WorldWideScience

Sample records for commercial heat treatment

  1. Lowcost automated control for steel heat treatments

    International Nuclear Information System (INIS)

    Zambaldi, Edimilson; Magalhães, Ricardo R.; Barbosa, Bruno H.G.; Silva, Sandro P. da; Ferreira, Danton D.

    2017-01-01

    Highlights: • Control the furnace temperature measured by thermocouple and adjusts it. • Activating the furnace resistors through Pulse Width Modulation. • Appling heat treatments to steels by a low-cost controller. - Abstract: The aim of this paper is to propose a low cost, automated furnace control system for the heat treatment of steel. We used an open source electronic prototyping platform to control the furnace temperature, thus reducing human interaction during the heat process. The platform can be adapted to non-controlled commercial furnaces, which are often used by small businesses. A Proportional-Integral-Derivative (PID) controller was implemented to regulate the furnace temperature based on a defined heat treatment cycle. The embedded system activates the furnace resistors through Pulse Width Modulation (PWM), allowing for control of electrical power supplied to the furnace. Hardening and tempering were performed on standard steel samples using a traditional method (visual inspection without temperature control) as well the embedded system with PID feedback control. The results show that the proposed system can reproduce an arbitrary heat treatment curve with accuracy and provide the desired final hardness as inferred through metallographic analysis. In addition, we observed a 6% saving in energy consumption using the proposed control system. Furthermore, the estimated cost to implement the system is 42% lower than a commercial controller model implemented in commercial furnaces.

  2. Advances in the heat treatment of steels

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Kim, J.I.; Syn, C.K.

    1978-06-01

    A number of important recent advances in the processing of steels have resulted from the sophisticated uses of heat treatment to tailor the microstructure of the steels so that desirable properties are established. These new heat treatments often involve the tempering or annealing of the steel to accompish a partial or complete reversion from martensite to austenite. The influence of these reversion heat treatments on the product microstructure and its properties may be systematically discussed in terms of the heat treating temperature in relation to the phase diagram. From this perspective, four characteristic heat treatments are defined: (1) normal tempering, (2) inter-critical tempering, (3) intercritical annealing, and (4) austenite reversion. The reactions occurring during each of these treatments are described and the nature and properties of typical product microstructures discussed, with specific reference to new commercial or laboratory steels having useful and exceptional properties

  3. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial air conditioners and... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.92 Definitions concerning commercial air conditioners and heat pumps. The following definitions apply...

  4. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  5. A novel laboratory scale method for studying heat treatment of cake flour

    OpenAIRE

    Chesterton, AKS; Wilson, David Ian; Sadd, PI; Moggridge, Geoffrey Dillwyn

    2014-01-01

    A lab-scale method for replicating the time–temperature history experienced by cake flours undergoing heat treatment was developed based on a packed bed configuration. The performance of heat-treated flours was compared with untreated and commercially heat-treated flour by test baking a high ratio cake formulation. Both cake volume and AACC shape measures were optimal after 15 min treatment at 130 °C, though their values varied between harvests. Separate oscillatory rheometry tests of cake ba...

  6. The influence of distal-end heat treatment on deflection of nickel-titanium archwire.

    Science.gov (United States)

    Silva, Marcelo Faria da; Pinzan-Vercelino, Célia Regina Maia; Gurgel, Júlio de Araújo

    2016-01-01

    The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p wire. Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions.

  7. Commercial high efficiency dehumidification systems using heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  8. The influence of distal-end heat treatment on deflection of nickel-titanium archwire

    Directory of Open Access Journals (Sweden)

    Marcelo Faria da Silva

    2016-02-01

    Full Text Available Objective: The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi orthodontic wires adjacent to the portion submitted to heat treatment. Material and Methods: A total of 106 segments of NiTi wires (0.019 x 0.025-in and heat-activated NiTi wires (0.016 x 0.022-in from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40, while the other distal portion of the same archwire was used as a heating-free control group (n = 40. Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. Results: There were no statistically significant differences between the tested groups with the same size and brand of wire. Conclusions: Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions.

  9. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Science.gov (United States)

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  10. To Evaluate Effect of Airborne Particle Abrasion using Different Abrasives Particles and Compare Two Commercial Available Zirconia on Flexural Strength on Heat Treatment

    Science.gov (United States)

    Prasad, Hari A.; Pasha, Naveed; Hilal, Mohammed; Amarnath, G. S.; Kundapur, Vinaya; Anand, M; Singh, Sumeet

    2017-01-01

    Background and objective: The popularity of ceramic restorations can be attributed to its life-like appearance, durability and biocompatibility and therefore ceramic restorations have been widely used for anterior and posterior teeth. Ceramic restorations have esthetic and biocompatible advantages but low fracture resistance. Since it has high flexural strength and fracture resistance, yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is the dental material most commonly used for the core of ceramic crowns and fixed dental prosthesis. In spite of improved mechanical properties, acceptable marginal adaptation and biocompatibility the whitish opacity of zirconia is an obvious esthetic disadvantage. The zirconia framework is often veneered with conventional feldspathic porcelain to achieve a natural appearance. However it is difficult to achieve sufficient bond strength between zirconia and the veneering material. Achieving sufficient bond strength between the veneering ceramic and the zirconia core is a major challenge in the long term clinical success of veneered zirconia restorations. The main objective of this study is to evaluate the effect of different surface treatments on the fracture strength of the two commercially available Zirconia namely Ceramill and ZR-White (AMANNGIRRBACH and UPCERA) respectively. Method: Two commercially available pre-sinteredyttrium stabilized Zirconia blanks (ZR-White and Ceramill) from AMANNGIRRBACH and UPCERA respectively are used to produce the disc shaped specimens of size (15.2 ± 0.03 mm in diameter and 1.2 ± 0.03 mm thick) from each Zirconia blank. All disc shaped specimens are heated at 1200°C in a furnace for 2 hours to form homogenous tetragonal ZrO2. The dimensions of the specimens are measured with a digital caliper (aerospace). The thickness and diameter of each specimen are calculated as the means of 3 measurements made at random sites. 80 discs from each Zirconia blank are divided into ten groups of 8

  11. Heat treatment for improvement in lower temperature mechanical properties of 0.40 pct C-Cr-Mo ultrahigh strength steel

    Science.gov (United States)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1983-11-01

    In the previous paper, it was reported that isothermal heat treatment of a commercial Japanese 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel (AISI 4340 type) at 593 K for a short time followed by water quenching, in which a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite is produced, results in the improvement of low temperature mechanical properties (287 to 123 K). The purpose of this paper is to study whether above new heat treatment will still be effective in commercial practice for improving low temperature mechanical properties of the ultrahigh strength steel when applied to a commercial Japanese 0.40 pct C-Cr-Mo ultrahigh strength steel which is economical because it lacks the expensive nickel component (AISI 4140 type). At and above 203 K this new heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved the strength, tensile ductility, and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel. At and above 203 K the new heat treatment also produced superior fracture ductility and notch toughness results at similar strength levels as compared to those obtained by using γ α' repetitive heat treatment for the same steel. However, the new heat treatment remarkably decreased fracture ductility and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel below 203 K, and thus no significant improvement in the mechanical properties was noticeable as compared with the properties produced by the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment. This contrasts with the fact that the new heat treatment, as compared with the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment, dramatically improved the notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel, providing a better combination of strength and ductility throughout the 287 to 123 K temperature range. The difference

  12. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Beckermann, Christoph; Carlson, Kent

    2011-07-22

    Heat treatment and associated processing, such as quenching, are critical during high strength steel casting production. These processes must be managed closely to prevent thermal and residual stresses that may result in distortion, cracking (particularly after machining), re-work, and weld repair. The risk of casting distortion limits aggressive quenching that can be beneficial to the process and yield an improved outcome. As a result of these distortions, adjustments must be made to the casting or pattern design, or tie bars must be added. Straightening castings after heat treatments can be both time-consuming and expensive. Residual stresses may reduce a casting's overall service performance, possibly resulting in catastrophic failure. Stress relieving may help, but expends additional energy in the process. Casting software is very limited in predicting distortions during heat treatment, so corrective measures most often involve a tedious trial-and-error procedure. An extensive review of existing heat treatment residual stress and distortion modeling revealed that it is vital to predict the phase transformations and microstructure of the steel along with the thermal stress development during heat treatment. After reviewing the state-of-the-art in heat treatment residual stress and distortion modeling, an existing commercial code was selected because of its advanced capabilities in predicting phase transformations, the evolving microstructure and related properties along with thermal stress development during heat treatment. However, this software was developed for small parts created from forgings or machined stock, and not for steel castings. Therefore, its predictive capabilities for heat treatment of steel castings were investigated. Available experimental steel casting heat treatment data was determined to be of insufficient detail and breadth, and so new heat treatment experiments were designed and performed, casting and heat treating modified versions

  13. Effect of microwave heat-treatment time on the properties of activated carbons as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    He, X.; Wang, T.; Long, S.; Zhang, X.; Zheng, M. [Anhui Univ. of Technology, Ma' aushan (China). School of Chemistry and Chemical Engineering, Anhui Key Lab of Coal Clean Conversion and Utilization

    2010-07-01

    A microwave-assisted heating technique was used to prepare activated carbons (ACs) from petroleum coke with potassium hydroxide (KOH) as an activating agent. The aim of the study was to investigate the effect of heat treatment time on AC properties at 3, 5, and 7 minutes with a microwave power rate of 700 W. The structure and electrochemical performance of the microwave ACs were then compared with commercially prepared ACs. The study showed that the specific capacitance, equivalent series resistance and energy density of the AC electrodes decreased, while the cycle performance of the AC electrodes was improved. The specific capacitance and energy density of the ACs treated with microwave heat at 3 and 7 minutes was higher than rates observed in commercially-prepared ACs. Results showed that the microwave heat treatment method is an efficient means of obtaining stable ACs for use in supercapacitors. 3 refs., 1 tab., 1 fig.

  14. A Study on Infrared Local Heat Treatment for AA5083 to Improve Formability and Automotive Part Forming

    Science.gov (United States)

    Lee, Eun-Ho; Yang, Dong-Yol; Ko, SeJin

    2017-10-01

    Automotive industries are increasingly employing aluminum alloys for auto parts to reduce vehicle weight. However, the low formability of aluminum alloys has been an obstacle to their application. To resolve the formability problem, some studies involving heat treatments under laboratory conditions have been reported. However, for industrial applications, the heat treatment sequence, heating energy efficiency, and a commercial part test should be studied. This work shows an infrared (IR) local heat treatment, heating only small areas where the heat treatment is required, for an aluminum alloy to improve the formability with a reduction of heating energy. The experiment shows that the formability drastically increases when the aluminum alloy is heat treated between two forming stages, referred to as intermediate heat treatment. The microstructures of the test pieces are evaluated to identify the cause of the increase in the formability. For an industrial application, an aluminum tailgate, which cannot be manufactured without heat treatment, was successfully manufactured by the IR local heat treatment with a reduction of energy. A simulation was also conducted with a stress-based forming limit diagram, which is not affected by the strain path and heat treatment histories. The simulation gives a good prediction of the formability improvement.

  15. Commercial mixed waste treatment and disposal

    International Nuclear Information System (INIS)

    Vance, J.K.

    1994-01-01

    At the South Clive, Utah, site, Envirocare of Utah, Inc., (Envirocare), currently operates a commercial low-activity, low-level radioactive waste facility, a mixed waste RCRA Part B storage and disposal facility, and an 11e.(2) disposal facility. Envirocare is also in the process of constructing a Mixed Waste Treatment Facility. As the nation's first and only commercial treatment and disposal facility for such waste, the information presented in this segment will provide insight into their current and prospective operations

  16. Treatment of DOE mixed wastes using commercial facilities

    International Nuclear Information System (INIS)

    Kramer, J.F.; Ross, M.A.; Dilday, D.R.

    1992-02-01

    In a demonstration program, Department of Energy (DOE) solid mixed wastes generated during uranium processing operations are characterized to define the unit operations required for treatment. The objectives included the implementation of these treatment operations utilizing a commercial Treatment, Storage and Disposal Facility (TSDF). In contracting for commercial hazardous and mixed waste treatment, it is important to characterize the waste beyond the identification of toxicity characteristic (TC) and radiological content. Performing treatability studies and verification of all the unit operations required for treatment is critical. The stream selected for this program was TC hazardous for barium (D005) and contaminated with both depleted and low enriched uranium. The program resulted in the generation of characterization data and treatment strategies. The characterization and treatability studies indicated that although a common unit operation was required to remove the toxic characteristic, multiple pretreatment operations were needed. Many of these operations do not exist at available TSDF's, rendering some portions of the stream untreatable using existing commercial TSDF's. For this project the need for pretreatment operations resulted in only a portion of the waste originally targeted for treatment being accepted for treatment at a commercial TSDF. The majority of the targeted stream could not be successfully treated due to lack of an off-site commercial treatment facility having the available equipment and capacity or with the correct combination of RCRA permits and radioactive material handling licenses. This paper presents a case study documenting the results of the project

  17. Shredder and incinerator technology for treatment of commercial transuranic wastes

    International Nuclear Information System (INIS)

    Oma, K.H.; Westsik, J.H. Jr.; Ross, W.A.

    1985-10-01

    This report describes the selection and evaluation of process equipment to accomplish the shredding and incineration of commercial TRU wastes. The primary conclusions derived from this study are: Shredding and incineration technology appears effective for converting simulated commercial TRU wastes to a noncombustible form. The gas-heated controlled-air incinerator received the highest technical ranking. On a scale of 1 to 10, the incinerator had a Figure-of-Merit (FOM) number of 7.0. This compares to an FOM of 6.1 for the electrically heated controlled-air incinerator and an FOM of 5.8 for the rotary kiln incienrator. The present worth costs of the incineration processes for a postulated commercial reprocessing plant were lowest for the electrically heated and gas-heated controlled-air incinerators with costs of $16.3 M and $16.9 M, respectively (1985 dollars). Due to higher capital and operating costs, the rotary kiln process had a present worth cost of $20.8 M. The recommended process from the three evaluated for the commercial TRU waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment. This process had the best cost-effectiveness ratio of 1.0 (normalized). The electrically heated controller-air incinerator had a rating of 1.2 and the rotary kiln rated a 1.5. Most of the simulated wastes were easily processed by the low-speed shredders evaluated. The HEPA filters proved difficult to process, however. Wood-framed HEPA filters tended to ride on the cutter wheels and spacers without being gripped and shredded. The metal-framed HEPA filters and other difficult to shred items caused the shredders to periodically reach the torque limit and go into an automatic reversal cycle; however, the filters were eventually processed by the units. All three incinerators were ineffective for oxidizing the aluminum metal used as spacers in HEPA filters

  18. 29 CFR 1919.36 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...

  19. 49 CFR 179.500-6 - Heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Heat treatment. 179.500-6 Section 179.500-6...-6 Heat treatment. (a) Each necked-down tank shall be uniformly heat treated. Heat treatment shall... treatment of alternate steels shall be approved. All scale shall be removed from outside of tank to an...

  20. 29 CFR 1919.80 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out in...

  1. Heat Transfer Analysis of Localized Heat-Treatment for Grade 91 Steel

    Science.gov (United States)

    Walker, Jacob D.

    Many of the projects utilizing Grade 91 steel are large in scale, therefore it is necessary to assemble on site. The assembly of the major pieces requires welding in the assembly; this drastically changes the superior mechanical properties of Grade 91 steel that it was specifically developed for. Therefore, because of the adverse effects of welding on the mechanical properties of Grade 91, it is necessary to do a localized post weld heat treatment. As with most metallic materials grade 91 steel requires a very specific heat treatment process. This process includes a specific temperature and duration at that temperature to achieve the heat treatment desired. Extensive research has been done to determine the proper temperatures and duration to provide the proper microstructure for the superior mechanical properties that are inherent to Grade 91 steel. The welded sections are typically large structures that require local heat treatments and cannot be placed in an oven. The locations of these structures vary from indoors in a controlled environment to outdoors with unpredictable environments. These environments can be controlled somewhat, however in large part the surrounding conditions are unchangeable. Therefore, there is a need to develop methods to accurately apply the surrounding conditions and geometries to a theoretical model in order to provide the proper requirements for the local heat treatment procedure. Within this requirement is the requirement to define unknowns used in the heat transfer equations so that accurate models can be produced and accurate results predicted. This study investigates experimentally and numerically the heat transfer and temperature fields of Grade 91 piping in a local heat treatment. The objective of this thesis research is to determine all of the needed heat transfer coefficients. The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing a ceramic heat blanket. This will be done

  2. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  3. Effects of post-weld heat treatment on microstructure and mechanical properties of TLP bonded Inconel718 superalloy

    International Nuclear Information System (INIS)

    Cao, J.; Wang, Y.F.; Song, X.G.; Li, C.; Feng, J.C.

    2014-01-01

    Transient liquid phase bonding of Inconel718 superalloy was carried out using a commercial Ni–Cr–Si–B amorphous interlayer. The interfacial microstructure of Inconel718 joints was analyzed by a scanning electron microscope and a transmission electron microscope. In particular, the effects of post-weld heat treatment on the interfacial microstructure and joining properties of Inconel718 joints were investigated in detail. The results showed that the precipitation of second phases in joints induced by post-weld heat treatment were beneficial to the improvement of joint properties. A tensile strength of 1130 MPa with an elongation percentage of 7% was achieved for a sample bonded at 1050 °C/60 min+1180 °C/60 min followed by the post-weld heat treatment

  4. FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Heiba, Ahmad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, food service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.

  5. 49 CFR 179.400-12 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.400-12 Section 179... and 107A) § 179.400-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not... be attached before postweld heat treatment. Welds securing the following need not be postweld heat...

  6. Heat-treatment and heat-to-heat variations in the fracture toughness of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.

    1981-07-01

    The effect of heat-treatment and heat-to-heat variations on the J Ic fracture toughness response of Alloy 718 was examined at room and elevated temperatures using the multiple-specimen R-curve technique. Six heats of alloy 718 were tested in the conventional and modified heat-treated conditions. The fracture toughness response for the modified superalloy was found to be superior to that exhibited by the conventional material. Heat-to-heat variations in the J Ic response of Alloy 718 were observed in both heat-treated conditions; the modified treatment exhibited much larger variability. The J Ic and corresponding K Ic fracture toughness values were analyzed statistically to establish minimum expected toughness, values for use in design and safety analyses. 26 refs., 10 figs., 9 tabs

  7. Interim Policy Options for Commercialization of Solar Heating and Cooling Systems.

    Science.gov (United States)

    Bezdek, Roger

    This interim report reviews the major incentive policy options available to accelerate market penetration of solar heating and cooling (SHAC) systems. Feasible policy options designed to overcome existing barriers to commercial acceptance and market penetration are identified and evaluated. The report is divided into seven sections, each dealing…

  8. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  9. Effect of Stabilization Heat Treatment on Time-Dependent Polarization Losses in Sintered Nd-Fe-B Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tuominen S.

    2013-01-01

    Full Text Available Some companies in the motor and generator industry utilizing sintered NdFeB magnets have adopted pre-ageing heat treatment in order to improve the stability of the magnets. The parameters of this stabilization heat treatment are based mainly on assumptions rather than on any published research results. In this work, the effects of pre-ageing treatment on the time-dependent polarization losses of two different types of commercial sintered NdFeB magnets were studied. The material showing the squarer J(H curve did not benefit from the pre-ageing treatment, since it seems to be stable under a certain critical temperature. In contrast, a stabilizing effect was observed in the material showing rounder J(H curve. After the stabilization heat treatment, the polarization of the magnets was found to be at lower level, but unchanged over a certain period of time. The length of this period depends on the temperature and the duration of the pre-ageing treatment. In addition, our analysis reveals that the stabilization heat treatment performed in an open circuit condition does not stabilize the magnet uniformly.

  10. 49 CFR 179.220-11 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.220-11 Section 179... Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld heat treatment of the cylindrical portions of the outer shell to which the anchorage...

  11. Chemistry and heat-treatment effects on mechanical and microstructural properties of heat-treated, beta-extruded Ti--6A1--6V--2Sn

    International Nuclear Information System (INIS)

    Ulitchny, M.G.; Rack, H.J.; Dawson, D.B.

    1979-04-01

    The mechanical behavior of beta-extruded Ti--6A1--6V--2Sn was examined after a variety of sub-transus heat treatments. The microstructural variations resulting from the range of heat treatments studied also were examined. A range of alloy chemistries, within commercial limits, was used to evaluate the effect of this variable on mechanical properties. The strength--toughness combinations obtained in beta-extruded Ti--6A1--6V--2Sn ranged from about 895 MPa and 82.5 MPa√m for duplex annealed material to 1200 MPa and 54.9 MPa√m for solution treated and peak aged material. Chemistry variations had less effect on mechanical properties than would have been the case with alpha--beta processing

  12. Development of shelf stable, processed, low acid food products using heat-irradiation combination treatments

    International Nuclear Information System (INIS)

    Minnaar, A.

    1998-01-01

    The amount of ionizing irradiation needed to sterilize low acid vegetable and starch products (with and without sauces) commercially impairs their sensorial and nutritive qualities, and use of thermal processes for the same purpose may also have an adverse effect on the product quality. A systematic approach to the establishment of optimized combination parameters was developed for heat-irradiation processing to produce high quality, shelf stable, low acid food products. The effects of selected heat, heat-irradiation combination and irradiation treatments on the quality of shelf stable mushrooms in brine and rice, stored at ambient temperature, were studied. From a quality viewpoint, use of heat-irradiation combination treatments favouring low irradiation dose levels offered a feasible alternative to thermally processed or radappertized mushrooms in brine. However, shelf stable rice produced by heat-irradiation combination treatments offered a feasible alternative only to radappertized rice from the standpoint of quality. The technical requirements for the heat and irradiation processing of a long grain rice cultivar from the United States of America oppose each other directly, thereby reducing the feasibility of using heat-irradiation combination processing to produce shelf stable rice. The stability of starch thickened white sauces was found to be affected severely during high dose irradiation and subsequent storage at ambient temperature. However, use of pea protein isolate as a thickener in white sauces was found to have the potential to maintain the viscosity of sauces for irradiated meat and sauce products throughout processing and storage. (author)

  13. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  14. Effect of Heat Treatment on Commercial AlSi12Cu1(Fe) and AlSi12(b) Aluminum Alloy Die Castings

    Science.gov (United States)

    Battaglia, E.; Bonollo, F.; Ferro, P.; Fabrizi, A.

    2018-03-01

    High-pressure die castings (HPDCs) cannot normally be heat-treated at a high temperature because of the presence of inner air/gas- or shrinkage-porosity that may lead to the formation of undesired surface blisters. In this paper, an unconventional heat treatment is proposed. Two secondary Al-Si alloys, AlSi12(b) and AlSi12Cu1(Fe), were stabilization heat-treated at 624 K (350 °C) with soaking times ranging from 1 to 8 hours. Enhancement of both static and dynamic mechanical properties was found to be related to the fragmentation of interconnected eutectic Si particles and the smoothing of coarser crystals. Increased ductility after heat treatment was correlated with a decrease in hardness and Si particle roundness. The formation of Si precipitates within the α-Al matrix was also observed.

  15. Elevated-temperature tensile properties of three heats of commercially heat-treated Alloy 718

    International Nuclear Information System (INIS)

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    Three heats of commercially heat-treated alloy 718 were tensile tested over the temperature range from room temperature to 816 degree C and at nominal strain rates from 6.7 x 10 -6 to 6.7 x 10 -3 /s. We examined data for yield strength, ultimate tensile strength, uniform elongation, total elongation, and reduction in area and also inspected tensile stress-strain behavior. Yield and ultimate tensile strengths for commercially heat-treated alloy 718 decrease very gradually with temperature from room temperature up to about 600 degree C for a strain rate of 6.7 x 10 -5 /s or to about 700 degree C for a strain rate of 6.7 x 10 -4 /s. Above these temperatures the strength drops off fairly rapidly. Reduction in area and total elongation data show minimum around 700 degree C, with each ductility measure falling to 10% or less at the minimum. This minimum is more pranced and occurs at lower temperatures as strain rate decreases. Up to about 600 degree C the ductility is typically around 30%. As the temperature reaches 816 degree C the ductility again increases to perhaps 60%. The uniform elongation (plastic strain at peak load) decreases only slightly with temperature to about 500 degree C then drops off rapidly and monotonically with temperature, reaching values less than 1% at 816 degree C. At the highest test temperatures the load maximum may result, not from necking of the specimen, but from overaging of the precipitation-hardened microstructure. Stress-strain curves showed serrated deformations in the temperature range from 316 to 649 degree C, although they occur only for the faster strain rates at the supper end of this temperature range. The serrations can be quite large, involving load drops of perhaps 40 to 80 MPa. The serrations typically begin within the first 2% of deformation and continue until fracture, although exceptions were noted. 16 refs., 14 figs., 3 tabs

  16. Heat treatment furnace

    Science.gov (United States)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  17. Assessment of heat treatment of dairy products by MALDI-TOF-MS.

    Science.gov (United States)

    Meltretter, Jasmin; Birlouez-Aragon, Inès; Becker, Cord-Michael; Pischetsrieder, Monika

    2009-12-01

    The formation of the Amadori product from lactose (protein lactosylation) is a major parameter to evaluate the quality of processed milk. Here, MALDI-TOF-MS was used for the relative quantification of lactose-adducts in heated milk. Milk was heated at a temperature of 70, 80, and 100 degrees C between 0 and 300 min, diluted, and subjected directly to MALDI-TOF-MS. The lactosylation rate of alpha-lactalbumin increased with increasing reaction temperature and time. The results correlated well with established markers for heat treatment of milk (concentration of total soluble protein, soluble alpha-lactalbumin and beta-lactoglobulin at pH 4.6, and fluorescence of advanced Maillard products and soluble tryptophan index; r=0.969-0.997). The method was also applied to examine commercially available dairy products. In severely heated products, protein pre-purification by immobilized metal affinity chromatography improved spectra quality. Relative quantification of protein lactosylation by MALDI-TOF-MS proved to be a very fast and reliable method to monitor early Maillard reaction during milk processing.

  18. Plasma assisted heat treatment: annealing

    International Nuclear Information System (INIS)

    Brunatto, S F; Guimaraes, N V

    2009-01-01

    This work comprises a new dc plasma application in the metallurgical-mechanical field, called plasma assisted heat treatment, and it presents the first results for annealing. Annealing treatments were performed in 90% reduction cold-rolled niobium samples at 900 deg. C and 60 min, in two different heating ways: (a) in a hollow cathode discharge (HCD) configuration and (b) in a plasma oven configuration. The evolution of the samples' recrystallization was determined by means of the microstructure, microhardness and softening rate characterization. The results indicate that plasma species (ions and neutrals) bombardment in HCD plays an important role in the recrystallization process activation and could lead to technological and economical advantages considering the metallic materials' heat treatment application. (fast track communication)

  19. Treatment of bovine cancer-eye (and other animal tumors) with heat

    International Nuclear Information System (INIS)

    Doss, J.D.

    1980-01-01

    Hyperthermia appears to be an excellent technique for the treatment of a variety of animal tumors. While this report has emphasized the application of hyperthermia to bovine cancer-eye, there cannot be serious doubt about the potential for wider applications of the technique. We have collaborated with the Animal Resource Facility at the University of New Mexico in the successful treatment of a variety of tumors in small animals which would not be a particular interest to stockmen, but the program included the successful treatment of a number of sarcoids in horses. This investigation involving heat effects on sarcoids will continue, but early results appear to be promising. Other veterinarians are using the commercial hyperthermia instruments to treat a variety of small-animal tumors; these practitioners are enthusiastic about the results but no data have been published to date. We have treated an equine lid tumor with good results, and others are pursuing investigations in this area. Use of commercial hyperthermia instruments for treatment of any condition other than bovine cancer-eye or similar small tumors on animals cannot be justified. Like other therapeutic techniques, hyperthermia must be applied to appropriate cases and retreatment will be necessary in some instances

  20. MATHEMATICAL MODELING OF HEATING RATE PRODUCT AT HIGH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    M. M. Akhmedova

    2014-01-01

    Full Text Available Methods of computing and mathematical modeling are all widely used in the study of various heat exchange processes that provide the ability to study the dynamics of the processes, as well as to conduct a reasonable search for the optimal technological parameters of heat treatment.This work is devoted to the identification of correlations among the factors that have the greatest effect on the rate of heating of the product at hightemperature heat sterilization in a stream of hot air, which are chosen as the temperature difference (between the most and least warming up points and speed cans during heat sterilization.As a result of the experimental data warming of the central and peripheral layers compote of apples in a 3 liter pot at high-temperature heat treatment in a stream of hot air obtained by the regression equation in the form of a seconddegree polynomial, taking into account the effects of pair interaction of these parameters. 

  1. An analysis of heating and cooling conservation features in commercial buildings

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1990-01-01

    One purpose of this study is to estimate the relationship in commercial buildings between conservation investments, fuel prices, building occupancy and building characteristics for new buildings and for existing buildings. The data base is a nationwide survey of energy in commercial buildings conducted by the Energy Information Administration (EIA) in 1986. Some simple cross-tabulations indicate that conservation measures vary with building size, building age, type of building, and fuel used for building heating. Regression estimates of a conservation model indicate that the number of conservation features installed during construction is a positive function of the price of the heating fuel at the time of construction. Subsequent additions of conservation features are positively correlated with increases in heating fuel prices. Given the EIA projection of relatively stable future energy prices, the number of retrofits may not increase significantly. Also, energy efficiency in new buildings may not continue to increase relative to current new buildings. If fuel prices affect consumption via initial conservation investments, current fuel prices, marginal or average, are not the appropriate specification. The fuel price regression results indicate that conservation investments in new buildings are responsive to market signals. Retrofits are less responsive to market signals. The number of conservation features in a building is not statistically related to the type of occupancy (owner versus renter), which implies that conservation strategies are not impeded by the renting or leasing of buildings

  2. Influence of dimethyl dicarbonate on the resistance of Escherichia coli to a combined UV-Heat treatment in apple juice

    Science.gov (United States)

    Gouma, Maria; Gayán, Elisa; Raso, Javier; Condón, Santiago; Álvarez, Ignacio

    2015-01-01

    Commercial apple juice inoculated with Escherichia coli was treated with UV-C, heat (55°C) and dimethyl dicarbonate – DMDC (25, 50, and 75 mg/L)-, applied separately and in combination, in order to investigate the possibility of synergistic lethal effects. The inactivation levels resulting from each treatment applied individually for a maximum treatment time of 3.58 min were limited, reaching 1.2, 2.9, and 0.06 log10 reductions for UV, heat, and DMDC (75 mg/L), respectively. However, all the investigated combinations resulted in a synergistic lethal effect, reducing the total treatment time and UV dose, with the synergistic lethal effect being higher when larger concentrations of DMDC were added to the apple juice. The addition of 75 mg/L of DMDC prior to the combined UV-C light treatment at 55°C resulted in 5 log10 reductions after only 1.8 min, reducing the treatment time and UV dose of the combined UV-Heat treatment by 44%. PMID:26042117

  3. 29 CFR 1919.16 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains (other...

  4. Evaluation of focused ultrasound algorithms: Issues for reducing pre-focal heating and treatment time.

    Science.gov (United States)

    Yiannakou, Marinos; Trimikliniotis, Michael; Yiallouras, Christos; Damianou, Christakis

    2016-02-01

    Due to the heating in the pre-focal field the delay between successive movements in high intensity focused ultrasound (HIFU) are sometimes as long as 60s, resulting to treatment time in the order of 2-3h. Because there is generally a requirement to reduce treatment time, we were motivated to explore alternative transducer motion algorithms in order to reduce pre-focal heating and treatment time. A 1 MHz single element transducer with 4 cm diameter and 10 cm focal length was used. A simulation model was developed that estimates the temperature, thermal dose and lesion development in the pre-focal field. The simulated temperature history that was combined with the motion algorithms produced thermal maps in the pre-focal region. Polyacrylimde gel phantom was used to evaluate the induced pre-focal heating for each motion algorithm used, and also was used to assess the accuracy of the simulation model. Three out of the six algorithms having successive steps close to each other, exhibited severe heating in the pre-focal field. Minimal heating was produced with the algorithms having successive steps apart from each other (square, square spiral and random). The last three algorithms were improved further (with small cost in time), thus eliminating completely the pre-focal heating and reducing substantially the treatment time as compared to traditional algorithms. Out of the six algorithms, 3 were successful in eliminating the pre-focal heating completely. Because these 3 algorithms required no delay between successive movements (except in the last part of the motion), the treatment time was reduced by 93%. Therefore, it will be possible in the future, to achieve treatment time of focused ultrasound therapies shorter than 30 min. The rate of ablated volume achieved with one of the proposed algorithms was 71 cm(3)/h. The intention of this pilot study was to demonstrate that the navigation algorithms play the most important role in reducing pre-focal heating. By evaluating in

  5. Stress-induced heating in commercial conductors and its possible influence on magnet performance

    International Nuclear Information System (INIS)

    Easton, D.S.; Kroeger, D.M.; Moazed, A.

    1976-01-01

    Calorimetric measurements show that significant amounts of heat are generated when a multifilamentary composite conductor is stressed in tension to levels expected to occur in large, high-field magnet systems. When the stress on the conductor is repetitively cycled between zero and some maximum value, the amount of heat produced per cycle is constant after the first few cycles. Comparison is made between calorimetric determinations of heat injections and the work done on the specimen as indicated by stress-strain curves. Stress-strain curves for a number of commercial conductors indicate that the most important determinant of the magnitude of this effect is the choice of matrix material

  6. 49 CFR 179.200-11 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.200-11 Section 179.200-11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat treatment...

  7. To investigate the effect of heat treatment on fracture toughness of welded joints

    International Nuclear Information System (INIS)

    Hameed, A.; Pasha, R.A.; Shah, M.

    2013-01-01

    Annealing as a post weld heat treatment (PWHT), increases toughness in the welding joints of medium carbon steel in the same way as it increases toughness of the non-welded medium carbon steel. Measurement of increase in toughness through PWHT is focus of the present research work. Welded samples of commercially available steel AISI -1035 have been used for the proposed evaluation. The samples welded by two different techniques namely oxyacetylene gas welding and manual metal arc welding, passed through annealing process along with non-welded samples for comparison of increase in toughness. Toughness measured by impact tests revealed the improvement, which in the order of increasing effects is in gas welded, electric welded and non-welded samples. The aim of the present research was to measure the improvement in fracture toughness through post weld heat treatment (annealing). It has been shown that toughness increases as the structural flaws decrease. (author)

  8. Improved process for the treatment of bituminous materials. [two heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    1947-04-30

    A continuous process for recovering valuable hydrocarbon oils from solid minerals adapted to produce such oils upon application of heat, consists of reducing the raw minerals to a powder, suspending the powdered minerals in a gaseous medium and subjecting the suspension thus formed to heat treatment in a primary reaction zone, followed by heat treatment in a secondary reaction zone separate from the primary reaction zone. The temperature during the second of said treatments being substantially higher than that of the first.

  9. The influence of heating rate on reheat-cracking in a commercial 2 1/4Cr1Mo steel

    International Nuclear Information System (INIS)

    Hippsley, C.A.

    1983-03-01

    The effects of elevated heating rate on stress-relief cracking in a commercial 2 1/4 Cr1Mo steel have been investigated. A SEN bend-specimen stress-relaxation test was used to assess reheat cracking susceptibility and fracture mechanisms for an initial post-weld heating rate of 1000 Kh - 1 . Two factors controlling the influence of heating rate on the final severity of cracking were identified, i.e. the rate of stress-relaxation with respect to temperature, and the time available for crack-growth. The factors were found to counteract each other, but in the case of commercial 2 1/4 Cr1Mo steel, the crack-growth factor outweighed the relaxation factor, resulting in a reduction in the propensity to stress-relief cracking at the elevated heating rate. However, by reference to the results of a separate investigation concerning A508/2 MnMoNiCr steel it was demonstrated that the balance between these two factors may be reversed in other alloy systems, with the consequence that reheat cracking is exacerbated by increasing the initial heating rate. A computer model was addressed to the stress-relaxation test conditions using data from the commercial 2 1/4 Cr1Mo steel. The model predictions exhibited reasonable agreement with experimental test results for both 100 Kh - 1 and 1000 Kh - 1 heating rates. (author)

  10. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels

    Science.gov (United States)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1985-01-01

    In the previous papers, a new heat treatment for improving the lower temperature mechanical propertise of the ultrahigh strength low alloy steels was suggested by the authors which produces a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite through isothermal transformation at 593 K for a short time followed by water quenching (after austenitization at 1133 K). In this paper, two commercial Japanese ultrahigh strength steels, 0.40 pct C-Ni-Cr-Mo (AISI 4340 type) and 0.40 pct C-Cr-Mo (AISI 4140 type), have been studied to determine the effect of the modified heat treatment, coupled above new heat treatment with γ ⇆ α' repctitive heat treatment, on the mechanical properties from ambient temperature (287 K) to 123 K. The results obtained for various test temperatures have been compared with those for the new heat treatment reported previously and the conventional 1133 K direct water quenching treatment. The incorporation of intermediate four cyclic γ ⇆ α' repctitive heat treatment steps (after the initial austenitization at 1133 K and oil quenching) into the new heat treatment reported previously, as compared with the conventional 1133 K direct water quenching treatment, significantly improved 0.2 pct proof stress as well as notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel at similar fracture ductility levels from 287 to 123 K. Also, this heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved both 0.2 pct proof stress and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel with increased fracture ductility at 203 K and above. The microstructure consists of mixed areas of ultrafine grained martensite, within which is the refined blocky, highly dislocated structure, and the second phase lower bainite (about 15 vol pct), which appears in acicular form and partitions prior austenite grains. This newly developed heat treatment makes it possible to modify

  11. Pasteurization of milk: the heat inactivation kinetics of milk-borne dairy pathogens under commercial-type conditions of turbulent flow.

    Science.gov (United States)

    Pearce, L E; Smythe, B W; Crawford, R A; Oakley, E; Hathaway, S C; Shepherd, J M

    2012-01-01

    This is the first study to report kinetic data on the survival of a range of significant milk-borne pathogens under commercial-type pasteurization conditions. The most heat-resistant strain of each of the milk-borne pathogens Staphylococcus aureus, Yersinia enterocolitica, pathogenic Escherichia coli, Cronobacter sakazakii (formerly known as Enterobacter sakazakii), Listeria monocytogenes, and Salmonella was selected to obtain the worst-case scenario in heat inactivation trials using a pilot-plant-scale pasteurizer. Initially, approximately 30 of each species were screened using a submerged coil unit. Then, UHT milk was inoculated with the most heat-resistant pathogens at ~10(7)/mL and heat treated in a pilot-plant-scale pasteurizer under commercial-type conditions of turbulent flow for 15s over a temperature range from 56 to 66°C and at 72°C. Survivors were enumerated on nonselective media chosen for the highest efficiency of plating of heat-damaged bacteria of each of the chosen strains. The mean log(10) reductions and temperatures of inactivation of the 6 pathogens during a 15-s treatment were Staph. aureus >6.7 at 66.5°C, Y. enterocolitica >6.8 at 62.5°C, pathogenic E. coli >6.8 at 65°C, C. sakazakii >6.7 at 67.5°C, L. monocytogenes >6.9 at 65.5°C, and Salmonella ser. Typhimurium >6.9 at 61.5°C. The kinetic data from these experiments will be used by the New Zealand Ministry of Agriculture and Forestry to populate the quantitative risk assessment model being developed to investigate the risks to New Zealand consumers from pasteurized, compared with nonpasteurized, milk and milk products. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Effect of heat-treatment on elevated temperature fatigue-crack growth behavior of two heats of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1978-05-01

    The room temperature and elevated temperature fatigue-crack growth behavior of two heats of Alloy 718 was characterized within a linear-elastic fracture mechanics framework. Two different heat-treatments were used: the ''conventional'' (ASTM A637) treatment, and a ''modified'' heat-treatment designed to improve the toughness of Alloy 718 base metal and weldments. Heat-to-heat variations in the fatigue-crack propagation behavior were observed in the conventionally-treated material. On the other hand, no heat-to-heat variations were observed in the modified condition. Furthermore, both heats of Alloy 718 exhibited superior fatigue-crack growth resistance when given the modified heat-treatment. Electron fractographic examination of Alloy 718 fatigue fracture surfaces revealed that the operative crack growth mechanisms were dependent on heat-treatment, temperature, and ΔK level

  13. Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery

    Science.gov (United States)

    Bandhauer, Todd M.; Garimella, Srinivas; Fuller, Thomas F.

    2014-02-01

    Lithium-ion batteries suffer from inherent thermal limitations (i.e., capacity fade and thermal runaway); thus, it is critical to understand heat generation experienced in the batteries under normal operation. In the current study, reversible and irreversible electrochemical heat generation rates were measured experimentally on a small commercially available C/LiFePO4 lithium-ion battery designed for high-rate applications. The battery was tested over a wide range of temperatures (10-60 °C) and discharge and charge rates (∼C/4-5C) to elucidate their effects. Two samples were tested in a specially designed wind tunnel to maintain constant battery surface temperature within a maximum variation of ±0.88 °C. A data normalization technique was employed to account for the observed capacity fade, which was largest at the highest rates. The heat rate was shown to increase with both increasing rate and decreasing temperature, and the reversible heat rate was shown to be significant even at the highest rate and temperature (7.4% at 5C and 55 °C). Results from cycling the battery using a dynamic power profile also showed that constant-current data predict the dynamic performance data well. In addition, the reversible heat rate in the dynamic simulation was shown to be significant, especially for charge-depleting HEV applications.

  14. Use of a commercial heat transfer code to predict horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1993-03-01

    Radioactive spent fuel assemblies are a source of hazardous waste that will have to be dealt with in the near future. It is anticipated that the spent fuel assemblies will be transported to disposal sites in spent fuel transportation casks. In order to design a reliable and safe transportation cask, the maximum cladding temperature of the spent fuel rod arrays must be calculated. A comparison between numerical calculations using commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degree C and 23 degree C for the low heat dissipation and high heat dissipation, respectively. The temperature predictions using helium as a fill gas are lower for the low and medium heat dissipation levels, but higher at the high heat dissipation. The temperature differences are 1 degree C and 6 degree C for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degree C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include experimental uncertainty in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This work demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects will be increasingly important as the amount of dissipated heat increases

  15. Gas-cooled reactor commercialization study: introduction scenario and commercialization analyses for process heat applications. Final report, July 8, 1977--November 30, 1977

    International Nuclear Information System (INIS)

    1977-12-01

    This report identifies and presents an introduction scenario which can lead to the operation of High Temperature Gas Cooled Reactor demonstration plants for combined process heat and electric power generation applications, and presents a commercialization analysis relevant to the organizational and management plans which could implement a development program

  16. Gas-cooled reactor commercialization study: introduction scenario and commercialization analyses for process heat applications. Final report, July 8, 1977--November 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This report identifies and presents an introduction scenario which can lead to the operation of High Temperature Gas Cooled Reactor demonstration plants for combined process heat and electric power generation applications, and presents a commercialization analysis relevant to the organizational and management plans which could implement a development program.

  17. Microwave heat treatment as a substitute for conventional treatment of palm oil fruits

    International Nuclear Information System (INIS)

    Mujahid H Al-Fayadh; Nor Azura Masabbir Ali

    1996-01-01

    Microwave energy has become a sound method of heat treatment because of its high penetration power, cleanliness and possible economic significance. In this research, microwave heat was used as a substitute for conventional blanching method of palm oil fruits. Microwave treatment at 2450 MHz and 800 watts gave very close color and frn,frying characteristics to oil of blanched fruits after one minute exposure time. However, five minutes of microwave heat gave severe husk oil discoloration after 49 hours of deep frying, compared to all oils extracted from fruits treated by either low, microwave exposure time or conventional steam treatment. Kernel oil, after five minutes of microwave treatment, was less discolored than both steam or microwave-treated fruits for one minute. More carotenes and discoloration compounds may be contributed to discoloration during microwave treatments. Oil chemical constants of both husk and kernel oils treated by microwave heat were close to those treated by conventional heat. Further research is needed to investigate detailed oil characteristics and evaluate the feasibility study for using microwave energy, as a substitute for conventional heat in palm oil industry

  18. Heat transfer characteristics of porous sludge deposits and their impact on the performance of commercial steam generators

    International Nuclear Information System (INIS)

    Kreider, M.A.; White, G.A.; Varrin, R.D.; Ouzts, P.J.

    1998-12-01

    Steam generator (SG) fouling, in the form of corrosion deposits on the secondary sides of SG tubes, has been known to occur in almost all commercial US nuclear PWR (pressurized water reactor) plants. The level of fouling, as measured by the quantity of corrosion products that form, varies widely from plant to plant. In addition, the effect of SG fouling, as measured by a decrease in effective heat-transfer coefficient, has also varied substantially among commercial US plants. While some have observed large decreases in heat transfer, others have noted little change in performance despite the presence of significant quantities of secondary corrosion layers on their SG tubes. This observation has led to considerable confusion about what role secondary deposits play in causing heat-transfer degradation in SGs. As will become clear later in this report, secondary deposits can have a wide range of effects on heat transfer, from highly resistive to slightly enhancing (reflected by negative fouling). These different behaviors are the result of differences in deposit thickness, composition, and morphology. The main focus of this report is an investigation of the effects of secondary deposits on SG thermal performance. This investigation includes compilation of detailed information on the properties of tube scale at five commercial US nuclear plants and corresponding information characterizing SG thermal performance at these plants

  19. Heat pumps: Residential and commercial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The bibliography contains citations concerning the design and development of heat pumps for use in residential houses, apartments, and commercial installations. Energy exchange systems examined include air-to-air, ground-coupled, air-to-water, and water-to-water types. The citations cover costs and reliability of the heat pump systems, and studies of operations in differing climates and seasons. (Contains a minimum of 70 citations and includes a subject term index and title list.)

  20. Combined heat and gamma-irradiation treatments for the control of strawberry diseases under market conditions

    International Nuclear Information System (INIS)

    Brodrick, H.T.; Thomas, A.C.; Van Tonder, A.J.; Terblanche, J.C.

    1977-02-01

    The spoilage of strawberries under local market conditions was investigated. It was confirmed that the major losses are due to 'leak' disease caused by Rhizopus stolonifer (Ehr. ex Fr.) Lind. It was also established that further fruit losses in summer are due to anthracnose caused by the fungus Colletotrichum acutatum Simmonds. This is the first time that the latter pathogen has been isolated and identified and recognised as a problem on strawberries in South Africa. Studies with R. stolonifer in culture showed that 46 degrees Celsius for 20 min (the previous international standard heat treatment for fruit) was disappointing, while a treatment at 50 degrees Celsius for 10 min effectively inhibited spore germination. Irradiation studies with cultures of R. stolonifer and C. acutatum showed that a dose of 200 and 100 krad, respectively, resulted in excellent inhibition of spore germination. However, irradiating in nitrogen gas resulted in a tenfold reduction in the effectiveness of the irradiation treatments. The use of nitrogen during irradiation, therefore, cannot be considered, especially where an effective control of the fungal pathogens is desired. Investigations with different cultivars clearly demonstrated the synergistic effect on disease control obtained when combining heat and irradiation treatments. The combination treatment (moist heat at 50-52 degrees Celsius for 10 min plus 200 krad), besides effectively controlling both diseases in strawberries, did not adversely affect berry quality. In simulated transport tests it was shown that a minimal amount of berry softening did occur with this treatment, but this adverse effect was negligible compared with the beneficial effect obtained from disease control. In semi-commercial experiments it was shown that the combination heat and irradiation treatment effectively controlled spoilage diseases for a period of several days from picking, thus allowing sufficient time to market the fruit under local market

  1. Heat pumps: Residential and commercial applications. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The bibliography contains citations concerning the design and development of heat pumps for use in residential houses, apartments, and commercial installations. Energy exchange systems examined include air-to-air, ground-coupled, air-to-water, and water-to-water types. The citations cover costs and reliability of the heat pump systems, and studies of operations in differing climates and seasons. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. 49 CFR 179.100-10 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.100-10 Section 179...-10 Postweld heat treatment. (a) After welding is complete, steel tanks and all attachments welded... treatment is prohibited. (c) Tank and welded attachments, fabricated from ASTM A 240/A 240M (IBR, see § 171...

  3. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. ... In banana, pre-cooling treatment (8 ºC) and heat treatment followed by cooling reduced CAT activity in peel and pulp, whereas POX activity increased. Pre-cooling and heat treatments altered normal homeostasis of these fruits, ...

  4. Heat treatment control of Bi-2212 coils: I. Unravelling the complex dependence of the critical current density of Bi-2212 wires on heat treatment

    Science.gov (United States)

    Shen, Tengming; Li, Pei; Ye, Liyang

    2018-01-01

    A robust and reliable heat treatment is crucial for developing superconducting magnets from several superconductors especially Bi-2212. An improper heat treatment may significantly reduce the critical current density Jc of a Bi-2212 superconducting coil, even to zero, since the Jc of Bi-2212 wires is sensitive to parameters of its heat treatment (partial melt processing). To provide an essential database for heat treating Bi-2212 coils, the dependence of Jc on heat treatment is studied systematically in 11 industrial Bi-2212 wires, revealing several common traits shared between these wires and outlier behaviors. The dependence of the Jc of Bi-2212 on heat treatment is rather complex, with many processing parameters affecting Jc, including the peak processing temperature Tp, the time at the peak temperature tp, the time in the melt tmelt, the rate at which Bi-2212 melt is initially cooled CR1, the rate at which the solidification of Bi-2212 melt occurs CR2, and the temperature Tq at which the cooling rate switches from CR1 to CR2. The role of these parameters is analyzed and clarified, in the perspective of heat treating a coil. Practical advices on heat treatment design are given. The ability of a Bi-2212 coil to follow the prescribed recipe decreases with increasing coil sizes. The size of a coil that can be properly heat treated is determined.

  5. Mortality of insect life stages during simulated heat treatment

    Science.gov (United States)

    . Heat treatment for insect disinfestation uses elevated air temperatures that are lethal to stored-product insects. Heat treatment has been demonstrated in our research to offer a reduced-risk alternative to fumigation or residual pesticide use in empty bins. Heat is also compatible with organic gr...

  6. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    Science.gov (United States)

    Kamal, Rajeev

    Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at

  7. Aging management guideline for commercial nuclear power plants - heat exchangers

    International Nuclear Information System (INIS)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  8. Aging management guideline for commercial nuclear power plants - heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  9. Plasma treatment of heat-resistant materials

    International Nuclear Information System (INIS)

    Vlasov, V A; Kosmachev, P V; Skripnikova, N K; Bezukhov, K A

    2015-01-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion. (paper)

  10. Heat Treatment of Tools in Light Industry

    Science.gov (United States)

    Petukhov, V. A.

    2005-09-01

    Heat treatment processes for some tools (knitting needles, travelers for thimbles of spinning and doubling frames, thread-forming spinnerets) used for the production of cloths, hosiery, and other articles) in the knitting and textile industries are considered. Problems of the choice of steel and the kind and parameters of heat treatment are discussed in connection with the special features of tool design and operating conditions.

  11. Exploiting heat treatment effects on SMAs macro and microscopic properties in developing fire protection devices

    Science.gov (United States)

    Burlacu, L.; Cimpoeşu, N.; Bujoreanu, L. G.; Lohan, N. M.

    2017-08-01

    Ni-Ti shape memory alloys (SMAs) are intelligent alloys which demonstrate unique properties, such as shape memory effect, two-way shape memory effect, super-elasticity and vibration damping which, accompanied by good processability, excellent corrosion resistance and biocompatibility as well as fair wear resistance and cyclic stability, enabled the development of important industrial applications (such as sensors, actuators, fasteners, couplings and valves), medical applications (such as stents, bone implants, orthodontic archwires, minimal invasive surgical equipment) as well as environmental health and safety devices (anti-seismic dampers, fire safety devices). The phase transitions in Ni-Ti SMAs are strongly influenced by processing methods, chemical compositions and thermomechanical history. This paper presents a study of the effects of heat treatment on the mechanical and thermal properties of commercial Ni-Ti shape memory alloy (SMA). The experimental work involved subjecting a SMA rod to heat-treatment consisting in heating up to 500°C, 10 minutes-maintaining and water quenching. Mechanical properties were highlighted by microhardness tests while thermal characteristics were emphasized by differential scanning calorimetry (DSC). The presence of chemical composition fluctuations was checked by X-ray energy dispersive spectroscopy performed with an EDAX Bruker analyzer.

  12. 49 CFR 179.300-10 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.300-10 Section 179.300-10 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be...

  13. 7 CFR 58.236 - Pasteurization and heat treatment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurization and heat treatment. 58.236 Section 58... Service 1 Operations and Operating Procedures § 58.236 Pasteurization and heat treatment. All milk and... is handled according to sanitary conditions approved by the Administrator. (a) Pasteurization. (1...

  14. Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Sriram; Armstrong, Peter R.; Belzer, David B.; Gaines, Suzanne C.; Hadley, Donald L.; Katipumula, S.; Smith, David L.; Winiarski, David W.

    2000-04-25

    The Energy Policy and Conservation Act (EPCA) as amended by the Energy Policy Act of 1992 (EPACT) establishes that the U.S. Department of Energy (DOE) regulate efficiency levels of certain categories of commercial heating, cooling, and water-heating equip-ment. EPACT establishes the initial minimum efficiency levels for products falling under these categories, based on ASHRAE/IES Standard 90.1-1989 requirements. EPCA states that, if ASHRAE amends Standard 90.1-1989 efficiency levels, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in the amended Standard 90.1 and that it can establish higher efficiency levels if they would result in significant additional energy savings. Standard 90.1-1999 increases minimum efficiency levels for some of the equipment categories covered by EPCA 92. DOE conducted a screening analysis to determine the energy-savings potential for EPACT-covered products meet and exceeding these levels. This paper describes the methodology, data assumptions, and results of the analysis.

  15. Microstructural transformation with heat-treatment of aluminum hydroxide with gibbsite structure

    International Nuclear Information System (INIS)

    Mitsui, Tomohiro; Matsui, Toshiaki; Eguchi, Koichi; Kikuchi, Ryuji

    2009-01-01

    Aluminum hydroxide with gibbsite structure was prepared, and the microstructural transformation of the sample heat-treated at various temperatures was investigated. The sample was characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetry and differential thermal analysis (TG-DTA), and BET surface area. The shape of the grains in the prepared sample was hexagonal prism-like morphology. The prepared sample kept a metastable state of alumina phase at higher temperatures than the commercially available gibbsite powders. The prepared gibbsite grains underwent characteristic structural change depending on the calcination temperature. The transformation of the surface morphology was initiated at 400degC, leading to the formation of cracks with the direction parallel to the basal plane. After calcination at 1200degC, a large number of grooves were formed on the surface of the lateral planes. The specific structural change of gibbsite induced by the heat treatment was strongly related to the topotactic dehydration from gibbsite and subsequent phase transition to aluminum oxides. (author)

  16. Failures of tool steels after heat treatments

    International Nuclear Information System (INIS)

    Nunez-Gonzalez, G.

    1990-01-01

    The main objective of the work was to determine the most common defects occuring in tool steels of the AISI D-2, S-1, 0-1 and W-2 series during thermal treatment. Defects were evaluated by metallographic analyses, a method used to determine and recognize micro structural defects and their origin in order to be able to eliminate and correct some of the stages that are caused by heat treatment. Results show a large number of defects due to irregularities during thermal heating such as excess or lack of temperature, heating time, and atmosphere, rectifying and handling in service and, to a lesser extent, poor design. In conclusion, with the results obtained for each of the thermal treatments it is necessary to define, particularly the values each of these variables should have since they affect the material properties. (Author)

  17. Demand side management for commercial buildings using an in line heat pump water heating methodology

    International Nuclear Information System (INIS)

    Rankin, Riaan; Rousseau, Pieter G.; Eldik, Martin van

    2004-01-01

    Most of the sanitary hot water used in South African buildings is heated by means of direct electrical resistance heaters. This is one of the major contributors to the undesirably high morning and afternoon peaks imposed on the national electricity supply grid. For this reason, water heating continues to be of concern to the electricity supplier, ESCOM. Previous studies, conducted by the Potchefstroom University for Christian Higher Education in South Africa, indicated that extensive application of the so called inline heat pump water heating methodology in commercial buildings could result in significant demand side management savings to ESKOM. Furthermore, impressive paybacks can be obtained by building owners who choose to implement the design methodology on existing or new systems. Currently, a few examples exist where the design methodology has been successfully implemented. These installations are monitored with a fully web centric monitoring system that allows 24 h access to data from each installation. Based on these preliminary results, a total peak demand reduction of 108 MW can be achieved, which represents 18% of the peak load reduction target set by ESKOM until the year 2015. This represents an avoided cost of approximately MR324 (ZAR) [Int J Energy Res 25(4) (1999) 2000]. Results based on actual data from the monitored installations shows a significant peak demand reduction for each installation. In one installation, a hotel with an occupancy of 220 people, the peak demand contribution of the hot water installation was reduced by 86%, realizing a 36% reduction in peak demand for the whole building. The savings incurred by the building owner also included significant energy consumption savings due to the superior energy efficiency of the heat pump water heater. The combined savings result in a conservatively calculated straight payback period of 12.5 months, with an internal rate of return of 98%. The actual cost of water heating is studied by

  18. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    Science.gov (United States)

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  19. Examination of heat treatments at preservation of grape must

    Directory of Open Access Journals (Sweden)

    Péter Korzenszky

    2014-02-01

    Full Text Available Heat treatment is a well-known process in food preservation. It is made to avoid and to slow down food deterioration. The process was developed by Louise Pasteur French scientist to avoid late among others wine further fermentation. The different heat treatments influence the shelf life in food production. In our article we present the process of grape must fermentation, as grape must is the base material of wine production. The treatment of harvested fresh grape juice has a big influence on end product quality. It is our experiments we examined the same grape must with four different methods in closed and in open spaces to determine CO2 concentration change. There are four different methods for treatment of grape juice: boiling, microwave treatment, treatment by water bath thermostat and a control without treatment. As a result of the comparison it can be stated that the heat treatment delays the start of fermentation, thereby increasing shelf life of grape must. However, no significant differences were found between two fermentation of heat-treated grape must by the microwave and water-bath thermostat. The different heat treatment of grape must base materials was done at the laboratory in Faculty of Mechanical Engineering of Szent István University. The origin of the table grapes used for the examination was Gödöllő-hillside. Normal 0 21 false false false HU X-NONE X-NONE

  20. Effect of heat treatment on carbon steel pipe welds

    International Nuclear Information System (INIS)

    Mohamad Harun.

    1987-01-01

    The heat treatment to improve the altered properties of carbon steel pipe welds is described. Pipe critical components in oil, gasification and nuclear reactor plants require adequate room temperature toughness and high strength at both room and moderately elevated temperatures. Microstructure and microhardness across the welds were changed markedly by the welding process and heat treatment. The presentation of hardness fluctuation in the welds can produce premature failure. A number of heat treatments are suggested to improve the properties of the welds. (author) 8 figs., 5 refs

  1. Potential use of power plant reject heat in commercial aquaculture

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    1977-01-01

    Current research and commercial activities in aquaculture operations have been reviewed. An aquaculture system using mostly herbivorous species in pond culture is proposed as a means of using waste heat to produce reasonably priced protein. The system uses waste water streams, such as secondary sewage effluent, animal wastes, or some industrial waste streams as a primary nutrient source to grow algae, which is fed to fish and clams. Crayfish feed on the clam wastes thereby providing a clean effluent from the aquaculture system. Alternate fish associations are presented and it appears that a carp or tilapia association is desirable. An aquaculture system capable of rejecting all the waste heat from a 1000-MW(e) power station in winter can accommodate about half the summer heat rejection load. The aquaculture facility would require approximately 133 ha and would produce 4.1 x 10/sup 5/ kg/year of fish, 1.5 x 10/sup 6/ kg/year of clam meat, and 1.5 x 10/sup 4/ kg/year of live crayfish. The estimated annual pretax profit from this operation is one million dollars. Several possible problem areas have been identified. However, technical solutions appear to be readily available to solve these problems. The proposed system shows considerable economic promise. Small scale experiments have demonstrated the technical feasibility of various components of the system. It therefore appears that a pilot scale experimental facility should be operated.

  2. Potential use of power plant reject heat in commercial aquaculture

    International Nuclear Information System (INIS)

    Olszewski, M.

    1977-01-01

    Current research and commercial activities in aquaculture operations have been reviewed. An aquaculture system using mostly herbivorous species in pond culture is proposed as a means of using waste heat to produce reasonably priced protein. The system uses waste water streams, such as secondary sewage effluent, animal wastes, or some industrial waste streams as a primary nutrient source to grow algae, which is fed to fish and clams. Crayfish feed on the clam wastes thereby providing a clean effluent from the aquaculture system. Alternate fish associations are presented and it appears that a carp or tilapia association is desirable. An aquaculture system capable of rejecting all the waste heat from a 1000-MW(e) power station in winter can accommodate about half the summer heat rejection load. The aquaculture facility would require approximately 133 ha and would produce 4.1 x 10 5 kg/year of fish, 1.5 x 10 6 kg/year of clam meat, and 1.5 x 10 4 kg/year of live crayfish. The estimated annual pretax profit from this operation is one million dollars. Several possible problem areas have been identified. However, technical solutions appear to be readily available to solve these problems. The proposed system shows considerable economic promise. Small scale experiments have demonstrated the technical feasibility of various components of the system. It therefore appears that a pilot scale experimental facility should be operated

  3. Heat Treatment and Properties of Iron and Steel

    National Research Council Canada - National Science Library

    Digges, Thomas

    1966-01-01

    .... Chemical compositions, heat treatments, and some properties and uses are presented for structural steels, tool steels, stainless and heat-resisting steels, precipitation-hardenable stainless steels...

  4. Thermoluminescent determination of prehistoric heat treatment of chert artifacts

    International Nuclear Information System (INIS)

    Melcher, C.L.; Zimmerman, D.W.

    1977-01-01

    In recent years archeologists have become interested in the extent to which prehistoric peoples heat-treated chert prior to shaping it into tools. Thermoluminescent determination of the radiation dose accumulated by an artifact since it was formed or last heated provides a simple, reliable test for such heat treatment. This test can be applied to single artifacts without the need for raw source material for comparison. Results on 25 artifacts from four sites indicate that, for many chert sources, color and luster are not useful indicators of heat treatment by prehistoric peoples

  5. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  6. Efficacy of heat treatment for disinfestation of concrete grain silos

    Science.gov (United States)

    Field experiments were conducted in 2007 and 2008 to evaluate heat treatment for disinfestations of empty concrete elevator silos. A Mobile Heat Treatment Unit was used to introduce heat into silos to attain target conditions of 50°C for at least 6 h. Ventilated plastic containers with a capacity of...

  7. Saving energy resources during heat treatment - the most important problem of the branch

    Energy Technology Data Exchange (ETDEWEB)

    Zadernovskiy, V V; Firger, I V

    1980-01-01

    Natural gas fired thermal furnaces expend significantly less fuel than electric furnaces with an equal quality of metal heating. An important reserve in power reserve economy is the use of the forging heat in an article for heat treatment (TOB), where besides the power resources, metal is also saved as a result of the reduction in the volume of heating means and production spaces. From the experience in the progressive enterprises of the branch, in a number of cases it is possible to combine heating for plastic deformation with heating for primary or secondary heat treatment. Other measures are examined which save power resources in heat treatment: the use of thermal furnaces for aerodynamic heating, the use of local heat treatment, the reduction in the duration of the heat treatment processes, savings in the power carriers during heat treatment in furnaces with a roll out hearth. Fibrous refractory materials are being used more and more as fettling materials in the construction of thermal furnaces.

  8. Performance evaluation of a commercially available heat flow calorimeter and applicability assessment for safeguarding special nuclear materials

    International Nuclear Information System (INIS)

    Bracken, D.S.; Biddle, R.; Rudy, C.

    1998-01-01

    The performance characteristics of a commercially available heat-flow calorimeter will be presented. The heat-flow sensors within the calorimeter are based on thermopile technology with a vendor-quoted sensitivity of 150 microV/mW. The calorimeter is a full-twin design to compensate for ambient temperature fluctuations. The efficacy of temperature fluctuation compensations will also be detailed. Finally, an assessment of design applicability to special nuclear materials control and accountability and safeguarding will be presented

  9. New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys

    Science.gov (United States)

    Baker, Andrew H.; Collins, Peter C.; Williams, James C.

    2017-07-01

    The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.

  10. Technical project of complex fast cycle heat treatment of hydrogenous coal preparation

    OpenAIRE

    Moiseev, V. A.; Andrienko, V. G.; Pileckij, V. G.; Urvancev, A. I.; Gvozdyakov, Dmitry Vasilievich; Gubin, Vladimir Evgenievich; Matveev, Aleksandr Sergeevich; Savostiyanova, Ludmila Viktorovna

    2015-01-01

    Problems of heat-treated milled hydrogenous coal preparation site creation in leading fast cycle heat treatment complex were considered. Conditions for effective use of electrostatic methods of heat-treated milled hydrogenous coal preparation were set. Technical project of heat treatment of milled hydrogenous coal preparation site was developed including coupling of working equipment complex on fast heat treatment and experimental samples of equipment being designed for manufacturing. It was ...

  11. Effects of heat treatment on the mechanical properties of kenaf fiber

    Energy Technology Data Exchange (ETDEWEB)

    Carada, Paulo Teodoro D. L. [Master’s student in the Graduate School of Science and Engineering, Mechanical Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan); Fujii, Toru; Okubo, Kazuya [Professor in the Faculty of Science and Engineering, Department of Mechanical and Systems Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan)

    2016-05-18

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. The aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.

  12. Commercial waste treatment R and D needs in the United States

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1982-05-01

    The mission of the commercial waste treatment program is to establish treatment technology for safe and efficient management of high-level and transuranic wastes from reprocessing and fuel fabrication and special wastes from other fuel cycle activities. The four functional objectives that must be achieved to fulfill the mission are: (1) define waste product and treatment process performance requirements; (2) specify adequately safe waste products and verify their performance; (3) specify adequately efficient treatment processes and equipment and verify their performance; (4) solve existing waste treatment problems using verified products and processes. Although commercial waste treatment technology is in many respects highly advanced, there remains a number of areas where significant research and development is needed. These are: (1) technically-based performance requirements for both waste products and treatment processes; (2) pilot-scale radioactive demonstration of liquid-fed ceramic melting process and equipment for borosilicate glass; (3) non-glass TRU waste product and treatment process development; (4) waste product performance testing and predictive modeling; (5) quality verification for treatment processes

  13. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance

    International Nuclear Information System (INIS)

    Farah, Alessandro Fraga

    1997-01-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  14. Effect of heat treatment on structure and magnetic properties

    Indian Academy of Sciences (India)

    Fe46Co35Ni19/CNTs nanocomposites have been prepared by an easy two-step route including adsorption and heat treatment processes. We investigated the effect of heat treatment conditions on structure, morphology, nanoparticle sizes and magnetic properties of the Fe46Co35Ni19 alloy nanoparticles attached on the ...

  15. Heat applied chitosan treatment on hardwood chips to improve physical and mechanical properties of particleboard

    Directory of Open Access Journals (Sweden)

    Mehmet Altay Basturk

    2012-11-01

    Full Text Available High-heat treatment after surface application of chitosan was used in an effort to improve physical and mechanical performances of particleboard. Particleboard is mainly used in the furniture industry and also used as a home decoration material; however, it has a poor dimensional stability. In this work, hardwood chips were obtained from a commercial plant; half of the chips were used for the control panels without chitosan treatment, and the other half were treated with chitosan acetate solutions (2% wt. Those chitosan-treated particles were also exposed to extra high-heat (140oC treatment for 90 minutes to convert chitosan acetate back to chitin. Liquid phenol-formaldehyde resin was sprayed onto dry particles at a level of 6 and 7% (wt based upon oven-dry weight. The mat was pressed (200oC for 11 minutes to form 19 mm thickness and a target of 0.63 g cm-3 density panels. Thickness swelling, linear expansion, and water gain of the treated panels were reduced over untreated panels during a 24-hour water-soak test. In addition, chitosan-treated panels showed better internal bond strength than control panels. Static bending test results showed a negative effect for the chitosan treated particleboard.

  16. Heat treatment of cathodic arc deposited amorphous hard carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Ager, J.W. III; Brown, I.G. [and others

    1997-02-01

    Amorphous hard carbon films of varying sp{sup 2}/sp{sup 3} fractions have been deposited on Si using filtered cathodic are deposition with pulsed biasing. The films were heat treated in air up to 550 C. Raman investigation and nanoindentation were performed to study the modification of the films caused by the heat treatment. It was found that films containing a high sp{sup 3} fraction sustain their hardness for temperatures at least up to 400 C, their structure for temperatures up to 500 C, and show a low thickness loss during heat treatment. Films containing at low sp{sup 3} fraction graphitize during the heat treatment, show changes in structure and hardness, and a considerable thickness loss.

  17. Fabrication techniques to eliminate postweld heat treatment

    International Nuclear Information System (INIS)

    Lochhead, J.C.

    1978-01-01

    Postweld heat treatments to reduce residual stresses (stress relief operations) have been a common practice in the pressure vessel industry for a large number of years. A suitable heat treatment operation can, in particular for low alloy steels, have additional beneficial effects, i.e. a reduction in peak hardness values in the heat-affected zone, an improvement in weld metal properties, and a lowering of the adverse effects of the welding process on the mechanical properties of the parent material adjacent to the weld metal. However, continuing studies in the field of brittle fracture, improved parent materials, and more sophisticated nondestructive testing techniques have led to the elimination of such a practice in ever-increasing thickness ranges and types of material. For instance, the recently issued BS 5500 compared with BS 1113 (1969) lifts the thickness limit requiring stress relief in certain circumstances from 19 to 35mm for C steels. With respect to materials the CEGB has stated that as a result of successful operational experience it will no longer be necessary to postweld heat treat butt welds in 2 1/4 Cr-1Mo tubes of certain dimensions. Despite this trend, over a period of years a number of instances have arisen where, because of some factor, postweld heat treatment, although perhaps desirable, is not possible. This Paper describes several such examples. It must be noted that the examples quoted consist of relatively important and major items. It has been necessary within the confines of this Paper to condense the reports. It is hoped that no significant factors have been omitted. (author)

  18. Effect of heat treatment temperature on binder thermal conductivities

    International Nuclear Information System (INIS)

    Wagner, P.

    1975-12-01

    The effect of heat treatment on the thermal conductivities of a pitch and a polyfurfuryl alcohol binder residue was investigated. Graphites specially prepared with these two binders were used for the experiments. Measured thermal conductivities were treated in terms of a two-component system, and the binder thermal conductivities were calculated. Both binder residues showed increased thermal conductivity with increased heat treatment temperature

  19. Impact of Heat-Shock Treatment on Yellowing of Pak Choy Leaves

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang-yang; SHEN Lian-qing; YUAN Hai-na

    2004-01-01

    The physiological mechanism of maintaining the green colour of pak choy leaves (Brassica rapa var chinensis) with heat-shock treatment was studied. Chlorophyll in the outer leaves of pak choy degraded rapidly during storage at ambient temperature (20 ± 2℃), a slight yellow appeared. Heat-shock treatment (46- 50℃) had a mild effect on maintaining the green colour of outer leaves. Normal chlorophyll degradation was associated with a binding of chlorophyll with chlorophyll-binding-protein preceding chlorophyll breakdown.Heat-shock treatment was found to reduce the binding-capacity between chlorophyllbinding-protein and chlorophyll. In the chlorophyll degradation pathway, pheide dioxygenase was synthesized during leaf senescence which was considered to be a key enzyme in chlorophyll degradation. Activity of this enzyme was reduced following heat-shock treatment, which might explain the observed reduction in chlorophyll breakdown. Two groups of heat-shock proteins were detected in treated leaves, the first group containing proteins from 54KDa to 74 Kda, and the second group contained proteins from 15 KDa to 29KDa. Heat-shock treatment was also found to retard the decline of glucose and fructose (the main energy substrates) of outer leaves.

  20. Shredder and incinerator technology for volume reduction of commercial transuranic wastes

    International Nuclear Information System (INIS)

    Oma, K.H.

    1986-06-01

    Pacific Northwest Laboratory (PNL) is evaluating alternatives and developing technology for treatment of radioactive wastes generated during commercial nuclear activities. Transuranic wastes that require volume reduction include spent HEPA filters, sample and analytical cell waste, and general process trash. A review of current technologies for volume reduction of these wastes led to the selection and testing of several low-speed shredder systems and three candidate incineration processes. The incinerators tested were the electrically heated control-led-air, gas-heated controlled-air, and rotary kiln. Equipment tests were conducted using simulated commercial transuranic wastes to provide a data base for the comparison of the various technologies. The electrically driven, low-speed shredder process was selected as the preferred method for size reduction of the wastes prior to incineration. All three incinerators effectively reduced the waste volume. Based on a technical and economic evaluation on the incineration processes, the recommended system for the commercial waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment

  1. Effects of heat treatment on the radiosensitivity of Salmonellae

    International Nuclear Information System (INIS)

    Choi, E.H.; Yang, J.S.; Lee, S.R.

    1978-01-01

    When the food poisoning bacteria Salmonella enteritidis and S. typhimurium were treated with radiation (cobalt-60 γ-rays) and heat (10 minutes at 45 0 C or 50 0 C), their sterilizing effect was revealed differently depending on the order of treatments. Post-irradiation heating showed a synergistic effect whereas pre-irradiation heating revealed the opposite effect and the effects differed slightly with heating temperature. (author)

  2. Novel magnetic heating probe for multimodal cancer treatment.

    Science.gov (United States)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Soboyejo, Wole

    2015-05-01

    Multifunctional materials consisting of polymers and magnetic nanoparticles (MNPs) are highly sought after in the field of biomedical engineering. These materials offer new opportunities for the development of novel cancer treatment modalities that can increase the efficacy of cancer therapy. In this paper, a novel probe for multimodal cancer treatment is proposed and analyzed. The probe is essentially a cannula with two main parts: a distal heat generating tip made of a magnetic nanocomposite and a proximal insulated shaft. A description of the concept and functional operations of the probe is presented. In an effort to assess its feasibility, the authors evaluated the ability of probe tip (made of PMMA-Fe3O4 nanocomposite) to generate heat in biological tissue using alternating magnetic field (AMF) parameters (field strength and frequency) that are acceptable for human use. Heat generation by MNPs was determined using the linear response theory. The effects of Fe3O4 volume fraction on heat generation as well as treatment time on the thermal dose were studied. The finite element method model was tested for its validity using an analytical model. Lesions were revealed to have an ellipsoidal shape and their sizes were affected by treatment time. However, their shapes remained unchanged. The comparison with the analytical model showed reasonably a good agreement to within 2%. Furthermore, the authors' numerical predictions also showed reasonable agreement with the experimental results previously reported in the literature. The authors' predictions demonstrate the feasibility of their novel probe to achieve reasonable lesion sizes, during hyperthermic or ablative heating using AMF parameters (field strength and frequency) that are acceptable for human use.

  3. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    Science.gov (United States)

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  4. Effects of heat treatment on conformation and cell growth activity of alpha- lactalbumin and beta-lactoglobulin from market milk.

    Science.gov (United States)

    Inagaki, Mizuho; Kawai, Shuji; Ijier, X; Fukuoka, Mayuko; Yabe, Tomio; Iwamoto, Satoshi; Kanamaru, Yoshihiro

    2017-01-01

    Heat processes, low temperature for long time (LTLT) pasteurization and ultra-heat treatment (UHT) sterilization, are essential for commercial market milk to improve the shelf life of raw milk and ensure microbial safety. We evaluated the effects of heat experience on the molecular properties of α-lactalbumin (α-LA) and β-lactoglobulin (β-LG) isolated from four types of market milk such as LTLT-A (66°C for 30 min), LTLT-B (65°C for 30 min), UHT-I (130°C for 2 s, indirect heating) and UHT-D (135°C for 2 s, direct heating) samples. We examined molecular conformations using circular dichroism spectrum measurement and cell growth activity using the WST-1 method for the proteins. α-LA isolated from each of these four types of market milk displayed no significant structural difference as compared to raw milk α-LA, while α-LA of UHT-I only inhibited cell growth of an intestinal epithelial cell line more potently than raw milk α-LA. In the case of β-LG, only the UHT-I sample demonstrated a drastic change in structure, while it did not exhibit any cytotoxicity. We found that cell viability effects of α-LA and β-LG are attributable to the type of UHT; indirect and direct. These findings indicate that the effect of heat treatment on whey proteins should carefully be investigated further.

  5. Shelf-life extension of bread by heat and irradiation treatment [Bangladesh

    International Nuclear Information System (INIS)

    Begum, F.; Siddique, A.K.; Choudhury, N.; Mollah, R.A.

    1994-01-01

    Bread slices were given irradiation treatment 0.5, 1.0, 1.5, and 2.0 KGy and heat treatment at 60 deg. C for 20 min to control mould growth. Mould growth was reladed at ambient temperature by 3, 4, 6 and 8 days after 0.5, 1.0, 1.5 and 2.0 KGy treatments, respectively, compared to 2 days in case of control sample and 3 days for heat treatment alone. Combination of heat with irradiation at 0.5, 1.0, 1.5 and 2.0 KGy retarded mould growth up to 4, 6, 7 an 9 days, respectively. Organoleptically, the irradiated bread slices were acceptable up to 3 to 6 days depending on the treatment. The combination method treated slices were acceptable up to 8 days. The application of radiation dose exceeding 2.0 KGy caused off flavour. Mild heat treatment and radiation in combination resulted in a synergistic antifungal effect and enhanced shelf-life of bread

  6. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment.

    Science.gov (United States)

    Ramesh, Gopalan; Prabhu, Narayan Kotekar

    2011-04-14

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  7. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    Directory of Open Access Journals (Sweden)

    Ramesh Gopalan

    2011-01-01

    Full Text Available Abstract The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  8. Milk protein-gum tragacanth mixed gels: effect of heat-treatment sequence.

    Science.gov (United States)

    Hatami, Masoud; Nejatian, Mohammad; Mohammadifar, Mohammad Amin; Pourmand, Hanieh

    2014-01-30

    The aim of this study was to investigate the role of the heat-treatment sequence of biopolymer mixtures as a formulation parameter on the acid-induced gelation of tri-polymeric systems composed of sodium caseinate (Na-caseinate), whey protein concentrate (WPC), and gum tragacanth (GT). This was studied by applying four sequences of heat treatment: (A) co-heating all three biopolymers; (B) heating the milk-protein dispersion and the GT dispersion separately; (C) heating the dispersion containing Na-caseinate and GT together and heating whey protein alone; and (D) co-heating whey protein with GT and heating Na-caseinate alone. According to small-deformation rheological measurements, the strength of the mixed-gel network decreased in the order: C>B>D>A samples. SEM micrographs show that the network of sample C is much more homogenous, coarse and dense than sample A, while the networks of samples B and D are of intermediate density. The heat-treatment sequence of the biopolymer mixtures as a formulation parameter thus offers an opportunity to control the microstructure and rheological properties of mixed gels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants.

    Science.gov (United States)

    March, Jordon K; Pratt, Michael D; Lowe, Chinn-Woan; Cohen, Marissa N; Satterfield, Benjamin A; Schaalje, Bruce; O'Neill, Kim L; Robison, Richard A

    2015-10-01

    This study investigated (1) the susceptibility of Bacillus anthracis (Ames strain), Bacillus subtilis (ATCC 19659), and Clostridium sporogenes (ATCC 3584) spores to commercially available peracetic acid (PAA)- and glutaraldehyde (GA)-based disinfectants, (2) the effects that heat-shocking spores after treatment with these disinfectants has on spore recovery, and (3) the timing of heat-shocking after disinfectant treatment that promotes the optimal recovery of spores deposited on carriers. Suspension tests were used to obtain inactivation kinetics for the disinfectants against three spore types. The effects of heat-shocking spores after disinfectant treatment were also determined. Generalized linear mixed models were used to estimate 6-log reduction times for each spore type, disinfectant, and heat treatment combination. Reduction times were compared statistically using the delta method. Carrier tests were performed according to AOAC Official Method 966.04 and a modified version that employed immediate heat-shocking after disinfectant treatment. Carrier test results were analyzed using Fisher's exact test. PAA-based disinfectants had significantly shorter 6-log reduction times than the GA-based disinfectant. Heat-shocking B. anthracis spores after PAA treatment resulted in significantly shorter 6-log reduction times. Conversely, heat-shocking B. subtilis spores after PAA treatment resulted in significantly longer 6-log reduction times. Significant interactions were also observed between spore type, disinfectant, and heat treatment combinations. Immediately heat-shocking spore carriers after disinfectant treatment produced greater spore recovery. Sporicidal activities of disinfectants were not consistent across spore species. The effects of heat-shocking spores after disinfectant treatment were dependent on both disinfectant and spore species. Caution must be used when extrapolating sporicidal data of disinfectants from one spore species to another. Heat

  10. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  11. Treatment of DOE and commercial mixed waste by the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, T.W.; Apel, M.L.; Owens, C.M.

    1993-03-01

    This paper presents a conceptual approach for private sector treatment of mixed low-level radioactive waste generated by the US Department of Energy and commercial industries. This approach focuses on MLLW treatment technologies and capacities available through the private sector in the near term. Wastestream characterization data for 108 MLLW streams at the Idaho National Engineering Laboratory (INEL) were collected and combined with similar data for MLLWs generated through commercial practices. These data were then provided to private treatment facilities and vendors to determine if, and to what extent, they could successfully treat these wastes. Data obtained from this project have provided an initial assessment of private sector capability and capacity to treat a variety of MLLW streams. This information will help formulate plans for future treatment of these and similar wastestreams at DOE facilities. This paper presents details of the MLLW data-gathering efforts used in this research, private sector assessment methods employed, and results of this assessment. Advantages of private sector treatment, as well as barriers to its present use, are also addressed.

  12. Calculation and Designing of Up-to-Date Gas-Flame Plants for Metal Heating and Heat Treatment

    Directory of Open Access Journals (Sweden)

    V. I. Тimoshpolsky

    2008-01-01

    Full Text Available An analysis of development trends in the CIS machine-building industry and current status of the heating and heat treatment furnaces of main machine-building enterprises of the Republic of Belarus as of the 1st quarter of 2008 is given in the paper.The paper presents the most efficient engineering solutions from technological and economic point of view that concern calculation and designing of up-to-date gas-flame plants which are to be applied for modernization of the current heating and heat treatment furnaces of the machine-building enterprises in the Republic of Belarus.A thermo-technical calculation of main indices of the up-to-date gas-flame plant has been carried out in the paper.

  13. Study of heat treatment parameters for large-scale hydraulic steel gate track

    Directory of Open Access Journals (Sweden)

    Ping-zhou Cao

    2013-10-01

    Full Text Available In order to enhance external hardness and strength, a large-scale hydraulic gate track should go through heat treatment. The current design method of hydraulic gate wheels and tracks is based on Hertz contact linear elastic theory, and does not take into account the changes in mechanical properties of materials caused by heat treatment. In this study, the heat treatment parameters were designed and analyzed according to the bearing mechanisms of the wheel and track. The quenching process of the track was simulated by the ANSYS program, and the temperature variation, residual stress, and deformation were obtained and analyzed. The metallurgical structure field after heat treatment was predicted by the method based on time-temperature-transformation (TTT curves. The results show that the analysis method and designed track heat treatment process are feasible, and can provide a reference for practical projects.

  14. Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

    1980-05-01

    A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

  15. Irradiation in combination of heat treatment of mango puree

    International Nuclear Information System (INIS)

    Noomhorm, A.; Apintanapong, M.

    1996-01-01

    The effect of irradiation with heat combination treatment on the shelf life and quality of mango puree was studied. Thermal inactivation of polyphenol oxidase enzyme at 80 degree C and 15 min. was used as a measure of adequacy of pre-heat treatment. Irradiation of mango puree after heat treatment at dosage of 0, 2, 4, 6 and 8 kGy showed no change in mc, pH, acidity, and TSS but during storage, growth of microorganisms brought changes in these values. Irradiation in combination with low temperature (5 degree C) reduced discoloration and darkening rate during storage. Irradiation dose from 0 to 8 kGy resulted in log linear reductions in microorganism levels but at 6 and 8 kGy, there was no growth of microorganisms. Products irradiated at 8 kGy showed no microorganism growth at both temperatures

  16. Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    1996-02-01

    This report evaluates the capabilities of the United States Department of Energy's (DOE's) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act

  17. Ultrasonic evaluation of heat treatment for stress relief in steel

    International Nuclear Information System (INIS)

    Bittencourt, Marcelo de S.Q.; Lamy, Carlos A.; Goncalves Filho, Orlando J.A.; Payao Filho, Joao da C.

    2000-01-01

    Residual stresses in materials arise due to the manufacturing processes. As a consequence, in the nuclear area some components must suffer a stress relief treatment according to strict criteria. Although these treatments are carefully carried on, concern with nuclear safety is constantly growing. This work proposes a nondestructive ultrasonic method to guarantee the efficiency of the heat treatment. It was used a short peened steel plate with tensile and compressive stresses which was submitted to a stress relief treatment. The results show that the proposed ultrasonic method could be used to confirm the efficiency of the stress relief heat treatment. (author)

  18. Properties of commercial PVC-films with respect to electron dosimetry

    International Nuclear Information System (INIS)

    Miller, A.; Liqing, X.

    1985-05-01

    The properties of three commercially available polyvinyl chloride (PVC) film supplies and one made without additives were tested with respects to their application as routine dose monitors at electron accelerators. Dose fractionation was found to increase the response and the post-irradiation heat treatment was very critical for some of the films. (author)

  19. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots.

    Science.gov (United States)

    Kok, H Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D; Stalpers, Lukas J A; Crezee, Johannes

    2017-11-15

    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to improve the heating quality. The aim of this study was to evaluate the clinical benefit of online treatment planning during treatment of pelvic tumors heated with the AMC-8 locoregional hyperthermia system. For online adaptive hyperthermia treatment planning, a graphical user interface was developed. Electric fields were calculated in a preprocessing step using our in-house-developed finite-difference-based treatment planning system. This allows instant calculation of the temperature distribution for user-selected phase-amplitude settings during treatment and projection onto the patient's computed tomographic scan for online visualization. Online treatment planning was used for 14 treatment sessions in 8 patients to reduce the patients' reports of hot spots while maintaining the same level of tumor heating. The predicted decrease in hot spot temperature should be at least 0.5°C, and the tumor temperature should decrease less than 0.2°C. These predictions were compared with clinical data: patient feedback about the hot spot and temperature measurements in the tumor region. In total, 17 hot spot reports occurred during the 14 sessions, and the alternative settings predicted the hot spot temperature to decrease by at least 0.5°C, which was confirmed by the disappearance of all 17 hot spot reports. At the same time, the average tumor temperature was predicted to change on average -0.01°C (range, -0.19°C to 0.34°C). The measured tumor temperature change was on average only -0.02°C (range, -0.26°C to 0.31°C). In only 2 cases the temperature decrease was slightly larger than 0.2°C, but at most it was 0.26°C. Online application of hyperthermia treatment planning is

  20. Desensitization of stainless steels by laser surface heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Yoshikuni; Nishimoto, Kazutoshi

    1987-11-01

    Laser heating was applied for the desensitization heat-treatment of the surface layer in the sensitized HAZ of Type 304 stainless steel. The degree of sensitization was examined by EPR technique and the 10 % oxalic acid electrolytic etch test. The CO/sub 2/ laser with maximum power of 1.5 kW was used for heat-treatment. Time-Temperature-Desensitization diagram (TTDS diagram) for sensitized Type 304 stainless steels were developed by calculation assuming the chromium diffusion control for desensitization which might occur when the chromium depleted zone was healed up due to dissolution of chromium carbide and chromium diffusion from the matrix being heated at the solution annealing temperatures. TTDS diagrams calculated agree fairly well with ones determined by corrosion tests. Laser irradiation conditions (e.g., Laser power, beam diameter and traveling velocity) required for desensitization of sensitized Type 304 stainless steels were calculated using additivity rule from the TTDS diagram calculated and theoretical thermal curve of laser heating derived from the heat conduction theory. After laser beam irradiated under an optimum condition predicted by calculation, the sensitized HAZ of Type 304 stainless steel restored complete resistance to intergranular corrosion.

  1. Effect of Heat-treatment on Accuracy of Infrared Spectroscopy and Digital and Optical Brix Refractometers for Measuring Immunoglobulin G Concentration in Bovine Colostrum.

    Science.gov (United States)

    Elsohaby, I; McClure, J T; Dow, N; Keefe, G P

    2018-01-01

    Heat-treatment of colostrum is a method developed to reduce calf exposure to pathogens. Infrared (IR) spectroscopy and Brix refractometers can be used for measuring colostral IgG concentration and assessing colostrum quality. To determine the impact of heat-treatment on accuracy of IR spectroscopy and Brix refractometers for measuring colostral IgG concentration and assessing colostrum quality before and after heat-treatment. A total of 60 Holstein dairy cows on 8 commercial dairy farms. A cross-sectional study was designed to determine the effect of heat-treatment at 60°C and 63°C each for 30 and 60 minutes duration on colostral IgG concentration measured by the reference radial immunodiffusion (RID) assay, IR spectroscopy, and digital and optical refractometers. Colostrum IgG concentration significantly decreased after heat-treatment at 63°C for 30 or 60 minutes as measured by RID, but the IgG values remained unchanged when measured by IR spectroscopy and refractometers. The lowest correlation coefficient found between IR spectroscopy (r = 0.70) and RID results was in colostrum heat-treated at 63°C for 60 minutes. For digital (r = 0.48) and optical (r = 0.50) refractometers, the lowest correlation coefficient was at 63°C for 30 minutes when compared to RID. The accuracy of the IR spectroscopy, digital and optical Brix refractometers was decreased from 91.7 to 80%, 81.7 to 45%, and 80 to 45%, respectively, when colostrum heat-treated at 63°C for 60 minutes. Radial immunodiffusion, IR spectroscopy, and Brix refractometers exhibit utility for measuring IgG concentration when colostrum heat-treated at 60°C but does not detect decrease IgG concentrations when heat-treated at 63°C. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  2. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots

    NARCIS (Netherlands)

    Kok, H. Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D.; Stalpers, Lukas J. A.; Crezee, Johannes

    2017-01-01

    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to

  3. Next-generation heat pump systems in residential buildings and commercial premises; Naesta generations vaermepumpssystem i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Lindahl, Markus; Alsbjer, Markus; Nordman, Roger; Rolfsman, Lennart; Axell, Monica

    2009-07-01

    Summarising, the following conclusions can be drawn from this work. - Installation of a heat pump system is a very efficient way of reducing a building's energy demand without making any greater changes to the building's climate screen, and can therefore assist Sweden's achievement of its energy efficiency improvement targets. - A new generation of cost-effective smaller heat pumps is needed for installation in new detached houses or those being renovated and upgraded. - There also seems to be an excellent market potential for heat pumps that are larger than has previously been common: there should be good prospects for selling them for use in apartment buildings and in commercial or similar premises. - Heat pump installations are particularly competitive in applications where there are simultaneous heating and cooling demands in the property, and also in those cases where heating is required for most of the year and cooling for some other part of the year. If these suggested system arrangements are to be fully realised, there will be a need for further research in certain cases. Particularly, there is a need for research and development of more efficient pumps, fans and speed-controlled compressors in order to get such products on to the market. Performance measurements and follow-up of real systems are needed in order to obtain a clear picture of the efficiency of both present-day and proposed systems. This knowledge is essential for further development of systems, not only for residential buildings but also, even more importantly, for commercial and similar premises. Actual heating and cooling requirements in different types of non-residential premises need to be known more accurately in order to decide how systems should be controlled in order to minimise total energy use. Much indicates that future detached houses will be more energy-efficient, which could have the undesirable result of greater use of direct electric heating, as the investment

  4. Screening analysis for EPACT-covered commercial HVAC and water-heating equipment

    Energy Technology Data Exchange (ETDEWEB)

    S Somasundaram; PR Armstrong; DB Belzer; SC Gaines; DL Hadley; S Katipumula; DL Smith; DW Winiarski

    2000-05-25

    EPCA requirements state that if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. However, DOE can establish higher efficiency levels if it can show through clear and convincing evidence that a higher efficiency level, that is technologically feasible and economically justified, would produce significant additional energy savings. On October 29, 1999, ASHRAE approved the amended Standard 90.1, which increases the minimum efficiency levels for some of the commercial heating, cooling, and water-heating equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL) to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimates the annual national energy consumption and the potential for energy savings that would result if the EPACT-covered products were required to meet these efficiency levels. The analysis also estimates additional energy-savings potential for the EPACT-covered products if they were to exceed the efficiency levels prescribed in Standard 90-1-1999. In addition, a simple life-cycle cost (LCC) analysis was performed for some alternative efficiency levels. This paper will describe the methodology, data assumptions, and results of the analysis. The magnitude of HVAC and SWH loads imposed on equipment depends on the building's physical and operational characteristics and prevailing climatic conditions. To address this variation in energy use, coil loads for 7 representative building types at 11 climate locations were estimated based on a whole-building simulation.

  5. A Study of Ballast Water Treatment Using Engine Waste Heat

    Science.gov (United States)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  6. Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment.

    Directory of Open Access Journals (Sweden)

    Yang Qin

    Full Text Available Glutinous rice flour (GRF and glutinous rice starch (GRS were modified by dry-heat treatment and their rheological, thermal properties and freeze-thaw stability were evaluated. Compared with the native GRF and GRS, the water-holding ability of modified GRF and GRS were enhanced. Both the onset and peak temperatures of the modified samples increased while the endothermic enthalpy change decreased significantly (p < 0.05. Meanwhile, dry heating remarkably increased the apparent viscosities of both GRF and GRS. Importantly, compared with GRS samples, the storage modulus (G' and loss modulus (G" values of modified GRF increased more greatly and the tanδ values decreased more remarkably, indicating that the dry-heat treatment showed more impact on the GRF and a higher viscoelasticity compared with GRS. Our results suggest the dry-heat treatment of GRF is a more effective method than that of GRS, which omits the complex and tedious process for purifying GRS, and thereby has more practical applications in the food industry.

  7. Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment.

    Science.gov (United States)

    Qin, Yang; Liu, Chengzhen; Jiang, Suisui; Cao, Jinmiao; Xiong, Liu; Sun, Qingjie

    2016-01-01

    Glutinous rice flour (GRF) and glutinous rice starch (GRS) were modified by dry-heat treatment and their rheological, thermal properties and freeze-thaw stability were evaluated. Compared with the native GRF and GRS, the water-holding ability of modified GRF and GRS were enhanced. Both the onset and peak temperatures of the modified samples increased while the endothermic enthalpy change decreased significantly (p < 0.05). Meanwhile, dry heating remarkably increased the apparent viscosities of both GRF and GRS. Importantly, compared with GRS samples, the storage modulus (G') and loss modulus (G") values of modified GRF increased more greatly and the tanδ values decreased more remarkably, indicating that the dry-heat treatment showed more impact on the GRF and a higher viscoelasticity compared with GRS. Our results suggest the dry-heat treatment of GRF is a more effective method than that of GRS, which omits the complex and tedious process for purifying GRS, and thereby has more practical applications in the food industry.

  8. Industrial heat treatment of R-HPDC A356 automotive brake callipers

    CSIR Research Space (South Africa)

    Chauke, L

    2012-10-01

    Full Text Available Heat treatment of rheo-high pressure die cast (R-HPDC) A356 brake callipers has produced good mechanical properties on the laboratory scale. An industrial heat treatment is required to evaluate the applicability and conformance of the R-HPDC A356...

  9. THE INFLUENCE OF PRE-HEAT TREATMENT ON WHITE CAST IRONS PLASTICITY

    Directory of Open Access Journals (Sweden)

    T. M. Myronova

    2013-11-01

    Full Text Available Purpose. The development of heat treatment modes of white cast irons for structure changes in their eutectic constituent, namely in disturbing the monolithic structure of ledeburite colonies cementite structure and eutectic net continuity. Also the mentioned heat treatment modes are targeted to the eutectic net shift for the most suitable position from the point of plastic deforming. Methodology. The hypoeutectic white cast irons with 2.92…3.35 % carbon content and additionally alloyed by 3.18 % vanadium have been used as the research materials. The mentioned alloys have been pre-heat treated and hot twist tested. Findings. The research results showed that the carbide net breaking by plastic deforming leads to cast irons mechanical properties increasing but has difficulties in implementation due to the white cast irons low plasticity. The influence of different pre-heat treatment modes on structure and plasticity of white hypoeutectic cast irons have been investigated. They include the isotherm soaking under the different temperatures as well as multiply soakings and thermo-cycling. The influence of eutectic level, as well as pre heat treatment modes on different composition white cast irons hot plasticity have been investigated. Originality. It was determined that the heat treatment, which leads to double α→γ recrystallization under 860 – 950 °С and reperlitization under 720-680 °С results in significant increase of plasticity, as well as in un-alloyed and alloyed by vanadium white cast irons. It takes place due to carbide matrix phase separation in ledeburite colonies by new phase boundaries forming especially due to carbide transformations under vanadium alloying. Practical value. The implementation of pre-heat treatment with phase recrystallization resulted in hypoeutectic white cast irons plasticity increasing. The obtained level of cast iron plasticity corresponds to the one of carbide class steels, which ensures the successful

  10. Chelating agent-assisted heat treatment of a carbon-supported iron oxide nanoparticle catalyst for PEMFC.

    Science.gov (United States)

    Liu, Shyh-Jiun; Huang, Chia-Hung; Huang, Chun-Kai; Hwang, Weng-Sing

    2009-08-28

    Iron complexes were supported on commercial carbon black and heat treated to create FeO(x)/C catalysts that showed a larger normalized current density and normalized power density than commercial Pt/C catalysts; the coordination number of the iron complexes used affected the formation of the active site for oxygen reduction in PEMFC.

  11. Survey of postirradiation heat treatment as a means to mitigate radiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1979-01-01

    Nuclear-radiation service typically produces a progressive reduction in the notch ductility of low-alloy steels. The reduction is manifested by a decrease in Charpy-V (Csub(v)) upper-shelf energy level and by an elevation in temperature of the ductile-to-brittle transition. Post irradiation heat treatment (annealing) is being investigated as a method for the reversal of these detrimental radiation effects for reactor-vessel steels. This study was undertaken to analyze factors which could affect annealing response, report data available to qualify suspected influences on annealing, and summarize experimental results generated for many commercially produced reactor materials and companion materials produced in the laboratory

  12. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, Mehdi; Azadi, Mohammad; Hossein Farrahi, Gholam; Winter, Gerhard; Eichlseder, Wilfred

    2013-01-01

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests

  13. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, Mehdi [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad, E-mail: m_azadi@ip-co.com [Fatigue and Wear Workgroup, Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of); Hossein Farrahi, Gholam [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Winter, Gerhard; Eichlseder, Wilfred [Chair of Mechanical Engineering, University of Leoben, Leoben (Austria)

    2013-12-20

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests.

  14. Commercial waste treatment program annual progress report for FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Burkholder, H.C. (comps.)

    1984-02-01

    This annual report describes progress during FY 1983 relating to technologies under development by the Commercial Waste Treatment Program, including: development of glass waste form and vitrification equipment for high-level wastes (HLW); waste form development and process selection for transuranic (TRU) wastes; pilot-scale operation of a radioactive liquid-fed ceramic melter (LFCM) system for verifying the reliability of the reference HLW treatment proces technology; evaluation of treatment requirements for spent fuel as a waste form; second-generation waste form development for HLW; and vitrification process control and product quality assurance technologies.

  15. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  16. Simulations of Precipitate Microstructure Evolution during Heat Treatment

    Science.gov (United States)

    Wu, Kaisheng; Sterner, Gustaf; Chen, Qing; Jou, Herng-Jeng; Jeppsson, Johan; Bratberg, Johan; Engström, Anders; Mason, Paul

    Precipitation, a major solid state phase transformation during heat treatment processes, has for more than one century been intensively employed to improve the strength and toughness of various high performance alloys. Recently, sophisticated precipitation reaction models, in assistance with well-developed CALPHAD databases, provide an efficient and cost-effective way to tailor precipitate microstructures that maximize the strengthening effect via the optimization of alloy chemistries and heat treatment schedules. In this presentation, we focus on simulating precipitate microstructure evolution in Nickel-base superalloys under arbitrary heat treatment conditions. The newly-developed TC-PRISMA program has been used for these simulations, with models refined especially for non-isothermal conditions. The effect of different cooling profiles on the formation of multimodal microstructures has been thoroughly examined in order to understand the underlying thermodynamics and kinetics. Meanwhile, validations against several experimental results have been carried out. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean-field approximations, compatibility between CALPHAD databases, selection of key parameters (particularly interfacial energy and nucleation site densities), etc., are also addressed.

  17. Heat treatment trials for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Hemmi, Tsutomu; Koizumi, Norikiyo; Nakajima, Hideo; Kimura, Satoshi; Nakamoto, Kazunari

    2012-01-01

    Cable-in-conduit (CIC) conductors using Nb 3 Sn strands are used in ITER toroidal fields (TF) coils. Heat treatment generates thermal strain in CIC conductors because of the difference in thermal expansion between the Nb 3 Sn strands and the stainless-steel jacket. The elongation/shrinkage of the TF conductor may make it impossible to insert a wound TF conductor into the groove of a radial plate. In addition, it is expected that the deformation of the winding due to heat treatment-based release of the residual force in the jacket may also make it impossible to insert the winding in the groove, and that correcting the winding geometry to allow insertion of the winding may influence the superconducting performance of the TF conductor. The authors performed several trials using heat treatment as the part of activities in Phase II of TF coil procurement aiming to resolve the above-mentioned technical issues, and evaluated the elongations of 0.064, 0.074 and 0.072% for the straight and curved conductors and 1/3-scale double-pancake (DP) winding, respectively. It was confirmed that correction if the deformed winding did not influence the superconducting performance of the conductor. (author)

  18. Effects of Heat Treatment on the Microstructure and Mechanical Properties of Low-Carbon Steel with Magnesium-Based Inclusions

    Science.gov (United States)

    Zhang, Jian; Feng, Pei-Hsien; Pan, Yan-Chi; Hwang, Weng-Sing; Su, Yen-Hao; Lu, Muh-Jung

    2016-10-01

    The effects of heat treatment on the microstructure and mechanical properties of Mg-containing (7 ppm), low-carbon commercial steel (SS400) were investigated. Twenty different heat treatment paths were performed using a Gleeble 1500 thermomechanical simulator. It was observed by using an optical microscope that as the cooling rate increased and holding temperature decreased, the volume fractions of pearlite, Widmanstätten ferrite, and grain boundary allotriomorphs ferrite fell, whereas that of acicular ferrite (AF) increased. Quantifying the fractions of AF and other phases by using electron backscatter diffraction shows that the heat treatment path with a cooling rate of 20 K/s and holding temperature of 723 K (450 °C) induced the highest volume fraction (44 pct) of AF. As such, the toughness of the sample was increased 12.4 times compared with that observed in the sample containing 4 pct AF. Typical inclusions were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The results showed that the magnesium-based complex inclusions could act as nucleation sites of AF. Inclusions with a size of about 5 μm can serve as heterogeneous nucleation sites for AF. Mg-containing SS400 steel also has excellent hot-ductility in the temperature range of 973 K to 1273 K (700 °C to 1000 °C), and the minimum percentage reduction in area (R.A pct) value of around 63 pct at 1073 K (800 °C).

  19. Impact Toughness and Heat Treatment for Cast Aluminum

    Science.gov (United States)

    Lee, Jonathan A (Inventor)

    2016-01-01

    A method for transforming a cast component made of modified aluminum alloy by increasing the impact toughness coefficient using minimal heat and energy. The aluminum alloy is modified to contain 0.55%-0.60% magnesium, 0.10%-0.15% titanium or zirconium, less than 0.07% iron, a silicon-tomagnesium product ratio of 4.0, and less than 0.15% total impurities. The shortened heat treatment requires an initial heating at 1,000deg F. for up to I hour followed by a water quench and a second heating at 350deg F. to 390deg F. for up to I hour. An optional short bake paint cycle or powder coating process further increase.

  20. Effect of heat treatment operations on the Rm tensile strength of silumins

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-10-01

    Full Text Available Owing to good technological properties, low weight and good corrosion resistance, aluminum-silicon alloys are widely used as a material for cast machinery components. State of macro- and microstructure of a castings manufactured from Al-Si alloys, which is determined by a shape and distribution of hardening phases, segregation of alloying constituents and impurities, as well as distribution of porosity, create conditions to obtainment of proper mechanical properties. These properties can be improved through modification of the alloy and performed heat treatment operations. The paper presents effect of modification and heat treatment process on the Rm tensile strength of a selected silumins (EN AB-AlSi9Cu3(Fe, EN AB-AlSi12CuNiMg, EN AB-AlSi17Cu1Ni1Mg. Investigated alloys were put to treatments of refining and modification, and next to heat treatment. Temperature range of the heat treatment operations was determined on base of curves from the ATD method. Obtained results illustrate registered curves of melting and solidification from the ATD method and strength tests. On base of performed initial tests one determined parameters of the heat treatment process (temperature and duration of solutionig and ageing treatments enabling obtainment of improved Rm tensile strength of the investigated alloys.

  1. 77 FR 72763 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Science.gov (United States)

    2012-12-06

    ... Commercial and Industrial HVAC, Refrigeration and Water Heating Equipment AGENCY: Office of Energy Efficiency...; commercial heating, ventilating, air-conditioning (HVAC) equipment; and commercial water heating equipment... refrigeration equipment; commercial HVAC equipment; commercial WH equipment; and walk-in coolers and freezers...

  2. A new paradigm for heat treatment of alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ustinovshikov, Y., E-mail: ust@ftiudm.ru

    2014-11-25

    Highlights: • The sign of the ordering energy in alloys varies with the temperature. • Each temperature of heating leads to formation of its characteristic microstructure. • Quenching of alloys is a totally unnecessary and useless operation. - Abstract: The article considers the consequences in the field of heat treatment of alloys that could follow the introduction of the concept of phase transition ordering-phase separation into common use. By example of the Fe{sub 50}Cr{sub 50} alloy, industrial carbon tool steel and Ni{sub 88}Al{sub 12} alloy, it is shown that this transition occurs at a temperature, which is definite for each system, that the change of the sign of the chemical interaction between component atoms reverses the direction of diffusion fluxes in alloys, which affects changes in the type of microstructures. The discovery of this phase transition dramatically changes our understanding of the solid solution, changes the ideology of alloy heat treatment. It inevitably leads to the conclusion about the necessity of carrying out structural studies with the help of TEM in order to adjust the phase diagrams of the systems where this phase transition has been discovered. Conclusions have been made that quenching of alloys from the so-called region of the solid solution, which is usually performed before tempering (aging) is a completely unnecessary and useless operation, that the final structure of the alloy is formed during tempering (aging) no matter what the structure was before this heat treatment.

  3. Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels

    Directory of Open Access Journals (Sweden)

    Harisha S. R.

    2018-01-01

    Full Text Available The importance of medium carbon steels as engineering materials is reflected by the fact that out of the vast majority of engineering grade ferrous alloys available and used in the market today, a large proportion of them are from the family of medium carbon steels. Typically medium carbon steels have a carbon range of 0.25 to 0.65% by weight, and a manganese content ranging from 0.060 to 1.65% by weight. Medium carbon steels are more resistive to cutting, welding and forming as compared to low carbon steels. From the last two decades a number of research scholars reported the use of verity of heat treatments to tailor the properties of medium carbon steels. Spheroidizing is the novel industrial heat treatment employed to improve formability and machinability of medium/high carbon low alloy steels. This exclusive study covers procedure, the effects and possible outcomes of various heat treatments on medium carbon steels. In the present work, other related heat treatments like annealing and special treatments for property alterations which serve as pretreatments for spheroidizing are also reviewed. Medium carbon steels with property alterations by various heat treatment processes are finding increased responsiveness in transportation, aerospace, space, underwater along with other variegated fields. Improved tribological and mechanical properties consisting of impact resistance, stiffness, abrasion and strength are the main reasons for the increased attention of these steels in various industries. In the present scenario for the consolidation of important aspects of various heat treatments and effects on mechanical properties of medium carbons steel, a review of different research papers has been attempted. This review may be used as a guide to provide practical data for heat treatment industry, especially as a tool to enhance workability and tool life.

  4. Kinetical analysis of the heat treatment procedure in SmCo5 and other rare-earth transition-metal sintered magnets

    International Nuclear Information System (INIS)

    Campos, Marcos Flavio de; Rangel Rios, Paulo

    2004-01-01

    In the processing of all types of commercial sintered rare-earth transition-metal magnets (SmCo 5 , Sm(CoCuFeZr) z , NdFeB) a post-sintering heat treatment is included, which is responsible for large increase of the coercive field. During this post-sintering heat treatment, there are phase transformations with diffusion of the alloying elements, moving the system towards the thermodynamic equilibrium. Due to the larger size of the rare-earth atoms, the diffusion of the rare-earth atoms in the lattice of rare-earth transition-metal phases like SmCo 5 , Sm 2 (Co, Fe) 17 or Nd 2 Fe 14 B should be very slow, implying that the diffusion of the rare-earth atoms should be controlling the overall kinetics of the process. From the previous assumption, a parameter named 'diffusion length of rare-earth atoms' is introduced as a tool to study the kinetics of the heat treatment in rare-earth magnets. Detailed microstructural characterization of SmCo 5 and NdFeB magnets did not indicate significant microstructural changes between sintering and heat treatment temperatures and it was suggested that the increase of coercivity can be related to decrease of the content of lattice defects. The sintering temperature is high, close to melting temperature, and in this condition there are large amount of defects in the lattice, possibly rare-earth solute atoms. Phase diagram analysis has suggested that a possible process for the coercivity increase can be the elimination of excess rare-earth atoms, i.e. solute atoms from a supersatured matrix. The 'diffusion length of rare-earth atoms' estimated from diffusion kinetics is compatible with the diffusion length determined from microstructure. For the case of SmCo 5 , it was found that the time of heat treatment necessary is around 20 times lower if an isothermal treatment at 850 deg. C is substituted by a slow cooling from sintering temperature 1150 to 850 deg. C. These results give support for the thesis that the coercivity increase is

  5. Grain Refinement of Low Carbon Martensitic Steel by Heat Treatment

    Directory of Open Access Journals (Sweden)

    N. V. Kolebina

    2015-01-01

    Full Text Available The low-carbon steels have good corrosion and technological properties. Hot deformation is the main operation in manufacturing the parts from these steels. So one of the important properties of the material is a property of plasticity. The grain size significantly influences on the ductility properties of steel. The grain size of steel depends on the chemical composition of the crystallization process, heat treatment, and steel machining. There are plenty methods to have grain refinement. However, taking into account the large size of the blanks for the hydro turbine parts, the thermal cycling is an advanced method of the grain refinement adaptable to streamlined production. This work experimentally studies the heat treatment influence on the microstructure of the low-carbon 01X13N04 alloy steel and proposes the optimal regime of the heat treatment to provide a significantly reduced grain size. L.M. Kleiner, N.P. Melnikov and I.N. Bogachyova’s works focused both on the microstructure of these steels and on the influence of its parameters on the mechanical properties. The paper focuses mainly on defining an optimal regime of the heat treatment for grain refinement. The phase composition of steel and temperature of phase transformation were defined by the theoretical analysis. The dilatometric experiment was done to determine the precise temperature of the phase transformations. The analysis and comparison of the experimental data with theoretical data and earlier studies have shown that the initial sample has residual stress and chemical heterogeneity. The influence of the heat treatment on the grain size was studied in detail. It is found that at temperatures above 950 ° C there is a high grain growth. It is determined that the optimal number of cycles is two. The postincreasing number of cycles does not cause further reducing grain size because of the accumulative recrystallization process. Based on the results obtained, the thermal cycling

  6. Influence of heat treatment on magnesium alloys meant to automotive industry

    NARCIS (Netherlands)

    Popescu, G.; Moldovan, P.; Bojin, D.; Sillekens, W.H.

    2009-01-01

    The paper presents a study concerning the heat treatment realized on magnesium alloys, from AZ80 and ZK60 class. These alloys are destined to replace the conventional ferrous and aluminum alloys in automotive industry. It was realized the heat treatment, T5 - artificially aging, and it were

  7. Heat treatment of a direct composite resin: influence on flexural strength

    Directory of Open Access Journals (Sweden)

    Caroline Lumi Miyazaki

    2009-09-01

    Full Text Available The purpose of this study was to evaluate the flexural strength of a direct composite, for indirect application, that received heat treatment, with or without investment. One indirect composite was used for comparison. For determination of the heat treatment temperature, thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were performed, considering the initial weight loss temperature and glass transition temperature (Tg. Then, after photoactivation (600 mW/cm² - 40 s, the specimens (10 x 2 x 2 mm were heat-treated following these conditions: 170ºC for 5, 10 or 15 min, embedded or not embedded in investment. Flexural strength was assessed as a means to evaluate the influence of different heat treatment periods and investment embedding on mechanical properties. The data were analyzed by ANOVA and Tukey's test (α = 0.05. TGA showed an initial weight loss temperature of 180ºC and DSC showed a Tg value of 157°C. Heat treatment was conducted in an oven (Flli Manfredi, Italy, after 37°C storage for 48 h. Flexural strength was evaluated after 120 h at 37°C storage. The results showed that different periods and investment embedding presented similar statistical values. Nevertheless, the direct composite resin with treatments presented higher values (178.7 MPa compared to the indirect composite resin (146.0 MPa and the same direct composite submitted to photoactivation only (151.7 MPa. Within the limitations of this study, it could be concluded that the heat treatment increased the flexural strength of the direct composite studied, leading to higher mechanical strength compared to the indirect composite.

  8. Sanitary hot water consumption patterns in commercial and industrial sectors in South Africa: Impact on heating system design

    International Nuclear Information System (INIS)

    Rankin, R.; Rousseau, P.G.

    2006-01-01

    A large amount of individual sanitary hot water consumers are present in the South African residential sector. This led to several studies being done on hot water consumption patterns in this sector. Large amounts of sanitary hot water are also consumed in the commercial sector in buildings such as hotels and in large residences such as those found in the mining industry. The daily profiles of sanitary hot water consumption are not related to any technical process but rather to human behavior and varying ambient conditions. The consumption of sanitary hot water, therefore, represents a challenge to the electrical utility because it is an energy demand that remains one of the biggest contributors to the undesirable high morning and afternoon peaks imposed on the national electricity supply grid. It also represents a challenge to sanitary hot water system designers because the amount of hot water as well as the daily profile in which it is consumed impacts significantly on system design. This paper deals with hot water consumption in the commercial and industrial sectors. In the commercial sector, we look at hotels and in the industrial sector at large mining residences. Both of them are served by centralized hot water systems. Measured results from the systems are compared to data obtained from previous publications. A comparison is also made to illustrate the impact that these differences will have on sanitary hot water system design. Simulations are conducted for these systems using a simulation program developed in previous studies. The results clearly show significant differences in the required heating and storage capacity for the new profiles. A twin peak profile obtained from previous studies in the residential sector was used up to now in studies of heating demand and system design in commercial buildings. The results shown here illustrate the sanitary hot water consumption profile differs significantly from the twin peaks profile with a very high morning

  9. Deep Production Well for Geothermal Direct-Use Heating of A Large Commercial Greenhouse, Radium Springs, Rio Grande Rift, New Mexico; FINAL

    International Nuclear Information System (INIS)

    James C. Witcher

    2002-01-01

    Expansion of a large commercial geothermally-heated greenhouse is underway and requires additional geothermal fluid production. This report discusses the results of a cost-shared U.S. Department of Energy (DOE) and A.R. Masson, Inc. drilling project designed to construct a highly productive geothermal production well for expansion of the large commercial greenhouse at Radium Springs. The well should eliminate the potential for future thermal breakthrough from existing injection wells and the inducement of inflow from shallow cold water aquifers by geothermal production drawdown in the shallow reservoir. An 800 feet deep production well, Masson 36, was drilled on a US Bureau of Land Management (BLM) Geothermal Lease NM-3479 at Radium Springs adjacent to the A. R. Masson Radium Springs Farm commercial greenhouse 15 miles north of Las Cruces in Dona Ana County, New Mexico just west of Interstate 25 near the east bank of the Rio Grande. The area is in the Rio Grande rift, a tectonically-active region with high heat flow, and is one of the major geothermal provinces in the western United State

  10. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Maziar Ramezani

    2015-04-01

    Full Text Available Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric control, heat treatment with stainless steel foil wrapping, pack carburization heat treatment and vacuum heat treatment. The results showed that stainless steel foil wrapping could restrict decarburization process, resulting in a constant hardness profile as vacuum heat treatment does. However, the tempering characteristic between these two heat treatment methods is different. Results from the gas nitrided samples showed that the thickness and the hardness of the nitrided layer is independent of the carbon content in H13 steel.

  11. Effects of heat treatment temperature on morphology and properties of opal crystal

    International Nuclear Information System (INIS)

    Duan Tao; China Academy of Engineering Physics, Mianyang; Peng Tongjiang; Chen Jiming; Tang Yongjian

    2008-01-01

    The monodispersed SiO 2 microspheres were synthesized by reactant mixed equally. The colloid crystal templates were assemblied by vertical sedimentation method in ethanol at certain temperatures, and the effects of the heat treatment temperature on the morphology and the properties of opal colloid crystals were investigated. SEM, TCr-DSC results indicate SiO 2 colloid templates should be heat treated at 700-800 degree C, enhancing the conglutination and mechanistic intensity of opal templates. UV-Vis analysis result indicates that the heat treatment process can remove the photonic band gap location of the opal colloid crystals, and with the heat treatment temperature increasing gradually, blue shift occurs and the gap narrows. (authors)

  12. Heat treatment effect on ductility of nickel-base alloys

    International Nuclear Information System (INIS)

    Burnakov, K.K.; Khasin, G.A.; Danilov, V.F.; Oshchepkov, B.V.; Listkova, A.I.

    1979-01-01

    Causes of low ductility of the KhN75MBTYu and KhN78T alloys were studied along with the heat treatment effects. Samples were tested at 20, 900, 1100, 1200 deg C. Large amount of inclusions was found in intercrystalline fractures of the above low-ductile alloys. The inclusions of two types took place: (α-Al 2 O 3 , FeO(Cr 2 O 3 xAl 2 O 3 )) dendrite-like ones and large-size laminated SiO 2 , FeO,(CrFe) 2 O 3 inclusions situated as separate colonies. Heat treatment of the alloys does not increase high-temperature impact strength and steel ductility. The heating above 1000 deg C leads to a partial dissolution and coagulation of film inclusions which results in an impact strength increase at room temperature

  13. Heat Treatment of Cr- and Cr-V ledeburitic tool steels

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2014-11-01

    Full Text Available Cr- and Cr-V ledeburitic cold work tool steels belong to the most important tool materials for large series manufacturing. To enable high production stability, the tools must be heat treated before use. This overview paper brings a comprehensive study on the heat treatment of these materials, starting from the soft annealing and finishing with the tempering. Also, it describes the impact of any step of the heat treatment on the most important structural and mechanical characteristics, like the hardness, the toughness and the wear resistance. The widely used AIS D2- steel (conventionally manufactured and Vanadis 6 (PM are used as examples in most cases.

  14. Dimensional Behavior of Matrix Graphite Compacts during Heat Treatments for HTGR Fuel Element Fabrication

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung

    2015-01-01

    The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K. This carbonization step is followed by the final high temperature heat treatment where the carbonized compacts are heat treated at 2073-2173 K in vacuum for a relatively short time (about 2 hrs). In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions, which has a strong influence on the further steps and the material properties of fuel element. In this work, the dimensional changes of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed, keeping other process parameters constant, such as the binder content, carbonization time, temperature and atmosphere (two hours ant 1073K and N2 atmosphere). In this work, the dimensional variations of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed

  15. Stone heat treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification.

    Directory of Open Access Journals (Sweden)

    Patrick Schmidt

    Full Text Available The Early Mesolithic of southwestern Germany, the so-called Beuronian (9600-7100 BC, is a period of important transformations in the way people lived, in their subsistence and in the stone tools they produced. One of the perhaps most spectacular re-inventions of that time is heat treatment of stones prior to their manufacture into tools. Although heat treatment has been understood as one of the defining characteristics of the Beuronian of southwestern Germany, and although its existence has been known for almost 30 years now, relatively few systematic studies on it are available. In this paper, we present such a study, aiming to shed light on two questions: (1 what technique and heating parameters were used in the Beuronian and (2 how reliable are the macroscopic proxies traditionally used to identify heat treatment in this context? We investigate these questions using a non-destructive archaeometric technique for measuring past heating temperatures of heat-treated stones and a quantitative surface roughness analysis aiming to understand the relations between surface aspect and heat treatment. These methods are applied to 46 Jurassic chert artefacts from the site Helga-Abri located in the Swabian Alb region of southwestern Germany. Our results document that an opportunistic low-investment procedure was used to heat stone, probably relying on the use of the above-ground part of regular camp-fires. We also found that the traditionally used macroscopic criteria, such as colour and surface gloss, cannot be unambiguously used to identify heat treatment in assemblages made from Jurassic chert. These findings have important implications for our understanding of the Beuronian lithic chaîne opératoire in terms of the investment in time and resources necessary, and for the refinement of archaeological techniques used to identify heat treatment in the Mesolithic of the Swabian Alb.

  16. Stone heat treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification.

    Science.gov (United States)

    Schmidt, Patrick; Spinelli Sanchez, Océane; Kind, Claus-Joachim

    2017-01-01

    The Early Mesolithic of southwestern Germany, the so-called Beuronian (9600-7100 BC), is a period of important transformations in the way people lived, in their subsistence and in the stone tools they produced. One of the perhaps most spectacular re-inventions of that time is heat treatment of stones prior to their manufacture into tools. Although heat treatment has been understood as one of the defining characteristics of the Beuronian of southwestern Germany, and although its existence has been known for almost 30 years now, relatively few systematic studies on it are available. In this paper, we present such a study, aiming to shed light on two questions: (1) what technique and heating parameters were used in the Beuronian and (2) how reliable are the macroscopic proxies traditionally used to identify heat treatment in this context? We investigate these questions using a non-destructive archaeometric technique for measuring past heating temperatures of heat-treated stones and a quantitative surface roughness analysis aiming to understand the relations between surface aspect and heat treatment. These methods are applied to 46 Jurassic chert artefacts from the site Helga-Abri located in the Swabian Alb region of southwestern Germany. Our results document that an opportunistic low-investment procedure was used to heat stone, probably relying on the use of the above-ground part of regular camp-fires. We also found that the traditionally used macroscopic criteria, such as colour and surface gloss, cannot be unambiguously used to identify heat treatment in assemblages made from Jurassic chert. These findings have important implications for our understanding of the Beuronian lithic chaîne opératoire in terms of the investment in time and resources necessary, and for the refinement of archaeological techniques used to identify heat treatment in the Mesolithic of the Swabian Alb.

  17. Effect of heat treatment and composition on stress corrosion cracking of steam generation tubing materials

    International Nuclear Information System (INIS)

    Kim, H. P.; Hwang, S. S.; Kuk, I. H.; Kim, J. S.; Oh, C. Y.

    1998-01-01

    Effects of heat treatment and alloy composition on stress corrosion cracking (SCC) of steam generator tubing materials have been studied in 40% NaOH at 315.deg.C at potential of +200mV above corrosion potential using C-ring specimen and reverse U bend specimen. The tubing materials used were commercial Alloy 600, Alloy 690 and laboratory alloys, Ni-χCr-10Fe. Commercial Alloy 600, Alloy 690 were mill annealed or thermally treated.Laboratory alloy Ni-χCr-10Fe, and some of Alloy 600 and Alloy 690 were solution annealed. Polarization curves were measured to find out any relationship between SCC susceptibility and electrochemical behaviour. The variation in thermal treatment of Alloy 600 and Alloy 690 had no effect on polarization behaviour probably due to small area fraction of carbide and Cr depletion zone near grain boundary. In anodic polarization curves, the first and second anodic peaks at about 170mV and about at 260mV, respectively, above corrosion potential were independent of Cr content, whereas the third peak at 750mV above corrosion potential and passive current density in-creased with Cr content. SCC susceptibility decreased with Cr content and thermal treatment producing semicontinuous grain boundary decoration. Examination of cross sectional area of C-ring specimen showed deep SCC cracks for the alloys with less than 17%Cr and many shallow attacks for alloy 690. The role of Cr content in steam generator tubing materials and grain boundary carbide on SCC were discussed

  18. Fermentative hydrogen production in a system using anaerobic digester sludge without heat-treatment as a biomass source

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., Toronto, ON (Canada). Dept. of Civil Engineering

    2004-07-01

    A study at a Canadian waste treatment plant showed that raw sewage entering had nine times the energy content needed to run the plant. Therefore plants such as these could potentially become net energy producers. A common practice in laboratory-scale demonstration units is to use heat treatments to kill methanogens that consume hydrogen and retain only spore-forming fermentative bacteria. This heat treatment is energy intensive and therefore would be best omitted from a large-scale operation. Also, methanogens seem to be ubiquitous and it may not be possible to prevent their reintroduction in a commercial set up. This paper reports on studies to see if methanogens can be kept to an acceptable level by control of pH and by keeping the solids retention time down to about ten hours. When fed glucose the reactor initially had a productivity of approximately 7.9 per cent. After purging with carbon dioxide and nitrogen gas, productivity increased to more than 20 per cent on the first day. Hydrogenotrophic methanogens then established themselves in the reactor, reducing hydrogen productivity during the second non-purged phase by 80 per cent. The methods examined did not eliminate hydrogen-consuming methanogens for longer than a week, and thus it was suggested that the matter needs further study. 13 refs., 3 figs.

  19. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    OpenAIRE

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-01-01

    Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in ...

  20. Optimisation of the T6 heat treatment of rheocast alloy A356

    CSIR Research Space (South Africa)

    Moller, H

    2007-11-01

    Full Text Available popular solution heat treatment employed for SSM processed A356 is 6 hours at 540oC (i.e. similar to that used for permanent mould cast A356)6,7,9. Only limited work has been performed on the optimisation of the solution heat treatment of SSM processed... was not adequately studied by either Dewhirst8 or Rosso and Actis Grande5. The optimum artificial aging heat treatment proposed in both papers5,8 is 180oC for 4 hours. This was also confirmed in this work, but importantly, this applies only when natural aging...

  1. Assembly for melting and heat treatment

    International Nuclear Information System (INIS)

    Blumenfeld, M.

    1976-11-01

    Laboratory scale production of alloys having a precise alloying materials content and the exact heat treatment of metallurgical specimens are discussed. The design and assembly of two relevant instruments are described. These instruments include a laboratory vacuum induction furnace and a specially designed glass lathe, that enables even an unskilled operator to encapsulate and seal metallurgical specimens in glass capsules. (author)

  2. Experimental heat treatment of silcrete implies analogical reasoning in the Middle Stone Age.

    Science.gov (United States)

    Wadley, Lyn; Prinsloo, Linda C

    2014-05-01

    Siliceous rocks that were not heated to high temperatures during their geological formation display improved knapping qualities when they are subjected to controlled heating. Experimental heat treatment of South African silcrete, using open fires of the kind used during the Middle Stone Age, shows that the process needed careful management, notwithstanding recent arguments to the contrary. Silcrete blocks fractured when heated on the surface of open fires or on coal beds, but were heated without mishap when buried in sand below a fire. Three silcrete samples, a control, a block heated underground with maximum temperature between 400 and 500 °C and a block heated in an open fire with maximum temperature between 700 and 800 °C, were analysed with X-ray powder diffraction (XRD), X-ray fluorescence (XRF), optical microscopy, and both Fourier transform infrared (FTIR) and Raman spectroscopy. The results show that the volume expansion during the thermally induced α- to β-quartz phase transformation and the volume contraction during cooling play a major role in the heat treatment of silcrete. Rapid heating or cooling through the phase transformation at 573 °C will cause fracture of the silcrete. Successful heat treatment requires controlling surface fire temperatures in order to obtain the appropriate underground temperatures to stay below the quartz inversion temperature. Heat treatment of rocks is a transformative technology that requires skilled use of fire. This process involves analogical reasoning, which is an attribute of complex cognition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A comparison of fuel savings in the residential and commercial sectors generated by the installation of solar heating and cooling systems under three tax credit scenarios

    Science.gov (United States)

    Moden, R.

    An analysis of expected energy savings between 1977 and 1980 under three different solar tax credit scenarios is presented. The results were obtained through the solar heating and cooling of buildings (SHACOB) commercialization model. This simulation provides projected savings of conventional fuels through the installation of solar heating and cooling systems on buildings in the residential and commercial sectors. The three scenarios analyzed considered the tax credits contained in the Windfall Profits Tax of April 1980, the National Tax Act of November 1978, and a case where no tax credit is in effect.

  4. Effect of heat treatment on the microstructure and properties of Ni based soft magnetic alloy.

    Science.gov (United States)

    Li, Chunhong; Ruan, Hui; Chen, Dengming; Li, Kejian; Guo, Donglin; Shao, Bin

    2018-04-20

    A Ni-based alloy was heat treated by changing the temperature and ambient atmosphere of the heat treatment. Morphology, crystal structure, and physical performance of the Ni-based alloy were characterized via SEM, XRD, TEM, and PPMS. Results show that due to the heat treatment process, the grain growth of the Ni-based alloy and the removal of impurities and defects are promoted. Both the orientation and stress caused by rolling are reduced. The permeability and saturation magnetization of the alloy are improved. The hysteresis loss and coercivity are decreased. Higher heat treatment temperature leads to increased improvement of permeability and saturation magnetization. Heat treatment in hydrogen is more conducive to the removal of impurities. At the same temperature, the magnetic performance of the heat-treated alloy in hydrogen is better than that of an alloy with heat treatment in vacuum. The Ni-based alloy shows an excellent magnetic performance on 1,373 K heat treatment in hydrogen atmosphere. In this process, the µ m , B s , P u , and H c of the obtained alloy are 427 mHm -1 , 509 mT, 0.866 Jm -3 , and 0.514 Am -1 , respectively. At the same time, the resistivity of alloy decreases and its thermal conductivity increases in response to heat treatment. © 2018 Wiley Periodicals, Inc.

  5. Effect of heat treatment on stability of gold particle modified carbon supported Pt-Ru anode catalysts for a direct methanol fuel cell

    International Nuclear Information System (INIS)

    Li Xiaowei; Liu Juanying; Huang Qinghong; Vogel, Walter; Akins, Daniel L.; Yang Hui

    2010-01-01

    Carbon supported Au-PtRu (Au-PtRu/C) catalysts were prepared as the anodic catalysts for the direct methanol fuel cell (DMFC). The procedure involved simple deposition of Au particles on a commercial Pt-Ru/C catalyst, followed by heat treatment of the resultant composite catalyst at 125, 175 and 200 o C in a N 2 atmosphere. High-resolution transmission electron microscopy (HR-TEM) measurements indicated that the Au nanoparticles were attached to the surface of the Pt-Ru nanoparticles. We found that the electrocatalytic activity and stability of the Au-PtRu/C catalysts for methanol oxidation is better than that of the PtRu/C catalyst. An enhanced stability of the electrocatalyst is observed and attributable to the promotion of CO oxidation by the Au nanoparticles adsorbed onto the Pt-Ru particles, by weakening the adsorption of CO, which can strongly adsorb to and poison Pt catalyst. XPS results show that Au-PtRu/C catalysts with heat treatment lead to surface segregation of Pt metal and an increase in the oxidation state of Ru, which militates against the dissolution of Ru. We additionally find that Au-PtRu/C catalysts heat-treated at 175 o C exhibit the highest electrocatalytic stability among the catalysts prepared by heat treatment: this observation is explained as due to the attainment of the highest relative concentration of gold and the highest oxidation state of Ru oxides for the catalyst pretreated at this temperature.

  6. Effects of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) wood

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Qunying Mou; Yiqiang Wu; Yuan Liu

    2011-01-01

    In this study the effect of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) was investigated. Wood specimens were subjected to heat treatment at 160, 180, 200 and 220°C for 1, 2, 3 and 4h. The results show that heat treatment resulted in a darkened color, decreased moisture performance and increased dimensional stability of...

  7. Effect of heat treatment changes on swelling treatment of coal; Sekitan no bojun shori sayo ni oyobosu netsushori henka no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Satsuka, T.; Mashimo, K.; Wainai, T. [Nihon University, Tokyo (Japan). College of Science and Technology

    1996-10-28

    Discussions were given on effects of heat treatment at relatively low temperatures as a pretreatment for coal liquefaction on coal swelling and hydrogenolysis reaction. Taiheiyo coal was heated to 200{degree}C for one hour as a pretreatment. The attempted heating methods consisted of four steps of rapid heating (6.7{degree}C/min)quenching (20{degree}C/min), rapid heating/natural cooling (0.7{degree}C/min), heating (1.0{degree}C/min)/quenching, and heating/natural cooling. The swelling treatment was composed of adding methanol benzene into heat treated coal, and leaving it at room temperature for 24 hours. The hydrogenolysis was carried out by using a tetralin solvent and at an initial hydrogen pressure of 20 kg/cm{sup 2} and a temperature of 350{degree}C and for a time of one hour. Hydrogenolysis conversion in the heat treated coal was found lower than that of the original coal because of generation of liquefaction inactive components due to thermal polymerization. When the heat treated coal is swollen by using the solvent, gas yield from the hydrogenolysis reaction decreased due to gas suppression effect, and the conversion was lower than that of the original coal. Heat treatment suggests densification of the coal structure. Swollen coal shows no conspicuous difference in the heat treatment methods against the hydrogenolysis due to the swelling effect. 3 refs., 5 figs., 1 tab.

  8. The effect of single and double quenching and tempering heat treatments on the microstructure and mechanical properties of AISI 4140 steel

    International Nuclear Information System (INIS)

    Khani Sanij, M.H.; Ghasemi Banadkouki, S.S.; Mashreghi, A.R.; Moshrefifar, M.

    2012-01-01

    Highlights: ► DQT heat treatment consists of two stages of quenching and tempering. ► The DQT considerably improves ductility and toughness of AISI 4140 steel. ► The improvement of toughness in the DQT is due to finer austenite grains. ► The DQT decreases impurities concentration at the prior austenite grain boundaries. ► The increase of toughness is also associated with uniform distribution of impurity. -- Abstract: This investigation is concerned to evaluate the effect of double quenching and tempering (DQT) with conventional quenching and tempering (CQT) heat treatment processes on microstructure and mechanical behavior of a commercially developed hot rolled AISI 4140 type steel. Comparison of microstructure and mechanical properties of DQT and CQT heat treated specimens have been established in details. Optical and scanning electron microscopies have been used to follow impurity concentration and microstructural changes, and their relation to the associated mechanical properties. The results indicate that the improvement of mechanical properties particularly impact toughness of DQT heat treated specimens is much higher than that of the CQT condition, and this observation is rationalized in terms of finer austenite grain size developed in the DQT condition providing much finer martensitic packets within the grains and a lower level of impurity concentration of sulfur (S) and phosphorus (P) near the prior austenite grain boundaries as well.

  9. Heat losses and thermal performance of commercial combined solar and pellet heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas; Bales, Chris; Nordlander, Svante

    2004-01-01

    Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary en...

  10. Influence of heat treatment on the microstructure and mechanical properties of Alloy 718 base metal and weldments

    International Nuclear Information System (INIS)

    Mills, W.J.

    1979-06-01

    Effect of heat treatment on the metallurgical structure and tensile properties of three heats of Alloy 718 base metal and an Alloy 718 GTA weldment were characterized. Heat treatments employed were the conventional (ASTM A637) precipitation treatment and a modified precipitation treatment designed to improve the toughness of the weldments. The GTA weldments were characterized in the as-welded condition. Light microscopy, thin foil, and surface replica electron microscopy revealed that the microstructure of this superalloy was sensitive to heat treatment and heat-to-heat variations. The modified aging treatment resulted in a larger grain size and a more homogeneous microstructure than the conventional treatments. The morphology of the primary strengthening γ phase was found to be finer and more closely spaced in the conventionally treated condition. Room and elevated temperature tensile testing revealed that the strength of the conventionally treated alloy was generally superior to that of the modified material. The conventional aging treatment resulted in greater heat-to-heat variations in tensile properties. This behavior was correlated with variations in the microstructure resulting from the precipitation heat treatments. The precipitate morphology of the GTA weldments was sensitive to heat treatment. The Laves phase was present in the interdendritic regions of both heat-treated welds. The modified aging treatment reduced the amount of Laves phase present in the weld zone. Room and elevated temperature tensile properties of the precipitation hardened weldments were relatively insensitive to heat treatment, suggesting that reduction in Laves phase from the weld zone had essentially no effect on tensile properties. As-welded GTA weldments exhibited lower strength levels and higher ductility values than heat-treated welds

  11. Effect of heat moisture treatment and annealing on physicochemical ...

    African Journals Online (AJOL)

    Red sorghum starch was physically modified by annealing and heat moisture treatment. The swelling power and solubility increased with increasing temperature range (60-90°), while annealing and heatmoisture treatment decreased swelling power and solubility of starch. Solubility and swelling were pH dependent with ...

  12. Heat treatments of TiAl-Cr-V casting alloy

    International Nuclear Information System (INIS)

    Pu, Z.J.; Ma, J.L.; Wu, K.H.

    1995-01-01

    The need to investigate various kinds of fine microstructure based on casting TiAl alloy led to development of a multiple-stage heat treatment procedure. The first stage required the transformation of as-cast lamellar structure into near-gamma structure, followed by required transformation of near-gamma structure into various kinds of fine microstructure. The as-cast lamellar structure can be changed into near-gamma structure by annealing the alloy at 1,200 C for at least 50 hours. During the annealing process, two mechanisms are involved in transforming the lamellar structure into a near-gamma structure. One is the discontinuous coarsening (DC) process, and the other is the continuous coarsening (CC) process. With the near-gamma structure as an initial structure, the alloy being heat-treated in the γ + α and in the α fields can produce various kinds of microstructure with fine grain size. These microstructure significantly differ from the microstructure produced by heat-treating the deformed lamellar structure. Results of the investigation show that careful control of the time of the heat-treatment process in the single a field can produce a fine fully lamellar structure

  13. Chemical treatment of commercial reverse osmosis membranes for use in FO

    Science.gov (United States)

    Commercially available reverse osmosis (RO) membranes – SW30HR, BW30, and AG – were chemically treated for use in forward osmosis (FO). Nitric acid, phosphoric acid, sulfuric acid, ethanol, and ethanol–acid–water ternary solutions were employed for the treatment. All three membra...

  14. Evaluation of heat treatment schedules for emerald ash borer (Coleoptera: Buprestidae).

    Science.gov (United States)

    Myers, Scott W; Fraser, Ivich; Mastro, Victor C

    2009-12-01

    The thermotolerance of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), was evaluated by subjecting larvae and prepupae to a number of time-temperature regimes. Three independent experiments were conducted during 2006 and 2007 by heating emerald ash borer infested firewood in laboratory ovens. Heat treatments were established based on the internal wood temperature. Treatments ranged from 45 to 65 degrees C for 30 and 60 min, and the ability of larvae to pupate and emerge as adults was used to evaluate the success of each treatment. A fourth experiment was conducted to examine heat treatments on exposed prepupae removed from logs and subjected to ambient temperatures of 50, 55, and 60 degrees C for 15, 30, 45, and 60 min. Results from the firewood experiments were consistent in the first experiment. Emergence data showed emerald ash borer larvae were capable of surviving a temperatures-time combination up to 60 degrees C for 30 min in wood. The 65 degrees C for 30 min treatment was, however, effective in preventing emerald ash borer emergence on both dates. Conversely, in the second experiment using saturated steam heat, complete mortality was achieved at 50 and 55 degrees C for both 30 and 60 min. Results from the prepupae experiment showed emerald ash borer survivorship in temperature-time combinations up to 55 degrees C for 30 min, and at 50 degrees C for 60 min; 60 degrees C for 15 min and longer was effective in preventing pupation in exposed prepupae. Overall results suggest that emerald ash borer survival is variable depending on heating conditions, and an internal wood temperature of 60 degrees C for 60 min should be considered the minimum for safe treatment for firewood.

  15. Heat treatment evaluation of steel ASTM A-131 grade A by X-Ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Junior, Francisco; Feio, Luciana Gaspar; Costa, Ednelson Silva; Rodrigues, Lino Alberto Soares; Braga, Eduardo Magalhaes, E-mail: juniorferrer93@gmail.com [Universidade Federal do Pará (UFPA), Belém, PA (Brazil)

    2016-07-01

    Full text: This study evaluates the residual stress of naval steel ASTM A-131 grade A before and after heat treatment. Residual stresses were determined by the technique of X-ray diffraction (XRD). Before heat treatment the residual stress measurements were made at 36 (thirty six) points distributed in a specimen with dimensions of 400 mm long, 200 mm wide and 95 mm thick, then the plate under analysis was brought to the oven for the implementation of heat treatment. To check the performance of the heat treatment, the plate was again subjected to XRD measurements of the same points previously measured in order to compare the residual stresses. As result, there was a reduction of residual stresses with the application of heat treatment. References: [1] COLPAERT, H. Metalografia dos Produtos Siderurgicos Comuns. 4 Edição. Editora Blucher. Saõ Paulo, SP, 2008. [2] HILL, R. Princípios de Metalurgia Física, 1992. (author)

  16. Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment

    International Nuclear Information System (INIS)

    Lee, Syung Yul; Park, Dong Hyun; Won, Jong Pil; Kim, Yun Hae; Lee, Myung Hoon; Moon, Kyung Man; Jeong, Jae Hyun

    2012-01-01

    Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold and hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at 190 .deg. C for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at 190 .deg. C for 16hrs

  17. Improvement of stress-rupture life of GTD-111 by second solution heat treatment

    International Nuclear Information System (INIS)

    Yang, Caixiong; Xu, Yulai; Zhang, Zixing; Nie, Heng; Xiao, Xueshan; Jia, Guoqing; Shen, Zhi

    2013-01-01

    Highlights: ► The second solution heat treatment promoted the solution of γ–γ′ eutectic into γ matrix. ► The volume fraction of γ′ increases significantly after adding the second solution heat treatment. ► The improved stress-rupture life is primarily due to the increased volume fraction of γ′ phase. -- Abstract: An added second solution heat treatment was conducted to investigate its effects on the microstructures and stress-rupture properties of GTD-111. The microstructures were analyzed by scanning electron microscope after each step of heat treatments. The stress-rupture life of GTD-111 dramatically increases from about 180 to 288 h at 871 °C/310 MPa after adding a second solution heat treatment. The added second solution heat treatment promoted the solution of γ–γ′ eutectic into γ matrix, and facilitated the nucleation and precipitate of the secondary γ′ particles. The distribution of γ′ phase becomes much denser, the width of γ matrix channel is also reduced, and the volume fraction of γ′ phase significantly increases from about 29.3% to 44.2%. The improved stress-rupture life is primarily due to the increased volume fraction of γ′ phase. The carbides mainly consist of MC and a small amount of M 23 C 6 , which may prevent the dislocation moving and/or grain boundary sliding, and further improve the stress-rupture properties of GTD-111.

  18. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    Science.gov (United States)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  19. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    International Nuclear Information System (INIS)

    Boudreault, E; Hazel, B; Côté, J; Godin, S

    2014-01-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated C A6NM . This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named S compi . This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions

  20. Heat treatment of the EN AC-AlSi9Cu3(Fe alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-04-01

    Full Text Available Silumins are widely used in automotive, aviation and shipbuilding industries; as having specific gravity nearly three times lower than specific gravity of cast iron the silumins can be characterized by high mechanical properties. Additionally, they feature good casting properties, good machinability and good thermal conductivity. i.e. properties as required for machinery components operating in high temperatures and at considerable loads. Mechanical properties of the silumins can be upgraded, implementing suitably selected heat treatment. In the paper is presented an effect of modification and heat treatment processes on mechanical properties of the EN AC-AlSi9Cu3(Fe alloy. Investigated alloy has undergone typical processes of modification and refining, and next heat treatment. Temperature range of the heat treatment operations was determined on base of curves from the ATD method. Obtained results concern registered melting and solidification curves from the ATD method and strength tests. On base of the performed tests one has determined range of the heat treatment parameters which would assure obtainment of the best possible mechanical properties of the EN AC-AlSi9Cu3(Fe alloy.

  1. Effect of alkali and heat treatments for bioactivity of TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seo young, E-mail: mast6269@nate.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Kim, Yu kyoung, E-mail: yk0830@naver.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Park, Il song, E-mail: ilsong@jbnu.ac.kr [Division of Advanced Materials Engineering, Research Center for Advanced Materials Development and Institute of Biodegradable Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jin, Guang chun, E-mail: jingc88@126.com [Oral Medical College, Beihua University, Jilin City 132013 (China); Bae, Tae sung, E-mail: bts@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Lee, Min ho, E-mail: mh@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of)

    2014-12-01

    Highlights: • TiO{sub 2} nanotubes formed via anodization were treated by alkali and heat. • The surface roughness was increased after alkali treatment (p < 0.05). • After alkali and heat treatment, the wettability was better than before treatment. • Alkali treated TiO{sub 2} nanotubes were shown higher HAp formation in SBF. • Heat treatment affected on the attachment of cells for alkali treated nanotubes. - Abstract: In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO{sub 2} nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO{sub 2} nanotubes (PNA) and alkali and heat-treated TiO{sub 2} nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na{sub 2}TiO{sub 3}) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  2. EFFECT OF HEAT TREATMENT ON SOYBEAN PROTEIN SOLUBILITY

    Directory of Open Access Journals (Sweden)

    RODICA CĂPRIŢĂ

    2007-05-01

    Full Text Available The use of soybean products in animal feeds is limited due to the presence of antinutritional factors (ANF. Proper heat processing is required to destroy ANF naturally present in raw soybeans and to remove solvent remaining from the oil extraction process. Over and under toasting of soybean causes lower nutritional value. Excessive heat treatment causes Maillard reaction which affects the availability of lysine in particular and produces changes to the chemical structure of proteins resulting in a decrease of the nutritive value. The objective of this study was to evaluate the effect of heating time on the protein solubility. The investigation of the heating time on protein solubility in soybean meal (SBM revealed a negative correlation (r = -0.9596. Since the urease index is suitable only for detecting under processed SBM, the protein solubility is an important index for monitoring SBM quality.

  3. Computerized property prediction and process planning in heat treatment of steels

    Energy Technology Data Exchange (ETDEWEB)

    Gergely, M. (Steel Advisory Centre for Industrial Technologies (SACIT), Budapest (Hungary)); Somogyi, S. (Steel Advisory Centre for Industrial Technologies (SACIT), Budapest (Hungary)); Kohlheb, R. (Steel Advisory Centre for Industrial Technologies (SACIT), Budapest (Hungary))

    1994-01-01

    Recent years have seen widespread interest in the establishment of prediction methods, based on phenomenological description and computer simulation of transformation processes during heat treatment, and in the introduction of software for technological planning. The steady development of this approach is aimed at meeting the requirement of metallurgists, design engineers dealing with material selection and dimensioning, and technologists planning heat treatment processes. Research in this field of computer simulation has been concentrated so far on two main areas of interest: . Modelling of transformation processes and the prediction of microstructures and/or properties, . Developing program packages to help solve concrete tasks such as material selection, on-line process control and monitoring, and the design of heat-treating operations. During the last two decades in the field of heat treatment, various mathematical models with different accuracy and complexity have been developed. In this paper, an attempt is made to outline some important results in computer simulation and computerized property prediction without aiming at completeness. The topic is restricted to quenched and tempered, and case-hardened steels. (orig.)

  4. Private sector participation for the treatment of DOE and commercial radioactive mixed wastes

    International Nuclear Information System (INIS)

    Harris, T.L.; Steele, S.M.; Bohrer, H.A.; Garrison, T.W.; Owens, C.M.

    1993-01-01

    The ability of the US DOE to accept commercial low-level mixed waste (LLMW) for disposal has been identified as a technically feasible alternative in developing a strategy for managing commercial mixed waste. This document is an estimation of DOE's capabilities to assist the state compacts and the commercial sector with the difficult issues related to the treatment and disposal of LLMW. The first step in determining DOE's capabilities to assist the commercial sector and the state compacts in managing their LLMW is to establish how closely DOE's LLMW resembles the LLMW generated commercially. This report established that a large portion of the low-level mixed waste streams are common to both the DOE and private sectors. A united approach between the DOE and the host states and compacts to cooperatively manage the low-level mixed wastes (LLMW) would prove to be beneficial to all

  5. Characterization of Machine Variability and Progressive Heat Treatment in Selective Laser Melting of Inconel 718

    Science.gov (United States)

    Prater, Tracie; Tilson, Will; Jones, Zack

    2015-01-01

    The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future

  6. Suppression of outgassing from spindt-type cold-cathode by heat treatment

    International Nuclear Information System (INIS)

    Miyo, Yasuhiko; Ogiwara, Norio; Saidoh, Masahiro; Hayashi, Naoki; Turuta, Kouichi.

    1995-01-01

    In Spindt type cold cathode electron source (hereafter, referred to as FEA), field emission is used for extracting electrons. It was made clear that the FEA is an excellent electron source that never causes gas release by heating peripheral parts. But the gas release form the FEA was confirmed though it was slight accompanying the extraction of current. This gas release becomes a problem when pressure measurement is carried out by using the FEA in ultrahigh or extremely high vacuum. If the gas release occurs by the effect of the heat generation at the tip of an emitter accompanying the extraction of electron current, it is possible to reduce the gas release by carrying out the heat treatment of the FEA was attempted, and as the result, it was elucidated that by the heat treatment at 400degC, the gas release form the FEA was able to be suppressed. However, a new problem that the insulation between gate and emitter deteriorated and broke during the extraction of current occurred. The experimental method and the results of the reduction of gas release by heat treatment and the observation of the broken FEA with a scanning electron microscope are reported. Also the problem that in the FEA which was heat-treated at 400degC, the current has decreased from 500 μA to 100 μA in about 100 hours occurred. As to these problems, it is necessary to continue the experiment further. (K.I.)

  7. Heat treatment of large-sized welded rotors of steam turbines for atomic power stations

    Energy Technology Data Exchange (ETDEWEB)

    Kutasov, R F; Mukhina, M P; Tustanovskii, A S

    1977-01-01

    The heat treatment of a welded rotor of grade 25Kh2NMFA steel for steam turbines of nuclear power plants was considered. A following heat treatment schedule was suggested: charging the rotor in to a furnace at 100-150 deg C, heating to 200-250 deg C and holding for 12 hrs; slow heating (10 deg C/h) to 400-450 deg C and holding for 12 hrs; slow heating to 630-640 deg C and holding for 50 hrs, cooling at a rate of 5 deg C/h down to 100 deg C, holding for 20 hrs and cooling with the furnace open. The proposed heat treatment schedule of a duration of 356 hrs ensures a temperature gradient throughout the cross section and the length of the rotor of not more than +-5 deg C, least deviations of geometric dimensions and makes possible machining finish to within 0-0.02 mm. Described are the particularities of the design of a roll-out hearth electric chamber furnace, measuring 13000x5500x5000 mm and built for the purpose of carrying out said heat treatment. The power rating of the furnace is 2850 kW.

  8. Effects of Mead Wort Heat Treatment on the Mead Fermentation Process and Antioxidant Activity.

    Science.gov (United States)

    Czabaj, Sławomir; Kawa-Rygielska, Joanna; Kucharska, Alicja Z; Kliks, Jarosław

    2017-05-14

    The effects of mead wort heat treatment on the mead fermentation process and antioxidant activity were tested. The experiment was conducted with the use of two different honeys (multiflorous and honeydew) collected from the Lower Silesia region (Poland). Heat treatment was performed with the use of a traditional technique (gently boiling), the more commonly used pasteurization, and without heat treatment (control). During the experiment fermentation dynamics were monitored using high performance liquid chromatography with refractive index detection (HPLC-RID). Total antioxidant capacity (TAC) and total phenolic content (TPC) were estimated for worts and meads using UV/Vis spectrophotometric analysis. The formation of 5-hydroxymethylfurfural (HMF) was monitored by HPLC analyses. Heat treatment had a great impact on the final antioxidant capacity of meads.

  9. Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert.

    Science.gov (United States)

    Chen, W G; Chen, Z M; Chen, Z Y; Huang, P C; He, P; Zhu, J W

    2011-10-01

    The heat treatment of Nb(3)Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.

  10. Microstructure and mechanical properties of reactor pressure vessel mock-up material treated by intercritical heat treatment

    International Nuclear Information System (INIS)

    Kim, M. C.; Lee, B. S.; Hong, J. H.; Lee, H. J.; Park, S. D.; Kim, K. B.; Yoon, J. H.; Kim, J. S.; Oh, J. M.

    2003-12-01

    The mechanical properties and microstructures of base metal and weld HAZ (Heat-Affected Zone) of a Mn-Mo-Ni low alloy steels treated by intercritical heat treatment were investigated to evaluate effects of intercritical heat treatment on mechanical properties. In order to clarify the effects of intercritical heat treatment, two types of specimen were prepared by CHT(Conventional Heat Treatment) and IHT(CHT+Intercritical Heat Treatment). Tensile test, charpy impact test and vickers hardness test were carried out to evaluate the mechanical properties. It is found that impact toughness and hardness were improved by intercritical heat treatment. Mean size of precipitates and effective grain were quantitatively analysed as microstructural factors. It is found that precipitate size was decreased and shape of precipitate was spherodized by intercritical heat treatment and grain size was also decreased. So, it is thought that these microstructural changes cause the improvement of mechanical properties by intercritical heat treatment. The simulated specimen using a Gleeble thermal simulator system was used to evaluate the mechanical properties of HAZ. It is well known that IRHAZ and SRHAZ have lower toughness than base metal. However, in the case of IHT, impact toughness of IRHAZ and SRHAZ were slightly higher than that of base metal. It is obvious that this improvement of fracture toughness in IRHAZ and SRHAZ region was closely related to the microstructural changes, such as spheroidization of precipitate and decreases of precipitate size and grain size

  11. THE HEAT TREATMENT ANALYSIS OF E110 CASE HARDENING STEEL

    Directory of Open Access Journals (Sweden)

    MAJID TOLOUEI-RAD

    2016-03-01

    Full Text Available This paper investigates mechanical and microstructural behaviour of E110 case hardening steel when subjected to different heat treatment processes including quenching, normalizing and tempering. After heat treatment samples were subjected to mechanical and metallographic analysis and the properties obtained from applying different processes were analysed. The heat treatment process had certain effects on the resultant properties and microstructures obtained for E110 steel which are described in details. Quenching produced a martensitic microstructure characterized by significant increase in material’s hardness and a significant decreased in its impact energy. Annealed specimens produced a coarse pearlitic microstructure with minimal variation in hardness and impact energy. For normalized samples, fine pearlitic microstructure was identified with a moderate increase in hardness and significant reduction in impact energy. Tempering had a significant effect on quenched specimens, with a substantial rise in material ductility and reduction of hardness with increasing tempering temperature. Furthermore, Results provide additional substantiation of temper embrittlement theory for low-carbon alloys, and indicate potential occurrence of temper embrittlement for fine pearlitic microstructures.

  12. UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth

    Directory of Open Access Journals (Sweden)

    M. Gouma

    2015-01-01

    Full Text Available This investigation established the process criteria for using UV-C light and mild heat (UV-H treatment to inactivate 5-Log10 cycles (performance criterion of common foodborne pathogen populations, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, when inoculated in chicken broth. To define the target microorganism and the proper UV-H treatment conditions (including UV dose, treatment time, and temperature that would achieve the stated performance criterion, mathematical equations based on Geeraerd’s model were developed for each microorganism. For the sake of comparison, inactivation equations for heat treatments were also performed on the same chicken broth and for the same microorganisms. L. monocytogenes was the most UV-H resistant microorganism at all temperatures, requiring a UV dose between 6.10 J/mL (5.6 min and 2.26 J/mL (2.09 min to achieve 5-Log10 reductions. In comparison with UV treatments at room temperatures, the combination of UV and mild heat allowed both the UV dose and treatment time to be reduced by 30% and 63% at 55°C and 60°C, respectively. Compared to heat treatments, the UV-H process reduced the heating time for 5-Log10 reductions of all the investigated microorganisms in chicken broth from 20-fold to 2-fold when the operating temperature varied from 53 to 60°C.

  13. Study of critical dependence of stable phases in Nitinol on heat treatment using electrical resistivity probe

    International Nuclear Information System (INIS)

    Uchil, J.; Mohanchandra, K.P.; Kumara, K.G.; Mahesh, K.K.

    1998-01-01

    Phase transformations in 40% cold-worked Nitinol as a function of heat treatment have been studied using electrical resistivity variation with temperature. The stabilisation of austenitic, rhombohedral and martensitic phases is shown to critically depend on the temperatures of heat treatment by the analysis of temperature dependence of electrical resistivity in heating and cooling parts of the cycle. Characteristic values of electrical resistivity of the stable phases are determined. The R-phase has been found to form continuously with increasing heat-treatment temperature starting from room temperature and to suddenly disappear beyond heat-treatment at 683 K. The observed presence or absence of R-phase is confirmed by heat capacity measurements as a function of temperature. (orig.)

  14. Modeling heat and mass transfer in the heat treatment step of yerba maté processing

    Directory of Open Access Journals (Sweden)

    J. M. Peralta

    2007-03-01

    Full Text Available The aim of this research was to estimate the leaf and twig temperature and moisture content of yerba maté branches (Ilex paraguariensis Saint Hilaire during heat treatment, carried out in a rotary kiln dryer. These variables had to be estimated (modeling the heat and mass transfer due to the difficulty of experimental measurement in the dryer. For modeling, the equipment was divided into two zones: the flame or heat treatment zone and the drying zone. The model developed fit well with the experimental data when water loss took place only in leaves. In the first zone, leaf temperature increased until it reached 135°C and then it slowly decreased to 88°C at the exit, despite the gas temperature, which varied in this zone from 460°C to 120°C. Twig temperature increased in the two zones from its inlet temperature (25°C up to 75°C. A model error of about 3% was estimated based on theoretical and experimental data on leaf moisture content.

  15. Effects of Heat-treatments on the Mechanical Strength of Coated YSZ: An Experimental Assessment

    DEFF Research Database (Denmark)

    Toftegaard, Helmuth Langmaack; Sørensen, Bent F.; Linderoth, Søren

    2009-01-01

    The mechanical strength of thin, symmetric sandwich specimens consisting of a dense yttria-stabilized zirconia (YSZ) substrate coated with a porous NiO–YSZ layer at both major faces was investigated. Specimens were loaded in uniaxial tension to failure following heat treatments at various...... temperatures. In comparison with the YSZ material, the failure strength of coated specimens was found to increase for heat treatments at 1100°C, but decreased again with further increased heat-treatment temperatures....

  16. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  17. Uninterrupted heat-treatment of starch raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Bronshtein, D Z

    1958-01-01

    A setup is presented, with a Rekord grinder, a Khronos scale, and other equipment of Soviet manufacture, in which oats, rye, wheat, and other grains are treated at 42 to 45 degrees prior to their use as raw materials in the ethanol industry. These materials are analyzed with respect to H/sub 2/O, starch, bulk, weight, screen analysis, and the final ethanol yields/ton of such raw materials. In a three year run in plant, this heat-treatment was advantageous, as compared to the former treatment of the starch materials.

  18. Uninterrupted heat-treatment of starch raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Bronshtein, D Z

    1958-01-01

    A setup is presented, with a Rekord grinder, a Khronos scale, and other equipment of Soviet manufacture, in which oats, rye, wheat, and other grains are treated at 42 to 45/sup 0/ prior to their use as raw materials in the ethanol industry. These materials are analyzed with respect to H/sub 2/O, starch, bulk weight, screen analysis, and the final ethanol yields/ton of such raw materials. In a three year run in a plant, this heat-treatment was advantageous, as compared to the former treatment of the starch materials.

  19. Heating great residential units with combustion-motor heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, W

    1982-10-01

    Economic usage of combustion-motor heat pumps requires: reliable technology and delivery of the heat pump; design and operation. The heat pump must be integrated perfectly into the heating system. This contributions is based on a three-year operational experience with over 150 heat pumps used mainly in residential and administrative buildings (plus commercial buildings, swimming pools, sport centres etc.). These are heat pumps operating on the compression principle with natural gas, liquid gas, or fuel oil.

  20. The effect of heat treatment on phosphorus segregation in a submerged-arc weld metal

    International Nuclear Information System (INIS)

    Beere, W.B.; Buswell, J.T.

    1999-01-01

    Intergranular fracture (IGF) has been observed in carbon-manganese steels after irradiation or high temperature exposure for prolonged periods. The effect is associated with an increase in the ductile-brittle transition temperature and has been related to phosphorus diffusion to grain boundaries. Phosphorus also diffuses thermally at the temperatures used for post-weld heat treatments such that in principle, the slightly different heat treatments given to different parts of a large vessel could lead to differing grain boundary phosphorus coverage and hence susceptibility to IGF. The effect of typical heat treatments on phosphorus coverage has been investigated using a finite difference model based on a theory that has been fitted to a wide range of constant temperature data. Regardless of previous history, the grain boundary coverage of phosphorus was predicted to depend on the final anneal and cooling rate. These differed insufficiently in the typical heat treatments to produce significant differences in segregation. It was concluded that the ductile-brittle transition temperature in submerged-arc welds would be unaffected in vessels that had seen typical post-weld heat treatments

  1. Synthesis of Mo5SiB2 based nanocomposites by mechanical alloying and subsequent heat treatment

    International Nuclear Information System (INIS)

    Abbasi, A.R.; Shamanian, M.

    2011-01-01

    Research highlights: → α-Mo-Mo 5 SiB 2 nanocomposite was produced after 20 h milling of Mo-Si-B powders. → Heat treatment of 5 h MAed powders led to the formation of boride phases. → Heat treatment of 10 h MAed powders led to the formation of Mo 5 SiB 2 phase. → By increasing heat treatment time, quantity of Mo 5 SiB 2 phase increased. → 5 h heat treatment of 20 h MAed powders led to the formation of Mo 5 SiB 2 -based composite. - Abstract: In this study, systematic investigations were conducted on the synthesis of Mo 5 SiB 2 -based alloy by mechanical alloying and subsequent heat treatment. In this regard, Mo-12.5 mol% Si-25 mol% B powder mixture was milled for different times. Then, the mechanically alloyed powders were heat treated at 1373 K for 1 h. The phase transitions and microstructural evolutions of powder particles during mechanical alloying and heat treatment were studied by X-ray diffractometry and scanning electron microscopy. The results showed that the phase evolutions during mechanical alloying and subsequent heat treatment are strongly dependent on milling time. After 10 h of milling, a Mo solid solution was formed, but, no intermetallic phases were detected at this stage. However, an α-Mo-Mo 5 SiB 2 nanocomposite was formed after 20 h of milling. After heat treatment of 5 h mechanically alloyed powders, small amounts of MoB and Mo 2 B were detected and α-Mo-MoB-Mo 2 B composite was produced. On the other hand, heat treatment of 10 h and 20 h mechanically alloyed powders led to the formation of an α-Mo-Mo 5 SiB 2 -MoSi 2 -Mo 3 Si composite. At this point, there is a critical milling time (10 h) for the formation of Mo 5 SiB 2 phase after heat treatment wherein below that time, boride phase and after that time, Mo 5 SiB 2 phase are formed. In the case of 20 h mechanically alloyed powders, by increasing heat treatment time, not only the quantity of α-Mo was reduced and the quantity of Mo 5 SiB 2 was increased, but also new boride

  2. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    James, L.A.; Mills, W.J.

    1981-05-01

    Gas-tungsten-arc weldments in Alloy 718 were studied in fatigue-crack growth test conducted at five temperatures over the range 24--649 degree C. In general, crack growth rates increased with increasing temperature, and weldments given the ''conventional'' post-weld heat-treatment generally exhibited crack growth rates that were higher than for weldments given the ''modified'' (INEL) heat-treatment. Limited testing in the as-welded condition revealed crack growth rates significantly lower than observed for the heat-treated cases, and this was attributed to residual stresses. Three different heats of filler wire were utilized, and no heat-to-heat variations were noted. 23 refs., 9 figs., 6 tabs

  3. Effect of microstructure on the mechanical properties of a commercial 12Cr-1Mo steel (HT-9)

    International Nuclear Information System (INIS)

    Lechtenberg, T.A.

    1981-08-01

    The microstructure of a commercial 12Cr-1Mo steel (HT-9) and its associated effect on strength and toughness properties is being studied in a continuing program aimed at qualifying the alloy for use in fusion energy machines. Interim results show this alloy is subject to a degree of tempered martensite embrittlement and temper embrittlement. For applications projected for fusion machines at lower temperatures, a new heat treatment (1000 0 C, 1 h, air-cooled followed by 650 0 C tempering) at lower temperatures and shorter times than the vendor-recommended heat treatment has been identified. Microstructural differences between the treatments are discussed, and mechanical properties are correlated. 6 figures

  4. Effect of heat treatment temperature on microstructure

    Indian Academy of Sciences (India)

    The results of electrochemical performance measurements for the HCSs as anode material for lithium ion batteries indicate that the discharge capacity of the HCSs is improved after heat treatment at 800°C compared with the as-prepared HCSs and have a maximum value of 357 mAh/g and still retains 303 mAh/g after 40 ...

  5. Numerical analysis of heat treatment of TiCN coated AA7075 aluminium alloy

    Science.gov (United States)

    Srinath, M. K.; Prasad, M. S. Ganesha

    2018-04-01

    The Numerical analysis of heat treatments of TiCN coated AA7075 aluminium alloys is presented in this paper. The Convection-Diffusion-Reaction (CDR) equation with solutions in the Streamlined-Upward Petrov-Galerkin (SUPG) method for different parameters is provided for the understanding of the process. An experimental process to improve the surface properties of AA-7075 aluminium alloy was attempted through the coatings of TiCN and subsequent heat treatments. From the experimental process, optimized temperature and time was obtained which gave the maximum surface hardness and corrosion resistance. The paper gives an understanding and use of the CDR equation for application of the process. Expression to determine convection, diffusion and reaction parameters are provided which is used to obtain the overall expression of the heat treatment process. With the substitution of the optimized temperature and time, the governing equation may be obtained. Additionally, the total energy consumed during the heat treatment process is also developed to give a mathematical formulation of the energy consumed.

  6. Waste treatment

    International Nuclear Information System (INIS)

    Hutson, G.V.

    1996-01-01

    Numerous types of waste are produced by the nuclear industry ranging from high-level radioactive and heat-generating, HLW, to very low-level, LLW and usually very bulky wastes. These may be in solid, liquid or gaseous phases and require different treatments. Waste management practices have evolved within commercial and environmental constraints resulting in considerable reduction in discharges. (UK)

  7. Effect of heat treatment on the grooving corrosion resistance of ERW pipes

    International Nuclear Information System (INIS)

    Lee, Jong Kwon; Lee, Jae Young; Lim, Soo Hyun; Park, Ji Hwan; Seo, Bo Min; Kim, Seon Hwa

    2002-01-01

    The v-sharp grooving corrosion of ERW(electrical resistance welding) steel pipes limited their wide application in the industry in spite of their high productivity and efficiency. The grooving corrosion is caused mainly by the different microstructures between the matrix and weld that is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. Even though the diminishing of sulfur content is most effective to decrease the susceptibility of grooving corrosion, it requires costly process. In this study, improvement of grooving corrosion resistance was pursuited by post weld heat treatment in the temperature range between 650 .deg. C and 950 .deg. C. Also, the effect of heat input in the welding was investigated. By employing chromnoamperometry and potentiodynamic experiment, the corrosion rate and grooving corrosion index(α) were obtained. It was found that heat treatment could improve the grooving corrosion resistance. Among them, the heat treated at 900 .deg. C and 950 .deg. C had excellent grooving corrosion resistance. The index of heat treated specimen at 900 .deg. C and 950 .deg. C were 1.0, 1.2, respectively, which are almost immune to the grooving corrosion. Potential difference after the heat treatment, between base and weld metal was decreased considerably. While the as-received one measured 61∼71 mV, that of the 900 .deg. C heat treated steel pipe measured only 10mV. The results were explained and discussed

  8. Strategies for commercializing customer thermal-energy storage. [64 references

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.H.

    1976-12-01

    This report presents strategies for commercializing customer thermal storage. Four storage techniques are evaluated: space heating, air conditioning, hot-water heating, and interruptible hot-water heating. The storage systems involved store off-peak electric energy for thermal applications during peak load hours. Analyses of both storage techniques and principal parties affected by storage indicate four barriers: the absence of (1) commercially available air conditioning storage devices, (2) appropriate rates, (3) information on both rates and devices, and (4) widespread utility support. Development of appropriate rates is the key to commercialization. The criteria used to evaluate rate types are: maximum combined utility and customer benefits, ease of commercialization, and practical feasibility. Four rate types--demand charges, time-of-use rates, and two forms of load management rates (a monthly credit and an off-peak discount)--plus the possibility of utility ownership are considered. The best rate types for each storage option are: for hot-water heating, a monthly credit for allowing utility interruptions or an off-peak price discount for storage; for space heating, an off-peak discount contingent upon meeting utility requirements; and for air conditioning, an off-peak discount plus monthly credit.

  9. THE EFFECT OF HEAT TREATMENT ON THE DURABILITY OF BAMBOO Gigantochloa scortechinii

    Directory of Open Access Journals (Sweden)

    Norashikin Kamarudin

    2012-07-01

    Full Text Available Bamboo signifies as one of the fastest growing plants and it can be used for various products. In tropical countries such as Indonesia and Malaysia, bamboo is abundantly available at reasonable prices, therefore it is used for numerous purposes. However, as lignocellulosic material, bamboo is susceptible to fungal and insect attacks. Heat treatment is an option to improve bamboo's durability. The objective of this study was to improve the durability of bamboo using hot oil palm treatment. A Malaysian grown bamboo species, Buluh Semantan (Gigantochloa scortechinii, as a study material was soaked in hot oil palm for various temperatures and soaking time, before being inoculated with the basidiomycete Coriolus versicolor in an agar block test. The results demonstrated that the longer the heating time, the more improved the durability of bamboo. Altering the temperature in the palm oil treatment produced varying results. Bamboo blocks that heated in hot oil palm at 100°C for 60 minutes shows considerably less weight eduction that indicates less fungal attack. Overall, the higher the temperature, the better the durability of bamboo. Please indicates what the meaning of heat treatment in this experiment, it is not clear.

  10. Reactions of lactose during heat treatment of milk : a quantitative study

    NARCIS (Netherlands)

    Berg, H.E.

    1993-01-01

    The kinetics of the chemical reactions of lactose during heat treatment of milk were studied. Skim milk and model solutions resembling milk were heated. Reaction products were determined and the influence of varying lactose, casein and fat concentration on the formation of these products

  11. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    Hirose, Takanori; Suzuki, Satoshi; Akiba, Masato; Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro

    2004-01-01

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  12. THE EFFECTS OF INTERCRITICAL HEAT TREATMENTS ON THE ...

    African Journals Online (AJOL)

    Effect of intercritical heat treatment on 0.14wt%C 0.56wt%Mn 0.13wt%Si struc- ... Table 1: Chemical composition of the steel used (wt. %) with its critical temperature (calculated). C. Mn. Si. Ni. S ... primary austenitic grain size hardening and.

  13. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  14. Effect of Cold Drawing and Heat Treatment on the Microstructure of Invar36 Alloy Wire

    International Nuclear Information System (INIS)

    Han, Seung Youb; Jang, Seon Ah; Eun, Hee-Chul; Choi, Jung-Hoon; Lee, Ki Rak; Park, Hwan Seo; Ahn, Do-Hee; Kim, Soo Young; Kim, Jea Youl; Shin, Sang Yong

    2016-01-01

    In this study, the effect of cold drawing and heat treatment on the microstructure of Invar36 alloy wire was investigated. Invar36 alloy wire is used as a transmission line core material, and is required to have high strength. The diameter of the Invar36 alloy wire specimens were reduced from 16 mm to 4.3 mm after three cold drawing and two heat treatment processes, thereby increasing tensile strength. Specimens were taken after each of the cold drawing and heat treatment processes, and their microstructure and tensile properties were analyzed. The Invar36 alloy wire had a γ-(Fe, Ni) phase matrix before the cold drawing and heat treatment processes. After the cold drawing processes, {220} and {200} textures were mainly achieved. After the heat treatment processes, a {200} recrystallization γ-(Fe, Ni) phase was formed with fine carbides. The recrystallization γ-(Fe, Ni) phase grains had low dislocation density, so they probably accommodated a large amount of deformation during the cold drawing processes.

  15. Effect of Cold Drawing and Heat Treatment on the Microstructure of Invar36 Alloy Wire

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Youb; Jang, Seon Ah; Eun, Hee-Chul; Choi, Jung-Hoon; Lee, Ki Rak; Park, Hwan Seo; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Soo Young; Kim, Jea Youl [RandD Center, KOS Ltd., Yangsan (Korea, Republic of); Shin, Sang Yong [University of Ulsan, Ulsan (Korea, Republic of)

    2016-10-15

    In this study, the effect of cold drawing and heat treatment on the microstructure of Invar36 alloy wire was investigated. Invar36 alloy wire is used as a transmission line core material, and is required to have high strength. The diameter of the Invar36 alloy wire specimens were reduced from 16 mm to 4.3 mm after three cold drawing and two heat treatment processes, thereby increasing tensile strength. Specimens were taken after each of the cold drawing and heat treatment processes, and their microstructure and tensile properties were analyzed. The Invar36 alloy wire had a γ-(Fe, Ni) phase matrix before the cold drawing and heat treatment processes. After the cold drawing processes, {220} and {200} textures were mainly achieved. After the heat treatment processes, a {200} recrystallization γ-(Fe, Ni) phase was formed with fine carbides. The recrystallization γ-(Fe, Ni) phase grains had low dislocation density, so they probably accommodated a large amount of deformation during the cold drawing processes.

  16. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Gabriela Freitas RAMOS

    2016-01-01

    Full Text Available Abstract The present study investigated the effect of grinding on roughness, flexural strength, and reliability of a zirconia ceramic before and after heat treatment. Seven groups were tested (n = 15: a control group (labeled CG, untreated, and six groups of samples ground with diamond discs, simulating diamond burs, with grits of 200 µm (G80; 160 µm (G120, and 25 µm (G600, either untreated or heat-treated at 1200°C for 2 h (labeled A. Yttria tetragonal zirconia polycrystal discs were manufactured, ground, and submitted to roughness and crystalline phase analyses before the biaxial flexural strength test. There was no correlation between roughness (Ra and Rz and flexural strength. The reliability of the materials was not affected by grinding or heat treatment, but the characteristic strength was higher after abrasion with diamond discs, irrespective of grit size. The X-ray diffraction data showed that grinding leads to a higher monoclinic (m phase content, whereas heat treatment produces reverse transformation, leading to a fraction of m-phase in ground samples similar to that observed in the control group. However, after heat treatment, only the G80A samples presented strength similar to that of the control group, while the other groups showed higher strength values. When zirconia pieces must be adjusted for clinical use, a smoother surface can be obtained by employing finer-grit diamond burs. Moreover, when the amount of monoclinic phase is related to the degradation of zirconia, the laboratory heat treatment of ground pieces is indicated for the reverse transformation of zirconia crystals.

  17. Effect of Pressure and Heat Treatments on the Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Helmi Masdar

    2018-01-01

    Full Text Available This paper presents the corresponding compressive strength of RPC with variable pressure combined with heating rate, heating duration, and starting time of heating. The treatments applied were 8 MPa static pressure on fresh RPC prims and heat curing at 240 °C in an oven. The compressive strength test was conducted at 7-d and 28-d. The images of RPC morphology were captured on the surface of a fractured specimen using Scanning Electron Microscopy in Secondary Electron detector mode to describe pore filing mechanism after treatments. The results show that a heating rate at 50 °C/hr resulted in the highest compressive strength about 40 % more than those at 10 or 100 °C/hr. A heating duration of 48 hours led to the maximum compressive strength. Heat curing applied 2 days after casting resulted in the maximum compressive. Heat curing had a signicant effect on the compresssive strength due to the acceleration of both reactions (hydration and pozzolanic and the degree of transformation from tobermorite to xonotlite. It is concluded that the optimum condition of treatments is both pressure and heat curing at 2-day after casting with a rate of 50 °C/hr for 48 hours.

  18. Effect of heat treatment regime on structural lamination in ferritic-austenitic steels

    International Nuclear Information System (INIS)

    Sizov, R.A.; Zakharova, M.I.; Novikov, I.I.; Bannykh, O.A.

    1983-01-01

    The effect of preliminary thermal treatment on lamination and viscosity of EhP-53 and KO-3 steels after durable aging at the temperature of 350 is studied. It is shown that preliminary heat treatment considerably affects lamination processes in the result of aging of 0Kh18G8N2T steel. The lowest rate of lamination and higher impact strength after aging at 350 deg C for 4500 hours corresponds to the following heat treatment: 10 hour aging at 650 deg C with cooling in the air, then quenching in water from 950 deg C after aging for 30 min and the following tempering (650 deg C, 5 hours). Unlike the 0Kh18G8N2T steel, lamination parameters of steel 0Kh22N6T practically do not change after the application of heat treatment. Nevertherless, taking into account results of impact strength, it is advisable to have thermal treatment according to the regime: quenching in water at 950 deg C after aging for 30 min

  19. Effect of Heat Treatment on the Lycopene Content of Tomato Puree ...

    African Journals Online (AJOL)

    Effect of Heat Treatment on the Lycopene Content of Tomato Puree. MI Mohammed, DI Malami. Abstract. Lycopene is a powerful antioxidant. Epidemiological studies have associated its consumption with numerous health benefits. In this study the effects of heating on lycopene were investigated by exposing tomato ...

  20. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  1. Effect of heat treatment duration on tribological behavior of electroless Ni-(high)P coatings

    Science.gov (United States)

    Biswas, A.; Das, S. K.; Sahoo, P.

    2016-09-01

    Electroless nickel coating occurs through an autocatalytic chemical reaction and without the aid of electricity. From tribological perspective, it is recommended due to its high hardness, wear resistance, lubricity and corrosion resistance properties. In this paper electroless Ni-P coatings with high phosphorous weight percentages are developed on mild steel (AISI 1040) substrates. The coatings are subjected to heat treatment at 300°C and 500°C for time durations up to 4 hours. The effect of heat treatment duration on the hardness as well as tribological properties is discussed in detail. Hardness is measured in a micro hardness tester while the tribological tests are carried out on a pin-on-disc tribotester. Wear is reported in the form of wear rates of the sample subjected to the test. As expected, heat treatment of electroless Ni-P coating results in enhancement in its hardness which in turn increases its wear resistance. The present study also finds that duration of heat treatment has quite an effect on the properties of the coating. Increase in heat treatment time in general results in increase in the hardness of the coating. Coefficient of friction is also found to be lesser for the samples heat treated for longer durations (4 hour). However, in case of wear, similar trend is not observed. Instead samples heat treated for 2 to 3 hour display better wear resistance compared to the same heat treated for 4 hour duration. The microstructure of the coating is also carried out to ensure about its proper development. From scanning electron microscopy (SEM), the coating is found to possess the conventional nodular structure while energy dispersive X-ray analysis (EDX) shows that the phosphorous content in the coating to be greater than 9%. This means that the current coating belongs to the high phosphorous category. From X-ray diffraction analysis (XRD), it is found that coating is amorphous in as-deposited condition but transforms into a crystalline structure with

  2. Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Ren, Xianghao

    2016-01-01

    Highlights: • Specially designed fixed-inverter hybrid heat pump system was developed. • Hybrid operation performed better at part loads than single inverter operation. • The applied heat pump can work stably over a wide range of heat load variations. • Heat energy potential of treated effluent was better than influent. • The heat pump’s COP from the field test was 4.06 for heating and 3.64 for cooling. - Abstract: Among many options to improve energy self-sufficiency in sewage treatment plants, heat extraction using a heat pump holds great promise, since wastewater contains considerable amounts of thermal energy. The actual heat energy demand at municipal wastewater treatment plants (WWTPs) varies widely with time; however, the heat pumps typically installed in WWTPs are of the on/off controlled fixed-speed type, thus mostly run intermittently at severe part-load conditions with poor efficiency. To solve this mismatch, a specially designed, fixed-inverter hybrid heat pump system incorporating a fixed-speed compressor and an inverter-driven, variable-speed compressor was developed and tested in a real WWTP. In this hybrid configuration, to improve load response and energy efficiency, the base-heat load was covered by the fixed-speed compressor consuming relatively less energy than the variable-speed type at nominal power, and the remaining varying load was handled by the inverter compressor which exhibits a high load-match function while consuming relatively greater energy. The heat pump system developed reliably extracted heat from the treated effluent as a heat source for heating and cooling purposes throughout the year, and actively responded to the load changes with a high measured coefficient of performance (COP) of 4.06 for heating and 3.64 for cooling. Moreover, this hybrid operation yielded a performance up to 15.04% better on part loads than the single inverter operation, suggesting its effectiveness for improving annual energy saving when

  3. Effect of heat treatment on antimycotic activity of Sahara honey

    Directory of Open Access Journals (Sweden)

    Moussa Ahmed

    2014-11-01

    Full Text Available Objective: To evaluate the influence of the temperature on honey colour, polyphenol contents and antimycotic capacity and to evaluate the correlation between these parameters. Methods: Sahara honey were heated up to 25, 50, 75 and 100 °C for 15, 30 and 60 min, and their colour intensity, polyphenol contents and antimycotic capacity. The Folin-Ciocalteu test was used to determine the total polyphenol contents (TPC. The antimycotic activity was evaluated both by agar diffusion method and micro wells dilution method against the Candida albicans (C. albicans and Candida glabrata (C. glabrata. Results: Initial values for TPC in Sahara honey ranged from 0.55 to 1.14 mg of gallic acid per kg of honey, with the average value of 0.78 mg of gallic acid per kg of honey. The TPC values after heat-treatment were 0.54 to 1.54 with the average value of 1.49 mg. The minimal inhibitory concentrations before heat-treatment of Sahara honey against C. albicans and C. glabrata ranged from 3.06%-12.5% and 50% respectively. After heat-treatment the minimal inhibitory concentrations between 12.5% and 50% for C. albicans and C. glabrata, respectively. The diameters of inhibition zones of Sahara honey with 50% concentration varied from (12.67-15.00 mm by C. albicans to (14.33-15.67 mm by C. glabrata. The diameters of inhibition zones after heat-treatment at 25 and 50 °C for 15.30 and 60 min ranged from (2.00-18.67 mm by C. albicans to (8.00-16.67 mm by C. glabrata. Statistically significant relations between the TPC and the colour intensity of Sahara honey (r=0.99, P<0.05. Furthermore, the results showed that the TPC and colour is not correlated with the antimycotic capacity. Conclusions: To our knowledge this is the first report on the antimycotic capacity of Sahara honey.

  4. Effect of heat treatment duration on phase separation of sodium borosilicate glass, containing copper

    International Nuclear Information System (INIS)

    Shejnina, T.G.; Gutner, S.Kh.; Anan'in, N.I.

    1989-01-01

    The effect of heat treatment duration on phase separation of sodium borosilicate (SBS) glass, containing copper is studied. It is stated that phase separation close to equilibrium one is attained under 12 hours of heat treatment of SBS glass containing copper

  5. Identification of sixteen peptides reflecting heat and/or storage induced processes by profiling of commercial milk samples.

    Science.gov (United States)

    Ebner, Jennifer; Baum, Florian; Pischetsrieder, Monika

    2016-09-16

    Peptide profiles of different drinking milk samples were examined to study how the peptide fingerprint of milk reflects processing conditions. The combination of a simple and fast method for peptide extraction using stage tips and MALDI-TOF-MS enabled the fast and easy generation and relative quantification of peptide fingerprints for high-temperature short-time (HTST), extended shelf life (ESL) and ultra-high temperature (UHT) milk of the same dairies. The relative quantity of 16 peptides changed as a function of increasing heat load. Additional heating experiments showed that among those, the intensity of peptide β-casein 196-209 (m/z 1460.9Da) was most heavily influenced by heat treatment indicating a putative marker peptide for milk processing conditions. Storage experiments with HTST- and UHT milk revealed that the differences between different types of milk samples were not only caused by the heating process. Relevant was also the proteolytic activity of enzymes during storage, which were differently influenced by the heat treatment. These results indicate that the peptide profile may be suitable to monitor processing as well as storage conditions of milk. In the present study, peptide profiling of different types of milk was carried out by MALDI-TOF-MS after stage-tip extraction and relative quantification using an internal reference peptide. Although MALDI-TOF-MS covers only part of the peptidome, the method is easy and quick and is, therefore, suited for routine analysis to address several aspects of food authenticity. Using this method, 16 native peptides were detected in milk that could be modulated by different industrial processes. Subsequent heating and storage experiments with pasteurized and UHT milk confirmed that these peptides are indeed related to the production or storage conditions of the respective products. Furthermore, the heating experiments revealed one peptide, namely the β-casein-derived sequence β-casein 196-209, which underwent

  6. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)

    2014-03-01

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

  7. Local total and radiative heat-transfer coefficients during the heat treatment of a workpiece in a fluidised bed

    International Nuclear Information System (INIS)

    Gao, W.M.; Kong, L.X.; Hodgson, P.D.

    2006-01-01

    The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110-1050 deg. C and a fluidising number range of 1.18-4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed

  8. Microbial safety control of compost material with cow dung by heat treatment.

    Science.gov (United States)

    Gong, Chun-ming

    2007-01-01

    Various kinds of pathogenic bacteria derived from the intestinal tract of animals exist in compost material like cow dung. In order to sterilize the pathogenic bacteria completely in compost material, the cow dung was put into a heat treatment machine in pilot plan, and harmless condition in short time was examined. The results indicated, pathogenic indicator bacteria such as coliform bacteria, fecal coliform, Escherichia coli and salmonella were all 106 cfu/g dw at the beginning, died rapidly when cow dung temperature rose to above 50 degrees C, and not detected at 54-68 degrees C for 6-24 h heat treatment. Coliform bacteria and salmonella in heated cow dung were not detected by re-growth culture and enrichment culture examination. Moreover, it was hardly influenced on the fermentation ability of composting microbe, organic decomposition bacteria. During heat treatment, the mesophile decreased rapidly and the thermophile stabilized or increased, and the most of composting microbe were bacillus in cow dung by fluorescence microscope, this indicated that bacillus was dominator and composting microbe in composting process.

  9. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    Directory of Open Access Journals (Sweden)

    Laura D'Evoli

    2013-07-01

    Full Text Available Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g. Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (−17%, while for lutein it was greater in the pulp fraction (−25%. Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (−36%. The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  10. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes.

    Science.gov (United States)

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-07-31

    Tomatoes and tomato products are rich sources of carotenoids-principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g). Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (-17%), while for lutein it was greater in the pulp fraction (-25%). Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (-36%). The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  11. Effect of nitrite on the microbiological stability of canned Vienna sausages preserved by mild heat treatment or combinations of heat and irradiation

    International Nuclear Information System (INIS)

    Farkas, J.; Zukal, E.; Incze, K.

    1973-01-01

    Keeping quality of Vienna sausages packed in No. 1/5 cans (ca 200 g) with salt brine and heat treated with F 0 values in the range of 0.25-0.55 was studied as a function of sodium nitrate addition. In uninoculated cans the heat requirement of preservation proved to be about 0.3 F 0 in the presence of 300 ppm NaNO 2 . A heat treatment of 0.55 F 0 and 200 ppm NaNO 2 resulted in higher microbiological stability of cans inoculated with 2x10 4 /tin Clostridium sporogenes spores than a heat treatment of 1.9 F 0 without nitrite addition. The effect of the combination of heat treatment of 0.35-0.55 F 0 and 0.45 Mrad of gamma irradiation was also studied with inoculated cans. The combination of irradiation plus heat resulted in a higher microbiological stability of the samples than the reversed order of the treatments, but this synergistic effect could not be proved in all experiments. The addition of 200 ppm NaNO 2 was not as effective in increasing the shelf-life of combination treated samples as with the solely heat treated ones. In a medium composed of a 50% extract of Vienna sausages (pH 6.4, asub(w) 0.96) and inoculated with 10 5 per ml Clostridium sporogenes spores 100 ppm or more NaNO 2 was required to ensure microbiological stability of samples heat treated with F 0 0.4. In the range of the permitted concentration level for canned meat products, sodium nitrite did not influence the heat resistance of Clostridium sporogenes, but inhibited the germination of the surviving spores. (F.J.)

  12. Influence of heat treatment on physicochemical and rheological characteristics of natural yogurts

    Directory of Open Access Journals (Sweden)

    Juliana Aparecida Célia

    2017-08-01

    Full Text Available The aim of this study was to assess the influence of heat treatment on physicochemical and rheological characteristics of natural yogurts, as well as the influence of lyophilization process on natural yogurts after reconstitution. In the first experiment, three yogurt treatments were processed, as follows: Treatment 1, yogurt produced with raw refrigerated milk; Treatment 2, yogurt produced with refrigerated pasteurized milk; and Treatment 3, yogurt produced with UHT (ultra-high temperature milk, in addition to analyses of fat, protein, moisture, titratable acidity, and pH. The shelf life of yogurts at 1, 8, 15, 22, and 29 days of storage, as well as pH, acidity, syneresis, viscosity, viable lactic bacteria, and total coliforms were also assessed. In the second experiment, yogurts were submitted to lyophilization process, performed by scanning electron microscopy analysis and subsequently in those reconstituted, in addition to being assessed the physicochemical, rheological, and viable lactic bacteria characteristics. The results found in the first experiment showed that heat treatment was positive for viscosity, syneresis, and lactic bacteria, being viable until the 15th day of storage only for yogurts submitted to heat treatment. In the second experiment, lyophilization preserved the physicochemical characteristics of yogurts, but the number of initial lactic bacteria was different, also negatively affecting yogurt viscosity.

  13. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...... the laser beam as close as possible. After welding, the samples were quality assessed according to ISO 13.919-1 and tested for hardness. The metallurgical phases are analysed and briefly described. A comparison between purely laser welded samples and induction heat-treated laser welded samples is made......In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...

  14. Heat Treatment of Buckypaper for Use in Volatile Organic Compounds Sampling

    Directory of Open Access Journals (Sweden)

    Jonghwa Oh

    2016-01-01

    Full Text Available Three types of buckypapers (BPs, two of them fabricated with arc discharge (AD single-walled carbon nanotubes (SWNTs (acetone-cleaned AD BP and methanol-cleaned AD BP and one with high-pressure carbon monoxide (HiPco SWNTs (HiPco BP, were heat-treated at different conditions to find the specific conditions for each type that improve the adsorption properties. Based on thermogravimetric analysis (TGA data, three heat treatment conditions were designed for the AD BPs and another three conditions for the HiPco BPs. Also, changes in weight and physical integrity before and after the heat treatment were considered. Heating at 300°C for 90 minutes was selected for acetone-cleaned AD BP, in which the BP kept its physical integrity and yielded a relatively high Brunauer, Emmett, and Teller (BET surface area (970 ± 18 m2/g, while methanol-cleaned AD BP was excluded because of its physical change. For HiPco BP, a condition of 300°C heating for 30 minutes was chosen as a relatively higher surface area (933 ± 54 m2/g and less weight loss (5% were observed.

  15. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Inc., Burlington, MA (United States); Weintraub, Daniel [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States)

    2014-02-01

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  16. Relaxation of residual stress in MMC after combined plastic deformation and heat treatment

    International Nuclear Information System (INIS)

    Bruno, G.; Ceretti, M.; Girardin, E.; Giuliani, A.; Manescu, A.

    2004-01-01

    Neutron Diffraction shows that plastic pre-deformation and heat treatments have opposite effects on the residual stress in Al-SiC p composites. The thermal micro residual stress is relaxed or even reversed by pre-strains above 0.2%, but restored by heat treatments. The sense of relaxation changes above 400 deg. C (the mixing temperature)

  17. Degradation of Anthocyanin Content in Sour Cherry Juice During Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lilla Szalóki-Dorkó

    2015-01-01

    Full Text Available Sour cherry juices made from two sour cherry cultivars (Érdi bőtermő and Kántorjánosi 3, were investigated to determine their total anthocyanin content and half-life of anthocyanins during heat treatment at different temperatures (70, 80 and 90 °C for 4 h. Before the heat treatment, Érdi bőtermő juice had higher anthocyanin concentration (812 mg/L than Kántorjánosi 3 juice (513 mg/L. The greatest heat sensitivity of anthocyanins was measured at 90 °C, while the treatments at 80 and 70 °C caused lower thermal degradation. The loss of anthocyanins in Érdi bőtermő juice after treatment was 38, 29 and 18 %, respectively, while in Kántorjánosi 3 juice losses of 46, 29 and 19 % were observed, respectively. At 90 °C sour cherry Érdi bőtermő juice had higher half-life (t1/2 of anthocyanins, while the Kántorjánosi 3 juice had higher t1/2 values at 70 °C. Cyanidin-3-glucosyl-rutinoside was present in higher concentrations in both cultivars (Érdi bőtermő: 348 and Kántorjánosi 3: 200 mg/L than cyanidin-3-rutinoside (177 and 121 mg/L before treatment. However, during the experiment, cyanidin-3-rutinoside was proved to be more resistant to heat. Comparing the two varieties, both investigated pigment compounds were more stable in Kántorjánosi 3 than in Érdi bőtermő. Degradation rate of anthocyanins was cultivar-dependent characteristic, which should be taken into account in the food production.

  18. Influence of heating and acidification on the flavor of whey protein isolate.

    Science.gov (United States)

    White, S S; Fox, K M; Jervis, S M; Drake, M A

    2013-03-01

    Previous studies have established that whey protein manufacture unit operations influence the flavor of dried whey proteins. Additionally, manufacturers generally instantize whey protein isolate (WPI; ≥ 90% protein) by agglomeration with lecithin to increase solubility and wettability. Whey protein isolate is often subjected to additional postprocessing steps in beverage manufacturing, including acidification and heat treatment. These postprocessing treatments may further influence formation or release of flavors. The objective of the first study was to characterize the effect of 2 processing steps inherent to manufacturing of acidic protein beverages (acidification and heat treatment) on the flavor of non-instant WPI. The second study sought to determine the effect of lecithin agglomeration, a common form of instantized (INST) WPI used in beverage manufacturing, on the flavor of WPI after acidification and heat treatment. In the first experiment, commercial non-instantized (NI) WPI were rehydrated and evaluated as is (control); acidified to pH 3.2; heated to 85°C for 5 min in a benchtop high temperature, short time (HTST) pasteurizer; or acidified to 3.2 and heated to 85°C for 30s (AH-HTST). In the second experiment, INST and NI commercial WPI were subsequently evaluated as control, acidified, heated, or AH-HTST. All samples were evaluated by descriptive sensory analysis, solid-phase microextraction (SPME), and gas chromatography-mass spectrometry. Acidification of NI WPI produced higher concentrations of dimethyl disulfide (DMDS) and sensory detection of potato/brothy flavors, whereas heating increased cooked/sulfur flavors. Acidification and heating increased cardboard, potato/brothy, and malty flavors and produced higher concentrations of aldehydes, ketones, and sulfur compounds. Differences between INST and NI WPI existed before treatment; INST WPI displayed cucumber flavors not present in NI WPI. After acidification, INST WPI were distinguished by higher

  19. Investigation of heat distribution during magnetic heating treatment using a polyurethane–ferrofluid phantom-model

    International Nuclear Information System (INIS)

    Henrich, F.; Rahn, H.; Odenbach, S.

    2014-01-01

    Magnetic heating treatment can be used as an adjuvant treatment for cancer therapy. In this therapy, magnetic nanoparticles are enriched inside the tumour and exposed to an alternating magnetic field. Due to magnetic losses the temperature in the tumour rises. The resulting temperature profile inside the tumour is useful for the therapeutic success. In this context heat transfer between tissue with nanoparticles and tissue without nanoparticles is a highly important feature which is actually not understood in detail. In order to investigate this, a phantom has been created which can be used to measure the temperature profile around a region enriched with magnetic nanoparticles. This phantom is composed of a material, which has similar thermal conductivity as human tissue. A tempered water bath surrounds the phantom to establish a constant surrounding temperature simulating the heat sink provided by the human body in a real therapeutic application. It has been found that even at a low concentration of magnetic nanoparticles around 13 mg/ml, sufficient heating of the enriched region can be achieved. Moreover it has been observed that the temperature drops rapidly in the material surrounding the enriched region. Corresponding numerical investigations provide a basis for future recalculations of the temperature inside the tumour using temperature data obtained in the surrounding tissue. - Highlights: • The temperature profile by magnetic hyperthermia was examined. • A model was built to get a deeper understanding of the temperature profile. • The temperature profile of the model inside magnetic fields was measured. • Based on the model a simulation of the temperature profile was performed. • The simulated temperature profile agreed well with the measured profile

  20. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    OpenAIRE

    Ramezani, Maziar; Pasang, Timotius; Chen, Zhan; Neitzert, Thomas; Au, Dominique

    2015-01-01

    Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric contro...

  1. Heat stroke during long-term clozapine treatment: should we be concerned about hot weather?

    OpenAIRE

    Hoffmann, Maurício Scopel; Oliveira, Lucas Mendes; Lobato, Maria Inês Rodrigues; Belmonte-de-Abreu, Paulo

    2016-01-01

    Objective To describe the case of a patient with schizophrenia on clozapine treatment who had an episode of heat stroke. Case description During a heat wave in January and February 2014, a patient with schizophrenia who was on treatment with clozapine was initially referred for differential diagnose between systemic infection and neuroleptic malignant syndrome, but was finally diagnosed with heat stroke and treated with control of body temperature and hydration. Comments This report aims to...

  2. Preliminary heat treatment of 4KhM2Fch die steel

    International Nuclear Information System (INIS)

    Leonidov, V.M.; Berezkin, Y.A.; Nikitenko, E.V.

    1986-01-01

    To improve the machinability and preparation of the structure for hardening, die steels are given a preliminary treatment which provides a reduction in hardness as a result of separation in the structure of the carbide and ferrite phases, coagulation of the carbides, and acquisition by them of a granular form and also the obtaining of fine grains and a uniform distribution of the structural constituents. The microstructure was evaluated after etching in 4% nital on an MIM-8M microscope. The 4KhM2Fch steel was given a preliminary heat treatment of normalize and anneal. It was concluded that for 4KhM2Fch steel a preliminary heat treatment of normalizing from 950 0 C with a hold of 1.5-2 h, annealing at 750-760 0 C with a hold of 2-3 h, cooling to the isothermal temperature of 670-680 0 C with a hold of 3-4 h, and further air cooling is recommended. The structure after such a heat is granular pearlite with a rating 1-2 and a hardness of 220-250 HB

  3. The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Cuiuri, Dominic; Li, Huijun; Pan, Zengxi, E-mail: zengxi@uow.edu.au; Shen, Chen

    2016-03-07

    Postproduction heat treatments were carried out on additively manufactured γ-TiAl alloys that were produced by using the gas tungsten arc welding (GTAW) process. The microstructural evolution and mechanical properties of both as-fabricated and heat-treated specimens were investigated to assess the effect of different heat treatment conditions, by using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Neutron Diffraction and tensile tests. The results indicated that heat treatment promotes the formation of the γ phase in the majority region after heat treatment at 1200 °C for 24 h, while a fully lamellar structure was formed in the near-substrate zone. The response to heat treatment at 1060 °C/24 h was markedly different, producing a fine lamellar structure with differing sizes in the majority region and near-substrate zone. These various microstructural characteristics determined the mechanical properties of the heat-treated samples. The heat-treated samples at 1200 °C/24 h exhibited lower UTS and microhardness values but higher ductility than the as-fabricated samples without heat treatment, while the 1060 °C/24 h heat treatment resulted in higher UTS and microhardness values but lower ductility. Due to the homogenous microstructure in the majority region after each postproduction heat treatment, the tensile properties were similar for both the build direction (Z) and travel direction (Y), thereby minimising the anisotropy that is exhibited by the as-fabricated alloy prior to heat treatment.

  4. Effect of Carbon Nanofiber Heat Treatment on Physical Properties of Polymeric Nanocomposites—Part I

    Directory of Open Access Journals (Sweden)

    Khalid Lafdi

    2007-01-01

    Full Text Available The definition of a nanocomposite material has broadened significantly to encompass a large variety of systems made of dissimilar components and mixed at the nanometer scale. The properties of nanocomposite materials also depend on the morphology, crystallinity, and interfacial characteristics of the individual constituents. In the current work, vapor-grown carbon nanofibers were subjected to varying heat-treatment temperatures. The strength of adhesion between the nanofiber and an epoxy (thermoset matrix was characterized by the flexural strength and modulus. Heat treatment to 1800C∘ demonstrated maximum improvement in mechanical properties over that of the neat resin, while heat-treatment to higher temperatures demonstrated a slight decrease in mechanical properties likely due to the elimination of potential bonding sites caused by the elimination of the truncated edges of the graphene layers. Both the electrical and thermal properties of the resulting nanocomposites increased in conjunction with the increasing heat-treatment temperature.

  5. ESR analysis of irradiated red peppers and commercial red peppers in Japan

    International Nuclear Information System (INIS)

    Kameya, Hiromi; Ukai, Mitsuko

    2011-01-01

    ESR analysis of γ-ray irradiated and being treated with different processing red pepper was studied. All the red peppers were commercial expect irradiated one. Processing treatment of red pepper was sun drying, mechanical processing (heating sterilization and powdering treatment). All the samples were weighted and analyzed. The ESR spectrum of the red pepper is composed of a singlet at g=2.00. This signal was originated from organic free radical. It is suggested the effect of heating treatment on the radical formation is not so large and powdering treatment will promote the radical formation of red pepper. ESR singlet signal of the irradiated red pepper showed the large signal intensity and the dose-dependence. The singlet signal intensity of irradiated powder sample showed the almost same value as compared with that of the powder sample with heating treatment. Relaxation times (T 1 and T 2 ) of the singlet signal were calculated. The relaxation behavior and relaxation times of the irradiated sample were different from that of the non-irradiated sample. The value of T 1 , the spin lattice relaxation time, of irradiated sample was increased and T 2 , the spin-spin relaxation time, of irradiated sample was decreased. We concluded that the radical formation of the red pepper is mainly depended on the powdering treatment and irradiation. (author)

  6. Heat treatment on keruing and light red meranti: The effect of heat exposure at different levels of temperature on bending strength properties

    Science.gov (United States)

    Noh, Nur Ilya Farhana Md; Ahmad, Zakiah

    2017-11-01

    Heat treatment on timbers is a process of applying heat to modify and equip the timbers with new improvised characteristics. It is environmental friendly compared to the common practice of treating timber by chemical preservatives. Malaysian hardwood timbers namely Keruing and Light Red Meranti which are in green condition were heat treated at temperature 150°C, 170°C, 190°C and 210°C, in a specially designed electronic furnace within one hour duration. The objectives were to determine the effect of heat treatment on bending strength properties of heat treated timbers in terms of Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) and to examine the significance changes at each temperature level. Untreated samples for each species were used as a control sample. The results indicated that the bending strength properties for both species of timbers were affected by the heat exposure. Both MOE and MOR values for heat treated Keruing were increased when subjected to the temperature levels at 150°C, 170°C and 190°C except at 210°C. Heat treated Light Red Meranti shows the same pattern of increment on its MOE and MOR values after exposure to heat at three temperature levels applied and the values dropped at 210°C. However, for both of species, even though there were decrement occurred at 210°C, the value is still higher compared to the control sample. The increments of MOE and MOR values are an indicator that heat treatment had successfully improvised the bending strength properties of these two species of hardwood timber.

  7. Effect of the Heat Treatment on the Graphite Matrix of Fuel Element for HTGR

    International Nuclear Information System (INIS)

    Lee, Chungyong; Lee, Seungjae; Suh, Jungmin; Jo, Youngho; Lee, Youngwoo; Cho, Moonsung

    2013-01-01

    In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength for the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and Phenol as a binder were chosen and mixed with each other, formed and heated for the compressive strength test. The objective of this research is to optimize the kinds and composition of the mixed graphite and the forming process by evaluating the compressive strength before/after heat treatment (carbonization of binder). In this study, the effect of heat treatment on graphite matrix was studied in terms of the density and the compressive strength. The size (diameter and length) of pellet is increased by heat treatment. Due to additional weight reduction and swelling (length and diameter) of samples the density of graphite pellet is decreased from about 2.0 to about 1.7g/cm 3 . From the mechanical test results, the compressive strength of graphite pellets was related to the various conditions such as the contents of binder, the kinds of graphite and the heat treatment. Both the green pellet and the heat treated pellet, the compressive strength of G+S+P pellets is relatively higher than that of R+S+P pellets. To optimize fuel element matrix, the effect of Phenol and other binders, graphite composition and the heat treatment on the mechanical properties will be deeply investigated for further study

  8. Heat treatments and low temperature fracture toughness of a Ti-6A1-4V alloy

    International Nuclear Information System (INIS)

    Nagai, K.; Hiraga, K.; Ishikawa, K.; Ogata, T.

    1984-01-01

    Titanium alloy is one of the reliable structural materials for cryogenic use owing to its high strength, high specific strength and low thermal conductivity. Heat treatment is one method of controlling the normally poor fracture toughness of this alloy at ambient temperature. However, there have been few attempts to improve the low temperature fracture toughness by heat treatment. This study was conducted to elucidate the effects of heat treatments on the low temperature fracture toughness in a Ti-6A1-4V alloy. The effects of the heat treatments were as follows: the beta treatment was a very feasible method to improve the low temperature fracture properties; the alpha+beta treatment was favorable for the increment in the low temperature ductility but did not largely improve the fracture toughness; the double treatment yielded good ductility but was not useful for improving the fracture toughness

  9. Influence of heat treatment temperature on bonding and oxidation ...

    Indian Academy of Sciences (India)

    Administrator

    Diamond; TiO2 film; heat treatment temperature; anti-oxidation; mechanical properties. 1. Introduction. Due to its ..... figure 4a, which was due to the change of chemical envi- ronment of ... graphite, diamond, diamond-like carbon and carbon.10.

  10. SiO2 sol-gel films after ammonia and heat two-step treatments

    International Nuclear Information System (INIS)

    Zhang Chunlai; Wang Biyi; Tian Dongbin; Yin Wei; Jiang Xiaodong; Yuan Xiaodong; Yan Lianghong; Zhang Hongliang; Zhao Songnan; Lv Haibing

    2008-01-01

    SiO 2 thin films were deposited using tetraethoxylsilane as precursor, ammonia as catalyst on K9 glass by sol-gel method. These films were post-treated by ammonia and heat. The properties of the coatings were characterized by ellipsometer, UV-vis spectrophotometry, FTIR-spectroscopy, scanning probe microscope and contact angle measurement apparatus. The resuits indicate that the thickness of the films with ammonia and heat treatment tend to decrease. Both the refractive index and water contact angle increase after ammonia treatment. However, they both decrease after heat treatment. The former increases by 0.236 for the first step, then decreases by 0.202 for the second. The latter increases to 58.92 degree, then decreases to 38.07 degree. The transmittance of the coatings turn to be better and continuously shift to short wave by UV-vis spectrophotometry. The surface becomes smoother by AFM after the two-step treatment. (authors)

  11. Effects of heat treatments on laser welded Mg-rare earth alloy NZ30K

    International Nuclear Information System (INIS)

    Dai Jun; Huang Jian; Li Min; Li Zhuguo; Dong Jie; Wu Yixiong

    2011-01-01

    Highlights: → Firstly find the tadpole-shape precipitates in the welding joint. → The precipitation strengthening can account for 79% of the total strength. → The results can provide some insights on the application of Mg-RE alloy. - Abstract: In this study, the effects of heat treatments on the quality of laser welded Mg-rare earth alloy NZ30K were systematically studied. The microstructure and mechanical properties of joints, welded by a 15 kW high power CO 2 laser, under different heat treatments had been tested and analyzed. The results indicated that the heat treatment plays an important role in the mechanical strength of laser welded joint of NZ30K. The microstructure of samples after the solution treatment as well as aging treatment is different from that of the as-received welded joint. For solution treatment, although the microstructure is much different from that of as-received welded joint, the solution strengthening effect is not obvious. There are lots of precipitates in the fusion zone after the aging treatment, which will significantly enhance the ultimate tensile strength (UTS) and the yield tensile strength (YTS) of the welding joint. 79% of YTS is caused by precipitation strengthening. Therefore, the results implied that the UTS and YTS can be greatly improved by proper heat treatment.

  12. Effect of heat-treatment on toughness and strength properties of C-Mn steel

    International Nuclear Information System (INIS)

    Mohd bin Harun; Goh Kian Seong; Jasmin binti Baba

    1991-01-01

    The strength and toughness of the heat-treated and tempered C-Mn are studied. Two types of heat-treatment have been carried out with the specimens in an argon gas. The variation in the fracture surfaces of the heat-treated and tempered specimens with impact test temperature is discussed also

  13. Effect of heat treatment of toughness and strength properties of C-Mn steel

    International Nuclear Information System (INIS)

    Mohamad bin Harun; Goh Kian Seong; Yasmin binti Baba

    1989-01-01

    The strength and toughness of the heat-treated and tempered C-Mn are studied. Two type of heat-treatments have been carried out with the specimens in an argon gas. The variation in the fracture surfaces of the heat-treated and tempered specimens with impact test temperatures also is discussed. (author)

  14. Impact of Heat Treatment on the Freezing Points of Cow and Goat Milk

    Directory of Open Access Journals (Sweden)

    Bohumíra Janštová

    2009-01-01

    Full Text Available The aim of this study was to monitor the impact of heat treatment variables on the freezing point of cow and goat milk. The freezing point (FP was established in 30 bulk tank samples of goat milk and in 30 bulk tank samples of cow milk which were subject to laboratory heat treatment at temperatures of 72 °C (A, 85 °C (B, 95 °C (C, with the same exposition times of 20 s. Freezing point measurements of raw and heat-treated milk were carried out in compliance with the Standard CTS 57 0538 by a thermistor cryoscope. The FP of raw cow milk increased with heat treatment from the initial values of -0.5252 ± 0.0114 °C (O by 0.0023 °C (A, 0.0034 °C (B and 0.0051°C (C. Changes in FP values of goat milk were detected, from its initial value of –0.5530 ± 0.0086 °C there was an increase in the FP depending on the mode of heat treatment due to pasteurization by an average of 0.0028 °C (A, 0.0036 °C (B and 0.0054 °C (C. The dynamics of the changes were similar both in goat and cow milk. Freezing point values in cow and goat milk differed (P ⪬ 0.01 when compared to the freezing point of untreated milk after the individual interventions as well as when compared between each other. An increase in the heat treatment temperature of cow and goat milk causes an increase in the freezing point (a shift towards zero. These results can be used in practice for checking the raw material in dairy industry.

  15. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    Science.gov (United States)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  16. A heat mathematical model of polymer composite cylinder during microwave treatment

    Directory of Open Access Journals (Sweden)

    S. V. Reznik

    2014-01-01

    Full Text Available Traditional technologies of producing epoxy based polymer composite materials (PCM require a long-term and energy consuming thermal processing. Microwave heating could be used as an alternative technology for heating work pieces made of PCM; this would allow to reduce treatment time and energy consumption significantly. A mathematical model of temperature distribution inside a cylindrical composite system during microwave treatment was investigated in this paper. The model includes a hollow PCM cylinder made of an epoxy binder and carbon fibers and a solid cylindrical mandrel. Theoretical and experimental results on the temperature state of the system were analyzed and discussed.

  17. Phase transformation and hardness of SS 316 L steel cast alloy after heat treatment at high temperature

    International Nuclear Information System (INIS)

    Hidayat, S.; Prayitno, D. H.

    2000-01-01

    Heat treatment Study of SS 316 L cast alloy at high temperature was conducted. The alloy of SS 316 L was melted by arc melting furnace in argon atmosphere. Heat treatment of SS 316 L casting alloy was carried out in tube furnace at 1400 o C for period of 1/2, 1, and 2 hours. The optical microscopic characterization showed that SS 316 L cast has got dendritic micro structure with ferrite as the primary phase. After the heat treatment, the ferrite phase underwent gradual decrease followed by an increase of the austenite phase. The heat treatment process also resulted in the formation of the new grain boundary. The hardness examination revealed that for longer period of the heat treatment, the hardness of SS 316 L increased. (author)

  18. Design aspects of commercial open-loop heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin

    2000-01-01

    Open loop (or groundwater heat pump systems are the oldest of the ground-source systems. Common design variations include direct (groundwater used directly in the heat pump units), indirect (building loop isolated with a plate heat exchanger), and standing column (water produced and returned to the same well). Direct systems are typically limited to the smallest applications. Standing column systems are employed in hard rock geology sites where it is not possible to produce sufficient water for a conventional system. Due to its greater potential application, this paper reviews key design aspects of the indirect approach. The general design procedure is reviewed, identification of optimum groundwater flow, heat exchanger selection guidelines, well pump control, disposal options, well spacing, piping connections and related issues.

  19. The effects of heat treatment on physical and technological ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... ween 450 and 660 m altitudes in Cide-Sehdagi (Gercek et al., 1998; Dogu ... changes continue as the temperature is increased in ... Heat treatment slows water uptake and wood cell wall absorbs ...... The Effect of Boiling Time.

  20. Effect of heat treatment on anodic activation of aluminium by trace element indium

    Energy Technology Data Exchange (ETDEWEB)

    Graver, Brit [Department of Materials Science and Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Helvoort, Antonius T.J. van [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Nisancioglu, Kemal, E-mail: kemal.nisancioglu@material.ntnu.n [Department of Materials Science and Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2010-11-15

    Research highlights: {yields} Indium segregation activates AlIn alloy surface anodically in chloride solution. {yields} Enrichment of In on Al surface can occur thermally by heat treatment at 300 {sup o}C. {yields} Increasing temperature homogenises indium in aluminium reducing anodic activation. {yields} Indium can activate AlIn surface by segregating through dealloying of aluminium. {yields} Anodic activation is caused by AlIn amalgam formation at aluminium surface. - Abstract: The presence of trace elements in Group IIIA-VA is known to activate aluminium anodically in chloride environment. The purpose of this paper is to investigate the surface segregation of trace element In by heat treatment and resulting surface activation. Model binary AlIn alloys, containing 20 and 1000 ppm by weight of In, were characterized after heat treatment at various temperatures by use of glow discharge optical emission spectroscopy, electron microscopy and electrochemical polarization. Heat treatment for 1 h at 300 {sup o}C gave significant segregation of discrete In particles (thermal segregation), which activated the surface. Indium in solid solution with aluminium, obtained by 1 h heat treatment at 600 {sup o}C, also activated by surface segregation of In on alloy containing 1000 ppm In, resulting from the selective dissolution of the aluminium component during anodic oxidation (anodic segregation). The effect of anodic segregation was reduced by decreasing indium concentration in solid solution; it had negligible effect at the 20 ppm level. The segregated particles were thought to form a liquid phase alloy with aluminium during anodic polarization, which in turn, together with the chloride in the solution destabilized the oxide.

  1. Solar Process Heat Basics | NREL

    Science.gov (United States)

    Process Heat Basics Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be

  2. The local heat treatment equipment and technology of the pipelines welded joints

    International Nuclear Information System (INIS)

    Korol'kov, P.M.

    1998-01-01

    The principal methods and equipment for local treatment of the pipe-lines weld joints in different industry branches is described. Recommendations about heat treatment equipment and technology application are given

  3. Effect of heat treatments on machinability of gold alloy with age-hardenability at intraoral temperature.

    Science.gov (United States)

    Watanabe, I; Baba, N; Watanabe, E; Atsuta, M; Okabe, T

    2004-01-01

    This study investigated the effect of heat treatment on the machinability of heat-treated cast gold alloy with age-hardenability at intraoral temperature using a handpiece engine with SiC wheels and an air-turbine handpiece with carbide burs and diamond points. Cast gold alloy specimens underwent various heat treatments [As-cast (AC); Solution treatment (ST); High-temperature aging (HA), Intraoral aging (IA)] before machinability testing. The machinability test was conducted at a constant machining force of 0.784N. The three circumferential speeds used for the handpiece engine were 500, 1,000 and 1,500 m/min. The machinability index (M-index) was determined as the amount of metal removed by machining (volume loss, mm(3)). The results were analyzed by ANOVA and Scheffé's test. When an air-turbine handpiece was used, there was no difference in the M-index of the gold alloy among the heat treatments. The air-turbine carbide burs showed significantly (pmachinability of the gold alloy using the air-turbine handpiece. The heat treatments had a small effect on the M-index of the gold alloy machined with a SiC wheel for a handpiece engine.

  4. Study of the Al-Si-X system by different cooling rates and heat treatment

    Directory of Open Access Journals (Sweden)

    Miguel Angel Suarez

    2012-10-01

    Full Text Available The solidification behavior of the Al-12.6% Si (A1, the hypereutectic Al-20%Si (A2 and the Al-20%Si-1.5% Fe-0.5%Mn (A3 (in wt. (% alloys, at different cooling rates is reported and discussed. The cooling rates ranged between 0.93 °C/s and 190 °C/s when cast in sand and copper wedge-shaped molds, respectively. A spheroidization heat treatment was carried out to the alloys in the as-cast condition at 540 °C for 11 hours and quench in water with a subsequent heat treatment at 170 °C for 5 hours with the purpose of improving the mechanical properties. The samples were characterized by optical microscopy, scanning electron microscopy and mechanically by tensile test, in order to evaluate the response of the heat treatment on the different starting microstructures and mechanical properties. It was found that alloys cooled at rates greater than 10.8 °C/s had a smaller particle size and better distribution, also showed a greater response to spheroidization heat treatment of all silicon (Si phases. The spheroidization heat treatment caused an increase in the ultimate tensile stress (UTS and elongation when compared with the alloys in the as-cast condition. The highest UTS value of 174 MPa was obtained for the (A1 alloy.

  5. Effect of heat treatment of wood on the morphology, surface roughness and penetration of simulated and human blood.

    Science.gov (United States)

    Rekola, J; Lassila, L V J; Nganga, S; Ylä-Soininmäki, A; Fleming, G J P; Grenman, R; Aho, A J; Vallittu, P K

    2014-01-01

    Wood has been used as a model material for the development of novel fiber-reinforced composite bone substitute biomaterials. In previous studies heat treatment of wood was perceived to significantly increase the osteoconductivity of implanted wood material. The objective of this study was to examine some of the changing attributes of wood materials that may contribute to improved biological responses gained with heat treatment. Untreated and 140°C and 200°C heat-treated downy birch (Betula pubescens Ehrh.) were used as the wood materials. Surface roughness and the effect of pre-measurement grinding were measured with contact and non-contact profilometry. Liquid interaction was assessed with a dipping test using two manufactured liquids (simulated blood) as well as human blood. SEM was used to visualize possible heat treatment-induced changes in the hierarchical structure of wood. The surface roughness was observed to significantly decrease with heat treatment. Grinding methods had more influence on the surface contour and roughness than heat treatment. The penetration of the human blood in the 200°C heat-treated exceeded that in the untreated and 140°C heat-treated materials. SEM showed no significant change due to heat treatment in the dry-state morphology of the wood. The results of the liquid penetration test support previous findings in literature concerning the effects of heat treatment on the biological response to implanted wood. Heat-treatment has only a marginal effect on the surface contour of wood. The highly specialized liquid conveyance system of wood may serve as a biomimetic model for the further development of tailored fiber-composite materials.

  6. Quality and microbial safety evaluation of new isotonic beverages upon thermal treatments.

    Science.gov (United States)

    Gironés-Vilaplana, Amadeo; Huertas, Juan-Pablo; Moreno, Diego A; Periago, Paula M; García-Viguera, Cristina

    2016-03-01

    In the present study, it was evaluated how two different thermal treatments (Mild and Severe) may affect the anthocyanin content, antioxidant capacity (ABTS(+), DPPH, and FRAP), quality (CIELAB colour parameters), and microbiological safety of a new isotonic drink made of lemon and maqui berry over a commercial storage simulation using a shelf life of 56days at two preservation temperature (7°C and 37°C). Both heat treatments did not affect drastically the anthocyanins content and their percentage of retention. The antioxidant capacity, probably because of the short time, was also not affected. The CIELAB colour parameters were affected by the heat, although the isotonic drinks remained with attractive red colour during shelf life. From a microbiological point of view, the Mild heat treatment with storage at 7°C is the ideal for the preservation of microbial growth, being useful for keeping the quality and safety of beverages in commercial life. Copyright © 2015. Published by Elsevier Ltd.

  7. Alkali-heat treatment of a low modulus biomedical Ti-27Nb alloy

    International Nuclear Information System (INIS)

    Zhou, Y; Wang, Y B; Zhang, E W; Cheng, Y; Xiong, X L; Zheng, Y F; Wei, S C

    2009-01-01

    This study focuses on the surface modification of a near β-type Ti-27 wt.% Nb alloy by alkali-heat treatment. The influence of alkali concentration, alkali-treated time and alkali-treated temperature on the microstructure and constitutional phases of the modified surface is investigated by SEM, XRD and ICP. Immersion experiments in a simulated body fluid (SBF) were carried out to examine the Ca-P phase forming ability of the modified surfaces. The SEM observation and XRD analysis revealed that a sodium titanate layer is formed after alkali-heat treatment. The morphology and Ca-P phase forming of the layer are greatly affected by the surface roughness of the samples, the alkali concentration, the alkali-treated time and alkali-treated temperature. The results of SBF immersion, which are obtained by ICP analysis, indicate that the activated sodium titanate layer prepared by alkali-heat treatment is beneficial to further improving the biocompatibility of the Ti-27 wt.% Nb alloy.

  8. Effects of Heat Treatment on SiC-SiC Ceramic Matrix Composites

    Science.gov (United States)

    Knauf, Michael W.

    Residual stresses resulting from the manufacturing process found within a silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite were thoroughly investigated through the use of high-energy X-ray diffraction and Raman microspectroscopy. The material system studied was a Rolls-Royce composite produced with Hi-Nicalon fibers woven into a five harness satin weave, coated with boron nitride and silicon carbide interphases, and subsequently infiltrated with silicon carbide particles and a silicon matrix. Constituent stress states were measured before, during, and after heat treatments ranging from 900 °C to 1300 °C for varying times between one and sixty minutes. Stress determination methods developed through these analyses can be utilized in the development of ceramic matrix composites and other materials employing boron-doped silicon. X-ray diffraction experiments were performed at the Argonne National Laboratory Advanced Photon Source to investigate the evolution of constituent stresses through heat treatment, and determine how stress states are affected at high temperature through in situ measurements during heat treatments up to 1250 °C for 30 minutes. Silicon carbide particles in the as-received condition exhibited a nearly isotropic stress state with average tensile stresses of approximately 300 MPa. The silicon matrix exhibited a complimentary average compressive stress of approximately 300 MPa. Strong X-ray diffraction evidence is presented demonstrating solid state boron diffusion and increased boron solubility found in silicon throughout heat treatment. While the constituent stress states did evolve through the heat treatment cycles, including approaching nearly stress-free conditions at temperatures close to the manufacturing temperature, no permanent relaxation of stress was observed. Raman spectroscopy was utilized to investigate stresses found within silicon carbide particles embedded within the matrix and the silicon matrix as an alternate

  9. Laser heat treatment of welds for various stainless steels

    Science.gov (United States)

    Dontu, O.; Ganatsios, S.; Alexandrescu, N.; Predescu, C.

    2008-03-01

    The paper presents a study concerning the post - weld heat treatment of a duplex stainless steel. Welded joint samples were surface - treated using the same laser source adopted during welding in order to counterbalance the excess of ferrite formed in the welding process.

  10. A previously undescribed organic residue sheds light on heat treatment in the Middle Stone Age.

    Science.gov (United States)

    Schmidt, Patrick; Porraz, Guillaume; Bellot-Gurlet, Ludovic; February, Edmund; Ligouis, Bertrand; Paris, Céline; Texier, Pierre-Jean; Parkington, John E; Miller, Christopher E; Nickel, Klaus G; Conard, Nicholas J

    2015-08-01

    South Africa has in recent years gained increasing importance for our understanding of the evolution of 'modern human behaviour' during the Middle Stone Age (MSA). A key element in the suite of behaviours linked with modern humans is heat treatment of materials such as ochre for ritual purposes and stone prior to tool production. Until now, there has been no direct archaeological evidence for the exact procedure used in the heat treatment of silcrete. Through the analysis of heat-treated artefacts from the Howiesons Poort of Diepkloof Rock Shelter, we identified a hitherto unknown type of organic residue - a tempering-residue - that sheds light on the processes used for heat treatment in the MSA. This black film on the silcrete surface is an organic tar that contains microscopic fragments of charcoal and formed as a residue during the direct contact of the artefacts with hot embers of green wood. Our results suggest that heat treatment of silcrete was conducted directly using an open fire, similar to those likely used for cooking. These findings add to the discussion about the complexity of MSA behaviour and appear to contradict previous studies that had suggested that heat treatment of silcrete was a complex (i.e., requiring a large number of steps for its realization) and resource-consuming procedure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of heat treatment on brewer's yeast fermentation activity

    OpenAIRE

    Kharandiuk, Tetiana; Kosiv, Ruslana; Palianytsia, Liubov; Berezovska, Natalia

    2015-01-01

    The influence of temperature treatment of brewer's yeast strain Saflager W-34/70 at temperatures of -17, 20, 25, 30, 35, 40 °C on their fermentative activity was studied. It was established that the freezing of yeast leads to a decrease of fermentation activity in directly proportional to the duration way. Fermentative activity of yeast samples can be increased by 20-24% by heat treatment at 35 °C during 15-30 minutes.

  12. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  13. Effect of intercritical heat treatment on mechanical properties of reinforcing steel bars

    International Nuclear Information System (INIS)

    Abro, M.I.; Memon, R.A.; Soomro, I.A.; Aftab, U.

    2017-01-01

    Intercritical heat treatments attempts were made to enhance the mechanical properties of reinforcing steel bars milled from scrap metal. For this, two grades of steel bars were obtained from different steel mills and their mechanical properties that include hardness, ultimate tensile strength, and percent elongation before and after intercritical heat treatment were determined. Results indicated that 25.5 and 17.6%, improvements in UTS (Ultimate Tensile Strength) and 18.8 and 14.3% improvement in percent elongation in two grades of reinforcing steel samples containing 0.17 and 0.24% carbon respectively was achieved while heating at 750 degree C for 2h. Appreciable improvement in the mechanical properties was noted due to birth of sufficient quantity of martensite along with ferrite. (author)

  14. Influence of Heat Treatment on Abrasive Wear Resistance of Silumin Matrix Composite Castings

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2016-03-01

    Full Text Available The authors attempted at examining the effect of heat treatment on abrasive wear resistance of metal composite castings. Metal matrix composites were made by infiltrating preforms created from unordered short fibers (graphite or silumin with liquid aluminium alloy AlSi12(b. Thus prepared composites were subject to solution heat treatment at a temperature of 520°C for four hours, then aging at a temperature of 220°C for four hours. Abrasion resistance of the material was tested before and after thermal treatment.

  15. Evaluation of dry heat treatment of soft wheat flour for the production of high ratio cakes.

    Science.gov (United States)

    Keppler, S; Bakalis, S; Leadley, C E; Sahi, S S; Fryer, P J

    2018-05-01

    An accurate method to heat treat flour samples has been used to quantify the effects of heat treatment on flour functionality. A variety of analytical methods has been used such as oscillatory rheology, rheomixer, solvent retention capacity tests, and Rapid Visco Analysis (RVA) in water and in aqueous solutions of sucrose, lactic acid, and sodium carbonate. This work supports the hypothesis that heat treatment facilitates the swelling of starch granules at elevated temperature. Results furthermore indicated improved swelling ability and increased interactions of flour polymers (in particular arabinoxylans) of heat treated flour at ambient conditions. The significant denaturation of the proteins was indicated by a lack of gluten network formation after severe heat treatments as shown by rheomixer traces. Results of these analyses were used to develop a possible cake flour specification. A method was developed using response surfaces of heat treated flour samples in the RVA using i) water and ii) 50% sucrose solution. This can uniquely characterise the heat treatment a flour sample has received and to establish a cake flour specification. This approach might be useful for the characterisation of processed samples, rather than by baking cakes. Hence, it may no longer be needed to bake a cake after flour heat treatment to assess the suitability of the flour for high ratio cake production, but 2 types of RVA tests suffice. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Analysis of Thermal Stresses and Strains Developing during the Heat Treatment of Windmill Shaft

    Directory of Open Access Journals (Sweden)

    Cebo-Rudnicka A.

    2017-06-01

    Full Text Available In the paper the results of evaluation of the temperature and stress fields during four cycles of the heat treatment process of the windmill shaft has been presented. The temperature field has been calculated from the solution to the heat conduction equation over the whole heat treatment cycles of the windmill shaft. To calculate the stress field an incremental method has been used. The relations between stresses and strains have been described by Prandtl-Reuss equation for the elastic-plastic body. In order to determine the changes in the temperature and stress fields during heat treatment of the windmill shaft self-developed software utilizing the Finite Element Method has been used. This software can also be used to calculate temperature changes and stress field in ingots and other axially symmetric products. In the mathematical model of heating and cooling of the shaft maximum values of the strains have been determined, which allowed to avoid the crack formation. The critical values of strains have been determined by using modified Rice and Tracy criterion.

  17. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  18. Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel

    Science.gov (United States)

    Avishan, Behzad

    2017-09-01

    The microstructural evolution and consequent changes in strength and ductility of advanced NANOBAIN steel during prolonged isothermal heat-treatment stages were investigated. The microstructure and mechanical properties of nanostructured bainite were not expected to be influenced by extending the heat-treatment time beyond the optimum value because of the autotempering phenomenon and high tempering resistance. However, experimental results indicated that the microstructure was thermodynamically unstable and that prolonged austempering resulted in carbon depletion from high-carbon retained austenite and carbide precipitations. Therefore, austenite became thermally less stable and partially transformed into martensite during cooling to room temperature. Prolonged austempering did not lead to the typical tempering sequence of bainite, and the sizes of the microstructural constituents were independent of the extended heat-treatment times. This independence, in turn, resulted in almost constant ultimate tensile strength values. However, microstructural variations enhanced the yield strength and the hardness of the material at extended isothermal heat-treatment stages. Finally, although microstructural changes decreased the total elongation and impact toughness, considerable combinations of mechanical properties could still be achieved.

  19. Designing heat exchangers for process heat reactors

    International Nuclear Information System (INIS)

    Quade, R.N.

    1980-01-01

    A brief account is given of the IAEA specialist meeting on process heat applications technology held in Julich, November 1979. The main emphasis was on high temperature heat exchange. Papers were presented covering design requirements, design construction and prefabrication testing, and selected problems. Primary discussion centered around mechanical design, materials requirements, and structural analysis methods and limits. It appears that high temperature heat exchanges design to nuclear standards, is under extensive development but will require a lengthy concerted effort before becoming a commercial reality. (author)

  20. Microwave processing heats up

    Science.gov (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  1. Susceptibility of Plodia interpunctella (Lepidoptera: Pyralidae) developmental stages to high temperatures used during structural heat treatments.

    Science.gov (United States)

    Mahroof, R; Subramanyam, B

    2006-12-01

    Heating the ambient air of a whole, or a portion of a food-processing facility to 50 to 60 degrees C and maintaining these elevated temperatures for 24 to 36 h, is an old technology, referred to as heat treatment. There is renewed interest in adopting heat treatments around the world as a viable insect control alternative to fumigation with methyl bromide. There is limited published information on responses of the Indian meal moth, Plodia interpunctella (Hübner), exposed to elevated temperatures typically used during heat treatments. Time-mortality relationships were determined for eggs, fifth-instars (wandering-phase larvae), pupae, and adults of P. interpunctella exposed to five constant temperatures between 44 and 52 degrees C. Mortality of each stage increased with increasing temperature and exposure time. In general, fifth-instars were the most heat-tolerant stage at all temperatures tested. Exposure for a minimum of 34 min at 50 degrees C was required to kill 99% of the fifth-instars. It is proposed that heat treatments aimed at controlling fifth-instars should be able to control all other stages of P. interpunctella.

  2. Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhen; Ma Lijian; Li Shuqiong; Geng Junxia; Song Qiang; Liu Jun; Wang Chunli; Wang Hang; Li Juan [College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Chengdu 610064 (China); Qin Zhi [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li Shoujian, E-mail: sjli000616@scu.edu.cn [College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Chengdu 610064 (China)

    2011-08-01

    It was found that a large number of oxygen-containing functional groups (OFGs) could be created on the surface of hydrothermal carbon (HTC) by simply heating at lower temperature in air during the course of our preliminary experiments which focused on oxidation pre-treatment of pristine HTC for the purpose of grafting functionalization. Especially carboxyl groups on HTC would increase significantly, from 0.53 to 3.70 mmol/g after heat treatment at 300 deg. C. So, effects of heat-treatment on the OFGs on the carbon microsphere were deeply studied to confirm and explain the findings. Experiments involving different materials (HTC, activated carbon and glucose) were performed under varying conditions (heating temperature and time, in air or in Ar atmosphere). A reaction mechanism for newly generating carboxyl groups on HTC surface during heat-treatment process was supposed based on the results from the sample characterization using Boehm titrations, infrared spectra, X-ray photoelectron spectroscopy, energy dispersive spectrometry and elemental analysis. In addition, the as heat-treated product has excellent sorption capability for Pb{sup 2+} and Cd{sup 2+} ions.

  3. Influence of heat treatment temperature on bonding and oxidation ...

    Indian Academy of Sciences (India)

    The effects of heat treatment temperature on the morphology, composition, chemical bonds, oxidation resistance and compressive strength of diamond particles coated with TiO2 films were characterized through scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, X-ray diffraction analysis, X-ray ...

  4. Application of microjet in heat treatment of aluminium bronzes

    Directory of Open Access Journals (Sweden)

    Z. Górny

    2011-04-01

    Full Text Available Mechanical properties of a CuAl10Fe4Ni4 bronze subjected to solution heat treatment and toughening were examined. In solution heattreatment, a microjet was used to raise the cooling rate. A slight increase of mechanical properties was observed.

  5. Characterization of ceramic sol-gel coatings as an alternative chemical conversion treatment on commercial carbon steel

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Garcia-Murillo, A.; Torres-Huerta, A.M.; Carrillo-Romo, F.J.; Onofre-Bustamante, E.; Yanez-Zamora, C.

    2009-01-01

    Sol-gel yttria-stabilized zirconia (YSZ) thin films were prepared on commercial carbon steel sheets by dip-coating technique followed by a low temperature heat treatment (473, 573, and 673 K for 1 h) in order to improve both corrosion properties and adhesion. For comparison, zirconia (ZrO 2 ) coatings have been also analyzed. Electrochemical techniques, Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the anticorrosion behavior of the coatings in a 3.5 wt% NaCl solution. The adhesion with a polyester organic coating was evaluated by the pull-off technique. The typical thickness of the deposited layers ranged from 1 to 1.3 μm depending on process parameters. The obtained results indicated that sol-gel ZrO 2 and YSZ coatings without an organic coating can act as protective barriers against wet corrosion during the first hours, but they fail when the time exposure is longer than 1 day. However, when synthesized films were used as a pre-treatment and an organic coating was added (top-coated), the anticorrosive and adhesion properties were strongly affected by the temperature of the treatment, and an increase in both properties was observed at higher temperatures. The structural and morphological characteristics of the coating provide an explanation of the role of each film in the electrochemical behavior in this aggressive medium. Comparing both systems, YSZ displayed greater protective and adhesion values than exhibited for ZrO 2 which can be correlated with the stabilization of the cubic phase

  6. The Microstructure And Mechanical Properties Of The AlSi17Cu5 Alloy After Heat Treatment

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2015-09-01

    Full Text Available In the paper results of the microstructure and mechanical properties (HB, Rm and R0,2 of AlSi17Cu5 alloy, subjected by solution heat treatment (500ºC/6h/woda and aging (200ºC/16h/piec are presented. In next step the alloy was modified and heated significantly above the Tliq temperature (separately and together. It was found that the increase in the strength properties of the tested alloy after heat treatment compared to alloys without solution heat treatment and aging was due to precipitation hardening. The applied aging treatment of ingots (preceded by solution heat treatment, causes not only increase in concentration in α(Al solid solution, but also a favorable change of the primary Si crystals morphology. During stereological measurements significant size reduction and change in the morphology of hypereutectic silicon crystals ware found. This effects can be further enhanced by overheating the alloy to a temperature of 920ºC and rapid cooling before casting of the alloy.

  7. Effect of T6 heat treatment on tensile strength of EN AB-48000 alloy modified with strontium

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2011-07-01

    Full Text Available Among alloys of non-ferrous metals, aluminum alloys have found their broadest application in foundry industry. Silumins are widely used in automotive, aviation and shipbuilding industries; as having specific gravity nearly three times lower than specific gravity of cast iron. The silumins can be characterized by high mechanical properties. To upgrade mechanical properties of a castings made from silumins one makes use of heat treatment, what leads to change of their structure and advantageously affects on mechanical properties of the silumins. In the paper are presented test results concerning effect of dispersion hardening on change of tensile strength of EN AB-48000 silumin modified with strontium. Investigated alloy was melted in electric resistance furnace. Temperature ranges of solution heat treatment and ageing heat treatment were selected on base of curves from ATD method, recorded for refined alloy and for modified alloy. The heat treatment resulted in change of Rm tensile strength, while performed investigations have enabled determination of temperatures and durations of solution heat treatment and ageing heat treatment, which precondition obtainment of the best tensile strength Rm of the investigated alloy.

  8. Development of Commercial Applications of a FAPY Alloy; TOPICAL

    International Nuclear Information System (INIS)

    Sikka, VK

    2001-01-01

    The Fe-16 at. (8.5 wt)% Al alloy, known as FAPY, has been identified as a superior material for heating element applications. However, while the 15-lb heats melted at the Oak Ridge National Laboratory (ORNL) could be processed into wire, the large heat melted at Hoskins Manufacturing Company (Hoskins) could not be processed under commercial processing conditions. The primary objective of the Cooperative Research and Development Agreement (CRADA) was to demonstrate that wire of the FAPY alloy could be produced under commercial conditions from air-induction-melted (AIM) heats. The specific aspects of this CRADA included: (1) Melting 15-lb heats by AIM or vacuum-induction melting (VIM) at ORNL. (2) Development of detailed processing steps including warm drawing and annealing temperature and time during cold-drawing steps. (3) Melting of 1400-lb heats at Hoskins by the Exo-Melt(trademark) process and their chemical analysis and microstructural characterization. (4) Development of tensile properties of sections of ingots from the large heats in the as-cast, hot-worked, and hot- and cold-worked conditions. (5) Microstructural characterization of cast and wrought structures and the fractured specimens. (6) Successful demonstration of processing of AIM heats at Hoskins to heating element wire. The aspects of this CRADA listed above have demonstrated that the FAPY alloy of the desired composition can be commercially produced by AIM by the use of the Exo-Melt(trademark) process. Furthermore, it also demonstrated that the wire processing steps developed for 15-lb heats at ORNL can be successfully applied to the production of wire from the large AIM heats

  9. Heat treatment of TI-6AL-4V produced by lasercusing

    Directory of Open Access Journals (Sweden)

    Becker, Thorsten

    2015-08-01

    Full Text Available LaserCUSING® is a selective laser melting (SLM process that is capable of manufacturing parts by melting powder with heat input from a laser beam. LaserCUSING demonstrates potential for producing the intricate geometries specifically required for biomedical implants and aerospace applications. One main limitation to this form of rapid prototyping is the lack of published studies on the material performance of the resulting material. Studies of the material’s performance are often complicated by dependence on several factors, including starting powder properties, laser parameters, and post-processing heat treatments. This study aims to investigate the mechanical properties of LaserCUSING-produced Ti-6Al-4V and its performance relative to the conventional wrought counterpart. A combination of conventional and LaserCUSING-tailored heat treatments is performed. The resulting microstructures are studied and linked to the properties obtained from hardness tests. The findings highlight that LaserCused Ti-6Al-4V is competitive with traditional materials, provided that optimal parameters are chosen and parts are subject to tailored post-processing. In the as-built condition, LaserCused Ti-6Al-4V displays superior strength and hardness as a result of a martensitic microstructure, and a poorer performance in ductility. However, the material performance can be improved using tailored heat treatments. Careful consideration must be given to suitable post-processing before application in critical components in the aerospace or biomedical industry can occur

  10. Influence of heat treatment on the machinability and corrosion behavior of AZ91 Mg alloy

    Directory of Open Access Journals (Sweden)

    Swetha Chowdary V

    2018-03-01

    Full Text Available In the present study, AZ91 Mg alloy was heat treated at 410 °C for 6, 12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior. The effect of soaking time on the amount and distribution of Mg17Al12 (β – phase was analyzed under the optical microscope. Microhardness measurements demonstrated the increased hardness with increased heat treatment soaking time, which can be attributed to the solid solution strengthening. The influence of super saturated α-grains on reducing the cutting force (Fz with respect to increased cutting speed was observed as prominent. The corrosion behavior of the heat treated specimens was studied by conducting electrochemical tests. Surprisingly, corrosion rate of heat treated samples was observed as increased compared with the base material. From the results, it is evident that the machinability of AZ91 Mg alloy can be improved by producing super saturated α-grains through heat treatment but at the cost of losing corrosion resistance. Keywords: AZ91 Mg alloy, Solid solution, Turning, Corrosion, Machinability

  11. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  12. Inactivation of T4-phages by heat and γ-irradiation treatment in respect to sludge hygienization

    International Nuclear Information System (INIS)

    Farniok, C.; Turanitz, K.; Stehlik, G.; Meyrath, J.

    1977-04-01

    The effects of γ-irradiation, heat treatment and combined heat/irradiation treatments on T 4 -bacteriophages were studied and evaluated in surviving fractions. To ascertain the extent of inactivation, the formation of plaque was studied in the host organism Escherichia coli K 12 D 10. A 90-minute heat treatment of the bacteriolysat at 55 0 C did not inactivate the bacteriophages, whereas the number of plaque-forming bacteriophages was decreased by 50% at 60 0 C. At 65 0 C a linear correlation of heating period and the logarithm of relative number of phages was observed. After 30 minutes exposure to 70 0 C only few bacteriophages were traced in the plaque test. By inactivation of T 4 -phages after exposure to γ-irradiation a linear correlation of irradiation dose and the logarithm of the relative number of surviving bacteriophages was found. The combined method of heat and irradiation treatments resulted in a synergistic effect. (author)

  13. District heating grid of the Daqing Nuclear Heating Plant

    Energy Technology Data Exchange (ETDEWEB)

    Changwen, Ma [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The Daqing Nuclear Heating Plant is the first commercial heating plant to be built in China. The plant is planned to be used as the main heat resource of one residential quarter of Daqing city. The main parameters of the heating plant are summarized in the paper. The load curve shows that the capacity of the NHP is about 69% of total capacity of the grid. The 12 existing boilers can be used as reserve and peak load heat resources. Two patterns of load following have have been considered and tested on the 5MW Test Heating Reactor. Experiment shows load of heat grid is changed slowly, so automatic load following is not necessary. (author). 9 figs, 1 tab.

  14. Effect of Heat Treatment on the Surface Properties of Activated Carbons

    Directory of Open Access Journals (Sweden)

    Meriem Belhachemi

    2011-01-01

    Full Text Available This work reports the effect of heat treatment on the porosity and surface chemistry of two series of activated carbons prepared from a local agricultural biomass material, date pits, by physical activation with carbon dioxide and steam. Both series samples were oxidized with nitric acid and subsequently heat treated under N2 at 973 K in order to study the effect of these treatments in porosity and surface functional groups of activated carbons. When the activated carbons were heat treated after oxidation the surface area and the pore volume increase for both activated carbons prepared by CO2 and steam activations. However the amount of surface oxygen complexes decreases, the samples keep the most stable oxygen surface groups evolved as CO by temperature-programmed desorption experiments at high temperature. The results show that date pits can be used as precursors to produce activated carbons with a well developed porosity and tailored oxygen surface groups.

  15. Heart rate variability during exertional heat stress: effects of heat production and treatment.

    Science.gov (United States)

    Flouris, Andreas D; Bravi, Andrea; Wright-Beatty, Heather E; Green, Geoffrey; Seely, Andrew J; Kenny, Glen P

    2014-04-01

    We assessed the efficacy of different treatments (i.e., treatment with ice water immersion vs. natural recovery) and the effect of exercise intensities (i.e., low vs. high) for restoring heart rate variability (HRV) indices during recovery from exertional heat stress (EHS). Nine healthy adults (26 ± 3 years, 174.2 ± 3.8 cm, 74.6 ± 4.3 kg, 17.9 ± 2.8 % body fat, 57 ± 2 mL·kg·(-1) min(-1) peak oxygen uptake) completed four EHS sessions incorporating either walking (4.0-4.5 km·h(-1), 2 % incline) or jogging (~7.0 km·h(-1), 2 % incline) on a treadmill in a hot-dry environment (40 °C, 20-30 % relative humidity) while wearing a non-permeable rain poncho for a slow or fast rate of rectal temperature (T re) increase, respectively. Upon reaching a T re of 39.5 °C, participants recovered until T re returned to 38 °C either passively or with whole-body immersion in 2 °C water. A comprehensive panel of 93 HRV measures were computed from the time, frequency, time-frequency, scale-invariant, entropy and non-linear domains. Exertional heat stress significantly affected 60/93 HRV measures analysed. Analyses during recovery demonstrated that there were no significant differences between HRV measures that had been influenced by EHS at the end of passive recovery vs. whole-body cooling treatment (p > 0.05). Nevertheless, the cooling treatment required statistically significantly less time to reduce T re (p whole-body immersion in 2 °C water results in faster cooling, there were no observed differences in restoration of autonomic heart rate modulation as measured by HRV indices with whole-body cold-water immersion compared to passive recovery in thermoneutral conditions.

  16. Commercial applications of inertial confinement fusion

    International Nuclear Information System (INIS)

    Booth, L.A.; Frank, T.G.

    1977-05-01

    This report describes the fundamentals of inertial-confinement fusion, some laser-fusion reactor (LFR) concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation. In addition, other commercial energy-related applications, such as the production of fissionable fuels, of synthetic hydrocarbon-based fuels, and of process heat for a variety of uses, as well as the environmental and safety aspects of fusion energy, are discussed. Finally, the requirements for commercialization of laser fusion technologies are described

  17. Effect of Annealing Heat Treatment to Characteristics of AlDC8 (Al-Si-Cu) Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Kyung Man; Lee, Sung-Yul; Lee, Myeong Hoon; Jeong, Jae-Hyun [Korea Maritime and Ocean University, Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2015-12-15

    ALDC8 (Al-Si-Cu) alloy has been often corroded with pattern of intergranular corrosion in corrosive environments. Thus, in order to improve its corrosion resistance, the effect of annealing heat treatment to corrosion resistance and hardness was investigated with parameters of heating temperatures such as 100 ℃, 200 ℃, 300 ℃, 400 ℃ and 500 ℃ for 1hr. The hardness was varied with annealing temperature and slightly decreased with annealing heat treatment. However, the relation between annealing temperature and hardness agreed not well each other. Corrosion potential was shifted to noble direction and corrosion current density was also decreased with increasing annealing temperature. Moreover, both AC impedance at 10 mHz and polarization resistance on the cyclic voltammogram curve were also increased with increasing annealing temperature. Furthermore, intergranular corrosion was somewhat observed in non heat treatment as well as annealing temperatures at 100 ℃, 200 ℃ and 300 ℃, while, intergranular corrosion was not nearly observed at annealing temperature of 400 ℃, 500 ℃. Consequently, it is considered that the annealing heat treatment of ALDC8 alloy may be an available method not only to inhibit its intergranular corrosion but also to improve its corrosion resistance.

  18. Heat transfer mechanisms in poplar wood undergoing torrefaction

    Science.gov (United States)

    Sule, Idris O.; Mahmud, Shohel; Dutta, Animesh; Tasnim, Syeda Humaira

    2016-03-01

    Torrefaction, a thermal treatment process of biomass, has been proved to improve biomass combustible properties. Torrefaction is defined as a thermochemical process in reduced oxygen condition and at temperature range from 200 to 300 °C for shorter residence time whereby energy yield is maximized, can be a bridging technology that can lead the conventional system (e.g. coal-fired plants) towards a sustainable energy system. In efforts to develop a commercial operable torrefaction reactor, the present study examines the minimum input condition at which biomass is torrefied and explores the heat transfer mechanisms during torrefaction in poplar wood samples. The heat transfer through the wood sample is numerically modeled and analyzed. Each poplar wood is torrefied at temperature of 250, 270, and 300 °C. The experimental study shows that the 270 °C-treatment can be deduced as the optimal input condition for torrefaction of poplar wood. A good understanding of heat transfer mechanisms can facilitate the upscaling and downscaling of torrefaction process equipment to fit the feedstock input criteria and can help to develop treatment input specifications that can maximize process efficiency.

  19. Detoxification and biodegradability enhancement of aqueous solutions of four commercial pesticides along a Photo-Fenton treatment

    International Nuclear Information System (INIS)

    Amat, A. M.; Arques, A.; Domenech, A.; Garcia-Ripoll, A.; Vicente, R.

    2009-01-01

    Photo-Fenton treatment has proven to be efficient to remove recalcitrant pollutants as commercial pesticides commonly employed in citric cultivars in the Mediterranean coast of Spain as Laition, Sevnol, Ultracid and Metasystox. However, the photon-Fenton treatment resulted to be less efficient to remove organic matter; nevertheless it could be employed as a pre-treatment to couple with biological processes, widely used in wastewater treatment. (Author)

  20. Detoxification and biodegradability enhancement of aqueous solutions of four commercial pesticides along a Photo-Fenton treatment

    Energy Technology Data Exchange (ETDEWEB)

    Amat, A. M.; Arques, A.; Domenech, A.; Garcia-Ripoll, A.; Vicente, R.

    2009-07-01

    Photo-Fenton treatment has proven to be efficient to remove recalcitrant pollutants as commercial pesticides commonly employed in citric cultivars in the Mediterranean coast of Spain as Laition, Sevnol, Ultracid and Metasystox. However, the photon-Fenton treatment resulted to be less efficient to remove organic matter; nevertheless it could be employed as a pre-treatment to couple with biological processes, widely used in wastewater treatment. (Author)

  1. Penetrating the markets: biomass and commercial distribution

    International Nuclear Information System (INIS)

    Schmidl, J.

    1999-01-01

    Although biomass accounts for a significant proportion of renewable energy in Europe, its market penetration could be increased if certain barriers can be surmounted. Some of those barriers are identified and suggestions made as to how they may be overcome through improved 'distribution' in various sectors. To integrate biomass into the electricity distribution system, the commercial distribution of liquid biofuels, and in the commercial distribution of biomass in the heat sector, certain rewards and penalties could be introduced and these are discussed. The low temperature heat market is seen as very important for the further development of bioenergy in Europe. (UK)

  2. ACCOUNTING TREATMENT FOR COMMERCIAL DISCOUNTS ON GOODS PURCHASED FOR RESALE

    Directory of Open Access Journals (Sweden)

    HOLT GHEORGHE

    2016-04-01

    Full Text Available In the specialized literature there are two major categories of discounts applied between business partners: trade discounts and financial discounts. In terms of accounting, the method of calculation of interest is commercial and financial cuts, especially the tax treatment of them. Trade discounts are applied prior to financial services, and both types of discounts are calculated on the net earlier. Discounts are calculated after applying discounts and special an issue is to know the level of rebates, which are determined periodically based on the turnover.

  3. Physical aspects of thermotherapy: A study of heat transport with a view to treatment optimisation

    Science.gov (United States)

    Olsrud, Johan Karl Otto

    1998-12-01

    Local treatment with the aim to destruct tissue by heating (thermotherapy) may in some cases be an alternative or complement to surgical methods, and has gained increased interest during the last decade. The major advantage of these, often minimally-invasive methods, is that the disease can be controlled with reduced treatment trauma and complications. The extent of thermal damage is a complex function of the physical properties of tissue, which influence the temperature distribution, and of the biological response to heat. In this thesis, methods of obtaining a well-controlled treatment have been studied from a physical point of view, with emphasis on interstitial laser-induced heating of tumours in the liver and intracavitary heating as a treatment for menorrhagia. Hepatic inflow occlusion, in combination with temperature-feedback control of the output power of the laser, resulted in well defined damaged volumes during interstitial laser thermotherapy in normal porcine liver. In addition, phantom experiments showed that the use of multiple diffusing laser fibres allows heating of clinically relevant tissue volumes in a single session. Methods for numerical simulation of heat transport were used to calculate the temperature distribution and the results agreed well with experiments. It was also found from numerical simulation that the influence of light transport on the damaged volume may be negligible in interstitial laser thermotherapy in human liver. Finite element analysis, disregarding light transport, was therefore proposed as a suitable method for 3D treatment planning. Finite element simulation was also used to model intracavitary heating of the uterus, with the purpose of providing an increased understanding of the influence of various treatment parameters on blood flow and on the depth of tissue damage. The thermal conductivity of human uterine tissue, which was used in these simulations, was measured. Furthermore, magnetic resonance imaging (MRI) was

  4. Viscose liquid heat treatment using plate scraper heat exchanger

    Directory of Open Access Journals (Sweden)

    K. A. Rashkin

    2012-01-01

    Full Text Available The current work analyzes the use of different types of heat exchangers, depending on the technology of production. It is taken the detail analysis of the ways of applicability of various types of heat exchangers, depending on the viscosity of the processed product. It is posed the problem of the analytical determination of the required area of heat exchange with the use of differential equations of heat transfer in a moving liquid media, written in cylindrical coordinates, for symmetrical temperature distribution, without taking in account the energy dissipation.

  5. Effect of heat treatment on bend stress relaxation of pure tungsten

    International Nuclear Information System (INIS)

    Sasaki, Kenta; Nogami, Shuhei; Fukuda, Makoto; Katakai, Yasuyuki; Hasegawa, Akira

    2013-01-01

    Highlights: • Bend stress relaxation test was performed on the pure tungsten after heat treatment for stress relief. • The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. • Small reduction in the BSR ratio was observed at the temperatures of 500–800 °C. • The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900–1000 °C. • The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. -- Abstract: Bend stress relaxation (BSR) tests at temperatures of 500, 600, 800, 900 and 1000 °C for 0.1, 0.5 and 1 h in vacuum were performed on the pure tungsten after heat treatment for stress relief at 900 °C for 1 h. The degree of stress relaxation increased with test temperature. The BSR ratio of the heat treated specimen was larger than that of the as-received specimen at this temperature region. Small reduction in the BSR ratio was observed at the temperatures of 500, 600 and 800 °C. The BSR ratio of the heat treated specimen decreased significantly at the temperatures of 900 and 1000 °C and it was close to that of the as-received specimen. The BSR ratio of the heat treated specimen and the as-received specimen exhibited similar trend of time-evolution. The stress was exponentially relaxed with increasing test time. The BSR ratio decreased significantly in a short time below 0.1 h, and then decreased slowly. Higher activation energy of stress relaxation evaluated by cross-cut method was obtained for the higher temperature

  6. The UK commercial demonstration fast reactor design

    International Nuclear Information System (INIS)

    Holmes, J.A.G.

    1987-01-01

    The paper on the UK Commercial Demonstration Fast Reactor design was presented to the seminar on 'European Commercial Fast Reactor Programme, London 1987. The design is discussed under the topic headings:- primary circuit, intermediate heat exchangers and pumps, fuel and core, refuelling, steam generators, and nuclear island layout. (U.K.)

  7. Comparative study of heat transfer and wetting behaviour of conventional and bioquenchants for industrial heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Peter; Prabhu, K. Narayan [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar 575 025 Mangalore, Karnataka State (India)

    2008-02-15

    An investigation was conducted to study the suitability of vegetable oils as bioquenchants for industrial heat treatment. The study involved the assessment of the severity of quenching and wetting behaviour of conventional and vegetable oil quench media. Quench severities of sunflower, coconut and palm oils were found to be greater than mineral oil. The quench severity of aqueous media is greater than oil media although their wettability is poor as indicated by their higher contact angles. A dimensionless contact angle parameter defined in this work is found to be a better parameter to compare the wetting behaviour with heat transfer. (author)

  8. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    Science.gov (United States)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  9. Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Starckpoole, M. M.; Frenkel, A. I.

    2000-01-01

    their transformations caused by heat treatment prior to disposal or aging at a proper disposal site. The transformations were investigated by XRD, SEM, XANES, EXAFS, surface area measurements, pH static leaching tests, and extractions with oxalate and weak hydrochloric acid. It was found that at 600 and 900 °C the iron...... oxides were transformed to hematite, which had a greater thermodynamic stability but less surface area than the initial products. Heat treatment also caused some volatilization of heavy metals (most notably, Hg). Leaching with water at pH 9 (L/S 10, 24 h) and weak acid extraction showed that heat...

  10. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2014-01-01

    Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate......-treated flies. Several hsp70 probe sets were up-regulated 1.7–2-fold in the mildly stressed flies weeks after the last heat treatment (P shock protein, Hsp70, is reported to return to normal levels of expression shortly after heat stress. We...... conclude that the heat shock response, and Hsp70 in particular, may be central to the heat-induced increase in the average lifespan in flies that are exposed to mild heat stress early in life....

  11. Modification of the original color of the Eucalyptus grandis wood by heat treatments

    Directory of Open Access Journals (Sweden)

    Rosilei Aparecida Garcia

    2014-09-01

    Full Text Available The objective of this study was to determine the modification of original color of Eucalyptus grandis Hill ex. Maiden wood after heat-treatment. Wood samples were heat-treated under different temperatures (180, 200, 215 and 230ºC and time conditions (15 minutes, 2 and 4 hours. Color analysis were performed on the CIE L*a*b* system by using a Color Eye XTH-X-Rite 200d spectrophotometer. All heat treatments promoted an alteration of the original color of wood. Heat-treated woods presented lower L* (lightness values than untreated wood (control, characterizing the wood darkness, mainly for more severe conditions of temperature and time. Chromatic coordinates (a* and b* showed different behaviors depending on the temperature-time combination. The modification of the original color of the wood allowed the creation of new color patterns, which can add greater value to the studied wood.

  12. Improving the conductivity of single-walled carbon nanotubes films by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiaping [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Sun Jing, E-mail: jingsun@mail.sic.ac.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Gao Lian, E-mail: liangaoc@online.sh.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Liu Yangqiao; Wang Yan; Zhang Jing [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Kajiura, Hisashi; Li Yongming; Noda, Kazuhiro [Advanced Materials Laboratories, Sony Corporation, Atsugi Tec. No. 2, 4-16-1 Okata Atsugi, Kanagawa 243-0021 (Japan)

    2009-10-19

    A simple heat treatment method was applied to remove surfactants remaining in the single-walled carbon nanotubes (SWNTs) films at 300 deg. C for 5 h in air. Scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and reflected light interference microscope (RLIM) were employed to verify the elimination of surfactants. The comprehensive performance, especially the conductivity, could be improved by more than one order after heat treatment. For example, using SDBS as dispersant, the sheet resistance decreased from 782,600 OMEGA/square to 40,460 OMEGA/square with the transmittance of about 99.5% at 550 nm.

  13. Study on mechanical properties of the laminated composite materials with compatible heat treatments

    International Nuclear Information System (INIS)

    Pashkov, P.O.; Pektemirov, B.G.; Yaroshenko, A.P.

    1980-01-01

    Considered is the behaviour during axial extension of trilament composite materials, the mechanical properties of which are formed mainly by heat treatment. Application in the composite of the materials with compatible heat treatment is most rational. It is shown that for (ATsMg+N18K8M5T+ATsMg), (KhN78+VKS+KhH78) composites, the constituents of which are relatively plastic and tightly bound with each other, the tensile strength and uniform strain are changed additively

  14. Thermoluminescence and cathodoluminescence studies of calcite and MgO: surface defects and heat treatment

    International Nuclear Information System (INIS)

    Goeksu, H.Y.; Brown, L.M.

    1988-01-01

    Some of the problems which preclude accurate thermoluminescence (TL) dating of geologically formed calcite stem from different sample pre-treatment procedures, such as grinding, drilling or pre-heating. It has long been known that grinding can introduce spurious TL in calcite, but there have been wide differences of opinion as to the magnitude of the influence and its importance. Therefore, various grinding and acid-washing procedures have been suggested to avoid spurious thermoluminescence. Various models have been developed to explain the mechanism. We have studied the changes in thermoluminescence (TL) and cathodoluminescence (CL) properties as well as in the spectral composition of the glow from calcite and MgO due to surface defects and heat treatment. It is found that both laboratory heat treatment and surface indents give rise to changes in TL efficiency. (author)

  15. Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sonigra, Dhiren, E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in; Soman, Swati, E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in; Kulkarni, Ajit R., E-mail: somans@iitb.ac.in, E-mail: ajit.kulkarni@iitb.ac.in [Dept. of Metallurgical Engineering and Materials Science, IIT Bombay, Mumbai-400076 (India)

    2014-04-24

    Glass-ceramic is prepared by heat treatment of melt quenched 14Li{sub 2}O−9Al{sub 2}O{sub 3}−38TiO{sub 2}−39P{sub 2}O{sub 5} glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi{sub 2}(PO{sub 4}){sub 3} from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.

  16. High Thermal Conductivity Polymer Composites for Low Cost Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-01

    This factsheet describes a project that identified and evaluated commercially available and state-of-the-art polymer-based material options for manufacturing industrial and commercial non-metallic heat exchangers. A heat exchanger concept was also developed and its performance evaluated with heat transfer modeling tools.

  17. The effects of heat treatment on physical and technological ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of ... Some of the products developed by thermal treat- .... boards were stored uncontrolled condition in an unheated room for .... These results can be explained with material loses in ...... Finland-state of the art.

  18. Optimisasi Suhu Pemanasan dan Kadar Air pada Produksi Pati Talas Kimpul Termodifikasi dengan Teknik Heat Moisture Treatment (HMT (Optimization of Heating Temperature and Moisture Content on the Production of Modified Cocoyam Starch Using Heat Moisture Treatment (HMT Technique

    Directory of Open Access Journals (Sweden)

    I Nengah Kencana Putra

    2016-12-01

    Full Text Available One of the physically starch modification technique is heat-moisture treatment (HMT. This technique can increase the resistance of starch to heat, mechanical treatment, and acid during processing.  This research aimed to find out the influence of heating temperature and moisture content in the modification process of cocoyam starch  with HMT techniques on the characteristic of product, and then to determine the optimum heating temperature and moisture content in the process. The research was designed with a complete randomized design (CRD with two factors factorial experiment.  The first factor was temperature of the heating consists of 3 levels namely 100 °C, 110 °C, and 120 °C. The second factor was the moisture content of starch which consists of 4 levels, namely 15 %, 20 %, 25 %, and 30 %. The results showed that the heating temperature and moisture content significantly affected water content, amylose content and swelling power of modified cocoyam starch product, but the treatment had no significant effect on the solubility of the product. HMT process was able to change the type of cocoyam starch from type B to type C. The optimum heating temperature and water content on modified cocoyam starch production process was 110 °C and 30 % respectively. Such treatment resulted in a modified cocoyam starch with moisture content of 6.50 %, 50,14 % amylose content, swelling power of 7.90, 0.0009% solubility, paste clarity of 96.310 % T, and was classified as a type C starch.   ABSTRAK Salah satu teknik modifikasi pati secara fisik adalah teknik Heat Moisture Treatment (HMT. Teknik ini dapat meningkatkan ketahanan pati terhadap panas, perlakuan mekanik, dan asam selama pengolahan. Penelitian ini bertujuan untuk mengetahui pengaruh suhu dan kadar air pada proses modifikasi pati talas kimpul dengan teknik HMT terhadap karakteristik produk, dan selanjutnya menentukan suhu dan kadar air yang optimal dalam proses tersebut. Penelitian ini dirancang

  19. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.

    Science.gov (United States)

    Meng, Long-Yue; Park, Soo-Jin

    2010-12-15

    In this work, graphite nanofibers (GNFs) were successfully expanded intercalating KOH followed by heat treatment in the temperature range of 700-1000 °C. The aim was to improve the CO(2) adsorption capacity of the GNFs by increasing the porosity of GNFs. The effects of heat treatment on the pore structures of GNFs were investigated by N(2) full isotherms, XRD, SEM, and TEM. The CO(2) adsorption capacity was measured by CO(2) isothermal adsorption at 25 °C and 1 atm. From the results, it was found that the activation temperature had a major influence on CO(2) adsorption capacity and textural properties of GNFs. The specific surface area, total pore volume, and mesopore volume of the GNFs increased after heat treatment. The CO(2) adsorption isotherms showed that G-900 exhibited the best CO(2) adsorption capacity with 59.2 mg/g. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Mechanical properties of aluminium-uranium alloy and aluminium commercially pure at several temperatures

    International Nuclear Information System (INIS)

    Quadros, N.F. de.

    1976-01-01

    The mechanical properties of Ai-U (18,4 wt %) alloy with and without heat treatment were determined, and they were compared with the mechanical properties of aluminum alloy of commercial purity, AI-1100, at tempiratures of 25, 500, 550 and 600 0 C, the changes of both the yield point stress and the ultimate tensile strength as a function of temperature may be described through two emperical relationships. A fractography study was also made [pt

  1. Microsegregation of heat and homogenization treatments in uranium-niobium alloys (U-Nb)

    International Nuclear Information System (INIS)

    Leal, J.F.

    1988-01-01

    In the following sections microsegration results in U-3,6 Wt% Nb and U-6,1 Wt% Nb alloys casted in noconsumable electrode arc furnace are presented. The microsegration is studied qualitatively by optical microscopy and quantitatively by electron microprobe. The degree of homogenization has been measured after 800 and 850 0 C heat treatments in tubular resistive furnace. The microstructures after heat treatments are quantitatively analysed to check effects on the casting structures, mainly the variations in solute along the dendrite arm spacing. Some solidification phenomena are then discussed on reference to theorical models of dendritic solidification, including microstructure and microsegregation. The experimental results are compared to theoretical on basis of initial and residual microsegregation after homogenization treatments. The times required for homogenization of the alloys are also discussed in function of the microsegregation from casting structures and the temperatures of the treatments. (author) [pt

  2. Effects of Two-stage Heat Treatment on Delayed Coke and Study of Their Surface Texture Characteristics

    Science.gov (United States)

    Im, Ui-Su; Kim, Jiyoung; Lee, Seon Ho; Lee, Byung-Rok; Peck, Dong-Hyun; Jung, Doo-Hwan

    2017-12-01

    In the present study, surface texture features and chemical properties of two types of cokes, made from coal tar by either 1-stage heat treatment or 2-stage heat treatment, were researched. The relationship between surface texture characteristics and the chemical properties was identified through molecular weight distribution, insolubility of coal tar, weight loss with temperature increase, coking yield, and polarized light microscope analysis. Rapidly cleared anisotropy texture in cokes was observed in accordance with the coking temperature rise. Quinoline insolubility and toluene insolubility of coal tar increased with a corresponding increases in coking temperature. In particular, the cokes produced by the 2-stage heat treatment (2S-C) showed surface structure of needle cokes at a temperature approximately 50°C lower than the 1-stage heat treatment (1S-C). Additionally, the coking yield of 2S-C increased by approximately 14% in comparison with 1S-C.

  3. Effect of heat treatment to sweet potato flour on dough properties and characteristics of sweet potato-wheat bread.

    Science.gov (United States)

    Pérez, Isela Carballo; Mu, Tai-Hua; Zhang, Miao; Ji, Lei-Lei

    2017-12-01

    The effect of heat treatment at 90, 100, 110 and 120 ℃ for 20 min to sweet potato flour on dough properties and characteristics of sweet potato-wheat bread was investigated. The lightness (L*) and a* of sweet potato flour samples after heat treatment were increased, while the b* were decreased significantly, as well as the particle size, volume and area mean diameter ( p sweet potato flour was observed, where the number of irregular granules increased as the temperature increased from 90 to 120 ℃. Compared with sweet potato flour samples without heat treatment and with heat treatment at 90, 100 and 120 ℃, the gelatinization temperature and enthalpy change of sweet potato flour at 110 ℃ were the lowest, which were 77.94 ℃ and 3.67 J/g, respectively ( p sweet potato flour increased significantly from 1199 ml without heat treatment to 1214 ml at 90 ℃ ( p sweet potato-wheat bread with sweet potato flour after heat treatment increased significantly, which was the largest at 90 ℃ (2.53 cm 3 /g) ( p sweet potato flour could be potentially used in wheat bread production.

  4. Are high penetrations of commercial cogeneration good for society?

    Science.gov (United States)

    Keen, Jeremy F.; Apt, Jay

    2016-12-01

    Low natural gas prices, market reports and evidence from New York State suggest that the number of commercial combined heat and power (CHP) installations in the United States will increase by 2%-9% annually over the next decade. We investigate how increasing commercial CHP penetrations may affect net emissions, the distribution network, and total system energy costs. We constructed an integrated planning and operations model that maximizes owner profit through sizing and operation of CHP on a realistic distribution feeder in New York. We find that a greater penetration of CHP reduces both total system energy costs and network congestion. Commercial buildings often have low and inconsistent heat loads, which can cause low fuel utilization efficiencies, low CHP rates-of-return and diminishing avoided emissions as CHP penetration increases. In the northeast, without policy intervention, a 5% penetration of small commercially owned CHP would increase CO2 emissions by 2% relative to the bulk power grid. Low emission CHP installations can be encouraged with incentives that promote CHP operation only during times of high heat loads. Time-varying rates, such as time-of-day and seasonal rates, are one option and were shown to reduce customer emissions without reducing profits. In contrast, natural gas rate discounts, a common incentive for industrial CHP in some states, can encourage CHP operation during low heat loads and thus increase emissions.

  5. Regenerative heat treatments for the extension of the creep life of the superalloy IN-738

    International Nuclear Information System (INIS)

    Stevens, R.A.; Flewitt, P.E.J.

    1979-01-01

    Uniaxial creep tests have been performed on the cast nickel-base superalloy IN-738 at 1023K and 1123K. Microstructural damage occurring during creep has been characterised using transmission electron microscopy of surface and extraction replicas. Considerable coarsening of the γ' precipitates occurs during creep causing a progressive loss of creep strength. Intermediate heat treatment of interrupted specimens regenerates a microstructure similar to the original, and on re-testing significant creep life extensions are observed. These heat treatments do not completely recover the creep life due to the development of grain boundary cavitation. Additional heat treatments were performed under a superimposed hydrostatic pressure of 138 MPa to remove these cavities. (orig.) [de

  6. Improved corrosion resistance of aluminum brazing sheet by a post-brazing heat treatment

    NARCIS (Netherlands)

    Norouzi Afshar, F.; Tichelaar, F.D.; Glenn, A. M.; Taheri, P.; Sababi, M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    This work studies the influence of the microstructure on the corrosion mechanism and susceptibility of as-brazed aluminum sheet. Various microstructures are obtained using postbrazing heat treatments developed to enhance the corrosion resistance of an AA4xxx/AA3xxx brazing sheet. The heat

  7. Effects of Induction Heat Bending and Heat Treatment on the Boric Acid Corrosion of Low Alloy Steel Pipe for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Tae; Kim, Young-Sik [Andong National University, Gyeongbuk (Korea, Republic of); Chang, Hyun-Young; Park, Heung-Bae [KEPCO EandC, Gyeongbuk (Korea, Republic of); Sung, Gi-Ho; Shin, Min-Chul [Sungil SIM Co. Ltd, Busan (Korea, Republic of)

    2016-11-15

    In many plants, including nuclear power plants, pipelines are composed of numerous fittings such as elbows. When plants use these fittings, welding points need to be increased, and the number of inspections also then increases. As an alternative to welding, the pipe bending process forms bent pipe by applying strain at low or high temperatures. This work investigates how heat treatment affects on the boric acid corrosion of ASME SA335 Gr. P22 caused by the induction heat bending process. Microstructure analysis and immersion corrosion tests were performed. It was shown that every area of the induction heat bent pipe exhibited a high corrosion rate in the boric acid corrosion test. This behavior was due to the enrichment of phosphorous in the ferrite phase, which occurred during the induction heat bending process. This caused the ferrite phase to act as a corrosion initiation site. However, when re-heat treatment was applied after the bending process, it enhanced corrosion resistance. It was proved that this resistance was closely related to the degree of the phosphorus segregation in the ferrite phase.

  8. Effect of heat treatment of whole cottonseed on in vitro, in situ and in ...

    African Journals Online (AJOL)

    Keywords: Amino acid flow, heat treatment, protein degradation, whole cononseed. * Author to whom ... heat-treated soybearu were compared with raw soybeans, it was found that ... et al., 1985; Faldet & Sarter, 1989) while milk fat percenrage.

  9. Influence of lactic acid and post-treatment recovery time on the heat resistance of Listeria monocytogenes.

    Science.gov (United States)

    Omori, Yasuo; Miake, Kiyotaka; Nakamura, Hiromi; Kage-Nakadai, Eriko; Nishikawa, Yoshikazu

    2017-09-18

    The aim of this study was to evaluate the effect of lactic acid (LA) with and without organic material at various post-treatment recovery times on the heat resistance of Listeria monocytogenes (Lm). LA decreased Lm numbers; however, the effect was remarkably attenuated by the presence of organic matter. Five strains of Lm were treated with LA and the listericidal effects were compared. The effect of LA varied depending on the strain, with ≥3.0% (w/w) LA required to kill the Lm strains in a short time. The heat resistance of Lm treated with LA was examined with respect to the time interval between the acid treatment and the subsequent manufacturing step. The heat resistance of Lm was shown to significantly increase during the post-treatment period. Heat tolerance (D value) increased up to 3.4-fold compared with the non-treated control bacteria. RNA sequencing and RT-PCR analyses suggested that several stress chaperones, proteins controlled by RecA and associated with high-temperature survival, were involved in the mechanism of enhanced heat resistance. These results are applicable to manufacturers when LA and heat treatment methods are utilized for the effective control of Lm in foods. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Significance of heat-moisture treatment conditions on the pasting and gelling behaviour of various starch-rich cereal and pseudocereal flours.

    Science.gov (United States)

    Collar, Concha

    2017-10-01

    The impact of heat-moisture treatment processing conditions (15%, 25%, and 35% moisture content; 1, 3, and 5 h heating time at 120 ℃) on the viscosity pasting and gelling profiles of different grain flours matrices (barley, buckwheat, sorghum, high β-glucan barley, and wheat) was investigated by applying successive cooking and cooling cycles to rapid visco analyser canisters with highly hydrated samples (3.5:25, w:w). At a milder heat-moisture treatment conditions (15% moisture content, 1 h heating time), except for sorghum, heat-moisture treatment flours reached much higher viscosity values during earlier pasting and subsequent gelling than the corresponding native counterparts. Besides heat-moisture treatment wheat flour, the described behaviour found also for non-wheat-treated flours has not been previously reported in the literature. An increased hydrophobicity of prolamins and glutelins in low moisture-short heating time heat-moisture treatment of non-wheat flours with high protein content (12.92%-19.95%) could explain the enhanced viscosity profile observed.

  11. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    Effect of heat treatment (55°C/20 min) on polyphenol oxidase (PPO) and peroxidase (POD) activities and total phenolic compounds was investigated in Algerian dates (Deglet Nour variety) at Tamar (fully ripe) stage and in dates stored for 5 months at ambient temperature and in cold storage (10°C). Results obtained ...

  12. Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment

    DEFF Research Database (Denmark)

    Duan, Zhi; Holst Hansen, Terese; Hansen, Tina Beck

    OBJECTIVE Sous-vide cooking and molecular gastronomy has started a wave of experimenting with Low Temperature Long Time (LTLT) heat treatments. Heat treatments, at temperatures as low as 50°C, have been suggested by celebrity chefs. LTLT treatments often take hours to reach to the final core...

  13. Effects of the Solid Solution Heat Treatment on the Corrosion Resistance Property of SSC13 Cast Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk-Jin [Hi-Sten Co., Ltd., Gimhae (Korea, Republic of); Lim, Su Gun [Gyeongsang National University, Jinju (Korea, Republic of); Pak, S. J. [Gachon BioNano Research Institute, Gachon University, Sungnam (Korea, Republic of)

    2015-04-15

    Recently, Stainless steels have been increasingly selected as the fitting or the valve materials of water pipes as the human health issue is getting higher and higher. Therefore, the connectors attached at pipes to deliver water are exposed to more severe environments than the pipes because crevice or galvanic corrosion is apt to occur at the fittings or the valves. Effects of the solid solution annealing, cooling rate after this heat treatment, and passivation on the corrosion properties of the shell mold casted SSC13 (STS304 alloy equivalent) were studied. The heating and quenching treatment more or less reduced hardness but effectively improved corrosion resistance. It was explained by the reduction of delta ferrite contents. Independent of heat treatment, the chemical passivation treatment also lowered corrosion rate but the improvement of corrosion resistance depended on temperature and time for passivation treatment indicating that the optimum conditions for passivation treatment were the bath temperature of 34 .deg. C and operating time of 10 minutes. Therefore it is suggested that the corrosion resistance of SSC13 can be effectively improved with the heat treatment, where SSC13 is heated for 10 minutes at 1120 °C and quenched and passivation treatment, where SSC13 is passivated for at least 10 seconds at 34 °C nitric acid solution.

  14. Influence of Heat Treatment on the Morphologies of Copper Nanoparticles Based Films by a Spin Coating Method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-01-01

    Full Text Available We have investigated the influence of heat treatment on the morphologies of copper nanoparticles based films on glass slides by a spin coating method. The experiments show that heat treatment can modify the sizes and morphologies of copper nanoparticles based films on glass slides. We suggest that through changing the parameters of heat treatment process may be helpful to vary the scattering and absorbing intensity of copper nanoparticles when used in energy harvesting/conversion and optical devices.

  15. The 'Gruessen' district heating scheme in Pratteln, Switzerland; Waermeverbund Gruessen Pratteln. HT-Abwaerme aus ARA Rhein

    Energy Technology Data Exchange (ETDEWEB)

    Lessing, R.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes a high-temperature district heating scheme in Pratteln, Switzerland that uses waste heat from a regional wastewater treatment plant to provide the basis for a district heating system that provides heating energy for commercial facilities. These include a food distribution centre, various industrial facilities, a school and a hotel. Additional heating power is provided, when necessary, by conventional boilers at the wastewater treatment plant and two of the industrial partners. The report describes the original project and the installations actually built. Total-energy balance, transport losses as well as electrical power requirements are discussed, as is the further development of the scheme, which foresees the integration of a waste-fermentation / biogas facility and a motorway restaurant in the vicinity.

  16. Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030

    International Nuclear Information System (INIS)

    1991-12-01

    This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE's Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets

  17. Heat treatment of processing sludge of ornamental rocks: application as pozzolan in cement matrices

    Directory of Open Access Journals (Sweden)

    J.G. Uliana

    Full Text Available The sector of ornamental rocks produces significant volume of waste during the sawing of the blocks and demand to find ways to recycle, given its environmental impact. Considering the possibilities of use of industrial by-products as mineral admixtures, aiming at sustainable development in the construction industry, this paper aims to study the performance of the processing sludge of ornamental rocks and grinding after heat treatment, based on their potential application as partial substitute for cement. The residue was characterized, cast and milled to produce glassy material. Was analyzed the mechanical performance and pozzolanic activity with partial replacement of cement by waste in natural condition and after heat treatment in mortars for comparison. The results were promising, so it was possible to verify that after heat treatment, the treated waste is presented as a material with pozzolanic characteristics.

  18. Examination of the influence of heat treatment on the properties of Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Vuksanovic, D.; Rakocevic, S. [Faculty of Metallurgy, Podgorica (RS); Markovic, S. [Faculty of Technology and Metallurgy, Belgrade (RS); Petrovic, T. [Institute ' Kirilo Savic' , Belgrade (RS); Kovacevic, K. [Institute for Ferrous Metallurgy (RS); Tripkovic, S. [H.K. Petar Drapsin, Mladenovac (RS)

    2007-08-15

    In this paper the influence of heat treatment on the structural and mechanical properties of Al-Si alloys was investigated. Silicon content in the examined alloys was in the range 11 to 14%, the contents of the other alloying elements were in the standard range but all alloys were modified with strontium. The regime of the applied heat treatment was quenching (520 C/6h - cooling in water) + aging (205oC/7h - air cooling). The examinations were carried out at room temperature as well as at 250 C and 300 C. The obtained results showed a positive influence of the applied heat treatment on the mechanical properties of the examined alloys. The improvement of the mechanical properties can be considered as a consequence of a redistribution and change of morphology of the phases present in the structure of the alloys. (orig.)

  19. Application of heat in postcook meat chillers reduces Listeria.

    Science.gov (United States)

    Eglezos, Sofroni; Dykes, Gary A

    2011-06-01

    Electrical air-blowing heaters were used to heat and dry out holding chillers used for postcook commercial processed meats in an attempt to control the presence of Listeria. A baseline study of the prevalence of Listeria in holding chillers in seven facilities was undertaken. Listeria was detected in four of the seven chillers, and swab samples showed Listeria prevalence ranging from 7 (7.8%) of 90 to 6 (20%) of 30, depending on the facility. Two of the facilities with established Listeria contamination (A and E) were chosen for further studies. The heating trials consisted of three individual heating interventions at each of the two facilities, with 2 weeks of postintervention sampling after each treatment. The initial Listeria prevalence in chiller A was 19 (10.6%) of 180, and treatment at 37°C for 36 h reduced prevalence to 3 (1.7%) of 180. The initial Listeria prevalence in chiller E was 7 (7.8%) of 90, and treatment at 50°C for 2 h reduced prevalence to 0 of 90. Both reductions were statistically significant at P prevalence of Listeria in chillers.

  20. Effect of grain orientation and heat treatment on mechanical properties of pure W

    Energy Technology Data Exchange (ETDEWEB)

    Noto, Hiroyuki, E-mail: noto_hiroyuki@iae.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Kyoto 611-0011 (Japan); Research Fellow of Japan Society for the Promotion of Science (Japan); Taniguchi, Shuichi [Graduate School of Energy Science, Kyoto University, Kyoto 611-0011 (Japan); Kurishita, Hiroaki; Matsuo, Satoru [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Ukita, Takashi; Tokunaga, Kazutoshi [Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Kyoto 611-0011 (Japan)

    2014-12-15

    The effect of grain orientation, heat-treatment temperature and test temperature on the mechanical properties of tungsten (W), which vary depending on plastic working and fabrication process, was investigated by mechanical testing of tensile or bending. Heavily worked W samples (1.5–2.0 mm in the final thickness) exhibit degradation of fracture strength due to recrystallization embrittlement after heat-treatment at 1240 °C (temperature of diffusion bonding between W and a candidate material of the Fe base support structure). On the other hand, W samples with lower thickness reduction rates do not suffer degradation of fracture strength after heating up to around 1300 °C, and show somewhat higher fracture strength by heat-treatment below 1300 °C than the samples in the as-received state. The observed behavior is a reflection of recovery of dislocations introduced by plastic working. High temperature tensile testing of ITER grade W with an anisotropic grain structure and S-TUN with an equiaxed grain structure revealed that both W grades exhibit plastic elongation at temperatures higher than 200 °C with essentially the same temperature dependence of yield strength, which is relatively insensitive to grain orientation in the structure at 200–1300 °C.

  1. Effect of grain orientation and heat treatment on mechanical properties of pure W

    International Nuclear Information System (INIS)

    Noto, Hiroyuki; Taniguchi, Shuichi; Kurishita, Hiroaki; Matsuo, Satoru; Ukita, Takashi; Tokunaga, Kazutoshi; Kimura, Akihiko

    2014-01-01

    The effect of grain orientation, heat-treatment temperature and test temperature on the mechanical properties of tungsten (W), which vary depending on plastic working and fabrication process, was investigated by mechanical testing of tensile or bending. Heavily worked W samples (1.5–2.0 mm in the final thickness) exhibit degradation of fracture strength due to recrystallization embrittlement after heat-treatment at 1240 °C (temperature of diffusion bonding between W and a candidate material of the Fe base support structure). On the other hand, W samples with lower thickness reduction rates do not suffer degradation of fracture strength after heating up to around 1300 °C, and show somewhat higher fracture strength by heat-treatment below 1300 °C than the samples in the as-received state. The observed behavior is a reflection of recovery of dislocations introduced by plastic working. High temperature tensile testing of ITER grade W with an anisotropic grain structure and S-TUN with an equiaxed grain structure revealed that both W grades exhibit plastic elongation at temperatures higher than 200 °C with essentially the same temperature dependence of yield strength, which is relatively insensitive to grain orientation in the structure at 200–1300 °C

  2. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    International Nuclear Information System (INIS)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun

    2016-01-01

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  3. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-08-15

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  4. Effect of heat treatment on microstructure and mechanical properties of PIP-SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuang, E-mail: zhsh6007@126.com [Key Laboratory of Advanced Ceramic Fibres and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China); School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Zhou, Xingui; Yu, Jinshan [Key Laboratory of Advanced Ceramic Fibres and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China); Mummery, Paul [School of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-01-01

    Continuous SiC fibre reinforced SiC matrix composites (SiC/SiC) have been studied as materials for heat resistant and nuclear applications. Thermal stability is one of the key issues for SiC/SiC composites. In this study, 3D SiC/SiC composites are fabricated via the polymer impregnation and pyrolysis (PIP) process, and then heat treated at 1400 Degree-Sign C, 1600 Degree-Sign C and 1800 Degree-Sign C in an inert atmosphere for 1 h, respectively. The effect of heat treatment on microstructure and mechanical properties of the composites is investigated. The results indicate that the mechanical properties of the SiC/SiC composites are significantly improved after heat treatment at 1400 Degree-Sign C mainly because the mechanical properties of the matrix are greatly improved due to crystallisation. With the increasing of heat treatment temperature, the properties of the composites are conversely decreased because of severe damage of the fibres and the matrix.

  5. Enhancement of contractile force generation of artificial skeletal muscle tissues by mild and transient heat treatment.

    Science.gov (United States)

    Sato, Masanori; Ikeda, Kazushi; Kanno, Shota; Ito, Akira; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-01-01

    Artificial skeletal muscle tissues composed of cells are expected to be used for applications of regenerative medicine and drug screening. Generally, however, the physical forces generated by tissue-engineered skeletal muscle are lower than those of skeletal muscle tissues found in the body. Local hyperthermia is used for many diseases including muscle injuries. It was recently reported that mild heat treatment improved skeletal muscle functions. In this study, we investigated the effects of mild heat treatment on the tissue-engineered skeletal muscle tissues in vitro. We used magnetite cationic liposomes to label C2C12 myoblast cells magnetically, and constructed densely packed artificial skeletal muscle tissues by using magnetic force. Cell culture at 39°C promoted the differentiation of myoblast cells into myotubes. Moreover, the mild and transient heat treatment improved the contractile properties of artificial skeletal muscle tissue constructs. These findings indicate that the culture method using heat treatment is a useful approach to enhance functions of artificial skeletal muscle tissue.

  6. Research on Crack-Filling Heat Treatment and Hydrogen Permeation Test of Self-healing Tritium Permeation Barriers

    Science.gov (United States)

    Liu, Dawei; Wang, Yan; Zhang, Ying; Ouyang, Taoyuan; Zhou, Tong; Fang, Xuanwei; Suo, Jinping

    2018-03-01

    A TiC + mixture (TiC/Al2O3 (1:1 wt.%)) +Al2O3 self-healing triple layer coating (TLC) was designed and manufactured by our group, and the crack-filling heat treatment process had been roughly explored in the past. In this work, the accelerating test with a thick TiC + mixture (TiC/Al2O3 (1:1 wt.%)) double-layer coating (DLC) was carried out. The DLC coating warped when the heat treatment temperature was lower than 550 °C, which was rare in similar researches, and it crushed into fan-shaped pieces when the treatment temperature was higher than 650 °C. The two different spalling failures were explained by weight gain, porosity and stress analyses. The heating rate had a significant effect. The bonding strength and hydrogen permeation of the TLC samples were also tested. Remaining at 650 °C for 40 h was proved to be an optimal crack-filling heat treatment process, considering the hydrogen resistance.

  7. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours.

    Science.gov (United States)

    Bucsella, Blanka; Takács, Ágnes; Vizer, Viktoria; Schwendener, Urs; Tömösközi, Sándor

    2016-01-01

    Dry and hydrothermal heat treatments are efficient for modifying the technological-functional and shelf-life properties of wheat milling products. Dry heat treatment process is commonly used to enhance the volume of cakes. Hydrothermal heat treatment makes wheat flours suitable as thickener agents. In this study, cake and bread wheat flours that differed in baking properties were exposed to dry (100 °C, 12 min) and hydrothermal (95 °C, 5 min, 5-20 l/h water) heat treatments. Rheological differences caused by the treatments were investigated in a diluted slurry and in a dough matrix. Dry heat treatment resulted in enhanced dough stability. This effect was significantly higher in the cake flour than the bread flour. Altered viscosity properties of the bread flour in the slurry matrix were also observed. The characteristics of hydrothermally treated samples showed matrix dependency: their viscosity increases in the slurry and decreases in the dough matrix. These results can support us to produce flour products with specific techno-functional properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Surface engineering and heat treatment

    International Nuclear Information System (INIS)

    Morton, P.H.

    1991-01-01

    This book is the proceedings of a Conference organised jointly by The Institute of Metals and The Centre for Exploitation of Science and Technology (CEST). It sets out to review this role and point the way to the future by collecting together a series of invited papers written by noted authorities in their fields. The opening review by CEST highlights the economic and industrial importance of Surface Engineering and is followed by a group of four articles devoted to specific branches of industry. Several technical papers then describe various aspects of the development of heat treatment over the last twenty-five years. These are followed by papers describing advances made possible by new technologies such as plasma, laser and ion beam. A separate abstract has been prepared for a paper on materials aspects of ion beam technology. (author)

  9. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.

    Science.gov (United States)

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-09-24

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti-6Al-4V, Ti-15Mo-5Zr-3Al and Ti-15Zr-4Nb-4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone.

  10. Quality of mango nectar processed by high-pressure homogenization with optimized heat treatment.

    Science.gov (United States)

    Tribst, Alline Artigiani Lima; Franchi, Mark Alexandrow; de Massaguer, Pilar Rodriguez; Cristianini, Marcelo

    2011-03-01

    This work aimed to evaluate the effect of high-pressure homogenization (HPH) with heat shock on Aspergillus niger, vitamin C, and color of mango nectar. The nectar was processed at 200 MPa followed by heat shock, which was optimized by response surface methodology by using mango nectar ratio (45 to 70), heat time (10 to 20), and temperature (60 to 85 °C) as variables. The color of mango nectar and vitamin C retention were evaluated at the optimized treatments, that is, 200 MPa + 61.5 °C/20 min or 73.5 °C/10 min. The mathematical model indicates that heat shock time and temperature showed a positive effect in the mould inactivation, whereas increasing ratio resulted in a protective effect on A. niger. The optimized treatments did not increase the retention of vitamin C, but had positive effect for the nectar color, in particular for samples treated at 200 MPa + 61.5 °C/20 min. The results obtained in this study show that the conidia can be inactivated by applying HPH with heat shock, particularly to apply HPH as an option to pasteurize fruit nectar for industries.

  11. On board short-time high temperature heat treatment of ballast water: a field trial under operational conditions.

    Science.gov (United States)

    Quilez-Badia, Gemma; McCollin, Tracy; Josefsen, Kjell D; Vourdachas, Anthony; Gill, Margaret E; Mesbahi, Ehsan; Frid, Chris L J

    2008-01-01

    A ballast water short-time high temperature heat treatment technique was applied on board a car-carrier during a voyage from Egypt to Belgium. Ballast water from three tanks was subjected for a few seconds to temperatures ranging from 55 degrees C to 80 degrees C. The water was heated using the vessel's heat exchanger steam and a second heat exchanger was used to pre-heat and cool down the water. The treatment was effective at causing mortality of bacteria, phytoplankton and zooplankton. The International Maritime Organization (IMO) standard was not agreed before this study was carried out, but comparing our results gives a broad indication that the IMO standard would have been met in some of the tests for the zooplankton, in all the tests for the phytoplankton; and probably on most occasions for the bacteria. Passing the water through the pump increased the kill rate but increasing the temperature above 55 degrees C did not improve the heat treatment's efficacy.

  12. Gas Furnace with Pulsed Feeding of the Heating Agent for Volume Precision Heat Treatment of CCM Rolls

    Science.gov (United States)

    Moroz, V. I.; Egorova, V. M.; Gusev, S. V.

    2001-05-01

    A standard chamber batch furnace of the Severstal' plant has been modified for precision heat treatment of CCM rolls. The certification tests of a charge of rolls from steel 24KhM1F have shown the technical and economical advantages of the new design.

  13. 热处理与可持续发展%Heat Treatment and Sustainable Development

    Institute of Scientific and Technical Information of China (English)

    徐跃明; 樊东黎

    2001-01-01

    In the view point of sustainable development,there exist some serious problems,such as higher energy consumption,environmental pollution,oxidation and decarburization of steels,in the heat treatment industry of China.In order to keep the sustainable development of heat treatment industry in China,something must be done.First of all is to heighten sustainable development consciousness.At the same time,it is necessary to strengthen technology innovation and speed up improving traditional heat treatment industry with high technology,to develop the clean production of heat treatment and popularize the application of efficient,energy saving and none or less oxidation heat treatment technology.A great attention is still paid to the certification of ISO9000 and ISO14000 series standard and heat treatment industry standard to raise modernized and standard management level of enterprises.%从可持续发展的角度分析,我国热处理行业主要存在能耗高、环境污染严重、氧化脱碳严重3大问题。目前,热处理行业仍普遍存在节能环保意识不强,缺乏有效的管理措施,技术落后等现象。面对新的挑战,热处理要在21世纪得到持续发展,必须从“源消减”做起。首先要加强可持续发展的意识;加强技术创新,加快用高新技术改造传统热处理产业的步伐;积极发展热处理清洁生产,推广高效、节能、少无氧化热处理技术;重视ISO9000、ISO14000标准系列认证和行业达标验收工作,全面提高企业现代化、规范化管理水平。

  14. Double-effect absorption heat pump, phase 3

    Science.gov (United States)

    Cook, F. B.; Cremean, S. P.; Jatana, S. C.; Johnson, R. A.; Malcosky, N. D.

    1987-06-01

    The RD&D program has resulted in design, development and testing of a packaged prototype double-effect generator cycle absorption gas heat pump for the residential and small commercial markets. The 3RT heat pump prototype has demonstrated a COPc of 0.82 and a COPh of 1.65 at ARI rating conditions. The heat pump prototype includes a solid state control system with built-in diagnostics. The absorbent/refrigerant solution thermophysical properties were completely characterized. Commercially available materials of construction were identified for all heat pump components. A corrosion inhibitor was identified and tested in both static and dynamic environments. The safety of the heat pump was analyzed by using two analytical approaches. Pioneer Engineering estimated the factory standard cost to produce the 3RT heat pump at $1,700 at a quantity of 50,000 units/year. One United States patent was allowed covering the heat pump technology, and two divisional applications and three Continuation-in-Park Applications were filed with the U.S.P.T.O. Corresponding patent coverage was applied for in Canada, the EEC, Australia, and Japan. Testing of the prototype heat pump is continuing, as are life tests of multiple pump concepts amd long-term dynamic corrosion tests. Continued development and commercialization of gas absorption heat pumps based on the technology are recommended.

  15. Effects of heat treatment on mechanical properties of h13 steel

    Science.gov (United States)

    Guanghua, Yan; Xinmin, Huang; Yanqing, Wang; Xingguo, Qin; Ming, Yang; Zuoming, Chu; Kang, Jin

    2010-12-01

    Heat treatment on the mechanical properties of H13 hot working die steel for die casting is discussed. The H13 steel for die casting was treated by different temperatures of vacuum quenching, tempering, and secondary tempering to investigate its mechanical properties. Strength, plasticity, hardness, and impact toughness of the H13 hot working die steel for die casting were measured. Microstructure, grain size, and carbide particle size after heat treatment have a great impact on the mechanical properties of H13 hot working die steel for die casting. The microstructure of the H13 was analyzed by scanning electron microscopy (SEM) and by a metallographic microscope. It is found that H13 exhibits excellent mechanical properties after vacuum quenching at 1050°C and twice tempering at 600°C.

  16. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.

    Science.gov (United States)

    Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  17. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves.

    Science.gov (United States)

    Luo, Hai-Bo; Ma, Ling; Xi, Hui-Feng; Duan, Wei; Li, Shao-Hua; Loescher, Wayne; Wang, Jun-Fang; Wang, Li-Jun

    2011-01-01

    The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress.

  18. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio; Sathaye, Jayant

    2010-05-14

    We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

  19. Irradiation effect on bulgogi sauce for making commercial Korean traditional meat product, bulgogi

    International Nuclear Information System (INIS)

    Jo, C.; Kim, D.H.; Shin, M.G.; Kang, I.J.; Byun, M.W.

    2003-01-01

    Gamma-irradiated sauce of bulogogi, Korean traditional meat products, was compared with heat-pasteurized one to enhance its safety, quality, and commercial availability. The sauce is usually sold in refrigerated state with 2-7 days of self-life or heat-sterilized and sold in room temperature for a year. Raw vegetables, fruits and soy sauce for sauce making were highly contaminated by thermophillic microorganisms (totally 2.13x10 6 CFU/g) and coliform bacteria (totally 5.90x10 4 CFU/g) at the initial stage. Heat treatment (100 deg. C for 30 min) was effective to control coliform and microbes counted from Salmonella-Shigella selective agar in the sauce but not on thermophillic microorganisms, resulting in a rapid spoilage after 2 weeks at 20 deg. C. Gamma irradiation reduced the level of thermophillic microorganisms and the spoilage was prevented during storage for 4 weeks at 20 deg. C. Protease activity of the sauce was significantly reduced by heat treatment while was not changed by irradiation at 2.5, 5.0, and 10 kGy. Sensory evaluation showed that the irradiation was better in color than nonirradiated control or heat-treated sample. Results indicate that low dose irradiation (2.5-5.0 kGy) is effective to ensure safety of bulgogi sauce with acceptable sensory quality

  20. Curie Temperature and Microstructural Changes Due to the Heating Treatment of Magnetic Amorphous Materials

    Directory of Open Access Journals (Sweden)

    Gondro J.

    2016-03-01

    Full Text Available Three distinct alloys: Fe86Zr7Nb1Cu1B5, Fe82Zr7Nb2Cu1B8, and Fe81Pt5Zr7Nb1Cu1B5 were characterized both magnetically and structurally. The samples, obtained with spinning roller method as a ribbons 3 mm in width and 20 μm thick, were investigated as-quenched and after each step of a multi steps heating treatment procedure. Each sample was annealed at four steps, fifteen minutes at every temperature, starting from 573K+600K up to +700K depending on type of alloy. Mössbauer spectroscopy data and transmission electron microscope (HRE M pictures confirmed that the as-quenched samples are fully amorphous. This is not changed after the first stages of treatment heating leads to a reduction of free volumes. The heating treatment has a great influence on the magnetic susceptibilities. The treatment up to 600K improves soft magnetic properties: an χ increase was observed, from about 400 to almost 1000 for the samples of alloys without Pt, and from about 200 to 450 at maximum, for the Fe81Pt5Zr7Nb1Cu1B5. Further heating, at more elevated temperatures, leads to magnetic hardening of the samples. Curie temperatures, established from the location of Hopkinson’s maxima on the χ(T curve are in very good agreement with those obtained from the data of specific magnetization, σ(T, measured in a field of 0.75T. As a critical parameter β was chosen to be equal 0.36 for these calculations, it confirmed that the alloys may be considered as ferromagnetic of Heisenberg type. Heating treatment resulted in decreasing of TC. These changes are within a range of several K.

  1. Ground-Coupling with Water Source Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, S

    0000-12-30

    Ground-coupled heat pumps (GCHPs) have been receiving increasing attention in recent years. In areas where the technology has been properly applied, they are the system of choice because of their reliability, high level of comfort, low demand, and low operating costs. Initially these systems were most popular in rural, residential applications where heating requirements were the primary consideration. However, recent improvements in heat pumps units and installation procedures have expanded the market to urban and commercial applications. This paper discusses some of the current activity in the commercial sector. The basic system and nomenclature are discussed. Several variations for commercial buildings are presented along with examples of systems in operation. Several advantages and disadvantages are listed. Operating and installation costs are briefly discussed. Finally, the GCHP is presented as an alternative that is able to counter much of the criticism leveled by the natural gas industry toward conventional heat pumps.

  2. Ground-Coupling with Water Source Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, S.

    0001-01-01

    Ground-coupled heat pumps (GCHPs) have been receiving increasing attention in recent years. In areas where the technology has been properly applied, they are the system of choice because of their reliability, high level of comfort, low demand, and low operating costs. Initially these systems were most popular in rural, residential applications where heating requirements were the primary consideration. However, recent improvements in heat pumps units and installation procedures have expanded the market to urban and commercial applications. This paper discusses some of the current activity in the commercial sector. The basic system and nomenclature are discussed. Several variations for commercial buildings are presented along with examples of systems in operation. Several advantages and disadvantages are listed. Operating and installation costs are briefly discussed. Finally, the GCHP is presented as an alternative that is able to counter much of the criticism leveled by the natural gas industry toward conventional heat pumps.

  3. 78 FR 15653 - Notice of Intent To Form the Commercial HVAC, WH, and Refrigeration Certification Working Group...

    Science.gov (United States)

    2013-03-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 429 Notice of Intent To Form the Commercial HVAC, WH, and... Requirements for Commercial HVAC, WH, and Refrigeration Equipment AGENCY: Office of Energy Efficiency and... commercial heating, ventilation, and air-conditioning (HVAC), water heating (WH), and refrigeration equipment...

  4. FY 1995 report on the results of the investigational study on the technology development for the commercialization of solar systems for industrial use, etc. - Investigational study on the solar system. Investigational study on a solar heat utilization system; 1995 nendo sangyoyonado solar system jitsuyoka gijutsu kaihatsu seika hokokusho. Solar system no chosa kenkyu (taiyonetsu riyo system ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This survey clarifies the present situation of the solar heat utilization technology mostly for industrial use, makes a concrete concept of solar heat utilization clear, and extracts items of the technology development and evaluates sociality, economical efficiency, etc. It aims at working out a program for the future technology development. The following proposals were made: 1) technology development program; 2) simulation soft development program; 3) experimental field of the solar heat utilization technology. In 1), concepts of technology development are 'medical use boiling pasteurization,' 'temperature increase in the metal surface treatment process,' 'water purification using photo-catalyst,' 'distributed small power system,' and 'waste water treatment using bio-technology.' In 2), cost reduction is needed for commercialization/merchandising of technology, and therefore, the development of simulation software is studied. In 3), as the experimental field from commercial/residential use system to industrial use system, an large-scale and systematical experimental field is proposed where all that can be substituted for by solar energy among the energies required for the urban function are used. By this, the solar heat utilization system gets accustomed to the people, increases the reliability, and clearly leads to the course to the next stage of the R and D. (NEDO)

  5. FY 1995 report on the results of the investigational study on the technology development for the commercialization of solar systems for industrial use, etc. - Investigational study on the solar system. Investigational study on a solar heat utilization system; 1995 nendo sangyoyonado solar system jitsuyoka gijutsu kaihatsu seika hokokusho. Solar system no chosa kenkyu (taiyonetsu riyo system ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This survey clarifies the present situation of the solar heat utilization technology mostly for industrial use, makes a concrete concept of solar heat utilization clear, and extracts items of the technology development and evaluates sociality, economical efficiency, etc. It aims at working out a program for the future technology development. The following proposals were made: 1) technology development program; 2) simulation soft development program; 3) experimental field of the solar heat utilization technology. In 1), concepts of technology development are 'medical use boiling pasteurization,' 'temperature increase in the metal surface treatment process,' 'water purification using photo-catalyst,' 'distributed small power system,' and 'waste water treatment using bio-technology.' In 2), cost reduction is needed for commercialization/merchandising of technology, and therefore, the development of simulation software is studied. In 3), as the experimental field from commercial/residential use system to industrial use system, an large-scale and systematical experimental field is proposed where all that can be substituted for by solar energy among the energies required for the urban function are used. By this, the solar heat utilization system gets accustomed to the people, increases the reliability, and clearly leads to the course to the next stage of the R and D. (NEDO)

  6. Regularities of texture formation in alloys undergoing phase transformations during heat treatment and plastic working

    International Nuclear Information System (INIS)

    Ageev, N.V.; Babarehko, A.A.

    1983-01-01

    Peculiarities of texture formation in metals undergoing phase transformations in the temperature range of heat treatment and hot working are investigated theoretically and experimentally. A low-temperature phase after hot working is shown to inherite a high-temperature phase texture due to definite orientation conformity during phase transformation. Strengthened heat and thermomechanical treatments, as a rule, do not destroy material texture but change it

  7. Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment

    International Nuclear Information System (INIS)

    Chiang Yuchun; Lee, C.-Y.; Lee, H.-C.

    2007-01-01

    Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs) subject to heat treatment were investigated by means of elemental analyzer, and X-ray photoelectron spectroscopy (XPS). The total ash content of all ACFs was also analyzed. The adsorption of benzene, carbon tetrachloride and water vapor on ACFs was determined to shed light on the role of surface chemistry on gas adsorption. Results show that different precursors resulted in various elemental compositions and imposed diverse influence upon surface functionalities after heat treatment. The surface of heat-treated ACFs became more graphitic and hydrophobic. Three distinct peaks due to C, N, and O atoms were identified by XPS, and the high-resolution revealed the existence of several surface functionalities. The presence of nitride-like species, aromatic N-imines, or chemisorbed nitrogen oxides was found to be of great advantage to adsorption of water vapor or benzene, but the pyridine-N was not. Unstable complexes on the surface would hinder the fibers from adsorption of carbon tetrachloride. The rise in total ash content or hydrogen composition was of benefit to the access of water vapor. Modifications of ACFs by heat treatment have effectively improved adsorption performance

  8. Effect of Heat Shock Treatment and Aloe Vera Coating to Chilling Injury Symptom in Tomato (Lycopersicon asculantum Mill.

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2012-04-01

    Full Text Available This research was undertaken to determine the effect of length in heat shock and edible coating as pre-storage treatment to Chilling Injury (CI symptom reflected by ion leakage induced and quality properties in tomato (Lycopersicon asculantum Mill.. Heat Shock Treatment (HST was conducted at three different levels of length, which were, 20; 40 and 60 min. Edible coating was conducted using aloe vera gel. The result showed that HST and Aloe Vera Coating (AVC were more effective to reduce CI symptom at lower chilling storage. Prolong exposure to heated water may delay climacteric peak. The length of heat shock, AVC treatment and low temperature storage significantly affected the tomato quality parameter but not significantly different for each treatment except weight loss. HST for 20 min at ambient temperature was significantly different to other treatment.

  9. Electrical energy use in different heating systems for early weaned piglets

    Energy Technology Data Exchange (ETDEWEB)

    Sarubbi, J. [Federal Univ. of Santa Maria, Palmeira das Missoes, RS (Brazil). Dept. of Animal Science; Campinas State Univ., Sao Paulo (Brazil). College of Agricultural Engineering; Rossi, L.A.; Moura, D.J.; Oliveira, R.A.; David, E. [Campinas State Univ., Sao Paulo (Brazil). College of Agricultural Engineering

    2010-07-01

    This study compared the electrical energy use and thermal comfort conditions associated with 3 heating technologies used in piglet farms. Heating systems for piglets in nursery and farrowing can be improved to conserve energy without affecting the welfare of the animals. The evaluation was conducted at a commercial farm in a subtropical climate area of Brazil. Each treatment involved 150 weaned piglets at 21 days-old. The systems were designed to keep the piglets at 28 to 30 degrees C for 14 days. Suspended electrical resistors, heated floors and convection heating were the 3 heating technologies examined during this study which evaluated the electrical energy consumption, maximum power demand requirements and dry-bulb temperature. The study also assessed the specific consumption in terms of kWh/kg of live produced body mass as well as the efficiency of heating system in terms of degrees C per cubic metre of air. In terms of electrical energy use, the best heating system was the heated floor. However, the electrical resistance heating system was the best in terms of thermal comfort.

  10. Application of heat pipes in nuclear reactors for passive heat removal

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Z.; Yetisir, M., E-mail: haquez@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper introduces a number of potential heat pipe applications in passive (i.e., not requiring external power) nuclear reactor heat removal. Heat pipes are particularly suitable for small reactors as the demand for heat removal is significantly less than commercial nuclear power plants, and passive and reliable heat removal is required. The use of heat pipes has been proposed in many small reactor designs for passive heat removal from the reactor core. This paper presents the application of heat pipes in AECL's Nuclear Battery design, a small reactor concept developed by AECL. Other potential applications of heat pipes include transferring excess heat from containment to the atmosphere by integrating low-temperature heat pipes into the containment building (to ensure long-term cooling following a station blackout), and passively cooling spent fuel bays. (author)

  11. Hybrid fuzzy logic control of laser surface heat treatments

    International Nuclear Information System (INIS)

    Perez, Jose Antonio; Ocana, Jose Luis; Molpeceres, Carlos

    2007-01-01

    This paper presents an advanced hybrid fuzzy logic control system for laser surface heat treatments, which allows to increase significantly the uniformity and final quality of the obtained product, reducing the rejection rate and increasing the productivity and efficiency of the treatment. Basically, the proposed hybrid control structure combines a fuzzy logic controller, with a pure integral action, both fully decoupled, improving the performances of the process with a reasonable design cost, since the system nonlinearities are fully compensated by the fuzzy component of the controller, while the integral action contributes to eliminate the steady-state error

  12. Deep heat muscle treatment: A mathematical model - I

    International Nuclear Information System (INIS)

    Ogulu, A.; Bestman, A.R.

    1992-03-01

    The flow of blood during deep heat muscle treatment is studied in this paper. We model the blood vessel as a long tube in circular section whose radius varied slowly. Under the Boussinesq approximation, we seek asymptotic series expansions for the velocity components, temperature and pressure about a small parameter, ε, characterizing the radius variation. The study reveals mathematically why physicians recommend a hot bath for cuts and physiotherapists use ice packs for bruises. (author). 5 refs, 3 figs

  13. The Effect of Heat Treatment on the Pull-off Strength of Optionally Varnished Surfaces of Five Wood Materials

    Directory of Open Access Journals (Sweden)

    Musa Atar

    2015-09-01

    Full Text Available This study investigated the effects of heat treatment, following optional treatment with synthetic, water-based, and alkyd varnishes, on the pull-off strength of wooden materials sampled from oriental beech (Fagus orientalis L., oak (Quercus petraea Liebl., black poplar (Populus nigra L., pine (Pinus sylvestris L., and fir (Abies bornmulleriana M.. The test samples were subjected to heat treatment at temperatures of 165 °C and 175 °C for periods of 2 and 4 h with a total of 4 variations. With respect to the wood type, the samples of beech wood yielded the highest results for pull-off strength, while fir wood yielded the lowest. With respect to the varnish types, the highest pull-off strength was found in the samples of synthetic varnished beech (5,452 with a 37.2% improvement at 175 °C heat treatment for 4 h, while the lowest results were obtained in the samples of fir (0.991 with a 48.5% decrease at 175 °C heat treatment for 4 h. In conclusion, heat treatment significantly decreased the pull-off strength of the woods.

  14. 10 MMBt/Hr AFBC Commercial Demonstration Cedar Lane Farms

    Energy Technology Data Exchange (ETDEWEB)

    Harold M. Keener; Mary H. Wicks; Tom Machamer; Dave Hoecke; Don Bonk; Bob Brown

    2005-10-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO2 emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications in the 4-40 MMBtu/hr size range. A cost effective and environmentally acceptable AFBC technology in this size range could displace a considerable amount of heating gas and oil with coal, while resulting in significant total cost savings to the owner/operators.

  15. 77 FR 76825 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Science.gov (United States)

    2012-12-31

    ... Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and Water... provisions for commercial refrigeration equipment; commercial heating, ventilating, air-conditioning (HVAC...; commercial HVAC equipment; commercial WH equipment; and walk-in coolers and freezers (June 30 Final Rule). 76...

  16. Influence of Solution Heat Treatment on Structure and Mechanical Properties of ZnAl22Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-09-01

    Full Text Available The influence of solution heat treatment at 385°C over 10 h with cooling in water on the structure, hardness and strength of the ZnAl22Cu3 eutectoid alloy is presented in the paper. The eutectoid ZnAl22Cu3 alloy is characterized by a dendritic structure. Dendrites are composed of a supersaturated solid solution of Al in Zn. In the interdendritic spaces a eutectoid mixture is present, with an absence of the ε (CuZn4 phase. Solution heat treatment of the ZnAl22Cu3 alloy causes the occurrence of precipitates rich in Zn and Cu, possibly ε phase. Solution heat treatment at 385°C initially causes a significant decrease of the alloy hardness, although longer solution heat treatment causes a significant increase of the hardness as compared to the as-cast alloy.

  17. KWU's modular approach to HTR commercialization

    International Nuclear Information System (INIS)

    Frewer, H.; Weisbrodt, I.

    1983-01-01

    As a way of avoiding the uncertainties, delays and unacceptable commercial risks which have plagued advanced reactor projects in Germany, KWU is advocating a modular approach to commercialization of the high-temperature reactor (HTR), using small size standard reactor units. KWU has received a contract for the study of a co-generation plant based on this modular system. Features of the KWU modular HTR, process heat, gasification, costs and future development are discussed. (UK)

  18. On the conjoint influence of heat treatment and lithium content on microstructure and mechanical properties of A380 aluminum alloy

    International Nuclear Information System (INIS)

    Karamouz, Mostafa; Azarbarmas, Mortaza; Emamy, Masoud

    2014-01-01

    Highlights: • T4 heat treatment and the addition of Li modify the microstructure of alloy. • Heat treatment improves the tensile properties of non-modified and modified alloys. • Fracture surfaces of modified specimens had more ductile dimples than base alloys. - Abstract: In this study, the effects of a T4 heat treatment on the microstructure and tensile properties of an A380 aluminum alloy with and without lithium (Li) additions have been investigated. Microstructural examination was carried out using optical and scanning electron microscopy, image analysis, and X-ray diffraction (XRD) analysis methods. The results showed that when the T4 heat treatment was applied, spheroidized eutectic Si particles and fragmented β-phase particles were formed. The influence of the heat treatment on the aspect ratio and average length of Si and β phases in a non-modified alloy was more noticeable than in the Li-modified. Significant improvements in tensile properties were also observed in heat-treated samples. Additionally, a fractographical analysis showed that the fracture surfaces of the Li-modified specimens with and without heat treatment had more ductile dimple and fewer brittle cleavage surfaces

  19. Heat treatment effect on the properties of the EhP767 maraging steel welded joints

    International Nuclear Information System (INIS)

    Taver, E.I.; Piskarev, M.N.; Yushchenko, K.A.; Pustovit, A.I.; Anisimova, M.S.

    1977-01-01

    Heat treatment effect on properties of welded joints of maraging 03Kh13N4K13M3T (EhP767) steel with yield strength over 150 kgs/mm 2 has been investigated. It is shown, that change in impact strength of aged joints at - 196 deg C depends on the amount of residual austenite and grain size. To stabilize 20-40 % residual austenite heat treatment regimes have been developed. Recommended are quenching at 1030-1050 deg C, sub-zero treatment and aging at 520 deg C for 16 hrs

  20. Variation of Mechanical Properties of High RRR And Reactor Grade Niobium With Heat Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ganapati Myneni; H. Umezawa

    2003-06-01

    Superconducting rf cavities used as accelerating structures in particle accelerators are made from high purity niobium with residual resistance ratios greater than 250. Reactor grade niobium is also used to make wave-guide and/or end group components for these accelerating structures. The major impurities in this type of niobium are interstitially dissolved gases such as hydrogen, nitrogen, and oxygen in addition to carbon. After fabricating the niobium accelerating structures, they are subjected to heat treatments for several hours in vacuum at temperatures of up to 900 C for degassing hydrogen or up to 1400 C for improving the thermal conductivity of niobium considerably. These heat treatments are affecting the mechanical properties of niobium drastically. In this paper the variation of the mechanical properties of high purity and reactor grade niobium with heat treatments in a vacuum of {approx} 10{sup -6} Torr and temperatures from 600 C to 1250 C for periods of 10 to 6 hours are presented.

  1. Effects of heat treatment conditions on microstructure and mechanical properties of AISI 420 steel

    Energy Technology Data Exchange (ETDEWEB)

    Scheuer, C.J.; Fraga, R.A.; Cardoso, R.P.; Brunatto, S.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Engenharia Mecanica. Grupo de Tecnologia de Fabricacao Assistida por Plasma e Metalurgia do Po

    2014-07-01

    The cycle control of heat treatments, on the quenching and tempering operation of AISI 420 stainless steel, is essential for improved material performance. The adequate choice of heat treatment parameters, can lead an optimization on its mechanical properties and corrosion resistance. Thus, this paper aims to investigate the effects of quenchants medium, and austenitizing and tempering temperatures, on the microstructure and mechanical properties of AISI 420 steel. Different heat treatments cycles were studied: 1) samples were austenitized at 1050°C and water, oil and air quenched; 2) samples were austenitized at range temperatures of 950-1050°C and oil quenched; and 3) as-quenched samples were tempering at range temperatures of 400-500°C. Treated samples were characterized by optical microscopy, X-ray diffractometry and hardness measurements. The samples hardness increases with increasing cooling rate (water > oil > air quenched). Water quenched samples presented crack after cooling to room temperature. Samples hardness also increases with austenitizing temperature increasing, and decreases with increasing tempering temperature. (author)

  2. ANALYSIS OF PITTING CORROSION ON AN INCONEL 718 ALLOY SUBMITTED TO AGING HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    Felipe Rocha Caliari

    2014-10-01

    Full Text Available Inconel 718 is one of the most important superalloys, and it is mainly used in the aerospace field on account of its high mechanical strength, good resistance to fatigue and creep, good corrosion resistance and ability to operate continuously at elevated temperatures. In this work the resistance to pitting corrosion of a superalloy, Inconel 718, is analyzed before and after double aging heat treatment. The used heat treatment increases the creep resistance of the alloy, which usually is used up to 0.6 Tm. Samples were subjected to pitting corrosion tests in chloride-containing aqueous solution, according to ASTM-F746-04 and the procedure described by Yashiro et al. The results of these trials show that after heat treatment the superalloy presents higher corrosion resistance, i.e., the pitting corrosion currents of the as received surfaces are about 6 (six times bigger (~0.15 mA than those of double aged surfaces (~0.025 mA.

  3. Enhancing the mechanical properties of electrospun polyester mats by heat treatment

    Directory of Open Access Journals (Sweden)

    M. Kancheva

    2015-01-01

    Full Text Available Microfibrous materials with a targeted design based on poly(L-lactic acid (PLA and poly(ε-caprolactone (PCL were prepared by electrospinning and by combining electrospinning and electrospraying. Several approaches were used: (i electrospinning of a common solution of the two polymers, (ii simultaneous electrospinning of two separate solutions of PLA and PCL, (iii electrospinning of PLA solution in conjunction with electrospraying of PCL solution, and (iv alternating layer-by-layer deposition by electrospinning of separate PLA and PCL solutions. The mats were heated at the melting temperature of PCL (60°", thus achieving melting of PCL fibers/particles and thermal sealing of the fibers. The mats subjected to thermal treatment were characterized by greater mean fiber diameters and reduced values of the water contact angle compared to the pristine mats. Heat treatment of the mats affected their thermal stability and led to an increase in the crystallinity degree of PLA incorporated in the mats, whereas that of PCL was reduced. All mats were characterized by enhanced mechanical properties after thermal treatment as compared to the non-treated fibrous materials.

  4. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  5. Biochemical changes in full fat rice bran stabilized through microwave heating and irradiation treatment

    International Nuclear Information System (INIS)

    El-Niely, H.F.; Abaullah, M.I.

    2007-01-01

    The effect of microwave heating and irradiation treatments on proximate composition, lipoxygenase (LOX) activity, free fatty acid (FFA) and fatty acids profile of full fat rice bran were examined. Full fat raw rice bran (FRB) (82.7 g / kg moisture content) was heated in microwave oven at 850 W for up to 4 min or exposed to gamma irradiation up to 25 KGy then packed in polyethylene bags and stored at room temperature for 6 months. Water, protein, fat, ash and crude fiber contents did not change significantly in raw, microwave heated and irradiated samples before and after storage. An exception for this general observation was observed for the moisture content of FRB processed through microwave heating where heating FRB for 4 min dropped the level of moisture to 64.3 g / kg at zero time. Storage of both raw and processed samples had significant (P<0.05) effects on LOX activity. LOX activity of raw samples was significantly increased from its initial value by 43.5% after storage for six months. Microwave heat and irradiated samples showed deactivated LOX and samples exhibited significant changes in LOX activity could be due to treatment dosage. Meanwhile, significant change in LOX activity was observed in processed samples stored for six months. Minor changes were observed due to applied processing methods on FFA and fatty acids composition of full fat rice bran before and after storage. The results suggested that microwave heated or irradiated full fat rice bran packed in polyethylene bags can be stored at room temperature for six months without adverse effect on proximate, fatty acid composition quality and could prevent oxidative and hydrolytic rancidity. However, gamma irradiation treatment at 25 KGy was more effective in this respect. Therefore, it could be concluded that gamma irradiation contributed to optimal processing conditions for FRB stabilization

  6. Sour gas injection for use with in situ heat treatment

    Science.gov (United States)

    Fowler, Thomas David [Houston, TX

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  7. New method of processing heat treatment experiments with numerical simulation support

    Science.gov (United States)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  8. Effect of Heat Treatment on Microstructure and Impact Toughness of Ti-6Al-4V Manufactured by Selective Laser Melting Process

    Directory of Open Access Journals (Sweden)

    Lee K.-A.

    2017-06-01

    Full Text Available This study manufactured Ti-6Al-4V alloy using one of the powder bed fusion 3D-printing processes, selective laser melting, and investigated the effect of heat treatment (650°C/3hrs on microstructure and impact toughness of the material. Initial microstructural observation identified prior-β grain along the building direction before and after heat treatment. In addition, the material formed a fully martensite structure before heat treatment, and after heat treatment, α and β phase were formed simultaneously. Charpy impact tests were conducted. The average impact energy measured as 6.0 J before heat treatment, and after heat treatment, the average impact energy increased by approximately 20% to 7.3 J. Fracture surface observation after the impact test showed that both alloys had brittle characteristics on macro levels, but showed ductile fracture characteristics and dimples at micro levels.

  9. The Through Process Simulation of Mold filling, Solidification, and Heat Treatment of the Al Alloy Bending Beam Low-pressure Casting

    International Nuclear Information System (INIS)

    Yin, Yajun; Guo, Zhao; Wang, Huan; Liao, Dunming; Chen, Tao; Zhou, Jianxin

    2015-01-01

    The research on the simulation for the through process of low-pressure casting and heat treatment is conducive to combine information technology and advanced casting technology, which will help to predict the defects and mechanical properties of the castings in the through process. In this paper, we focus on the simulation for through process of low-pressure casting and heat treatment of ZL114A Bending beam. Firstly, we analyzethe distribution of the shrinkage and porosities in filling and solidification process, and simulate the distribution of stress and strain in the late solidification of casting. Then, the numerical simulation of heat treatment process for ZL114A Bending beam is realized according to the heat treatment parameters and the corresponding simulation results of temperature field, stress, strain, and aging performance are given. Finally, we verify that simulation platform for the through process of low-pressure casting and heat treatment can serve the production practice perfectly and provide technical guidance and process optimization for the through process of low-pressure casting and heat treatment. (paper)

  10. Lipolytic Changes in Fermented Sausages Produced with Turkey Meat: Effects of Starter Culture and Heat Treatment

    OpenAIRE

    Karslo?lu, Bet?l; ?i?ek, ?mran Ensoy; Kolsarici, Nuray; Cando?an, Kezban

    2014-01-01

    In this study, the effects of two different commercial starter culture mixes and processing methodologies (traditional and heat process) on the lipolytic changes of fermented sausages manufactured with turkey meat were evaluated during processing stages and storage. Free fatty acid (FFA) value increased with fermentation and during storage over 120 d in all fermented sausage groups produced with both processing methodologies (p

  11. The heat treatment of steel. A mathematical control problem

    Energy Technology Data Exchange (ETDEWEB)

    Hoemberg, Dietmar; Kern, Daniela

    2009-07-21

    The goal of this paper is to show how the heat treatment of steel can be modelled in terms of a mathematical optimal control problem. The approach is applied to laser surface hardening and the cooling of a steel slab including mechanical effects. Finally, it is shown how the results can be utilized in industrial practice by a coupling with machine-based control. (orig.)

  12. The effect of heat treatment on the antimicrobial properties of honey

    Directory of Open Access Journals (Sweden)

    Cuilan eChen

    2012-07-01

    Full Text Available There is increasing interest in the antimicrobial properties of honey. In most honey samples, antimicrobial activity is due to the generation of hydrogen peroxide (H2O2 by the bee-derived enzyme glucose oxidase, however the amount of H2O2 produced can vary greatly among samples. In addition, honey is a complex product, and other components may contribute to or modulate this activity, which may be further affected by processing procedures used in large-scale commercial production. In this study we examined honey derived from three native Australian floral sources that had previously been associated with H2O2-dependent activity: spotted gum (Eucalyptus maculata, red stringybark (Eucalyptus macrorrhyncha and yellowbox (Eucalyptus melliodora. Antimicrobial activity was measured using standardized assays against the bacterial pathogen Staphylococcus aureus and the fungal pathogen Candida albicans. Antibacterial activity was only seen in four of the six red stringybark samples and ranged from 12-21.1% phenol equivalence. No antibacterial activity was detected in the spotted gum or yellowbox samples. Antifungal activity ranged from MIC values of 19-38.3 % (w/v, and although all samples were significantly more active than an osmotically equivalent sugar solution, most had relatively low activity. All honey samples were provided unprocessed and underwent standard heating and filtration procedures (45˚C for 8 hours followed by filtration with a 100 µm filter, allowing the effects of commercial heating and filtration methods on antimicrobial activity and H2O2 levels to be assessed. Average antibacterial and antifungal activities decreased, but while processing was usually detrimental, occasionally the reverse was seen and antimicrobial activity increased. Significant activity was eliminated from all samples by the addition of catalase, indicating that H2O2 was chiefly responsible for their antimicrobial action, and H2O2 production was measured in the

  13. THE EFFECT OF HEAT TREATMENT ON THE CHEMICAL AND COLOR CHANGE OF BLACK LOCUST (ROBINIA PSEUDOACACIA WOOD FLOUR

    Directory of Open Access Journals (Sweden)

    Yao Chen,

    2012-01-01

    Full Text Available The aim of this study was to investigate the effects of oxygen and moisture content (MC on the chemical and color changes of black locust (Robinia pseudoacacia wood during heat treatment. The wood flour was conditioned to different initial MCs and heated for 24 h at a constant temperature of 120ºC in either oxygen or nitrogen atmosphere. The pH values and chromaticity indexes were examined. Diffuse reflectance UV-Vis (DRUV and Fourier transform infrared (FTIR spectra were used to characterize the changes of chromophores upon heating. The study demonstrated that the pH values decreased after heat treatment, and it was lower when the heat treated was in oxygen than in nitrogen. The L* decreased significantly, while a* and b* increased. The total color difference ΔE* increased with increasing initial MC until a plateau was reached after 30% MC. The color change was greater in oxygen than in nitrogen. The hydroxyl groups decreased after heat treatment. The releases of acid and formation of quinoid compounds and carboxylic groups during heat treatment were confirmed. Discoloration of wood is due mainly to the condensation and oxidation reactions, which are accelerated by oxygen. Higher MCs are required to obtain the greatest color change of wood in inert atmosphere.

  14. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Leijun

    2012-11-02

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  15. Influence of sub-solvus solution heat treatment on γ′ morphological instability in a new Ni–Cr–Co-based powder metallurgy superalloy

    International Nuclear Information System (INIS)

    Yang, W.P.; Liu, G.Q.; Wu, K.; Hu, B.F.

    2014-01-01

    Highlights: • A special γ′ morphological instability in a new Ni–Cr–Co-based P/M superalloy was studied. • Three heat treatments were applied to the alloy and microstructures were observed. • Microstructure of the alloy was homogenized by sub-solvus solution heat treatment. • Sub-solvus solution heat treatment influences morphology of γ′ fan-type structures. • Sub-solvus solution heat treatment makes γ′ fan-type structures regular and stable. -- Abstract: The influence of the sub-solvus solution heat treatment on the microstructure, especially the γ′ morphology (γ′ fan-type structure), and microhardness of a new Ni–Cr–Co-based powder metallurgy superalloy was studied by means of field emission scanning electron microscopy (FESEM) and microhardness testing. The results show that sub-solvus solution heat treatment changes the microstructure of an as-forged alloy. It makes large primary γ′ phases at grain boundaries smaller and the distribution of secondary γ′ phases in the interior of the grains more homogeneous. Moreover, the grain boundaries widen because of the supplementary precipitate. The sub-solvus solution heat treatment before the super-solvus solution heat treatment does not change nucleation sites of the γ′ fan-type structures which precipitate during the super-solvus solution heat treatment. However, it influences the morphology of γ′ fan-type structures. Length distribution of the secondary γ′ dendrites in fan-type structures changes from a bimodal to a unimodal distribution, which means the lengths of the secondary γ′ dendrites become more uniform. Applying a sub-solvus solution heat treatment after the super-solvus solution heat treatment causes the secondary γ′ dendrites to be broken off in the fan-type structures and a refinement of the γ′ phases, and this improves stability of the γ′ phases

  16. Performance of commercially available solar and heat pump water heaters

    International Nuclear Information System (INIS)

    Lloyd, C.R.; Kerr, A.S.D.

    2008-01-01

    Many countries are using policy incentives to encourage the adoption of energy-efficient hot water heating as a means of reducing greenhouse gas emissions. Such policies rely heavily on assumed performance factors for such systems. In-situ performance data for solar and heat pump hot water systems, however, are not copious in the literature. Otago University has been testing some systems available in New Zealand for a number of years. The results obtained are compared to international studies of in-situ performance of solar hot water systems and heat pump hot water systems, by converting the results from the international studies into a single index suitable for both solar and heat pump systems (COP). Variability in the international data is investigated as well as comparisons to model results. The conclusions suggest that there is not too much difference in performance between solar systems that have a permanently connected electric boost backup and heat pump systems over a wide range of environmental temperatures. The energy payback time was also calculated for electric boost solar flat plate systems as a function of both COP and hot water usage for a given value of embodied energy. The calculations generally bode well for solar systems but ensuring adequate system performance is paramount. In addition, such systems generally favour high usage rates to obtain good energy payback times

  17. Effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of Beech (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    مریم قربانی

    2015-05-01

    Full Text Available This research was conducted to determine the effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of beech according to EN113 and ASTM-D1037 standards respectively. The heat treatment with raw cotton seed oil was carried out in the cylinder at the temperatures of 130 and 170oC for 30 and 60 minutes. Oil uptake, density, volumetric swelling, water absorption and weight loss exposed to decay were measured. Oil uptake at 30 and 60 min were determined 10.5 and 13.3 Kg/cm3 respectively. Oil-heat treated samples at 30min and 130°C indicated the maximum density with 87.7% increase. According to results, oil-heat treatment improved water repellency and dimensional stability. Water absorption in 130°C and 60 minutes decreased 76% in comparison with control. Decay resistance of oil soaked samples for 60minutes was 80.2% more than control samples. Oil-heat treatment compared with oil treatment improved decay resistance, this effect was significant at 30 min. The temperature rise of oil–heat treatment at 30 minutes improved decay resistance, but the improvement under same level of temperature with increase time was not significant.

  18. ACCOUNTING TREATMENTS SPECIFIC TO COUNTERPART COMMERCIAL TRANSACTIONS

    Directory of Open Access Journals (Sweden)

    Lucia PALIU - POPA

    2010-12-01

    Full Text Available Given the lack of availability of funds in foreign currency, felt in many countries, especially in the developing and developed countries and the economic or financial crisis in the global foreign exchange, counterpart commercial transactions were imposed as a “disarming” condition of the international trade. In the counterpart a purchase transaction is combined with a sale transaction, an import with an export in order to ensure balanced trade between the partners, trade that involves eliminating or reducing the currency as a payment source and its replacement with trade of goods and services. Thus, in the context of an acute need to export of greatly industrialized countries, where the overproduction phenomenon tends to have a chronic character, the counterpart has become a highly complex and sustainable phenomenon, which has seen a steady increase in the volume of amounts, with a geographical area and large variety of forms and mechanisms of implementation. Based on the characteristics and structure of counterpart transactions, we shall describe in this paper the accounting models specific to international trade, as part of the combined foreign trade transactions without neglecting the tax treatments that influence the entry in the accounts

  19. Evaluation of the Sensitization of 316L Stainless Steels After the Post Weld Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Kyoung Soo [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    It was observed that the PWSCC growth rate of alloy 182 was markedly decreased after PWHT. However, the PWHT of components made of stainless steels (SSs) would be limited because of the concerns about sensitization when they are exposed to temperature range of 500 to 800 .deg. C. Also, the sensitization of austenitic stainless steels could increase the susceptibility to intergrannular stress corrosion cracking. Therefore, the effect of PWHT on the sensitization behaviors of 316L SSs having predominant austenitic structure with small amount of ferrite was investigated to assess the applicability of PWHT to dissimilar weld area with austenitic stainless steels. The sensitization behaviors of two heats of 316L SSs with small amount of ferrite were investigated after heat treatment at 600, 650 and 700 .deg. C. Grain boundary sensitization was not observed in 316L SSs after the heat treatment at 600, 650 and 700 .deg. C up to 30 h. The increase in degree of sensitization (DOS) was caused by reduction of corrosion resistance in ferrite phase due to formation of chromium carbide and intermatallic phases during heat treatment. The DOS value of 316L SSs depended on the ferrite morphology. The stringer type of ferrite (316L-heat A) showed relatively higher DOS in comparison with 316L containing blocky type of ferrite (316L-heat B). It could be due to sufficient supplement of chromium in larger size of ferrite phase.

  20. Evaluation of the Sensitization of 316L Stainless Steels After the Post Weld Heat Treatment

    International Nuclear Information System (INIS)

    Lee, Junho; Jang, Changheui; Lee, Kyoung Soo

    2014-01-01

    It was observed that the PWSCC growth rate of alloy 182 was markedly decreased after PWHT. However, the PWHT of components made of stainless steels (SSs) would be limited because of the concerns about sensitization when they are exposed to temperature range of 500 to 800 .deg. C. Also, the sensitization of austenitic stainless steels could increase the susceptibility to intergrannular stress corrosion cracking. Therefore, the effect of PWHT on the sensitization behaviors of 316L SSs having predominant austenitic structure with small amount of ferrite was investigated to assess the applicability of PWHT to dissimilar weld area with austenitic stainless steels. The sensitization behaviors of two heats of 316L SSs with small amount of ferrite were investigated after heat treatment at 600, 650 and 700 .deg. C. Grain boundary sensitization was not observed in 316L SSs after the heat treatment at 600, 650 and 700 .deg. C up to 30 h. The increase in degree of sensitization (DOS) was caused by reduction of corrosion resistance in ferrite phase due to formation of chromium carbide and intermatallic phases during heat treatment. The DOS value of 316L SSs depended on the ferrite morphology. The stringer type of ferrite (316L-heat A) showed relatively higher DOS in comparison with 316L containing blocky type of ferrite (316L-heat B). It could be due to sufficient supplement of chromium in larger size of ferrite phase

  1. Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23-8-N nitronic steel

    International Nuclear Information System (INIS)

    Kumar, Avnish; Sharma, Ashok; Goel, S.K.

    2015-01-01

    Effects of heat treatment on microstructure, mechanical properties and erosion behavior of cast 23-8-N nitronic steel were studied. A series of heat treatments were carried out in the temperature range of 1180–1240 °C to observe the effect on microstructure. Optimum heat treatment cycle was obtained at 1220 °C for holding time of 150 min, which leads to dissolution of carbides, formation of equiaxed grains and twins. Heat treatment has shown improvement in tensile strength, toughness, impact strength and work hardening capacity, however at the cost of marginal reduction in hardness and yield strength. This resulted in improvement of erosion resistance of cast 23-8-N nitronic steel. The microstructures, fractured surfaces and phases were studied by optical microscopy, field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analysis respectively

  2. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  3. Universal high-temperature heat treatment furnace for FBR mixed uranium and plutonium carbide fuel

    International Nuclear Information System (INIS)

    Handa, Muneo; Takahashi, Ichiro; Watanabe, Hitoshi

    1978-10-01

    A universal high-temperature heat treatment furnace for LMFBR advanced fuels was installed in Plutonium Fuel Laboratory, Oarai Research Establishment. Design, construction and performance of the apparatus are described. With the apparatus, heat treatment of the fuel under a controlled gas atmosphere and quenching of the fuel with blowing helium gas are possible. Equipment to measure impurity gas release of the fuel is also provided. Various plutonium enclosure techniques, e.g., a gas line filter with new exchange mechanics, have been developed. In performance test, results of the enclosure techniques are described. (author)

  4. Effect of tin oxide nano particles and heat treatment on decay resistance and physical properties of beech wood (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    Maryam Ghorbani

    2014-11-01

    Full Text Available This research was conducted to investigate the effect of Tin oxide nanoparticles and heat treatment on decay resistance and physical properties of beech wood. Biological and physical test samples were prepared according to EN-113 and ASTM-D4446-05 standards respectively. Samples were classified into 4 groups: control, impregnation with Tin oxide nanoparticles, heat treatment and nano-heat treatment. Impregnation with Tin oxide nano at 5000ppm concentration was carried out in the cylinder according to Bethell method. Then, samples were heated at 140, 160 and 185˚C for 2 and 4 hours. According to results, decay resistance improved with increasing time and temperature of heat treatment. Least weight loss showed 46.39% reduction in nano-heat samples treated at 180˚C for 4 hours in comparison with control at highest weight loss. Nano-heat treated samples demonstrated the maximum amount of water absorption without significant difference with control and nanoparticles treated samples. Increase in heat treatment temperature reduced water absorption so that it is revealed 47.8% reduction in heat treated samples at 180°C for 4h after 24h immersion in water. In nano-heat treated samples at 180˚C for 2h was measured least volume swelling. Volume swelling in nano-treated samples decreased 8.7 and 22.76% after 2 and 24 h immersion in comparison with the control samples respectively.

  5. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment

    Science.gov (United States)

    Baars, Destiny L.; Pelegri, Francisco

    2016-01-01

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole duplication, this method results in a precise cell division stall during the second cell cycle. The precise one-cycle division stall, coupled to unaffected DNA duplication, results in whole genome duplication. Protocols associated with this method include egg and sperm collection, UV treatment of sperm, in vitro fertilization and heat pulse to cause a one-cell cycle division delay and ploidy duplication. A modified version of this protocol could be applied to induce ploidy changes in other animal species. PMID:28060351

  6. Effects of heat treatment on density, dimensional stability and color ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate the effect of heat treatment on some physical properties and color change of Pinus nigra wood which has high industrial use potential and large growing stocks in Turkey. Wood samples which comprised the material of the study were obtained from an industrial plant. Samples were ...

  7. Effect of Heat Treatment on the Properties of CoCrMo Alloy Manufactured by Selective Laser Melting

    Science.gov (United States)

    Guoqing, Zhang; Junxin, Li; Xiaoyu, Zhou; Jin, Li; Anmin, Wang

    2018-05-01

    To obtain medical implants with better mechanical properties, it is necessary to conduct studies on the heat treatment process of the selective laser melting (SLM) manufacturing parts. The differential scanning calorimetry method was used to study the heat treatment process of the phase transition of SLM CoCrMo alloy parts. The tensile properties were tested with a tensile test machine, the quantity of carbide precipitated after heat treatment was measured by energy-dispersive x-ray spectroscopy, and the tensile fracture morphology of the parts was investigated using SEM. The obtained results were: Mechanical properties in terms of elongation and tensile strength of CoCrMo alloy manufactured by SLM that had been heat-treated at 1200 °C for 2 h followed by cooling with water were not only higher than the national standard but also higher than the experimental results of the same batch of castings. The mechanism of fracture of parts manufactured by SLM without heat treatment was brittle fracture, whereas parts which had been heat-treated at 1200 °C for 2 h combined with water cooling and at 1200 °C for 1 h with furnace cooling suffered ductile fracture. This study provides the basis for defining the applications for which CoCrMo alloys manufactured by SLM are suitable within the field of medical implants.

  8. Expanded heat treatment to form residual compressive hoop stress on inner surface of zirconium alloy tubing

    International Nuclear Information System (INIS)

    Megata, Masao

    1997-01-01

    A specific heat treatment process that introduces hoop stress has been developed. This technique can produce zirconium alloy tubing with a residual compressive hoop stress near the inner surface by taking advantage of the mechanical anisotropy in hexagonal close-packed zirconium crystal. Since a crystal having its basal pole parallel to the tangential direction of the tubing is easier to exhibit plastic elongation under the hoop stress than that having its basal pole parallel to the radial direction, the plastic and elastic elongation can coexist under a certain set of temperature and hoop stress conditions. The mechanical anisotropy plays a role to extend the coexistent stress range. Thus, residual compressive hoop stress is formed at the inner surface where more plastic elongation occurs during the heat treatment. This process is referred to as expanded heat treatment. Since this is a fundamental crystallographic principle, it has various applications. The application to improve PCI/SCC (pellet cladding interaction/stress corrosion cracking) properties of water reactor fuel cladding is promising. Excellent results were obtained with laboratory-scale heat treatment and an out-reactor iodine SCC test. These results included an extension of the time to SCC failure. (author)

  9. COMPUTERIZED HEAT-TREATMENT IN A ZIMBABWEAN FACTORY

    Directory of Open Access Journals (Sweden)

    M. Collier

    2012-01-01

    Full Text Available In the context of Zimbabwe's current economic problems, parts of the manufacturing industry are turning their attention to the possibility of utilising local design talent in upgrading their manufacturing plants. This paper describes a project undertaken by the National University of Science and Technology to convert the heat-treatment process in a major manufacturing plant from semi -manual to a computerized one. The system comprises microcontroller connection to the furnaces and sensors, and communicates with a central computer on which software for a windowed user-interface is hosted. Experimental results for the system are presented, and a strategy for other companies in the same predicament is proposed.

  10. The influence of heat treatments on several types of base-metal removable partial denture alloys.

    Science.gov (United States)

    Morris, H F; Asgar, K; Rowe, A P; Nasjleti, C E

    1979-04-01

    Four removable partial denture alloys, Vitallium (Co-Cr alloy), Dentillium P.D. (Fe-Cr alloy), Durallium L.G. (Co-Cr-Ni alloy), and Ticonium 100 (Ni-Cr alloy), were evaluated in the as-cast condition and after heat treatment for 15 minutes at 1,300 degrees, 1,600 degrees, 1,900 degrees, and 2,200 degrees F followed by quenching in water. The following properties were determined and compared for each alloy at each heat treatment condition: the yield strengths at 0.01%, 0.1%, and 0.2% offsets, the ultimate tensile strength, the percent elongation, the modulus of elasticity, and the Knoop microhardness. The results were statistically analyzed. Photomicrographs were examined for each alloy and test condition. The following conclusions were made: 1. The "highest values" were exhibited by the as-cast alloy. 2. Heat treatment of the partial denture alloys tested resulted in reductions in strength, while the elongations varied. This study demonstrates that, in practice, one should avoid (a) prolonged "heat-soaking" while soldering and (b) grinding or polishing of the casting until the alloy is "red hot". 3. Durallium L.G. was the least affected by the various heat treatment conditions. 4. Conventional reporting of the yield strength at 0.2% offset, the ultimate tensile strength, and percent elongation are not adequate to completely describe and compare the mechanical behavior of alloys. The reporting of the yield strength at 0.01% offset, in addition to the other reported properties, will provide a more complete description of the behavior of the dental alloys.

  11. Heat treatment of nickel alloys

    International Nuclear Information System (INIS)

    Smith, D.F. Jr.; Clatworthy, E.F.

    1975-01-01

    A heat treating process is described that can be used to produce desired combinations of strength, ductility, and fabricability characteristics in heat resistant age-hardenable alloys having precipitation-hardening amounts of niobium, titanium, and/or tantalum in a nickel-containing matrix. (U.S.)

  12. Effect of Shortened Heat Treatment on the Hardness and Microstructure of 320.0 Aluminium Alloy

    Directory of Open Access Journals (Sweden)

    Pezda J.

    2014-06-01

    Full Text Available Improvement of Al-Si alloys properties in scope of classic method is connected with change of Si precipitations morphology through: using modification of the alloy, maintaining suitable temperature of overheating and pouring process, as well as perfection of heat treatment methods. Growing requirements of the market make it necessary to search after such procedures, which would quickly deliver positive results with simultaneous consideration of economic aspects. Presented in the paper shortened heat treatment with soaking of the alloy at temperature near temperature of solidus could be assumed as the method in the above mentioned understanding of the problem. Such treatment consists in soaking of the alloy to temperature of solutioning, keeping in such temperature, and next, quick quenching in water (20 °C followed by artificial ageing. Temperature ranges of solutioning and ageing treatments implemented in the adopted testing plan were based on analysis of recorded curves from the ATD method. Obtained results relate to dependencies and spatial diagrams describing effect of parameters of the solutioning and ageing treatments on HB hardness of the investigated alloy and change of its microstructure. Performed shortened heat treatment results in precipitation hardening of the investigated 320.0 alloy, what according to expectations produces increased hardness of the material.

  13. The effect of the combined treatment of gamma irradiation and heating on the aerobic bacterial load of white and black peppers

    International Nuclear Information System (INIS)

    Mohd Khan Ayob; Ismail Bahari; Osman Hassan; Verumandy Kaleswaran

    1985-01-01

    The effect of combined heat-irradiation treatment on the aerobic bacterial load of black and white peppers were evaluated in comparison with that of heat or irradiation treatment only. The irradiation doses applied were 0 (control), 2, 4, 6 and 8 kGy and the heating temperatures were 28 (control), 50, 60, 70 and 80 deg C. Results indicated that gamma radiation of 7 kGy and 5 kGy were capable of reducing bacterial population from 3.6 x 10 6 /g and 2.9 x 10 5 /g to 3 /g black and white peppers, respectively. Heating at drying temperature could only reduce the bacterial contaminants to 1/2 log cycle. Combined treatment of irradiation followed by heating is more effective in reducing the bacterial load, and the combined treatment of heating followed by irradiation showed similar effects as in irradiation treatment alone. (author)

  14. Influence of Heat Treatment on the Corrosion Behavior of Purified Magnesium and AZ31 Alloy

    OpenAIRE

    Khalifeh, Sohrab; Burleigh, T. David

    2017-01-01

    Magnesium and its alloys are ideal for biodegradable implants due to their biocompatibility and their low-stress shielding. However, they can corrode too rapidly in the biological environment. The objective of this research was to develop heat treatments to slow the corrosion of high purified magnesium and AZ31 alloy in simulated body fluid at 37{\\deg}C. Heat treatments were performed at different temperatures and times. Hydrogen evolution, weight loss, PDP, and EIS methods were used to measu...

  15. The effects of combined treatment of irradiation and heat on bacteria escherichia coli and sarcina lutea in dry condition

    International Nuclear Information System (INIS)

    Nikham; Hilmy, Nazly

    1987-01-01

    The effects of combination treatment of irradiation and heat on bacteria escherichia coli and sarcina lutea in dry condition. Investigation on the effects of combined irradiation + heat and heat + irradiation treatments have been carried out i.e. at the doses of 0; 1.0; 1.5; and 2.0 kGy with heating at 50 0 C for 10; 20; and 30 minutes on escherichia coli B/r, escherichia coli from sludge and sarcine lutea. Samples of bacteria were prepared in dry condition by using sterile fine sand as carrier. Irradiation was done in aerobic condition with RH 90% and the time range between irradiation and heating was not more than 2 hours. The results showed that the D 10 value did not give significant difference between the combined irradiation + heat, and heat + irradiation treatments for the 3 species of bacteria, compared to irradiation only (p 0.05). Doses of 1.0 and 1.5 kGy combined with heating at 50 0 C for 10 and 20 minutes gave better results compared to irradiation only. 17 refs

  16. Measurement of heat treatment induced residual stresses by using ESPI combined with hole-drilling method

    Directory of Open Access Journals (Sweden)

    Jie Cheng

    2010-08-01

    Full Text Available In this study, residual stresses in heat treated specimen were measured by using ESPI (Electronic Speckle-Pattern Interferometry combined with the hole-drilling method. The specimen, made of SUS 304 austenitic stainless steel, was quenched and water cooled to room temperature. Numerical simulation using a hybrid FDM/FEM package was also carried out to simulate the heat treatment process. As a result, the thermal stress fields were obtained from both the experiment and the numerical simulation. By comparision of stress fields, results from the experimental method and numerical simulation well agreed to each other, therefore, it is proved that the presented experimental method is applicable and reliable for heat treatment induced residual stress measurement.

  17. Research and Development Roadmap for Water Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  18. Heat treatment and aging effect on the structural and optical properties of plasma polymerized 2,6-diethylaniline thin films

    International Nuclear Information System (INIS)

    Matin, Rummana; Bhuiyan, A.H.

    2012-01-01

    The monomer, 2,6-diethylaniline has been used to deposit plasma polymerized 2,6-diethylaniline (PPDEA) thin films at room temperature on to glass substrates by a capacitively coupled parallel plate glow discharge reactor. A comparative analysis on the changes of morphological, structural and optical properties of as-deposited, heat treated and aged PPDEA thin films is ascertained. Scanning electron microscopy shows uniform and pinhole free surface of PPDEA thin films and no significant difference in the surface morphology is observed due to heat treatment. Electron dispersive X-ray and Fourier transform infrared spectroscopic investigations indicate some structural rearrangement in PPDEA thin films due to heat treatment. Differential thermal analysis, thermogravimetric analysis and differential thermogravimetric analysis suggest that the PPDEA is thermally stable up to about 580 K. The study on the optical absorption spectra of as-deposited, heat treated and aged PPDEA thin films of different thicknesses lead to the determination of the allowed direct and indirect transition energies ranging from 3.63 to 2.73 and 2.38 to 1.26 eV respectively. Urbach energy, steepness parameter and extinction coefficient are also assessed. It is observed that the optical parameters of as-deposited PPDEA thin films change due to heat treatment and do not change appreciably due to aging. - Highlights: ► Heat treatment and aging effect of plasma polymerized 2,6-diethylaniline thin films. ► The surface morphology of PPDEA is found uniform for all types of sample. ► Heat treatment introduces some elemental and structural rearrangement. ► The thermal stability is found up to about 580 K. ► Optical parameters were changed for heat treatment but not markedly for aging.

  19. Effect of heat treatment on strength and abrasive wear behaviour of ...

    Indian Academy of Sciences (India)

    Administrator

    Aluminum 6061 has been used as matrix material owing to its ... Mechanical properties such as microhardness, tensile strength, and abrasive wear tests have been ... heat treatment conditions, adopted Al6061–SiCp composites exhibited better microhardness and tensile ... corrosion resistance (Ramesh et al 2005).

  20. Structural steels for power generating equipment and heat and chemical heat treatments

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  1. [Effect of heat treatment on the structure of a Cu-Zn-Al-Ni system dental alloy].

    Science.gov (United States)

    Guastaldi, A C; Adorno, A T; Beatrice, C R; Mondelli, J; Ishikiriama, A; Lacefield, W

    1990-01-01

    This article characterizes the structural phases present in the copper-based metallic alloy system "Cu-Zn-Al-Ni" developed for dental use, and relates those phases to other properties. The characterization was obtained after casting (using the lost wax process), and after heat treatment. In order to obtain better corrosion resistance by changing the microstructure, the castings were submitted to 30, 45 and 60 minutes of heat treatment at the following temperatures: 750 degrees C, 800 degrees C, and 850 degrees C. The various phases were analyzed using X-ray diffraction and scanning electron microscopy (SEM). The results after heat treatment showed a phase (probably Cu3Al), that could be responsible for the improvement in the alloy's resistance to corrosion as compared to the as-cast structure.

  2. Effect of Heat Treatment on the Structure and Properties of Die Steel 70Kh3G2FTR

    Science.gov (United States)

    Krylova, S. E.; Kletsova, O. A.; Gryzunov, V. I.; Fot, A. P.; Tavtilov, I. Sh.

    2018-01-01

    The effect of heat treatment parameters on the properties and structural and phase composition of a promising die steel 70Kh3G2FTR for hot deformation is studied. The temperature-and-stress state of a hammer die under a heat treatment is simulated.

  3. Dry Heat Treatment Reduces the Occurrence of Cladosporium cucumerinum, Ascochyta citrullina, and Colletotrichum orbiculare on the Surface and Interior of Cucumber Seeds

    Directory of Open Access Journals (Sweden)

    Yanxia Shi

    2016-01-01

    Full Text Available Dry heat treatment has been identified as a method for disinfecting seed-borne pathogens in vegetable seeds. This study demonstrated that three seed-borne pathogens of cucumber (Cladosporium cucumerinum that causes scabs, Ascochyta citrullina that results in gummy stem blight, and Colletotrichum orbiculare that induces anthracnose could be effectively eradicated from cucumber seeds by dry heat treatment. In vitro growth of these three pathogens was inhibited by dry heat treatment at 70 °C for 40 min. These pathogens were inactivated after exposing infected seeds to 70 °C dry heat for at least 90 min. Seed infection was significantly reduced by exposing the seeds to 70 °C dry heat for at least 40 min. Seed moisture content and germination were slightly reduced after 70 °C heat treatment for 40–120 min. Seed vigor remained at a high level after dry heat treatment at 70 °C for 90 min. In conclusion, 70 °C dry heat treatment for 90 min was determined to be the optimal method for eradication of C. cucumerinum, Didymella bryoniae, and C. orbiculare from cucumber seeds.

  4. Decommissioning project of commercial nuclear power plant

    International Nuclear Information System (INIS)

    Karigome, S.

    2008-01-01

    Decommissioning project of commercial nuclear power plant in Japan was outlined. It is expected that the land, after the decommissioning of commercial nuclear power plants, will serve as sites for new plants. Steps will be taken to reduce the amount of wastes generated and to recycle/reuse them. Wastes with a radioactivity concentration below the 'clearance level' need not be dealt with as radioactive material, and may be handled in the same way as conventional wastes. The Tokai-1 power station, a 166 MWe carbon dioxide cooled reactor which closed down in 1998, is being decommissioned and the first ten years as 'safe storage' to allow radioactivity to decay. Non-reactor grade components such as turbines were already removed, heat exchanger dismantling started and the reactor will be dismantled, the buildings demolished and the site left ready for reuse. All radioactive wastes will be classified as low-level wastes in three categories and will be buried under the ground. The total cost will be 88.5 billion yen -34.7 billion for dismantling and 53.8 billion for waste treatment including the graphite moderator. (T. Tanaka)

  5. Dimensional Changes of Nb$_{3}$Sn Rutherford Cables During Heat Treatment

    CERN Document Server

    Rochepault, E; Ambrosio, G; Anerella, M; Ballarino, A; Bonasia, A; Bordini, B; Cheng, D; Dietderich, D R; Felice, H; Garcia Fajardo, L; Ghosh, A; Holik, E F; Izquierdo Bermudez, S; Perez, J C; Pong, I; Schmalzle, J; Yu, M

    2016-01-01

    In high field magnet applications, Nb$_{3}$Sn coils undergo a heat treatment step after winding. During this stage, coils radially expand and longitudinally contract due to the Nb$_{3}$Sn phase change. In order to prevent residual strain from altering superconducting performances, the tooling must provide the adequate space for these dimensional changes. The aim of this paper is to understand the behavior of cable dimensions during heat treatment and to provide estimates of the space to be accommodated in the tooling for coil expansion and contraction. This paper summarizes measurements of dimensional changes on strands, single Rutherford cables, cable stacks, and coils performed between 2013 and 2015. These samples and coils have been performed within a collaboration between CERN and the U.S. LHC Accelerator Research Program to develop Nb$_{3}$Sn quadrupole magnets for the HiLumi LHC. The results are also compared with other high field magnet projects.

  6. TAX TREATMENT SPECIFIC TO INTRA COMMUNITY COMMERCIAL BUSINESS TRANSACTIONS - ACQUISITION AND INTRA-COMMUNITY SUPPLY OF GOODS

    Directory of Open Access Journals (Sweden)

    Paliu -Popa Lucia

    2009-11-01

    Full Text Available Romania's accession to the European Union has imposed harmonize national legislation with Community law, registering significant changes in the tax area, particularly on value added tax. In order to determine the person liable to pay value added tax, related to intra-community commercial transactions, must to clarify tax matters for those operations. Given the complexity of intra-community commercial transactions and their taxation, in the following issues we will address the intra-community trade in goods, with reference to specific tax treatment of supplies and intra-community acquisitions of goods. To do this we will consider more specific situations that arise in trade relationship between EU Member States, examples that will allow us to draw some conclusions on tax matters arising in intracommunity commercial relationship

  7. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  8. PECULIARITIES OF GENERALIZATION OF SIMILAR PHENOMENA IN THE PROCESS OF FISH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    V. A. Pokhol’chenko

    2015-01-01

    Full Text Available The theoretical presuppositions for the possibility of generalizing and similarity founding in dehydration and wet materials heating processes are studieded in this article. It is offered to carry out the given processes generalization by using dimensionless numbers of similarity. At the detailed analyzing of regularities of heat treatment processes of fish in different modes a significant amount of experienced material was successfully generalized on the basis of dimensionless simplex (similarity numbers. Using the dimensionless simplex allowed to detect a number of simple mathematical models for the studied phenomena. The generalized kinetic models of fish dehydration, the generalized dynamic models (changing moisture diffusion coefficients, the generalized kinetic models of fish heating (the temperature field changing in the products thickness, average volume and center were founded. These generalized mathematical models showed also relationship of dehydration and heating at the processes of fish semi-hot, hot smoking (drying and frying. The relationship of the results from the physical nature of the dehydration process, including a change in the binding energy of the moisture with the material to the extent of the process and the shrinkage impact on the rate of the product moisture removal is given in the article. The factors influencing the internal structure and properties of the raw material changing and retarding the dehydration processes are described there. There was a heating rate dependence of fish products on the chemical composition the geometric dimensions of the object of heating and on the coolant regime parameters. A unique opportunity is opened by using the generalized models, combined with empirically derived equations and the technique of engineering calculation of these processes, to design a rational modes of heat treatment of raw materials and to optimize the performance of thermal equipment.

  9. A thermoelectric power generating heat exchanger: Part I – Experimental realization

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Sarhadi, Ali; Pryds, Nini

    2016-01-01

    An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transfer fluids and for three different thermal...

  10. Characterization by transmission electron microscopy of a JRQ steel subjected to different heat treatments

    International Nuclear Information System (INIS)

    Moreno G, N.

    2014-01-01

    In this work a study was conducted on the steel Astm A-533, Grade B, Class 1 of reference JRQ, for the purpose of carrying out a study by transmission electron microscopy on the size and distribution of precipitates in steel samples JRQ previously subjected to heat treatments. This because the reactor vessels of the nuclear power plant of Laguna Verde, are made of a steel Astm A-533 Grade B, Class 1. It is known that the neutron radiation causes damage primarily embrittlement in materials that are exposed to it. However, observable damage through mechanical tests result from microstructural defects and atomic, induced by the neutron radiation. In previous studies hardening by precipitation of a JRQ steel (provided by the IAEA) was induced by heat treatments, finding that the conditions of heat treatment that reproduce the hardness and stress mechanical properties of a steel Astm A-533, Grade B, Class 1 irradiated for 8 years to a fluence of 3.5 x 10 17 neutrons/cm 2 and to a temperature of 290 grades C are achieved with annealing treatments at 550 grades C. In the studied samples it was found that the more hardening phase both the heat treatments as the neutron radiation, is the bainite, being the ferrite practically unchanged. Which it gave the tone to believe that the ferrite is the phase that provides at level macro the mechanical properties in stress, since in the irradiated samples such properties remained unchanged with respect to the non-irradiated material, however changes were observed in material ductility, which may be attributable to the change of hardness in the bainite, which opens a possibility for modeling the micromechanical behavior of this material. (Author)

  11. Abnormal Grain Growth in the Heat Affected Zone of Friction Stir Welded Joint of 32Mn-7Cr-1Mo-0.3N Steel during Post-Weld Heat Treatment

    Directory of Open Access Journals (Sweden)

    Yijun Li

    2018-04-01

    Full Text Available The abnormal grain growth in the heat affected zone of the friction stir welded joint of 32Mn-7Cr-1Mo-0.3N steel after post-weld heat treatment was confirmed by physical simulation experiments. The microstructural stability of the heat affected zone can be weakened by the welding thermal cycle. It was speculated to be due to the variation of the non-equilibrium segregation state of solute atoms at the grain boundaries. In addition, the pressure stress in the welding process can promote abnormal grain growth in the post-weld heat treatment.

  12. Hopes for commercial use of MHD

    International Nuclear Information System (INIS)

    1968-01-01

    Magnetohydrodynamics (MHD) is the study of the motion of fluids and gases in magnetic fields. After 25 years of theoretical and experimental work, it seems commercially promising for a new type of power station, where heat would be converted directly into electricity by generators without moving parts. Nuclear reactors would be well suited as the heat sources. At an Agency symposium in Warsaw in July it was felt that international cooperation is essential to develop the technique for industrial use. (author)

  13. Heat treatment device for extending the life of a pressure vessel, particularly a reactor pressure vessel

    International Nuclear Information System (INIS)

    Krauss, P.; Mueller, E.; Poerner, H.; Weber, R.

    1979-01-01

    A support body in the form of an insulating cylinder is tightly sealed by connected surfaces at its outer circumference to the inner wall of the pressure vessel. It forms an annular heating space. The heat treatment or tempering of the pressure vessel takes place with the reactor space empty and screened from the outside by ceiling bolts. Heating gas or an induction winding can be used as the means of heating. (DG) [de

  14. Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

    Science.gov (United States)

    Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.

    2018-03-01

    Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters (i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.

  15. Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

    Science.gov (United States)

    Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.

    2018-06-01

    Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters ( i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.

  16. SU-F-T-225: Is It Time to Have Pre-Configured Therapeutic Beams Available in Commercial Treatment Planning Systems?

    International Nuclear Information System (INIS)

    Ding, G

    2016-01-01

    Purpose: Commissioning radiation beams requires considerable effort to obtain the beam data for beam configuration in a commercial treatment planning system. With the advances in technology, the manufacturer of accelerators now has the ability to adjust radiation beam parameters to meet pre-determined specifications with high precision. This study aims to illustrate the feasibility of making pre-configured radiation beams available in commercial treatment planning systems. Methods: In recent years, Varian has made a set of measured beam data from the TrueBeam accelerator available to users. Although the beam data are provided as “suggestive data” without warranty, the commissioned data measured by users have been shown to be in excellent agreement with the data set provided when the beams from the installed Linacs were adjusted to meet the beam specifications. An unofficial survey among Varian Linac TrueBeam users shows that the suggestive data set has been used with validation by users in some clinics. This indicates that radiation beams from a specified Linac can be standardized and pre-configured in a treatment planning system. Results: Two newly installed Varian TrueBeam accelerators at two different centers were examined in which one set of commissioned beam data was obtained from measurements performed by an independent physics consulting company and the other was measured by local physicists in the department. All beams from both accelerators were tuned to meet the manufacturer’s specifications. Discrepancies of less than 1% were found between the commissioned beam data from both accelerators and the suggestive data set provided by Varian. Conclusion: It may be feasible that radiation beams can be pre-configured in commercial treatment planning systems. The radiation beam users will perform the beam validation and end-to-end tests instead of configuring beams. This framework can increase both the efficiency and the accuracy in commercial radiation

  17. Synergistic effects of heat and irradiation treatment (thermoradiation) in the sterilization of medical products

    International Nuclear Information System (INIS)

    Trauth, C.A. Jr.; Sivinski, H.D.

    1975-01-01

    This paper describes a generic class of sterilization processes is which properly chosen combinations of radiation and heat synergistically inactivate many bacteria and viruses. Treatments with optimal combinations are shown to offer the possibility of using lower total doses and lower temperatures than would be required separately for sterilization. This results from easier elimination of heat-labile, radioresistant organisms and radiolabile, heat-resistant organisms, and from synergistic inactivation of organisms which are both radioresistant and heat resistant. These processes depend upon temperature, dose-rate, and time in fairly complex ways; therefore, an analytical framework in which they can be defined is also presented. (author)

  18. Influence of prolonged storage process, pasteurization, and heat treatment on biologically-active human milk proteins.

    Science.gov (United States)

    Chang, Jih-Chin; Chen, Chao-Huei; Fang, Li-Jung; Tsai, Chi-Ren; Chang, Yu-Chuan; Wang, Teh-Ming

    2013-12-01

    The bioactive proteins in human milk may be influenced by prolonged storage process, pasteurization, and heat treatment. This study was conducted to evaluate the effects of these procedures. Three forms of human milk - freshly expressed, frozen at -20°C for a prolonged duration, and pasteurized milk - were collected from 14 healthy lactating mothers and a milk bank. The concentrations of major bioactive proteins (secretory immunoglobulin A, lactoferrin, lysozyme, and leptin) were quantified using enzyme-linked immunosorbent assay kits. Changes in these proteins by heat treatment at 40°C or 60°C for 30 minutes were further evaluated. The mean concentrations of lactoferrin and secretory immunoglobulin A were significantly reduced by 66% and 25.9%, respectively, in pasteurized milk compared with those in freshly-expressed milk. Heat treatment at 40°C or 60°C did not cause significant changes in lactoferrin and secretory immunoglobulin A, but there was an apparent increase in lysozyme (p = 0.016). There were no significant differences in leptin level among these three forms of milk prior to (p = 0.153) or after heat treatment (p = 0.053). Various freezing/heating/pasteurization processes applied to human milk prior to delivery to neonates could affect the concentration of immunomodulatory proteins, especially lactoferrin, secretory immunoglobulin A, and lysozyme. Leptin was unaffected by the various handling processes tested. Fresh milk was found to be the best food for neonates. Further studies are warranted to evaluate the functional activity of these proteins and their effects on infants' immunological status. Copyright © 2013. Published by Elsevier B.V.

  19. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Vrancken, Bey; Thijs, Lore; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2012-01-01

    Highlights: ► Responses of SLM-produced and wrought Ti6Al4V to heat treatment are compared. ► Temperature is found to be the controlling parameter for treatments in the α + β range. ► Ductility could be improved by a factor of 85%, from 7.27% to 13.59%. ► An optimal heat treatment for SLM produced Ti6Al4V is proposed. - Abstract: The present work shows that optimization of mechanical properties via heat treatment of parts produced by Selective Laser Melting (SLM) is profoundly different compared to conventionally processed Ti6Al4V. In order to obtain optimal mechanical properties, specific treatments are necessary due to the specific microstructure resulting from the SLM process. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, the effect of several heat treatments on the microstructure and mechanical properties of Ti6Al4V processed by SLM is studied. A comparison is made with the effect of these treatments on hot forged and subsequently mill annealed Ti6Al4V with an original equiaxed microstructure. For SLM produced parts, the original martensite α′ phase is converted to a lamellar mixture of α and β for heat treating temperatures below the β-transus (995 °C), but features of the original microstructure are maintained. Treated above the β-transus, extensive grain growth occurs and large β grains are formed which transform to lamellar α + β upon cooling. Post treating at 850 °C for 2 h, followed by furnace cooling increased the ductility of SLM parts to 12.84 ± 1.36%, compared to 7.36 ± 1.32% for as-built parts.

  20. Heat treatment of thin NiTi filaments by electric current

    Czech Academy of Sciences Publication Activity Database

    Pilch, Jan; Heller, Luděk; Šittner, Petr

    2010-01-01

    Roč. 2, č. 1 (2010), 1-4 ISSN N R&D Projects: GA ČR GAP108/10/1296; GA AV ČR(CZ) IAA200100627 Grant - others:EC "UPWIND" -Integrated Wind Turbine Design(XE) 019945 (SES6) Institutional research plan: CEZ:AV0Z10100520 Keywords : NiTi * SMA * heat treatment * martensitic transformation Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Heat treatment effect on impact strength of 40Kh steel

    International Nuclear Information System (INIS)

    Golubev, V.K.; Novikov, S.A.; Sobolev, Yu.S.; Yukina, N.A.

    1984-01-01

    The paper presents results of studies on the effect of heat treatment on strength and pattern of 40Kh steel impact failure. Loading levels corresponding to macroscopic spalling microdamage initiation in the material are determined for three initial states. Metallographic study on the spalling failure pattern for 40Kh steel in different initial states and data on microhardness measurement are presented

  2. Heat delivery from Bohunice NPP, Slovakia

    International Nuclear Information System (INIS)

    Paley, I.

    1998-01-01

    Experience with nuclear district heating in the Slovak Republic is reported. The heating system of the town of Trnava is supplied by the Bohunice NPP and conventional sources. Construction of the hot water heating system from the Bohunice NPP began in 1983. Commercial operation began on 10 December 1987. Heat delivery has gradually increased from 478 TJ in 1988, to 1,104 TJ in 1995. The heat cost is low, resulting in an increasing number of consumers. (author)

  3. Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance

    Science.gov (United States)

    Lotz, Albert

    2008-01-01

    Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…

  4. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting

    Science.gov (United States)

    Zhang, Hu; Zhu, Haihong; Nie, Xiaojia; Qi, Ting; Hu, Zhiheng; Zeng, Xiaoyan

    2016-04-01

    The proposed paper illustrates the fabrication and heat treatment of high strength Al-Cu-Mg alloy produced by selective laser melting (SLM) process. Al-Cu-Mg alloy is one of the heat treatable aluminum alloys regarded as difficult to fusion weld. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, 3D Al-Cu-Mg parts with relative high density of 99.8% are produced by SLM from gas atomized powders. Room temperature tensile tests reveal a remarkable mechanical behavior: the samples show yield and tensile strengths of about 276 MPa and 402 MPa, respectively, along with fracture strain of 6%. The effect of solution treatment on microstructure and related tensile properties is examined and the results demonstrate that the mechanical behavior of the SLMed Al-Cu-Mg samples can be greatly enhanced through proper heat treatment. After T4 solution treatment at 540°C, under the effect of precipitation strengthening, the tensile strength and the yield strength increase to 532 MPa and 338 MPa, respectively, and the elongation increases to 13%.

  5. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....

  6. The case for wood-fuelled heating

    International Nuclear Information System (INIS)

    Bent, Ewan

    2001-01-01

    This article looks at the wood heating industry in the UK and examines the heat market and the growth potential in the domestic, public, agricultural and commercial sectors. The current status of wood-fueled heating technology is considered, along with log and chip boilers, and the use of pellet fuel. The economics of wood-fuelled heating, the higher level of utilisation of wood-fuelled heating by utilities in northern European countries compared with the UK, and the barriers to the exploitation of wood fuelled heating are examined

  7. Lipolytic Changes in Fermented Sausages Produced with Turkey Meat: Effects of Starter Culture and Heat Treatment.

    Science.gov (United States)

    Karsloğlu, Betül; Çiçek, Ümran Ensoy; Kolsarici, Nuray; Candoğan, Kezban

    2014-01-01

    In this study, the effects of two different commercial starter culture mixes and processing methodologies (traditional and heat process) on the lipolytic changes of fermented sausages manufactured with turkey meat were evaluated during processing stages and storage. Free fatty acid (FFA) value increased with fermentation and during storage over 120 d in all fermented sausage groups produced with both processing methodologies (p<0.05). After drying stage, free fatty acid values of traditional style and heat processed fermented sausages were between 10.54-13.01% and 6.56-8.49%, respectively. Thiobarbituric acid (TBA) values of traditionally processed fermented sausages were between 0.220-0.450 mg·kg(-1), and TBA values of heat processed fermented sausages were in a range of 0.405-0.795 mg·kg(-1). Oleic and linoleic acids were predominant fatty acids in all fermented sausages. It was seen that fermented sausage groups produced with starter culture had lower TBA and FFA values in comparison with the control groups, and heat application inhibited the lipase enzyme activity and had an improving effect on lipid oxidation. As a result of these effects, heat processed fermented sausages had lower FFA and higher TBA values than the traditionally processed groups.

  8. Differential effect of prior heat treatment on the thermal enhancement of radiation damage in the ear of the mouse

    International Nuclear Information System (INIS)

    Law, M.P.; Ahier, R.G.

    1982-01-01

    The effect of prior heat treatment on thermal enhancement of radiodermatitis was investigated in the ear of the mouse. Ears were heated by immersion in hot water. A priming treatment of 43.5 0 C for 30 min (H) was given at various times before a second combined treatment of hypethermia at 43.5 0 C (h) given immediately before (hX) or after (Xh) a dose of X rays (X). The effect of H was measured in two ways. The heating time h, required to cause a given enhancement of radiodermatitis was estimated by fixing X and varying the duration of h. The thermal enhancement ratio, defined as the dose of X rays alone divided by the dose of X rays with heat required to cause a given reaction, was measured by fixing h and varying X. The priming treatment H reduced the skin response to hX. This effect was such that at 24 to 96 hr after H, the heating time h, had to be increased to about 1.5 times that required without prior hyperthermia. In contrast, the priming treatment had no effect on the response to Xh

  9. QUALITY IMPROVEMENT OF SECONDARY SILUMINS BY USING REFINING-MODIFYING, HEAT AND LASER TREATMENTS

    Directory of Open Access Journals (Sweden)

    I. P. Volchok

    2014-10-01

    Full Text Available Purpose. As a rule secondary silumins are characterized by lower quality than their primary analogues. During manufacture of alloys a large quantity of intermetallides, first of all on the basis of iron, in their structure is ignored. To achieve the optimum level of properties it is necessary to search for ways to adapt refining-modifying, heat and laser treatments to peculiarities of the structure of secondary Al-Si alloys. Methodology. The research was carried out by using standard methods of metallographic analysis, determination of foundry, mechanical and service properties of alloys according to rotatable plans of multifactor experiments. Findings. It was established, that refiningmodifying treatment is a required procedure during manufacture of secondary silumins as it permits to effectively influence the iron-containing phases' segregations by changing their morphology, size and distribution and to increase the effectiveness of further treatment in solid state. It was found that standard modes of heat treatment are not optimal for secondary silumins. Laser treatment has shown high effectiveness in increasing of strength, wear resistance, corrosion and cavitation resistance of secondary Al-Si alloys, and the increased iron content contributed to additional solid solution hardening. Originality. It was established, that after refining-modifying treatment the phase Al5SiFe, which crystallizes in the shape of long stretched plates transformed into phase Al15(FeMn3Si2 in skeletal or polyhedral shape. The relationship between iron content in secondary silumins and holding time during heat treatment that ensures optimum of mechanical properties was obtained. It was proved that the presence of ironcontaining intermetallides Al5SiFe results in the decrease of hardened layer's depth during laser treatment. It was established, that with increasing of iron concentration the corrosion rate of secondary silumins in 3 % NaCl + 0.1 % H2O2 and 10 % HCl

  10. Influence of heat treatment on the wear life of hydraulic fracturing tools

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chao; Liu, Yonghong; Wang, Hanxiang; Qin, Jie; Shen, Yang; Zhang, Shihong [China University of Petroleum, Qingdao (China)

    2017-02-15

    Wear phenomenon has caused severe damage or failure of fracturing tools in oil and gas industry. In this paper, influence of heat treatment on the mechanical properties and wear resistance of fracturing tool made of lamellar graphite grey cast iron were investigated. The surface composition and microstructure were characterized by X-ray diffraction (XRD) and metallographic microscope. Sliding wear tests were performed to study the tribological behavior. Tests results showed that wear rates of treated specimens decreased by 33 %. Besides, worn morphology and wear debris were analyzed using Scanning electron microscope (SEM) and Energy dispersive Xray spectra (EDS). Wear failure mechanisms of specimens were identified. Furthermore, on-site experiment results indicated that wear loss of treated samples decreased by 37.5 %. The wear life of hydraulic fracturing tools can be improved obviously by the heat treatment.

  11. Influence of heat treatment on the wear life of hydraulic fracturing tools

    International Nuclear Information System (INIS)

    Zheng, Chao; Liu, Yonghong; Wang, Hanxiang; Qin, Jie; Shen, Yang; Zhang, Shihong

    2017-01-01

    Wear phenomenon has caused severe damage or failure of fracturing tools in oil and gas industry. In this paper, influence of heat treatment on the mechanical properties and wear resistance of fracturing tool made of lamellar graphite grey cast iron were investigated. The surface composition and microstructure were characterized by X-ray diffraction (XRD) and metallographic microscope. Sliding wear tests were performed to study the tribological behavior. Tests results showed that wear rates of treated specimens decreased by 33 %. Besides, worn morphology and wear debris were analyzed using Scanning electron microscope (SEM) and Energy dispersive Xray spectra (EDS). Wear failure mechanisms of specimens were identified. Furthermore, on-site experiment results indicated that wear loss of treated samples decreased by 37.5 %. The wear life of hydraulic fracturing tools can be improved obviously by the heat treatment

  12. Residual stress and mechanical properties of SiC ceramic by heat treatment

    International Nuclear Information System (INIS)

    Yoon, H.K.; Kim, D.H.; Shin, B.C.

    2007-01-01

    Full text of publication follows: Silicon carbide is a compound of relatively low density, high hardness, elevated thermal stability and good thermal conductivity, resulting in good thermal shock resistance. Because of these properties, SiC materials are widely used as abrasives and refractories. In this study, SiC single and poly crystals was grown by the sublimation method using the SiC seed crystal and SiC powder as the source material. Mechanical properties of SiC single and poly crystals are carried out by using the nano-indentation method and small punch test after the heat treatment. As a result, mechanical properties of SiC poly crystal had over double than single. And SiC single and poly crystals were occurred residual stress, but residual stress was shown relaxant properties by the effect of heat treatment. (authors)

  13. Applicability of Solid Solution Heat Treatments to Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Miguel Rodríguez-Pérez

    2012-12-01

    Full Text Available Present research work evaluates the influence of both density and size on the treatability of Aluminum-based (6000 series foam-parts subjected to a typical solid solution heat treatment (water quenching. The results are compared with those obtained for the bulk alloy, evaluating the fulfilment of cooling requirements. Density of the foams was modeled by tomography analysis and the thermal properties calculated, based on validated density-scaled models. With this basis, cooling velocity maps during water quenching were predicted by finite element modeling (FEM in which boundary conditions were obtained by solving the inverse heat conduction problem. Simulations under such conditions have been validated experimentally. Obtained results address incomplete matrix hardening for foam-parts bigger than 70 mm in diameter with a density below 650 kg/m3. An excellent agreement has been found in between the predicted cooling maps and final measured microhardness profiles.

  14. Effect of Heat Treatment Parameters on the Microstructure and Properties of Inconel-625 Superalloy

    Science.gov (United States)

    Sukumaran, Arjun; Gupta, R. K.; Anil Kumar, V.

    2017-07-01

    Inconel-625 is a solid solution-strengthened alloy used for long-duration applications at high temperatures and moderate stresses. Different heat treatment cycles (temperatures of 625-1025 °C and time of 2-6 h) have been studied to obtain optimum mechanical properties suitable for a specific application. It has been observed that room temperature strength and, hardness decreased and ductility increased with increase in heat treatment temperature. The rate of change of these properties is found to be moderate for the samples heat-treated up to 850 °C, and thereafter, it increases rapidly. It is attributed to the microstructural changes like dissolution of carbides, recrystallization and grain growth. Microstructures are found to be predominantly single-phase austenitic with the presence of fine alloy carbides. The presence of twins is observed in samples heat-treated at lower temperature, which act as nucleation sites for recrystallization at 775 °C. Beyond 850 °C, the role of carbides present in the matrix is subsided by the coarsening of recrystallized grains and finally at 1025 °C, significant dissolution of carbide results in substantial reduction in strength and increase in ductility. Elongation to an extent of >71% has been obtained in sample heat-treated at 1025 °C indicating excellent tendency for cold workability. Failure of heat-treated specimens is found to be mainly due to carbide particle-matrix decohesion which acts as locations for crack initiation.

  15. Endotoxin inactivation via steam-heat treatment in dilute simethicone emulsions used in biopharmaceutical processes.

    Science.gov (United States)

    Britt, Keith A; Galvin, Jeffrey; Gammell, Patrick; Nti-Gyabaah, Joseph; Boras, George; Kolwyck, David; Ramirez, José G; Presente, Esther; Naugle, Gregory

    2014-01-01

    Simethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique. Endotoxin inactivation from steam-heat treatment was fit to a four-parameter double exponential decay model, which indicated that endotoxin inactivation was biphasic, consisting of fast and slow regimes. In the fast regime, temperature-related effects were dominant. Transitioning into the slow regime, the observed temperature dependence diminished, and concentration-related effects became increasingly significant. The change in the Gibbs free energy moving through the transition state indicated that a large energy barrier must be overcome for endotoxin inactivation to occur. The corresponding Arrhenius pre-exponential factor was >10(12) s(-1) suggesting that endotoxins in aqueous solution exist as aggregates. The disorder associated with the endotoxin inactivation reaction pathway was assessed via the change in entropy moving through the transition state. This quantity was positive indicating that endotoxin inactivation may result from hydrolysis of individual endotoxin molecules, which perturbs the conformation of endotoxin aggregates, thereby modulating the biological activity observed. Steam-heat treatment decreased endotoxin levels by 1-2 logarithm (log) reduction (LRV), which may be practically relevant depending on incoming raw material endotoxin levels. Antifoam efficiency and cell culture performance were negligibly impacted following steam-heat treatment. The results from this study show that steam-heat treatment is a viable endotoxin control strategy that can be implemented to support large-scale biopharmaceutical manufacturing. © 2014 American Institute of Chemical Engineers.

  16. Effect of Heat Treatment on the Hardness and Wear of Grinding Balls

    Science.gov (United States)

    Aissat, Sahraoui; Sadeddine, Abdelhamid; Bradai, Mohand Amokrane; Younes, Rassim; Bilek, Ali; Benabbas, Abderrahim

    2017-09-01

    The effect quenching and tempering by different regimes on Rockwell hardness and wear processes of grinding balls 50 and 70 mm in diameter made of two melts of chromium-molybdenum cast iron is studied. The heating temperature for quenching is 850, 950, and 1050°C; the tempering temperature is 250, 400, and 600°C. Iron is analyzed in an electron microscope. Diffraction patterns are obtained. A model of cast iron wear is suggested and compared to the Davis model and to experimental results. An optimum heat treatment regime is proposed.

  17. Effect of phosphorus and heat treatment on microstructure of Al-25%Si alloy

    Directory of Open Access Journals (Sweden)

    Bo Dang

    2017-01-01

    Full Text Available It is known that phosphorus can refine the primary silicon and heat treatment can spheroidize the eutectic silicon. This paper presents an optimal combination of heat treatment processes and P refinement on hypereutectic Al-Si alloy. The optimal P addition amount, and the solution and aging temperatures for Al-25%Si alloy were obtained through the orthogonal experiment, and their modification effects were discussed. The results show that P addition has the greatest modification effect, followed by aging temperature, and the modification effect of solution temperature is the least. The optimized modification parameters are: addition of 0.6% P, solution at 540 篊 and aging at 160 篊 . In addition, the cooling curve, superheating and hardness of the alloy were also analyzed.

  18. Treatment of Phlegm- and Heat-induced Insomnia by Acupuncture in 120 Cases

    Institute of Scientific and Technical Information of China (English)

    崔芮; 周德安

    2003-01-01

    @@ Clinical Data The 120 cases in this series were outpatients suffering from insomnia due to interior-stirring by phlegm-heat, ranging in age from 28 to 67 years. They were randomly divided into a treatment group and a control group.

  19. Influence of heat treatment on field emission characteristics of boron nitride thin films

    International Nuclear Information System (INIS)

    Li Weiqing; Gu Guangrui; Li Yingai; He Zhi; Feng Wei; Liu Lihua; Zhao Chunhong; Zhao Yongnian

    2005-01-01

    Boron nitride (BN) nanometer thin films are synthesized on Si (1 0 0) substrates by RF reactive magnetron sputtering. Then the film surfaces are treated in the case of the base pressure below 5 x 10 -4 Pa and the temperature of 800 and 1000 deg. C, respectively. And the films are studied by Fourier transform infrared spectra (FTIR), atomic force microscopic (AFM) and field emission characteristics at different annealing temperature. The results show that the surface heat treatment makes no apparent influence on the surface morphology of the BN films. The transformations of the sample emission characteristics have to do with the surface negative electron affinity (NEA) of the films possibly. The threshold electric fields are lower for BN samples without heat-treating than the treated films, which possibly ascribed to the surface negative electron affinity effect. A threshold field of 8 V/μm and the emission current of 80 μA are obtained. The surface NEA is still presence at the heat treatment temperature of 800 deg. C and disappeared at temperature of 1000 deg. C

  20. Influence of Microstructure and Composition Changes on Mechanical Characteristics of Aluminium Alloy After Heating and Cooling Treatment

    International Nuclear Information System (INIS)

    Sigit; Nuraini, E; Martoyo

    1998-01-01

    Influences of microstructure and chemical composition changes on mechanical characteristics of AIMg2 which were heated at 85-500 0 C and cooled with sands, water or air have been studied. Microstructure observation was carried out using optical microscope, while chemical composition determination by atomic absorption spectrophotometry (AAS). AIMg2 which has been heated at the relatively low temperature i. e, 200 0 C during 6 hours and cooled using sands showed a small change microstructure, but those will be clearly observed on the treatment at 300 0 C. The microstructure change is in agreement with the change of mechanical characteristic, I. e., the decreasing of tensile strength and hardness and increasing of elongation. After the temperature of treatment is higher than 300 0 C, the decreasing of the tensile strength was relatively constant, while the hardness increased. The microstructure of AIMg2 resulted from the heat treatment at temperature of 500 0 C was different with that of 300 0 C. Heat treatment at 500 0 C following by cooling in the sands, water or air respectively gave similar microstructure. Those also caused the change of alloying element content which was in agreement with decreasing of mechanical characteristics

  1. Heat treatment, microstructure and mechanical properties of a C–Mn–Al–P hot dip galvanizing TRIP steel

    International Nuclear Information System (INIS)

    Ding, Wei; Hedström, Peter; Li, Yan

    2016-01-01

    Heat treatments of a hot dip galvanizing TRIP (Transformation induced plasticity) steel with chemical composition 0.20C-1.50Mn-1.2Al-0.07P(mass%) were performed in a Gleeble 3500 laboratory equipment. The heat treatment process parameters were varied to investigate the effect of intercritical annealing temperature as well as isothermal bainitic transformation (IBT) temperature and time, on the microstructure and the mechanical properties. The microstructure was investigated using scanning electron microscopy, transmission electron microscopy and x-ray diffraction, while mechanical properties were evaluated by tensile testing. Furthermore, to generate a better understanding of the phase transformations during heat treatment, dilatometry trials were conducted. The desired microstructure containing ferrite, bainite, retained austenite and martensite was obtained after the heat treatments. It was further found that the IBT is critical in determining the mechanical properties of the steel, since it controls the fraction of bainite. With increasing bainite fraction, the fraction of retained austenite increases while the fraction of martensite decreases. The mechanical properties of the steel are excellent with a tensile strength above 780 MPa (expect in one case) and elongation above 22%.

  2. Processing and refinement of steel microstructure images for assisting in computerized heat treatment of plain carbon steel

    Science.gov (United States)

    Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu

    2017-11-01

    Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.

  3. Heat treatment, microstructure and mechanical properties of a C–Mn–Al–P hot dip galvanizing TRIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wei [School of Material and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Bayan Obo multimetallic resource comprehensive utilization Key lab, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Hedström, Peter [Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Li, Yan [Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Bayan Obo multimetallic resource comprehensive utilization Key lab, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2016-09-30

    Heat treatments of a hot dip galvanizing TRIP (Transformation induced plasticity) steel with chemical composition 0.20C-1.50Mn-1.2Al-0.07P(mass%) were performed in a Gleeble 3500 laboratory equipment. The heat treatment process parameters were varied to investigate the effect of intercritical annealing temperature as well as isothermal bainitic transformation (IBT) temperature and time, on the microstructure and the mechanical properties. The microstructure was investigated using scanning electron microscopy, transmission electron microscopy and x-ray diffraction, while mechanical properties were evaluated by tensile testing. Furthermore, to generate a better understanding of the phase transformations during heat treatment, dilatometry trials were conducted. The desired microstructure containing ferrite, bainite, retained austenite and martensite was obtained after the heat treatments. It was further found that the IBT is critical in determining the mechanical properties of the steel, since it controls the fraction of bainite. With increasing bainite fraction, the fraction of retained austenite increases while the fraction of martensite decreases. The mechanical properties of the steel are excellent with a tensile strength above 780 MPa (expect in one case) and elongation above 22%.

  4. Influence of Heat Treatments on Electrical Properties and Microstructure of 10 % Mass Fraction of Sucrose YBCO Superconductor

    International Nuclear Information System (INIS)

    Khalida Salleh; Fariesha, F.; Azhan, H.; Yusainee, S.Y.

    2013-01-01

    The influence of different heat treatments on the superconducting properties of 10 % mass fraction of sucrose structure YBCO superconductor was investigated. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) equipment were used to determine the phase of superconductor and structural studies respectively at 10 % mass fraction of sucrose. The samples were prepared via solid state (SSM) and co-precipitation (CPM) reaction methods and underwent sintering and heat treatment process at 900, 930 and 960 degree Celsius respectively with mixing of C 12 H 22 O 11 sucrose during pelletization. The T C,on decreases with respect to higher heat treatment temperature. The suppression of both T C,on and T C,off indicates the destruction of superconductivity trends. The best T C,off were achieved in pure SSM and CPM samples sintered at 950 degree Celsius for 5 hours with T C,off 86 K and 91 K respectively. Comparing with pure YBCO, the 10 % mass fraction of sucrose YBCO exhibited higher critical current, I C by two times. It indicates the effect of high surface area in porous structure. The XRD results confirmed that all the samples remain in single phase, which indicates no effect of sucrose in the porous structures sample and maintaining in orthorhombic structure. Higher heat treatment at 960 degree Celsius resulted in destruction on its superconductivity behavior due to the partial melt phase on its microstructure, especially in CPM. This is due to the smaller grain size of samples which trapped more heat and causing partial melting to occur rapidly. It can be deduced that, annealing temperatures at 900 and 930 degree Celsius are the best optimum heat treatments for CPM and SSM porous superconductor, respectively. (author)

  5. Effect of heat treatment oanas irradiation, and combined treatment on the shelf of fresh avocados (Persea americana L)

    International Nuclear Information System (INIS)

    Purwanto, Z.I.; Maha, Munsiah

    1987-01-01

    Effects of heat treatment, gamma irradiation, and combined treatments on the shelf-life of fresh avocados (Persea americana L.). Experiments to determine the effective irradiation conditions to prolong the shelf-life of fresh avocados were conducted at the centre for the Application of Isotopes washed and dried, then divided into 4 groups, namely for control (A), dipped in hot water at 40 0 C for 20 minutes (heat treatment, B), irradiated at a dose of 25 Gy (C), and combination of hot water dipping (40 0 C for 20 minutes) and irradiation at a 25 Gy (D). The samples were stored at room temperature. Evaluation on physical and chemical properties of the samples was done daily up to 10 days' storage. Parameters observed were texture, moisture and fat contents, percentage of weight loss, percentage of mature fruit, and subjective organoleptic evaluation. It was found that treated samples with and without combination treatment were still in good condition until 10 days of storage. It could be concluded that dipping in hot water, either alone or in combination with irradiation at a dose of 25 Gy could extend the shelf-life of fresh avocado up to 10 days at room temperature compared to only 5 days of the control. (author). 2 figs, 8 refs

  6. Effect of an Intermediate Heat-treatment on a Change of the Corrosion Resistance and Hardness of a HANA-4 Outer Strip

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Jung, Yang Il; Park, Sang Yoon; Choi, Byoung Kwon; Park, Jeong Yong; Jeong, Yong Hwan; Eom, Kyong Bo; Park, Nam Gyu; Lim, Yoon Soo

    2008-01-01

    KAERI (Korea Atomic Energy Research Institute) in collaboration with KNF (Korea Nuclear Fuel) undertook some researches on the applicability of HANA-4 and HANA-6 alloys for the spacer grid for a PWR (Pressurized Water Reactor) nuclear fuel. As a part of the research, KAERI studied the effect of the final heat-treatment on the mechanical and corrosion properties of a HANA-4 inner strip. The strip was manufactured with a sheet which had been intermediately heat-treated at about 580 .deg. C for 2.5-4 hours after each cold rolling before being processed into the final strip product. It was mentioned that the process with the intermediate heat treatment needed reviewing to establish an improved manufacturing process for the cold rolling. So, this work tried to check the effect of an intermediate heat-treatment on the properties of a HANA-4 strip using a specimen that was taken from a second hot rolled material before a cold-rolling. The manufacturing processes, with three different kinds of annealings, were introduced to investigate the applicable intermediate heat-treatment process. After all the cold-rolling processes, the Vickers hardness was measured for the final annealed specimens and 60 days of corrosion tests were carried out to check on the effect of the intermediate heat-treatment. Finally, an appropriate intermediate heat-treatment was proposed to improve the manufacturability of the HANA-4 strip

  7. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat......Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...

  8. A support system in virtual reality for effective hyperthermia treatments. Heating properties of needle applicator for brain tumors

    International Nuclear Information System (INIS)

    Shindo, Yasuhiro; Iseki, Yuya; Nakane, Kazuya; Mimoto, Naoki; Kubo, Mitsunori; Kato, Kazuo; Takahashi, Hideaki; Uzuka, Takeo; Fujii, Yukihiko

    2011-01-01

    This paper describes the effectiveness of the developed simulator system for performing an effective hyperthermia treatment with a needle applicator in virtual reality (VR). The human brain is protected by the skull, which makes it difficult to non-invasively heat deep brain tumors with electromagnetic energy. Generally, needle applicators were used in clinical practice to heat brain tumors. However, some problems exist. One is that this heating method has a small heating area around the needle. In order to expand the heating area of a needle applicator, we developed a new type of needle applicator made from a shape memory alloy (SMA). The thermal properties of the SMA were checked experimentally using the developed heating system. As a result, the proposed needle applicator made of SMA is useful to create a wider heating area inside a tumor. Another problem is that medical doctors find it difficult to put a needle applicator into a target point inside of tumors. Therefore, a support system for performing an effective hyperthermia treatment is required in the clinic. In this paper, first, we constructed an anatomical 3-D model from magnetic resonance imaging (MRI) and X-ray computed tomography (CT) images by using 3-D computer aided design (CAD) software. Second, we presented the finite element method (FEM) model which is divided into non-linear elements on 3-D computer graphics (CG). Finally, we calculated temperature distributions using the 3-D FEM model with blood perfusion during hyperthermia treatments. From these results, it was found that the proposed VR system is effective for performing hyperthermia treatments. (author)

  9. No major differences found between the effects of microwave-based and conventional heat treatment methods on two different liquid foods.

    Science.gov (United States)

    Géczi, Gábor; Horváth, Márk; Kaszab, Tímea; Alemany, Gonzalo Garnacho

    2013-01-01

    Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values) of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other ways as well.

  10. No major differences found between the effects of microwave-based and conventional heat treatment methods on two different liquid foods.

    Directory of Open Access Journals (Sweden)

    Gábor Géczi

    Full Text Available Extension of shelf life and preservation of products are both very important for the food industry. However, just as with other processes, speed and higher manufacturing performance are also beneficial. Although microwave heating is utilized in a number of industrial processes, there are many unanswered questions about its effects on foods. Here we analyze whether the effects of microwave heating with continuous flow are equivalent to those of traditional heat transfer methods. In our study, the effects of heating of liquid foods by conventional and continuous flow microwave heating were studied. Among other properties, we compared the stability of the liquid foods between the two heat treatments. Our goal was to determine whether the continuous flow microwave heating and the conventional heating methods have the same effects on the liquid foods, and, therefore, whether microwave heat treatment can effectively replace conventional heat treatments. We have compared the colour, separation phenomena of the samples treated by different methods. For milk, we also monitored the total viable cell count, for orange juice, vitamin C contents in addition to the taste of the product by sensory analysis. The majority of the results indicate that the circulating coil microwave method used here is equivalent to the conventional heating method based on thermal conduction and convection. However, some results in the analysis of the milk samples show clear differences between heat transfer methods. According to our results, the colour parameters (lightness, red-green and blue-yellow values of the microwave treated samples differed not only from the untreated control, but also from the traditional heat treated samples. The differences are visually undetectable, however, they become evident through analytical measurement with spectrophotometer. This finding suggests that besides thermal effects, microwave-based food treatment can alter product properties in other

  11. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.

    Science.gov (United States)

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Yamaguchi, S; Kizuki, T; Matsushita, T; Niinomi, M; Kokubo, T; Nakamura, T

    2011-03-01

    Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Mild heat treatments induce long-term changes in metabolites associated with energy metabolism in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sarup, Pernille; Petersen, Simon Metz Mariendal; Nielsen, Niels Christian

    2016-01-01

    treatments on the metabolome of male Drosophila melanogaster. 10 days after the heat treatment, metabolic aging appears to be slowed down, and a treatment response with 40 % higher levels of alanine and lactate and lower levels of aspartate and glutamate were measured. All treatment effects had disappeared...

  13. Solar-Energy System for a Commercial Building--Topeka, Kansas

    Science.gov (United States)

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  14. Microstructure evolution during spray rolling and heat treatment of 2124 Al

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Johnson, S.B.; Delplanque, J.-P.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray rolling is a strip-casting technology that combines elements of spray forming and twin-roll casting. It consists of atomizing molten metal with a high velocity inert gas, quenching the resultant droplets in flight, and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets and conduction heat transfer at the rolls rapidly remove the metal's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly-solidified strip. Spray rolling operates at a higher solidification rate than conventional twin-roll casting and is able to process a broader range of alloys at high production rates. A laboratory-scale strip caster was constructed and used to evaluate the interplay of processing parameters and strip quality for strips up to 200 mm wide and 1.6-6.4 mm thick. This paper examines microstructure evolution during spray rolling and explores how gas-to-metal mass flow ratio influences the microstructure and mechanical properties of spray-rolled 2124 Al. The influences of solution heat treatment and cold rolling on grain structure and constituent particle spheroidization are also examined.

  15. Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity

    Science.gov (United States)

    Dhakal, P.; Ciovati, G.; Myneni, G. R.; Gray, K. E.; Groll, N.; Maheshwari, P.; McRae, D. M.; Pike, R.; Proslier, T.; Stevie, F.; Walsh, R. P.; Yang, Q.; Zasadzinzki, J.

    2013-04-01

    Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made of “medium purity” Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800-1400°C was done in a newly designed vacuum induction furnace. Q0 values of the order of 2×1010 at 2.0 K and peak surface magnetic field (Bp) of 90 mT were achieved reproducibly. A Q0 value of (5±1)×1010 at 2.0 K and Bp=90mT was obtained after heat treatment at 1400°C. This is the highest value ever reported at this temperature, frequency, and field. Samples heat treated with the cavity at 1400°C were analyzed by secondary ion mass spectrometry, x-ray photoelectron spectroscopy, energy dispersive x ray, point-contact tunneling, and x-ray diffraction, and revealed a complex surface composition which includes titanium oxide, increased carbon, and nitrogen content but reduced hydrogen concentration compared to a non-heat-treated sample.

  16. Effects of post-heat treatment on microstructure and properties of laser cladded composite coatings on titanium alloy substrate

    Science.gov (United States)

    Li, G. J.; Li, J.; Luo, X.

    2015-01-01

    The composite coatings were produced on the Ti6Al4V alloy substrate by laser cladding. Subsequently, the coatings were heated at 500 °C for 1 h and 2 h and then cooled in air. Effects of post-heat treatment on microstructure, microhardness and fracture toughness of the coatings were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), optical microscopy (OM). Wear resistance of the coatings was evaluated under the dry sliding reciprocating friction condition at room temperature. The results indicated that the coatings mainly consist of a certain amount of coarse white equiaxed WC particles surrounded by the white-bright W2C, a great deal of fine dark spherical TiC particles and the matrix composed of the α(Ti), Ti2Ni and TiNi phases. Effects of the post-heat treatment on phase constituents and microstructure of the coatings were almost negligible due to the low temperature. However, the post-heat treatment could decrease the residual stress and increase fracture toughness of the coatings, and fracture toughness of the coatings was improved from 2.77 MPa m1/2 to 3.80 MPa m1/2 and 4.43 MPa m1/2 with the heat treatment for 1 h and 2 h, respectively. The mutual role would contribute to the reduction in cracking susceptibility. Accompanied with the increase in fracture toughness, microhardness of the coatings was reduced slightly. The dominant wear mechanism for all the coatings was abrasive wear, characterized by micro-cutting or micro-plowing. The heat treatment could significantly decrease the average friction coefficient and reduce the fluctuation of the friction coefficient with the change in sliding time. The appropriate heat treatment time (approximately 1 h) had a minimal effect on wear mass loss and volume loss. Moreover, the improvement in fracture toughness will also be beneficial to wear resistance of the coatings under the long service.

  17. Effect of T6 heat treatment on damping characteristics of Al/RHA ...

    Indian Academy of Sciences (India)

    Abstract. In the present work, effect of T6 heat treatment on the damping behaviour of aluminum/rice husk ash .... alloy-based composites, there is dearth of information on the damping ... fication. Using the process 4, 6 and 8% by weight, RHA.

  18. Decreased survival of prostate cancer cells in vitro by combined treatment of heat and an antioxidant inhibitor diethyldithiocarbamate (DDC).

    Science.gov (United States)

    Moriyama-Gonda, Nobuko; Igawa, Mikio; Shiina, Hiroaki; Urakami, Shinji; Terashima, Masaharu

    2003-11-01

    The aim of this study was to examine a modulation of thermotolerance by treatment with combination of heat and the antioxidant inhibitor diethyldithiocarbamate (DDC) of the PC-3 prostate cancer cells. To determine thermotolerance, cells were heated once or twice. Two 1 h exposures at 43 degrees C, with a recovery period in between, revealed better survival/recovery of cells after the second exposure than after the first (fig. 1A + 1B). Additional experiments were performed, heating cells twice (fig. 1B + 1C). First, cells were heated at 43 degrees C for 1 h and, after various recovery times (intervals) at 37 degree C, subsequently reheated at 44 degrees C for 1 h. To ensure effective cell killing, efficiency of the combined treatments of 1 mM DDC and heating at 43 or 44 degrees C for 1 h was estimated by measuring cell survival, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity and heat shock protein 70 (hsp 70) expression. To obtain a more effective method for subsequent heat exposure, cells were heated twice after a 24 h interval in the presence or absence of 1 mM DDC. ROS generation and SOD activity immediately increased correlating with duration of heating, but their levels gently decreased with time after discontinuation of heating. On the other hand, hsp 70 levels slowly increased, also correlating with duration of heating but continued to increase with time after discontinuation of heating for a certain period. DDC administration coupled with heating at 43 or 44 degrees C significantly decreased cell survival compared to heating alone (p DDC as compared to heat alone at 43 and 44 degrees C (p DDC could have potential benefits in the treatment of prostate cancer.

  19. Field Demonstration of Ground-Source Integrated Heat Pump - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Reducing energy consumption in buildings is key to reducing or limiting the negative environmental impacts from the building sector. According to the United States (U.S.) Energy Information Administration (EIA), in 2013, commercial buildings consumed 18.1 quads of primary energy, which was 18.6% of the total U.S. primary energy consumption. The primary energy consumption in the commercial sector is projected to increase by 2.8 quads from 2013 to 2040, the second largest increase after the industrial sector. Further space heating, space cooling, and ventilation (HVAC) services accounted for 31% of the energy consumption in commercial buildings. The technical objective of this project is to demonstrate the capability of the new GS-IHP system to reduce overall energy use for space heating, space cooling, and water heating by at least 45% vs. a conventional electric RTU and electric WH in a light commercial building application. This project supports the DOE-Building Technologies Office (BTO) goals of reducing HVAC energy use by 20% and water heating by 60% by 2030.

  20. Heat treatment eliminates 'Candidatus Liberibacter asiaticus' from infected citrus trees under controlled conditions.

    Science.gov (United States)

    Hoffman, Michele T; Doud, Melissa S; Williams, Lisa; Zhang, Mu-Qing; Ding, Fang; Stover, Ed; Hall, David; Zhang, Shouan; Jones, Lisa; Gooch, Mark; Fleites, Laura; Dixon, Wayne; Gabriel, Dean; Duan, Yong-Ping

    2013-01-01

    Huanglongbing (HLB) is one of the most destructive diseases of citrus worldwide. The three known causal agents of HLB are species of α-proteobacteria: 'Candidatus Liberibacter asiaticus', 'Ca. L. africanus', and 'Ca. L. americanus'. Previous studies have found distinct variations in temperature sensitivity and tolerance among these species. Here, we describe the use of controlled heat treatments to cure HLB caused by 'Ca. L. asiaticus', the most prevalent and heat-tolerant species. Using temperature-controlled growth chambers, we evaluated the time duration and temperature required to suppress or eliminate the 'Ca. L. asiaticus' bacterium in citrus, using various temperature treatments for time periods ranging from 2 days to 4 months. Results of quantitative polymerase chain reaction (qPCR) after treatment illustrate significant decreases in the 'Ca. L. asiaticus' bacterial titer, combined with healthy vigorous growth by all surviving trees. Repeated qPCR testing confirmed that previously infected, heat-treated plants showed no detectable levels of 'Ca. L. asiaticus', while untreated control plants remained highly infected. Continuous thermal exposure to 40 to 42°C for a minimum of 48 h was sufficient to significantly reduce titer or eliminate 'Ca. L. asiaticus' bacteria entirely in HLB-affected citrus seedlings. This method may be useful for the control of 'Ca. Liberibacter'-infected plants in nursery and greenhouse settings.

  1. Influence of heat treatment on hole transfer dynamics in core-shell quantum dot/organic hole conductor hybrid films

    Science.gov (United States)

    Sun, Mingye; Zheng, Youjin; Zhang, Lei; Zhao, Liping; Zhang, Bing

    2017-08-01

    The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4‧,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.

  2. Calculation of α/γ equilibria in SA508 grade 3 steels for intercritical heat treatment

    International Nuclear Information System (INIS)

    Lee, B.J.; Kim, H.D.; Hong, J.H.

    1998-01-01

    An attempt has been made to suggest an optimum temperature for intercritical heat treatment of an SA508 grade 3 steel for nuclear pressure vessels, based on thermodynamic calculation of the α/γ phase equilibria. A thermodynamic database constructed for the Fe-Mn-Ni-Mo-Cr-Si-V-Al-C-N ten-component system and an empirical criterion that the amount of reformed austenite should be around 40 pct were used for thermodynamic calculation and derivation of the optimum heat-treatment temperature, respectively. The calculated optimum temperature, 720 C, was in good agreement with an experimentally determined temperature of 725 C obtained through an independent experimental investigation of the same steel. The agreement between the calculated and measured fraction of reformed austenite during the intercritical heat treatment was also confirmed. Based on the agreement between calculation and experiment, it could be concluded that thermodynamic calculations can be successfully applied to the materials and/or process design as an additive tool to the already established technology, and that the currently constructed thermodynamic database for steel systems shows an accuracy that makes such applications possible

  3. Statement on a heat treatment to control Agrilus planipennis

    DEFF Research Database (Denmark)

    Baker, R.; Candresse, T.; Dormannsné Simon, E.

    2012-01-01

    , to clarify its conclusion and indicate what data would be needed to assess the effectiveness of the new treatment. The Panel concluded that the new proposal is not within the scope of the opinion as the data provided by the US Authorities cannot be used to evaluate the effectiveness of the new proposed heat...

  4. Effect of heat treatment on strength and abrasive wear behaviour of ...

    Indian Academy of Sciences (India)

    In the present investigation Al6061–SiCp composites was fabricated by liquid metallurgy route with percentages of SiCp varying from 4 wt% to 10 wt% in steps of 2 ... However, under identical heat treatment conditions, adopted Al6061–SiCp composites exhibited better microhardness and tensile strength reduced wear loss ...

  5. Nuclear power plant waste heat utilization

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2/sup 0/F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60/sup 0/F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability.

  6. Nuclear power plant waste heat utilization

    International Nuclear Information System (INIS)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2 0 F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60 0 F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability

  7. Additive manufacturing of Co-Cr-Mo alloy: Influence of heat treatment on microstructure, tribological and electrochemical properties

    Directory of Open Access Journals (Sweden)

    Kedar Mallik Mantrala

    2015-03-01

    Full Text Available Co-Cr-Mo alloy samples, fabricated using Laser Engineered Net Shaping – a laser based additive manufacturing technology, have been subjected heat treatment to study its influence on microstructure, wear and corrosion properties. Following L9 Orthogonal array of Taguchi method, the samples were solutionized at 1200oC for 30, 45 and 60 min followed by water quenching. Ageing treatment was done at 815oC and 830oC for 2, 4 and 6 h. Heat treated samples were evaluated for their microstructure, hardness, wear resistance and corrosion resistance. The results revealed that highest hardness of 512 ± 58 Hv and wear rate of 0.90 ± 0.14 × 10-4 mm3/N.m can be achieved with appropriate post-fabrication heat treatment. ANOVA and grey relational analysis on the experimental data revealed that the samples subjected to solution treatment for 60 min, without ageing, exhibit best combination of hardness, wear and corrosion resistance.

  8. Aesthetic value improvement of the ruby stone using heat treatment and its synergetic surface study

    International Nuclear Information System (INIS)

    Sahoo, Rakesh K.; Mohapatra, Birendra K.; Singh, Saroj K.; Mishra, Barada K.

    2015-01-01

    Highlights: • Natural ruby is heated at high temperature with metal oxide additives (PbO and ZnO) to enhance its aesthetic value. • Changes in surface characteristics of these natural rubies before and after heat treatment are compared. • The R-line peak splitting in the PL spectra and the contrary shift of the Al 2p peaks in the XPS spectra are explicated. - Abstract: The surface behavior of the natural ruby stones before and after heat treatment with metal oxide additives like: zinc oxide (ZnO) and lead oxide (PbO) have been studied. The surface appearance of the ruby stones processed with the metal oxides changed whereas the bulk densities of the stones remained within the range of 3.9–4.0 g/cm 3 . The cracks healing and pores filling by the metal oxides on the surface of the ruby have been examined using scanning electron microscopy. The chemical compositions based on the XPS survey scans are in good agreement with the expected composition. The phase and crystallinity of the ruby stones original and heat-treated were obtained from their X-ray diffraction patterns. The change in peak separation between R 1 and R 2 – peaks in photoluminescence spectra and the contrary binding energy shift of the Al 2p peaks in the X-ray photoelectron spectra have been explicated. Moreover, in this work we describe the change in surface chemical and physical characteristics of the ruby stone before and after heat treatment

  9. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.

    Science.gov (United States)

    Kumar, P; Kumar, Dinesh; Rai, K N

    2015-01-01

    The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Karakteristik Fisikokimia Mie Kering Berbasis Pati Ubi Jalar Varietas Lokal Dengan Menggunakan Metode Heat Moisture Treatment

    Directory of Open Access Journals (Sweden)

    Zaidiyah Zaidiyah

    2015-10-01

    Full Text Available The effects of heat moisture treatment (110°C and pretreatment on the physicochemical properties of sweet potato dried-noodles starch based were investigated. Completely randomized design was performed which arranged by two-factor. The first factor is noodles consist of native starch and treated starch (heat moisture treatment. The second factor is a type of sweet potato local varieties which consists of three levels: orange, purple and cream flesh color, respectively. Native starch and treated starch treatment showed significant effect on water content, protein and carbohydrate/fiber. Water absorption and cooking loss of dried noodle is highly different between native (non-HMT and treated starch (HMT.

  11. Effects of Heat-treatment on the Tensile Properties of Ti-Al-Zr Alloy

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kang, Chang Sun; Baek, Jong Hyuk; Choi, Byoung Kwon; Jeong, Yong Hwan

    2006-01-01

    Ti-Al-Zr, titanium alloy, has been well known material as one of the candidates for heat-exchange tubes in steam generators in SMART (System integrated Modular Advanced ReacTor). But the primary circuit with the primary coolant is much different from that of commercial PWRs, i.e., an ammonia is used as a pH raising agent and the heat-exchange tubes are exposed to the primary coolant water at high temperatures and in high-pressure environments. Thus, excellent mechanical properties and corrosion resistance are required for the safe operation during the lifetime. A lot of tests were done to examine the mechanical properties of the Ti-Al-Zr alloy in the room temperature. But the test of this work is done in the more realistic condition from the viewpoint of the system characteristics for SMART design concept. Therefore, the purpose of this study is to evaluate the effects of annealing and cooling rate on the tensile properties of Ti-Al-Zr alloy at the operation temperature

  12. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    Science.gov (United States)

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Artificial crystals with 3d metal and palladium particles subjected to high-temperature heat treatment

    Science.gov (United States)

    Rinkevich, A. B.; Nemytova, O. V.; Perov, D. V.; Samoylovich, M. I.; Kuznetsov, E. A.

    2018-04-01

    High-temperature heat treatment has valuable impact on the structure and physical properties of artificial crystals with 3d metal and palladium particles. Artificial crystals are obtained by means of introduction of particles into the interspherical voids of opal matrices. The magnetic properties are studied at the temperatures ranging from 2 to 300 K and in fields up to 350 kOe. Microwave properties are investigated in the millimeter frequency range. The complex dielectric permittivity of several nanocomposites is measured. The influence of heat treatment up to 960 °C on the structure of artificial crystals is clarified.

  14. Multi-Function Gas Fired Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh Momen, Ayyoub [ORNL; Abu-Heiba, Ahmad [ORNL; Vineyard, Edward Allan [ORNL

    2015-11-01

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibration reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.

  15. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yongxiang, Yang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1998-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  16. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  17. Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential

    International Nuclear Information System (INIS)

    Kim, Yoo-Shin; Lee, Tae Hoon; O'Neill, Brian E.

    2015-01-01

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy

  18. Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoo-Shin; Lee, Tae Hoon; O' Neill, Brian E., E-mail: BEOneill@houstonmethodist.org

    2015-08-14

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.

  19. Effect of heat treatment on friction and wear behavior of al-6061 composite reinforced with 10% submicron Al2O3 particles

    International Nuclear Information System (INIS)

    AlQutub, Amro M

    2009-01-01

    The present research aims at investigating experimentally the effect of heat treatment on the hardness, wear behavior, and friction properties of 6061 Al composite reinforced with sub-micron Al2O3 (10% vol.) produced by powder metallurgy. Heat treatment of the as-received composite starts by the solution treatment at a temperature of 550 degree C for a period of two hours followed by quenching in chilled water and then age hardening at 175 degree C for different periods. It is illustrated that heat treatment has relatively small effect on the hardness of the composite. This can be attributed to the large interface areas between the matrix and the sub-micron alumina in the composite, which reduces the whole concentration of vacancies in the matrix. The result is reduced efficiency of age hardening. For this reason, wear and friction tests were limited to the heat treated composite with four hours aging only. A pin-on-disc tribometer was used to conduct wear and friction tests against AISI 4140 at room temperature for both as-received composite and heat treated composite (with four hours of aging) for comparison. Wear tests indicate that heat treatment has the advantage of increasing transition load to severe wear by 30% compared to as-received composite. On the other hand, at high loads heat treatment results in larger delaminated flakes on the worn surface, indicating reduced fracture toughness. This, in turn, resulted in higher wear rates compared to the as-received composite. Dry friction coefficient is practically unaffected by the heat treatment. (author)

  20. Preparation, heat treatment, and mechanical properties of the uranium-5 weight percent chromium eutectic alloy

    International Nuclear Information System (INIS)

    Townsend, A.B.

    1980-10-01

    The eutectic alloy of uranium-5 wt % chromium (U-5Cr) was prepared from high-purity materials and cast into 1-in.-thick ingots. This material was given several simple heat treatments, the mechanical properties of these heat-treated samples were determined; and the microstructure was examined. Some data on the melting point and transformation temperatures were obtained