WorldWideScience

Sample records for commercial fusion electric

  1. Intitutional constraints to fusion commercialization

    International Nuclear Information System (INIS)

    1979-10-01

    The major thrust of this report is that the long time frame associated with the development of commercial fusion systems in the context of the commercialization and institutional history of an allied technology, fission-power, suggests that fusion commercialization will not occur without active and broad-based support on the part of the Nation's political leaders. Its key recommendation is that DOE fusion planners devote considerable resources to analytical efforts aimed at determining the need for fusion and the timing of that need, in order to convince policymakers that they need do more than preserve fusion as an option for application at some indefinite point in the future. It is the thesis of the report that, in fact, an act of political vision on the part of the Nation's leaders will be required to accomplish fusion commercialization

  2. Reference commercial fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.R.; Gore, B.F.

    1976-09-01

    Currently available conceptual designs for commercial fusion power plants are for first generation plants using deuterium-tritium (D-T) fuel, and are all functionally similar. This similarity has been used as a basis for defining an envelope of D-T fusion power plant characteristics which encompasses the characteristics of the available designs. A description of this envelope, including general process descriptions, proposed materials uses and a tabulation of numerical ranges of plant parameters is presented in this document.

  3. Siting commercial fusion power plants

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-09-01

    This document discusses siting requirements for fusion power plants. The current concept of the reference first commercial reactors was developed from analysis of the characteristics of current design concepts. Because those reactors use the deuterium-tritium fuel reaction, large quantities of activation products and tritium are created and must be considered as potential sources of radiation doses (Young, 1976 and Young and Gore, 1976). However, advanced reactors using fuel reactions that neither consume nor create radionuclides are briefly considered

  4. Electric automobile: Commercialization prospects

    International Nuclear Information System (INIS)

    Tabasso, L.

    1992-01-01

    Performance results during one-month test driving of a small FIAT car (normally equipped with a 30-45 Hp internal combustion engine), retrofitted to operate with a set of electric batteries delivering 15 Hp, demonstrated that, unless the design of an electric car's transmission and control systems are based completely on electric power operation, the vehicle loses its competitiveness with conventional cars. Making reference to the findings of an ENEA (Italian Agency for New Technology, Energy and Environment) electric powered vehicle R ampersand D program, this paper assesses the feasibility of electric powered vehicles and points out their major drawbacks: battery volume, weight, cost and recharging requirements in densely populated urban environments. The paper also notes that mass conversion to these vehicles by itself will not solve the urban traffic congestion problem for which optimum traffic control and parking areas are required

  5. Bringing fusion electric power closer

    International Nuclear Information System (INIS)

    Kintner, E.

    1977-01-01

    A review of the controlled fusion research program is given. The tokamak research program is described. Beam injection heating, control systems, and the safety of fusion reactors are topics that are also discussed

  6. Issues in the commercialization of magnetic fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, A.D.; Willke, T.L.

    1979-12-01

    This study identifies and outlines the issues that must be considered if fusion is to be put into commercial practice. The issues are put into perspective around a consistent framework and a program of study and research is recommended to anticipate and handle the issues for a successful fusion commercialization program. (MOW)

  7. Issues in the commercialization of magnetic fusion power

    International Nuclear Information System (INIS)

    Rockwood, A.D.; Willke, T.L.

    1979-12-01

    This study identifies and outlines the issues that must be considered if fusion is to be put into commercial practice. The issues are put into perspective around a consistent framework and a program of study and research is recommended to anticipate and handle the issues for a successful fusion commercialization program

  8. Technology transfer: the key to fusion commercialization

    International Nuclear Information System (INIS)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer

  9. Plan for the development and commercialization of inertial confinement fusion

    International Nuclear Information System (INIS)

    Willke, T.; Dingee, D.; Ault, L.; Bampton, M.; Bickford, W.; Hartman, J.; Rockwood, A.; Simonen, E.; Teofilo, V.; Frank, T.

    1978-01-01

    An engineering development program strategy to take inertial confinement fusion (ICF) from the milestone of scientific feasibility to a point where its commercial viability can be determined is described. The ICF program objectives and basic program strategy are discussed

  10. Tritium Breeding Blanket for a Commercial Fusion Power Plant - A System Engineering Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Wayne R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-14

    The goal of developing a new source of electric power based on fusion has been pursued for decades. If successful, future fusion power plants will help meet growing world-wide demand for electric power. A key feature and selling point for fusion is that its fuel supply is widely distributed globally and virtually inexhaustible. Current world-wide research on fusion energy is focused on the deuterium-tritium (DT for short) fusion reaction since it will be the easiest to achieve in terms of the conditions (e.g., temperature, density and confinement time of the DT fuel) required to produce net energy. Over the past decades countless studies have examined various concepts for TBBs for both magnetic fusion energy (MFE) and inertial fusion energy (IFE). At this time, the key organizations involved are government sponsored research organizations world-wide. The near-term focus of the MFE community is on the development of TBB mock-ups to be tested on the ITER tokamak currently under construction in Caderache France. TBB concepts for IFE tend to be different from MFE primarily due to significantly different operating conditions and constraints. This report focuses on longer-term commercial power plants where the key stakeholders include: electric utilities, plant owner and operator, manufacturer, regulators, utility customers, and in-plant subsystems including the heat transfer and conversion systems, fuel processing system, plant safety systems, and the monitoring control systems.

  11. Progress commercializing solar-electric power systems

    International Nuclear Information System (INIS)

    Dracker, R.; De Laquil, P. III

    1996-01-01

    The commercial status of the principal solar electric technologies -- photovoltaic and solar thermal -- is reviewed. Current and near-term market niches are identified, and projected longer-term markets are explored along with the key strategies for achieving them, including technological breakthroughs, manufacturing developments, economies of scale and mass production, and market creation. Market barriers and public policy impacts on commercialization are discussed

  12. Structural design features for commercial fusion power reactor magnet systems

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Young, W.C.

    1980-01-01

    The evolution of structural design features for commercial fusion power reactor magnet systems is discussed. Changing concepts in plasma physics and impurity control, new data on radiation damage in materials and developments in the maintainability and repairability of the magnet systems are the driving influences in this evolution. Generic problems in the magnet designs are discussed for several proposed magnetic confinement system configurations, including tokamaks, tandem mirrors, the Elmo Bumpy Torus, and the reversed field theta pinch. These systems are compared on the basis of how efficiently the magnets make use of structural materials. A measure of the effectiveness of a magnet system is found by determining the ratio of net electric power output from the reactor to the stored energy in the magnetic fields produced by the magnet coils in a given system. The stored energy in the magnetic field can then be used to establish a minimum structural volume and mass by use of the virial theorem. Experience with coil types such as solenoids, toroids, Yin-Yang, etc. has established factors by which the minima must be multiplied to yield anticipated volumes and masses of realistic magnet systems. These initial, admittedly approximate, calculations allow designers to estimate early in the process the contribution of the magnet systems to the overall cost of a fusion reactor. As work progresses these estimates can be used to indicate the degree to which the designers is making effective use of the structural material. Basic rules for effective placement of structure, common to all magnet systems, are also discussed in detail. Factors are presented which make it possible to compare structural savings to the cost of researching the parameters involved in the stability of superconductors. (orig.)

  13. Energetic-economic analysis of inertial fusion plants with tritium commercial production

    International Nuclear Information System (INIS)

    Vezzani, M.; Cerullo, N.; Lanza, S.

    2000-01-01

    The realization of nuclear power plants based on fusion principles is expected to be, at the moment, very expensive. As a result the expected cost of electricity (COE) of fusion power plants is much higher than the COE of fission and fossil power plants. Thus it is necessary to study new solutions for fusion power plant designs to reduce the COE. An interesting solution for the first generation of fusion plants is to produce a surplus of tritium for commercial purposes. The present paper is concerned with the study of whether such a tritium surplus production can improve the plant economic balance, so that the COE is reduced, and to what extent. The result was that such a production allows a considerable reduction of COE and seems to be a good direction for development for the first generation of fusion power plants. To give an example, for a reference inertial confinement fusion (ICF) power plant the rise of the plant net tritium breeding ratio (TBR n ) from 1 to 1.2 would allow, in the conservative estimate of a tritium market price (C T ) of 5 M$/kg, a COE reduction of about 20%. In the estimate of a TBR n rise from 1 to 1.3 and of a C T value of 10 M$/kg, COE reduction could be more than 50%! In conclusion, the present paper points out the influence of TBR increase on COE reduction. Such a conclusion, which holds true for every fusion plant, is much more valid for ICF plants in which it is possible to reach higher TBR values and to use tritium extraction systems easily. Thus, considering the relevant economic advantages, a commercial tritium surplus production should not be disregarded for first generation fusion power plant designs, in particular for ICF plant designs

  14. Fusion power in a future low carbon global electricity system

    DEFF Research Database (Denmark)

    Cabal, H.; Lechón, Y.; Bustreo, C.

    2017-01-01

    Fusion is one of the technologies that may contribute to a future, low carbon, global energy supply system. In this article we investigate the role that it may play under different scenarios. The global energy model ETM (originally EFDA TIMES Model) has been used to analyse the participation...... of fusion technologies in the global electricity system in the long term. Results show that fusion technologies penetration is higher in scenarios with stricter CO2 emissions reduction targets. In addition, investment costs and discount rates of fusion technologies are key factors for fusion implementation....... Finally, the main competitors for fusion in future are Carbon Capture and Storage and fission technologies....

  15. Compact Commercial Tokamak Reactor (CCTR): a concept for a 500-MWe commercial-tokamak fusion system

    International Nuclear Information System (INIS)

    Gillen, T.J.

    1980-11-01

    A detailed set of self-consistent parameters and costs for the conceptual design of a Compact Commercial Tokamak Reactor (CCTR) is given. Several of the basic design features are the following: an ignited plasma with a major radius of 4.9 m and minor radius of 1.4 m; a net electrical output of 500 MW; a borated-water-cooled, stainless steel shield; and a toroidal field of 12 T at the coil. The design, which utilizes the Westinghouse computer code for the COsting And Sizing of D-T burning Tokamaks (COAST), mainly provides the sizes and geometries associated with the definition of the main component features for which a detailed engineering design can be effectively undertaken. Design study alternatives, including a neutral beam driven design option, a design option with a toroidal field of 13 T at the coil, and a tungsten-shielded option are considered for the CCTR. Also included is the conceptual design of a Compact Fusion Engineering Device

  16. Fusion Energy from the electric utilities perspective: Fusion Innovation Industry Forum

    International Nuclear Information System (INIS)

    Tagle, J. A.; Felipe, A.; Gomez, A.; Sanchez-Mayoral, M. L.; Merino, A.

    2013-01-01

    The paper presents the different future energy scenarios envisaged and the so called Power Generation Fleet Transition in which Fusion Energy could play an important role. A review of the R and D and Innovation main drivers in the electric sector is outline, with a detail description of the main issues and strategic challenges in the medium and short term. The worldwide historical involvement of electric utilities in Fusion is presented and revised under the new USA Utilities technical assessment carried out by the Electric Power Research Institute EPRI. The paper also presents the work done in the last few years by the European Fusion Industry Innovation Forum FIIF-MB in order to to evaluate a wide range of fusion concepts from the utility standpoint, to enhance utilities perspective on fusion, to provide guidance to Government Bodies and national Energy strategies for fusion-utilities and finally to establish a basis for communication and cooperation in fusion for utilities standpoint. Finally the paper comments the utilities challenges pointed out by the Fusion electricity: a road map to the realization of fusion energy report issued this year by the European Fusion Development Agreement EFDA.

  17. Technology requirements for commercial applications of inertial confinement fusion

    International Nuclear Information System (INIS)

    Frank, T.G.; Rossi, C.E.

    1981-01-01

    Current inertial confinement fusion (ICF) research is directed primarily at physics experiments intended to provide confidence in the scientific feasibility of the basic concept. In conjunction with these experiments, a variety of laser and particle beam drivers having potential for eventual use in fusion power plants is being developed. Expectations are that the scientific feasibility of ICF will be demonstrated in the latter part of the 1980s. At that time, the emphasis of the program will shift to engineering, economic, environmental, and licensing issues with the necessary technology development effort continuing into the early part of the next century. This paper discusses the technology requirements for the successive phases of engineering development leading to commercial application of ICF. The engineering areas requiring significant effort for ICF application include high average power driver development; pulsed high-energy power supply development; reactor cavity and heat transport system design; tritium extraction and control; commercial pellet development; pellet injection, tracking, and targeting systems design; materials radiation, fatigue, and corrosion behavior; and reactor plant systems integration and demonstration

  18. Overview of the STARFIRE reference commercial tokamak fusion power reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Graumann, D.; Barry, K.

    1980-01-01

    The purpose of the STARFIRE study is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The major features for STARFIRE include a steady-state operating mode based on a continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup, superconducting EF coils outside the TF superconducting coils, fully remote maintenance, and a low-activation shield

  19. Commercial green electricity products; Zakelijke groenestroomproducten

    Energy Technology Data Exchange (ETDEWEB)

    Wielders, L.M.L.; Afman, M.R.

    2012-12-15

    The Dutch 100% Sustainable Energy: Green ICT campaign initiated by Hivos targets data centres, appealing to these companies to consider the environmental footprint of the electricity they use. Hivos is keen for a debate on greener alternatives and wanted a review of the sustainability of the various options available for buying 'green power' on the commercial market in the Netherlands, with a reasoned discussion of each. That review, laid down in this report, examines and discusses the various 'green power products' for the commercial market, providing a springboard for data centres to switch to a 'greener' product. To that end 'green power products' were categorized to highlight the differences between them. The highest score was given to renewable energy produced without any operating subsidy (the so-called SDE+ scheme), or with the higher price being paid for entirely by customers. Supply in these two categories is still fairly negligible, as this essentially represents an energy market in which renewables are cost-competitive with 'grey' electricity, or one in which customers are willing to pay (far) more for their electricity. The lowest scores were assigned to renewable power sourced in other countries and to 'grey' electricity [Dutch] De Hivos-bedrijvencampagne 100% Sustainable Energy: Green ICT richt zich op de datacenterbedrijven. De datacenterbedrijven worden aangesproken op de duurzaamheid van hun keuze voor de ingekochte elektriciteit. Hivos wil het gesprek aangaan over meer duurzame alternatieven. Hiervoor heeft Hivos behoefte aan een overzicht van de duurzaamheid van de verschillende opties voor de afname van duurzame elektriciteit (groene stroom) zoals die op de zakelijke markt in Nederland worden aangeboden, inclusief een onderbouwing. Dit rapport geeft een overzicht en inzicht in de verschillende groenestroomproducten voor de zakelijke markt zodat de datacenters kunnen overstappen op een

  20. STARFIRE: a commercial tokamak fusion power plant study

    International Nuclear Information System (INIS)

    1980-09-01

    STARFIRE is a 1200 MWe central station fusion electric power plant that utilizes a deuterium-tritium fueled tokamak reactor as a heat source. Emphasis has been placed on developing design features which will provide for simpler assembly and maintenance, and improved safety and environmental characteristics. The major features of STARFIRE include a steady-state operating mode based on continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup and low vulnerable tritium inventories, superconducting EF coils outside the superconducting TF coils, fully remote maintenance, and a low-activation shield. A comprehensive conceptual design has been developed including reactor features, support facilities and a complete balance of plant. A construction schedule and cost estimate are presented, as well as study conclusions and recommendations

  1. STARFIRE: a commercial tokamak fusion power plant study

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    STARFIRE is a 1200 MWe central station fusion electric power plant that utilizes a deuterium-tritium fueled tokamak reactor as a heat source. Emphasis has been placed on developing design features which will provide for simpler assembly and maintenance, and improved safety and environmental characteristics. The major features of STARFIRE include a steady-state operating mode based on continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup and low vulnerable tritium inventories, superconducting EF coils outside the superconducting TF coils, fully remote maintenance, and a low-activation shield. A comprehensive conceptual design has been developed including reactor features, support facilities and a complete balance of plant. A construction schedule and cost estimate are presented, as well as study conclusions and recommendations.

  2. Electricity Profile Study for Domestic and Commercial Sectors

    OpenAIRE

    Asmarashid Ponniran; Nur Azura Mamat; Ariffudin Joret

    2012-01-01

    As Malaysia move towards as a developed country, it is expected that the electricity consumption in domestic and commercial sectors will increase as well as more industrials and households need. This study is to investigate the electricity profile in domestic and commercial sectors by monitoring some appropriate appliances that contribute high electricity consumption. The characteristics for every major loads are examined and the potential energy saving is compared to an efficient electrical ...

  3. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  4. Assessment of the critical engineering data needs for the commercialization of magnetic confinement fusion

    International Nuclear Information System (INIS)

    Waganer, L.M.; Zuckerman, D.S.

    1983-01-01

    A survey of twenty-two recent conceptual fusion reactor designs was conducted to ascertain both generic and specific engineering data needs critical for the commercialization of magnetic confinement fusion (MCF). Design experts or advocates for each concept were queried as to the more critical engineering issues and data needs affecting the achievement of commercialization. For each concept, the technical issues were identified and the data needs quantified. Issues and data needs were then ranked based upon the experts' perceptions of the relative importance of each to the concept. The issues encompassed all aspects of the fusion reactor plant design including materials, performance, maintainability, operability, cost, safety and resources

  5. Electrical energy and cost for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Pence, G.A.

    1983-01-01

    An operational scenario has been developed for the Mirror Fusion Test Facility (MFTF-B) based on the System Requirements, our experience with existing systems, and discussions with the project engineers and designers who are responsible for the systems. This scenario was used to predict the amount of electrical energy needed for running the facility. A generic type listing is included for the equipment considered in each system

  6. Electrical energy and cost for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Pence, G.A.

    1983-02-01

    An operational scenario for the Mirror Fusion Test Facility has been developed based on System Requirements, experience with existing systems, and discussions with project engineers and designers who are responsible for the systems. This scenario was used to project the electrical energy required for the facility. Each system is listed showing the equipment that has been considered, the amount of power requested, and in most cases, the power that it is now connected

  7. Scientific and technical challenges on the road towards fusion electricity

    Science.gov (United States)

    Donné, A. J. H.; Federici, G.; Litaudon, X.; McDonald, D. C.

    2017-10-01

    The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a

  8. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  9. Suitability of commercial transport for a shift to electric mobility

    DEFF Research Database (Denmark)

    Christensen, Linda; Kveiborg, Ole; Klauenberg, Jens

    2016-01-01

    . They should be primary target groups of specific policy measures to promote the use of electric vehicles. Denmark has only had a few incentives to promote the use of commercial electric vehicles. Until now electric vehicles do generally not show economic benefits unless travel distance is high. However, today...... the travel range of large vans is an important barrier for electrification due to the battery weight and the limitation of 3.5 tonnes gross vehicle weight for driving with a normal driving licence. The rule needs amendments for electric vehicles, as has been done in Germany. The paper recommends EU countries...... to follow the German rule allowing EVs up to 4.25 tonnes to be driven with a class B licence, thereby potentially creating a market for big electric vans....

  10. STARFIRE: a commercial tokamak fusion power plant study

    International Nuclear Information System (INIS)

    1980-09-01

    This volume contains chapters on each of the following topics: (1) radioactivity, (2) heat transport and energy conversion, (3) tritium systems, (4) electrical storage and power supplies, (5) support structure, (6) cryogenics, (7) instrumentation and control, (8) maintenance and operation, (9) balance of plant design, (10) safety and environmental analysis, (11) economic analysis, and (12) plant construction

  11. STARFIRE: a commercial tokamak fusion power plant study

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    This volume contains chapters on each of the following topics: (1) radioactivity, (2) heat transport and energy conversion, (3) tritium systems, (4) electrical storage and power supplies, (5) support structure, (6) cryogenics, (7) instrumentation and control, (8) maintenance and operation, (9) balance of plant design, (10) safety and environmental analysis, (11) economic analysis, and (12) plant construction.

  12. Small solar thermal electric power plants with early commercial potential

    Science.gov (United States)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  13. Electrical in situ and post-irradiation properties of ceramics relevant to fusion irradiation conditions

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Zinkle, S.J.

    2002-01-01

    Electrical properties of ceramic candidate materials for the next-generation nuclear fusion devices under relevant irradiation conditions are reviewed. A main focal point is placed on the degradation behavior of the electrical insulating ability during and after irradiation. Several important radiation induced effects play important roles: radiation induced conductivity, thermally stimulated electrical conductivity, radiation induced electrical charge separation, and radiation induced electromotive force. These phenomena will interact with each other under fusion relevant irradiation conditions. The design of electrical components for the next-generation fusion devices should take into account these complicated interactions among the radiation induced phenomena

  14. Understanding the impact of TV commercials: electrical neuroimaging.

    Science.gov (United States)

    Vecchiato, Giovanni; Kong, Wanzeng; Maglione, Anton Giulio; Wei, Daming

    2012-01-01

    Today, there is a greater interest in the marketing world in using neuroimaging tools to evaluate the efficacy of TV commercials. This field of research is known as neuromarketing. In this article, we illustrate some applications of electrical neuroimaging, a discipline that uses electroencephalography (EEG) and intensive signal processing techniques for the evaluation of marketing stimuli. We also show how the proper usage of these methodologies can provide information related to memorization and attention while people are watching marketing-relevant stimuli. We note that temporal and frequency patterns of EEG signals are able to provide possible descriptors that convey information about the cognitive process in subjects observing commercial advertisements (ads). Such information could be unobtainable through common tools used in standard marketing research. Evidence of this research shows how EEG methodologies could be employed to better design new products that marketers are going to promote and to analyze the global impact of video commercials already broadcast on TV.

  15. Electricity generation from landfill gas: a commercial view revisited

    International Nuclear Information System (INIS)

    Limbrick, A.J.

    1992-01-01

    Wapsey's Wood power station has been generating electricity from landfill gas since 1987. Despite a good technical track record, the project did not secure a fair price for the electricity it sold until it was included in the 1991 Non-Fossil Fuel Obligation (NFFO). The NFFO has served to bring forward approximately 560 MW of renewable energy generating capacity, of which 15 per cent is fuelled by landfill gas. However, case histories such as that of Wapsey's Wood highlight the weaknesses of the current arrangements. To secure the continued steady growth of commercially robust renewable energy projects, there is a need to boost the business confidence of potential developers. The paper proposes two ways to remove the present uncertainty: simplify the application procedures, and remove the December 1998 expiry date that currently applies to power purchase agreements under the NFFO. (author)

  16. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  17. Aging Management Guideline for commercial nuclear power plants: Electrical switchgear

    International Nuclear Information System (INIS)

    Toman, G.; Gazdzinski, R.; Schuler, K.

    1993-07-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  18. Potential Users of Electric Mobility in Commercial Transport – Identification and Recommendations

    OpenAIRE

    Klauenberg, Jens; Rudolph, Christian; Zajicek, Jürgen

    2016-01-01

    Commercial transport is seen as early adopter of electric mobility. But there is lack of knowledge regarding the use of battery electric vehicles for commercial transportation and potential user groups. We outline a reliable and cost effective methodology to identify vehicles that can be substituted by battery electric vehicles in corporate fleets – technologically and economically efficient. We analyzed statistical data to identify economic sectors that might suit for electric mobility and c...

  19. Systems studies of dual purpose electric/synthetic fuels fusion plants

    International Nuclear Information System (INIS)

    Beardsworth, E.; Powell, J.

    1975-02-01

    A reactor power plant is proposed that can meet base load electrical demand, while the remainder can generate synthetic fuels and meet intermittent electrical demands. Two principal objectives of this study are: (1) to examine how strongly various economic demand and resource factors affect the amount of installed CTR capacity, and (2) to examine what increase in CTR capacity can be expected with dual purpose electric/synthetic fuel fusion plants, and also the relative importance of the different production modes

  20. Analysis of electric vehicle interconnection with commercial building microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Mendes, Goncalo; Marnay, Chris; M& #233; gel, Olivier; Lai, Judy

    2011-04-01

    The outline of this presentation is: (1) global concept of microgrid and electric vehicle (EV) modeling; (2) Lawrence Berkeley National Laboratory's Distributed Energy Resources Customer Adoption Model (DER-CAM); (3) presentation summary - how does the number of EVs connected to the building change with different optimization goals (cost versus CO{sub 2}); (3) ongoing EV modeling for California: the California commercial end-use survey (CEUS) database, objective: 138 different typical building - EV connections and benefits; (4) detailed analysis for healthcare facility: optimal EV connection at a healthcare facility in southern California; and (5) conclusions. Conclusions are: (1) EV Charging/discharging pattern mainly depends on the objective of the building (cost versus CO{sub 2}); (2) performed optimization runs show that stationary batteries are more attractive than mobile storage when putting more focus on CO{sub 2} emissions. Why? Stationary storage is available 24 hours a day for energy management - more effective; (3) stationary storage will be charged by PV, mobile only marginally; (4) results will depend on the considered region and tariff - final work will show the results for 138 different buildings in nine different climate zones and three major utility service territories.

  1. Intense light-ion beams provide a robust, common-driver path toward ignition, gain, and commercial fusion energy

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Cook, D.L.

    1993-01-01

    Intense light-ion beams are being developed for investigations of inertial confinement fusion (ICF). This effort has concentrated on developing the Particle Beam Fusion Accelerator II (PBFA II) at Sandia as a driver for ICF target experiments, on design concepts for a high-yield, high-gain Laboratory Microfusion Facility (LMF), and on a comprehensive system study of a light-ion beam-driven commercial fusion reactor (LIBRA). Reports are given on the status of design concepts and research in these areas. (author)

  2. The QED engine - Fusion-electric propulsion for Cis-Oort/Quasi-Interstellar (QIS) flight

    Science.gov (United States)

    Bussard, Robert W.; Jameson, Lorin W.; Froning, H. D., Jr.

    1993-01-01

    A summary is presented of QED fusion-direct-electric engine systems, their features, and performance ranges. The principles and characteristics of inertial-electrostatic-fusion (IEF) power source systems are then reviewed, and their application to the diluted-fusion-product (DFP) engine concept for QIS missions is discussed. Particular attention is given to vehicle performance over a range of very high specific impulses and to specifications of a typical candidate DFP/IEF engine and a single-stage vehicle for rapid flight to 550 AU.

  3. Mission to Mars by catalyzed nuclear reactions of the commercialized cold fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Yonsei University, Wonju (Korea, Republic of)

    2016-05-15

    The chemical compound source is deficient to reach to the power as much as the journey to Mars, unless the massive equipment is installed like the nuclear fusion reactor. However, there is very significant limitations of making up the facility due to the propellant power. Therefore, the light and cheap energy source, Low energy nuclear reactions (LENRs), powered rocket has been proposed. In this paper, the power conditions by LENRs are analyzed. After the successful Apollo mission to Moon of the National Aeronautics and Space Administration (NASA) in the U.S. government, the civilian companies have proposed for the manned mission to Mars for the commercial journey purposes. The nuclear power has been a critical issue for the energy source in the travel, especially, by the LENR of LENUCO, Champaign, USA. As the velocity of the rocket increases, the mass flow rate decreases. It could be imaginable to take the reasonable velocity of spacecraft. The energy of the travel system is and will be created for the better one in economical and safe method. There is the imagination of boarding pass for spacecraft ticket shows the selected companies of cold fusion products. In order to solve the limitations of the conventional power sources like the chemical and solar energies, it is reasonable to design LENR concept. Since the economical and safe spacecraft is very important in the long journey on and beyond the Mars orbit, a new energy source, LENR, should be studied much more.

  4. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    Science.gov (United States)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  5. Electric power from laser fusion: the HYLIFE concept

    International Nuclear Information System (INIS)

    Monsler, M.; Blink, J.; Hovingh, J.; Meier, W.; Walker, P.; Maniscalco, J.

    1978-06-01

    A high yield lithium injection fusion energy chamber is described which can conceptually be operated with pulsed yields of several thousand megajoules a few times a second, using less than one percent of the gross thermal power to circulate the lithium. Because a one meter thick blanket of lithium protects the structure, no first wall replacement is envisioned for the life of the power plant. The induced radioactivity is reduced by an order of magnitude over solid blanket concepts. The design calls for the use of common ferritic steels and a power density approaching that of a LWR, promising shortened development times over other fusion concepts and reactor vessel costs comparable to a LMFBR

  6. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Science.gov (United States)

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired... 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150 Fossil...

  7. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Science.gov (United States)

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric utility steam...

  8. Fusion

    International Nuclear Information System (INIS)

    Naraghi, M.

    1976-01-01

    It is proposed that Iran as a world's potential supplier of fossile fuel should participate in fusion research and gain experience in this new field. Fusion, as an ultimate source of energy in future, and the problems concerned with the fusion reactors are reviewed. Furthermore; plasma heating, magnetic and inertial confinement in a fusion reactor are discussed. A brief description of tokamak, theta pinch and magnetic mirror reactors is also included

  9. The effect of electrical stimulation on lumbar spinal fusion in older patients: a randomized, controlled, multi-center trial: part 2: fusion rates.

    Science.gov (United States)

    Andersen, Thomas; Christensen, Finn B; Egund, Niels; Ernst, Carsten; Fruensgaard, Søren; Østergaard, Jørgen; Andersen, Jens Langer; Rasmussen, Sten; Niedermann, Bent; Høy, Kristian; Helmig, Peter; Holm, Randi; Lindblad, Bent Erling; Hansen, Ebbe Stender; Bünger, Cody

    2009-10-01

    Randomized, controlled, multi-center trial. To investigate the effect of direct current (DC) electrical stimulation on fusion rates after lumbar spinal fusion in patients older than 60 years. Older patients have increased complication rates after spinal fusion surgery. Treatments which have the possibility of enhancing functional outcome and fusion rates without lengthening the procedure could prove beneficial. DC-stimulation of spinal fusion has proven effective in increasing fusion rates in younger and "high risk" patients, but little information exist on the effect in older patients. A randomized clinical trial comprising 5 orthopedic centers. The study included a total of 107 patients randomized to uninstrumented posterolateral lumbar spinal fusion with or without DC-stimulation. Fusion rate was assessed at 2 year follow-up using thin slice CT. Functional outcome was assessed using Dallas Pain Questionnaire and Low Back Pain Rating Scale pain index. RESULTS.: Available follow-up after 2 years was 89% (84 of 95 patients). Fusion rates were surprisingly low. DC-stimulation had no effect on fusion rate: 35% versus 36% in controls. Other factors associated with low fusion rates were female gender (32% vs. 42% in males, P = 0.050) and smoking (21% vs. 42% in nonsmokers, P = 0.079). Patients who achieved a solid fusion as determined by CT had superior functional outcome and pain scores at their latest follow-up. Thin slice CT revealed very high nonunion rates after uninstrumented spinal fusion in older patients. DC-stimulation was not effective in increasing fusion rates in this patient population. The achievement of a solid fusion was associated with superior functional outcome.

  10. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  11. Proposed design criteria for a fusion facility electrical ground system

    International Nuclear Information System (INIS)

    Armellino, C.A.

    1983-01-01

    Ground grid design considerations for a nuclear fusion reactor facility are no different than any other facility in that the basis for design must be safety first and foremost. Unlike a conventional industrial facility the available fault energy comes not only from the utility source and in-house rotating machinery, but also from energy storage capacitor banks, collapsing magnetic fields and D.C. transmission lines. It is not inconceivable for a fault condition occurrence where all available energy can be discharged. The ground grid must adequately shunt this sudden energy discharge in a way that personnel will not be exposed by step and/or touch to hazardous energy levels that are in excess of maximum tolerable levels for humans. Fault energy discharge rate is a function of the ground grid surge impedance characteristic. Closed loop paths must be avoided in the ground grid design so that during energy discharge no stray magnetic fields or large voltage potentials between remote points can be created by circulating currents. Single point connection of equipment to the ground grid will afford protection to personnel and sensitive equipment by reducing the probability of circulating currents. The overall ground grid system design is best illustrated as a wagon wheel concept with the fusion machine at the center. Radial branches or spokes reach out to the perimeter limits designated by step-and-touch high risk areas based on soil resistivity criteria considerations. Conventional methods for the design of a ground grid with all of its radial branches are still pertinent. The center of the grid could include a deep well single ground rod element the length of which is at least equivalent to the radius of an imaginary sphere that enshrouds the immediate machine area. Special facilities such as screen rooms or other shielded areas are part of the ground grid system by way of connection to radial branches

  12. Potential barriers to electric vehicle commercialization : A. insurance B. vehicle recharging

    Science.gov (United States)

    1981-03-01

    An assessment of the potential barriers to the commercialization of electric and hybrid vehicles due to insurance considerations and the absence of a range extension infrastructure was performed. Availability of operator and manufacturers liability i...

  13. Electricity demand by the commercial sector in Kuwait: an econometric analysis

    International Nuclear Information System (INIS)

    Eltony, M.N.; Hajeeh, M.

    1999-01-01

    This paper models and estimates electricity demand by the Kuwaiti commercial sector, using an error correction model. It also simulates the estimated model under three scenarios and presents an analysis of the results. The empirical results indicate that short- and long-run electricity consumption and the level of economic activity are interrelated. The forecasts show that electricity consumption varies directly with economic growth. They also suggest that an increase of 100 per cent in nominal electricity prices will lead to a reduction in commercial sector electricity demand of 45 per cent by the year 2010. The simulation of the model under the different scenarios demonstrates that the potential for energy conservation exists in the commercial sector

  14. Technical and commercial aspects of the connection of wind turbines to electricity supply networks in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, P. [Garrad Hassan & Partners Ltd., Glasgow (United Kingdom)

    1996-12-31

    This paper reviews some technical and commercial issues now topical for wind energy developments in Europe. The technical issues are important because of the weak nature of the existing electricity systems in rural or upland areas. Several commercial issues are considered which may improve the economics of wind energy as market incentives are gradually withdrawn. 9 refs.

  15. Directions for improved fusion reactors

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Delene, J.G.

    1986-01-01

    Conceptual fusion reactor studies over the past 10 to 15 years have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points towards smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. A generic fusion physics/engineering/costing model is used to provide a quantiative basis for these arguments for specific fusion concepts

  16. Grain Refinement of Commercial EC Grade 1070 Aluminium Alloy for Electrical Application

    OpenAIRE

    Hassanabadi, Massoud

    2015-01-01

    The aluminium alloys for electrical conductivity applications are generally not grain refinedsince the addition of grain refiners drops the electrical conductivity by introducing impuritiesinto the melt. Non-grain refined aluminium may lead to bar fracture and cracks during themetalworking process. The present study focuses to find an optimum balance between the grain refiner addition andthe electrical conductivity of commercial EC grade 1070 aluminium alloy for electricalapplication. In orde...

  17. Design study of electrical power supply system for tokamak fusion power reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Design study of the electrical power supply system for a 2000MWt Tokamak-type fusion reactor has been carried out. The purposes are to reveal and study problems in the system, leading to a plan of the research and development. Performed were study of the electrical power supply system and design of superconducting inductive energy storages and power switches. In study of the system, specification and capability of various power supplies for the fusion power reactor and design of the total system with its components were investigated. For the superconducting inductive energy storages, material choice, design calculation, and structural design were conducted, giving the size, weight and performance. For thyristor switches, circuit design in the parallel / series connection of element valves and cooling design were studied, providing the size and weight. (auth.)

  18. Dynamics of electricity efficiency in commercial air-distribution systems in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Christiansson, Lena

    1996-04-01

    This paper illustrates the long-term potential for reducing future electricity demand for air-distribution in commercial buildings in Sweden. The objective has been to develop a general quantitative scenario-based framework to describe some possible paths for electricity demand for air distribution and to analyze how governmental and utility-sponsored policy measures can affect electricity demand. The focus is on improved electricity efficiency, i.e. a reduction of electricity demand for the same level of services. The results suggest that higher electricity prices will not be very effective in reducing electricity demand, whereas significant electricity savings can be reached by implementing various policy programs, particularly standards. 56 refs, 4 figs, 5 tabs

  19. Challenges and the future of the fusion energy

    International Nuclear Information System (INIS)

    Gross, R.A.

    1982-01-01

    The need to develop new large energy resources is discussed. One of three inexhaustible energy resource possibilities is fusion energy, whose history and scientific goals are described. The current world-wide research and development program for fusion is outlined. As an example of today's perception of what fusion energy will be like, a commercial tokamak fusion electric powerplant is described. Special attention is devoted to some of the challenging material problems that face fusion power development. (Author) [pt

  20. Fusion-product ash buildup in tokamak with radial electric field

    International Nuclear Information System (INIS)

    Downum, W.B.; Choi, C.K.; Miley, G.H.

    1979-01-01

    The buildup of thermalized fusion products (ash) in a tokamak can seriously limit burn times. Prior studies have concentrated on deposition profile effects on alpha particle transport in tokamaks but have not considered the effect on ash of radial electric fields (either created internally, e.g. due to high-energy alpha leakage, or generated externally). The present study focuses on this issue since it appears that electric fields might offer one approach to control of the ash. Approximate field and source profiles are used, based on prior calculations

  1. Cryogenic electrical properties of irradiated cyanate ester/epoxy insulation for fusion magnets

    Science.gov (United States)

    Li, X.; Wu, Z. X.; Li, J.; Xu, D.; Liu, H. M.; Huang, R. J.; Li, L. F.

    2017-12-01

    The insulation materials used in high field fusion magnets require excellent mechanical properties, high electrical breakdown strength, good thermal conductivity and high radiation tolerance. Previous investigations showed that cyanate ester/epoxy (CE/EP) insulation material, a candidate insulation for fusion magnets, can maintain good mechanical performance at cryogenic temperature after 10 MGy irradiation and has a much longer pot life than traditional epoxy insulation material. In order to quantify the electrical properties of the CE/EP insulation material at low temperature, a cryogenic electrical property testing system cooled by a G-M cryocooler was developed for this study. An insulation material with 40% cyanate ester and 60% epoxy was subjected to 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min, and total doses of 1 MGy, 5 MGy and 10 MGy. The electrical breakdown strength of this CE/EP insulation material was measured before and after irradiation. The results show that cryogenic temperature has a positive effect on the electrical breakdown strength of this composite, while the influence of 60Co γ–ray irradiation is not obvious at 6.1 K.

  2. Fusion

    Science.gov (United States)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  3. Commercial Electric Vehicle (EV) Development and Manufacturing Program

    Energy Technology Data Exchange (ETDEWEB)

    Leeve, Dion

    2014-06-30

    Navistar with the Department of Energy’s assistance undertook this effort to achieve the project objectives as listed in the next section. A wholly owned subsidiary of Navistar, Workhorse Sales Corporation was the original grant awardee and upon their discontinuation as a standalone business entity, Navistar assumed the role of principal investigator. The intent of the effort, as part of the American Recovery and Reinvestment Act (ARRA) was to produce zero emission vehicles that could meet the needs of the marketplace while reducing carbon emissions to zero. This effort was predicated upon the assumption that concurrent development activities in the lithium ion battery industry investigations would significantly increase their production volumes thus leading to substantial reductions in their manufacturing costs. As a result of this development effort much was learned about the overall system compatibility between the electric motor, battery pack, and charging capabilities. The original system was significantly revised and improved during the execution of this development effort. The overall approach that was chosen was to utilize a British zero emissions, class 2 truck that had been developed for their market, homologate it and modify it to meet the product requirements as specified in the grant details. All of these specific goals were achieved. During the course of marketing and selling the product valuable information was obtained as relates to customer expectations, price points, and product performance expectations, specifically those customer expectations about range requirements in urban delivery situations. While the grant requirements specified a range of 100 miles on a single charge, actual customer usage logs indicate a range of 40 miles or less is typical for their applications. The price point, primarily due to battery pack costs, was significantly higher than the mass market could bear. From Navistar’s and the overall industry’s perspective

  4. Development of commercial hybrid electric vehicle with native key components

    Directory of Open Access Journals (Sweden)

    S. V. Bakhmutov

    2014-01-01

    Full Text Available The perspectives of development of medium weight cargo vehicles with hybrid powertrain including Russian native key components are considered in this article. Series-parallel scheme of HEV is more relevant owing to limitations of series and parallel schemes. An example of this technology is described. This technical solution has good facilities for variation of HEV and AWD type. The authors have patented it. In addition, another main issue is to choose the types of key components with good correlation for parameters of ICE, electric motors, batteries, and inverter. Using mathematical model of the vehicle a selection and correlation of technical characteristics were carried out to meet ecological and economical requirements. After computing calculation two control strategies were accepted. The first strategy contributes to good fuel consumption, while the other one is aimed at ecology. Researchers use test benches to confirm the results of calculation, and this one was built by the authors applying native components. The result of experiment on the test bench is the growth of fuel consumption of the medium weight cargo vehicle by 25% and compliance with ecological class Euro-4.

  5. Some applications of mirror-generated electric potentials to alternative fusion concepts

    International Nuclear Information System (INIS)

    Post, R.F.

    1990-01-01

    Transient electrical potentials can be generated in plasmas by utilizing impulsive mirror-generated forces acting on the plasma electrons together with ion inertia to cause momentary charge imbalance. In the Mirrortron such potentials are generated by applying a rapidly rising (tens of nanoseconds) localized mirror field to the central region of a hot-electron plasma confined between static mirrors. Because of the loss-cone nature of the electron distribution the sudden appearance of the pulsed mirror tends to expel electrons, whereas the ion density remains nearly constant. The quasi-neutrality condition then operates to create an electrical potential the equipotential surfaces of which can be shown theoretically to be congruent with surfaces of constant B. An alternative way of generating transient potentials is to apply a pulse of high-power microwaves to a plasma residing on a magnetic field with a longitudinal gradient. This technique resembles one employed in the Pleiade experiments. At gigawatt power levels, such as those produced by a Free Electron Laser, the production of very high transient potentials is predicted. Fusion-relevant applications of these ideas include heavy-ion drivers for inertial fusion, and the possibility of employing these techniques to enhance the longitudinal confinement of fusion plasmas in multiple-mirror systems. 23 refs., 3 figs

  6. Civilian applications of laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1978-01-01

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. We have found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser fusion studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented

  7. Trends in prices to commercial energy consumers in the competitive Texas electricity market

    International Nuclear Information System (INIS)

    Zarnikau, Jay; Fox, Marilyn; Smolen, Paul

    2007-01-01

    To date, the price of electricity to commercial or business energy consumers has generally increased at greater rates in the areas of Texas where retail competition has been introduced than in areas that do not enjoy competition. Trends in commercial competitive prices have largely mirrored trends in residential prices. Market restructuring has tended to increase the sensitivity of retail electricity prices to changes in the price of natural gas, the marginal fuel used for generation in Texas. Consequently, the rapid increases in the commodity price of natural gas following restructuring led to increases in competitive electric rates which exceeded the increases in areas not exposed to restructuring, where the fuel component of electric rates tend to reflect a weighted average of the utilities' fuel costs. There is some evidence that pricing behavior by competitive retailers changed when the retailers affiliated with the incumbent utilities were permitted some pricing flexibility, resulting in a reduction in prices

  8. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Reis, Callie [Navigant Consulting, Inc., Burlington, MA (United States)

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  9. Electric field formation in three different plasmas: A fusion reactor, arc discharge, and the ionosphere

    Science.gov (United States)

    Lee, Kwan Chul

    2017-11-01

    Three examples of electric field formation in the plasma are analyzed based on a new mechanism driven by ion-neutral collisions. The Gyro-Center Shift analysis uses the iteration of three equations including perpendicular current induced by the momentum exchange between ions and neutrals when there is asymmetry over the gyro-motion. This method includes non-zero divergence of current that leads the solution of time dependent state. The first example is radial electric field formation at the boundary of the nuclear fusion device, which is a key factor in the high-confinement mode operation of future fusion reactors. The second example is the reversed rotation of the arc discharge cathode spot, which has been a mysterious subject for more than one hundred years. The third example is electric field formations in the earth's ionosphere, which are important components of the equatorial electrojet and black aurora. The use of one method that explains various examples from different plasmas is reported, along with a discussion of the applications.

  10. The expected environmental consequences and hazards of laser-fusion electric generating stations

    International Nuclear Information System (INIS)

    Devaney, J.J.; Pendergrass, J.H.

    The operation of an expected early form of a laser-fusion electric power plant is described and the hazards and the environmental effects of such a station are estimated. Possible environmental impacts and hazards to mankind can occur from nuclear excursions or explosions, nuclear weapon proliferation, loss of coolant accident (LOCA), tritium releases, chemical fires and accompanying releases of radioactivity or chemicals, induced radioactivity releases (other than tritium), radioactive waste disposal, lasers, normal electrical generation and steam plant effects, external intrusions, natural disasters, land use, resource and transportation use, thermal pollution, and air and water pollution. We find the principle environmental effects to be those of a medium size chemical plant. Electric, magnetic, steam, and radioactive hazards are of a lower order. Indeed in the event of extraordinary success in getting high temperatures and densities so that more difficult nuclear species can be reacted, such as protons with boron-11, there will be no radioactivity at all and also enormously lower hazardous chemical inventories. In our plant designs, for any fusion fuels, nuclear explosions (or even excursions beyond design limits) are not possible. (author)

  11. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    OpenAIRE

    De La Iglesia, Daniel H.; Villarubia, Gabriel; De Paz, Juan F.; Bajo, Javier

    2017-01-01

    [EN]The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fus...

  12. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    Science.gov (United States)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  13. Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ong, S.; Campbell, C.; Clark, N.

    2012-12-01

    To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

  14. The path to fusion power.

    Science.gov (United States)

    Llewellyn Smith, Chris; Ward, David

    2007-04-15

    Fusion is potentially an environmentally responsible and intrinsically safe source of essentially limitless power. It should be possible to build viable fusion power stations, and it looks as if the cost of fusion power will be reasonable. But time is needed to further develop the technology and to test in power station conditions the materials that would be used in their construction. Assuming no major adverse surprises, an orderly fusion development programme could lead to a prototype fusion power station putting electricity into the grid within 30 years, with commercial fusion power following some 10 or more years later. In the second half of the century, fusion could therefore be an important part of the portfolio of measures that are needed to cope with rising demand for energy in an environmentally responsible manner. In this paper, we describe the basics of fusion, its potential attractions, the status of fusion R&D, the remaining challenges and how they will be tackled at the International Tokamak Experimental Reactor and the proposed International Fusion Materials Irradiation Facility, and the timetable for the subsequent commercialization of fusion power.

  15. Civilian applications of laser fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1977-01-01

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented

  16. Civilian applications of laser fusion

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

    1977-11-17

    The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

  17. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  18. The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion databasea)

    Science.gov (United States)

    Amendt, Peter; Wilks, S. C.; Bellei, C.; Li, C. K.; Petrasso, R. D.

    2011-05-01

    The generation of strong, self-generated electric fields (GV/m) in direct-drive, inertial-confinement-fusion (ICF) capsules has been reported [Rygg et al., Science 319, 1223 (2008); Li et al., Phys. Rev. Lett. 100, 225001 (2008)]. A candidate explanation for the origin of these fields based on charge separation across a plasma shock front was recently proposed [Amendt et al., Plasma Phys. Controlled Fusion 51 124048 (2009)]. The question arises whether such electric fields in imploding capsules can have observable consequences on target performance. Two well-known anomalies come to mind: (1) an observed ≈2× greater-than-expected deficit of neutrons in an equimolar D3He fuel mixture compared with hydrodynamically equivalent D [Rygg et al., Phys. Plasmas 13, 052702 (2006)] and DT [Herrmann et al., Phys. Plasmas 16, 056312 (2009)] fuels, and (2) a similar shortfall of neutrons when trace amounts of argon are mixed with D in indirect-drive implosions [Lindl et al., Phys. Plasmas 11, 339 (2004)]. A new mechanism based on barodiffusion (or pressure gradient-driven diffusion) in a plasma is proposed that incorporates the presence of shock-generated electric fields to explain the reported anomalies. For implosions performed at the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)], the (low Mach number) return shock has an appreciable scale length over which the lighter D ions can diffuse away from fuel center. The depletion of D fuel is estimated and found to lead to a corresponding reduction in neutrons, consistent with the anomalies observed in experiments for both argon-doped D fuels and D3He equimolar mixtures. The reverse diffusional flux of the heavier ions toward fuel center also increases the pressure from a concomitant increase in electron number density, resulting in lower stagnation pressures and larger imploded cores in agreement with gated, self-emission, x-ray imaging data.

  19. Data Fusion and Commercial Unmanned Aerial Vehicle Applications for First Responders

    Science.gov (United States)

    Corrado, Casey

    The commercial unmanned aerial vehicle (UAV) market is dominated by vehicles designed specifically for photography, with few UAVs possessing sensing capabilities beyond vision or thermal imaging. While relatively affordable and readily available, these UAVs have limited effectiveness in the field of emergency response. These existing UAVs, however, can be improved through sensor integration to make them applicable to emergency response. The focus of this thesis is to develop a UAV system designed for disasters involving radiation. This is done by combining radiation detection, imaging, and a global positioning system (GPS) with a commercial UAV to create a vehicle that can assess the affected region following a potentially radioactive incident. The challenges associated with using low cost commercial UAVs in disaster assessment, including data transmission range, endurance, payload, and control range, were also investigated.

  20. A Multiple Data Fusion Approach to Wheel Slip Control for Decentralized Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Dejun Yin

    2017-04-01

    Full Text Available Currently, active safety control methods for cars, i.e., the antilock braking system (ABS, the traction control system (TCS, and electronic stability control (ESC, govern the wheel slip control based on the wheel slip ratio, which relies on the information from non-driven wheels. However, these methods are not applicable in the cases without non-driven wheels, e.g., a four-wheel decentralized electric vehicle. Therefore, this paper proposes a new wheel slip control approach based on a novel data fusion method to ensure good traction performance in any driving condition. Firstly, with the proposed data fusion algorithm, the acceleration estimator makes use of the data measured by the sensor installed near the vehicle center of mass (CM to calculate the reference acceleration of each wheel center. Then, the wheel slip is constrained by controlling the acceleration deviation between the actual wheel and the reference wheel center. By comparison with non-control and model following control (MFC cases in double lane change tests, the simulation results demonstrate that the proposed control method has significant anti-slip effectiveness and stabilizing control performance.

  1. High-energy heavy-ion beams as igniters for commercial-scale intertial-fusion power plants

    International Nuclear Information System (INIS)

    Judd, D.L.

    1977-01-01

    Commercial-scale inertial-fusion power can be generated by producing a steady succession of thermonuclear microexplosions of small pellet targets whose ignition requires supplying a few magajoules in a few nanoseconds, a goal well beyond the present single-shot capabilities of high-power pulsed laser and electron-beam systems which also lack the needed repetition-rate capability of order one per second. However, existing high-energy accelerator technology with straightforward engineering extrapolations, applied to pulsed beams of heavy ions in low charge states, can meet all requirements. The relevant accelerator capabilities are discussed; three widely differing types of accelerators show promise. Needed developmental work is mostly on lower-energy components and can be conducted at relatively low cost. Some of the work started at several accelerator laboratories on this new approach within the past year are described, and possible goals of an early demonstration construction project are indicated

  2. Prospect of realizing nuclear fusion reactors

    International Nuclear Information System (INIS)

    1989-01-01

    This Report describes the results of the research work on nuclear fusion, which CRIEPI has carried out for about ten years from the standpoint of electric power utilities, potential user of its energy. The principal points are; (a) economic analysis (calculation of costs) based on Japanese analysis procedures and database of commercial fusion reactors, including fusion-fission hybrid reactors, and (b) conceptual design of two types of hybrid reactors, that is, fission-fuel producing DMHR (Demonstration Molten-Salt Hybrid Reactor) and electric-power producing THPR (Tokamak Hybrid Power Reactor). The Report consists of the following chapters: 1. Introduction. 2. Conceptual Design of Hybrid Reactors. 3. Economic Analysis of Commercial Fusion Reactors. 4. Basic Studies Applicable Also to Nuclear Fusion Technology. 5. List of Published Reports and Papers; 6. Conclusion. Appendices. (author)

  3. PREPARING THE PUBLIC FOR COMMERCIALIZATION AND GUIDANCE OF STRUCTURAL MEDIA SPACE TOWARDS ITS FUSION WITH ADVERTISING SPACE

    Directory of Open Access Journals (Sweden)

    Marina Đukić

    2015-07-01

    Full Text Available Through genre structure analysis of the Television´s Zagreb First Channel schedule from the beginning of 1970´s till the end of the 1980´s accompanied by analysis of advertising in same period, the paper will examine the ways and intensity of commercialization entrance in Croatian media space dominated then by state media. Television schedule genre change and the broadcast of economic propaganda program will point out the different character of the television. It can be said that it will serve for preparing the public for commercialization entrance and guidance of structural media space towards its fusion with advertising one. The assumption is that in spite of the TV schedule change, which was in economic sense accompanied by economy reforms in order to establish market economy, the public wasn´t yet delivered to advertisers. One of the clarification lies in the role of the media, which then had revolutionary function with main purpose of not the voters’ generation but only to create patriots. The paper will reproduce a kind of public transformation genesis from latent status in state guided media system to same status of latent consumers in dual media model.

  4. Conceptual design of an electrical power module for the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Jassby, D.L.; Bullis, R.; Sedgeley, D.; Caldwell, C.S.; Pettus, W.G.; Schluderberg, D.C.

    1979-01-01

    The TFTR Engineering Test Station (ETS) can support blanket modules with a fusion-neutron view area of 0.5 m/sup 2/. If the TFTR magnetic systems and beam injectors can operate with pulse lengths of 5 s, once every 300 s, the time-averaged neutron power incident on a module will be 1.5 kW, which can be enhanced by a suitable blanket energy multiplier. A preliminary conceptual design of a dual-loop steam-generating power system that can be housed in the ETS has been carried out. The optimal heat transfer fluid in the primary loop is an organic liquid, which allows an operating temperature of 700/degree/F at low pressure. The primary coolant must be preheated electrically to operating temperature. A ballast tank levels the temperature at the steam generator, so that the secondary loop is in steady-state operation. With a natural-uranium blanket multiplier, the time-averaged net electrical power is 1.2 kW(e). 8 refs

  5. Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B.

    2004-09-04

    This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

  6. Economic potential of inertial fusion

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents

  7. Development of effective power supply using electric double layer capacitor for static magnetic field coils in fusion plasma experiments.

    Science.gov (United States)

    Inomoto, M; Abe, K; Yamada, T; Kuwahata, A; Kamio, S; Cao, Q H; Sakumura, M; Suzuki, N; Watanabe, T; Ono, Y

    2011-02-01

    A cost-effective power supply for static magnetic field coils used in fusion plasma experiments has been developed by application of an electric double layer capacitor (EDLC). A prototype EDLC power supply system was constructed in the form of a series LCR circuit. Coil current of 100 A with flat-top longer than 1 s was successfully supplied to an equilibrium field coil of a fusion plasma experimental apparatus by a single EDLC module with capacitance of 30 F. The present EDLC power supply has revealed sufficient performance for plasma confinement experiments whose discharge duration times are an order of several seconds.

  8. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  9. Modeling and Analysis of Commercial Building Electrical Loads for Demand Side Management

    Science.gov (United States)

    Berardino, Jonathan

    In recent years there has been a push in the electric power industry for more customer involvement in the electricity markets. Traditionally the end user has played a passive role in the planning and operation of the power grid. However, many energy markets have begun opening up opportunities to consumers who wish to commit a certain amount of their electrical load under various demand side management programs. The potential benefits of more demand participation include reduced operating costs and new revenue opportunities for the consumer, as well as more reliable and secure operations for the utilities. The management of these load resources creates challenges and opportunities to the end user that were not present in previous market structures. This work examines the behavior of commercial-type building electrical loads and their capacity for supporting demand side management actions. This work is motivated by the need for accurate and dynamic tools to aid in the advancement of demand side operations. A dynamic load model is proposed for capturing the response of controllable building loads. Building-specific load forecasting techniques are developed, with particular focus paid to the integration of building management system (BMS) information. These approaches are tested using Drexel University building data. The application of building-specific load forecasts and dynamic load modeling to the optimal scheduling of multi-building systems in the energy market is proposed. Sources of potential load uncertainty are introduced in the proposed energy management problem formulation in order to investigate the impact on the resulting load schedule.

  10. Technology of controlled nuclear fusion

    International Nuclear Information System (INIS)

    Hopkins, G.R.

    1977-01-01

    A review is presented of the following topics treated at the meeting (invited papers and sessions): international programs (Japanese, Joint European Tokamak, Euratom non-JET, ERDA magnetic, ERDA laser, and Electric Power Research Institute programmes); non-commercial reactor designs; commercial reactor designs; radiation damage; plasma engineering; tritium and neutronics; confinement system technology; environment and safety; blanket engineering and materials testing; fusion-fission hybrid reactors

  11. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    International Nuclear Information System (INIS)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis

  12. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-A. Commercial fusion electric plant

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, M.L.; Price, M.E. (eds.)

    1984-07-01

    Volume 1-A contains the following chapters: (1) plasma engineering, (2) magnets, (3) ecr heating systems, (4) anchor ion-cyclotron resonance heating system, (5) sloshing ion neutral beam, (6) end cell structure, (7) end plasma technology, (8) fueling, (9) startup ion cyclotron resonant heating systems, and (10) end cell radiation analysis. (MOW)

  13. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-A. Commercial fusion electric plant

    International Nuclear Information System (INIS)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 1-A contains the following chapters: (1) plasma engineering, (2) magnets, (3) ecr heating systems, (4) anchor ion-cyclotron resonance heating system, (5) sloshing ion neutral beam, (6) end cell structure, (7) end plasma technology, (8) fueling, (9) startup ion cyclotron resonant heating systems, and (10) end cell radiation analysis

  14. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, M.L.; Price, M.E. (eds.)

    1984-07-01

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis.

  15. Transformation of Commercial Flows into Physical Flows of Electricity – Flow Based Method

    Directory of Open Access Journals (Sweden)

    M. Adamec

    2009-01-01

    Full Text Available We are witnesses of large – scale electricity transport between European countries under the umbrella of the UCTE organization. This is due to the inabilyof generators to satisfy the growing consumption in some regions. In this content, we distinguish between two types of flow. The first type is physical flow, which causes costs in the transmission grid, whilst the second type is commercial flow, which provides revenues for the market participants. The old methods for allocating transfer capacity fail to take this duality into account. The old methods that allocate transmission border capacity to “virtual” commercial flows which, in fact, will not flow over this border, do not lead to optimal allocation. Some flows are uselessly rejected and conversely, some accepted flows can cause congestion on another border. The Flow Based Allocation method (FBA is a method which aims to solve this problem.Another goal of FBA is to ensure sustainable development of expansion of transmission capacity. Transmission capacity is important, because it represents a way to establish better transmission system stability, and it provides a distribution channel for electricity to customers abroad. For optimal development, it is necessary to ensure the right division of revenue allocation among the market participants.This paper contains a brief description of the FBA method. Problems of revenue maximization and optimal revenue distribution are mentioned. 

  16. Fusion energy and nuclear liability considerations

    International Nuclear Information System (INIS)

    Fork, William E.; Peterson, Charles H.

    2014-01-01

    For over 60 years, fusion energy has been recognised as a promising technology for safe, secure and environmentally-sustainable commercial electrical power generation. Over the past decade, research and development programmes across the globe have shown progress in developing critical underlying technologies. Approaches ranging from high-temperature plasma magnetic confinement fusion to inertial confinement fusion are increasingly better understood. As scientific research progresses in its aim to achieve fusion 'ignition', where nuclear fusion becomes self-sustaining, the international legal community should consider how fusion power technologies fit within the current nuclear liability legal framework. An understanding of the history of the civil nuclear liability regimes, along with the different risks associated with fusion power, will enable nations to consider the proper legal conditions needed to deploy and commercialise fusion technologies for civil power generation. This note is divided into three substantive parts. It first provides background regarding fusion power and describes the relatively limited risks of fusion technologies when compared with traditional nuclear fission technologies. It then describes the international nuclear liability regime and analyses how fusion power fits within the text of the three leading conventions. Finally, it examines how fusion power may fall within the international nuclear liability framework in the future, a discussion that includes possible amendments to the relevant international liability conventions. It concludes that the unique nature of the current civil nuclear liability regime points towards the development of a more tailored liability solution because of the reduced risks associated with fusion power. (authors)

  17. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Daniel H. De La Iglesia

    2017-10-01

    Full Text Available The use of electric bikes (e-bikes has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  18. Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm.

    Science.gov (United States)

    De La Iglesia, Daniel H; Villarrubia, Gabriel; De Paz, Juan F; Bajo, Javier

    2017-10-31

    The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.

  19. Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach

    Science.gov (United States)

    Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo

    2017-10-01

    Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.

  20. Analysis of variables that influence electric energy consumption in commercial buildings in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.M.Q. [Technical Drawing Department, Fluminense Federal University, Niteroi, Rio de Janeiro (Brazil); Energy Planning Program, Alberto Luiz Coimbra Institute for Research and Graduate Studies in Engineering - COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); La Rovere, E.L. [Energy Planning Program, Alberto Luiz Coimbra Institute for Research and Graduate Studies in Engineering - COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Goncalves, A.C.M. [Program for Graduate Studies in Architecture, School of Architecture and Urbanism, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil)

    2010-12-15

    Air conditioning systems in commercial buildings in Brazil are responsible for about 70% share of their energy consumption. According to BEN 2009 (The Brazilian Energy Balance), energy consumption in the residential, commercial and public sectors, where most buildings are found, represents 9.3% of the final energy consumption in Brazil. This paper aims to examine design factors that could contribute to greater reductions of electric energy consumption in commercial buildings, with emphasis on air conditioning. Simulations were carried out using shades and different types of glass, walls, flooring and roofing. The VisualDOE 2.61 was used as a simulation tool for calculating energy consumption of the analyzed building. This paper shows that the energy performance of the building is considerably influenced by the facade protection and shows, through tables, the impact that decisions related to the top-level and facades have on the energy consumption of the building. The authors concluded that the results confirm the importance of taking energy use into account in the very first design stages of the project, since appropriate choices of types of glass, external shading and envelope materials have a significant impact on energy consumption. (author)

  1. STARFIRE: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    1979-12-01

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor

  2. The promise, problems, and potential of fusion energy as an electricity source

    International Nuclear Information System (INIS)

    Dews, W.F. II

    1993-01-01

    Is fusion power the Philosopher's Stone of energy or is it a realistic approach to next century's energy needs? Are fusion scientists modern day alchemists or practical explorers as they search for an abundant supply of power in a common element? Will fusion power revolutionize world energy consumption, or will it find little or no room in the energy mix of the future? Will fusion ever be a national priority or will it become just an interesting project for nuclear physicists and energy analysts? This paper examines these questions and issues in the context of fusion's physics, history, and current status. This background information will provide the basis for speculating on fusions's future in this country and worldwide

  3. Intentions to introduce electric vehicles in the commercial sector: A model based on the theory of planned behaviour

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Gruber, Johannes; Reinthaler, Martin

    2016-01-01

    Light and heavy duty commercial vehicles are a cause of concern in urban areas because of their cumulative stress on the system in terms of air pollution, congestion, and noise. This cumulative stress is expected to increase with the expected growth in commercial vehicle movements. While electric...... commercial vehicles (ECVs) may provide a possible technological solution, the research on the market penetration of ECVs is scarce. This study proposes a comprehensive framework for understanding the motivations and barriers of small and medium-size firms to the introduction of ECVs in commercial vehicle...

  4. The economic value of fusion energy

    International Nuclear Information System (INIS)

    Kim, S.H.; Clarke, J.; Edmonds, J.

    1996-01-01

    The potential economic benefit of fusion energy technology is significant and could dwarf the world's total expenditure on fusion energy research and development. However, the realization of these benefits will depend on the economic competitiveness of electricity generation from fusion energy technologies relative to that from other existing fossil fueled and renewable technologies, as well as the time in which fusion energy technologies are available for commercial operation. Utilizing the Second Generation Model, a long-term energy/economics model, the potential economic benefit of fusion energy technology for the United States was assessed. Model scenarios with hypothetical fusion power technologies based on the International Thermonuclear Experimental Reactor (ITER) design with varying cost and time of availability showed that significant economic benefit exists from a competitive fusion technology with cost of electricity (COE) of 0.06 $/kWhr and available in the year 2025. The fusion technology with these characteristics resulted in a total discounted GDP benefit of $105 billion from the year 1995 to 2100. On the other hand, uncompetitive fusion technologies with higher COE of 0.12 and 0.09 $/kWhr had little economic benefits. Moreover, delaying the introduction of all fusion technologies from 2025 to 2050 reduced the economic benefits of fusion technologies by more than 60 percent. Aside from the economic benefit of fusion technologies operating in the United States, the potential economic value of international trade in fusion technologies is likely to be even greater. If the United States could capture just a portion of the global electricity market, the export value of the fusion technology could amount to hundreds of billions of dollars, whereas the cost of importing the technology to the United States will erase any benefits derived from GDP increases

  5. An evaluation of the impact of state Renewable Portfolio Standards (RPS) on retail, commercial, and industrial electricity prices

    Science.gov (United States)

    Puram, Rakesh

    The Renewable Portfolio Standard (RPS) has become a popular mechanism for states to promote renewable energy and its popularity has spurred a potential bill within Congress for a nationwide Federal RPS. While RPS benefits have been touted by several groups, it also has detractors. Among the concerns is that RPS standards could raise electricity rates, given that renewable energy is costlier than traditional fossil fuels. The evidence on the impact of RPS on electricity prices is murky at best: Complex models by NREL and USEIA utilize computer programs with several assumptions which make empirical studies difficult and only predict slight increases in electricity rates associated with RPS standards. Recent theoretical models and empirical studies have found price increases, but often fail to comprehensively include several sets of variables, which in fact could confound results. Utilizing a combination of past papers and studies to triangulate variables this study aims to develop both a rigorous fixed effects regression model as well as a theoretical framework to explain the results. This study analyzes state level panel data from 2002 to 2008 to analyze the effect of RPS on residential, commercial, and industrial electricity prices, controlling for several factors including amount of electricity generation from renewable and non-renewable sources, customer incentives for renewable energy, macroeconomic and demographic indicators, and fuel price mix. The study contrasts several regressions to illustrate important relationships and how inclusions as well as exclusion of various variables have an effect on electricity rates. Regression results indicate that the presence of RPS within a state increases the commercial and residential electricity rates, but have no discernable effect on the industrial electricity rate. Although RPS tends to increase electricity prices, the effect has a small impact on higher electricity prices. The models also indicate that jointly all

  6. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    Energy Technology Data Exchange (ETDEWEB)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  7. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joesph W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Munoz-Ramos, Karina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akhil, Abbas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curgus, Dita B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  8. Seismic design criteria used for electrical raceway systems in commercial nuclear power plants

    International Nuclear Information System (INIS)

    Summers, P.B.; Manrique, M.A.; Nelson, T.A.

    1991-01-01

    This paper summarizes some of the seismic design approaches, relevant technical issues and criteria used over the years for design of electrical raceway systems at commercial nuclear power plant facilities. The approaches used for design and endorsed by the NRC can be seen to be quite varied. In recent years, considerably more rigor has been required for raceway design, as well as for the level of design basis documentation produced. However, there has also been a willingness by the NRC to accept rational approaches based on testing, analytical results or experience data, provided proper justification is given. Such rational approaches can simplify the significant task of analysis, design and construction of miles of raceways and thousands of raceway supports. Summarizing past practice and identifying relevant technical issues are an important first step in formalizing up-to-date criteria for new raceway designs

  9. Aging Management Guideline for commercial nuclear power plants: Electrical switchgear. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Toman, G.; Gazdzinski, R.; Schuler, K. [Ogden Environmental and Energy Services Co., Inc., Blue Bell, PA (United States)

    1993-07-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  10. Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xuebing Han

    2014-07-01

    Full Text Available The lithium titanium oxide (LTO anode is widely accepted as one of the best anodes for the future lithium ion batteries in electric vehicles (EVs, especially since its cycle life is very long. In this paper, three different commercial LTO cells from different manufacturers were studied in accelerated cycle life tests and their capacity fades were compared. The result indicates that under 55 °C, the LTO battery still shows a high capacity fade rate. The battery aging processes of all the commercial LTO cells clearly include two stages. Using the incremental capacity (IC analysis, it could be judged that in the first stage, the battery capacity decreases mainly due to the loss of anode material and the degradation rate is lower. In the second stage, the battery capacity decreases much faster, mainly due to the degradation of the cathode material. The result is important for the state of health (SOH estimation and remaining useful life (RUL prediction of battery management system (BMS for LTO batteries in EVs.

  11. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1987-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying responses to the fusion environment. Materials can be identified today that will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications. (author)

  12. Ceramics for fusion applications

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al 2 O 3 , MgAl 2 O 4 , BeO, Si 3 N 4 and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications

  13. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    International Nuclear Information System (INIS)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies

  14. Electromagnetic Fields Associated with Commercial Solar Photovoltaic Electric Power Generating Facilities.

    Science.gov (United States)

    Tell, R A; Hooper, H C; Sias, G G; Mezei, G; Hung, P; Kavet, R

    2015-01-01

    The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz).

  15. Controlled thermonuclear fusion: the great illusion

    International Nuclear Information System (INIS)

    Ertaud, A.

    1985-01-01

    Is controlled thermonuclear fusion one day destined to become a source of power generation on an industrial scale. The author's answer to this basic question is an emphatic no. In an analysis of the difficulties, particularly those of a technological nature, which application and control of electricity generating based on fusion (deuterium-tritium) involve, the author is of the opinion that this source of energy is scarcely likely to provide commercial outlets [fr

  16. What we miss in order to be able to design and build a commercially viable fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, R. [ENEA, Centro Ricerche Frascati, RM (Italy). Dipt. Energia

    1999-07-01

    The paper considers in a critical way the different areas in which work is required to provide sufficient information in view of designing a reliable and attractive fusion reactor. [Italian] Il rapporto considera in modo critico le differenti aree nelle quali si richiede ulteriore lavoro per fornire informazioni al fine di progettare un reattore a fusione affidabile ed economicamente competitivo.

  17. Suitability of commercial transport for a shift to electric mobility with Denmark and Germany as use cases

    DEFF Research Database (Denmark)

    Christensen, Linda; Klauenberg, Jens; Kveiborg, Ole

    2017-01-01

    are registered in these sectors and daily mileage is reasonably low. They should be primary target groups of specific policy measures to promote the use of electric vehicles.Both Denmark and Germany have incentives to promote the use of electric vehicles. Nevertheless, electric vehicles do generally not show......This paper identifies commercial sectors suitable for a shift to electric mobility in Denmark and Germany by analysing daily driving distance. The paper concludes that construction, human health and other service sectors are the most suitable sectors for electric mobility because many vehicles...... economic benefits unless travel distance is high. However, today the travel range of large vans is an important barrier for electrification due to battery weight and the limitation of 3.5 tonnes gross vehicle weight for driving with a normal driving licence. The rule needs amendments for electric vehicles...

  18. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Research during this report period has covered the following areas: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) MACKLIB-IV, a new library of nuclear response functions, (5) energy storage and power supply requirements for commercial fusion reactors, (6) blanket/shield design evaluation for commercial fusion reactors, and (7) cross section measurements, evaluations, and techniques

  19. Fusion: an energy source for synthetic fuels

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J; Steinberg, M.

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  20. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  1. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes

    International Nuclear Information System (INIS)

    Pratt, Joseph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina; Akhil, Abbas A.; Curgus, Dita B.; Schenkman, Benjamin L.

    2013-01-01

    Highlights: ► We examine proton exchange membrane fuel cells on-board commercial airplanes. ► We model the added fuel cell system’s effect on overall airplane performance. ► It is feasible to implement an on-board fuel cell system with current technology. ► Systems that maximize waste heat recovery are the best performing. ► Current PEM and H 2 storage technology results in an airplane performance penalty. -- Abstract: Deployed on a commercial airplane, proton exchange membrane (PEM) fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they could offer a performance advantage for the airplane when using today’s off-the-shelf technology. We also examine the effects of the fuel cell system on airplane performance with (1) different electrical loads, (2) different locations on the airplane, and (3) expected advances in fuel cell and hydrogen storage technologies. Through hardware analysis and thermodynamic simulation, we found that an additional fuel cell system on a commercial airplane is technically feasible using current technology. Although applied to a Boeing 787-type airplane, the method presented is applicable to other airframes as well. Recovery and on-board use of the heat and water that is generated by the fuel cell is an important method to increase the benefit of such a system. The best performance is achieved when the fuel cell is coupled to a load that utilizes the full output of the fuel cell for the entire flight. The effects of location are small and location may be better determined by other considerations such as safety and modularity. Although the PEM fuel cell generates power more efficiently than the gas turbine generators currently used, when considering the effect of the fuel cell system on the airplane’s overall performance we found that an overall

  2. Overview of fusion reactor safety

    Science.gov (United States)

    Cohen, S.; Crocker, J. G.

    Use of deuterium-tritium fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control; (2) neutron activation of structural materials, fluid streams and reactor hall environment; (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions; (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices; and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

  3. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power

  4. Transforming Commercial Textiles and Threads into Sewable and Weavable Electric Heaters.

    Science.gov (United States)

    Zhang, Lushuai; Baima, Morgan; Andrew, Trisha L

    2017-09-20

    We describe a process to transform commercial textiles and threads into electric heaters that can be cut/sewn or woven to fashion lightweight fabric heaters for local climate control and personal thermal management. Off-the-shelf fabrics are coated with a 1.5 μm thick film of a conducting polymer, poly(3,4-ethylenedioxythiophene), using an improved reactive vapor deposition method. Changes in the hand feel, weight, and breathability of the textiles after the coating process are imperceptible. The resulting fabric electrodes possess competitively low sheet resistances-44 Ω/□ measured for coated bast fiber textiles and 61 Ω/□ measured for coated cotton textiles-and act as low-power-consuming Joule heating elements. The electrothermal response of the textile electrodes remain unaffected after cutting and sewing due to the robustness of the conductive coating. Coated, conductive cotton yarns can also be plain-woven into a monolithic fabric heater. A demonstrative circuit design for a soft, lightweight, and breathable thermal glove is provided.

  5. Task toward a Realization of Commercial Tokamak Fusion Plants in 2050 -The Role of ITER and the Succeeding Developments- 5.Challenge to Innovative Technologies and the Expected Market Appeal

    Science.gov (United States)

    Tobita, Kenji; Konishi, Satoshi; Tokimatsu, Koji; Nishio, Satoshi; Hiwatari, Ryoji

    This section describes the future of fusion energy in terms of its impact on the global energy supply and global warming mitigation, the possible entry scenarios of fusion into future energy market, and innovative technologies for deploying and expanding fusion's share in the market. Section 5.1 shows that fusion energy can contribute to the stabilization of atmospheric CO2 concentration if fusion is introduced into the future energy market at a competitive price. Considerations regarding fusion's entry scenarios into the energy market are presented in Sec. 5.2, suggesting that fusion should replace fossil energy sources and thus contribute to global warming mitigation. In this sense, first generation fusion power plants should be a viable energy source with global appeal and be so attractive as to be employed in developing countries rather than in developed countries. Favorable factors lending to this purpose are fusion's stability as a power source, and its security, safety, and environmental frendliness as well as its cost-of-electricity. The requirements for core plasma to expand the share of fusion in the market in the latter half of this century are given in Sec.5.3, pointing out the importance of high beta access with low aspect ratio and plasma profile control. From this same point of view, innovative fusion technologies worthy of further development are commented on in Sec. 5.4, addressing the high temperature blanket, hydrogen production, high temperature superconductors, and hot cell maintenance.

  6. What we miss in order to be able to design and build a commercially viable fusion reactor

    International Nuclear Information System (INIS)

    Andreani, R.

    1999-01-01

    The paper considers in a critical way the different areas in which work is required to provide sufficient information in view of designing a reliable and attractive fusion reactor. Four main areas of activity are considered: physics, technology, engineering, safety. In physics the trend is positive towards a better understanding of suitable plasma regimes to be confirmed through further experimentation on the operating machines. Engineering has already proven itself by the design and construction of a number of experimental machines. In addition a large data base obtained from design and operation of fission reactors is available. Safety is reaching very satisfactory results in the analysis of the impact of fusion on man and the environment. Where it is still a large unsolved problem is concerning materials capable of standing the harsh fusion environment for an adequate number of years. An intense neutron source is needed in order to allow the necessary developments [it

  7. Commercial statistical bulletin of the Brazilian electric utility Centrais Eletricas de Santa Catarina S.A

    International Nuclear Information System (INIS)

    1996-04-01

    Statistical data concerning the Brazilian Centrais Eletricas de Santa Catarina S.A. utility relative to April 1996 are presented. They include, among other things, electricity consumption, number and class of consumers and electricity rates

  8. Studies of breakeven prices and electricity supply potentials of nuclear fusion by a long-term world energy and environment model

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Asaoka, Y.; Okano, K.; Yoshida, T.; Hiwatari, R.; Konishi, S.; Nishio, S.; Fujino, J.; Ogawa, Y.; Yamaji, K.

    2002-01-01

    In response to social demand, this paper investigates the breakeven price (BP) and potential electricity supply of nuclear fusion energy in the 21st century by means of a world energy and environment model. We set the following objectives in this paper: (i) to reveal the economics of the introduction conditions of nuclear fusion; (ii) to know when tokamak-type nuclear fusion reactors are expected to be introduced cost-effectively into future energy systems; (iii) to estimate the share in 2100 of electricity produced by the presently designed reactors that could be economically selected in the year. The model can give in detail the energy and environment technologies and price-induced energy saving, and can illustrate optimal energy supply structures by minimizing the costs of total discounted energy systems at a discount rate of 5%. The following parameters of nuclear fusion were considered: cost of electricity (COE) in the nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and regional nuclear fusion capacity projection. The investigations are carried out for three nuclear fusion projections one of which includes tritium breeding constraints, four future CO 2 concentration constraints, and technological assumptions on fossil fuels, nuclear fission, CO 2 sequestration, and anonymous innovative technologies. It is concluded that: (1) the BPs are from 65 to 125 mill kW -1 h -1 depending on the introduction year of nuclear fusion under the 550 ppmv CO 2 concentration constraints; those of a business-as-usual (BAU) case are from 51 to 68 mill kW -1 h -1 . Uncertainties resulting from the CO 2 concentration constraints and the technological options influenced the BPs by plus/minus some 10-30 mill kW -1 h -1 , (2) tokamak-type nuclear fusion reactors (as presently designed, with a COE range around 70-130 mill kW -1 h -1 ) would be favourably introduced into energy systems after 2060 based on the economic criteria under the 450 and

  9. Energy commercialization in the new environment of the Brazilian electric power sector. A methodology for production allocation strategies analysis

    International Nuclear Information System (INIS)

    Ramos, Dorel Soares; Lima, Wagner da Silva

    1999-01-01

    The restructuring of the Brazilian Electric Sector has modified the rules for purchase and sale of energy, resulting in the creation of the Wholesale Energy Market. In this new context, the decision of the exposure level to the spot market price and the purchase of energy through bilateral contracts becomes so much a strategic variable for consumers or dealers, as for hydro and thermal generators. This work presents a methodology for planning of energy commercialization envisaging purchase and sale energy opportunities provided by the new Regulatory Framework of the Brazilian Electric Sector. (author)

  10. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  11. What we miss in order to be able to design and build a commercially viable fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, R. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Energia

    1999-07-01

    The paper considers in a critical way the different areas in which work is required to provide sufficient information in view of designing a reliable and attractive fusion reactor. Four main areas of activity are considered: physics, technology, engineering, safety. In physics the trend is positive towards a better understanding of suitable plasma regimes to be confirmed through further experimentation on the operating machines. Engineering has already proven itself by the design and construction of a number of experimental machines. In addition a large data base obtained from design and operation of fission reactors is available. Safety is reaching very satisfactory results in the analysis of the impact of fusion on man and the environment. Where it is still a large unsolved problem is concerning materials capable of standing the harsh fusion environment for an adequate number of years. An intense neutron source is needed in order to allow the necessary developments. [Italian] Il rapporto considera in modo critico le differenti aree nelle quali si richiede ulteriore lavoro per fornire informazini sufficienti al fine di progettare un reattore a fusione affidabile ed economicamente competitivo. Vengono considerate quattro aree principali di attivita': fisica, tecnologia, ingegneria, sicurezza. Nella fisica, vi e' una positiva tendenza verso una migliore comprensione di regimi di plasma favorevoli da confermare attraverso ulteriore sperimentazione sulle macchine funzionanti. L' ingegneria ha gia' dato dimostrazione di se' col progetto e la costruzione di un notevole numero di macchine sperimentali. In aggiunta e' disponibile un gran numero di dati ottenuti dalla progettazione, realizzazione e funzionamento dei reattori a fissione. La sicurezza sta raggiungendo risultati molto soddisfacenti nell'analisi dell'impatto della fusione sull'uomo e sull'ambiente. Un grosso problema tuttora irresoluto e' quello dei

  12. Testing of Commercial Milk Production Technology Using A Combination of High Temperature Short Time and Pulsed Electric Field

    OpenAIRE

    Hadi A; Widjanarko SB; Kusnadi J

    2016-01-01

    The development of milk processing technology has grown excessively, and it contains advantage and disadvantage. This study used mixed between PEF (Pulsed Electric Field) and High Temperature Short Time (HTST) to produce milk processed product which is effective and efficient in killing milk microorganism without changing its color, scent, and nutrient content of processed product, therefore producing commercial sterile milk product in accord with milk Indonesian National Standard (SNI). The ...

  13. Increasing the magnetic-field capability of the magneto-inertial fusion electrical discharge system using an inductively coupled coil

    Science.gov (United States)

    Barnak, D. H.; Davies, J. R.; Fiksel, G.; Chang, P.-Y.; Zabir, E.; Betti, R.

    2018-03-01

    Magnetized high energy density physics (HEDP) is a very active and relatively unexplored field that has applications in inertial confinement fusion, astrophysical plasma science, and basic plasma physics. A self-contained device, the Magneto-Inertial Fusion Electrical Discharge System, MIFEDS [G. Fiksel et al., Rev. Sci. Instrum. 86, 016105 (2015)], was developed at the Laboratory for Laser Energetics to conduct magnetized HEDP experiments on both the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495-506 (1997)] and OMEGA EP [J. H. Kelly et al., J. Phys. IV France 133, 75 (2006) and L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)] laser systems. Extremely high magnetic fields are a necessity for magnetized HEDP, and the need for stronger magnetic fields continues to drive the redevelopment of the MIFEDS device. It is proposed in this paper that a magnetic coil that is inductively coupled rather than directly connecting to the MIFEDS device can increase the overall strength of the magnetic field for HEDP experiments by increasing the efficiency of energy transfer while decreasing the effective magnetized volume. A brief explanation of the energy delivery of the MIFEDS device illustrates the benefit of inductive coupling and is compared to that of direct connection for varying coil size and geometry. A prototype was then constructed to demonstrate a 7-fold increase in energy delivery using inductive coupling.

  14. In situ neutron diffraction studies of a commercial, soft lead zirconate titanate ceramic: Response to electric fields and mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, Abhijit [University of Florida; Prewitt, Anderson [University of Florida; Cottrell, Michelle [University of Florida; Lee, Wayne [ITT Corporation Acoustic Sensors; Studer, Andrew J. [Bragg Institute, ANSTO; An, Ke [ORNL; Hubbard, Camden R [ORNL; Jones, Jacob [University of Florida

    2010-01-01

    Structural changes in commercial lead zirconate titanate (PZT) ceramics (EC-65) under the application of electric fields and mechanical stress were measured using neutron diffraction instruments at the Australian Nuclear Science and Technology Organisation (ANSTO) and the Oak Ridge National Laboratory (ORNL). The structural changes during electric-field application were measured on the WOMBAT beamline at ANSTO and include non-180{sup o} domain switching, lattice strains and field-induced phase transformations. Using time-resolved data acquisition capabilities, lattice strains were measured under cyclic electric fields at times as short as 30 {mu}s. Structural changes including the (002) and (200) lattice strains and non-180{sup o} domain switching were measured during uniaxial mechanical compression on the NRSF2 instrument at ORNL. Contraction of the crystallographic polarization axis, (002), and reorientation of non-180{sup o} domains occur at lowest stresses, followed by (200) elastic strains at higher stresses.

  15. COTS Fusion Tracker Evaluation

    National Research Council Canada - National Science Library

    Gertz, J

    2002-01-01

    .... This effort included cataloging the companies that have available ATC fusion trackers, acquiring executable tracker images from as many as possible of these trackers, running the commercial tracker...

  16. Advanced-fueled fusion reactors suitable for direct energy conversion. Project note: temperature-gradient enhancement of electrical fields in insulators

    International Nuclear Information System (INIS)

    Blum, A.S.; Mancebo, L.

    1976-01-01

    Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element

  17. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles

    Science.gov (United States)

    Lemoine, D. M.; Kammen, D. M.; Farrell, A. E.

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream.

  18. Cytogenetic survey of Holstein bulls at a commercial artificial insemination company to determine prevalence of bulls with centric fusion and chimeric anomalies.

    Science.gov (United States)

    Seguin, B E; Zhang, T Q; Buoen, L C; Weber, A F; Ruth, G R

    2000-01-01

    To determine prevalence of Holstein bulls with chromosomal anomalies, particularly the 1/21 centric fusion (CF), at a commercial artificial insemination (AI) company in the United States. Cross-sectional cytogenetic prevalence study. All 606 Holstein bulls at a commercial AI company were cytogenetically screened to detect CF, chimerism, and other chromosomal abnormalities. Lymphocytes from heparinized blood samples were cultured by standard cytogenetic techniques, and chromosome spreads were prepared for microscopic examination. Chromosomal abnormalities were detected by examining 10 chromosome spreads per bull. Pedigree analysis was performed. None of the bulls had any type of CF. However, 6 bulls were identified as chimeras (i.e., contained lymphocytes with male [XY] and female [XX] chromosomes). One bull was sire or maternal grandsire to 85 of the bulls tested, and 739 of 1,212 (61%) sire and maternal-grandsire possibilities were accounted for by just 18 bulls. Analysis of these results supports previous indications that CF is extremely rare in Holstein bloodlines available commercially via AI in the United States. However, chimeric bulls are more common, and they reportedly have decreased reproductive performance. Therefore, identification of chimeric sires in the AI facility reported here and the possibility of de novo onset of CF at any time indicates that early cytogenetic screening should be encouraged for prospective bulls intended for use in AI programs.

  19. Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle with Electric Energy Storage in Different Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2018-01-01

    Full Text Available This paper presents an analysis to determine the economic, energetic, and environmental benefits that could be obtained from the implementation of a combined solar-power organic Rankine cycle (ORC with electric energy storage (EES to supply electricity to several commercial buildings including a large office, a small office, and a full service restaurant. The operational strategy for the ORC-EES system consists in the ORC charging the EES when the irradiation level is sufficient to generate power, and the EES providing electricity to the building when there is not irradiation (i.e., during night time. Electricity is purchased from the utility grid unless it is provided by the EES. The potential of the proposed system to reduce primary energy consumption (PEC, carbon dioxide emission (CDE, and cost was evaluated. Furthermore, the available capital cost for a variable payback period for the ORC-EES system was determined for each of the evaluated buildings. The effect of the number of solar collectors on the performance of the ORC-EES is also studied. Results indicate that the proposed ORC-EES system is able to satisfy 11%, 13%, and 18% of the electrical demand for the large office, the small office and the restaurant, respectively.

  20. Study of Formosa's electrical offer for installing a commercial nuclear power plant

    International Nuclear Information System (INIS)

    Torino Araoz, Ines; Parera, Maria D.

    2011-01-01

    Within the specific agreement for the siting study of the CAREM nuclear power plant in Formosa Province, signed between the National Atomic Energy Commission and the Government of Formosa, a detailed study of electrical supply was conducted in order to analyze the requirements and the electricity supply as a result of its future installation. This topic is part of the analysis developed in the Level II of the site survey study. The analysis focuses on a plan for long-term projections from 2005 to 2030, using the IAEA’s MESSAGE model (Model for Energy Supply Strategy Alternatives and Their General Environmental Impacts). The existing electrical infrastructure and the plans for expansion of transmission and distribution lines, the generation technologies and the electricity flows with the provinces and neighboring countries have been taken into account. The study was based on the evaluation of two site scenarios based on the availability of infrastructure in the province and the conclusions obtained in the Level I of the siting study. The modelling results indicate that the current situation that characterizes the Province as a net importer of electricity will be reversed due to the operation of the nuclear plant since 2019. However, it is important to note that to keep Formosa’s feature as an electricity exporter from the year 2026, according to the less favorable scenario (highest demand), ongoing energy planning and investment in the province will be done. (author) [es

  1. General Electric Company proposed demonstration Projects Matrix, commercial buildings, National Solar Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-01

    The requirements for selecting commercial demonstrations are derived from the overall goal of the Federal program as stated in the ''National Program for Solar Heating and Cooling,'' ERDA 23-A, October 1975. This goal is to stimulate an industrial and commercial capability for producing and distributing solar heating and cooling (SHAC) systems. The development of the demonstration matrix consists of establishing selection criteria and developing a methodology for applying and evaluating these criteria. The output of this procedure results in a time phased matrix of location, SHAC systems, and building types which comprise the recommended National Solar Demonstration projects for commercial buildings. The Demonstration Matrix Definition is comprised of three principle elements: Demonstration identification; Specific Demonstration selection criteria; and Architect/Engineer (A/E) selection. (WDM)

  2. Effects of electric field strengths on fusion and in vitro development of domestic cat embryos derived by somatic cell nuclear transfer.

    Science.gov (United States)

    Karja, Ni Wayan Kurniani; Otoi, Takeshige; Wongsrikeao, Pimprapar; Shimizu, Ryohei; Murakami, Masako; Agung, Budiyanto; Fahrudin, Mokhamad; Nagai, Takashi

    2006-09-15

    The present study was conducted to determine the effect of electric field strength on the rate of membrane fusion between the somatic cell and cytoplast and on subsequent in vitro development of reconstructed embryos. Additionally, the in vitro developmental competence of cat oocytes artificially activated after 44 h of maturation culture was examined. An efficient fusion rate (64.2%) was obtained by applying a single pulse of 1.5 kV/cm for 50 micros, and the fusion rate remained almost constant at the higher field intensity (59.8 and 54.9% at 1.7 and 2.0 kV/cm, respectively). Although the cleavage rate of fused embryos increased with an increase of the electric field strength, there were no differences among the groups with respect to the proportion of development to the morula and blastocyst stages. In the additional experiment, oocytes at the metaphase II stage after culture for 44 h were activated by the combination of calcium ionophore (CaI) with cycloheximide (CHX). Some (11.8%) of activated oocytes developed to the blastocyst stage. Results from this study indicated that electric field strength affects the rates of fusion and cleavage but has no significant effects on the development to the blastocyst stage of reconstructed embryos. Prolonged maturation culture of cat oocytes (up to 44 h) decreased their ability to develop to the blastocyst stage.

  3. Potential role of fission--fusion systems in the electric economy

    International Nuclear Information System (INIS)

    Deonigi, D.E.

    1975-01-01

    This study was conducted in order to meet the following objectives: (1) define the target costs the hybrid must meet, (2) define the optimum fissile/electrical production ratio for hybrid blankets, (3) discover synergistic configurations, and (4) define the windows of economic hybrid design having desirable cost/benefit ratios. The techniques for conducting the study and some data are given. (U.S.)

  4. EURATOM strategy towards fusion energy

    International Nuclear Information System (INIS)

    Varandas, C.

    2007-01-01

    Research and development (Research and Development) activities in controlled thermonuclear fusion have been carried out since the 60's of the last century aiming at providing a new clean, powerful, practically inexhaustive, safe, environmentally friend and economically attractive energy source for the sustainable development of our society.The EURATOM Fusion Programme (EFP) has the leadership of the magnetic confinement Research and Development activities due to the excellent results obtained on JET and other specialized devices, such as ASDEX-Upgrade, TORE SUPRA, FTU, TCV, TEXTOR, CASTOR, ISTTOK, MAST, TJ-II, W7-X, RFX and EXTRAP. JET is the largest tokamak in operation and the single device that can use deuterium and tritium mixes. It has produced 16 MW of fusion power, during 3 seconds, with an energy amplification of 0.6. The next steps of the EFP strategy towards fusion energy are ITER complemented by a vigorous Accompanying Programme, DEMO and a prototype of a fusion power plant. ITER, the first experimental fusion reactor, is a large-scale project (35-year duration, 10000 MEuros budget), developed in the frame of a very broad international collaboration, involving EURATOM, Japan, Russia Federation, United States of America, Korea, China and India. ITER has two main objectives: (i) to prove the scientific and technical viability of fusion energy by producing 500 MW, during 300 seconds and a energy amplification between 10 and 20; and (ii) to test the simultaneous and integrated operation of the technologies needed for a fusion reactor. The Accompanying Programme aims to prepare the ITER scientific exploitation and the DEMO design, including the development of the International Fusion Materials Irradiation Facility (IFMIF). A substantial part of this programme will be carried out in the frame of the Broader Approach, an agreement signed by EURATOM and Japan. The main goal of DEMO is to produce electricity, during a long time, from nuclear fusion reactions. The

  5. Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator

    Energy Technology Data Exchange (ETDEWEB)

    Bau, S., E-mail: sebastien.bau@inrs.fr; Witschger, O. [Laboratoire de Metrologie des Aerosols, Institut National de Recherche et de Securite, INRS (France); Gensdarmes, F. [IRSN, Laboratoire de Physique et de Metrologie des Aerosols, Institut de Radioprotection et de Surete Nucleaire (France); Thomas, D. [LSGC/CNRS, Nancy Universite, Laboratoire des Sciences du Genie Chimique (France); Borra, J.-P. [Equipe Decharges Electriques et Procedes Aerosols, Laboratoire de Physique des Gaz et des Plasmas (France)

    2010-08-15

    A nanoparticle generator based on the principle of electrical discharge (PALAS GFG-1000) was used to produce nanoparticles of different chemical natures. The fractions of electrically neutral particles were then measured by means of a Spectrometre de Mobilite Electrique Circulaire (SMEC, i.e. radial-flow mobility analyzer) for different operating conditions. The experimental results were compared with the theoretical values calculated from the Fuchs extended charge equilibrium model for spherical particles and agglomerates. For the smallest particles (below 20 nm), the deviations observed remain below 10%, and tend towards 20% for larger particles (over 35 nm).

  6. Evaluation of microbial stability, bioactive compounds, physicochemical properties, and consumer acceptance of pomegranate juice processed in a commercial scale pulsed electric field system

    Science.gov (United States)

    This paper investigated the feasibility for pasteurizing raw pomegranate juice in a commercial scale pulsed electric field (PEF) system. The juice was processed in a commercial scale PEF processing system at 35 and 38 kV/cm for 281 µs at 55 degree C with a flow rate of 100 L/h. Effect of PEF process...

  7. Cost analysis of commercial pasteurization of orange juice by pulsed electric fields

    Science.gov (United States)

    The cost of pulsed electric field (PEF) pasteurization of orange juice was estimated. The cost analysis was based on processing conditions that met the US FDA (5 log reduction) requirement for fruit juice pasteurization and that achieved a 2 month microbial shelf-life. PEF-treated samples processed ...

  8. A methodology for fostering commercialization of electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Thollot, P. A.; Musial, N. T.

    1980-01-01

    The rationale behind, and a proposed approach for, application of government assistance to accelerate the process of moving a new electric vehicle propulsion system product from technological readiness to profitable marketplace acceptance and utilization are described. Emphasis is on strategy, applicable incentives, and an implementation process.

  9. 75 FR 32171 - American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and...

    Science.gov (United States)

    2010-06-07

    ... consisting of planning, design, construction, and operation of the CCS system. There will be a four-year DOE... for the construction and operation of a project proposed by American Electric Power Service... absence of strong incentives. The CCPI program was established in 2002 as a government and private sector...

  10. Fusion Machinery

    DEFF Research Database (Denmark)

    Sørensen, Jakob Balslev; Milosevic, Ira

    2015-01-01

    SNARE proteins constitute the minimal machinery needed for membrane fusion. SNAREs operate by forming a complex, which pulls the lipid bilayers into close contact and provides the mechanical force needed for lipid bilayer fusion. At the chemical synapse, SNARE-complex formation between...... the vesicular SNARE VAMP2/synaptobrevin-2 and the target (plasma membrane) SNAREs SNAP25 and syntaxin-1 results in fusion and release of neurotransmitter, synchronized to the electrical activity of the cell by calcium influx and binding to synaptotagmin. Formation of the SNARE complex is tightly regulated...... and appears to start with syntaxin-1 bound to an SM (Sec1/Munc18-like) protein. Proteins of the Munc13-family are responsible for opening up syntaxin and allowing sequential binding of SNAP-25 and VAMP2/synaptobrevin-2. N- to C-terminal “zippering” of the SNARE domains leads to membrane fusion...

  11. Starfire: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Graumann, D.; Kokoszenski, J.

    1979-01-01

    The basic objective of the STARFIRE Project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor. The STARFIRE Project was initiated in May 1979, with the goal of completing the design study by October 1980. The purpose of this paper is to present an overview of the major parameters and design features that have been tentatively selected for STARFIRE

  12. Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant

    Science.gov (United States)

    Palermo, I.; Veredas, G.; Gómez-Ros, J. M.; Sanz, J.; Ibarra, A.

    2016-01-01

    Neutronic analyses or, more widely, nuclear analyses have been performed for the development of a dual-coolant He/LiPb (DCLL) conceptual design reactor. A detailed three-dimensional (3D) model has been examined and optimized. The design is based on the plasma parameters and functional materials of the power plant conceptual studies (PPCS) model C. The initial radial-build for the detailed model has been determined according to the dimensions established in a previous work on an equivalent simplified homogenized reactor model. For optimization purposes, the initial specifications established over the simplified model have been refined on the detailed 3D design, modifying material and dimension of breeding blanket, shield and vacuum vessel in order to fulfil the priority requirements of a fusion reactor in terms of the fundamental neutronic responses. Tritium breeding ratio, energy multiplication factor, radiation limits in the TF coils, helium production and displacements per atom (dpa) have been calculated in order to demonstrate the functionality and viability of the reactor design in guaranteeing tritium self-sufficiency, power efficiency, plasma confinement, and re-weldability and structural integrity of the components. The paper describes the neutronic design improvements of the DCLL reactor, obtaining results for both DEMO and power plant operational scenarios.

  13. User's perspective on fusion

    International Nuclear Information System (INIS)

    Ashworth, C.P.

    1976-01-01

    The need in fusion, from the electric utilities viewpoint, is for fusion to be a real option, not huge, complicated nuclear plants costing $10 billion each and requiring restructuring the energy industry to provide and use them. A course for future fusion reactor work in order to be a real option is discussed. The advantages of alternate concepts to the tokamak are presented

  14. Lux level enhancement and reduction in electricity cost in commercial buildings by retrofitting with PMR luminaries

    International Nuclear Information System (INIS)

    Mariun, N.; Mohibullah; Jasni, J.; Lam, S.Y.

    2006-01-01

    Most of the existing commercial buildings are illuminated by luminaries systems during broad daylight and night which is provided by the renowned lighting industry. However, back in 1980s, the installed luminaries within the office compound were limited in choice of luminaire selection and cost factor impact. Some of the old commercial building are still using prismatic acrylic lens diffuser luminaries in order to brighten up the building for their business activities and a large number of luminaries are needed to illuminate equivalent illumination level as per requirement of the building bye-laws code. With the advancement in luminaries technology, the lighting industries have offered better solution to reduce energy costs by 50% or more, also able to improve the quality of light and reducing the quantity of luminaries requirement by introducing the parabolic mirror reflector (PMR) luminaries system. The selected commercial building as a case study to support this luminaries retrofitting program by comparing the existing luminaries with the retrofit luminaries in terms of the lux measurement and energy cost saving calculation is presented in this paper. Nevertheless, some general lighting design principle rules are also discussed

  15. Optimization of a hybrid electric power system design for large commercial buildings: An application design guide

    Science.gov (United States)

    Lee, Keun

    Renewable energy in different forms has been used in various applications for survival since the beginning of human existence. However, there is a new dire need to reevaluate and recalibrate the overall energy issue both nationally and globally. This includes, but is not limited to, the finite availability of fossil fuel, energy sustainability with an increasing demand, escalating energy costs, environmental impact such as global warming and green-house gases, to name a few. This dissertation is primarily focused and related to the production and usage of electricity from non-hydro renewable sources. Among non-hydro renewable energy sources, electricity generation from wind and solar energy are the fastest-growing technologies in the United States and in the world. However, due to the intermittent nature of such renewable sources, energy storage devices are required to maintain proper operation of the grid system and in order to increase reliability. A hybrid system, as the name suggests, is a combination of different forms of non-renewable and renewable energy generation, with or without storage devices. Hybrid systems, when applied properly, are able to improve reliability and enhance stability, reduce emissions and noise pollution, provide continuous power, increase operation life, reduce cost, and efficiently use all available energy. In the United States (U.S.), buildings consume approximately 40% of the total primary energy and 74% of the total electricity. Therefore, reduction of energy consumption and improved energy efficiency in U.S. buildings will play a vital role in the overall energy picture. Electrical energy usage for any such building varies widely depending on age (construction technique), electricity and natural gas usage, appearance, location and climate. In this research, a hybrid system including non-renewable and renewable energy generation with storage devices specifically for building applications, is studied in detail. This research deals

  16. From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector

    Energy Technology Data Exchange (ETDEWEB)

    Busch, J.F. Jr.

    1990-08-01

    Thailand serves as a case study of the potential to conserve electricity in the fast-growing commercial sectors of the tropical developing world. We performed a field study of over 1100 Thai office workers in which a questionnaire survey and simultaneous physical measurements were taken. Both air-conditioned and non-air-conditioned buildings were included. We analyzed Thai subjective responses on the ASHRAE, McIntyre and other rating scales, relating them to Effective Temperature, demographics, and to rational indices of warmth such as PMV and TSENS. These results suggest that without sacrificing comfort, significant energy conservation opportunities exist through the relaxation of upper space temperature limits. To investigate the potential for conserving energy in a cost-effective manner, we performed a series of parametric simulations using the DOE-2.1D computer program on three commercial building prototypes based on actual buildings in Bangkok; an office, a hotel, and a shopping center. We investigated a wide range of energy conservation measures appropriate for each building type, from architectural measures to HVAC equipment and control solutions. The best measures applied in combination into high efficiency cases can generate energy savings in excess of 50%. Economic analyses performed for the high efficiency cases, resulted in costs of conserved energy of less than and internal rates of return in excess of 40%. Thermal cool storage, cogeneration, and gas cooling technology showed promise as cost-effective electric load management strategies.

  17. A Fusion of Sensors Information for Autonomous Driving Control of an Electric Vehicle (EV)

    International Nuclear Information System (INIS)

    Haris, Hasri; Wan, Khairunizam; Hazry, D; Razlan, Zuradzman M

    2013-01-01

    The study uses the environment of the road as input variables for the main system to control steering wheel, brake and acceleration pedals. A camera is installed on the roof of the Electric Vehicles (EV) and is used to obtain image information of the road. On the other hand, users or drivers do not have to directly contact with the main system because it will autonomously control the devices by using fuzzy information of the road conditions. A fuzzy information means in the preliminary experiments, reasoning of the various environments will be done by using fuzzy approach. At the end of the study, several existing algorithms for controlling motors and image processing technique could be combined into an algorithm that could be used to move EV without assist from human

  18. Assessing a new direction for fusion

    International Nuclear Information System (INIS)

    Waganer, L.M.

    2000-01-01

    The principal application proposed for fusion for the past 40 years has been the central station, electrical power generation plant. However, the sizable increases that were forecast for future electrical power demands have not been realized to date. Only coal power plants have been increasing (3%/year) generating capacity (Annual Energy Outlook, 1998) . Likewise, the ability of fusion to deliver economical electrical power has not been credibly postulated, much less demonstrated. Together these two factors have stagnated the commercialization of fusion power. It is now time for a reassessment of what fusion can best do for the world. Fusion, with a practically inexhaustible energy supply, has many unique properties that enable a wide variety of useful products. A study by the ARIES team is underway to review possible fusion applications and assess those with the potential to provide useful and worthwhile new products. A roadmap of possible applications has been developed to assess the utilization of the unique properties of the fusion process. The potential product categories are energy production (fuel, electricity, heat), space propulsion, altered or transmuted material properties (transmutation, waste treatment, tritium production), chemical compound dissociation (waste treatment, ore reduction, refining), and direct use of fusion nuclear products (radiography, lithography, radiotherapy, activation analyses). An evaluation methodology based on the success and failure of previous large, national and international technology development projects was developed to assess and recommend encouraging fusion product applications. A list of significant attributes was defined to describe and characterize projects that are likely to succeed or fail in the global marketplace. These attributes were assigned weights according to their perceived value to the national or global enterprise. An additive utility theory methodology was used to qualitatively evaluate the proposed

  19. An electrically conducting first wall for the fusion engineering device-A (FED-A) tokamak

    International Nuclear Information System (INIS)

    Cramer, B.A.; Fuller, G.M.

    1983-01-01

    The first wall of the tokamak FED-A device was designed to satisfy two conflicting requirements. They are a low electrical resistance to give a long eddy-current decay time and a high neutron transparency to give a favorable tritium breeding ratio. The tradeoff between these conflicting requirements resulted in a copper alloy first wall that satisfied the specific goals for FED-A, i.e., a minimum eddy-current decay time of 0.5 sec and a tritium breeding ratio of at least 1.2. Aluminum alloys come close to meeting the requirements and would also probably work. Stainless steel will not work in this application because shells thin enough to satisfy temperature and stress limits are not thick enough to give a long eddy-current decay time and to avoid disruption induced melting. The baseline first wall design is a rib-stiffened, double-wall construction. The total wall thickness is 1.5 cm, including a water coolant thickness of 0.5 cm. The first wall is divided into twelve 30-degree sectors. Flange rings at the ends of each sector are bolted together to form the torus. Structural support is provided at the top center of each sector

  20. Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships

    International Nuclear Information System (INIS)

    Gomez San Roman, Tomas; Momber, Ilan; Rivier Abbad, Michel; Sanchez Miralles, Alvaro

    2011-01-01

    Electric vehicles (EVs) present efficiency and environmental advantages over conventional transportation. It is expected that in the next decade this technology will progressively penetrate the market. The integration of plug-in electric vehicles in electric power systems poses new challenges in terms of regulation and business models. This paper proposes a conceptual regulatory framework for charging EVs. Two new electricity market agents, the EV charging manager and the EV aggregator, in charge of developing charging infrastructure and providing charging services are introduced. According to that, several charging modes such as EV home charging, public charging on streets, and dedicated charging stations are formulated. Involved market agents and their commercial relationships are analysed in detail. The paper elaborates the opportunities to formulate more sophisticated business models for vehicle-to-grid applications under which the storage capability of EV batteries is used for providing peak power or frequency regulation to support the power system operation. Finally penetration phase dependent policy and regulatory recommendations are given concerning time-of-use pricing, smart meter deployment, stable and simple regulation for reselling energy on private property, roll-out of public charging infrastructure as well as reviewing of grid codes and operational system procedures for interactions between network operators and vehicle aggregators. - Highlights: → A conceptual regulatory framework for charging EVs is proposed. → 2 new agents, EV charging point manager, EV aggregator and their functions are introduced. → Depending on private or public access of charging points, contractual relations change. → A classification of charging scenarios alludes implications on regulatory topics. → EV penetration phase dependent policy and regulatory recommendations are given.

  1. Alternative fusion concepts: engineering and utility considerations

    International Nuclear Information System (INIS)

    Gough, W.C.; Amherd, N.A.

    1978-01-01

    Alternative systems are described to be an integral part of the total fusion effort, making use of many developments of the mainline efforts but also contributing on a broad scale to improved understanding of fusion plasmas, technology and engineering. We hypothesize that the rationale for supporting alternative concepts will shift from physics related justifications to the perceived benefits for commercial use. Three principal factors are used to describe the commercialization potential of energy systems: technological risk, perceived benefit, and capital requirements. R and D can reduce the risk of a technology option, but perceived benefit and capital availability are largely governed by non-R and D elements. Hence, power station decision criteria as determined by electric-utility executives are presented, and a balance among the three commercialization factors described. An outline of past and on-going alternative concept reactor study endeavors is given and a suggestion for rapidly developing the physics base of the concepts is described

  2. 1978 source book for fusion--fission hybrid systems. Executive summary

    International Nuclear Information System (INIS)

    Crowley, J.H.; Pavlenco, G.F.; Kaminski, R.S.

    1978-12-01

    The 1978 Source Book for Fusion--Fission Hybrid Systems was prepared by United Engineers and Constructors Inc. for the U.S. Department of Energy and the Electric Power Research Institute. It reviews the current status of fusion--fission hybrid reactors, and presents the prevailing views of members of the fusion community on the RD and D timetable required for the development and commercialization of fusion--fission hybrids. The results presented are based on a review of related references as well as interviews with recognized experts in the field. Contributors from the academic and industrial communities are listed

  3. Electrical characterization of commercial NPN bipolar junction transistors under neutron and gamma irradiation

    Directory of Open Access Journals (Sweden)

    OO Myo Min

    2014-01-01

    Full Text Available Electronics components such as bipolar junction transistors, diodes, etc. which are used in deep space mission are required to be tolerant to extensive exposure to energetic neutrons and ionizing radiation. This paper examines neutron radiation with pneumatic transfer system of TRIGA Mark-II reactor at the Malaysian Nuclear Agency. The effects of the gamma radiation from Co-60 on silicon NPN bipolar junction transistors is also be examined. Analyses on irradiated transistors were performed in terms of the electrical characteristics such as current gain, collector current and base current. Experimental results showed that the current gain on the devices degraded significantly after neutron and gamma radiations. Neutron radiation can cause displacement damage in the bulk layer of the transistor structure and gamma radiation can induce ionizing damage in the oxide layer of emitter-base depletion layer. The current gain degradation is believed to be governed by the increasing recombination current in the base-emitter depletion region.

  4. Electrical and Electrochemical Performance Characteristics of Small Commercial Li-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Nagasubramanian, G.; Roth, E.P.

    1998-12-22

    Advanced rechargeable lithium-ion batteries are presently being developed and commercialized worldwide for use in consumer electronics, military and space applications. At Sandia National Laboratories we have used different electrochemical techniques such as impedance and charge/discharge at ambient and subambient temperatures to probe the various electrochemical processes that are occurring in Li-ion cell. The purpose of this study is to identify the component that reduces the cell performance at subambient temperatures. Our impedance data suggest that while the variation in the electrolyte resistance between room temperature and {minus}20 C is negligible the anode electrolyte interfacial resistance increases by an order of magnitude in the same temperature regime. We believe that the solid electrolyte interface (SEI) layer on the carbon anode may be responsible for the increase in cell impedance. We have also evaluated the cells in hybrid mode with capacitors. High-current operation in the hybrid mode allowed fill usage of the Li-ion cell capacity at 25 C and showed a factor of 5 improvement in delivered capacity at {minus}20 C.

  5. The effect of electrical stimulation on lumbar spinal fusion in older patients: a randomized, controlled, multi-center trial: part 1: functional outcome.

    Science.gov (United States)

    Andersen, Thomas; Christensen, Finn B; Ernst, Carsten; Fruensgaard, Søren; Østergaard, Jørgen; Andersen, Jens Langer; Rasmussen, Sten; Niedermann, Bent; Høy, Kristian; Helmig, Peter; Holm, Randi; Lindblad, Bent Erling; Hansen, Ebbe Stender; Egund, Niels; Bünger, Cody

    2009-10-01

    Randomized, controlled, multi-center trial. To investigate the effect of direct current (DC) electrical stimulation on functional and clinical outcome after lumbar spinal fusion in patients older than 60 years. Older patients have increased complication rates after spinal fusion surgery. Treatments which have the possibility of enhancing functional outcome and fusion rates without lengthening the procedure could prove beneficial. DC-stimulation of spinal fusion has proven effective in increasing fusion rates in younger and "high risk" patients, but functional outcome measures have not been reported. A randomized, clinical trial comprising 5 orthopedic centers. The study included a total of 107 patients randomized to uninstrumented posterolateral lumbar spinal fusion with or without DC-stimulation. Functional outcome was assessed using Dallas Pain Questionnaire, SF-36, Low Back Pain Rating Scale pain index, and walking distance. Follow-up after 1 year was 95/107 (89%). DC-stimulated patients had significant better outcome in 3 of 4 categories in the Dallas Pain Questionnaire, better SF-36 scores (not significantly), but no difference in pain scores were observed. Median walking distance at latest follow-up was better in the stimulated group (not significant). Walking distance was significantly associated with functional outcome. There was no difference in any of the functional outcome scores between patients who experienced a perioperative complication and those without complications. The achievement of a good functional outcome was heavily dependent on the obtained walking distance. DC-stimulated patients tended to have better functional outcome as compared to controls. No negative effects of perioperative complications could be observed on the short-term functional outcome.

  6. Regional electric power demand elasticities of Japan's industrial and commercial sectors

    International Nuclear Information System (INIS)

    Hosoe, Nobuhiro; Akiyama, Shu-ichi

    2009-01-01

    In the assessment and review of regulatory reforms in the electric power market, price elasticity is one of the most important parameters that characterize the market. However, price elasticity has seldom been estimated in Japan; instead, it has been assumed to be as small as 0.1 or 0 without proper examination of the empirical validity of such a priori assumptions. We estimated the regional power demand functions for nine regions, in order to quantify the elasticity, and found the short-run price elasticity to be 0.09-0.30 and the long-run price elasticity to be 0.12-0.56. Inter-regional comparison of our estimation results suggests that price elasticity in rural regions is larger than that in urban regions. Popular assumptions of small elasticity of 0.1, for example, could be suitable for examining Japan's aggregate power demand but not power demand functions that focus on respective regions. Furthermore, assumptions about smaller elasticity values such as 0.01 and 0 could not be supported statistically by this study.

  7. Ch. 37, Inertial Fusion Energy Technology

    International Nuclear Information System (INIS)

    Moses, E.

    2010-01-01

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  8. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  9. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  10. Canada's Fusion Program

    International Nuclear Information System (INIS)

    Jackson, D. P.

    1990-01-01

    Canada's fusion strategy is based on developing specialized technologies in well-defined areas and supplying these technologies to international fusion projects. Two areas are specially emphasized in Canada: engineered fusion system technologies, and specific magnetic confinement and materials studies. The Canadian Fusion Fuels Technology Project focuses on the first of these areas. It tritium and fusion reactor fuel systems, remote maintenance and related safety studies. In the second area, the Centre Canadian de fusion magnetique operates the Tokamak de Varennes, the main magnetic fusion device in Canada. Both projects are partnerships linking the Government of Canada, represented by Atomic Energy of Canada Limited, and provincial governments, electrical utilities, universities and industry. Canada's program has extensive international links, through which it collaborates with the major world fusion programs, including participation in the International Thermonuclear Experimental Reactor project

  11. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    Directory of Open Access Journals (Sweden)

    Eber Huanca Cayo

    2012-05-01

    Full Text Available The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  12. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    Science.gov (United States)

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms. PMID:22969330

  13. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.

    Science.gov (United States)

    Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-04-20

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

  14. Fusion facility siting considerations

    International Nuclear Information System (INIS)

    Bussell, G.T.

    1985-01-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. A critically important consideration in this regard is site selection. The purpose of this paper is to examine major siting issues that may affect the economics, safety, and environmental impact of fusion

  15. Effects of sandblasting and electrical discharge machining on porcelain adherence to cast and machined commercially pure titanium.

    Science.gov (United States)

    Inan, Ozgür; Acar, Asli; Halkaci, Selçuk

    2006-08-01

    The aim of this study was to determine the effect of sandblasting and electrical discharge machining (EDM) on cast and machined titanium surfaces and titanium-porcelain adhesion. Twenty machined titanium specimens were prepared by manufacturer (groups 1 and 2). Thirty specimens were prepared with autopolymerizing acrylic resin. Twenty of these specimens (groups 3 and 4) were cast with commercially pure titanium and the alpha-case layer was removed. For control group (group 5), 10 specimens were cast by using NiCr alloy. Groups 2 and 4 were subjected to EDM while groups 1, 3, and 5 were subjected to sandblasting. Surface examinations were made by using a scanning electron microscope (SEM). A low-fusing porcelain was fused on the titanium surfaces, whereas NiCr specimens were covered using a conventional porcelain. Titanium-porcelain adhesion was characterized by a 3-point bending test. Results were analyzed by Kruskal-Wallis and Mann-Whitney U tests. Metal-porcelain interfaces were characterized by SEM. The bond strength of control group was higher than that of the titanium-porcelain system. There was no significant difference between cast and machined titanium groups (p > 0.05). There was no significant difference between EDM and sandblasting processes (p > 0.05). The use of EDM as surface treatment did not improve titanium-porcelain adhesion compared with sandblasting.

  16. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.

    Science.gov (United States)

    Kim, Hyung Chul; Wallington, Timothy J; Arsenault, Renata; Bae, Chulheung; Ahn, Suckwon; Lee, Jaeran

    2016-07-19

    We report the first cradle-to-gate emissions assessment for a mass-produced battery in a commercial battery electric vehicle (BEV); the lithium-ion battery pack used in the Ford Focus BEV. The assessment was based on the bill of materials and primary data from the battery industry, that is, energy and materials input data from the battery cell and pack supplier. Cradle-to-gate greenhouse gas (GHG) emissions for the 24 kWh Ford Focus lithium-ion battery are 3.4 metric tonnes of CO2-eq (140 kg CO2-eq per kWh or 11 kg CO2-eq per kg of battery). Cell manufacturing is the key contributor accounting for 45% of the GHG emissions. We review published studies of GHG emissions associated with battery production to compare and contrast with our results. Extending the system boundary to include the entire vehicle we estimate a 39% increase in the cradle-to-gate GHG emissions of the Focus BEV compared to the Focus internal combustion engine vehicle (ICEV), which falls within the range of literature estimates of 27-63% increases for hypothetical nonproduction BEVs. Our results reduce the uncertainties associated with assessment of BEV battery production, serve to identify opportunities to reduce emissions, and confirm previous assessments that BEVs have great potential to reduce GHG emissions over the full life cycle and provide local emission free mobility.

  17. Analysis of residential, industrial and commercial sector responses to potential electricity supply constraints in the 1990s

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Z.J.; Fang, J.M.; Lyke, A.J.; Krudener, J.R.

    1986-09-01

    There is considerable debate over the ability of electric generation capacity to meet the growing needs of the US economy in the 1990s. This study provides new perspective on that debate and examines the possibility of power outages resulting from electricity supply constraints. Previous studies have focused on electricity supply growth, demand growth, and on the linkages between electricity and economic growth. This study assumes the occurrence of electricity supply shortfalls in the 1990s and examines the steps that homeowners, businesses, manufacturers, and other electricity users might take in response to electricity outages.

  18. The role of fusion as a future power source

    International Nuclear Information System (INIS)

    Kintner, E.E.; Hirsch, R.L.

    1977-01-01

    potentials of fusion power in relation to nuclear fission, solar and other future energy sources can be assessed in general terms. The probability of success in fusion development, while not susceptible to measurement, continues to improve. Fusion can be expected to play an increasingly important role in energy supply world-wide in the early decades of the 21st century. If a commercial scale demonstration reactor (greater than or equal to 500 MWe) operates successfully by 2000, it is reasonable to anticipate as many as 20 to 100 large (1000 MWe) plants by 2020 and an increasing percentage of fusion electrical generating stations thereafter

  19. Fusion-breeder program

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The various approaches to a combined fusion-fission reactor for the purpose of breeding 239 Pu and 233 U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed

  20. A High-Resolution Spatially Explicit Monte-Carlo Simulation Approach to Commercial and Residential Electricity and Water Demand Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morton, April M [ORNL; McManamay, Ryan A [ORNL; Nagle, Nicholas N [ORNL; Piburn, Jesse O [ORNL; Stewart, Robert N [ORNL; Surendran Nair, Sujithkumar [ORNL

    2016-01-01

    Abstract As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for high resolution spatially explicit estimates for energy and water demand has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy and water consumption, many are provided at a course spatial resolution or rely on techniques which depend on detailed region-specific data sources that are not publicly available for many parts of the U.S. Furthermore, many existing methods do not account for errors in input data sources and may therefore not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more flexible Monte-Carlo simulation approach to high-resolution residential and commercial electricity and water consumption modeling that relies primarily on publicly available data sources. The method s flexible data requirement and statistical framework ensure that the model is both applicable to a wide range of regions and reflective of uncertainties in model results. Key words: Energy Modeling, Water Modeling, Monte-Carlo Simulation, Uncertainty Quantification Acknowledgment This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  1. Innovative direct energy conversion systems from fusion output thermal power to the electrical one with the use of electronic adiabatic processes of electron fluid in solid conductors

    International Nuclear Information System (INIS)

    Kondoh, Y.; Kondo, M.; Shimoda, K.; Takahashi, T.; Osuga, K.

    2003-07-01

    It is shown that with the use of the fusion output and/or environmental thermal energy, innovative open systems for permanent auto-working (PA) direct energy converting (DEC) from the thermal to the electrical (TE) and further to the chemical potential (TEC) energies, abbreviated as PA-TEC-DEC systems, can be used for new auto-working electrical power plants and the plants of the compressible and conveyable hydrogen gas resources at various regions in the whole world. It is analytically shown that the same physical mechanism by free electrons and electrical potential determined by temperature in conductors, which include semiconductors, leads to the Peltier effect and the Seebeck one. It is analytically proved that the energy conservation law is exactly satisfied in a simple form where the net absorbed thermal power is directly transferred to the electrical power and to the chemical power in the PA-TEC-DEC systems. It is analytically and experimentally clarified that the long distance separation between two π type elements of the heat absorption side and the production one of the Peltier effect circuit system or between the higher temperature side and the lower one of the Seebeck effect circuit one does not change mechanisms of the heat pumping by the Peltier effect and of the TE-DEC by the Seebeck effect. The proposed systems gives us freedom of no using the fossil fuel, such as coals, oils, and natural gases that yield serious greenhouse effect all over the earth, and the plant of nuclear fissions that left radiating wastes, i.e., no more environmental pollutions. The PA-TEC-DEC systems can be applicable for several km scale systems to the micro ones, such as the plants of the electrical power and the hydrogen gas resources, compact transportable hydrogen gas producers, the refrigerators, the air conditions, home electrical apparatuses, and further the computer elements. (author)

  2. Laser fusion program overview

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  3. Fusion power by magnetic confinement - program plan

    International Nuclear Information System (INIS)

    Dean, S.O.

    1978-01-01

    This Fusion Power Program Plan treats the technical, schedular and budgetary projections for the development of fusion power using magnetic confinement. It was prepared on the basis of current technical status and program perspective. A broad overview of the probable facilities requirements and optional possible technical paths to a demonstration reactor is presented, as well as a more detailed plan for the R and D program for the next five years. The 'plan' is not a roadmap to be followed blindly to the end goal. Rather it is a tool of management, a dynamic and living document which will change and evolve as scientific, engineering/technology and commercial/economic/environmental analyses and progress proceeds. The use of plans such as this one in technically complex development programs requires judgment and flexibility as new insights into the nature of the task evolve. The presently-established program goal of the fusion program is to develop and demonstrate pure fusion central electric power stations for commercial applications

  4. Advanced commercial Tokamak optimization studies

    International Nuclear Information System (INIS)

    Whitley, R.H.; Berwald, D.H.; Gordon, J.D.

    1985-01-01

    Our recent studies have concentrated on developing optimal high beta (bean-shaped plasma) commercial tokamak configurations using TRW's Tokamak Reactor Systems Code (TRSC) with special emphasis on lower net electric power reactors that are more easily deployable. A wide range of issues were investigated in the search for the most economic configuration: fusion power, reactor size, wall load, magnet type, inboard blanket and shield thickness, plasma aspect ratio, and operational β value. The costs and configurations of both steady-state and pulsed reactors were also investigated. Optimal small and large reactor concepts were developed and compared by studying the cost of electricity from single units and from multiplexed units. Multiplexed units appear to have advantages because they share some plant equipment and have lower initial capital investment as compared to larger single units

  5. Studies on plasma direct energy converters for thermal and fusion-produced ions using slanted cusp magnetic and distributed electric fields

    Science.gov (United States)

    Yasaka, Y.; Goto, K.; Taniguchi, A.; Tsuji, A.; Takeno, H.

    2009-07-01

    Two types of direct energy converters, cusp direct energy converter (CUSPDEC) and travelling-wave (TW) DEC, used to produce electricity from thermal ions and fusion products in an advanced fuelled fusion, are investigated using small-scale devices. In CUSPDEC, magnetized electrons are deflected along the field lines of the cusp magnetic field to the line cusp region and collected by an electron collector, while weakly magnetized ions can traverse the separatrix and enter into the point cusp region. Thus, ions are separated from electrons, and flow into an ion collector to produce dc power. Efficiencies of energy conversion of separated ions with large thermal spread of energy are measured to be ~55%. An additional lateral electrode, together with the existing collector, constitutes a two-stage ion collector that provides distributed ion-decelerating fields. From the measured voltage-current characteristics, the efficiency of this collector is estimated to be improved to 65-70%, which is consistent with the calculation. Fusion-produced fast ions enter into TWDEC and are velocity-modulated by RF fields, bunched and then decelerated by RF travelling-wave fields on the decelerator to produce RF power. The TWDEC device has shown that the energies of ions of 3-6 keV can be decreased by 10-15% for a one-wavelength decelerator. This would give a total efficiency of 60-70% for a full-length decelerator. A novel system is being investigated for further improvement, in which the incoming ions are deflected transversely, according to each energy, to form a fan-shaped beam and a distributed electrode array for modulation and deceleration generates travelling-waves appropriate to each ion path depending on the energy.

  6. Non-electrical uses of thermal energy generated in the production of fissile fuel in fusion--fission reactors: a comparative economic parametric analysis for a hybrid with or without synthetic fuel production

    International Nuclear Information System (INIS)

    Tai, A.S.; Krakowski, R.A.

    1979-01-01

    A parametric analysis has been carried out for testing the sensitivity of the synfuel production cost in relation to crucial economic and technologic quantities (investment costs of hybrid and synfuel plant, energy multiplication of the fission blanket, recirculating power fraction of the fusion driver, etc.). In addition, a minimum synfuel selling price has been evaluated, from which the fission--fusion--synfuel complex brings about a higher economic benefit than does the fusion--fission hybrid entirely devoted to fissile-fuel and electricity generation. Assuming an electricity cost of 2.7 cents/kWh, an annual investment cost per power unit of 4.2 to 6 $/GJ (132 to 189 k$/MWty) for the fission--fusion complex and 1.5 to 3 $/GJ (47 to 95 k$/MWty) for the synfuel plant, the synfuel production net cost (i.e., revenue = cost) varies between 6.5 and 8.6 $/GJ. These costs can compete with those obtained by other processes (natural gas reforming, resid partial oxidation, coal gasification, nuclear fission, solar electrolysis, etc.). This study points out a potential use of the fusion--fission hybrid other than fissile-fuel and electricity generation

  7. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability:A Study of Commercial Buildings in California and New York States

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2008-12-01

    In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM). Given end-use energy details for a facility, a description of its economic environment and a menu of available equipment, DER-CAM finds the optimal investment portfolio and its operating schedule which together minimize the cost of meeting site service, e.g., cooling, heating, requirements. Past studies have considered combined heat and power (CHP) technologies. Methods and software have been developed to solve this problem, finding optimal solutions which take simultaneity into account. This project aims to extend on those prior capabilities in two key dimensions. In this research storage technologies have been added as well as power quality and reliability (PQR) features that provide the ability to value the additional indirect reliability benefit derived from Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid capability. This project is intended to determine how attractive on-site generation becomes to a medium-sized commercial site if economical storage (both electrical and thermal), CHP opportunities, and PQR benefits are provided in addition to avoiding electricity purchases. On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from utility service would provide the facility with ride-through capability for minor grid disturbances. Three building types in both California and New York are assumed to have a share of their sensitive electrical load separable. Providing enhanced service to this load fraction has an unknown value to the facility, which is estimated analytically. In summary, this project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York; (2) to extend the analysis capability of DER-CAM to include both heat and

  8. ITER and the road map towards fusion energy

    International Nuclear Information System (INIS)

    Tran, M.Q.

    2005-01-01

    Outlined is a fusion as a sustainable energy, the conditions and challenges for the realisation of fusion energy. Given is electricity generating power plant conceptual study and the rule of fusion energy in future energy scenarios

  9. Suitability of commercial transport for a shift to electric mobility with Denmark and Germany as use cases

    DEFF Research Database (Denmark)

    Christensen, Linda; Klauenberg, Jens; Kveiborg, Ole

    2017-01-01

    are registered in these sectors and daily mileage is reasonably low. They should be primary target groups of specific policy measures to promote the use of electric vehicles.Both Denmark and Germany have incentives to promote the use of electric vehicles. Nevertheless, electric vehicles do generally not show...... economic benefits unless travel distance is high. However, today the travel range of large vans is an important barrier for electrification due to battery weight and the limitation of 3.5 tonnes gross vehicle weight for driving with a normal driving licence. The rule needs amendments for electric vehicles......, as has been done in Germany. The paper recommends EU countries follow the German rule allowing EVs up to 4.25 tonnes to be driven with a class B licence, thereby potentially creating a market for big vans with long travel range....

  10. Fusion safety data base

    International Nuclear Information System (INIS)

    Laats, E.T.; Hardy, H.A.

    1983-01-01

    The purpose of this Fusion Safety Data Base Program is to provide a repository of data for the design and development of safe commercial fusion reactors. The program is sponsored by the United States Department of Energy (DOE), Office of Fusion Energy. The function of the program is to collect, examine, permanently store, and make available the safety data to the entire US magnetic-fusion energy community. The sources of data will include domestic and foreign fusion reactor safety-related research programs. Any participant in the DOE Program may use the Data Base Program from his terminal through user friendly dialog and can view the contents in the form of text, tables, graphs, or system diagrams

  11. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  12. Magnetic-confinement fusion

    Science.gov (United States)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  13. Electricity

    Indian Academy of Sciences (India)

    AC power generation, its transmission and distribution. The well known observations made by Oersted that an electric current produces a magnetic field led a number of researchers to investigate whether the converse was true i.e. whether electric current can be produced from a magnetic field. Michael Faraday of England ...

  14. Spinal fusion

    Science.gov (United States)

    ... Herniated disk - fusion; Spinal stenosis - fusion; Laminectomy - fusion Patient Instructions Bathroom safety - adults Preventing falls Preventing falls - what to ask your doctor Spine surgery - discharge Surgical wound care - open Images Scoliosis Spinal ...

  15. Perspectives of fusion power

    International Nuclear Information System (INIS)

    Jensen, V.O.

    1984-01-01

    New and practically inexhaustible sources of energy must be developed for the period when oil, coal and uranium will become scarce and expensive. Nuclear fusion holds great promise as one of these practically inexhaustible energy sources. Based on the deuteriumtritium reaction with tritium obtained from naturally occuring lithium, which is also widely available in Europe, the accessible energy resources in the world are 3.10 12 to 3.10 16 toe; based on the deuterium-deuterium reaction, the deuterium content of the oceans corresponds to 10 20 toe. It is presently envisaged that in order to establish fusion as a large-scale energy source, three major thresholds must be reached: - Scientific feasibility, - Technical feasibility, i.e. the proof that the basic technical problems of the fusion reactor can be solved. - Commercial feasibility, i.e. proof that fusion power reactors can be built on an industrial scale, can be operated reliably and produce usable energy at prices competitive with other energy sources. From the above it is clear that the route to commercial fusion will be long and costly and involve the solution of extremely difficult technical problems. In view of the many steps which have to be taken, it appears unlikely that commercial fusion power will be in general use within the next 50 years and by that time world-wide expenditure on research, development and demonstration may well have exceeded 100 Bio ECU. (author)

  16. Target production for inertial fusion energy

    International Nuclear Information System (INIS)

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of ∼16 cents per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW e IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level

  17. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  18. Characterizing precipitate evolution of an Al–Zn–Mg–Cu-based commercial alloy during artificial aging and non-isothermal heat treatments by in situ electrical resistivity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Fulin [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Zurob, Hatem S., E-mail: zurobh@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Purdy, Gary R. [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Zhang, Hui, E-mail: zhanghui63hunu@163.com [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082 (China)

    2016-07-15

    In situ electrical resistivity monitoring technique was employed to continuously evaluate the precipitate evolution of an Al–Zn–Mg–Cu-based commercial alloy during typical artificial aging treatments. The effects of artificial aging on the precipitates stability during non-isothermal heat treatments were also explored. Conventional hardness test, transmission electron microscopy and differential scanning calorimetry were also adopted to verify the electrical resistivity results. The results indicated that both the precipitation process and its timely rate could be followed by the monitored electrical resistivity during artificial aging treatments. The electrical resistivity results gave overall information on continuous precipitation and dissolution processes, especially under high heating rates. Samples artificial aging heat treated at 120 °C for 24 h followed by aging at 150 °C for 24 h presented more stable state and coarser precipitates than the samples only artificial aging heat treated at 120 °C for 24 h or triple artificial aging heat treated at 120 °C/24 h + 195 °C/15 min + 120 °/24 h. While the incoherent η precipitates in the samples artificial aging heat treated at 120 °C for 24 h followed by aging at 150 °C for 24 h were more easiness to coarsening and dissolve during non-isothermal heat treatments as well. - Highlights: • In situ electrical resistivity monitoring technique was employed on an Al-Zn-Mg-Cu alloy. • The precipitate evolution during typical artificial aging treatments was studied. • The precipitate stability during non-isothermal heat treatments was explored. • The electrical resistivity wonderfully monitored continuous precipitation and dissolution. • The alloy submitted to a T7 treatment presents a more stable state during heating due to incoherent η precipitates.

  19. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  20. Fusion reactor wastes

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-01-01

    The fusion reactor currently is being developed as a clean source of electricity with an essentially infinite source of fuel. These reactors are visualized as using a fusion reaction to generate large quantities of high temperature energy which can be used as process heat or for the generation of electricity. The energy would be created primarily as the kinetic energy of neutrons or other reaction products. Neutron energy could be converted to high-temperature heat by moderation and capture of the neutrons. The energy of other reaction products could be converted to high-temperature heat by capture, or directly to electricity by direct conversion electrostatic equipment. An analysis to determine the wastes released as a result of operation of fusion power plants is presented

  1. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  2. Fuel procurement for first generation fusion power plants

    International Nuclear Information System (INIS)

    Gore, B.F.; Hendrickson, P.L.

    1976-09-01

    The provision of deuterium, tritium, lithium and beryllium fuel materials for fusion power plants is examined in this document. Possible fusion reactions are discussed for use in first generation power plants. Requirements for fuel materials are considered. A range of expected annual consumption is given for each of the materials for a 1000 megawatts electric (MWe) fusion power plant. Inventory requirements are also given. Requirements for an assumed fusion power plant electrical generating capacity of 10 6 MWe (roughly twice present U.S. generating capacity) are also given. The supply industries are then examined for deuterium, lithium, and beryllium. Methods are discussed for producing the only tritium expected to be purchased by a commercial fusion industry--an initial inventory for the first plant. Present production levels and methods are described for deuterium, lithium and beryllium. The environmental impact associated with production of these materials is then discussed. The toxicity of beryllium is described, and methods are indicated to keep worker exposure to beryllium as low as achievable

  3. Guidelines for Quality Assurance Inspection of Commercial Activities Contracts for Real Property Maintenance Activities, Guide Number 4: Electrical Systems

    Science.gov (United States)

    1993-10-01

    buses Switchgear and switchboards Protective relays Meters Storage batteries. Equipment associated with electrical distribution systems include...Ground leads should be intact and propedy supported. g. Porcelain. Porcelain bushings and insulators should be clean and free of chips or broken areas...lamps should work. k. Switchgear and Switchboards. Areas around switchboards should be clean. Indicator lights should match position shown on circuit

  4. Climate, weather, socio-economic and electricity usage data for the residential and commercial sectors in FL, U.S.

    Science.gov (United States)

    Mukhopadhyay, Sayanti; Nateghi, Roshanak

    2017-08-01

    This paper presents the data that is used in the article entitled "Climate sensitivity of end-use electricity consumption in the built environment: An application to the state of Florida, United States" (Mukhopadhyay and Nateghi, 2017) [1]. The data described in this paper pertains to the state of Florida (during the period of January 1990 to November 2015). It can be classified into four categories of (i) state-level electricity consumption data; (ii) climate data; (iii) weather data; and (iv) socio-economic data. While, electricity consumption data and climate data are obtained at monthly scale directly from the source, the weather data was initially obtained at daily-level, and then aggregated to monthly level for the purpose of analysis. The time scale of socio-economic data varies from monthly-level to yearly-level. This dataset can be used to analyze the influence of climate and weather on the electricity demand as described in Mukhopadhyay and Nateghi (2017) [1].

  5. Climate, weather, socio-economic and electricity usage data for the residential and commercial sectors in FL, U.S

    Directory of Open Access Journals (Sweden)

    Sayanti Mukherjee

    2017-08-01

    Full Text Available This paper presents the data that is used in the article entitled “Climate sensitivity of end-use electricity consumption in the built environment: An application to the state of Florida, United States” (Mukhopadhyay and Nateghi, 2017 [1]. The data described in this paper pertains to the state of Florida (during the period of January 1990 to November 2015. It can be classified into four categories of (i state-level electricity consumption data; (ii climate data; (iii weather data; and (iv socio-economic data. While, electricity consumption data and climate data are obtained at monthly scale directly from the source, the weather data was initially obtained at daily-level, and then aggregated to monthly level for the purpose of analysis. The time scale of socio-economic data varies from monthly-level to yearly-level. This dataset can be used to analyze the influence of climate and weather on the electricity demand as described in Mukhopadhyay and Nateghi (2017 [1].

  6. Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users

    International Nuclear Information System (INIS)

    Martínez Ceseña, Eduardo A.; Good, Nicholas; Mancarella, Pierluigi

    2015-01-01

    Demand Side Response (DSR) is recognised for its potential to bring economic benefits to various electricity sector actors, such as energy retailers, Transmission System Operators (TSOs) and Distribution Network Operators (DNOs). However, most DSR is provided by large industrial and commercial consumers, and little research has been directed to the quantification of the value that small (below 100 kW) commercial and residential end-users could accrue by providing DSR services. In particular, suitable models and studies are needed to quantify potential business cases for DSR from small commercial and residential end-users. Such models and studies should consider the technical and physical characteristics of the power system and demand resources, together with the economic conditions of the power market. In addition, the majority of research focuses on provision of energy arbitrage or ancillary services, with very little attention to DSR services for network capacity support. Accordingly, this paper presents comprehensive techno-economic methodologies for the quantification of three capacity-based business cases for DSR from small commercial and residential end-users. Case study results applied to a UK context indicate that, if the appropriate regulatory framework is put in place, services for capacity support to both DNOs and TSOs can result into potentially attractive business cases for DSR from small end-users with minimum impact on their comfort level. -- Highlights: •We present three business cases for DSR from domestic and commercial end-users. •A comprehensive techno-economic methodology is proposed for the quantification of each DSR business cases. •The regulatory implications associated with each business case are discussed

  7. Conceptual design of a commercial tokamak reactor using resistive magnets

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-01-01

    The future of the tokamak approach to controlled thermonuclear fusion depends in part on its potential as a commercial electricity-producing device. This potential is continually being evaluated in the fusion community using parametric, system, and conceptual studies of various approaches to improving tokamak reactor design. The potential of tokamaks using resistive magnets as commercial electricity-producing reactors is explored. Parametric studies have been performed to examine the major trade-offs of the system and to identify the most promising configurations for a tokamak using resistive magnets. In addition, a number of engineering issues have been examined including magnet design, blanket/first-wall design, and maintenance. The study indicates that attractive design space does exist and presents a conceptual design for the Resistive Magnet Commercial Tokamak Reactor (RCTR). No issue has been identified, including recirculating power, that would make the overall cost of electricity of RCTR significantly different from that of a comparably sized superconducting tokamak. However, RCTR may have reliability and maintenance advantages over commercial superconducting magnet devices

  8. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  9. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Kobori, Hikaru; Kasada, Ryuta; Hiwatari, Ryoji; Konishi, Satoshi

    2016-01-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO 2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO 2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO 2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO 2 emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO 2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  10. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: "Mobile electricity" technologies, early California household markets, and innovation management

    Science.gov (United States)

    Williams, Brett David

    Starting from the premise that new consumer value must drive hydrogen-fuel-cell-vehicle (H2FCV) commercialization, a group of opportunities collectively called "Mobile Electricity" (Me-) is characterized. Me- redefines H2 FCVs as innovative products able to provide home recharging and mobile power, for example for tools, mobile activities, emergencies, and electric-grid-support services. To characterize such opportunities, this study first integrates and extends previous analyses of H2FCVs, plug-in hybrids, and vehicle-to-grid (V2G) power. It uses a new model to estimate zero-emission-power vs. zero-emission-driving tradeoffs, costs, and grid-support revenues for various electric-drive vehicle types and levels of infrastructure service. Next, the initial market potential for Me- enabled vehicles, such as H2FCVs and plug-in hybrids, is estimated by eliminating unlikely households from consideration for early adoption. 5.2 million of 33.9 million Californians in the 2000 Census live in households pre-adapted to Me-, 3.9 million if natural gas is required for home refueling. The possible sales base represented by this population is discussed. Several differences in demographic and other characteristics between the target market and the population as a whole are highlighted, and two issues related to the design of H2FCVs and their supporting infrastructure are discussed: vehicle range and home hydrogen refueling. These findings argue for continued investigation of this and similar target segments-which represent more efficient research populations for subsequent study by product designers and other decision-makers wishing to understand the early market dynamics facing Me- innovations. Next, Me-H2FCV commercialization issues are raised from the perspectives of innovation, product development, and strategic marketing. Starting with today's internalcombustion hybrids, this discussion suggests a way to move beyond the battery vs. fuel-cell zero-sum game and towards the

  11. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  12. Electricity Customers

    Science.gov (United States)

    Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity, although it could increase.

  13. Electricity

    Indian Academy of Sciences (India)

    which removes the heat produced In the core and the colis. I represents an Isolator which is a kind of. 'switch' used to isolate the station from the grid. Note the huge Insulators (marked I) that are used. The steel structures marked S support the conductors through insulators (courtesy: Kirloskar Electric Company, Bangalore).

  14. Cell fusion by ionizing radiation

    International Nuclear Information System (INIS)

    Khair, M.B.

    1993-08-01

    The relevance and importance of cell fusion are illustrated by the notion that current interest in this phenomenon is shared by scientists in quite varied disciplines. The diversity of cellular membrane fusion phenomena could provoke one to think that there must be a multitude of mechanisms that can account for such diversity. But, in general, the mechanism for the fusion reaction itself could be very similar in many, or even all, cases. Cell fusion can be induced by several factors such as virus Sendai, polyethylene glycol, electric current and ionizing radiation. This article provides the reader with short view of recent progress in research on cell fusion and gives some explanations about fusion mechanisms. This study shows for the first time, the results of the cell fusion induced by ionizing radiations that we have obtained in our researches and the work performed by other groups. (author). 44 refs

  15. Inertial fusion energy development strategy

    International Nuclear Information System (INIS)

    Coutant, J.; Hogan, W.J.; Nakai, S.; Rozanov, V.B.; Velarde, G.

    1995-01-01

    The research and development strategy for inertial fusion energy (IFE) is delineated. The development strategy must indicate how commercial IFE power can be made available in the first part of the next century, by which is meant that a Demonstration Power Plant (DPP) will have shown that in commercial operation IFE power plants can satisfy the requirements of public and employee safety, acceptably low impact on the environment, technical performance, reliability, maintainability and economic competitiveness. The technical issues associated with the various required demonstrations for each of the subsystems of the power plant (target, driver, reaction chamber, and remainder of plant (ROP) where the tritium for future targets is extracted and thermal energy is converted into electricity) are listed. The many developments required to make IFE commercially available can be oriented towards a few major demonstrations. These demonstrations do not necessarily each need separate facilities. The goals of these demonstrations are: (i) ignition demonstration, to show ignition and thermonuclear burn in an ICF target and determine the minimum required driver conditions; (ii) high gain demonstration, to show adequate driver efficiency-gain product; (iii) engineering demonstrations, to show high pulse rate operations in an integrated system and to choose the best designs of the various reactor systems; (iv) commercial demonstrations, to prove safe, environmentally benign, reliable, economic, near-commercial operation. In this document the present status of major inertial confinement research activities is summarized including a table of the major operating or planned facilities. The aspects involved in each of the required demonstrations are discussed. Also, for each of the subsystems mentioned above the technical developments that are needed are discussed. The document ends with a discussion of the two existing detailed IFE development plans, by the United States and Japan. 9

  16. Fusion safety program plan

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.; Herring, J.S.

    1980-09-01

    The program plan consists of research that has been divided into 13 different areas. These areas focus on the radioactive inventories that are expected in fusion reactors, the energy sources potentially available to release a portion of these inventories, and analysis and design techniques to assess and ensure that the safety risks associated with operation of magnetic fusion facilities are acceptably low. The document presents both long-term program requirements that must be fulfilled as part of the commercialization of fusion power and a five-year plan for each of the 13 different program areas. Also presented is a general discussion of magnetic fusion reactor safety, a method for establishing priorities in the program, and specific priority ratings for each task in the five-year plan

  17. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1991-01-01

    This report discusses the following topics: superconducting magnet technology high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies -- Aries; ITER physics; ITER superconducting PF scenario and magnet analysis; and safety, environmental and economic factors in fusion development

  18. A roadmap to the realization of fusion energy

    International Nuclear Information System (INIS)

    Romanelli, Francesco

    2013-01-01

    With the reduction of CO2 emissions driving future energy policy, fusion can start market penetration beyond 2050 with up to 30% of electricity production by 2100. This requires an ambitious, yet realistic roadmap towards the demonstration of electricity production by 2050. This talk describes the main technical challenges on the path to fusion energy. For all of the challenges candidate solutions have been developed and the goal of the programme is now to demonstrate that they will also work at the scale of reactor. The roadmap has been developed within a goal-oriented approach articulated in eight different Missions. For each Mission the critical aspects for reactor application, the risks and risk mitigation strategies, the level of readiness now and after ITER and the gaps in the programme have been examined with involvement of experts from the ITER International Organization, Fusion for Energy, EFDA Close Support Unites and EFDA Associates. High-level work packages for the roadmap implementation have been prepared and the resources evaluated. ITER is the key facility in the roadmap and its success represents the most important overarching objectives of the EU programme. A demonstration fusion power plant (DEMO), producing net electricity for the grid at the level of a few hundreds MW is foreseen to start operation in the early 2040s. Following ITER, it will be the single step to a commercial fusion power plant. Industry must be involved early in the DEMO definition and design. The evolution of the programme requires that industry progressively shifts its role from that of provider of high-tech components to that of driver of the fusion development. Industry must be able to take full responsibility for the commercial fusion power plant after successful DEMO operation. For this reason, DEMO cannot be defined and designed by research laboratories alone, but requires the full involvement of industry in all technological and systems aspects of the design. Europe

  19. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  20. A feasibility study of a linear laser heated solenoid fusion reactor. Final report

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1976-02-01

    This report examines the feasibility of a laser heated solenoid as a fusion or fusion-fission reactor system. The objective of this study, was an assessment of the laser heated solenoid reactor concept in terms of its plasma physics, engineering design, and commercial feasibility. Within the study many pertinent reactor aspects were treated including: physics of the laser-plasma interaction; thermonuclear behavior of a slender plasma column; end-losses under reactor conditions; design of a modular first wall, a hybrid (both superconducting and normal) magnet, a large CO 2 laser system; reactor blanket; electrical storage elements; neutronics; radiation damage, and tritium processing. Self-consistent reactor configurations were developed for both pure fusion and fusion-fission designs, with the latter designed both to produce power and/or fissile fuels for conventional fission reactors. Appendix A is a bibliography with commentary of theoretical and experimental studies that have been directed at the laser heated solenoid

  1. Assessment of fusion reactor development. Proceedings

    International Nuclear Information System (INIS)

    Inoue, N.; Tazima, T.

    1994-04-01

    Symposium on assessment of fusion reactor development was held to make clear critical issues, which should be resolved for the commercial fusion reactor as a major energy source in the next century. Discussing items were as follows. (1) The motive force of fusion power development from viewpoints of future energy demand, energy resources and earth environment for 'Sustainable Development'. (2) Comparison of characteristics with other alternative energy sources, i.e. fission power and solar cell power. (3) Future planning of fusion research and advanced fuel fusion (D 3 He). (4) Critical issues of fusion reactor development such as Li extraction from the sea water, structural material and safety. (author)

  2. Z-Pinch Fusion for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  3. Z-Pinch Fusion for Energy Applications

    International Nuclear Information System (INIS)

    SPIELMAN, RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999

  4. Fusion power

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  5. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2009-03-10

    Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York, (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage, and (3) to make an initial effort towards adding consideration of power quality and reliability (PQR) to the capabilities of DER-CAM. All of these objectives have been pursued via analysis of the attractiveness of a Consortium for Electric Reliability Technology Solutions (CERTS) Microgrid consisting of multiple nameplate 100 kW Tecogen Premium Power Modules (CM-100). This unit consists of an asynchronous inverter-based variable speed internal combustion engine genset with combined heat and power (CHP) and power surge capability. The essence of CERTS Microgrid technology is that smarts added to the on-board power electronics of any microgrid device enables stable and safe islanded operation without the need for complex fast supervisory controls. This approach allows plug and play development of a microgrid that can potentially provide high PQR with a minimum of specialized site-specific engineering. A notable feature of the CM-100 is its time-limited surge rating of 125 kW, and DER-CAM capability to model this feature was also a necessary model enhancement.

  6. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...... by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum...

  7. Radioisotope production in fusion reactors

    International Nuclear Information System (INIS)

    Engholm, B.A.; Cheng, E.T.; Schultz, K.R.

    1986-01-01

    Radioisotope production in fusion reactors is being investigated as part of the Fusion Applications and Market Evaluation (FAME) study. /sup 60/Co is the most promising such product identified to date, since the /sup 60/Co demand for medical and food sterilization is strong and the potential output from a fusion reactor is high. Some of the other radioisotopes considered are /sup 99/Tc, /sup 131/l, several Eu isotopes, and /sup 210/Po. Among the stable isotopes of interest are /sup 197/Au, /sup 103/Rh and Os. In all cases, heat or electricity can be co-produced from the fusion reactor, with overall attractive economics

  8. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  9. Fusion power plant studies in Europe

    International Nuclear Information System (INIS)

    Maisonnier, D.

    2007-01-01

    The European fusion programme is reactor oriented and it is aimed at the successive demonstration of the scientific, the technological and the economic feasibility of fusion power. For a reactor-oriented fusion development programme, it is essential to have a clear idea of the ultimate goal of the programme, namely a series of models of fusion power plants, in order to define the correct strategy and to assess the pertinence of the on-going activities. The European Power Plant Conceptual Study (PPCS) has been a study of conceptual designs for commercial fusion power plants. It focused on five power plant models, named PPCS A, B, AB, C and D, which are illustrative of a wider spectrum of possibilities. They are all based on the tokamak concept and they have approximately the same net electrical power output, 1500 MWe. These span a range from relatively near-term, based on limited technology and plasma physics extrapolations, to an advanced conception. All five PPCS plant models differ substantially from the models that formed the basis of earlier European studies. They also differ from one another, which lead to differences in economic performance and in the details of safety and environmental impacts. The main emphasis of the PPCS was on system integration. Systems analyses were used to produce self-consistent plant parameter sets with approximately optimal economic characteristics for all models. In the PPCS models, the favourable, inherent, features of fusion have been exploited to provide substantial safety and environmental advantages. The broad features of the safety and environmental conclusions of previous studies have been confirmed and demonstrated with increased confidence. The PPCS study highlighted the need for specific design and R and D activities, in addition to those already underway within the European long term R and D programme, as well as the need to clarify the concept of DEMO, the device that will bridge the gap between ITER and the first

  10. Parametric study of prospective early Commercial MHD power plants (PSPEC). General Electric Company, task 1: Parametric analysis

    Science.gov (United States)

    Marston, C. H.; Alyea, F. N.; Bender, D. J.; Davis, L. K.; Dellinger, T. C.; Hnat, J. G.; Komito, E. H.; Peterson, C. A.; Rogers, D. A.; Roman, A. J.

    1980-02-01

    The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs.

  11. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  12. Fusion Canada

    International Nuclear Information System (INIS)

    1987-07-01

    This first issue of a quarterly newsletter announces the startup of the Tokamak de Varennes, describes Canada's national fusion program, and outlines the Canadian Fusion Fuels Technology Program. A map gives the location of the eleven principal fusion centres in Canada. (L.L.)

  13. Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers

    International Nuclear Information System (INIS)

    To the extent that demand response represents an intentional electricity usage adjustment to price changes or incentive payments, consumers who exhibit more-variable load patterns on normal days may be capable of altering their loads more significantly in response to dynamic pricing plans. This study investigates the variation in the pre-enrollment load patterns of Korean commercial and industrial electricity customers and their impact on event-day loads during a critical peak pricing experiment in the winter of 2013. Contrary to conventional approaches to profiling electricity loads, this study proposes a new clustering technique based on variability indices that collectively represent the potential demand–response resource that these customers would supply. Our analysis reveals that variability in pre-enrollment load patterns does indeed have great predictive power for estimating their impact on demand–response loads. Customers in relatively low-variability clusters provided limited or no response, whereas customers in relatively high-variability clusters consistently presented large load impacts, accounting for most of the program-level peak reductions. This study suggests that dynamic pricing programs themselves may not offer adequate motivation for meaningful adjustments in load patterns, particularly for customers in low-variability clusters. - Highlights: • A method of clustering customers by variability indices is developed. • Customers in high-variability clusters provide substantial peak reductions. • Low-variability clusters exhibit limited reductions. • For low-variability customers, alternative policy instruments is well advised. • A model of discerning customer's demand response potential is suggested.

  14. Cold fusion in perspective

    International Nuclear Information System (INIS)

    Sanford, L.

    1989-01-01

    Since early April a great deal of excitement has been created over the Fleischmann/Pons cold fusion experiment, which if it performs as advertised, could turn out to be mankind's best hope of heading off the energy crisis scheduled for early in the next century. Dozens of groups around the world are now attempting to duplicate the experiment to see if Fleischmann and Pons' discovery is an experimental mistake, an unknown electrochemical effect or a new kind of fusion reaction. This article puts the experiment into the perspective of today and looks at how it might affect the energy scene tomorrow if it should turn out to be commercially exploitable. (author)

  15. EU socio-economic research on fusion: Findings and program

    International Nuclear Information System (INIS)

    Tosato, G.C.

    2003-01-01

    In 1997 the European Commission launched a Socio-Economic Research program to study under which conditions future fusion power plants may become competitive, compatible with the energy supply system and acceptable for the public. It has been shown, among others, that: 1) local communities are ready to support the construction of an experimental fusion facility, if appropriate communication and awareness campaigns are carried out; 2) since the externalities are much lower than for competitors, fusion power plants may become the major producer of base load electricity at the end of the century in Europe, if climate changes have to be mitigated, if the construction of new nuclear fission power plants continues to be constrained and if nuclear fusion power plants become commercially available in 2050. Cooperating with major international organizations, the program for next year aims to demonstrating, through technical economic programming models and global multi-regional energy environmental scenarios, that the potential global benefits of fusion power plants in the second half of the century largely outdo the RD and D costs borne in the first half to make it available. Making the public aware of such benefits through field experiences will be part of the program. (author)

  16. Fusion energy option

    International Nuclear Information System (INIS)

    Schmid, L.C.

    The potential of fusion energy contributing to the energy needs is discussed. Controlled thermonuclear reactions hold the promise of an abundant source of fuel used to produce electrical energy for the future in an environmentally acceptable way. Once feasibility questions are answered and engineering problems are resolved, it should be possible to produce energy in a form that can use current methods of electrical generation to convert it into a useful form. If the fusion system is operated with only deuterium as fuel, the deuterium available from a pail of water would produce energy equivalent to that produced by 600 gallons of gasoline. The water in the ocean could provide energy for billions of years at the current rate of consumption. Experimental results are currently confirming the theoretical predictions and the schedule for fusion development is shown to be completion of feasibility experiments in 1974; physics test reactors appearing in 1983; experimental power reactors being built in 1990; and the demonstration plant on-line in 1994. The process of producing fusion power, fusion research needs, and problems to be solved are reviewed

  17. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  18. Status report on the conceptual design of a commercial tokamak hybrid reactor (CTHR)

    International Nuclear Information System (INIS)

    1979-09-01

    A preliminary conceptual design is presented for an early twenty-first century fusion hybrid reactor called the Commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) plants. The study has been made in sufficient depth to indicate no insurmountable technical problems exist and has provided a basis for valid cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources

  19. Status report on the conceptual design of a commercial tokamak hybrid reactor (CTHR)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    A preliminary conceptual design is presented for an early twenty-first century fusion hybrid reactor called the Commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) plants. The study has been made in sufficient depth to indicate no insurmountable technical problems exist and has provided a basis for valid cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources.

  20. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  1. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  2. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  3. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations

    International Nuclear Information System (INIS)

    Dubarry, Matthieu; Truchot, Cyril; Cugnet, Mikael; Liaw, Bor Yann; Gering, Kevin; Sazhin, Sergiy; Jamison, David; Michelbacher, Christopher

    2011-01-01

    Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising (LiMn1/3Ni1/3Co1/3O2 + LiMn2O4) is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.

  4. Fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  5. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  6. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  7. On impact fusion

    International Nuclear Information System (INIS)

    Winterberg, F.

    1997-01-01

    Impact fusion is a promising, but much less developed road towards inertial confinement fusion. It offers an excellent solution to the so-called stand-off problem for thermonuclear microexplosions but is confronted with the challenge to accelerate macroscopic particles to the needed high velocities of 10 2 -10 3 km/s. To reach these velocities, two ways have been studied in the past. The electric acceleration of a beam of microparticles, with the particles as small as large clusters, and the magnetic acceleration of gram-size ferromagnetic or superconducting projectiles. For the generation of an intense burst of soft X-rays used for the indirect drive, impact fusion may offer new promising possibilities

  8. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1984-01-01

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  9. Fusion reactor nucleonics: status and needs

    International Nuclear Information System (INIS)

    Lee, J.D.; Engholm, B.A.; Dudziak, D.J.; Haight, R.C.

    1980-01-01

    The national fusion technology effort has made a good start at addressing the basic nucleonics issues, but only a start. No fundamental nucleonics issues are seen as insurmountable barriers to the development of commercial fusion power. To date the fusion nucleonics effort has relied almost exclusively on other programs for nuclear data and codes. But as we progress through and beyond ETF type design studies the fusion program will need to support a broad based nucleonics effort including code development, sensitivity studies, integral experiments, data acquisition etc. It is clear that nucleonics issues are extremely important to fusion development and that we have only scratched the surface

  10. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  11. Fusion development and technology

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  12. Is there hope for fusion?

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1990-01-01

    From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025--2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's. 4 figs., 3 tabs

  13. Fusion - 2050 perspective (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050.The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, ...

  14. Superconducting Coils for Small Nuclear Fusion Rocket Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal focuses on the superconducting coils subsystem, a critical subsystem for the PFRC reactor and Direct Fusion Drive and other fusion and electric...

  15. Review of fusion research program: historical summary and program projections

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.S.

    1976-09-01

    This report provides a brief review of the history and current status of fusion research in the United States. It also describes the Federally funded program aimed at the development of fusion reactors for electric power generation.

  16. Controlled fusion; La fusion controlee

    Energy Technology Data Exchange (ETDEWEB)

    Bobin, J.L

    2005-07-01

    During the last fifty years the researches on controlled thermonuclear fusion reached great performance in the magnetic confinement (tokamaks) as in the inertial confinement (lasers). But the state of the art is not in favor of the apparition of the fusion in the energy market before the second half of the 21 century. To explain this opinion the author presents the fusion reactions of light nuclei and the problems bound to the magnetic confinement. (A.L.B.)

  17. Generic magnetic fusion reactor cost assessment

    International Nuclear Information System (INIS)

    Sheffield, J.

    1985-01-01

    The Fusion Energy Division of the Oak Ridge National Laboratory discusses ''generic'' magnetic fusion reactors. The author comments on DT burning magnetic fusion reactor models being possibly operational in the 21st century. Representative parameters from D-T reactor studies are given, as well as a shematic diagram of a generic fusion reactor. Values are given for winding pack current density for existing and future superconducting coils. Topics included are the variation of the cost of electricity (COE), the dependence of the COE on the net electric power of the reactor, and COE formula definitions

  18. Fusion, magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  19. Osteoclast Fusion

    DEFF Research Database (Denmark)

    Marie Julie Møller, Anaïs; Delaissé, Jean-Marie; Søe, Kent

    2017-01-01

    Investigations addressing the molecular keys of osteoclast fusion are primarily based on end-point analyses. No matter if investigations are performed in vivo or in vitro the impact of a given factor is predominantly analyzed by counting the number of multi-nucleated cells, the number of nuclei per...... multinucleated cell or TRAcP activity. But end-point analyses do not show how the fusion came about. This would not be a problem if fusion of osteoclasts was a random process and occurred by the same molecular mechanism from beginning to end. However, we and others have in the recent period published data...... suggesting that fusion partners may specifically select each other and that heterogeneity between the partners seems to play a role. Therefore, we set out to directly test the hypothesis that fusion factors have a heterogenic involvement at different stages of nuclearity. Therefore, we have analyzed...

  20. Fusion physics

    CERN Document Server

    Lackner, Karl; Tran, Minh Quang

    2012-01-01

    This publication is a comprehensive reference for graduate students and an invaluable guide for more experienced researchers. It provides an introduction to nuclear fusion and its status and prospects, and features specialized chapters written by leaders in the field, presenting the main research and development concepts in fusion physics. It starts with an introduction to the case for the development of fusion as an energy source. Magnetic and inertial confinement are addressed. Dedicated chapters focus on the physics of confinement, the equilibrium and stability of tokamaks, diagnostics, heating and current drive by neutral beam and radiofrequency waves, and plasma–wall interactions. While the tokamak is a leading concept for the realization of fusion, other concepts (helical confinement and, in a broader sense, other magnetic and inertial configurations) are also addressed in the book. At over 1100 pages, this publication provides an unparalleled resource for fusion physicists and engineers.

  1. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.

    1994-01-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  2. Muon-catalyzed fusion: a new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  3. Muon-catalyzed fusion: A new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  4. The fusion applications study - FAME

    International Nuclear Information System (INIS)

    Schultz, K.R.; Engholm, B.A.; Bourque, R.F.; Cheng, E.T.; Schaffer, M.J.; Wong, C.P.C.

    1986-01-01

    The Fusion Applications and Market Evaluation (''FAME'') study, being conducted by GA Technologies for Lawrence Livermore National Laboratory (LLNL) and US Department of Energy, Office of Fusion Energy, (US DOE) is described. This two-year program has a FY86 objective of Evaluating Alternative Applications of Fusion, and a FY87 goal of Exploring Innovative Applications. Applications are being reviewed and categorized into Baseline, Nuclear, Chemical, Electromagnetic, and Thermal application categories. The ''traditional'' applications of electricity generation, fissile fuel and tritium production, and hydrogen production continue to look attractive. Particularly promising new applications to date, with potential for near-term markets, are isotope production and radiation processing, especially when allied with the traditional application of electricity production. The economics of separate applications as well as coproduction are discussed. The combination of electricity and /sup 60/Co production appears to be one of the most attractive

  5. Need for research and development in fusion: Economical energy for a sustainable future with low environmental impact

    International Nuclear Information System (INIS)

    Logan, B.G.; Perkins, L.J.; Moir, R.W.; Ryutov, D.D.

    1995-01-01

    Fusion, advanced fission, and solar-electric plants are the only unlimited nonfossil options for a sustainable energy future for the world. Fusion poses the only indigenous fuel reserve that will last as long as the earth itself lasts. However, continued innovation and diversity in fusion R ampersand D will be required to meet its economic goal. The long-term nature of fusion research means that the required R ampersand D investment will not come from the private sector. However, once fusion is realized commercially, the dividend for humanity will be profound in terms of the welfare of the global community. We should also not underestimate the huge potential export opportunities that would then open up for industry. Federal energy R ampersand D at nearly 1% of U.S. energy costs is prudent and justified to allow pursuit of all three primary energy options for a sustainable energy future. Multiple parallel paths are essential to ensure success. The projected timescale for significant shortfalls in world energy supply to become apparent is nearly 30 to 40 yr depending on assumptions. The time to develop fusion from near-term R ampersand D through significant commercial market penetration is at least of the same order, so its development must not be delayed. 6 refs., 2 figs

  6. ITER: the Sun rises over nuclear fusion with West

    International Nuclear Information System (INIS)

    Sacco, Laurent

    2013-01-01

    The ITER project is considered as a critical step on the way to commercial production of electricity by a thermonuclear reactor based on controlled fusion. This project notably requires the development of a divertor which is the objective of the West project which will use the famous Cadarache superconductive magnet reactor, Tore Supra. After having outlined the future lack of fossil energies at the world scale, presented the operation principles of tokamaks and recalled some results obtained in their development, this article justifies the use of superconductive magnets. It presents the ITER project as a step in the production of thermonuclear electricity. ITER will be in fact a proof that such plants can be realised, and it should be followed by Demo, a demonstration power plant, by 2050. The article presents the West project, a test bench for ITER, which introduced modifications in the Tore Supra reactor to create conditions almost similar to that existing at the surface of the Sun. It notably comprises a divertor made of tungsten for the fusion with tritium. It finally outlines that the fusion will be a hot one, not a cold one

  7. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1983-08-01

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233 U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3 He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3 He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  8. Cold fusion

    International Nuclear Information System (INIS)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik

    1995-02-01

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4 He, 3 He, 3 H, which are not rich in quantity basically. An experiment where plenty of 4 He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  9. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  10. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  11. Fusion energy

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The efforts of the Chemical Technology Division in fusion energy include the areas of fuel handling, processing, and containment. Current studies are concerned largely with the development of vacuum pumps for fusion reactors and experiments and with development and evaluation of techniques for recovering tritium from solid or liquid breeding blankets. In addition, a small effort is devoted to support of the ORNL design of a major Tokamak experiment, The Next Step (TNS)

  12. Future of fusion implementation

    International Nuclear Information System (INIS)

    Beardsworth, E.; Powell, J.R.

    1978-01-01

    For fusion to become available for commercial use in the 21st century, R and D must be undertaken now. But it is hard to justify these expenditures with a cost/benefit oriented assessment methodology, because of both the time-frame and the uncertainty of the future benefits. Focusing on the factors most relevant for current consideration of fusion's commercial prospects, i.e., consumption levels and the outcomes for fission, solar, and coal, many possible futures of the US energy system are posited and analyzed under various assumptions about costs. The Reference Energy System approach was modified to establish both an appropriate degree of detail and explicit time dependence, and a computer code used to organize the relevant data and to perform calculations of system cost (annual and discounted present value), resource use, and residuals that are implied by the consumptions levels and technology mix in each scenario. Not unreasonable scenarios indicate benefits in the form of direct cost savings, which may well exceed R and D costs, which could be attributed to the implementation of fusion

  13. The European Roadmap to Fussion Electricity

    International Nuclear Information System (INIS)

    Romanelli, Francesco

    2014-01-01

    With the reduction of CO 2 emissions driving future energy policy, fusion can start market penetration around 2050 with up to 30% of electricity production by 2100. This requires an ambitious, yet realistic roadmap towards the demonstration of electricity production by 2050. This talk describes the main technical challenges on the path to fusion energy. For all of the challenges candidate solutions have been developed and the goal of the programme is now to demonstrate that they will also work at the scale of a reactor. The roadmap has been developed within a goal-oriented approach articulated in eight different Missions. For each Mission the critical aspects for reactor application, the risks and risk mitigation stretegies, the level of readiness now and after ITER and the gaps in the programme have been examined with involvement of experts from ITER International Organization, Fusion for Energy, EFDA Close Support Unites and EFDA Associates. High-level work packages for the roadmap implementation have been prepared and the resources evaluated. ITER is the key facility in the roadmap and its success represents the most important overarching objectives of the EU programme. A demonstration fusion power plant (DEMO), producing net electricitiy for the grid at the level of a few hundreds MW is foreseen to start operation in the early 2040s. Following ITER, it will be the single step to a commercial fusion power plant. Industry must be involved early in the DEMO definition and design. The evolution of the programme requires that industry progressively shifts its role from that of provider of high-tech components to that of driver of the fusion development. Industry must be able to take full responsibility for the commercial fusion power plan after successful DEMO operation. For this reason, DEMO cannot be defined and designed by research laboratories alone, but requires the full involvement of industry in all technological and systems aspects of the design. Europe

  14. Developing maintainability for fusion power systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity.

  15. Developing maintainability for fusion power systems. Final report

    International Nuclear Information System (INIS)

    Zahn, H.S.; Mantz, H.C.; Curtis, C.T.; Buchheit, R.J.; Green, W.M.; Zuckerman, D.S.

    1979-11-01

    The overall purpose of the study is to identify design features of fusion power reactors which contribute to the achievement of high levels of maintainability. Previous phases evaluated several commercial tokamak reactor design concepts. This final phase compares the maintainability of a tandem mirror reactor (TMR) commercial conceptual design with the most maintainable tokamak concept selected from earlier work. A series of maintainability design guidelines and desirable TMR design features are defined. The effects of scheduled and unscheduled maintenance for most of the reactor subsystems are defined. The comparison of the TMR and tokamak reactor maintenance costs and availabilities show that both reactors have similar costs for scheduled maintenance at 19.4 and 20.8 million dollars annually and similar scheduled downtime availability impacts, achieving approximate availabilities of 79% at optimized maintenance intervals and cost of electricity

  16. Controlled nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Bussard, R.W.; Coppi, B.

    1982-01-01

    A fusion power generating device is disclosed having a relatively small and inexpensive core region which may be contained within an energy absorbing blanket region. The fusion power core region contains apparatus of the toroidal type for confining a high density plasma. The fusion power core is removable from the blanket region and may be disposed and/or recycled for subsequent use within the same blanket region. Thermonuclear ignition of the plasma is obtained by feeding neutral fusible gas into the plasma in a controlled manner such that charged particle heating produced by the fusion reaction is utilized to bootstrap the device to a region of high temperatures and high densities wherein charged particle heating is sufficient to overcome radiation and thermal conductivity losses. The high density plasma produces a large radiation and particle flux on the first wall of the plasma core region thereby necessitating replacement of the core from the blanket region from time to time. A series of potentially disposable and replaceable central core regions are disclosed for a large-scale economical electrical power generating plant

  17. Ceramics for applications in fusion systems

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1979-01-01

    Six critical applications for ceramics in fusion systems are reviewed, and structural and electrical problem areas discussed. Fusion neutron radiation effects in ceramics are considered in relation to fission neutron studies. A number of candidate materials are proposed for further evaluation

  18. Fusion Power Associates annual meeting

    International Nuclear Information System (INIS)

    Nickerson, S.B.

    1985-03-01

    The Fusion Power Associates symposium, 'The Search for Attractive Fusion Concepts', was held January 31 - February 1 1985 in La Jolla, California. The purpose of this meeting was to bring together industry, university and government managers of the US fusion program to discuss the state of fusion development and the direction in which the program should be heading, given the cutbacks in the US fusion budget. There was a strong, minority opinion that until the best concept could be identified, the program should be broadly based. But there was also widespread criticism, aimed mainly at the largest segment of the magnetic fusion program, the tokamak. It was felt by many that the tokamak would not develop into a reactor that would be attractive to a utility and therefore should be phased out of the program. If the tokamak will indeed not lead to a commercial product then this meeting shows the US fusion program to be in a healthy state, despite the declining budgets

  19. Stem Cells in Spinal Fusion.

    Science.gov (United States)

    Robbins, Michael A; Haudenschild, Dominik R; Wegner, Adam M; Klineberg, Eric O

    2017-12-01

    Review of literature. This review of literature investigates the application of mesenchymal stem cells (MSCs) in spinal fusion, highlights potential uses in the development of bone grafts, and discusses limitations based on both preclinical and clinical models. A review of literature was conducted looking at current studies using stem cells for augmentation of spinal fusion in both animal and human models. Eleven preclinical studies were found that used various animal models. Average fusion rates across studies were 59.8% for autograft and 73.7% for stem cell-based grafts. Outcomes included manual palpation and stressing of the fusion, radiography, micro-computed tomography (μCT), and histological analysis. Fifteen clinical studies, 7 prospective and 8 retrospective, were found. Fusion rates ranged from 60% to 100%, averaging 87.1% in experimental groups and 87.2% in autograft control groups. It appears that there is minimal clinical difference between commercially available stem cells and bone marrow aspirates indicating that MSCs may be a good choice in a patient with poor marrow quality. Overcoming morbidity and limitations of autograft for spinal fusion, remains a significant problem for spinal surgeons and further studies are needed to determine the efficacy of stem cells in augmenting spinal fusion.

  20. Fit of cast commercially pure titanium and Ti-6Al-4V alloy crowns before and after marginal refinement by electrical discharge machining.

    Science.gov (United States)

    Contreras, Edwin Fernando Ruiz; Henriques, Guilherme Elias Pessanha; Giolo, Suely Ruiz; Nobilo, Mauro Antonio Arruda

    2002-11-01

    Titanium has been suggested as a replacement for alloys currently used in single-tooth restorations and fixed partial dentures. However, difficulties in casting have resulted in incomplete margins and discrepancies in marginal fit. This study evaluated and compared the marginal fit of crowns fabricated from a commercially pure titanium (CP Ti) and from Ti-6Al-4V alloy with crowns fabricated from a Pd-Ag alloy that served as a control. Evaluations were performed before and after marginal refinement by electrical discharge machining (EDM). Forty-five bovine teeth were prepared to receive complete cast crowns. Stone and copper-plated dies were obtained from impressions. Fifteen crowns were cast with each alloy (CP Ti, Ti-6Al-4V, and Pd-Ag). Marginal fit measurements (in micrometers) were recorded at 4 reference points on each casting with a traveling microscope. Marginal refinement with EDM was conducted on the titanium-based crowns, and measurements were repeated. Data were analyzed with the Kruskal-Wallis test, paired t test, and independent t test at a 1% probability level. The Kruskal-Wallis test showed significant differences among mean values of marginal fit for the as-cast CP Ti crowns (mean [SD], 83.9 [26.1] microm) and the other groups: Ti-6Al-4V (50.8 [17.2] microm) and Pd-Ag (45.2 [10.4] microm). After EDM marginal refinement, significant differences were detected among the Ti-6Al-4V crowns (24.5 [10.9] microm) and the other 2 groups: CP Ti (50.6 [20.0] microm) and Pd-Ag (not modified by EDM). Paired t test results indicated that marginal refinement with EDM effectively improved the fit of CP Ti crowns (from 83.9 to 50.6 microm) and Ti-6Al-4V crowns (from 50.8 to 24.5 microm). However, the difference in improvement between the two groups was not significant by t test. Within the limitations of this study, despite the superior results for Ti-6Al-4V, both groups of titanium-based crowns had clinically acceptable marginal fits. After EDM marginal refinement

  1. An induction Linac driven heavy-ion fusion systems model

    International Nuclear Information System (INIS)

    Zuckerman, D.S.; Driemeyer, D.E.; Waganer, L.M.; Dudziak, D.J.

    1988-01-01

    A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW (electric) power level [cost of electricity (COE) -- 50 mill/kW . h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized

  2. A look at the fusion reactor technology

    International Nuclear Information System (INIS)

    Rohatgi, V.K.

    1985-01-01

    The prospects of fusion energy have been summarised in this paper. The rapid progress in the field in recent years can be attributed to the advances in various technologies. The commercial fusion energy depends more heavily on the evolution and improvement in these technologies. With better understanding of plasma physics, the fusion reactor designs have become more realistic and comprehensive. It is now possible to make intercomparison between various concepts within the frame work of the established technologies. Assuming certain growth rate of the technological development, it is estimated that fusion energy can become available during the early part of the next century. (author)

  3. Fusion power economy of scale

    International Nuclear Information System (INIS)

    Dolan, T.J.

    1993-01-01

    In the next 50 yr, the world will need to develop hundreds of gigawatts of non-fossil-fuel energy sources for production of electricity and fuels. Nuclear fusion can probably provide much of the required energy economically, if large single-unit power plants are acceptable. Large power plants are more common than most people realize: There are already many multiple-unit power plants producing 2 to 5 GW(electric) at a single site. The cost of electricity (COE) from fusion energy is predicted to scale as COE ∼ COE 0 (P/P 0 ) -n , where P is the electrical power, the subscript zero denotes reference values, and the exponent n ∼ 0.36 to 0.7 in various designs. The validity ranges of these scalings are limited and need to be extended by future work. The fusion power economy of scale derives from four interrelated effects: improved operations and maintenance costs; scaling of equipment unit costs; a geometric effect that increases the mass power density; and reduction of the recirculating power fraction. Increased plasma size also relaxes the required confinement parameters: For the same neutron wall loading, larger tokamaks can use lower magnetic fields. Fossil-fuel power plants have a weaker economy of scale than fusion because the fuel costs constitute much of their COE. Solar and wind power plants consist of many small units, so they have little economy of scale. Fission power plants have a strong economy of scale but are unable to exploit it because the maximum unit size is limited by safety concerns. Large, steady-state fusion reactors generating 3 to 6 GW(electric) may be able to produce electricity for 4 to 5 cents/kW·h, which would be competitive with other future energy sources. 38 refs., 6 figs., 6 tabs

  4. Controlled thermonuclear fusion reactors

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10 20 sec m -3 , the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation

  5. Controlled thermonuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, P.L.

    1976-01-01

    Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10/sup 20/ sec m/sup -3/, the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation.

  6. Fusion: hopes and doubts

    International Nuclear Information System (INIS)

    Bruhns, H.

    1990-01-01

    The author examines current public and political attitudes to fossil fuel and nuclear fission generated electricity. He concludes that the nuclear fusion programme, currently funded and managed jointly in Europe, offers an environmentally acceptable alternative. He explains progress to date at the Joint European Torus at Culham in the United Kingdom and points out that, while much admirable work has been carried out, further work to reach plasma ignition must be in a bigger, more costly new facility yet to be built. Political and economic opposition to high cost nuclear research is highlighted, especially in West Germany. The author concludes by discussing the advantages of power generation by nuclear fusion from the safety, operational and economic points of view. (UK)

  7. Pulsed fusion reactors

    International Nuclear Information System (INIS)

    1975-01-01

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  8. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  9. Destination fusion

    International Nuclear Information System (INIS)

    Shivakumar, B.; Shapira, D.; Stelson, P.H.; Beckerman, M.; Harmon, B.A.; Teh, K.; Ayik, S.

    1986-01-01

    The orbiting yields of reaction products from the 28 Si + 14 N interaction have been measured. The relative magnitudes of the orbiting yields indicate that the dinuclear complex (DNCs) formed in such interactions live sufficiently long to permit the equilibration of charge and mass. Since both the 16 O and the 12 C orbiting yields exceed the 14 N, it appears that there is no preferred directions for mass flow between the interacting nuclei. Since the orbiting yields are typically 10% of the fusion yield, and we believe the orbiting process reflects how the DNCs formed in such collisions evolve towards fusion, it seems apt to conclude that fusion occurs not through a process of continual particle exchange whereby one nucleus is gradually consumed by the other, but by a dinuclear system that retains it mass asymmetry. 17 refs., 2 figs., 1 tab

  10. Comparison of electric and magnetic quadrupole focusing for the low energy end of an induction-linac-ICF [Inertial-Confinement-Fusion] driver

    International Nuclear Information System (INIS)

    Kim, C.H.

    1987-04-01

    This report compares two physics designs of the low energy end of an induction linac-ICF driver: one using electric quadrupole focusing of many parallel beams followed by transverse combining; the other using magnetic quadrupole focusing of fewer beams without beam combining. Because of larger head-to-tail velocity spread and a consequent rapid current amplification in a magnetic focusing channel, the overall accelerator size of the design using magnetic focusing is comparable to that using electric focusing

  11. Nuclear fusion: power for the next century

    International Nuclear Information System (INIS)

    1980-05-01

    The basis of fusion reactions is outlined, with special reference to deuterium and tritium (from lithium, by neutron reaction) as reactants, and the state of research worldwide is indicated. The problems inherent in fusion reactions are discussed, plasma is defined, and the steps to be taken to generate electricity from controlled nuclear fusion are stated. Methods of plasma heating and plasma confinement are considered, leading to a description of the tokamak plasma confinement system. Devices under construction include the JET (Joint European Torus) Undertaking in the UK. Plans and possibilities for fusion reactors are discussed. (U.K.)

  12. Fusion cuisine

    DEFF Research Database (Denmark)

    Peters, Chris; Broersma, Marcel

    2018-01-01

    define the culinary tradition of journalism studies in the first place. In so doing, we offer a recipe for journalism studies fusion cooking that: 1) considers technological change (audiences’ diets); 2) analyses institutional change (audiences’ supermarket of information); and 3) evaluates journalism...

  13. Magnetic fusion

    International Nuclear Information System (INIS)

    2002-01-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project

  14. Fusion systems

    OpenAIRE

    Aschbacher, Michael; Oliver, Bob

    2016-01-01

    This is a survey article on the theory of fusion systems, a relatively new area of mathematics with connections to local finite group theory, algebraic topology, and modular representation theory. We first describe the general theory and then look separately at these connections.

  15. The economic viability of fusion power

    International Nuclear Information System (INIS)

    Ward, D.J.; Cook, I.; Lechon, Y.; Saez, R.

    2005-01-01

    Although fusion power is being developed because of its large resource base, low environmental impact and high levels of intrinsic safety, it is important to investigate the economics of a future fusion power plant to check that the electricity produced can, in fact, have a market. The direct cost of electricity of a fusion power plant and its key dependencies on the physics and technology assumptions, are calculated, as are the materials requirements. The other important aspect of costs, the external costs which can arise from effects such as pollution, accidents and waste are also given. Fusion is found to offer the prospect of a new energy source with acceptable direct costs and very low external costs. This places fusion in a strong position in a future energy market, especially one in which environmental constraints become increasingly important

  16. LIFE Cost of Electricity, Capital and Operating Costs

    Energy Technology Data Exchange (ETDEWEB)

    Anklam, T

    2011-04-14

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  17. LIFE Cost of Electricity, Capital and Operating Costs

    International Nuclear Information System (INIS)

    Anklam, T.

    2011-01-01

    Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

  18. Radiation effects on structural ceramics in fusion

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Price, R.J.; Trester, P.W.

    1986-01-01

    Ceramics are required to serve in a conventional role as electrical and thermal insulators and dielectrics in fusion power reactors. In addition, certain ceramic materials can play a unique structural role in fusion power reactors by virtue of their very low induced radioactivity from fusion neutron capture. The aspects of safety, long-term radioactive waste management, and personnel access for maintenance and repair can all be significantly improved by applying the low-activation ceramics to the structural materials of the first-wall and blanket regions of a fusion reactor. Achievement of long service life at high structural loads and thermal stresses on the materials exposed to high-radiation doses presents a critical challenge for fusion. In this paper, we discuss radiation effects on structural ceramics for fusion application

  19. Cold fusion, Alchemist's dream

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D 2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D 2 fusion at low energies; fusion of deuterons into 4 He; secondary D+T fusion within the hydrogenated metal lattice; 3 He to 4 He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of 3 He/ 4 He

  20. Cold fusion, Alchemist's dream

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  1. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  2. Z-Pinch Fusion Propulsion

    Science.gov (United States)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  3. Electromagnetic computations for fusion devices

    International Nuclear Information System (INIS)

    Turner, L.R.

    1989-09-01

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs

  4. Laser fusion

    International Nuclear Information System (INIS)

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  5. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...

  6. Electricity rates in Canada, 1991

    International Nuclear Information System (INIS)

    1991-01-01

    Numerical data only are presented for monthly electricity costs (residential and commercial) for selected Canadian cities. Total electricity supply is broken down by province. Residential, urban and rural electricity costs, including taxation, are provided for selected Canadian cities. Calculations of electricity costs for commercial and residential sectors are tabulated by province. Historical data from 1974 are supplied

  7. Radioactivity and fusion energy

    International Nuclear Information System (INIS)

    Kudo, H.

    1995-01-01

    Nuclear fusion is expected to give an ultimate solution to energy problems over the long term. From recent progress in developing technology for fusion reactors, we can anticipate a prototype fusion reactor by 2030. This review article describes the present status of nuclear fusion research, including muon catalyzed fusion (μCF) which attracts quite new physical interest. Tritium is an essential component of fusion reactors, because the first-stage fusion reactors will utilize a mixture of deuterium and tritium as their fuel. The knowledge about tritium as well as the fusion-neutron induced radioactivity is summarized in terms of nuclear fusion research. (orig.)

  8. Progress in neutronic analysis of fusion reactor blanket

    International Nuclear Information System (INIS)

    Gervaise, F.; Giancarli, L.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1984-01-01

    The commercial use of the D-T fusion will not be possible unless the necessary tritium can be produced. The number of produced tritium nuclei has to be higher than the number of fusions. For that, we surround the plasma with a lithium-containing blanket. The fusion neutrons which are injected into this blanket are captured after slowing down by the 6 Li and then produce tritium. A detailed study of the neutronic properties and of the calculation process results in the conclusion that the tritium production will be difficult but possible in a commercial D-T fusion reactor. (author)

  9. Energy sweepstakes: fusion gets a chance

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1980-01-01

    Congress plans to speed up the magnetic-fusion program by shifting the emphasis from plasma research to fusion-reactor engineering. The bill doubles the overall fusion budget over the next five years in order to construct a Fusion Engineering Device (FED) by 1990. A review panel of scientists suggested limiting the cost to under $1 billion and holding the increase until late 1983. The panel also suggested waiting until 1990 to set a date for demonstrating a competitive commercial reactor even though progress made in the 1970s could bring a realistic date as close as 2000. The new policy evolves from the debate between tokamak hawks, who want to take the best prospect to commercialization immediately, and the doves, who want to wait to see if the best possible concept turns out to be the magnetic mirror or some other contender. The Engineering Test Facility (ETF) represents a compromise of these positions

  10. Advanced fission and fossil plant economics-implications for fusion

    International Nuclear Information System (INIS)

    Delene, J.G.

    1994-01-01

    In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion's potential competitiveness

  11. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  12. A survey of the properties of copper alloys for use as fusion reactor materials

    International Nuclear Information System (INIS)

    Butterworth, G.J.; Forty, C.B.A.

    1992-01-01

    Pure copper and some selected dilute alloys are widely utilised in experimental plasma confinement devices and have also been proposed for various applications in fusion power reactors where a high thermal or electrical conductivity in the material is required. Available data on physical mechanical properties of a number of commercial coppers and alloys at elevated temperatures are collated and reviewed as an aid to materials selection and component design. Properties examined include the thermal and electrical conductivities, thermal fatigue resistance, softening behaviour, and creep and fatigue strengths. The effects of neutron irradiation on copper alloys are briefly discussed in terms of radiation damage and its influence on conductivity and mechanical properties, the compositional changes occurring through transmutation and the induced activity and associated γ-dose rate and biological hazard potential. Data emerging from recent fission reactor irradiation programmes on void swelling and changes in electrical conductivity and mechanical properties are presented and discussed. (orig.)

  13. Fusion power, who needs it?

    International Nuclear Information System (INIS)

    Kaw, P.K.

    1993-01-01

    It is pointed out that the fusion community world wide has not aggressively pursued a faster pace of development, which can indeed be justified on the basis of its technical accomplishments, because of certain faulty assumptions. Taking some relevant data of energy consumption (based on fossil fuels) and its environmental impact in the projections for developing countries like India and China, it is demonstrated that there is extreme urgency (time-scale of less than 20-25 years) to develop technologies like fusion if one has to prevent stagnation of per capita energy production (and quality of life) in these countries. We conclude by calling for a new aggressive goal for the world wide fusion programme, namely development of a demonstration power plant producing electricity in an environmentally acceptable manner by the year 2015. (author). 6 refs., 5 tabs., 2 figs

  14. Progress in high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Sun Jingwen

    2001-01-01

    The author reviews the progress in laboratory high gain inertial confinement fusion (ICF), including ICF capsule physics, high-energy-density science, inertial fusion energy, the National Ignition Facility (NIF) and its design of ignition targets and the peta watt laser breakthrough. High power laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy- density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness peta watt lasers have enabled the study of matter feasible in conditions previously unachievable on earth. Science and technology developed in inertial fusion research have found near-term commercial use and have enabled steady progress toward the goal of fusion ignition and high gain in the laboratory, and have opened up new fields of study for the 21 st century

  15. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  16. Population analysis of a commercial Saccharomyces cerevisiae wine yeast in a batch culture by electric particle analysis, light diffraction and flow cytometry.

    Science.gov (United States)

    Portell, Xavier; Ginovart, Marta; Carbo, Rosa; Gras, Anna; Vives-Rego, Josep

    2011-02-01

    Data from electric particle analysis, light diffraction and flow cytometry analysis provide information on changes in cell morphology. Here, we report analyses of Saccharomyces cerevisiae populations growing in a batch culture using these techniques. The size distributions were determined by electric particle analysis and by light diffraction in order to compare their outcomes. Flow cytometry parameters forward (related to cell size) and side (related to cell granularity) scatter were also determined to complement this information. These distributions of yeast properties were analysed statistically and by a complexity index. The cell size of Saccharomyces at the lag phase was smaller than that at the beginning of the exponential phase, whereas during the stationary phase, the cell size converged with the values observed during the lag phase. These experimental techniques, when used together, allow us to distinguish among and characterize the cell size, cell granularity and the structure of the yeast population through the three growth phases. Flow cytometry patterns are better than light diffraction and electric particle analysis in showing the existence of subpopulations during the different phases, especially during the stationary phase. The use of a complexity index in this context helped to differentiate these phases and confirmed the yeast cell heterogeneity. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Fusion energy - an abundant energy source for the future

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  18. Electrical and mechanical adaptation of commercially available power inverter modules for BUSSARD – The power supply of ASDEX Upgrade in vessel saddle coils

    Energy Technology Data Exchange (ETDEWEB)

    Rott, Michael, E-mail: Michael.Rott@ipp.mpg.de [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, D-85748 Garching (Germany); Arden, Nils; Eixenberger, Horst [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, D-85748 Garching (Germany); Klädtke, Kevin [Technical University Munich, Arcisstraße 21, D-80333 München (Germany); Teschke, Markus; Suttrop, Wolfgang [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2015-10-15

    Highlights: • Mechanical design of inverters for restricted space and good mountability. • Supply of DC link possible with thyristor converter. • Plant safety by independent overcurrent protections and a commercially arc detection system. • Ground fault detection by fast differential current measurement. • Possibilities of changing the inductance of a two windings iron core choke. - Abstract: To supply the ASDEX Upgrade's B-coils with AC current up to 1.3 kA{sub p} at 500 Hz with arbitrary waveforms, a set of 16 inverters has been designed and partially built. To keep cost and development time low, commercially available power modules are used and existing current converters feed the DC links. Three power modules are mounted in one cubicle for realizing a three level neutral point clamped (NPC) topology with lowest possible inductivity and making the most of the limited space available. The paper presents the effort and steps required to adapt standard power blocks towards the needs of the ASDEX Upgrade power supply as well as the mechanical optimizations for good mountability, flexibility and scalability. Besides, solutions for mandatory personnel safety and plant safety are presented.

  19. An economic basis for littoral land-based production of low carbon fuel from nuclear electricity and seawater for naval or commercial use

    International Nuclear Information System (INIS)

    Willauer, Heather D.; Hardy, Dennis R.; Moyer, Seth A.; DiMascio, Felice; Williams, Frederick W.; Drab, David M.

    2015-01-01

    Three separate U.S. military databases were used to estimate the U.S. Navy operational fuel needs at sea for the last several years. Defense Science Board data were used to estimate the current FY2013 total fuel delivered-at-sea price being paid by the USN per gallon between $6 and $7. Using published capital cost data and a range of nuclear electrical energy scenarios, costs ranging between $1.48 to $8.67 per gallon are estimated for producing 82,000 gal per day of fuel in littoral land-based locations. This provides policy analysts with a reasonable economic rationale and justification for planning and designing a new littoral land-based energy conversion process to provide low carbon jet and diesel fuel for operations at sea. This process is considered low carbon emissions because it uses environmentally available carbon and hydrogen and dedicated nuclear electrical energy as its only inputs. Generic naval missions and fuel usage data provide the constraints needed for establishing full scale process size, number of locations, power requirements, and cost using current light water nuclear reactor technology. This information may also be used by policy analysts to support changes in future naval energy policy. -- Highlights: •A cost/benefit analysis for synthesizing low carbon fuel in strategic littoral locations is provided. •Different nuclear electrical energy scenarios are used for synthesizing low carbon fuel. •The analysis suggests that low carbon fuel could be synthesized for $1.48–8.67/gal. •This analysis may be used to justify replacing at sea fossil fuel use by the U.S. Navy. •The analysis provides broad constraints for establishing full scale fuel synthesis processes

  20. Neutronic Parametric Study on a Conceptual Design for a Transmutation Fusion Blanket

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2011-01-01

    Fusion energy may be the one of options of future energy. In all over the world, researchers are putting their efforts for its commercial and economical availability. Fusion-fission hybrid reactors have been studied for various applications in China. First milestone of fusion energy is expected to be the fusion fission hybrid reactors. In fusion-fission hybrid reactor the blanket design is of second prime importance after fusion source. In this study conceptual design of a fusion blanket is initiated for calculation of tritium production, transmutation of minor actinides (MA) and fission products (FP) and energy multiplication calculations

  1. Commercial Toilets

    Science.gov (United States)

    Whether you are looking to reduce water use in a new facility or replace old, inefficient toilets in commercial restrooms, a WaterSense labeled flushometer-valve toilet is a high-performance, water-efficient option worth considering.

  2. Fusion energy for the 21st century

    International Nuclear Information System (INIS)

    Harris, J.H.

    1999-01-01

    Fusion reactions like those that power the stars have the potential of providing bulk electricity generation with reduced emissions and low radioactive hazard, but pose many challenges in physics and technology. The H-1 Heliac Major National Research Facility now being developed offers Australian scientists and engineers an opportunity to participate in the collaborative international fusion research program. Work on H-1NF contributes not only to the realisation of fusion power, but offers the stimulus and opportunity for advanced training and the development of spin-off technology

  3. Multi-unit inertial fusion plants based on HYLIFE-II, with shared heavy-ion RIA driver and target factory, producing electricity and hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Logan, G.; Moir, R. [Lawrence Livermore National Lab., CA (United States); Hoffman, M. [Univ. of California, Davis, CA (United States)

    1994-05-05

    Following is a modification of the IFEFUEL systems code, called IFEFUEL2, to treat specifically the HYLIFE-II target chamber concept. The same improved Recirculating Induction Accelerator (RIA) energy scaling model developed recently by Bieri is used in this survey of the economics of multi-unit IFE plants producing both electricity and hydrogen fuel. Reference cases will assume conventional HI-indirect target gains for a 2 mm spot, and improved HYLIFE-II BoP models as per Hoffman. Credits for improved plant availability and lower operating costs due to HYLIFE-II`s 30-yr target chamber lifetime are included, as well as unit cost reductions suggested by Delene to credit greater {open_quotes}learning curve{close_quotes} benefits for the duplicated portions of a multi-unit plant. To illustrate the potential impact of more advanced assumptions, additional {open_quotes}advanced{close_quotes} cases will consider the possible benefits of an MHD + Steam BoP, where direct MHD conversion of plasma from baseball-size LiH target blanket shells is assumed to be possible in a new (as yet undesigned) liquid Flibe-walled target chamber, together and separately, with advanced, higher-gain heavy-ion targets with Fast Ignitors. These runs may help decide the course of a possible future {open_quotes}HYLIFE-III{close_quotes} IFE study. Beam switchyard and final focusing system costs per target chamber are assumed to be consistent with single-sided illumination, for either {open_quotes}conventional{close_quotes} or {open_quotes}advanced{close_quotes} indirect target gain assumptions. Target costs are scaled according to the model by Woodworth. In all cases, the driver energy and rep rate for each chosen number of target chambers and total plant output will be optimized to minimize the cost of electricity (CoE) and the associated cost of hydrogen (CoH), using a relationship between CoE and CoH to be presented in the next section.

  4. Catalysed fusion

    CERN Document Server

    Farley, Francis

    2012-01-01

    A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest for green energy. Coping with baffling jargon and manifold dangers, he is distracted by radioactive rats, lovely ladies and an unscrupulous rival. Full of doubts and hesitations, he falls for a dazzling Danish girl, who leads him astray. His brilliant idea leads to a discovery and a new route to cold fusion. But his personal life is scrambled. Does it bring fame or failure? Tragedy or triumph?

  5. Space Commercialization

    Science.gov (United States)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  6. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  7. Cold fusion method

    International Nuclear Information System (INIS)

    Takahashi, Akihito.

    1994-01-01

    A Pt wire electrode is supported from the periphery relative to a Pd electrode by way of a polyethylene or teflon plate in heavy water, and electrolysis is applied while varying conditions successively in a sawteeth fashion at an initial stage, and after elapse of about one week, a pulse current is supplied to promote nuclear reaction and to generate excess heat greater than a charged electric power. That is, small amount of neutron emission is increased and electrolytic cell temperature is elevated by varying the electrolysis conditions successively in the sawteeth fashion at the initial stage. In addition, when the pulse electric current is supplied after elapse of about one week, the electrolytic cell temperature is abnormally elevated, so that the promotion of nuclear reaction phenomenon and the generation of excess heat greater than the charged electric power are recognized. Then, a way to control power level and time fluctuation of cold fusion is attained, thereby contributing to development of a further method for generating excess heat as desired. In addition, it contributes to a development for a method of obtaining such an excess heat that can be taken as a new energy. (N.H.)

  8. Real-time monitoring of 3T3-L1 preadipocyte differentiation using a commercially available electric cell-substrate impedance sensor system.

    Science.gov (United States)

    Kramer, Adam H; Joos-Vandewalle, Julia; Edkins, Adrienne L; Frost, Carminita L; Prinsloo, Earl

    2014-01-24

    Real-time analysis offers multiple benefits over traditional end point assays. Here, we present a method of monitoring the optimisation of the growth and differentiation of murine 3T3-L1 preadipocytes to adipocytes using the commercially available ACEA xCELLigence Real-Time Cell Analyser Single Plate (RTCA SP) system. Our findings indicate that the ACEA xCELLigence RTCA SP can reproducibly monitor the primary morphological changes in pre- and post-confluent 3T3-L1 fibroblasts induced to differentiate using insulin, dexamethasone, 3-isobutyl-1-methylxanthine and rosiglitazone; and may be a viable primary method of screening compounds for adipogenic factors. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Conceptual design of a fast-ignition laser fusion reactor FALCON-D

    International Nuclear Information System (INIS)

    Goto, T.; Ogawa, Y.; Okano, K.; Hiwatari, R.; Asaoka, Y.; Someya, Y.; Sunahara, A.; Johzaki, T.

    2008-10-01

    A new conceptual design of the laser fusion power plant FALCON-D (Fast ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast ignition method can achieve the sufficient fusion gain for a commercial operation (∼100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5 - 6 m radius). 1-D/2-D hydrodynamic simulations showed the possibility of the sufficient gain achievement with a 40 MJ target yield. The design feasibility of the compact dry wall chamber and solid breeder blanket system was shown through the thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. A moderate electric output (∼400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall concept not only reduces some difficulties accompanied with a liquid wall but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance time. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R and D issues required for this design are also discussed. (author)

  10. Materials-related issues in the safety and licensing of nuclear fusion facilities

    Science.gov (United States)

    Taylor, N.; Merrill, B.; Cadwallader, L.; Di Pace, L.; El-Guebaly, L.; Humrickhouse, P.; Panayotov, D.; Pinna, T.; Porfiri, M.-T.; Reyes, S.; Shimada, M.; Willms, S.

    2017-09-01

    Fusion power holds the promise of electricity production with a high degree of safety and low environmental impact. Favourable characteristics of fusion as an energy source provide the potential for this very good safety and environmental performance. But to fully realize the potential, attention must be paid in the design of a demonstration fusion power plant (DEMO) or a commercial power plant to minimize the radiological hazards. These hazards arise principally from the inventory of tritium and from materials that become activated by neutrons from the plasma. The confinement of these radioactive substances, and prevention of radiation exposure, are the primary goals of the safety approach for fusion, in order to minimize the potential for harm to personnel, the public, and the environment. The safety functions that are implemented in the design to achieve these goals are dependent on the performance of a range of materials. Degradation of the properties of materials can lead to challenges to key safety functions such as confinement. In this paper the principal types of material that have some role in safety are recalled. These either represent a potential source of hazard or contribute to the amelioration of hazards; in each case the related issues are reviewed. The resolution of these issues lead, in some instances, to requirements on materials specifications or to limits on their performance.

  11. FIRST STEP towards ICF commercialization

    International Nuclear Information System (INIS)

    Saylor, W.W.; Pendergrass, J.H.; Dudziak, D.J.

    1984-01-01

    Production of tritium for weapons and fusion R and D programs and successful development of Inertial Confinement Fusion (ICF) technologies are important national goals. A conceptual design for an ICF facility to meet these goals is presented. FIRST STEP (Fusion, Inertial, Reduced-Requirements Systems Test for Special Nuclear Material, Tritium, and Energy Production) is a concept for a plant to produce SNM, tritium, and energy while serving as a test bed for ICF technology development. A credible conceptual design for an ICF SNM and tritium production facility that competes favorably with fission technology on the bases of cost, production quality, and safety was sought. FIRST STEP is also designed to be an engineering test facility that integrates systems required for an ICF power plant and that is intermediate in scale between proof-of-principle experiment and commercial power plant. FIRST STEP driver and pellet performance requirements are moderate and represent reasonable intermediate goals in an R and D plan for ICF commercialization. Repetition rate requirements for FIRST STEP are similar to those of commercial size plants and FIRST STEP can be used to integrate systems under realistic ICF conditions

  12. Fusion systems engineering

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Summaries of research are included for each of the following topics: (1) fusion reactor systems studies, (2) development of blanket processing technology for fusion reactors, (3) safety studies of fusion concepts, (4) the MACK/MACKLIB system for nuclear response functions, and (5) energy storage and power supply systems for fusion reactors

  13. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  14. Neutron detector for fusion reaction-rate measurements

    International Nuclear Information System (INIS)

    Lerche, R.A.; Phillion, D.W.; Tietbohl, G.L.

    1993-01-01

    We have developed a fast, sensitive neutron detector for recording the fusion reaction-rate history of inertial-confinement fusion (ICF) experiments. The detector is based on the fast rise-time of a commercial plastic scintillator (BC-422) and has a response 7 neutrons

  15. Commercialization of a system to prevent the insect damage by termite. Kansai Electric Power Co.; Shiroari shokugai boshi system no jitsuyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, T. [Kansai Electric Power Co. Inc., Osaka (Japan)

    2000-01-10

    The paper studied measures to prevent the underground power cable from insect damage by termite. To search for the termite entering the cable, fiber inspection is good, but the length which fiber reaches and the margin of cable diameter are limited. Moreover, the termite prevention use PFP pipe has been developed, but termite invades inside from the joint in PFP pipe. In AP pipe, termite invades from the place where concrete placing is poor and from cracks. As to the method to search for termite, sounds which termite emit to threaten foreign enemies were gathered by microphone, and the frequency was analyzed. As a result, it was verified that it is possible to judge if there is termite or not by checking levels in the 50-1300Hz zone (the method to let termite emit the threatening sound has been unknown). Since the path of invasion of termite is limited to the joint of cable, a thing in which chemical is put on rubber band of cable joint was developed. The chemical which was a little put on the rubber band is a domestic use insecticide generally commercially available, and adopted pyrethroids base chemical the safety of which was estimated. There is no need for spray of termite prevention agent, and the chemical is lower-priced than a change to the termite prevention cable. (NEDO)

  16. NRC Information No. 91-48: False certificates of conformance provided by Westinghouse Electric Supply Company for refurbished commercial-grade circuit breakers

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    In April 1988, WESCO of Albany, New York, supplied 250 MCCBs (molded-case circuit breakers) to Spectrum of Schenectady, New York. Spectrum dedicated these commercial-grade items on the basis of independent testing and the certificates of conformance (CoCs) it received from WESCO. During receipt inspection testing, Peach Bottom determined that the MCCBs were not new and had been refurbished. The NRC conducted an inspection and investigation of Spectrum and WESCO in 1988 and 1989. During these efforts, the NRC identified that the MCCBs provided to Peach Bottom were reconditioned and not new equipment as specified in the purchase order. Although the purchase order from Spectrum to WESCO specifically required new equipment and CoCs, WESCO purchased the MCCBs from a subvendor which dealt mainly in reconditioned equipment and provided these reconditioned MCCBs to Spectrum with falsified CoCs that certified that they were new equipment. In addition, the investigation identified that WESCO ordered Westinghouse labels from the subvendor in order to label the shipping boxes that lacked labels. Spectrum performed the dedication inspection and testing to demonstrate the adequacy of the MCCBs from WESCO. However, the validity of this testing depended on the MCCBs being new equipment. Spectrum's failure to verify the accuracy or the validity of the CoCs resulted in Spectrum accepting fraudulent CoCs and providing reconditioned (as opposed to new) MCCBs to Peach Bottom

  17. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  18. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  19. Effects of airborne-particle abrasion, sodium hydroxide anodization, and electrical discharge machining on porcelain adherence to cast commercially pure titanium.

    Science.gov (United States)

    Acar, Asli; Inan, Ozgür; Halkaci, Selçuk

    2007-07-01

    The aim of this study was to determine the effect of airborne-particle abrasion (APA), sodium hydroxide anodization (SHA), and electrical discharge machining (EDM) on cast titanium surfaces and titanium-porcelain adhesion. Ninety titanium specimens were cast with pure titanium and the alpha-case layer was removed. Specimens were randomly divided into three groups. Ten specimens from each group were subjected to APA. SHA was applied to the second subgroups, and the remaining specimens were subjected to the EDM. For the control group, 10 specimens were cast using NiCr alloy and subjected to only APA. Surfaces were examined by using scanning electron microscope and a surface profilometer. Three titanium porcelains were fused on the titanium surfaces, whereas NiCr specimens were covered with conventional porcelain. Titanium-porcelain adhesion was characterized by a 3-point bending test. Statistical analysis showed that the porcelain-metal bond strength of the control group was higher than that of the titanium-porcelain system (p titanium groups (p 0.05), except the bond strengths of Noritake Super Porcelain TI-22 groups on which APA and SHA were applied (p titanium-porcelain adhesion when compared to APA. Copyright 2006 Wiley Periodicals, Inc.

  20. Direct Fusion Drive for a Human Mars Orbital Mission

    Energy Technology Data Exchange (ETDEWEB)

    Paluszek, Michael [Princeton Satellite Systems; Pajer, Gary [Princeton Satellite Systems; Razin, Yosef [Princeton Satellite Systems; Slonaker, James [Princeton Satellite Systems; Cohen, Samuel [PPPL; Feder, Russ [PPPL; Griffin, Kevin [Princeton University; Walsh, Matthew [Princeton University

    2014-08-01

    The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.

  1. Fusion energy

    International Nuclear Information System (INIS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R ampersand D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R ampersand D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase

  2. Fusion instrumentation and control: a development strategy

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Greninger, R.C.; Longhurst, G.R.; Madden, P.

    1981-01-01

    We have examined requirements for a fusion instrumentation and control development program to determine where emphasis is needed. The complex, fast, and closely coupled system dynamics of fusion reactors reveal a need for a rigorous approach to the development of instrumentation and control systems. A framework for such a development program should concentrate on three principal need areas: the operator-machine interface, the data and control system architecture, and fusion compatible instruments and sensors. System dynamics characterization of the whole fusion reactor system is also needed to facilitate the implementation process in each of these areas. Finally, the future need to make the instrumentation and control system compatible with the requirements of a commercial plant is met by applying transition technology. These needs form the basis for the program tasks suggested

  3. Fusion utilization projections in the United States energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Fillo, J.A.

    1979-11-01

    The following topics are discussed in some detail in this report: (1) applications of fusion energy, (2) fusion implementation in the US energy system, (3) reactor performance requirements, (4) technology for electric applications, and (5) technology for synthetic fuel/chemical applications. (MOW)

  4. Fusion utilization projections in the United States energy economy

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.

    1979-11-01

    The following topics are discussed in some detail in this report: (1) applications of fusion energy, (2) fusion implementation in the US energy system, (3) reactor performance requirements, (4) technology for electric applications, and (5) technology for synthetic fuel/chemical applications

  5. The technology of heavy-ion fusion

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1980-09-01

    The concept of inertial confinement fusion using heavy ion beams as a driver is surveyed, with reference to parameters which might ultimately be suitable for a commercial power station. Particular attention is drawn to the parameters associated with the final focusing of the beam on the target. (author)

  6. Public acceptance of fusion energy and scientific feasibility of a fusion reactor. DREAM (DRastically EAsy Maintenance) tokamak

    International Nuclear Information System (INIS)

    Nishio, Satoshi

    1998-01-01

    If the major part of the electric power demand will be supplied by tokamak fusion power plants, a suitable tokamak reactor must be an ultimate goal, i.e., the reactor must be excellent both in terms of construction cost and safety aspects including operation availability (maintainability and reliability). In attaining this goal, an approach focusing on both safety and availability (including reliability and maintainability) issues is the most promising strategy. The tokamak reactor concept with a very high aspect ratio configuration and SiC/SiC composite structural materials is compatible with this approach, which is called the DREAM (DRastically EAsy Maintenance) approach. The SiC/SiC composite is a low activation material and an insulation material, and the high aspect ratio configuration leads to good accessibility for the maintenance of machines. As an intermediate steps between an experimental reactor such as ITER and the ultimate goal, the development of prototype reactor which demonstrates electric power generation and an initial-phase commercial reactor which demonstrates for COE (cost of electricity) competitiveness has been investigated. Especially for the prototype reactor, material and technological immaturity must be considered. (J.P.N.)

  7. Fusion energy: the agony, the ecstacy and the alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J. [Lawrence Livermore National Lab., CA (United States)

    1997-11-01

    The desirability of achieving commercially viable fusion power generations is argued on environmental, fuel availability and radioactive waste management grounds. The author describes some of the technical aspects of the two main types of device being used to aim for fusion ignition, tokamaks and stellerators, giving brief details of current and future research initiative based on each type of device. He argues for continued diversity in research methods as a safety catch-all to ensure no possible options for commercial fusion power are missed. (UK).

  8. Development of Laser Based Plasma Diagnostics for Fusion Research on NSTX-U

    Science.gov (United States)

    Barchfeld, Robert Adam

    Worldwide demand for power, and in particular electricity, is growing. Increasing population, expanding dependence on electrical devices, as well as the development of emerging nations, has created significant challenges for the power production. Compounding the issue are concerns over pollution, natural resource supplies, and political obstacles in troubled parts of the world. Many believe that investment in renewable energy will solve the expected energy crisis; however, renewable energy has many shortfalls. Consequently, additional sources of energy should be explored to provide the best options for the future. Electricity from fusion power offers many advantages over competing technologies. It can potentially produce large amounts of clean energy, without the serious concerns of fission power plant safety and nuclear waste. Fuel supplies for fusion are plentiful. Fusion power plants can be operated as needed, without dependence on location, or local conditions. However, there are significant challenges before fusion can be realized. Many factors currently limit the effectiveness of fusion power, which prevents a commercial power plant from being feasible. Scientists in many countries have built, and operate, experimental fusion plants to study the fusion process. The leading examples are magnetic confinement reactors known as tokamaks. At present, reactor gain is near unity, where the fusion power output is nearly the same as the power required to operate the reactor. A tenfold increase in gain is what reactors such as ITER hope to achieve, where 50 MW will be used for plasma heating, magnetic fields, and so forth, with a power output of 500 MW. Before this can happen, further research is required. Loss of particle and energy confinement is a principal cause of low performance; therefore, increasing confinement time is key. There are many causes of thermal and particle transport that are being researched, and the prime tools for conducting this research are

  9. Policy instruments force climate protection by increasing the energy efficiency of electric appliances and electrical systems in private households and the commercial and small-scale sector; Politikinstrumente zur Effizienzsteigerung von Elektrogeraeten und -anlagen in Privathaushalten, Bueros und im Kleinverbrauch

    Energy Technology Data Exchange (ETDEWEB)

    Duscha, Markus; Seebach, Dominik; Griessmann, Benjamin [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany)

    2006-06-15

    The implementation of new, more market-oriented instruments represents an additional starting point for future developments. This path was started on in the EU in 2005 with the CO{sub 2} emission trade. The price signals that could be expected for end customers in households and trade from this alone would most likely be too low to be a sufficient motivation for exhausting the electricity efficiency potential. At this point, we must again point out that only rarely are there economic hindrances to the complete use of potential, but rather a lack of information and organization leads to increased transaction costs in the implementation. This must be corrected by accompanying efficiency instruments and programs. However, implementing these programs does not (yet) represent an economic alternative to the efficiency measures in their own systems for the industry and power company involved in the emission trade due to such transaction costs. Otherwise there would be initiatives in the meantime for this type of privately organized program, as these have been suggested in this report as tasks for a national electricity fund. Therefore, the instrument of the EU emission trade must be supplemented in the foreseeable future with the instruments presented here. There is not much evidence as to how much a comparable implementation of tradable energy efficiency certificates (often referred to as ''white certificates'') is a suitable start for concluding efficiency potential at the level of the very inhomogeneous group of end consumers. We still see a need for research before such an instrument can be recommended as a guide for Germany or even Europe. The questions still to be clarified include, among other things, the ability of standardizing the assignment rules as well as the amount of the transaction costs to be expected, even in dependency on the market level at which the trade is started (end consumer, energy service provider, electronic equipment

  10. Use of controlled thermonuclear reactor fusion power for the production of synthetic methanol fuel from air and water

    International Nuclear Information System (INIS)

    Steinberg, M.; Vi Duong Dang.

    1975-04-01

    Methanol synthesis from carbon dioxide, water and nuclear fusion energy is extensively investigated. The entire system is analyzed from the point of view of process design and economic evaluation of various processes. The main potential advantage of a fusion reactor (CTR) for this purpose is that it provides a large source of low cost environmentally acceptable electric power based on an abundant fuel source. Carbon dioxide is obtained by extraction from the atomsphere or from sea water. Hydrogen is obtained by electrolysis of water. Methanol is synthesized by the catalytic reaction of carbon dioxide and hydrogen. The water electrolysis and methanol synthesis units are considered to be technically and commercially available. The benefit of using air or sea water as a source of carbon dioxide is to provide an essentially unlimited renewable and environmentally acceptabe source of hydrocarbon fuel. Extraction of carbon dioxide from the atmosphere also allows a high degree of freedom in plant siting. (U.S.)

  11. A perspective on equipment design for fusion remote handling

    International Nuclear Information System (INIS)

    Mills, Simon; Haist, Bernhard; Hamilton, David

    2007-01-01

    The successful operation of the JET remote handling facility has been directly attributable to the design processes adopted for the remote handling equipment and experimental components. The authors report here on the experience they have gained and future advances in technology they believe could benefit the maintenance of fusion machines. The approach to the provision of remote handling equipment has been the preferred use of commercially-off-the-shelf equipment. In the areas of electrical, electronic, software and control this approach has been generally achievable. However, mechanical equipment has been almost entirely bespoke as its requirements are highly sensitive to the design of the JET components and the in-vessel access conditions and environmental compatibility. Hence, JET has required the design and manufacture of over 700 special types of remote handling equipment. This paper discusses the experience of introducing and developing remote handling mechanical equipment for JET and covers the relationship between the remote handling equipment and the JET component design and the potential for improving the design function. A major lesson from the introduction of remote handling to JET has been demonstration of the very close interdependency of the design of components with the design of remote handling tooling. Future fusion machines will be much more complex than JET and will demand even greater remote handling compatibility. This paper will discuss possible methods for improving this process. Also discussed are the principles of condition monitoring to provide a means of pre-emptive maintenance, modularisation, standardisation, and innovations and developments which have the potential for improving some of the key technologies required for fusion machines

  12. Fusion characteristics of ball lighting like configurations

    Energy Technology Data Exchange (ETDEWEB)

    Sanduloviciu, M.; Lozneanu, E. [Universitatea A1. I. Cuza, Iasi (Romania)

    1997-12-31

    Assuming that an already proposed self-organization physical scenario is at the origin of both ball lightnings as well as fireballs produced in high intensity electrical discharges, we suggest a new possibility to create fusion relevant ball lightning like configurations in laboratory. Perhaps this becomes possible by prolonging in a controllable way their lifetime and energy content. (author)

  13. Fusion Canada issue 20

    International Nuclear Information System (INIS)

    1993-03-01

    Fusion Canada's publication of the National Fusion Program. Included in this issue is the CFFTP Industrial Impact Study, CCFM/TdeV Update:helium pumping, research funds, and deuterium in beryllium - high temperature behaviour. 3 figs

  14. Laser fusion: an overview

    International Nuclear Information System (INIS)

    Boyer, K.

    1975-01-01

    The laser fusion concept is described along with developments in neodymium and carbon dioxide lasers. Fuel design and fabrication are reviewed. Some spin-offs of the laser fusion program are discussed. (U.S.)

  15. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  16. Fusion Canada issue 27

    International Nuclear Information System (INIS)

    1995-03-01

    A short bulletin from the National Fusion Program highlighting in this issue ITER reactor siting, a major upgrade for TdeV tokamak, Ceramic Breeders: new tritium mapping technique and Joint Fusion Symposium. 2 figs

  17. Fuji electric's past and present efforts in the development of nuclear energy

    International Nuclear Information System (INIS)

    Hayakawa, Hitoshi; Miki, Toshiya; Okamoto, Futoshi

    2003-01-01

    Since the inception of Japan's national nuclear energy program, Fuji Electric has built experimental facilities for various types of nuclear reactors, constructed Japan's first commercial nuclear power plant, and has continued to contribute to the development of national nuclear energy. This paper presents an overview of the specific features of Fuji Electric's technology and efforts in nuclear energy development. Fuji Electric's proprietary technologies include gas-cooled reactor technology, remote-handling and mechatronics technology, rad-waste treatment technology, and superconductivity technology. Through the application of these technologies, Fuji Electric plays a major role in the development of advanced reactors such as high temperature gas-cooled reactors and fast breeder reactors, and in the fields of MOX fuel fabrication, nuclear plant decommissioning, radwaste treatment systems and fusion energy. (author)

  18. Self-sustaining nuclear pumped laser-fusion reactor experiment

    International Nuclear Information System (INIS)

    Boody, F.P.; Choi, C.K.; Miley, G.H.

    1977-01-01

    The features of a neutron feedback nuclear pumped (NFNP) laser-fusion reactor equipment were studied with the intention of establishing the feasibility of the concept. The NFNP laser-fusion concept is compared schematically to electrically pumped laser fusion. The study showed that, once a method of energy storage has been demonstrated, a self-sustaining fusion-fission hybrid reactor with a ''blanket multiplication'' of two would be feasible using nuclear pumped Xe F* excimer lasers having efficiencies of 1 to 2 percent and D-D-T pellets with gains of 50 to 100

  19. Control of a laser inertial confinement fusion-fission power plant

    Science.gov (United States)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  20. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  1. Fusion Canada issue 9

    International Nuclear Information System (INIS)

    1989-11-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on availability of Canadian Tritium, an ITER update, a CCFM update on Tokamak and the new team organization, an international report on Fusion in Canada and a Laser Fusion Project at the University of Toronto. 3 figs

  2. Fusion Canada issue 17

    International Nuclear Information System (INIS)

    1992-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on increased funding for the Canadian Fusion Program, news of the compact Toroid fuelling gun, an update on Tokamak de Varennes, the Canada - U.S. fusion meeting, measurements of plasma flow velocity, and replaceable Tokamak divertors. 4 figs

  3. Zipping into fusion

    NARCIS (Netherlands)

    Zheng, Tingting

    2014-01-01

    Fusion of lipid bilayers in cells facilitates the active transport of chemicals. Non-viral membrane fusion is regulated by a cascade of proteins as the process is highly regulated both in space and time. In eukaryotic cells, the so-called SNARE protein complex is at the heart of fusion. However,

  4. The UKAEA's fusion programme

    International Nuclear Information System (INIS)

    Sweetman, D.R.

    1989-01-01

    D.R. Sweetman, director of the UKAEA fusion programme, reviews the current state of the work being performed on the UK-Euratom fusion programme. The JET programme, Tokamak programme, reversed field pinch programme, fusion technology and funding are all discussed. (author)

  5. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    Science.gov (United States)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  6. Fusion technologies for Laser Inertial Fusion Energy (LIFE∗

    Directory of Open Access Journals (Sweden)

    Kramer K.J.

    2013-11-01

    Full Text Available The Laser Inertial Fusion-based Energy (LIFE engine design builds upon on going progress at the National Ignition Facility (NIF and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant.

  7. Fusion technologies for Laser Inertial Fusion Energy (LIFE)

    Science.gov (United States)

    Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.

    2013-11-01

    The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Economic and environmental performance of future fusion plants in comparison

    International Nuclear Information System (INIS)

    Hamacher, T.; Saez, R.M.; Lako, P.

    2001-01-01

    If the good performance of fusion as technology with no CO 2 emission during normal operation and rather low external costs, reflecting the advantageous environmental and safety characteristics, are considered in future energy regulations, fusion can win considerable market shares in future electricity markets. The economic performance was elaborated for Western Europe for the time period till 2100. The software tool MARKAL widely used in energy research was used to simulate and optimise the development of the Western European energy system. Two different scenarios were considered, the main difference was the interest rate for investments. Stringent CO 2 -emission strategies lead to considerable market shares for fusion. As a comprehensive indicator of the environmental and safety performance of fusion plants the external costs following the ExternE method was used. External costs of fusion are rather low, much below the cost of electricity, and are in the same range as photovoltaics and wind energy. (author)

  9. Consumo e custo de energia elétrica em equipamentos utilizados em galpão de frangos de corte Consumption and electricity costs in a commercial broiler house

    Directory of Open Access Journals (Sweden)

    José E. P. Turco

    2002-12-01

    Full Text Available Este trabalho teve por objetivo analisar o consumo e o custo da energia elétrica em um galpão comercial de frangos de corte, durante dois ciclos de criação, inverno e verão. Foram realizadas medidas de consumo dos ventiladores, nebulizadores, lâmpadas e comedouros durante o manejo de 10.500 aves, em um galpão de 12 m de largura e 80 m de comprimento, localizado na Granja Água Branca, município de Jardinópolis, SP, nos períodos de junho a julho de 1997 e de outubro a dezembro de 1998. Para se determinar os custos com energia elétrica dos equipamentos, foi obtido o valor da tarifa junto à Companhia Paulista de Força e Luz (CPFL. Os resultados desse estudo mostraram que, para o primeiro ciclo (inverno, a estimativa de consumo de energia elétrica ativa dos equipamentos para produção de um frango de corte foi de 0,1306 kWh e, para o segundo ciclo (verão, 0,1891 kWh. Os dispêndios com energia elétrica para o inverno e verão foram de R$ 0,0201 e R$ 0,0291 por frango, respectivamente.The aim of this investigation was to evaluate the consumption and electricity costs used by equipments in a commercial broiler chicken house. A total of 10,500 broiler chickens were allocated in a poultry farm with 12 m of width, 80 m of length, during the periods of June to July of 1997 (winter and October to December of 1998 (summer. The consumption of electricity by the equipments such as fans, fogging system, lamps and feeders was measured. To determine the expenditure with electrical energy, the prices were obtained from 'Companhia Paulista de Força e Luz' (CPFL. The results of this study showed that equipment management affect the broiler production cost, being estimated at 0.1306 kWh of energy consumption per chicken at a cost of R$ 0.0201 during the winter and 0.1891 kWh of energy consumption per chicken at a cost of R$ 0.0291 during summer period.

  10. Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy

    Science.gov (United States)

    Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact

  11. Commercial LANDSAT?

    Science.gov (United States)

    Private industry should assume responsibility either for the United States' land satellite (LANDSAT) system or for both the land and the weather satellite systems, recommends the Land Remote Sensing Satellite Advisory Committee. The committee (Eos, June 29, 1982, p. 553), composed of representatives from academia, industry, and government, has a working group that is evaluating the potential for commercialization of remote sensing satellites.The recommendations call for industry ownership or operation of either or both of the remote sensing systems, but only up to and including the holding of raw, unprocessed data. The National Aeronautics and Space Administration (NASA) currently operates LANDSAT but will be relinquishing its responsibility to the National Oceanic and Atmospheric Administration (NOAA) on January 31. NOAA already operates the U.S. civilian weather satellite service, which includes the NOAA-5, NOAA-6, and the Geostationary Operational Environmental (GOES) satellites (Eos, June 2, 1981, p. 522).

  12. Viral membrane fusion

    International Nuclear Information System (INIS)

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  13. Fusion technology 1992

    International Nuclear Information System (INIS)

    Ferro, C.; Gasparatto, M.; Knoepfel, H.

    1993-01-01

    The aim of the biennial series of symposia on the title subject, organized by the European Fusion Laboratories, is the exchange of information on the design, construction and operation of fusion experiments and on the technology being developed for the next step devices and fusion reactors. The coverage of the volume includes the technological aspects of fusion reactors in relation to new developments, this forming a guideline for the definition of future work. These proceedings comprise three volumes and contain both the invited lectures and contributed papers presented at the symposium which was attended by 569 participants from around the globe. The 343 papers, including 12 invited papers, characterize the increasing interest of industry in the fusion programme, giving a broad and current overview on the progress and trends fusion technology is experiencing now, as well as indicating the future for fusion devices

  14. Inertial confinement fusion reaction chamber and power conversion system study. Final report

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Bourque, R.F.

    1985-10-01

    This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO 2 granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO 2 granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs

  15. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  16. Nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Nagata, Daizaburo; Yamada, Masao.

    1974-01-01

    Object: To provide a nuclear fusion apparatus in which a magnetic limiter is disposed within a vacuum vessel, said magnetic limiter being supported in such a manner so as to not to exert mechanical action upon said vacuum vessel, thereby minimizing a force applied to the vacuum vessel to easily manufacture the vacuum vessel. Structure: The magnetic limiter disposed within the vacuum vessel is connected to one end of a supporting post which extends through the wall of the vacuum vessel through a seal portion, the other end of the supporting post being secured to a structure such as a house outside the vacuum vessel. The seal portion comprises a bellows of high spring elasticity mounted on the vacuum vessel and a seal element comprised of an electric insulator such as ceramic for connecting the bellows to the supporting post, the supporting post extending through the wall of the vacuum vessel in vacuum-tight fashion, the force applied to the magnetic limiter exerting no influence upon the vacuum vessel. (Kamimura, M.)

  17. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion reactors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  18. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion ractors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  19. Status of fusion reactor blanket design

    International Nuclear Information System (INIS)

    Smith, D.L.; Sze, D.K.

    1986-02-01

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  20. Fusion reactors for hydrogen production via electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    1979-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  1. Fusion: Its novelties in all aspects

    International Nuclear Information System (INIS)

    Tarnowski, D.

    1993-01-01

    The JET comes to gain 2 megawatts during two seconds. This is what falls on the telescriptors, and this news has only upset the physicists. To a simple electricity user it, however, announces that the thermonuclear fusion, a source of mystical energy, inexhaustible and pollution free starts, perhaps to exist. The fabulous sum of money which was spent on the construction of the formidable installations which so far have produced only a derisory spark, has not been lost. And here is the conclusion of the research, through apparatuses of an incredible simplicity, which have produced the fusion by striction, has also promised unexpected results. 13 figs

  2. Economics of fusion research

    International Nuclear Information System (INIS)

    1977-01-01

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics

  3. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  4. Commercial applications

    Science.gov (United States)

    The near term (one to five year) needs of domestic and foreign commercial suppliers of radiochemicals and radiopharmaceuticals for electromagnetically separated stable isotopes are assessed. Only isotopes purchased to make products for sale and profit are considered. Radiopharmaceuticals produced from enriched stable isotopes supplied by the Calutron facility at ORNL are used in about 600,000 medical procedures each year in the United States. A temporary or permanent disruption of the supply of stable isotopes to the domestic radiopharmaceutical industry could curtail, if not eliminate, the use of such diagnostic procedures as the thallium heart scan, the gallium cancer scan, the gallium abscess scan, and the low radiation dose thyroid scan. An alternative source of enriched stable isotopes exist in the USSR. Alternative starting materials could, in theory, eventually be developed for both the thallium and gallium scans. The development of a new technology for these purposes, however, would take at least five years and would be expensive. Hence, any disruption of the supply of enriched isotopes from ORNL and the resulting unavailability of critical nuclear medicine procedures would have a dramatic negative effect on the level of health care in the United States.

  5. The European Fusion Energy Research Programme towards the realization of a fusion demonstration reactor

    International Nuclear Information System (INIS)

    Gasparotto, M.; Laesser, R.

    2006-01-01

    Since its inception, the European Fusion Programme has been orientated towards the establishment of the knowledge base needed for the definition of a reactor to be used for power production. Its ultimate goal is then to demonstrate the scientific and the technological feasibility of fusion power while incorporating the assessment of the safety, environmental, social and economic features of this type of energy source. At present, the JET device, the largest tokamak in the world, and the other medium-sized experimental machines are contributing essentially to the basic scientific phase of this development path. Their successful operation greatly contributed to support the design basis of ITER, the next step in fusion, which will aim to demonstrate the scientific and technical feasibility of fusion power production by achieving extended D-T burning plasma operation. Following ITER, the conception and construction of the DEMO device is planned. DEMO will be a demonstration power plant which will be the first fusion device to generate a significant amount of electrical power from fusion. This paper describes the status of fusion research and the European strategy for achievement of the ultimate goal of construction of a prototype reactor. (author)

  6. Safety of superconducting fusion magnets: twelve problem areas

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L. R.

    1979-01-01

    Twelve problem areas of superconducting magnets for fusion reaction are described. These are: Quench Detection and Energy Dump, Stationary Normal Region of Conductor, Current Leads, Electrical Arcing, Electrical Shorts, Conductor Joints, Forces from Unequal Currents, Eddy Current Effects, Cryostat Rupture, Vacuum Failure, Fringing Field and Instrumentation for Safety. Priorities among these areas are suggested.

  7. Varian's involvement with magnetic fusion energy research

    International Nuclear Information System (INIS)

    Staprans, A.

    1995-01-01

    This article provides an overview of the history, accomplishments, and spinoffs of over two decades of interaction between the U.S. Fusion Energy Research Program's plasma heating scientists and Varian's Electron Device organization; an interaction which has been mutually benficial and, as with other U.S., Industry interaction with the U.S. Fusion Research Program, has produced valuable benfits to the country's economy in the form of spinoffs which have had positive commercial and economic benfits. Varian has had two major R ampersand D programs for the U.S. Fusion Energy Research Program: one the gyrotron development program, emerging from work to study the feasibility of a 200 kW CW 28 GHz gyrotron for the EBT program; and the other the development of super power tetrodes for Ion Cyclotron Power Sources

  8. Current fusion power plant design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Gore, B.F.; Murphy, E.S.

    1976-09-01

    Nine current U.S. designs for fusion power plants are described in this document. Summary tabulations include a tenth concept, for which the design document was unavailable during preparation of the descriptions. The information contained in the descriptions was used to define an envelope of fusion power plant characteristics which formed the basis for definition of reference first commercial fusion power plant design. A brief prose summary of primary plant features introduces each of the descriptions contained in the body of this document. In addition, summary tables are presented. These tables summarize in side-by-side fashion, plant parameters, processes, combinations of materials used, requirements for construction materials, requirements for replacement materials during operation, and production of wastes.

  9. Fusion power plant for water desalination and reuse

    International Nuclear Information System (INIS)

    Borisov, A.A.; Desjatov, A.V.; Izvolsky, I.M.; Serikov, A.G.; Smirnov, V.P.; Smirnov, Yu.N.; Shatalov, G.E.; Sheludjakov, S.V.; Vasiliev, N.N.; Velikhov, E.P.

    2001-01-01

    Development of industry and agriculture demands a huge fresh water consumption. Exhaust of water sources together with pollution arises a difficult problem of population, industry, and agriculture water supply. Request for additional water supply in next 50 years is expected from industrial and agricultural sectors of many countries in the world. The presented study of fusion power plant for water desalination and reuse is aimed to widen a range of possible fusion industrial applications. Fusion offers a safe, long-term source of energy with abundant resources and major environmental advantages. Thus fusion can provide an attractive energy option to society in the next century. Fusion power tokamak reactor based on RF DEMO-S project [Proc. ISFNT-5 (2000) in press; Conceptual study of RF DEMO-S fusion reactor (2000)] was chosen as an energy source. A steady state operation mode is considered with thermal power of 4.0 GW. The reactor has to operate in steady-state plasma mode with high fraction of bootstrap current. Average plant availability of ∼0.7 is required. A conventional type of water cooled blanket is the first choice, helium or lithium coolants are under consideration. Desalination plant includes two units: reverse osmosis and distillation. Heat to electricity conversion schemes is optimized fresh water production and satisfy internal plant electricity demand The plant freshwater capacity is ∼6000000 m 3 per day. Fusion power plant of this capacity can provide a region of a million populations with fresh water, heat and electricity

  10. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures...... around 20 C, but at temperatures above 26 C we observe an increase in the scattered intensity due to fusion. The system is unusually well suited for the study of basic mechanisms of vesicle fusion. The vesicles are flexible with a bending rigidity of only a few k(H)T. The monolayer spontaneous curvature......, Ho, depends strongly on temperature in a known way and is thus tunable. For temperatures where H-0 > 0 vesicles tyre long-term stable, while in the range H-0 fusion rate increases the more negative the Spontaneous curvature Through a quantitative;analysis of the fusion rate we arrive tit...

  11. Document controlled fusion

    International Nuclear Information System (INIS)

    Abou, C.; Demarthon, F.; Ter Minassian, V.

    2004-01-01

    Since the years 30, the magnetic confinement is one of the researches programs to control the nuclear fusion. This document presents in a first part the historical aspects of the researches on the controlled fusion and in the second part the nuclear fusion. The nuclear fusion forcing two atomic nuclei to fuse together by reproducing the conditions of the thermonuclear reactions that make the stars burn. This technology is a potential source of inexhaustible energy for the future. Then are presented the tokamak which make possible to confine an extremely hot gaseous mixture (plasma that is over one hundred million degrees) in a vacuum chamber and the ITER project (superconductor tokamak) that will make it possible to attain the stage in which the plasma maintains the fusion reaction itself and therefore produces more energy than it consumes. The last part presents the projects of new fusion reactors. (A.L.B.)

  12. Muon Catalyzed Fusion

    Science.gov (United States)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  13. Research in the US on heavy ion drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Celata, C.; Faltens, A.; Fessenden, T.J.

    1986-10-01

    The US study of high-energy multigap accelerators to produce large currents of heavy ions for inertial fusion is centered on the single-pass induction linac method. The large technology base associated with multigap accelerators for high-energy physics gives confidence that high efficiency, high repetition rate, and good availability can be achieved, and that the path from scientific demonstration to commercial realization can be a smooth one. In an induction linac driver, multiple (parallel) ion beams are accelerated through a sequence of pulsed transformers. Crucial to the design is the manipulation of electric fields to amplify the beam current during acceleration. A proof-of-principle induction linac experiment (MBE-4) is underway and has begun the first demonstration of current amplification, control of the bunch ends, and the acceleration of multiple beams. A recently completed experiment, called the Single Beam Transport Experiment has shown that we can now count on more freedom to design an alternating-gradient quadrupole focusing channel to transport much higher ion-beam currents than formerly believed possible. A recent Heavy Ion Fusion System Assessment (HIFSA) has shown that a substantial cost saving results from use of multiply-charged ions, and that a remarkably broad range of options exist for viable power-plant designs. The driver cost at 3 to 4 MJ could be $200/joule or less, and the cost of electricity in the range of 50 to 55 mills/kWhr

  14. HIFSA: Heavy-Ion Fusion Systems Assessment Project: Volume 2, Technical analyses

    International Nuclear Information System (INIS)

    Dudziak, D.J.

    1987-12-01

    A two-year project was undertaken to assess the commercial potential of heavy-ion fusion (HIF) as an economical electric power production technology. Because the US HIF development program is oriented toward the use of multiple-beam induction linacs, the study was confined to this particular driver technology. The HIF systems assessment (HIFSA) study involved several subsystem design, performance, and cost studies (e.g., the induction linac, final beam transport, beam transport in reactor cavity environments, cavity clearing, target manufacturing, and reactor plant). In addition, overall power plant systems integration, parametric analyses, and tradeoff studies were performed using a systems code developed specifically for the HIFSA project. Systems analysis results show values for cost of electricity (COE) comparable to those from other inertial- and magnetic-confinement fusion plant studies; viz., 50 to 60 mills/kWh (1985 dollars) for 1-GWe plant sizes. Also, significant COE insensitivity to major accelerator, target, and reactor parameters near the minima was demonstrated. Conclusions from the HIFSA study have already led to substantial modifications of the US HIF research and development program. Separate abstracts were prepared for 17 papers in these analyses

  15. Status of fusion maintenance

    International Nuclear Information System (INIS)

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission

  16. Perfect focusing fusion system

    International Nuclear Information System (INIS)

    Miyamoto, G.; Takeda, T.; Iwata, G.; Mori, S.; Inoue, K.; Tanaka, M.

    1994-01-01

    We propose new perfect focusing (perfo) fusion systems in which ion- or atom-beam is used as a target for the fusion reaction, and ions (perfo particles) of different species moving in the perfo field collide with them. The 'efficiency' defined as the ratio of the fusion energy output to the radiation loss is ∼300, ∼20, and ∼4 for the T+D, 3 He+D, and 11 B+H reactions, respectively. (author)

  17. Magnetic-fusion program

    International Nuclear Information System (INIS)

    1980-08-01

    In February 1980, the Director of Energy Research requested that the Energy Research Advisory Board (ERAB) review the Department of Energy (DOE) Magnetic Fusion Program. Of particular concern to the DOE was the judicious choice of the next major steps toward demonstration of economic power production from fusion. Of equal concern was the overall soundness of the DOE Magnetic Fusion Program: its pace, scope, and funding profiles. Their finding and recommendations are included

  18. Maximum Likelihood Fusion Model

    Science.gov (United States)

    2014-08-09

    Symposium of Robotics Re- search. Sienna, Italy: Springer, 2003. [12] D. Hall and J. Llinas, “An introduction to multisensor data fusion ,” Proceed- ings of...a data fusion approach for combining Gaussian metric models of an environment constructed by multiple agents that operate outside of a global... data fusion , hypothesis testing,maximum likelihood estimation, mobile robot navigation REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT

  19. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  20. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  1. Will nuclear fusion be able to power the next century?

    International Nuclear Information System (INIS)

    Grad, P.

    1989-01-01

    Nuclear fusion is widely regarded as potentially the ultimate energy-generation concept. Although an enormous amount of work and resources has already been committed throughout the world on nuclear fusion research, controlled nuclear fusion has so far proved largely elusive and the difficulties to be overcome before the first commercial fusion reactor is put into operation remain daunting and formidable. In Australia there are three main nuclear fusion research efforts. Sydney University's School of Physics operates a tokamak and a team there has been studying plasma properties in general and in particular radio frequency wave heating of the plasma. At the Australian National University a group has pioneered the construction and operation of an advanced stellarator model called a heliac while at Flinders University in Adelaide a team has developed a rotamak model. The US, Europe, Japan and the USSR each has a frontline fusion research tokamak with Princeton University's TFTR and Culham's JET closest to reactor operation conditions. Although several questions remain to be answered about the safety of a fusion reactor, all experts agree that these problems would be easier to solve than those of conventional fission reactors and there would be no major radioactive waste disposal problem. Some argue that fusion would contribute to the greenhouse effect but most authorities have expressed optimism that fusion, once the technical hurdles are overcome, could economically provide virtually unlimited energy with minimal environmental hazards and at a high safety level

  2. An improved IHS fusion for high resolution remote sensing images

    Science.gov (United States)

    Hu, Youjian; Zhang, Xiaohua

    2010-02-01

    Image fusion plays an important role in improving high resolution remote sensing images, as many Earth observation satellites provide both high-resolution panchromatic and multispectral images. To date, many image fusion techniques have been developed. Existing traditional image fusion techniques such as the intensity-hue-saturation (IHS) transform, wavelet transform and principal components analysis(PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as IKONOS and Quick Bird. However, the available algorithms can hardly meet a satisfactory fusion requirement for high resolution remote sensing images. Among the existing fusion algorithms, the IHS technique is the most widely used one technique. But the color distortion of this technique is often obvious, especially when high resolution multispectral images are fused with its panchromatic images. This study presents a new fusion approach that integrates both IHS and histogram match techniques to reduce the color distortion of high resolution remote sensing fusion results. Different high resolution remote sensing images have been fused with this new approach. The result proves that the concept of the proposed improved IHS is promising, and it does significantly improve the fusion quality compared to conventional IHS transform fusion techniques.

  3. Inertial confinement fusion (ICF)

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1977-01-01

    The principal goal of the inertial confinement fusion program is the development of a practical fusion power plant in this century. Rapid progress has been made in the four major areas of ICF--targets, drivers, fusion experiments, and reactors. High gain targets have been designed. Laser, electron beam, and heavy ion accelerator drivers appear to be feasible. Record-breaking thermonuclear conditions have been experimentally achieved. Detailed diagnostics of laser implosions have confirmed predictions of the LASNEX computer program. Experimental facilities are being planned and constructed capable of igniting high gain fusion microexplosions in the mid 1980's. A low cost long lifetime reactor design has been developed

  4. lysosome tethering and fusion

    Indian Academy of Sciences (India)

    AMIT TULI

    Molecular mechanisms regulating endosome- lysosome tethering and fusion. Mahak Sharma. Assistant Professor & Wellcome Trust-DBT Intermediate Fellow. Department of Biological Sciences. IISER-Mohali ...

  5. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  6. Magnetic fusion reactor economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission → fusion. The present projections of the latter indicate that capital costs of the fusion ''burner'' far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ''implementation-by-default'' plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant

  7. Fast power cycle for fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Fillo, J.; Makowitz, H.

    1978-01-01

    The unique, deep penetration capability of 14 MeV neutrons produced in DT fusion reactions allows the generation of very high temperature working fluid temperatures in a thermal power cycle. In the FAST (Fusion Augmented Steam Turbine) power cycle steam is directly superheated by the high temperature ceramic refractory interior of the blanket, after being generated by heat extracted from the relatively cool blanket structure. The steam is then passed to a high temperature gas turbine for power generation. Cycle studies have been carried out for a range of turbine inlet temperatures [1600 0 F to 3000 0 F (870 to 1650 0 C)], number of reheats, turbine mechanical efficiency, recuperator effectiveness, and system pressure losses. Gross cycle efficiency is projected to be in the range of 55 to 60%, (fusion energy to electric power), depending on parameters selected. Turbine inlet temperatures above 2000 0 F, while they do increase efficiency somewhat, are not necessarily for high cycle efficiency

  8. Commercial statistical bulletin of the Brazilian electric utility Centrais Eletricas de Santa Catarina S.A; Boletim estatistico comercial da CELESC: Centrais Eletricas de Santa Catarina S.A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    Statistical data concerning the Brazilian Centrais Eletricas de Santa Catarina S.A. utility relative to April 1996 are presented. They include, among other things, electricity consumption, number and class of consumers and electricity rates 6 figs., 50 tabs.

  9. Identification of cancer fusion drivers using network fusion centrality

    OpenAIRE

    Wu, Chia-Chin; Kannan, Kalpana; Lin, Steven; Yen, Laising; Milosavljevic, Aleksandar

    2013-01-01

    Summary: Gene fusions are being discovered at an increasing rate using massively parallel sequencing technologies. Prioritization of cancer fusion drivers for validation cannot be performed using traditional single-gene based methods because fusions involve portions of two partner genes. To address this problem, we propose a novel network analysis method called fusion centrality that is specifically tailored for prioritizing gene fusions. We first propose a domain-based fusion model built on ...

  10. Improved magnetic resonance myelography using image fusion

    International Nuclear Information System (INIS)

    Eberhardt, K.; Ganslandt, O.; Stadlbauer, A.; Landesklinikum St. Poelten

    2013-01-01

    To demonstrate that the disadvantage of missing anatomical information in heavily T2-weighted MR myelography images can be eliminated by image fusion and phase encoding in the coronal direction of the source images, resulting in MR myelography images comparable to the gold standard, i. e., post-myelography CT. This study included 110 patients suffering from extradural pathologies of the cervical and lumbar spine. All patients were investigated using 3D MR myelography and post-myelography CT. The MRI data were post-processed using image fusion and reconstruction algorithms and were compared to the corresponding images of post-myelography CT. Our approach for visualization (3D MR myelography) was able to depict intradural structures in high spatial resolution and without artifacts. The results of our visualization approach were comparable to the gold standard - post-myelography CT. Anatomical correlation was reached by image fusion of different MR data sets. The required post-processing steps were performed quickly and were available on a commercial workstation. Image fusion of different MR data sets allows for visualization of 3D data sets with enhanced quality. The results for the visualization of MR myelography in particular are comparable to conventional myelography and post-myelography CT. The missing anatomical information in heavily T2-weighted MR myelography images can be compensated by image fusion with conventional MRI. (orig.)

  11. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... of transcription factors. Changes in the pH are reported to control the activity of the fusion peptides. So far, we successfully enclosed a commercially available cell-free system and expressed eGFP in vesicles as a proof of principle. Furthermore, we optimized the already established protocol to produce nested...

  12. Fusion proteins as alternate crystallization paths to difficult structure problems

    Science.gov (United States)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  13. Issues in radioactive-waste management for fusion power

    International Nuclear Information System (INIS)

    Maninger, R.C.; Dorn, D.W.

    1982-01-01

    Analysis of recent conceptual designs reveals that commercial fusion power systems will raise issues of occupational and public health and safety. This paper focuses on radioactive wastes from fusion reactor materials activated by neutrons. The analysis shows that different selections of materials and neutronic designs can make differences in orders-of-magnitude of the kinds and amounts of radioactivity to be expected. By careful and early evaluation of the impacts of the selections on waste management, designers can produce fusion power systems with radiation from waste well below today's limits for occupational and public health and safety

  14. Trends and developments in magnetic confinement fusion reactor concepts

    International Nuclear Information System (INIS)

    Baker, C.C.; Carlson, G.A.; Krakowski, R.A.

    1981-01-01

    An overview is presented of recent design trends and developments in reactor concepts for magnetic confinement fusion. The paper emphasizes the engineering and technology considerations of commercial fusion reactor concepts. Emphasis is placed on reactors that operate on the deuterium/tritium/lithium fuel cycle. Recent developments in tokamak, mirror, and Elmo Bumpy Torus reactor concepts are described, as well as a survey of recent developments on a wide variety of alternate magnetic fusion reactor concepts. The paper emphasizes recent developments of these concepts within the last two to three years

  15. Environmental and safety issues of the fusion fuel cycle

    International Nuclear Information System (INIS)

    Crocker, J.G.

    1980-01-01

    This paper discusses the environmental and safety concerns inherent in the development of fusion energy, and the current Department of Energy programs seeking to: (1) develop safe and reliable techniques for tritium control; (2) reduce the quantity of activation products produced; and (3) provide designs to limit the potential for accidents that could result in release of radioactive materials. Because of the inherent safety features of fusion and the early start that has been made in safety problem recognition and solution, fusion should be among the lower risk technologies for generation of commercial power

  16. Cell fusion and nuclear fusion in plants.

    Science.gov (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Syllabus in Trade Electricity-Electronics. Section II. Trade Electricity.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Occupational Education Curriculum Development.

    This second section of a three-part syllabus for a flexible curriculum in trade electricity-electronics contains four semi-independent units: (1) Advanced Electricity, (2) Residential and Commercial Wiring, (3) Industrial Electricity, and (4) Motor Controls. Introductory sections describe development of the curriculum, outline the total trade…

  18. Progress in fusion

    International Nuclear Information System (INIS)

    1959-01-01

    Controlled thermonuclear fusion is now the biggest challenge before atomic science, not only because of the exceedingly difficult nature of the problem but also because of the virtually limitless benefit that, it is expected, will eventually flow from its solution. It might be pointed out that if some of the early optimism is now inevitably moderated, that is only because there is now a better understanding of the difficulties and, consequently, of the basic scientific and technical problems. The basic problem, as is now widely known, is to heat heavy hydrogen gas to a temperature at which the nuclei will fuse by moving so fast as to overcome their mutual electrical repulsion, and simultaneously to keep the gas in a state of extreme density so that the nuclei may collide against each other, fuse, release-energy in the form of heat, and thus set in a kind of thermal chain reaction. The temperature required is of a fantastically high order, but the scientists are confident that it can be obtained by fantastically powerful electrical discharges. More difficult seems to be the task of making the superheated gas, or the plasma as it is called when completely ionized, to behave obligingly. It must remain in a state of extreme density even when it is heated to a temperature of many millions of degrees. As a matter of fact, it must be contained, so to speak, by itself; it must not touch the walls of its material container and thereby lose some of its heat and, on top of that, evaporate the container. The pinch effect produces a kind of magnetic bottle for containing the plasma, but the trouble seems to be that it is difficult to make the bottle stable and leak-proof. The next task will be to ensure that the output of energy from this fusion is greater than the input of energy to heat the plasma. Intensive research and experiment on these problems have been going on in several countries, notably in the UK, the USA, and the USSR. In all the countries most advanced in

  19. Soldered joints—an essential component of demountable high temperature superconducting fusion magnets

    Science.gov (United States)

    Tsui, Yeekin; Surrey, Elizabeth; Hampshire, Damian

    2016-07-01

    Demountable superconducting magnet coils would offer significant benefits to commercial nuclear fusion power plants. Whether large pressed joints or large soldered joints provide the solution for demountable fusion magnets, a critical component or building block for both will be the many, smaller-scale joints that enable the supercurrent to leave the superconducting layer, cross the superconducting tape and pass into the solder that lies between the tape and the conductor that eventually provides one of the demountable surfaces. This paper considers the electrical and thermal properties of this essential component part of demountable high temperature superconducting (HTS) joints by considering the fabrication and properties of jointed HTSs consisting of a thin layer of solder (In52Sn48 or Pb38Sn62) sandwiched between two rare-earth-Ba2Cu3O7 (REBCO) second generation HTS coated conductors (CCs). The HTS joints are analysed using numerical modelling, critical current and resistivity measurements on the joints from 300 to 4.2 K in applied magnetic fields up to 12 T, as well as scanning electron microscopy studies. Our results show that the copper/silver layers significantly reduce the heating in the joints to less than a few hundred mK. When the REBCO alone is superconducting, the joint resistivity (R J) predominantly has two sources, the solder layer and an interfacial resistivity at the REBCO/silver interface (∼25 nΩ cm2) in the as-supplied CCs which together have a very weak magnetoresistance in fields up to 12 T. We achieved excellent reproducibility in the R J of the In52Sn48 soldered joints of better than 10% at temperatures below T c of the REBCO layer which can be compared to variations of more than two orders of magnitude in the literature. We also show that demountable joints in fusion energy magnets are viable and need only add a few percent to the total cryogenic cost for a fusion tokamak.

  20. Fusion of biological membranes

    Indian Academy of Sciences (India)

    small hemifusion diaphragm. To obtain a direct view of the fusion process, we have carried out extensive simulations of two bilayers, composed of block copolymers, which are immersed in a solvent which favors one of the blocks. As in the biological case, the membranes are placed under tension. This is essential as fusion ...

  1. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  2. Fusion Canada issue 4

    International Nuclear Information System (INIS)

    1988-05-01

    A short bulletin from the National Fusion Program. Included in this issue is a technical update on Tokamak de Varennes, a report on the Beatrix II Breeding Materials Test Program, the Tritium glovebox system for UPM, Saudi Arabia, a broad update of the Canadian Fusion Fuels Technology Project is also included. 1 fig

  3. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  4. Fusion of biological membranes

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of ... Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 6. Fusion of biological ... The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in ...

  5. Magnetic Fusion Program Plan

    International Nuclear Information System (INIS)

    1985-02-01

    This Plan reflects the present conditions of the energy situation and is consistent with national priorities for the support of basic and applied research. It is realistic in taking advantage of the technical position that the United States has already established in fusion research to make cost-effective progress toward the development of fusion power as a future energy option

  6. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  7. Fusion Canada issue 12

    International Nuclear Information System (INIS)

    1990-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Darlington's Tritium Removal Facility, work at universities on Deuterium Diffusivity in Beryllium, Fusion Studies, confinement research and the operation of divertors at Tokamak de Varennes. 5 figs

  8. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  9. Two Horizons of Fusion

    Science.gov (United States)

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  10. Fusion of biological membranes

    Indian Academy of Sciences (India)

    Abstract. The process of membrane fusion has been examined by Monte Carlo simu- lation, and is found to be very different than the conventional picture. The differences in mechanism lead to several predictions, in particular that fusion is accompanied by tran- sient leakage. This prediction has recently been verified.

  11. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr

    2006-01-01

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...

  12. Fusion of biological membranes

    Indian Academy of Sciences (India)

    The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in mechanism lead to several predictions, in particular that fusion is accompanied by transient leakage. This prediction has recently been verified. Self-consistent ...

  13. Fusion Canada issue 15

    International Nuclear Information System (INIS)

    1991-10-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on the 1996 IAEA Fusion Conference site, operations at the Tokamak de Varennes including divertor pumping of impurities and pumping of carbon monoxide and methane, a discussion of the CFFTP and it's role. 1 fig

  14. The IGNITEX fusion project

    International Nuclear Information System (INIS)

    Carrera, R.

    1987-01-01

    The author discusses the recently proposed fusion ignition experiment, IGNITEX. He emphasizes the basic ideas of this concept rather than the specific details of the physics and engineering aspects of the experiment. This concept is a good example of the importance of maintaining an adequate balance between the basic scientific progress in fusion physics and the new technologies that are becoming available in order to make fusion work. The objective of the IGNITEX project is to produce and control ignited plasmas for scientific study in the simplest and least expensive way possible. Being able to study this not-yet-produced regime of plasma operation is essential to fusion research. Two years after the fission nuclear reaction was discovered, a non-self-sustained fission reaction was produced in a laboratory, and in one more year a self-sustained reaction was achieved at the University of Chicago. However, after almost forty years of fusion research, a self-sustained fusion reaction has yet not been produced in a laboratory experiment. This fact indicates the greater difficulty of the fusion experiment. Because of the difficulty involved in the production of a self-sustained fusion reaction, it is necessary to propose such an experiment with maximum ignition margins, maximum simplicity, and minimum financial risk

  15. Compact Fusion Advanced Rankine (CFAR) cycle

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kiyoshi

    1988-10-01

    In future, controlled nuclear fusion reaction is expected to take an important position as an ultimate, large scale, artificial energy source, and for its development, all the fields of research must take part, and a long period, a large amount of investment, and many breakthroughs are required. The spectacular results of plasma confinement and heating obtained with the recent large scale experimental facilities in various countries seem to strongly suggest the arrival of the age of nuclear fusion reactor power plants in the coming century. However, according to the evaluation of the economical efficiency of D-T tokamak fusion reactors recently carried out independently in Japan and USA, it was concluded that as faf as the conventional system is followed, they are difficult to compete with the present or future nuclear fission reactors. In this paper, as one of the methods for overcoming this problem, the compact fusion advanced Rankine (CFAR) cycle is discussed about its basic concept, the present status of its research and the problems. The development of fusion reactors and their economical efficiency, the outline of ESECOM evaluation, the CFAR cycle, the superheat using neutrons and synchroton radiation energy, and nonequilibrium ionization MHD electricity generation are discussed. (Kako, I.).

  16. A review of fusion torch applications

    International Nuclear Information System (INIS)

    Eastlund, B.J.; Gough, W.C.

    1983-01-01

    The Fusion Torch is a concept developed in 1968 to propose the investigation of non-electrical uses of the flux of particle and electromagnetic radiation capable of being produced from a fusion plasma (leakage). The proposed applications include direct recycling of material, the use of electromagnetic radiation to produce H 2 fuel and novel methods of heat transfer. The purpose of this paper is to review progress, and to discuss ideas that have resulted from new magnetic containment concepts. The practicality of the Fusion Torch concept for direct recycling with D-T fuel cycles was questioned because of neutron-activation. Since 1968, low neutron fusion reactions have received serious consideration. The economics of adding applications features to a fusion reactor must be studied in relation to specific reactor designs. Calculations are presented to illustrate the large advantages applications could offer for low Q, high circulating power systems such as mirrors, small Tokamaks and linear pinches. Little advantage is predicated for high Q, high thermal efficiency systems typified by large Tokamaks. The production of fuels such as H 2 has received study using high temperature electrolysis, radiation chemistry, and thermochemical cycles. Ore reduction using differential ionization is also described. A summary of applications areas are presented along with ideas on the potential of large scale use of such systems

  17. EDITORIAL: Safety aspects of fusion power plants

    Science.gov (United States)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  18. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-01-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approx. 4). Two hybrid blankets, a thorium and a uranium--thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breeder-converter reactor scenario

  19. Scoping studies of 233U breeding fusion fission hybrid

    International Nuclear Information System (INIS)

    Maniscalco, J.A.; Hansen, L.F.; Allen, W.O.

    1978-05-01

    Neutronic calculations have been carried out in order to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (greater than or equal to 1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approximately 4). Two hybrid blankets, a thorium and a uranium-thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The overall performance of the two laser fusion driven 233 U producers is discussed and estimates are given of (1) the number of equivalent thermal power fission reactors (LWR, HWR, SSCR and HTGR) that these fusion breeders can fuel, (2) their capital cost, and (3) the cost of electricity in the combined fusion breder-converter reactor scenario

  20. Some fusion perspectives

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1977-01-01

    Some of the concepts of nuclear fusion reactions, advanced fusion fuels, environmental impacts, etc., are explored using the following general outline: I. Principles of Fusion (Nuclear Fuels and Reactions, Lawson Condition, n tau vs T, Nuclear Burn Characteristics); II. Magnetic Mirror Possibilities (the Ion Layer and Electron Layer, Exponential Build-up at MeV energies, Lorentz trapping at GeV energies); III. Pellet Fuel Fusion Prospects (Advanced Pellet Fuel Fusion Prospects, Burn Characteristics and Applications, Excitation-heating Prospects for Runaway Ion Temperatures). Inasmuch as the outline is very skeletal, a significant research and development effort may be in order to evaluate these prospects in more detail and hopefully ''harness the H-bomb'' for peaceful applications, the author concludes. 28 references

  1. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  2. Nuclear fusion as energetic source: plasma of deuterium and tritium in TFTR Tokamak. La fusion nuclear como alternativa energetica: plasmas de deuterio y tritio en el Tokamak TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Tagle, J.A.; Loarte, A.

    1994-01-01

    In the last two years some scientifical and technological developments in fusion energy have contributed to consider this energy as an alternative source of electric power energy. The Physics plasma laboratory of Princeton University worked with plasma of 50% deuterium and 50% tritium and produced 3 Mw of fusion power. The Tokamak Fusion Test Reactor (TFTR) opens a new way to find new energy sources.

  3. Commercial microwave space power

    International Nuclear Information System (INIS)

    Siambis, J.; Gregorwich, W.; Walmsley, S.; Shockey, K.; Chang, K.

    1991-01-01

    This paper reports on central commercial space power, generating power via large scale solar arrays, and distributing power to satellites via docking, tethering or beamed power such as microwave or laser beams, that is being investigated as a potentially advantageous alternative to present day technology where each satellite carries its own power generating capability. The cost, size and weight for electrical power service, together with overall mission requirements and flexibility are the principal selection criteria, with the case of standard solar array panels based on the satellite, as the reference point. This paper presents and investigates a current technology design point for beamed microwave commercial space power. The design point requires that 25 kW be delivered to the user load with 30% overall system efficiency. The key elements of the design point are: An efficient rectenna at the user end; a high gain, low beam width, efficient antenna at the central space power station end, a reliable and efficient cw microwave tube. Design trades to optimize the proposed near term design point and to explore characteristics of future systems were performed. Future development for making the beamed microwave space power approach more competitive against docking and tethering are discussed

  4. Commercial green energy. Final report

    International Nuclear Information System (INIS)

    Kalweit, B.

    1998-11-01

    Firms offering a Green electricity product have discovered that residential customers are willing to pay extra for the assurance that their electricity is generated through the use of non-polluting or renewable resources. This research investigated the market potential for Green energy at the next level of the energy consuming chain, commercial establishments at which small and medium sized businesses interface with customers. Green energy is proving to be an attractive proposition to some consumers in the residential marketplace. Is there a possibility that Green energy can also be sold to commercial enterprises? This research project sought to answer this question and to investigate the factors that might lead small business people to opt for Green. Answers to these questions will help energy companies target the businesses most likely to accept Green power with the right product set and product features

  5. 9. European fusion theory conference. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    The aim of the conference was to provide a discussion forum covering all areas of magnetic fusion-oriented theoretical activities in Europe. The following main topics are included: multidimensional equilibria and operational limits; magnetic topology, macroinstabilities and magnetic reconnection; microinstabilities, turbulence, structures and transport processes; plasma rotation and radial electric fields; RF heating, current drive, helicity injection and non-resonant forces; plasma edge and divertor physics; computational modelling in magnetic fusion research. (LN)

  6. Next generation laser optics for a hybrid fusion-fission power plant

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Latkowski, J T; Schaffers, K I

    2009-09-10

    The successful completion of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), followed by a campaign to achieve ignition, creates the proper conditions to begin exploring what development work remains to construct a power plant based on Inertial Confinement Fusion (ICF) technology. Fundamentally, two distinct NIF laser properties must be overcome. The repetition rate must increase from a shot every four hours to several shots per second. Additionally, the efficiency of converting electricity to laser light must increase by 20x to roughly 10 percent. Solid state diode pumped lasers, commercially available for table top applications, have adequate repetition rates and power conversion efficiencies, however, they operate at a tiny fraction of the required energy for an ICF power plant so would need to be scaled in energy and aperture. This paper describes the optics and coatings that would be needed to support this type of laser architecture.

  7. Low activation materials for fusion

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Bloom, E.E.; Doran, D.G.; Smith, D.L.; Reuther, T.C.

    1988-01-01

    The viability of fusion as a future energy source may eventually be determined by safety and environmental factors. Control of the induced radioactivity characteristics of the materials used in the first wall and blanket could have a major favorable impact on these issues. In the United States, materials program efforts are focused on developing new structural alloys with radioactive decay characteristics which would greatly simplify long-term waste disposal of reactor components. A range of alloy systems is being explored in order to maintain the maximum number of design options. Significant progress has been made, and it now appears probable that reduced-activation engineering alloys with properties at least equivalent to conventional alloys can be successfully developed and commercialized. 10 refs., 1 fig

  8. Advanced materials: The key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural material for the first wail and blanket (FWB), (2) plasma-facing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications

  9. Advanced materials - the key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural materials for the first wall and blanket (FWB), (2) plasmafacing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications. (author)

  10. Methods of economic analysis applied to fusion research. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    In this and previous efforts ECON has provided economic assessment of a fusion research program. This phase of study focused on two tasks, the first concerned with the economics of fusion in an economy that relies heavily upon synthetic fuels, and the second concerned with the overall economic effects of pursuing soft energy technologies instead of hard technologies. This report is organized in two parts, the first entitled An Economic Analysis of Coproduction of Fusion-Electric Energy and Other Products, and the second entitled Arguments Associated with the Choice of Potential Energy Futures

  11. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  12. Pinch me - I'm fusing. Fusion Power - what is it? What is a z pinch? And why are z-pinches a promising fusion power technology?

    International Nuclear Information System (INIS)

    DERZON, MARK S.

    2000-01-01

    The process of combining nuclei (the protons and neutrons inside an atomic nucleus) together with a release of kinetic energy is called fusion. This process powers the Sun, it contributes to the world stockpile of weapons of mass destruction and may one day generate safe, clean electrical power. Understanding the intricacies of fusion power, promised for 50 years, is sometimes difficult because there are a number of ways of doing it. There is hot fusion, cold fusion and con-fusion. Hot fusion is what powers suns through the conversion of mass energy to kinetic energy. Cold fusion generates con-fusion and nobody really knows what it is. Even so, no one is generating electrical power for you and me with either method. In this article the author points out some basic features of the mainstream approaches taken to hot fusion power, as well as describe why z pinches are worth pursuing as a driver for a power reactor and how it may one day generate electrical power for mankind

  13. High density linear systems for fusion power

    International Nuclear Information System (INIS)

    Ellis, W.R.; Krakowski, R.A.

    1975-01-01

    The physics and technological limitations and uncertainties associated with the linear theta pinch are discussed in terms of a generalized energy balance, which has as its basis the ratio (Q/sub E/) of total electrical energy generated to net electrical energy consumed. Included in this total is the virtual energy of bred fissile fuel, if a hybrid blanket is used, as well as the actual of real energy deposited in the blanket by the fusion neutron. The advantages and disadvantages of the pulsed operation demanded by the linear theta pinch are also discussed

  14. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  15. The impact of physics assumptions on fusion economics

    International Nuclear Information System (INIS)

    Ward, D.; Cook, I.; Knight, P.J.

    2001-01-01

    The development of fusion promises a long term supply of energy with widespread resources and good safety and environmental properties. However the introduction of fusion into the future energy market will rely on the development of an economically viable fusion power plant. Although predictions of the likely cost of electricity produced by a future fusion power plant are uncertain, it is important that an assessment is made to ensure that the likely economics are not unreasonable. In this paper the impact of different physics (and other) constraints on the economics of fusion is considered. Comparison with the expected future cost of electricity from other sources must take account of the trends in the energy market, particularly at present towards sources with low external costs related to impact on human health and the natural environment. Although these costs depend on the country concerned, a range of expected future costs can be derived. Comparison with the expected range of fusion costs shows that fusion can contribute to the future energy market. (author)

  16. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  17. US fusion community discussion on fusion strategies

    International Nuclear Information System (INIS)

    Marton, W.A.

    1998-01-01

    On April 26 - May 1, 1998, a US Fusion Community Forum for Major Next-Step Experiments was held at Madison, Wisconsin, USA. Both the Single Integrated Step strategy and the Multiple Machine strategy have substantial support from the about 180 scientists and engineers who participated

  18. Fusion safety program Annual report, Fiscal year 1995

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities

  19. Fusion Safety Program annual report, fiscal year 1994

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities

  20. Electric energy consumption in Norway: The light is on day and night in commercial buildings while households and industries are saving power; Industrien og husholdningene sparer stroem - naeringslivet fyrer for kraaka: lyset brenner hele doegnet i naeringsbygg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The article discusses some recent trends in the consumption of electric energy in Norway. The price on electric energy has risen strongly and politicians and others have asked the consumers to economize on electricity. Private households have been aiming at economizing and energy-intensive industries have indeed reduced the power consumption. However, other industries and consumers have a considerable potential for saving energy, but are not doing much about it.

  1. Materials for fusion reactors

    International Nuclear Information System (INIS)

    Ehrlich, K.; Kaletta, D.

    1978-03-01

    The following report describes five papers which were given during the IMF seminar series summer 1977. The purpose of this series was to discuss especially the irradiation behaviour of materials intended for the first wall of future fusion reactors. The first paper deals with the basic understanding of plasma physics relating to the fusion reactor and presents the current state of art of fusion technology. The next two talks discuss the metals intended for the first wall and structural components of a fusion reactor. Since 14 MeV neutrons play an important part in the process of irradiation damage their role is discussed in detail. The question which machines are presently available to simulate irradiation damage under conditions similar to the ones found in a fusion reactor are investigated in the fourth talk which also presents the limitations of the different methods of simulation. In this context also discussed is the importance future intensive neutron sources and materials test reactors will have for this problem area. The closing paper has as a theme the review of the present status of research of metallic and non-metallic materials in view of the quite different requirements for different fusion systems; a closing topic is the world supply on rare materials required for fusion reactors. (orig) [de

  2. Energy from nuclear fusion

    International Nuclear Information System (INIS)

    Pinkau, K.

    1997-01-01

    Nuclear fusion research is conducted for the long-term objective of developing a power plant generating energy from the fusion of atomic nuclei. In order for the fusion fire to be ignited the fuel, a hydrogen plasma, must be confined in magnetic fields and heated to high temperatures - a design principle resulting in good safety characteristics and environmental compatibility. As the source materials required for the fusion process are available in almost unlimited quantities and are distributed all over the world, nuclear fusion could make a sizeable contribution towards future energy supplies. Since its beginnings in the early fifties, fusion research has approached its ambitious goal in painstaking, detailed work. Sometimes unnoticed by the public, these activities have made considerable progress especially in the past few years. Such formerly critical problems as plasma heating, thermal insulation, prevention of plasma impurities, and energy extraction can now be considered nearly solved. It has been possible in the meantime to generate fusion powers of several megawatt. The results obtained so far allow a test reactor to be planned which, for the first time, is to produce a self-sustaining plasma with powers in the gigawatt range. (orig.) [de

  3. Fusion Studies in Japan

    Science.gov (United States)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  4. LLL Laser-Fusion-Program overview and future directions in laser fusion systems

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1983-01-01

    The primary goal of the inertial-fusion program at the Lawrence Livermore Laboratory is to demonstrate the scientific feasibility of the inertial-fusion concept using high-power glass: Nd lasers. The authors anticipate achieving a most important milestone-ignition-with the full (300kJ) Nova facility in the mid to late 1980s. Confidence in reaching this goal is based on the significant progress we have made in the state-of-the-art high power glass: Nd laser technology, in diagnosing and executing laser fusion and laser-plasma interaction experiments, and in theoretical and analytical computer codes which reliably model experimental results. Looking ahead to eventual civilian application, LLL is also making excellent progress in the areas of commercial reactor design, advanced target design and fabrication, and the advanced drivers required

  5. Commercial tandem mirror reactor design with thermal barriers: WITAMIR-I

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Emmert, G.A.; Maynard, C.W.

    1980-10-01

    A conceptual design of a near term commercial tandem mirror power reactor is presented. The basic configuration utilizes yin-yang minimum-B plugs with inboard thermal barriers. The maximum magnetic fields are 6.1 T, 8.1 T, and 15 T in the central cell, yin-yang, and thermal barrier magnets, respectively. The blanket utilizes Pb 83 Li 17 as the coolant and HT-9 as the structural material. This yields a high energy multiplication (1.37), a sufficient tritium breeding ratio (1.07) and has a major advantage with respect to maintenance. The plasma Q is 28 at a fusion power level of 3000 MW(t); the net electrical output is 1530 MW(e); and the overall efficiency is 39%. Cost estimates indicate that WITAMIR-I is competitive with recent tokamak power reactor designs

  6. Beam dancer fusion device

    International Nuclear Information System (INIS)

    Maier, H.B.

    1984-01-01

    To accomplish fusion of two or more fusion fuel elements numerous minute spots of energy or laser light are directed to a micro target area, there to be moved or danced about by a precision mechanical controlling apparatus at the source of the laser light or electromagnetic energy beams, so that merging and coinciding patterns of light or energy beams can occur around the area of the fuel atoms or ions. The projecting of these merging patterns may be considered as target searching techniques to locate responsive clusters of fuel elements and to compress such elements into a condition in which fusion may occur. Computerized programming may be used

  7. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  8. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  9. Role of Fusion Energy in a Sustainable Global Energy Strategy

    International Nuclear Information System (INIS)

    Meier, W; Najmabadi, F; Schmidt, J; Sheffield, J

    2001-01-01

    Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion energy research program has been to develop a viable means of harnessing the virtually unlimited energy stored in the nuclei of light atoms--the primary fuel deuterium is present as one part in 6,500 of all hydrogen. This vision grew out of the recognition that the immense power radiated by the sun is fueled by nuclear fusion in its hot core. Such high temperatures are a prerequisite for driving significant fusion reactions. The fascinating fourth state of matter at high temperatures is known as plasma. It is only in this fourth state of matter that the nuclei of two light atoms can fuse, releasing the excess energy that was needed to separately bind each of the original two nuclei. Because the nuclei of atoms carry a net positive electric charge, they repel each other. Hydrogenic nuclei, such as deuterium and tritium, must be heated to approximately 100 million degrees Celsius to overcome this electric repulsion and fuse. There have been dramatic recent advances in both the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. For this reason, the general thrust of fusion research has focused on configuration improvements leading to an economically competitive product. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities [1]. In this paper we review the tremendous scientific progress in fusion during the last 10 years. We utilize the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements

  10. Modular Stellarator Fusion Reactor concept

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR

  11. Structure information from fusion barriers

    Indian Academy of Sciences (India)

    effects on the fusion excitation function. However, a simultaneous analysis of the fusion, elastic and quasi-elastic channels would fix the structure and the reaction unambiguously. Keywords. Heavy ion fusion; fusion barrier distributions; nuclear structure; coupled reaction chan- nel calculations. PACS Nos 25.70.Bc; 25.70.

  12. Why and how of fusion

    International Nuclear Information System (INIS)

    Miley, G.H.

    1977-01-01

    The potential advantages of fusion power are listed. The approaches to plasma containment are mentioned and the status of the fusion program is described. The ERDA and EPRI programs are discussed. The Fusion Energy Foundation's activities are mentioned. Fusion research at the U. of Ill. is described briefly

  13. Laser development for laser fusion applications research. Progress report, October 1977--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    Research progress is reported on three laser programs being developed for the commercialization of laser-fusion energy. The lasers include iodine, hydrogen fluoride and Group VI atoms (e.g., O, S, Se, Te). (TFD)

  14. Laser development for laser fusion applications research. Progress report, October 1977--March 1978

    International Nuclear Information System (INIS)

    1978-06-01

    Research progress is reported on three laser programs being developed for the commercialization of laser-fusion energy. The lasers include iodine, hydrogen fluoride and Group VI atoms (e.g., O, S, Se, Te)

  15. Development of heavy-ion accelerators as drivers for inertially confined fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1979-06-01

    The commercialization of inertial confinement fusion is discussed in terms of power costs. A chapter on heavy ion accelerators covers the prinicpal components, beam loss mechanisms, and theoretical considerations. Other tyopics discussed include the following: (1) heavy ion fusion implementation plan, (2) driver with accumulator rings fed by an rf LINAC, (3) single pass driver with an induction LINAC, and (4) implementation scenarios

  16. Prototype tokamak fusion reactor based on SiC/SiC composite material focusing on easy maintenance

    International Nuclear Information System (INIS)

    Nishio, S.; Ueda, S.; Kurihara, R.; Kuroda, T.; Miura, H.; Sako, K.; Takase, H.; Seki, Y.; Adachi, J.; Yamazaki, S.; Hashimoto, T.; Mori, S.; Shinya, K.; Murakami, Y.; Senda, I.; Okano, K.; Asaoka, Y.; Yoshida, T.

    2000-01-01

    If the major part of the electric power demand is to be supplied by tokamak fusion power plants, the tokamak reactor must have an ultimate goal, i.e. must be excellent in construction cost, safety aspect and operational availability (maintainability and reliability), simultaneously. On way to the ultimate goal, the approach focusing on the safety and the availability (including reliability and maintainability) issues must be the more promising strategy. The tokamak reactor concept with the very high aspect ratio configuration and the structural material of SiC/SiC composite is compatible with this approach, which is called the DRastically Easy Maintenance (DREAM) approach. This is because SiC/SiC composite is a low activation material and an insulation material, and the high aspect ratio configuration leads to a good accessibility for the maintenance machines. As the intermediate steps along this strategy between the experimental reactor such as international thermonuclear experimental reactor (ITER) and the ultimate goal, a prototype reactor and an initial phase commercial reactor have been investigated. Especially for the prototype reactor, the material and technological immaturities are considered. The major features of the prototype and commercial type reactors are as follows. The fusion powers of the prototype and the commercial type are 1.5 and 5.5 GW, respectively. The major/minor radii for the prototype and the commercial type are of 12/1.5 m and 16/2 m, respectively. The plasma currents for the prototype and the commercial type are 6 and 9.2 MA, respectively. The coolant is helium gas, and the inlet/outlet temperatures of 500/800 and 600/900 deg. C for the prototype and the commercial type, respectively. The thermal efficiencies of 42 and 50% are obtainable in the prototype and the commercial type, respectively. The maximum toroidal field strengths of 18 and 20 tesla are assumed in the prototype and the commercial type, respectively. The thermal

  17. Fusion power: One answer to U.S. energy needs in the 21st century

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Conn, R.W.; Cameron, E.N.; Sviatoslavsky, I.

    1985-01-01

    The current status of fusion power research and the perception of a fusion power economy is reviewed as of early 1980. It is concluded that considerable progress has been made in the past 20 years and that by the late 1980s the achievement of energy ''break even'' could propel scientists into the commercialization stage of fusion research. Several fusion reactor designs have been reviewed and the common features used to develop an environmental and safety assessment of fusion versus other forms of energy available in the 21st century. With the existing knowledge as of 1980, it was concluded that fusion power plants will represent a much smaller environmental and safety hazard than coal or fission reactor plants even though fusion plants might be somewhat more expensive. Since this paper was written, events in the scientific community have reinforced the foregoing conclusions, and efforts are now under way to reduce even more the hazards discussed herein

  18. Safety of superconducting fusion magnets: twelve problem areas

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.

    1979-05-01

    Twelve problem areas of superconducting magnets for fusion reaction are described. These are: Quench Detection and Energy Dump, Stationary Normal Region of Conductor, Current Leads, Electrical Arcing, Electrical Shorts, Conductor Joints, Forces from Unequal Currents, Eddy Current Effects, Cryostat Rupture, Vacuum Failure, Fringing Field and Instrumentation for Safety. Each is described under the five categories: Identification and Definition, Possible Safety Effects, Current Practice, Adequacy of Current Practice for Fusion Magnets and Areas Requiring Further Analytical and Experimental Study. Priorities among these areas are suggested; application is made to the Large Coil Project at Oak Ridge National Laboratory.

  19. Fusion research at General Atomics annual report, October 1, 1993-- September 30, 1994

    International Nuclear Information System (INIS)

    1995-11-01

    In FY94, the General Atomics (GA) Fusion Group made significant contributions to the technology needs of the controlled fusion power program. The work was supported by the Office of Fusion Energy, Advanced Physics and Technology Division and ITER and Technology Division, of the US Department of Energy. The work is reported in the following sections on Fusion Power Plant Studies, Plasma Interactive Materials, RF Technology, and Diagnostics. Meetings attended and publications are listed in their respective sections. The overall objective of GA's fusion technology research is to develop the technologies necessary for fusion to move successfully from present-day physics experiments to the next-generation fusion reactor experiments, Tokamak Physics Experiment (TPX) and ITER, and ultimately to fusion power plants. To achieve this overall objective, we carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power reactors, and we conduct research to develop basic knowledge about these technologies, including plasma technologies, fusion nuclear technologies, and fusion materials. We continue to be committed to the development of fusion power and its commercialization by US industry

  20. Fusion Revisits CERN

    CERN Multimedia

    2001-01-01

    It's going to be a hot summer at CERN. At least in the Main Building, where from 13 July to 20 August an exhibition is being hosted on nuclear fusion, the energy of the Stars. Nuclear fusion is the engine driving the stars but also a potential source of energy for mankind. The exhibition shows the different nuclear fusion techniques and research carried out on the subject in Europe. Inaugurated at CERN in 1993, following collaboration between Lausanne's CRPP-EPFL and CERN, with input from Alessandro Pascolini of Italy's INFN, this exhibition has travelled round Europe before being revamped and returning to CERN. 'Fusion, Energy of the Stars', from 13 July onwards, Main Building

  1. Aneutronic Fusion Spacecraft Architecture

    Data.gov (United States)

    National Aeronautics and Space Administration — Description: provide framework to realize fusion propulsion for long-range space travel; analyze "hybrid" schemes with a solar or fission primary energy source along...

  2. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1......, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work...

  3. Fusion cost normalization

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.

    1978-01-01

    The categorization and accounting methods described in this paper provide a common format that can be used to assess the economic character of magnetically confined fusion reactor design concepts. The format was developed with assistance from the fusion economics community, thus ensuring that the methods meet with the approval of potential users. The format will aid designers in the preparation of design concept cost estimates and also provide policy makers with a tool to assist in appraising which design concepts may be economically promising. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising concepts, thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  4. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  5. Complimentary Advanced Fusion Exploration

    National Research Council Canada - National Science Library

    Alford, Mark G; Jones, Eric C; Bubalo, Adnan; Neumann, Melissa; Greer, Michael J

    2005-01-01

    .... The focus areas were in the following regimes: multi-tensor homographic computer vision image fusion, out-of-sequence measurement and track data handling, Nash bargaining approaches to sensor management, pursuit-evasion game theoretic modeling...

  6. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1984-04-01

    KfK participates to the Fusion Technology Programme of the European Community. Most of the work in progress addresses the Next European Torus (NET) and the long term technology aspects as defined in the 82/86 programme. A minor part serves to preparation of future contributions and to design studies on fusion concepts in a wider perspective. The Fusion Technology Programme of Euratom covers mainly aspects of nuclear engineering. Plasma engineering, heating, refueling and vacuum technology are at present part of the Physics Programme. In view of NET, integration of the different areas of work will be mandatory. KfK is therefore prepared to address technical aspects beyond the actual scope of the physics experiments. The technology tasks are reported project wise under title and code of the Euratom programme. Most of the projects described here are shared with other European fusion laboratories as indicated in the table annexed to this report. (orig./GG)

  7. International aspects of fusion

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1979-12-01

    International collaborative efforts in magnetic confinement fusion in which the USA is involved are reviewed. These efforts are carried under the auspices of international agencies and through bilateral agreements

  8. Fusion technology (FT)

    International Nuclear Information System (INIS)

    1978-01-01

    The annual report of tha fusion technology (FT) working group discusses the projects carried out by the participating institutes in the fields of 1) fuel injection and plasma heating, 2) magnetic field technology, and 3) systems investigations. (HK) [de

  9. Cold nuclear fusion device

    International Nuclear Information System (INIS)

    Ogino, Shinji.

    1991-01-01

    Selection of cathode material is a key to the attainment of cold nuclear fusion. However, there are only few reports on the cathode material at present and an effective development has been demanded. The device comprises an anode and a cathode and an electrolytic bath having metal salts dissolved therein and containing heavy water in a glass container. The anode is made of gold or platinum and the cathode is made of metals of V, Sr, Y, Nb, Hf or Ta, and a voltage of 3-25V is applied by way of a DC power source between them. The metal comprising V, Sr, Y, Nb, Hf or Ta absorbs deuterium formed by electrolysis of heavy water effectively to cause nuclear fusion reaction at substantially the same frequency and energy efficiency as palladium and titanium. Accordingly, a cold nuclear fusion device having high nuclear fusion generation frequency can be obtained. (N.H.)

  10. Conference on Norwegian fusion research

    International Nuclear Information System (INIS)

    The question of instituting a systematic research programme in Norway on aspects of thermonuclear and plasma physics has been raised. The conference here reported was intended to provide basic information on the status of fusion research internationally and to discuss a possible Norwegian programme. The main contributions covered the present status of fusion research, international cooperation, fusion research in small countries and minor laboratories, fusion research in Denmark and Sweden, and a proposed fusion experiment in Bergen. (JIW)

  11. The Contribution of Fusion to Sustainable Development

    International Nuclear Information System (INIS)

    Ward, D.

    2006-01-01

    The world demand for energy is projected to more than double over the next 50 years, indeed this will be essential to bring much of the world out of poverty. At the same time there is increasing pressure to substantially reduce atmospheric pollution, most notably of carbon dioxide. Together, these conflicting goals drive a need to produce enormous amounts of non-carbon energy supply, much greater than our total present energy supply. This presents an enormous challenge. As one of very few options for large-scale, non-carbon future supply of energy, fusion has the potential to make an important contribution to sustained energy supplies. Fusion's advantages of large fuel reserves, low atmospheric emissions and high levels of safety make it an important consideration in future energy strategies. - Fuel supplies are sufficient for at least thousands of years, and probably up to millions of years, of energy use. - Atmospheric emissions of CO 2 are very low and minor emissions of other pollutants are less harmful than those from most existing energy sources. - Hazards to the public will be very low because of the high levels of passive safety. - Waste materials will require little, or no, use of repository storage. Conceptual designs of fusion power plants have been optimised against safety and environmental criteria. The optimum designs vary both with the assessed progress in the development programme and according to the weight given to different criteria. The impact of this weighting on design, and the comparison of the outcomes with other energy sources, is described. To make a contribution to sustainable development, fusion must also be economically viable to enter the energy market. The calculated cost of electricity from fusion and other technologies, both new and existing, show that, particularly in an energy market where environmental constraints are playing an increasing role, fusion can make an important contribution. (author)

  12. Bringing together fusion research

    International Nuclear Information System (INIS)

    Leiser, M.

    1982-01-01

    The increasing involvement of the IAEA in fusion, together with the growing efforts devoted to this area, are described. The author puts forward the idea that one of the most important aspects of this involvement is in providing a world-wide forum for scientists. The functions of the IFRC (International Fusion Research Council) as an advisory group are outlined, and the role played by IFRC in the definition and objectives of INTOR (International Tokamak Reactor) are briefly described

  13. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Greenwald, Martin

    2011-01-01

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  14. Reconstituted Fusion Pore

    OpenAIRE

    Jeremic, Aleksandar; Kelly, Marie; Cho, Sang-Joon; Stromer, Marvin H.; Jena, Bhanu P.

    2003-01-01

    Fusion pores or porosomes are basket-like structures at the cell plasma membrane, at the base of which, membrane-bound secretory vesicles dock and fuse to release vesicular contents. Earlier studies using atomic force microscopy (AFM) demonstrated the presence of fusion pores at the cell plasma membrane in a number of live secretory cells, revealing their morphology and dynamics at nm resolution and in real time. ImmunoAFM studies demonstrated the release of vesicular contents through the por...

  15. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    1994-07-01

    40 papers are presented at this 21. conference on controlled fusion and plasma physics (JET). Titles are: effects of sawtooth crashes on beams ions and fusion product tritons; beta limits in H-modes and VH-modes; impurity induced neutralization of MeV energy protons in JET plasmas; lost α particle diagnostic for high-yield D-T fusion plasmas; 15-MeV proton emission from ICRF-heated plasmas; pulse compression radar reflectometry for density measurements; gamma-ray emission profile measurements during ICRH discharges; the new JET phase ICRH array; simulation of triton burn-up; parametric dependencies of JET electron temperature profiles; detached divertor plasmas; excitation of global Alfven Eigenmodes by RF heating; mechanisms of toroidal rotation; effect of shear in the radial electric field on confinement; plasma transport properties at the L-H transition; numerical study of plasma detachment conditions in JET divertor plasmas; the SOL width and the MHD interchange instability; non linear magnetic reconnection in low collisionality plasmas; topology and slowing down of high energy ion orbits; sawtooth crashes at high beta; fusion performances and alpha heating in future JET D-T plasmas; a stable route to high-beta plasmas with non-monotonic q-profiles; theory of propagation of changes to confinement; spatial distribution of gamma emissivity and fast ions during ICRF heating; multi-camera soft X-ray diagnostic; radiation phenomena and particle fluxes in the X-event; local measurement of transport parameters for laser injected trace impurities; impurity transport of high performance discharges; negative snakes and negative shear; neural-network charge exchange analysis; ion temperature anisotropy in helium neutral beam fuelling; impurity line emission due to thermal charge exchange in edge plasmas; control of convection by fuelling and pumping; VH mode accessibility and global H-mode properties; ion cyclotron emission by spontaneous emission; LHCD/ICRH synergy

  16. Environmental and economic assessments of magnetic and inertial fusion energy reactors

    Science.gov (United States)

    Yamazaki, K.; Oishi, T.; Mori, K.

    2011-10-01

    Global warming due to rapid greenhouse gas (GHG) emissions is one of the present-day crucial problems, and fusion reactors are expected to be abundant electric power generation systems to reduce human GHG emission amounts. To search for an environmental-friendly and economical fusion reactor system, comparative system studies have been done for several magnetic fusion energy reactors, and have been extended to include inertial fusion energy reactors. We clarify new scaling formulae for the cost of electricity and GHG emission rate with respect to key design parameters, which might be helpful in making a strategy for fusion research development. Comparisons with other conventional electric power generation systems are carried out taking into account the introduction of GHG taxes and the application of the carbon dioxide capture and storage system to fossil power generators.

  17. Nuclear Power's Role in Generating Electricity

    National Research Council Canada - National Science Library

    Falk, Justin

    2008-01-01

    This study assesses the commercial viability of advanced nuclear technology as a means of meeting future demand for electricity by comparing the costs of producing electricity from different sources...

  18. Status of fusion technology

    International Nuclear Information System (INIS)

    Mohan, Ashok

    1978-01-01

    The current status of fusion technology is surveyed. Limited reserves of fossil fuel and dangers of proliferation from nuclear reactors have brought into focus the need to develop an optional energy source. Fusion is being looked upon as an optional energy source which is free from environmental hazards unlike fossil fuels and nuclear reactors. Investments in R and D of fusion energy have increased rapidly in USA, Japan, USSR and European countries. Out of the various fusion fuels known, a mixture of D and T is widely chosen. The main problem in fusion technology is the confinement of plasma for a time sufficient to start the fusion reaction. This can be done magnetically or inertially. The three approaches to magnetic confinement are : (1) tokamak, (2) mirror and (3) pinch. Inertial confinement makes use of lasers or electron beams or ion beams. Both the methods of confinement i.e. magnetic and inertial have problems which are identified and their nature is discussed. (M.G.B.)

  19. Energy from inertial fusion

    International Nuclear Information System (INIS)

    1995-03-01

    This book contains 22 articles on inertial fusion energy (IFE) research and development written in the framework of an international collaboration of authors under the guidance of an advisory group on inertial fusion energy set up in 1991 to advise the IAEA. It describes the actual scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It also identifies ways in which international co-operation in ICF could be stimulated. The book is intended for a large audience and provides an introduction to inertial fusion energy and an overview of the various technologies needed for IFE power plants to be developed. It contains chapters on (i) the fundamentals of IFE; (ii) inertial confinement target physics; (iii) IFE power plant design principles (requirements for power plant drivers, solid state laser drivers, gas laser drivers, heavy ion drivers, and light ion drivers, target fabrication and positioning, reaction chamber systems, power generation and conditioning and radiation control, materials management and target materials recovery), (iv) special design issues (radiation damage in structural materials, induced radioactivity, laser driver- reaction chamber interfaces, ion beam driver-reaction chamber interfaces), (v) inertial fusion energy development strategy, (vi) safety and environmental impact, (vii) economics and other figures of merit; (viii) other uses of inertial fusion (both those involving and not involving implosions); and (ix) international activities. Refs, figs and tabs

  20. Challenges of designing fusion reactors for remote maintainability

    International Nuclear Information System (INIS)

    Masson, L.S.

    1981-01-01

    One of the major problems faced by the fusion community is the development of the high level of reliability required to assure that fusion will be a viable commercial power source. Much of the responsibility for solving this problem falls directly on the designer in developing concepts that have a high level of maintainability for the next generation engineering oriented reactors; and long range, in developing full maintainability for the more complicated commercial concepts with their required high level of on-line time. The near-term challenge will include development of unique design concepts to perform inspection, maintenance, replacement, and testing under the stringent conditions imposed by the next generation engineering oriented machines. The long range challenge will focus on basic design concepts that will enable the full maintainability required by commercial fusion. In addition to the purely technical challenges, the fusion community is also faced with the problem of developing programmatic means to assure that reactor maintenance issues are given proper and timely emphasis as the nuclear phase of fusion is approached