niels [Haldor Topsoe, Inc., Houston, TX (United States); Knight, Richard [Haldor Topsoe, Inc., Houston, TX (United States); Wendt, Jesper [Haldor Topsoe, Inc., Houston, TX (United States); Patel, Jim [Haldor Topsoe, Inc., Houston, TX (United States); Walston, Kip [Haldor Topsoe, Inc., Houston, TX (United States); Jokela, Pekka [Haldor Topsoe, Inc., Houston, TX (United States); Adams, Cheryl [Haldor Topsoe, Inc., Houston, TX (United States)

    2015-02-19

    This final report presents the results of a four-year technology demonstration project carried out by a consortium of companies sponsored in part by a $25 million funding by the Department of Energy (DOE) under the American Recovery and Reinvestment Act (ARRA). The purpose of the project was to demonstrate a new, economical technology for the thermochemical conversion of woody biomass into gasoline and to demonstrate that the gasoline produced in this way is suitable for direct inclusion in the already existing gasoline pool. The process that was demonstrated uses the Andritz-Carbona fluidized-bed steam-oxygen gasification technology and advanced tar reforming catalytic systems to produce a clean syngas from waste wood, integrated conventional gas cleanup steps, and finally utilizes Haldor Topsoe’s (Topsoe) innovative Topsoe Improved Gasoline Synthesis (TIGASTM) syngas-to-gasoline process. Gas Technology Institute (GTI) carried out the bulk of the testing work at their Flex Fuel development facility in Des Plaines, Illinois; UPM in Minnesota supplied and prepared the feedstocks, and characterization of liquid products was conducted in Phillips 66 labs in Oklahoma. The produced gasoline was used for a single-engine emission test at Southwest Research Institute (SwRI®) in San Antonio, TX, as well as in a fleet test at Transportation Research Center, Inc. (TRC Inc.) in East Liberty, Ohio. The project benefited from the use of existing pilot plant equipment at GTI, including a 21.6 bone dry short ton/day gasifier, tar reformer, Morphysorb® acid gas removal, associated syngas cleanup and gasifier feeding and oxygen systems.

  2. Improving motor reliability in nuclear power plants: Volume 2, Functional indicator tests on a small electric motor subjected to accelerated aging

    International Nuclear Information System (INIS)

    Subudhi, M.; Taylor, J.H.; Lofaro, R.; Sugarman, A.C.; Sheets, M.W.; Skreiner, K.M.

    1987-11-01

    A ten horsepower electric motor was artificially aged by plug reverse cycling for test purposes. The motor was manufactured in 1967 and was in service at a commercial nuclear power plant for twelve years. Various tests were performed on the motor throughout the aging process. The motor failed after 3.79 million reversals (3 seconds per reversal) over seven months of testing. Each test parameter was trended to assess its suitability in monitoring aging and service wear degradation in motors. Results and conclusions are discussed relative to the applicability of the tests performed to nuclear power plant motor maintenance programs. 15 refs., 28 figs., 1 tab

  3. Particulate matter speciation profiles for light-duty gasoline vehicles in the United States.

    Science.gov (United States)

    Sonntag, Darrell B; Baldauf, Richard W; Yanca, Catherine A; Fulper, Carl R

    2014-05-01

    Representative profiles for particulate matter particles less than or equal to 2.5 microm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the US. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data. PM2.5 speciation profiles were

  4. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars.

    Science.gov (United States)

    Platt, S M; El Haddad, I; Pieber, S M; Zardini, A A; Suarez-Bertoa, R; Clairotte, M; Daellenbach, K R; Huang, R-J; Slowik, J G; Hellebust, S; Temime-Roussel, B; Marchand, N; de Gouw, J; Jimenez, J L; Hayes, P L; Robinson, A L; Baltensperger, U; Astorga, C; Prévôt, A S H

    2017-07-13

    Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NO X ). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

  5. The impact of gasoline price fluctuations on lodging demand for US brand hotels

    International Nuclear Information System (INIS)

    Walsh, Kate; Enz, Cathy A.; Canina, Linda

    2004-01-01

    Analyzing US brand hotels, over a 13-year period, this study provides empirical evidence of a significant negative relationship between gasoline prices and demand for certain lodging products, controlling for economic factors (i.e. gross domestic product and population density). Applying principles from microeconomic demand theory to the literature on gasoline price elasticities, consumer demographics and lodging demand, a set of hypotheses were devised to test the relationship between gasoline prices and lodging demand for specific hotel locations and price segments. Using fixed effects models, the results reveal that lodging demand decreases as gasoline prices rise in all segments except upper-upscale and all locations except urban areas. Hotels in midscale without food and beverage and economy market segments, in resort, suburban and highway locations, exhibit the greatest association between gasoline price shifts and demand. Implications of these findings are discussed for both hospitality research and practice. (Author)

  6. The impact of gasoline price fluctuations on lodging demand for US brand hotels

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Kate; Enz, Cathy A.; Canina, Linda [Cornell Univ., School of Hotel Administration, Ithaca, NY (United States)

    2004-12-01

    Analyzing US brand hotels, over a 13-year period, this study provides empirical evidence of a significant negative relationship between gasoline prices and demand for certain lodging products, controlling for economic factors (i.e. gross domestic product and population density). Applying principles from microeconomic demand theory to the literature on gasoline price elasticities, consumer demographics and lodging demand, a set of hypotheses were devised to test the relationship between gasoline prices and lodging demand for specific hotel locations and price segments. Using fixed effects models, the results reveal that lodging demand decreases as gasoline prices rise in all segments except upper-upscale and all locations except urban areas. Hotels in midscale without food and beverage and economy market segments, in resort, suburban and highway locations, exhibit the greatest association between gasoline price shifts and demand. Implications of these findings are discussed for both hospitality research and practice. (Author)

  7. Neurodevelopmental effects of inhaled vapors of gasoline and ethanol in rats

    Science.gov (United States)

    Gasoline-ethanol blends comprise the major fraction of the fuel used in the US automotive fleet. To address uncertainties regarding the health risks associated with exposure to gasoline with more than 10% ethanol, we are assessing the effects of prenatal exposure to inhaled vapor...

  8. Lean Gasoline System Development for Fuel Efficient Small Cars

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Stuart R. [General Motors LLC, Pontiac, MI (United States)

    2013-11-25

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  9. Comparison of combustion characteristics of n-butanol/ethanol–gasoline blends in a HCCI engine

    International Nuclear Information System (INIS)

    He, Bang-Quan; Liu, Mao-Bin; Zhao, Hua

    2015-01-01

    Highlights: • The blends with alcohol autoignite early in the conditions highly diluted by exhaust. • n-Butanol is more reactive than ethanol in the blend with the same alcohol content. • Autoignition timing delays with retarding IVO timing for all alcohol–gasoline blends. • Advanced autoignition for the blends with alcohol leads to lower thermal efficiency. - Abstract: As a sustainable biofuel, n-butanol can be used in conventional spark ignition (SI) and compression ignition (CI) engines in order to reduce the dependence on fossil fuel. Homogeneous charge compression ignition (HCCI) is a novel combustion to improve the thermal efficiency of conventional SI engines at part loads. To understand the effect of alcohol structure on HCCI combustion under stoichiometric conditions highly diluted by exhaust gases, the combustion characteristics of n-butanol, ethanol and their blends with gasoline were investigated on a single cylinder port fuel injection gasoline engine with fixed intake/exhaust valve lifts at the same operating conditions in this study. The results show that autoignition timing for alcohol–gasoline blends is dependent on alcohol types and its concentration in the blend, engine speed and intake valve opening (IVO)/exhaust valve closing (EVC) timing. In the operating conditions with the residual gases more than 38% by mass in the mixture, alcohol–gasoline blends autoignite more easily than gasoline. Autoignition timing for n-butanol–gasoline blend is earlier than that for ethanol–gasoline blend with the same alcohol volume fraction at 1500 rpm in most cases while the autoignition timings for the blends with alcohol are relatively close at 2000 rpm at the same IVO/EVC timing. Combustion stability is improved with advanced EVC timing at a fixed IVO timing, which is benefit for the improvement in the thermal efficiency in the case of alcohol–gasoline blends. In addition, n-butanol–gasoline blends autoignite earlier than their ethanol–gasoline

  10. Replacing gasoline with corn ethanol results in significant environmental problem-shifting.

    Science.gov (United States)

    Yang, Yi; Bae, Junghan; Kim, Junbeum; Suh, Sangwon

    2012-04-03

    Previous studies on the life-cycle environmental impacts of corn ethanol and gasoline focused almost exclusively on energy balance and greenhouse gas (GHG) emissions and largely overlooked the influence of regional differences in agricultural practices. This study compares the environmental impact of gasoline and E85 taking into consideration 12 different environmental impacts and regional differences among 19 corn-growing states. Results show that E85 does not outperform gasoline when a wide spectrum of impacts is considered. If the impacts are aggregated using weights developed by the National Institute of Standards and Technology (NIST), overall, E85 generates approximately 6% to 108% (23% on average) greater impact compared with gasoline, depending on where corn is produced, primarily because corn production induces significant eutrophication impacts and requires intensive irrigation. If GHG emissions from the indirect land use changes are considered, the differences increase to between 16% and 118% (33% on average). Our study indicates that replacing gasoline with corn ethanol may only result in shifting the net environmental impacts primarily toward increased eutrophication and greater water scarcity. These results suggest that the environmental criteria used in the Energy Independence and Security Act (EISA) be re-evaluated to include additional categories of environmental impact beyond GHG emissions.

  11. Associations of cycling with urban sprawl and the gasoline price.

    Science.gov (United States)

    Rashad, Inas

    2009-01-01

    Determine the relationships between cycling and urban sprawl and between cycling and the gasoline price. Cross-sectional multivariate regression analyses using pooled data from two individual-level national surveys to analyze the effects of variations in levels of urban sprawl and the gasoline price on cycling as a form of physical activity. Metropolitan areas representative of the U.S. population, 1990 to 2001. Behavioral Risk Factor Surveillance System: 146,730 individuals at least 18-years-old in the United States; Nationwide Personal Transportation Survey: 73,903 individuals at least 18-years-old in the United States. Self-reported information on bicycling served as the dependent variable. Urban sprawl and the gasoline price served as key independent variables. Living in a metropolitan area with a lower degree of urban sprawl increased the probability of cycling in the past month by 3.4 to 4.4 percentage points and 1.6 to 2.1 percentage points from the means for men and women, respectively. Increasing the gasoline price by one dollar increased the probability of cycling by 4.3 to 4.7 percentage points and 2.9 to 3.5 percentage points for men and women, respectively. Results indicate that the prevalence of cycling is higher in less sprawling areas and areas with higher gasoline prices. More research is needed to refine results on how individuals respond to incentives and the roles that monetary and time costs play in improving public health.

  12. Oxygenated gasoline release in the unsaturated zone - Part 1: Source zone behavior.

    Science.gov (United States)

    Freitas, Juliana G; Barker, James F

    2011-11-01

    Oxygenates present in gasoline, such as ethanol and MTBE, are a concern in subsurface contamination related to accidental spills. While gasoline hydrocarbon compounds have low solubility, MTBE and ethanol are more soluble, ethanol being completely miscible with water. Consequently, their fate in the subsurface is likely to differ from that of gasoline. To evaluate the fate of gasoline containing oxygenates following a release in the unsaturated zone shielded from rainfall/recharge, a controlled field test was performed at Canadian Forces Base Borden, in Ontario. 200L of a mixture composed of gasoline with 10% ethanol and 4.5% MTBE was released in the unsaturated zone, into a trench 20cm deep, about 32cm above the water table. Based on soil cores, most of the ethanol was retained in the source, above the capillary fringe, and remained there for more than 100 days. Ethanol partitioned from the gasoline to the unsaturated pore-water and was retained, despite the thin unsaturated zone at the site (~35cm from the top of the capillary fringe to ground surface). Due to its lower solubility, most of the MTBE remained within the NAPL as it infiltrated deeper into the unsaturated zone and accumulated with the gasoline on top of the depressed capillary fringe. Only minor changes in the distribution of ethanol were noted following oscillations in the water table. Two methods to estimate the capacity of the unsaturated zone to retain ethanol are explored. It is clear that conceptual models for sites impacted by ethanol-fuels must consider the unsaturated zone. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Inventory of Greenhouse Gases Emissions from Gasoline and Diesel Consumption in Nigeria

    Directory of Open Access Journals (Sweden)

    S. O. Giwa

    2017-06-01

    Full Text Available Emissions from fossil fuel combustion are of global concern due to their negative effects on public health and environment. This paper is an inventory of the greenhouse gases (GHGs released into the environment through consumption of fuels (gasoline and diesel in Nigeria from 1980 to 2014. The fuel consumption data for the period in view were sourced from bulletins released by Nigeria National Petroleum Corporation, (NNPC and were utilized for GHGs estimation based on default emission factors (69300 kg/TJ (CO2; gasoline, 74100 kg/TJ (CO2; diesel, 18 kg/TJ (CH4; gasoline, 3.85 kg/TJ (CH4; diesel, 1.9 kg/TJ (N2O; gasoline and 2.25 kg/TJ (N2O; diesel. In addition, the uncertainty and sensitivity analyses associated with the inventory were carried out. Total amount of GHGs emitted into the environment for the period under consideration was 7.30 x 108 tCO2 e (5.20 x 108 tCO2 e and 2.10 x 108 tCO2 e of gasoline and diesel, respectively. It is worth noting that gasoline consumption accounted for 71.23% of the total amount of GHGs with CO2 making up 98.72 % (CH4 = 1.39 % and N2O = 0.61 % of the emissions. For this study, uncertainty of estimate was between -80.93 % and 78.36 % while volume of diesel is more sensitive than the volume of gasoline of the input parameters. National policy and enforcement on low or neutral emission fuels utilization are amongst the recommended actions toward reducing GHG emissions in the country.

  14. Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest

    KAUST Repository

    Selim, Hatem; Mohamed, Samah; Dawood, Alaaeldin; Sarathy, Mani

    2016-01-01

    Gasoline fuels are complex mixtures that vary in composition depending on crude oil feedstocks and refining processes. Gasoline combustion in high-speed spark ignition engines is governed by flame propagation, so understanding fuel composition

  15. Taking alcohol by deception II: Paraga (alcoholic herbal mixture use among commercial motor drivers in a south-western Nigerian city

    Directory of Open Access Journals (Sweden)

    Kehinde Oluwadiya S

    2012-06-01

    Full Text Available Abstract Background Paraga, an alcoholic herbal preparation that comes in different varieties had been shown to be commonly available to commercial drivers in southern Nigeria. This study aims to determine the prevalence and pattern of paraga use, and to evaluate the level of awareness of the risks entailed in taking paraga among intercity commercial drivers operating out of motor parks in Osogbo, southwest Nigeria. We administered a locally validated version of the WHO drug and alcohol survey questionnaire to 350 commercial drivers. Results Of the 350 questionnaires administered, 332 were used for the data analysis; the remaining 18 were rejected because they had too many missing data. The prevalence rate in the past one year was 53.6% and 43.2% for the past one month (current. Three-quarters were moderate to heavy users, and many take the drug while working. A total of 25.6% had been involved in road crashes after taking paraga and 36.7% had actually seen people getting drunk from taking paraga. Only 40% of the drivers thought paraga use was harmful to their health, the others believing it to have therapeutic values (25% or undecided (35.0%. Only 43.8% of the drivers would be willing to stop taking paraga. Conclusions Paraga use is popular among commercial drivers. Because of its alcoholic nature, drivers’ access to the concoction should be controlled and appropriate enforcement put in place.

  16. Carcinogenicity of methyl-tertiary butyl ether in gasoline.

    Science.gov (United States)

    Mehlman, Myron A

    2002-12-01

    Methyl tertiary butyl ether (MTBE) was added to gasoline on a nationwide scale in 1992 without prior testing of adverse, toxic, or carcinogenic effects. Since that time, numerous reports have appeared describing adverse health effects of individuals exposed to MTBE, both from inhalation of fumes in the workplace and while pumping gasoline. Leakage of MTBE, a highly water-soluble compound, from underground storage tanks has led to contamination of the water supply in many areas of the United States. Legislation has been passed by many states to prohibit the addition of MTBE to gasoline. The addition of MTBE to gasoline has not accomplished its stated goal of decreasing air pollution, and it has posed serious health risks to a large portion of the population, particularly the elderly and those with respiratory problems, asthma, and skin sensitivity. Reports of animal studies of carcinogenicity of MTBE began to appear in the 1990s, prior to the widespread introduction of MTBE into gasoline. These reports were largely ignored. In ensuing years, further studies have shown that MTBE causes various types of malignant tumors in mice and rats. The National Toxicology Program (NTP) Board of Scientific Counselors' Report on Carcinogens Subcommittee met in December 1998 to consider listing MTBE as "reasonably anticipated to be a human carcinogen." In spite of recommendations from Dr. Bailer, the primary reviewer, and other scientists on the committee, the motion to list MTBE in the report was defeated by a six to five vote, with one abstention. On the basis of animal studies, it is widely accepted that if a chemical is carcinogenic in appropriate laboratory animal test systems, it must be treated as though it were carcinogenic in humans. In the face of compelling evidence, NTP Committee members who voted not to list MTBE as "reasonably anticipated to be a human carcinogen" did a disservice to the general public; this action may cause needless exposure of many to health risks

  17. Compositional effects on the ignition of FACE gasolines

    KAUST Repository

    Sarathy, Mani; Kukkadapu, Goutham; Mehl, Marco; Javed, Tamour; Ahmed, Ahfaz; Naser, Nimal; Tekawade, Aniket; Kosiba, Graham; Alabbad, Mohammed; Singh, Eshan; Park, Sungwoo; Rashidi, Mariam Al; Chung, Suk-Ho; Roberts, William L.; Oehlschlaeger, Matthew A.; Sung, Chih-Jen; Farooq, Aamir

    2016-01-01

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. This study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressures of 20 and 40. atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270. K. Results at temperatures above 900. K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900. K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical

  18. Compositional effects on the ignition of FACE gasolines

    KAUST Repository

    Sarathy, Mani

    2016-05-08

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. This study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressures of 20 and 40. atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270. K. Results at temperatures above 900. K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900. K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical

  19. Limited recovery of soil microbial activity after transient exposure to gasoline vapors

    DEFF Research Database (Denmark)

    Modrzyński, Jakub J.; Christensen, Jan H.; Mayer, Philipp

    2016-01-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial...... functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial...... microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient...

  20. Cloud Forming Potential of Aerosol from Light-duty Gasoline Direct Injection Vehicles

    Science.gov (United States)

    2017-12-01

    In this study, we evaluate the hygroscopicity and droplet kinetics of fresh and aged emissions from new generation gasoline direct injector engines retrofitted with a gasoline particulate filter (GPF). Furthermore, ageing and subsequent secondary aer...

  1. Taxes, cost and demand shifters as determinants in the regional gasoline price formation process: Evidence from Spain

    International Nuclear Information System (INIS)

    Bello, Alejandro; Contín-Pilart, Ignacio

    2012-01-01

    This paper examines the pass-through of regional tax changes and spot price variations to regional gasoline prices in Spain. It also analyzes the impact of all major cost and demand shifters that contribute to regional gasoline price formation. To address these research issues, a reduced form price equation using monthly time-series cross-sectional (TSCS) data from January 2004 through December 2008 is estimated. Strong and consistent evidence of full shifting of regional tax changes to regional gasoline prices is found. Gasoline spot price changes are more than proportionally passed through to retail prices. In addition, the empirical evidence shows, on the one hand, that regional gasoline price differences before taxes continue to be quite narrow and, on the other hand, that there is still a margin for larger gasoline price differences among regions. This suggest that “traditional practices” from the monopoly era (i.e. relatively uniform regional gasoline prices) persist after the market has been liberalized, which may have been facilitated by the strong and uniform presence of the major Spanish-based refining companies in the retail sector over the whole country. - Highlights: ► The paper analyzes the impact of all major demand and cost shifters that contribute to regional gasoline price formation. ► It shows that the relatively uniform regional gasoline prices persist after the Spanish gasoline market has been liberalized. ► It shows that regional tax changes are fully passed on to regional gasoline prices. ► It also shows that gasoline spot price changes are fully passed on to consumer prices.

  2. Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis

    OpenAIRE

    Elfasakhany, Ashraf

    2015-01-01

    This study discusses performance and exhaust emissions from spark-ignition engine fueled with ethanol–methanol–gasoline blends. The test results obtained with the use of low content rates of ethanol–methanol blends (3–10 vol.%) in gasoline were compared to ethanol–gasoline blends, methanol–gasoline blends and pure gasoline test results. Combustion and emission characteristics of ethanol, methanol and gasoline and their blends were evaluated. Results showed that when the vehicle was fueled wit...

  3. Diesel fuel takes over from gasoline as the rop seller

    International Nuclear Information System (INIS)

    Nupponen, J.

    2001-01-01

    Sales of diesel fuel in Finland continued to increase during 2000, and exceeded gasoline sales in terms of tonnes sold for the first time since the early 1960s. Sales of gasoline and the other main petroleum products fell slightly compared to 1999. Sales of natural gas increased. Otherwise, the year was a relatively uneventful one on the Finnish oil market

  4. Lightweight High Efficiency Electric Motors for Space Applications

    Science.gov (United States)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  5. Effects of an ethanol-gasoline mixture: results of a 4-week inhalation study in rats.

    Science.gov (United States)

    Chu, I; Poon, R; Valli, V; Yagminas, A; Bowers, W J; Seegal, R; Vincent, R

    2005-01-01

    The inhalation toxicity of an ethanol-gasoline mixture was investigated in rats. Groups of 15 male and 15 female rats were exposed by inhalation to 6130 ppm ethanol, 500 ppm gasoline or a mixture of 85% ethanol and 15% gasoline (by volume, 6130 ppm ethanol and 500 ppm gasoline), 6 h a day, 5 days per week for 4 weeks. Control rats of both genders received HEPA/charcoal-filtered room air. Ten males and ten females from each group were killed after 4 weeks of treatment and the remaining rats were exposed to filtered room air for an additional 4 weeks to determine the reversibility of toxic injuries. Female rats treated with the mixture showed growth suppression, which was reversed after 4 weeks of recovery. Increased kidney weight and elevated liver microsomal ethoxyresorufin-O-deethylase (EROD) activity, urinary ascorbic acid, hippuric acid and blood lymphocytes were observed and most of the effects were associated with gasoline exposure. Combined exposure to ethanol and gasoline appeared to exert an additive effect on growth suppression. Inflammation of the upper respiratory tract was observed only in the ethanol-gasoline mixture groups, and exposure to either ethanol and gasoline had no effect on the organ, suggesting that an irritating effect was produced when the two liquids were mixed. Morphology in the adrenal gland was characterized by vacuolation of the cortical area. Although histological changes were generally mild in male and female rats and were reversed after 4 weeks, the changes tended to be more severe in male rats. Brain biogenic amine levels were altered in ethanol- and gasoline-treated groups; their levels varied with respect to gender and brain region. Although no general interactions were observed in the brain neurotransmitters, gasoline appeared to suppress dopamine concentrations in the nucleus accumbens region co-exposed to ethanol. It was concluded that treatment with ethanol and gasoline, at the levels studied, produced mild, reversible

  6. 40 CFR 63.11086 - What requirements must I meet if my facility is a bulk gasoline plant?

    Science.gov (United States)

    2010-07-01

    ... facility is a bulk gasoline plant? 63.11086 Section 63.11086 Protection of Environment ENVIRONMENTAL... Source Category: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities Emission... gasoline plant? Each owner or operator of an affected bulk gasoline plant, as defined in § 63.11100, must...

  7. SOA formation from gasoline vehicles: from the tailpipe to the atmosphere

    Science.gov (United States)

    Robinson, A. L.; Zhao, Y.; Lambe, A. T.; Saleh, R.; Saliba, G.; Tkacik, D. S.

    2017-12-01

    Secondary organic aerosol (SOA) formation from gasoline vehicles has been indicated as an important source of atmospheric SOA, but its contribution to atmospheric SOA is loosely constrained due to the lack of measurements to link SOA formation from the tailpipe to atmospheric SOA. In this study, we determine the contribution of SOA formation based on measurements made with a Potential Aerosol Mass (PAM) oxidation flow reactor by oxidizing vehicular exhaust and ambient air. We first investigate SOA formation from dilute gasoline-vehicle exhaust during chassis dynamometer testing. The test fleet consists of both vehicles equipped with gasoline direct injection engines (GDI vehicles) and those equipped with port fuel injection engines (PFI vehicles). These vehicles span a wide range of emissions standards from Tier0 to Super Ultra-Low Emission Vehicles (SULEV). Then, we combine our measurements of SOA formation from gasoline vehicles during dynamometer testing with measurements of SOA formation using a PAM reactor conducted in a highway tunnel and in the unban atmosphere. Comparisons of SOA formation between these datasets enable us to quantitatively connect SOA formation from individual vehicles, to a large on-road fleet, and to the atmosphere. To facilitate the comparisons, we account for the effects of both the photochemical age and dilution on SOA formation. Our results show that SOA formation from gasoline vehicles can contribute over 50% of fossil fuel-related atmospheric SOA in the Los Angeles area. Furthermore, our results demonstrate that the tightening of emissions standards effectively reduces SOA formation from gasoline vehicles, including both PFI and GDI vehicles, if the atmospheric chemistry regime remains the same.

  8. Educational and technical assistance to CMV drivers and motor carriers

    Science.gov (United States)

    1999-07-01

    The Peer Exchange is a process adopted by the Office of Motor Carrier and Highway Safety in which teams of professionals, representing state and federal government and private industry, identify effective commercial motor vehicle safety findings for ...

  9. Global progress and backsliding on gasoline taxes and subsidies

    Science.gov (United States)

    Ross, Michael L.; Hazlett, Chad; Mahdavi, Paasha

    2017-01-01

    To reduce greenhouse gas emissions in the coming decades, many governments will have to reform their energy policies. These policies are difficult to measure with any precision. As a result, it is unclear whether progress has been made towards important energy policy reforms, such as reducing fossil fuel subsidies. We use new data to measure net taxes and subsidies for gasoline in almost all countries at the monthly level and find evidence of both progress and backsliding. From 2003 to 2015, gasoline taxes rose in 83 states but fell in 46 states. During the same period, the global mean gasoline tax fell by 13.3% due to faster consumption growth in countries with lower taxes. Our results suggest that global progress towards fossil fuel price reform has been mixed, and that many governments are failing to exploit one of the most cost-effective policy tools for limiting greenhouse gas emissions.

  10. Performance and emissions assessment of n-butanol–methanol–gasoline blends as a fuel in spark-ignition engi

    Directory of Open Access Journals (Sweden)

    Ashraf Elfasakhany

    2016-09-01

    Full Text Available The sleek of using alternatives to gasoline fuel in internal combustion engines becomes a necessity as the environmental problems of fossil fuels as well as their depleted reserves. This research presents an experimental investigation into a new blended fuel; the effects of n-butanol–methanol–gasoline fuel blends on the performance and pollutant emissions of an SI (spark-ignition engine were examined. Four test fuels (namely 0, 3, 7 and 10 volumetric percent of n-butanol–methanol blends at equal rates, e.g., 0%, 1.5%, 3.5% and 5% for n-butanol and methanol, in gasoline were investigated in an engine speed range of 2600–3400 r/min. In addition, the dual alcohol (methanol and n-butanol–gasoline blends were compared with single alcohol (n-butanol–gasoline blends (for the first time as well as with the neat gasoline fuel in terms of performance and emissions. The experimental results showed that the addition of low content rates of n-butanol–methanol to neat gasoline adversely affects the engine performance and exhaust gas emissions as compared to the results of neat gasoline and single alcohol–gasoline blends; in particular, a reduction in engine volumetric efficiency, brake power, torque, in-cylinder pressure, exhaust gas temperature and CO2 emissions and an increase in concentrations of CO and UHC (unburned hydrocarbons emissions were observed for the dual alcohols. However, higher rates of n-butanol–methanol blended in gasoline were observed to improve the SI engine performance parameters and emission concentration. Oppositely the higher rates of single alcohol–gasoline blends were observed to provide adverse results, e.g., higher emissions and lower performance than those of lower rates of single alcohol. Finally, dual alcohol–gasoline blends could exceed (i.e. provide higher performance and lower emissions single alcohol–gasoline blends and pure gasoline at higher rates (>10 vol.% in the blend and, in turn, it is

  11. Hepatotoxicity and genotoxicity of gasoline fumes in albino rats

    Directory of Open Access Journals (Sweden)

    Folarin O. Owagboriaye

    2017-09-01

    Full Text Available Toxic effects of gasoline fumes have been reported, but evidence of its hepatotoxicity and genotoxicity are rare. Therefore, this study assesses hepatotoxicity and genotoxicity of gasoline fumes on forty Albino rats randomly assigned to five experimental treatments (T with eight rats per treatment (T1, T2, T3, T4 and T5. T1(Control was housed in a section of experimental animal house free from gasoline fumes while T2, T3, T4 and T5 were exposed to gasoline fumes in exposure chambers for one, three, five and nine hours daily respectively for twelve weeks. Serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP and histopathological examination of the liver tissues were used as diagnostic markers to assess liver dysfunction. Genotoxicity test was conducted on the lung tissues using randomly amplified polymorphic DNA fingerprinting polymerase chain reaction (RAPD PCR technique. Significant increase (p < 0.05 in the level of ALT, AST and ALP for T2, T3, T4 and T5 compared to T1 were recorded. Photomicrograph examination of the liver sections of T1 showed hepatic tissue with normal liver cell architecture while that of T2, T3, T4 and T5 revealed degenerative changes in the ultrastructural integrity of the hepatic cells. Genotoxicity test revealed DNA bands at a reducing intensity from T1 to T5. Dendrogram showed DNA damage in the lungs of T3, T4 and T5 were closely similar and the genotoxic impact was more in T3. Frequent exposure to gasoline fumes was observed to induce hepatoxicity and genotoxicity, hence impairing the normal liver function and gene structure.

  12. Improving of diesel combustion-pollution-fuel economy and performance by gasoline fumigation

    International Nuclear Information System (INIS)

    Şahin, Zehra; Durgun, Orhan

    2013-01-01

    Highlights: • The effects of gasoline fumigation on the engine performance and NO x emission were investigated in Ford XLD 418 T automotive diesel engine. • Gasoline at approximately (2, 4, 6, 8 10, and 12)% (by vol.) ratios was injected into intake air by a carburetor. • GF enhances effective power and reduces brake specific fuel consumption, cost, and NO x emission. - Abstract: One of the most important objectives of the studies worldwide is to improve combustion of diesel engine to meet growing energy needs and to reduce increasing environmental pollution. To accomplish this goal, especially to reduce pollutant emissions, researchers have focused their interest on the field of alternative fuels and alternative solutions. Gasoline fumigation (GF) is one of these alternative solutions, by which diesel combustion, fuel economy, and engine performance are improved, and environmental pollution is decreased. In the fumigation method, gasoline is injected into intake air, either by a carburetor, which main nozzle section is adjustable or by a simple injection system. In the present experimental study, a simple carburetor was used, and the effects of gasoline fumigation at (2, 4, 6, 8, 10, 12)% (by vol.) gasoline ratios on the combustion, NO x emission, fuel economy, and engine performance sophisticatedly investigated for a fully instrumented, four-cylinder, water-cooled indirect injection (IDI), Ford XLD 418 T automotive diesel engine. Tests were conducted for each of the above gasoline fumigation ratios at three different speeds and for (1/1, 3/4, and 1/2) fuel delivery ratios (FDRs). GF test results showed that NO x emission is lower than that of neat diesel fuel (NDF). NO x emission decreases approximately 4.20%, 2.50%, and 9.65% for (1/1, 3/4, and 1/2) FDRs, respectively. Effective power increases approximately 2.38% for 1/1 FDR. At (2500 and 3000) rpms, effective power decreases at low gasoline ratios, but it increases at high gasoline ratios for 3/4 and 1

  13. Possibility of content change in bioethanol gasoline during pre-treatment process for using accelerator mass spectroscopy

    International Nuclear Information System (INIS)

    Saito, Masaaki; Yunoki, Shunji; Suzuki, Takashi

    2010-01-01

    We attempted to determine the bioethanol content of E3 gasoline by applying ASTM D6866 method B. In the pre-treatment process using accelerator mass spectroscopy(AMS), the graphite samples were prepared from E3 gasoline. Three portions of the same graphite sample were measured, and the contents agreed within the measurement error of AMS. The graphite samples prepared from eight portions of the same E3 gasoline sample were measured, but the accuracy was insufficient. There are many kinds of hydrocarbon compounds in the gasoline and their boiling points are different. The content of bioethanol was found to decrease with vaporization when E3 gasoline was placed in open air. A very small amount of E3 gasoline is pre-treated for AMS and the volatile loss cannot be ignored. It seems that the content change of bioethanol was caused by vaporization of E3 gasoline during the pre-treatment process. (author)

  14. Post-mortem detection of gasoline residues in lung tissue and heart blood of fire victims.

    Science.gov (United States)

    Pahor, Kevin; Olson, Greg; Forbes, Shari L

    2013-09-01

    The purpose of this study was to determine whether gasoline residues could be detected post-mortem in lung tissue and heart blood of fire victims. The lungs and heart blood were investigated to determine whether they were suitable samples for collection and could be collected without contamination during an autopsy. Three sets of test subjects (pig carcasses) were investigated under two different fire scenarios. Test subjects 1 were anaesthetized following animal ethics approval, inhaled gasoline vapours for a short period and then euthanized. The carcasses were clothed and placed in a house where additional gasoline was poured onto the carcass post-mortem in one fire, but not in the other. Test subjects 2 did not inhale gasoline, were clothed and placed in the house and had gasoline poured onto them in both fires. Test subjects 3 were clothed but had no exposure to gasoline either ante- or post-mortem. Following controlled burns and suppression with water, the carcasses were collected, and their lungs and heart blood were excised at a necropsy. The headspace from the samples was analysed using thermal desorption-gas chromatography-mass spectroscopy. Gasoline was identified in the lungs and heart blood from the subjects that were exposed to gasoline vapours prior to death (test subjects 1). All other samples were negative for gasoline residues. These results suggest that it is useful to analyse for volatile ignitable liquids in lung tissue and blood as it may help to determine whether a victim was alive and inhaling gases at the time of a fire.

  15. Phytoremediation of contaminated soils containing gasoline using Ludwigia octovalvis (Jacq.) in greenhouse pots.

    Science.gov (United States)

    Al-Mansoory, Asia Fadhile; Idris, Mushrifah; Abdullah, Siti Rozaimah Sheikh; Anuar, Nurina

    2017-05-01

    Greenhouse experiments were carried out to determine the phytotoxic effects on the plant Ludwigia octovalvis in order to assess its applicability for phytoremediation gasoline-contaminated soils. Using plants to degrade hydrocarbons is a challenging task. In this study, different spiked concentrations of hydrocarbons in soil (1, 2, and 3 g/kg) were tested. The results showed that the mean efficiency of total petroleum hydrocarbon (TPH) removal over a 72-day culture period was rather high. The maximum removal of 79.8 % occurred for the 2 g/kg concentration, while the removal rate by the corresponding unplanted controls was only (48.6 %). The impact of gasoline on plants included visual symptoms of stress, yellowing, growth reduction, and perturbations in the developmental parameters. The dry weight and wet weight of the plant slightly increased upon exposure to gasoline until day 42. Scanning electron microscopy (SEM) indicated change to the root and stem structure in plant tissue due to the direct attachment with gasoline contaminated compared to the control sample. The population of living microorganisms in the contaminated soil was found to be able to adapt to different gasoline concentrations. The results showed that L. octovalvis and rhizobacteria in gasoline-contaminated soil have the potential to degrade organic pollutants.

  16. Health effects of inhaled gasoline engine emissions.

    Science.gov (United States)

    McDonald, Jacob D; Reed, Matthew D; Campen, Matthew J; Barrett, Edward G; Seagrave, JeanClare; Mauderly, Joe L

    2007-01-01

    Despite their prevalence in the environment, and the myriad studies that have shown associations between morbidity or mortality with proximity to roadways (proxy for motor vehicle exposures), relatively little is known about the toxicity of gasoline engine emissions (GEE). We review the studies conducted on GEE to date, and summarize the findings from each of these studies. While there have been several studies, most of the studies were conducted prior to 1980 and thus were not conducted with contemporary engines, fuels, and driving cycles. In addition, many of the biological assays conducted during those studies did not include many of the assays that are conducted on contemporary inhalation exposures to air pollutants, including cardiovascular responses and others. None of the exposures from these earlier studies were characterized at the level of detail that would be considered adequate today. A recent GEE study was conducted as part of the National Environmental Respiratory Center (www.nercenter.org). In this study several in-use mid-mileage General Motors (Chevrolet S-10) vehicles were purchased and utilized for inhalation exposures. An exposure protocol was developed where engines were operated with a repeating California Unified Driving Cycle with one cold start per day. Two separate engines were used to provide two cold starts over a 6-h inhalation period. The exposure atmospheres were characterized in detail, including detailed chemical and physical analysis of the gas, vapor, and particle phase. Multiple rodent biological models were studied, including general toxicity and inflammation (e.g., serum chemistry, lung lavage cell counts/differentials, cytokine/chemokine analysis, histopathology), asthma (adult and in utero exposures with pulmonary function and biochemical analysis), cardiovascular effects (biochemical and electrocardiograph changes in susceptible rodent models), and susceptibility to infection (Pseudomonas bacteria challenge). GEE resulted in

  17. The relationship between gasoline price and patterns of motorcycle fatalities and injuries.

    Science.gov (United States)

    Zhu, He; Wilson, Fernando A; Stimpson, Jim P

    2015-06-01

    Economic factors such as rising gasoline prices may contribute to the crash trends by shaping individuals' choices of transportation modalities. This study examines the relationship of gasoline prices with fatal and non-fatal motorcycle injuries. Data on fatal and non-fatal motorcycle injuries come from California's Statewide Integrated Traffic Records System for 2002-2011. Autoregressive integrated moving average (ARIMA) regressions were used to estimate the impact of inflation-adjusted gasoline price per gallon on trends of motorcycle injuries. Motorcycle fatalities and severe and minor injuries in California were highly correlated with increasing gasoline prices from 2002 to 2011 (r=0.76, 0.88 and 0.85, respectively). In 2008, the number of fatalities and injuries reached 13,457--a 34% increase since 2002, a time period in which inflation-adjusted gasoline prices increased about $0.30 per gallon every year. The majority of motorcycle riders involved in crashes were male (92.5%), middle-aged (46.2%) and non-Hispanic white (67.9%). Using ARIMA modelling, we estimated that rising gasoline prices resulted in an additional 800 fatalities and 10,290 injuries from 2002 to 2011 in California. Our findings suggest that increasing gasoline prices led to more motorcycle riders on the roads and, consequently, more injuries. Aside from mandatory helmet laws and their enforcement, other strategies may include raising risk awareness of motorcyclists and investment in public transportation as an alternative transportation modality to motorcycling. In addition, universally mandated training courses and strict licensing tests of riding skills should be emphasised to help reduce the motorcycle fatal and non-fatal injuries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Properties, performance and emissions of biofuels in blends with gasoline

    Science.gov (United States)

    Eslami, Farshad

    The emission performance of fuels and their blends in modern combustion systems have been studied with the purpose of reducing regulated and unregulated emissions, understanding of exhaust products of fuels such as gasoline, ethanol and 2,5-dimethylfuran and comparison of results. A quantitative analysis of individual hydrocarbon species from exhaust emissions of these three fuels were carried out with direct injects spark ignition (DISI) single cylinder engine. The analysis of hydrocarbon species were obtained using gas chromatography-mass spectrometry (GCMS) connected on-line to SI engine. During this project, novel works have been done including the set up of on-line exhaust emission measurement device for detection and quantification of individual volatile hydrocarbons. Setting of a reliable gas chromatography mass spectrometry measurement system required definition and development of a precise method. Lubricity characteristics of biofuels and gasoline were investigated using High Frequency Reciprocating Rig (HFRR). Results showed great enhancing lubricity characteristics of biofuels when added to conventional gasoline. 2,5-dimenthylfuran was found to be the best among the fuels used, addition of this fuel to gasoline also showed better result compared with ethanol addition.

  19. Hydrocarbon source apportionment for the 1996 Paso del Norte Ozone Study

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, E.M. [Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89506-0220 (United States)

    2001-08-10

    The 1996 Paso del Norte (PdN) ozone study was conducted to improve current understanding of the significant meteorological and air quality processes that lead to high concentrations of ozone in El Paso, Texas (USA) and Ciudad Juarez, Chihuahua (Mexico). Two-hour canister samples were collected five times daily at 05.00-07.00 h, 07.00-09.00 h, 09.00-11.00 h, 11.00-13.00 h, and 15.00-17.00 h MST during intensive study periods at one urban and one rural site on each side of the border. An automated gas chromatograph was operated at one site in central El Paso. Source profiles (the fractional chemical composition of emissions) from motor vehicles, gasoline, liquefied petroleum gas, and commercial natural gas were combined with source profiles from other studies for input to the Chemical Mass Balance (CMB) receptor model to apportion the measured non-methane hydrocarbons (NMHC) to sources. On-road vehicle emissions accounted for one-half to two-thirds of the NMHC in Ciudad Juarez and El Paso with the highest contributions occurring during the morning and afternoon commute periods. Emissions from diesel exhaust contributed approximately 2-3% of NMHC in Ciudad Juarez and less than 2% in El Paso. The average sum of liquid gasoline and gasoline vapor increased during the day in Ciudad Juarez from 2% at 06.00 h to approximately 12% at 16.00 h. Diurnal and day-of-the-week patterns in the liquid gasoline contributions are essentially identical to the corresponding patterns for motor vehicle exhaust, which suggest that a large fraction of the liquid gasoline contribution may be associated with tailpipe emissions rather than evaporative emissions from motor vehicles or industrial sources. Including the sum of the two sources put the upper limit for tailpipe contributions at 60-70% of NMHC.

  20. Impact of US biofuel policy on US corn and gasoline price variability

    International Nuclear Information System (INIS)

    McPhail, Lihong Lu; Babcock, Bruce A.

    2012-01-01

    Despite a large number of studies that examine the influence of biofuels and biofuel policy on commodity prices, the impact of biofuel policy on commodity price variability is poorly understood. A good understanding of biofuel policy’s impact on price variability is important for mitigating food insecurity and assisting policy formation. We examine how U.S. ethanol policies such as the Renewable Fuel Standard (RFS) mandates and the blend wall affect the price variability of corn and gasoline. We first present an analytical and graphical framework to identify the effect and then use stochastic partial equilibrium simulation to measure the magnitude of the impacts. We show that RFS mandates and the blend wall both reduce the price elasticity of demand for corn and gasoline and therefore increase the price variability when supply shocks occur to the markets. This has important implications for policy actions with respect to maintaining or changing the current RFS mandates and/or blend wall in the US. -- Highlights: ► The RFS is found to lead to less elastic demand for corn and gasoline. ► Thus the RFS is also found to lead to more volatile corn and gasoline prices when supply shocks occur. ► The ethanol blend wall is found to lead to less elastic corn and gasoline demand. ► Thus the blend wall is also found to lead to more volatile corn and gasoline prices.