WorldWideScience

Sample records for commercial fungal enzyme

  1. Prevalence of IgE reactivities in mold-allergic subjects to commercially available fungal enzymes.

    Science.gov (United States)

    Horner, W Elliott; Armstrong, Maricelis; El-Dahr, Jane; McCants, Marjorie; Reese, Gerald; Kobernick, Aaron K; Lehrer, Samuel B

    2008-01-01

    Fungi are important aeroallergens. However, fungal allergen sources of consistent quality for clinical testing are not readily available. Because some allergens have been identified as enzymes, we assessed the prevalence of IgE reactivity to commercially available fungal enzymes. The purpose of this study was to determine IgE antibody reactivity by radioallergosorbent assay (RAST) to commercially available fungal enzymes in mold-allergic individuals. Sera from 20 subjects with symptoms of respiratory allergies and skin test reactivity to 2 or more fungal allergens (4 conidial [imperfecti] fungi and/or 8 basidiomycetes) were selected. Controls were six atopic individuals with neither history of fungal allergy nor skin test reactivity to fungi. Seventeen commercial fungal enzymes were used as antigens to evaluate the subjects' IgE antibody reactivity by RAST. Sera from most fungus-allergic individuals showed substantial IgE antibody reactivity to enzymes; control sera showed little or no reactivity. The mean reactivity to all commercial enzymes of all subjects tested was RAST > or = 3% with only one exception. The most reactive fungal enzymes were invertase (bakers' yeast, Saccharomyces cerevisiae), cellulase (Trichoderma viride), and glucosidase (brewers yeast, S. cerevisiae) with mean binding of 14.6, 9.5, and 8.8%, respectively. Using RAST results with a combination of four enzymes from S. cerevisiae (brewers yeast glucosidase, bakers' yeast maltase, invertase, and invertase V), a sensitivity of 100% was shown for detecting mold-allergic patients. The studies suggest that fungal enzymes may be useful source materials for the identification of fungal allergens and may also provide readily available source materials to produce improved diagnostic and therapeutic reagents.

  2. Enzymes and fungal virulence

    African Journals Online (AJOL)

    may be common across a variety of fungal pathogens. Most fungal pathogens and ... Fungi utilize the food substances in their immediate vicinity to .... digestion of the fungal secreted enzymes thereby denying access to the host cell. For a pathogen to be successful, it mttst be able to circumvent or overcome these antifungal ...

  3. Hydrolysis of solubilized hemicellulose derived from wet-oxidized wheat straw by a mixture of commercial fungal enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Skammelsen Schmidt, Anette; Thomsen, Alle Belinda; Woidemann, Anders [Risoe National Lab. (Denmark); Tenkanen, Maija [VTT Biotechnology and Food Research (Finland)

    1998-04-01

    The enzymatic hydrolysis of the solubilized hemicellulose fraction from wet-oxidized wheat straw was investigated for quantification purposes. An optimal hydrolysis depends on factors such as composition of the applied enzyme mixture and the hydrolysis conditions (enzyme loading, hydrolysis time, pH-value, and temperature). A concentrated enzyme mixture was used in this study prepared at VTT Biotechnology and Food Research, Finland, by mixing four commercial enzyme preparations. No distinctive pH-value and temperature optima were identified after a prolonged incubation of 24 hours. By reducing the hydrolysis time to 2 hours a temperature optimum was found at 50 deg. C, where a pH-value higher than 5.2 resulted in reduced activity. An enzyme-substrate-volume-ratio of 0.042, a pH-value of 5.0, and a temperature of 50 deg. C were chosen as the best hydrolysis conditions due to an improved monosaccharide yield. The hydrolysis time was chosen to be 24 hours to ensure equilibrium and total quantification. Even under the best hydrolysis conditions, the overall sugar yield from the enzymatic hydrolysis was only 85% of that of the optimal acid hydrolysis. The glucose yield were approximately the same for the two types of hydrolyses, probably due to the high cellulase activity in the VTT-enzyme mixture. For xylose and arabinose the enzymatic hydrolysis yielded only 80% of that of the acid hydrolysis. As the pentoses existed mainly as complex polymers their degradation required many different enzymes, some of which might be missing from the VTT-enzyme mixture. Furthermore, the removal of side-choins from the xylan backbone during the wet-oxidation pretreatment process might enable the hemicellulosic polymers to interact and precipitate, hence, reducing the enzymatic digestibility of the hemicellulose. (au) 8 tabs., 10 ills., 65 refs.

  4. Enzymes and fungal virulence

    African Journals Online (AJOL)

    Plant pathogenic fungi secrete extracellular enlymes that are capable of degrading the cell walls of their host plants. These CWDES may be necessary for penetration ofthc cell wall harricr. as well as for generation of simple molecules that can he assimilated for growth. Most of these enzymes are substrawinducible and both ...

  5. Industrial fungal enzymes: an occupational allergen perspective.

    Science.gov (United States)

    Green, Brett J; Beezhold, Donald H

    2011-01-01

    Occupational exposure to high-molecular-weight allergens is a risk factor for the development and pathogenesis of IgE-mediated respiratory disease. In some occupational environments, workers are at an increased risk of exposure to fungal enzymes used in industrial production. Fungal enzymes have been associated with adverse health effects in the work place, in particular in baking occupations. Exposure-response relationships have been demonstrated, and atopic workers directly handling fungal enzymes are at an increased risk for IgE-mediated disease and occupational asthma. The utilization of new and emerging fungal enzymes in industrial production will present new occupational exposures. The production of antibody-based immunoassays is necessary for the assessment of occupational exposure and the development of threshold limit values. Allergen avoidance strategies including personal protective equipment, engineering controls, protein encapsulation, and reduction of airborne enzyme concentrations are required to mitigate occupational exposure to fungal enzymes.

  6. Industrial Fungal Enzymes: An Occupational Allergen Perspective

    Directory of Open Access Journals (Sweden)

    Brett J. Green

    2011-01-01

    Full Text Available Occupational exposure to high-molecular-weight allergens is a risk factor for the development and pathogenesis of IgE-mediated respiratory disease. In some occupational environments, workers are at an increased risk of exposure to fungal enzymes used in industrial production. Fungal enzymes have been associated with adverse health effects in the work place, in particular in baking occupations. Exposure-response relationships have been demonstrated, and atopic workers directly handling fungal enzymes are at an increased risk for IgE-mediated disease and occupational asthma. The utilization of new and emerging fungal enzymes in industrial production will present new occupational exposures. The production of antibody-based immunoassays is necessary for the assessment of occupational exposure and the development of threshold limit values. Allergen avoidance strategies including personal protective equipment, engineering controls, protein encapsulation, and reduction of airborne enzyme concentrations are required to mitigate occupational exposure to fungal enzymes.

  7. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  8. Modelling Fungal Fermentations for Enzyme Production

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten S.

    We have developed a process model of fungal fed-batch fermentations for enzyme production. In these processes, oxygen transfer rate is limiting and controls the substrate feeding rate. The model has been shown to describe cultivations of both Aspergillus oryzae and Trichoderma reesei strains in 550...

  9. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  10. Evolution of Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    as garden substrate, whereas the more basal genera use leaf litter, insect feces and insect carcasses. We hypothesized that enzyme activity of fungal symbionts has co-evolved with substrate use and we measured enzyme activities of fungus gardens in the field to test this, focusing particularly on plant......, indirectly, on fungal enzymes to break down the plant material brought in by the ants as fungal substrate. The more than 210 extant fungus-growing ant species differ considerably in colony size, social complexity and substrate-use. Only the derived leaf-cutting ants are specialized on using fresh leaves...

  11. Production of amylase enzyme from mangrove fungal isolates

    African Journals Online (AJOL)

    sunny

    2014-11-12

    Nov 12, 2014 ... The mangrove ecosystem serves as a bioresource for various industrially important microorganisms. The use of fungi as a source of industrially relevant enzymes led to an increased interest in the application of microbial enzymes in various industrial processes. Fungal colonies were isolated from.

  12. Production of amylase enzyme from mangrove fungal isolates

    African Journals Online (AJOL)

    sunny

    2014-11-12

    Nov 12, 2014 ... Table 2. Identification of fungal Isolates showing maximum amylase enzyme activity. Given names. ID No. Identified strains. MSF-3. Aspergillus niger. MSF-7. 3724.10. Trichoderma viride. MSF-9. 3728.10. Penicillium citrinum. MSF-13. 3731.10. Paecilomyces variotii. MSF-28. 4108.10. Eurotium amstelodmi.

  13. Potential fungal inhibition by immobilized hydrolytic enzymes from Trichoderma asperellum.

    Science.gov (United States)

    Silva, Bárbara Dumas S; Ulhoa, Cirano J; Batista, Karla A; Yamashita, Fábio; Fernandes, Kátia F

    2011-08-10

    The use of cell wall degrading enzymes from Trichoderma asperellum immobilized on biodegradable support is an alternative for food packaging. In this study, hydrolytic enzymes produced by T. asperellum were tested as a fungal growth inhibitor, in free form or immobilized on a biodegradable film composed of cassava starch and poly(butylene adipate-co-terephtalate) (PBAT). The inhibitory activity was tested against Aspergillus niger , Penicillium sp., and Sclerotinia sclerotiorum , microorganisms that frequently degrade food packaging. The use of chitin as carbon source in liquid medium induced T. asperellun to produce N-acetylglucosaminidase, β-1,3-glucanase, chitinase, and protease. The presence of T. asperellun cell wall degradating enzymes (T-CWD) immobilized by adsorption or covalent attachment resulted in effective inhibition of fungal growth. The enzymatic activity of T-CWD was stronger on S. sclerotiorum than on the Aspergillus or Penicillum isolates tested. These results suggest that T-CWD can be used in a free or immobilized form to suppress fungi that degrade food packaging.

  14. Designer laccases: a vogue for high-potential fungal enzymes?

    Science.gov (United States)

    Rodgers, Caroline J; Blanford, Christopher F; Giddens, Stephen R; Skamnioti, Pari; Armstrong, Fraser A; Gurr, Sarah J

    2010-02-01

    Laccases are blue multicopper oxidases that catalyse the four-electron reduction of O(2) to water coupled with the oxidation of small organic substrates. Secreted basidiomycete white-rot fungal laccases orchestrate this with high thermodynamic efficiency, making these enzymes excellent candidates for exploitation as industrial oxidants. However, these fungi are less tractable genetically than the ascomycetes, which predominantly produce lower-potential laccases. We address the state-of-play regarding expression of high reduction potential laccases in heterologous hosts, and issues regarding enzyme glycosylation status. We describe the synergistic role of structural biology, particularly in unmasking structure-function relationships following genetic modification and their collective impact on laccase yields. Such recent research draws closer the prospect of industrial quantities of designer, fit-for-purpose laccases. 2009 Elsevier Ltd. All rights reserved.

  15. Filamentous fungi in good shape: microparticles for tailor-made fungal morphology and enhanced enzyme production.

    Science.gov (United States)

    Driouch, Habib; Roth, Andreas; Dersch, Petra; Wittmann, Christoph

    2011-01-01

    Filamentous fungi such as Aspergillus niger are important biocatalysts for industrial production of various enzymes as well as organic acids or antibiotics. In suspended culture these microorganisms exhibit a complex morphology which typically has a strong influence on their production properties. In this regard, we have recently shown that the addition of inorganic micro particles to the culture medium is a straightforward and elegant approach to precisely tame fungal morphology. For A. niger a full range of morphological forms from pellets with different diameters to free mycelium could be adjusted by supplementation with talc powder. Aluminium oxide particles similarly affected morphology, showing that this effect is largely independent of the chemical particle composition. Exemplified for different recombinant A. niger strains enzyme production could be strongly enhanced by the addition of microparticles. This was demonstrated for the production of fructofuranosidase, an important high-value biocatalyst for pre-biotic fructo-oligosaccharides, by recombinant A. niger. In a microparticle enhanced fed-batch process, a highly productive mycelium could be achieved. The enzyme titre of 2800 U/mL finally reached was more then tenfold higher then that of any other process reported so far. Here we provide additional insights into the novel production process. This includes the confirmation of the highly selective production of the target enzyme fructofuranosidase using MALDI-TOF MS analysis. Moreover, we show that the obtained enzyme suspension can be efficiently used with minimal pre-treatment for the biosynthesis of short chain fructooligosaccharides of the inulin type, such as 1-kestose and 1-nystose, prebiotics with substantial commercial interest. In particular, these compounds are highly attractive for human consumption, since they have been shown to reduce the risk of colon cancer. In summary, the use of microparticles opens a new avenue of engineering

  16. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products.

    Science.gov (United States)

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently-in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.

  17. Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal α-amylase enzymes

    NARCIS (Netherlands)

    Kaaij, R.M. van der; Janeček, Š.; Maarel, M.J.E.C. van der; Dijkhuizen, L.

    2007-01-01

    Currently known fungal α-amylases are well-characterized extracellular enzymes that are classified into glycoside hydrolase subfamily GH13_1. This study describes the identification, and phylogenetic and biochemical analysis of novel intracellular fungal α-amylases. The phylogenetic analysis shows

  18. Effects of coagulating enzyme types (commercial calf rennet ...

    African Journals Online (AJOL)

    Effects of coagulating enzyme types (commercial calf rennet, Aspergillus niger var. awamori as recombinant chymosin and rhizomucor miehei as microbial rennet) on the chemical and sensory characteristics of white pickled cheese.

  19. Bacterial and fungal keratitis in Upper Egypt: in vitro screening of enzymes, toxins and antifungal activity.

    Science.gov (United States)

    Gharamah, Abdullah A; Moharram, Ahmed M; Ismail, Mady A; Al-Hussaini, Ashraf K

    2014-02-01

    This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2), sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin). Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  20. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    Directory of Open Access Journals (Sweden)

    Abdullah A Gharamah

    2014-01-01

    Full Text Available Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2, sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin. Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  1. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products

    DEFF Research Database (Denmark)

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme...... treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps...... contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types...

  2. Screening for cellulose and hemicellulose degrading enzymes from the fungal genus Ulocladium

    DEFF Research Database (Denmark)

    Pedersen, Mads; Hollensted, Morten; Lange, L.

    2009-01-01

    The fungal genus Ulocladium consists mostly of saprotrophic species and can readily be isolated from dead vegetation, rotten wood. paper, textiles and other cellulose containing materials. Thus, they must produce cellulolytic and hemicellulolytic enzymes. In this study fifty Ulocladium strains fr...... that species identity as well as isolation source must be considered when screening microorganisms for enzymes....

  3. Variation in fungal enzyme spectra may affect mutualistic division of labour between ants and fungus gardens

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Boomsma, Jacobus Jan

    partners vary in metabolic performance, division of labour may not always be optimized and co-evolutionary trajectories become less predictable. The higher fungus-growing (attine) ants consist of the leafcutter ants (Acromyrmex and Atta), which rear a single fungal species throughout their Latin American...... range, and a paraphyletic assembly of Trachymyrmex and Sericomyrmex species that cultivate more genetically diverse fungal symbionts. Leaf-decomposition productivity of colonies depends on the combined efforts of ant foragers collecting and macerating plant material and fungal enzymes excreted directly...... or indirectly via ant fecal fluid. We determined the interaction specificity between ant species and fungal strains across sympatric populations of six Trachymyrmex and Sericomyrmex species in Panama, and established that these ants jointly reared eight fungal haplotype groups that differed significantly...

  4. Enzymes in Commercial Cellulase Preparations Bind Differently to Dioxane Extracted Lignins

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, John M.; Mittal, Ashutosh; Katahira, Rui; Mansfield, Elisabeth; Taylor, Larry E.; Decker, Stephen R.; Himmel, Michael E.; Vinzant, Todd

    2017-04-24

    Commercial fungal cellulases used in biomass-to-biofuels processes can be grouped into three general classes: native, augmented, and engineered. To evaluate lignin binding affinities of different enzyme activities in various commercial cellulase formulations in order to determine if enzyme losses due to lignin binding can be modulated by using different enzymes of the same activity We used water:dioxane (1:9) to extract lignin from pretreated corn stover. Commercial cellulases were incubated with lignin and the unbound supernatants were evaluated for individual enzyme loss by SDS=PAGE and these were correlated with activity loss using various pNP-sugar substrates. Colorimetric assays for general glycosyl hydrolase activities showed distinct differences in enzyme binding to lignin for each enzyme activity. Native systems demonstrated low binding of endo- and exo-cellulases, high binding of xylanase, and moderate ..beta..-glucosidase binding. Engineered cellulase mixtures exhibited low binding of exo-cellulases, very strong binding of endocellulases and ..beta..- glucosidase, and mixed binding of xylanase activity. The augmented cellulase had low binding of exocellulase, high binding of endocellulase and xylanase, and moderate binding of ..beta..-glucosidase activities. Bound and unbound activities were correlated with general molecular weight ranges of proteins as measured by loss of proteins bands in bound fractions on SDS-PAGE gels. Lignin-bound high molecular weight bands correlated with binding of ..beta..-glucosidase activity. While ..beta..-glucosidases demonstrated high binding in many cases, they have been shown to remain active. Bound low molecular weight bands correlated with xylanase activity binding. Contrary to other literature, exocellulase activity did not show strong lignin binding. The variation in enzyme activity binding between the three classes of cellulases preparations indicate that it is certainly possible to alter the binding of specific

  5. Lytic Polysaccharide Monooxygenases - Studies of Fungal Secretomes and Enzyme Properties

    DEFF Research Database (Denmark)

    Nekiunaite, Laura

    enough to degrade it. The recently discovered lytic polysaccharide monooxygenases (LPMOs) are crucial enzymes employed in biomass breakdown in nature owing to their ability to boost activity of other biomass degrading hydrolases. Filamentous fungi are known to be significant players in plant biomass...

  6. Production of amylase enzyme from mangrove fungal isolates ...

    African Journals Online (AJOL)

    The amylase enzyme activity of MSF-9 was maximum at pH-5.0, 1% NaCl, 1% substrate and Inositol as carbon source. The most potent fungi was identified through morphological, microscopical and 18S rDNA sequence methods and identified as Penicillium citrinum-JQ249898. This strain can be better utilized in large ...

  7. Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production

    Science.gov (United States)

    Fungal pretreatment of switchgrass involving solid state fermentation (SSF) to improve saccharification and simultaneously produce enzymes as co-products was investigated in this study. The results revealed that the fungus Pycnoporus sp. SYBC-L3 can significantly degrade lignin and enhance enzymatic...

  8. Fungal Morphology in Industrial Enzyme Production - Modelling and Monitoring

    DEFF Research Database (Denmark)

    Quintanilla, D.; Hagemann, T.; Hansen, K.

    2015-01-01

    Filamentous fungi are widely used in the biotechnology industry for the production of industrial enzymes. Thus, considerable work has been done with the purpose of characterizing these processes. The ultimate goal of these efforts is to be able to control and predict fermentation performance......, and on the way the data is interpreted-i.e. which models were applied. The main filamentous fungi used in industrial fermentation are introduced, ranging from Trichoderma reesei to Aspergillus species. Due to the fact that secondary metabolites, like antibiotics, are not to be considered bulk products, organisms...... of the data. An overview of the state of the art techniques for morphology characterization is provided, discussing methods that finally can be employed as the computational power has grown sufficiently in the recent years. Image analysis (IA) clearly benefits most but it also means that methods like near...

  9. Fungal Morphology in Industrial Enzyme Production--Modelling and Monitoring.

    Science.gov (United States)

    Quintanilla, Daniela; Hagemann, Timo; Hansen, Kim; Gernaey, Krist V

    2015-01-01

    Filamentous fungi are widely used in the biotechnology industry for the production of industrial enzymes. Thus, considerable work has been done with the purpose of characterizing these processes. The ultimate goal of these efforts is to be able to control and predict fermentation performance on the basis of "standardized" measurements in terms of morphology, rheology, viscosity, mass transfer and productivity. However, because the variables are connected or dependent on each other, this task is not trivial. The aim of this review article is to gather available information in order to explain the interconnectivity between the different variables in submerged fermentations. An additional factor which makes the characterization of a fermentation broth even more challenging is that the data obtained are also dependent on the way they have been collected-meaning which technologies or probes have been used, and on the way the data is interpreted-i.e. which models were applied. The main filamentous fungi used in industrial fermentation are introduced, ranging from Trichoderma reesei to Aspergillus species. Due to the fact that secondary metabolites, like antibiotics, are not to be considered bulk products, organisms like e.g. Penicillium chrysogenum are just briefly touched upon for the description of some characterization techniques. The potential for development of different morphological phenotypes is discussed as well, also in view of what this could mean to productivity and-equally important-the collection of the data. An overview of the state of the art techniques for morphology characterization is provided, discussing methods that finally can be employed as the computational power has grown sufficiently in the recent years. Image analysis (IA) clearly benefits most but it also means that methods like near infrared measurement (NIR), capacitance and on-line viscosity now provide potential alternatives as powerful tools for characterizing morphology. These measuring

  10. Comprehensive analysis of fungal diversity and enzyme activity in nuruk, a Korean fermenting starter, for acquiring useful fungi.

    Science.gov (United States)

    Carroll, Emily; Trinh, Tran Ngoc; Son, Hokyoung; Lee, Yin-Won; Seo, Jeong-Ah

    2017-05-01

    Nuruk is a fermenting starter that is involved in the production of alcoholic beverages, and has been used in South Korea for a very long time. To analyze the fungal diversity, we collected a total of 59 nuruk samples from several companies and persons in 2013 to 2014, and obtained 364 isolates. All of the single isolated fungi were identified, both morphologically and molecularly, based on the sequences of ribosomal RNA gene [18S, ITS1-5.8S-ITS2, and 26S (D1/D2 region)]. In 46 nuruk samples out of 59 (78%), Saccharomycopsis fibuligera, a dimorphic yeast, was most frequently isolated. Among the filamentous fungi, Aspergillus and Lichtheimia were found in more than 50% of the samples with lower colony forming unit (CFU/g of sample) than those of yeasts. The yeasts S. fibuligera and Wickerhamomyces anomalus were counted with maximum 1.3-1.8 × 108 CFU/g. Among Mucorales fungi, Lichtheimia and Mucor were isolated in much higher numbers than Rhizopus and Rhizomucor. Overall, the home-made nuruks tend to contain more diverse filamentous fungi than the commercial nuruks. To acquire industrially useful filamentous fungi and yeasts, we analyzed the enzyme activities of α-amylase, glucoamylase and acid protease associated with brewing properties for 131 strains. Aspergillus oryzae and S. fibuligera had high α- and glucoamylase activities and most isolates of Lichtheimia ramosa had high acid protease activity. For further applications, 27 fungal strains were chosen based on isolation frequencies from nuruk, and the ability to produce useful enzyme.

  11. Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels.

    Science.gov (United States)

    Yarbrough, John M; Zhang, Ruoran; Mittal, Ashutosh; Vander Wall, Todd; Bomble, Yannick J; Decker, Stephen R; Himmel, Michael E; Ciesielski, Peter N

    2017-03-28

    Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: the classical "free enzyme" system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). We demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.

  12. Cellulose digestion inMonochamus marmorator Kby. (Coleoptera: Cerambycidae): Role of acquired fungal enzymes.

    Science.gov (United States)

    Kukor, J J; Martin, M M

    1986-05-01

    Larvae of the balsam fir sawyer,Monochamus marmorator Kby. (Coleoptera, Cerambycidae), contain midgut digestive enzymes active against hemicellulose and cellulose. Cellulases from larvae fed on balsam fir wood infected with the fungus,Trichoderma harzianum Rifai (Deuteromycetes, Moniliales, Moniliaceae), were found to be identical to those of the cellulase complex produced by this fungus when compared using chromatography, electrophoresis, and isofocusing. When larvae are maintained on a fungus-free diet, their midgut fluids lack cellulolytic activity, and they are unable to digest cellulose. Cellulolytic capacity can be restored by feeding the larvae wood permeated by fungi. We conclude that the enzymes which enableM. marmorator larvae to digest cellulose are not produced by the larvae. Instead, the larvae acquire the capacity to digest cellulose by ingesting active fungal cellulases while feeding in fungus-infected wood.

  13. Cellulose digestion in Monochamus marmorator Kby. (coleoptera: Cerambycidae): role of acquired fungal enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kukol, J.J.; Martin, M.M.

    1986-05-01

    Larvae of the balsam fir sawyer, Monochamus marmorator Kby. (Coleoptera, Cerambycidae), contain midgut digestive enzymes active against hemicellulose and cellulose. Cellulases from larvae fed on balsam fir wood infected with the fungus, Trichoderma harzianum Rifai (Deuteromycetes, Moniliales, Moniliaceae), were found to be identical to those of the cellulase complex produced by this fungus when compared using chromatography, electrophoresis, and isofocusing. When larvae are maintained on a fungusfree diet, their midgut fluids lack cellulolytic activity, and they are unable to digest cellulose. Cellulolytic capacity can be restored by feeding the larvae wood permeated by fungi. We conclude that the enzymes which enable M. marmorator larvae to digest cellulose are not produced by the larvae. Instead, the larvae acquire the capacity to digest cellulose by ingesting active fungal cellulases while feeding in fungus-infected wood.

  14. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass.

    Science.gov (United States)

    Gupta, Vijai K; Kubicek, Christian P; Berrin, Jean-Guy; Wilson, David W; Couturier, Marie; Berlin, Alex; Filho, Edivaldo X F; Ezeji, Thaddeus

    2016-07-01

    Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development of Quantum Dot Probes for Studies of Synergy Between Components of the Wood-Degrading Fungal Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haw [Princeton Univ., NJ (United States). Dept. of Chemistry; Nixon, B. Tracy [Pennsylvania State Univ., University Park, PA (United States); Tien, Ming [Pennsylvania State Univ., University Park, PA (United States). Dept. of Biochemistry and Molecular Biology

    2011-09-01

    “Development of Quantum Dot Probes for Studies of Synergy Between Components of the Wood-Degrading Fungal Enzymes,” aims to develop quantum dot-based tagging and imaging technologies tailored for simultaneously monitoring, in real time and in the natural fungal / lignocellulose environment, the mode of action of several lignocellulosic enzymes at the single-molecule level. With a three-year research scope, it is designed to be the first project of a long-term research program for which the overarching goal is to bridge the aforementioned knowledge gap by a quantitative determination of the biochemical and biophysical properties of these fungal enzymes in realistic plant biomass-microbe milieus.

  16. Using Commercial Enzymes to Produce Cellulose Nanofibers from Soybean Straw

    Directory of Open Access Journals (Sweden)

    Milena Martelli-Tosi

    2016-01-01

    Full Text Available This study used commercial enzymes to isolate cellulose nanofibrils (CN and produce sugars from chemically pretreated soybean straw (SS (stem, leaves, and pods by alkali (NaOH 5 or 17.5% v/v at 90°C for 1 h or at 30°C for 15 h and bleaching (NaClO2 3.3% or H2O2 4% pretreatments. Depending on the pretreatment applied to the soybean straw, the yield of CN varied from 6.3 to 7.5 g of CN/100 g of SS regardless of the concentration of the alkaline solution (5 or 17.5%. The CN had diameter of 15 nm, measured over 300 nm in length, and had high electrical stability (zeta potentials ranged from −20.8 to −24.5. Given the XRD patterns, the crystallinity index (CrI of CN ranged from 45 to 68%, depending on the chemical pretreatment the starting material was submitted to. CN obtained from SS treated with NaOH 17.5% and H2O2 (CrI = 45% displayed better thermal stability probably because a lignin-cellulose complex emerged. The soluble fraction obtained in the first step of CN production contained a large amount of reducing sugars (11.2 to 30.4 g/100 g of SS. SS seems to be a new promising industrial source to produce CN via enzymatic-mechanical treatment, leading to large amounts of reducing sugars for use in bioenergy production.

  17. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review.

    Science.gov (United States)

    Kadri, Tayssir; Rouissi, Tarek; Kaur Brar, Satinder; Cledon, Maximiliano; Sarma, Saurabhjyoti; Verma, Mausam

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of chemicals. They represent an important concern due to their widespread distribution in the environment, their resistance to biodegradation, their potential to bioaccumulate and their harmful effects. Several pilot treatments have been implemented to prevent economic consequences and deterioration of soil and water quality. As a promising option, fungal enzymes are regarded as a powerful choice for degradation of PAHs. Phanerochaete chrysosporium, Pleurotus ostreatus and Bjerkandera adusta are most commonly used for the degradation of such compounds due to their production of ligninolytic enzymes such as lignin peroxidase, manganese peroxidase and laccase. The rate of biodegradation depends on many culture conditions, such as temperature, oxygen, accessibility of nutrients and agitated or shallow culture. Moreover, the addition of biosurfactants can strongly modify the enzyme activity. The removal of PAHs is dependent on the ionization potential. The study of the kinetics is not completely comprehended, and it becomes more challenging when fungi are applied for bioremediation. Degradation studies in soil are much more complicated than liquid cultures because of the heterogeneity of soil, thus, many factors should be considered when studying soil bioremediation, such as desorption and bioavailability of PAHs. Different degradation pathways can be suggested. The peroxidases are heme-containing enzymes having common catalytic cycles. One molecule of hydrogen peroxide oxidizes the resting enzyme withdrawing two electrons. Subsequently, the peroxidase is reduced back in two steps of one electron oxidation. Laccases are copper-containing oxidases. They reduce molecular oxygen to water and oxidize phenolic compounds. Copyright © 2016. Published by Elsevier B.V.

  18. Influence of fungal morphology on the performance of industrial fermentation processes for enzyme production

    DEFF Research Database (Denmark)

    Quintanilla Hernandez, Daniela Alejandra

    Production of industrial enzymes is usually carried out as submerged aerobic fermentations. Filamentous microorganisms are widely used as hosts in these processes due to multiple advantages. Nevertheless, they also present major drawbacks, due to the unavoidable oxygen transfer limitations...... in this work, along with its correlation to viscosity and other process variables. Considerable research work has been conducted through the years to study fungal morphology and its relation to productivity. However, the work reported in the literature lacks relevant industrial data. In this work, a platform...... in the literature. The developed platform was used to study the influence of agitation intensity on the morphology, rheology and protein production capability of Trichoderma reesei RUT-C30. Eight fed-batch fermentations were conducted in bench scale fermenters at two different media concentrations and four...

  19. Biochemical Control of Fungal Biomass and Enzyme Production During Native Hawaiian Litter Degradation

    Science.gov (United States)

    Amatangelo, K. L.; Cordova, T. P.; Vitousek, P. M.

    2007-12-01

    Microbial growth and enzyme production during decomposition is controlled by the availability of carbon substrates, essential elements, and the ratios of these (such as lignin:N). We manipulated carbon:nutrient stoichiometry during decomposition using a natural fertility gradient in Hawaii and litter of varying initial biochemistry. We collected freshly senesced litter of seven biochemically distinct species from three sites offering differing levels of N, P, cations, and 15N , but similar yearly rainfall and temperature patterns. Litter types were decomposed at both the sites they were collected, and at the other site(s) that species was found. Litter was collected at multiple time points, and after one year of decomposition, calculated K constants varied an order of magnitude, from 0.276 to 2.76. Decomposition rates varied significantly with both litter site of origin and deployment, except at the oldest, P-limited site, where litter site of origin was not significantly correlated with decomposition within species. As microbial exocellular enzymes provide the catalyst for the breakdown of organic molecules including phenols, cellulose, and cutin, we assayed polyphenol oxidase, cellobiohydrolase, cutinase, chitinase, and lignin peroxidase to evaluate the breakdown sequence of different litter types. To measure the fungal biomass accumulating during decomposition, we extracted (22E)-Ergosta-5,7,22-trien-3beta- ol (ergosterol) on a subset of samples. The production of particular exocellular enzymes on litter species responded distinctly to origin and decomposition sites: after six months, chitinase and cellobiohydrolase were significantly affected by origin site, whereas polyphenol oxidase activity was controlled by deployment site. We conclude that site characteristics can alter the interaction between litter carbon:nutrient ratios and decomposition rate, mediated through microbial biomass and enzyme production.

  20. Fungal plant cell wall-degrading enzyme database: a platform for comparative and evolutionary genomics in fungi and Oomycetes.

    Science.gov (United States)

    Choi, Jaeyoung; Kim, Ki-Tae; Jeon, Jongbum; Lee, Yong-Hwan

    2013-01-01

    Plant cell wall-degrading enzymes (PCWDEs) play significant roles throughout the fungal life including acquisition of nutrients and decomposition of plant cell walls. In addition, many of PCWDEs are also utilized by biofuel and pulp industries. In order to develop a comparative genomics platform focused in fungal PCWDEs and provide a resource for evolutionary studies, Fungal PCWDE Database (FPDB) is constructed (http://pcwde.riceblast.snu.ac.kr/). In order to archive fungal PCWDEs, 22 sequence profiles were constructed and searched on 328 genomes of fungi, Oomycetes, plants and animals. A total of 6,682 putative genes encoding PCWDEs were predicted, showing differential distribution by their life styles, host ranges and taxonomy. Genes known to be involved in fungal pathogenicity, including polygalacturonase (PG) and pectin lyase, were enriched in plant pathogens. Furthermore, crop pathogens had more PCWDEs than those of rot fungi, implying that the PCWDEs analysed in this study are more needed for invading plant hosts than wood-decaying processes. Evolutionary analysis of PGs in 34 selected genomes revealed that gene duplication and loss events were mainly driven by taxonomic divergence and partly contributed by those events in species-level, especially in plant pathogens. The FPDB would provide a fungi-specialized genomics platform, a resource for evolutionary studies of PCWDE gene families and extended analysis option by implementing Favorite, which is a data exchange and analysis hub built in Comparative Fungal Genomics Platform (CFGP 2.0; http://cfgp.snu.ac.kr/).

  1. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    Science.gov (United States)

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  2. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    Science.gov (United States)

    Busk, Peter K; Lange, Mette; Pilgaard, Bo; Lange, Lene

    2014-01-01

    The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.

  3. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    Directory of Open Access Journals (Sweden)

    Peter K Busk

    Full Text Available The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.

  4. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Mette; Pilgaard, Bo

    2014-01-01

    . In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important...... feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases...... only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based...

  5. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates

    Energy Technology Data Exchange (ETDEWEB)

    Khadempour, Lily [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Zoology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA; Burnum-Johnson, Kristin E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Baker, Erin S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Nicora, Carrie D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Webb-Robertson, Bobbie-Jo M. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; White, Richard A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Huang, Eric L. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Currie, Cameron R. [Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706 USA; Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI 53706 USA

    2016-10-26

    Herbivores use symbiotic microbes to help gain access to energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, having tremendous impact on their ecosystems as dominant generalist herbivores through cultivation of a fungus, Leucoagaricus gongylophorous. Here we examine how this mutualism could facilitate the flexible substrate incorporation of the ants by providing leaf-cutter ant subcolonies four substrate types: leaves, flowers, oats, and a mixture of all three. Through metaproteomic analysis of the fungus gardens, we were able to identify and quantify 1766 different fungal proteins, including 161 biomass-degrading enzymes. This analysis revealed that fungal protein profiles were significantly different between subcolonies fed different substrates with the highest abundance of cellulolytic enzymes observed in the leaf and flower treatments. When the fungus garden is provided with leaves and flowers, which contain the majority of their energy in recalcitrant material, it increases its production of proteins that break down cellulose: endoglucanases, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, the mixed treatment closely resembled the treatment with oats alone. This suggests that when provided a mixture of substrates, the fungus garden preferentially produces enzymes necessary for breakdown of simpler, more digestible substrates. This flexible, substrate-specific response of the fungal cultivar allows the leaf-cutter ants to derive energy from a wide range of substrates, which may contribute to their ability to be dominant generalist herbivores.

  6. Fungal and enzyme treatment kidney: a promising way to help pulp and paper mills to achieve zero effluent discharge

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Soong, J.J.; Stebbing, D.W.; Saddler, J.N. [British Columbia Univ., Vancouver, BC (Canada). Forest Products Biotechnology Faculty of Forestry; Beatson, R.P. [British Columbia Inst. of Technology, Burnaby, BC (Canada). Advanced Papermaking Initiative

    2001-06-01

    Water usage and effluent discharge must be minimized by pulp and paper mills to comply with increasingly stringent environmental standards and market demands. As a result, the potential use of a combined fungal and enzyme system was evaluated as an internal water treatment kidney in a TMP/newsprint mill with a closed water system. The evaluation involved the use of three different white water samples. A sample of mill white water (MWW) was taken from the cloudy white water chest of the disk thickener at the Howe Sound Pulp and Paper Ltd. A mix of interior spruce/pine/fir and coastal hemlock from British Columbia comprised the chip supply used during the collection. Then , the model recycled white water (RWW) was prepared, as was the membrane filtered model recycled white water (FWW). A significant decrease in the amount of total dissolved and colloidal substances was observed as a result of the growth of the white-rot fungus Trametes versicolor on these waters. After seven days of fungal treatment, in excess of 75 per cent of the extractives, and 62-71 per cent of the carbohydrates initially present in the three white waters were removed. Laccase, cellulase and lipase enzyme activities had been noted in the fungal culture filtrates (FCF) during the growth of the fungus. Using the fungal culture filtrates obtained after two days growth of Trametes versicolor, subsequent fungal enzyme treatments of MWW and RWW were performed on mill white water. After a three-hour FCF treatment at 65 Celsius, more than 90 per cent of the lignans and ester bonded extractives (steryl esters and triglycerides) were removed from both white waters. During the same period, the resin and fatty acids content decreased by almost 40 per cent in the mill white water while it decreased by almost 60 per cent in the model white water sample. The polymerization of low molecular weight phenolics into higher molecular weight lignin-types of material occurred as a result of the fungal and enzyme

  7. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions.

    Science.gov (United States)

    Chan-Cupul, Wilberth; Heredia-Abarca, Gabriela; Rodríguez-Vázquez, Refugio

    2016-01-01

    This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g(-1)) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 2(4) factorial experimental design. The Trametes maxima-Paecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein(-1), H2O2 = 6.2 mg L(-1)) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein(-1), H2O2 = 4.0 mg L(-1)). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.

  8. PCR primers to study the diversity of expressed fungal genes encoding lignocellulolytic enzymes in soils using high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Florian Barbi

    Full Text Available Plant biomass degradation in soil is one of the key steps of carbon cycling in terrestrial ecosystems. Fungal saprotrophic communities play an essential role in this process by producing hydrolytic enzymes active on the main components of plant organic matter. Open questions in this field regard the diversity of the species involved, the major biochemical pathways implicated and how these are affected by external factors such as litter quality or climate changes. This can be tackled by environmental genomic approaches involving the systematic sequencing of key enzyme-coding gene families using soil-extracted RNA as material. Such an approach necessitates the design and evaluation of gene family-specific PCR primers producing sequence fragments compatible with high-throughput sequencing approaches. In the present study, we developed and evaluated PCR primers for the specific amplification of fungal CAZy Glycoside Hydrolase gene families GH5 (subfamily 5 and GH11 encoding endo-β-1,4-glucanases and endo-β-1,4-xylanases respectively as well as Basidiomycota class II peroxidases, corresponding to the CAZy Auxiliary Activity family 2 (AA2, active on lignin. These primers were experimentally validated using DNA extracted from a wide range of Ascomycota and Basidiomycota species including 27 with sequenced genomes. Along with the published primers for Glycoside Hydrolase GH7 encoding enzymes active on cellulose, the newly design primers were shown to be compatible with the Illumina MiSeq sequencing technology. Sequences obtained from RNA extracted from beech or spruce forest soils showed a high diversity and were uniformly distributed in gene trees featuring the global diversity of these gene families. This high-throughput sequencing approach using several degenerate primers constitutes a robust method, which allows the simultaneous characterization of the diversity of different fungal transcripts involved in plant organic matter degradation and may

  9. Health Threats from Contamination of Spices Commercialized in Romania: Risks of Fungal and Bacterial Infections.

    Science.gov (United States)

    Man, Adrian; Mare, Anca; Toma, Felicia; Curticăpean, Augustin; Santacroce, Luigi

    2016-01-01

    The study of fungal contamination in food and mycotoxicoses is a priority today, both internationally and nationally. The purpose of this study is to have a general view over the quality of the most common spices that are sold in Romanian markets, by assessing the degree of fungal, bacterial and mycotoxin contamination in pepper and chili powders. We tested four types of spices: white pepper, black pepper, sweet and hot chili powders from 12 different distributing companies, summing a total of 35 sample types. The fungal and bacterial load was assessed by Standard Plate Count, while the mycotoxin content by High-performance liquid chromatography. Environmental conditions (humidity, pH) and the selling price for each product were also followed. Fungi were observed in 72.7% of black pepper samples, 33.3% in white pepper, 30% in sweet chili and 25% in hot chili products. The most common isolated fungus was Aspergillus spp., while Rhizopus, Mucor, Fusarium, Penicillium, Absidia species were found, in smaller percentage. Four producers (44.4%) presented fungal contamination of over 10^3 CFU/g and two producers (22.2%) presented no fungal contamination in their products. Bacterial contamination was found in 85.7% of the tested products, consisting mostly in Bacillus spp. Aflatoxin B1 was present in all the tested products, mostly in black pepper (mean value 126.3 ng/g); Ochratoxin A was present in sweet chili (mean value 328 ng/g) and Zearalenone in hot chili (mean value 604 ng/g) and sweet chili (mean value 382 ng/g). All spices presented either fungal contamination, mycotoxin contamination, or both. The high humidity and the high pH of spices represent favorable conditions for fungal growth. The selling price was partly related to the physic-chemical conditions and microbiological quality of the spices. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Differences in Forage-Acquisition and Fungal Enzyme Activity Contribute to Niche Segregation in Panamanian Leaf-Cutting Ants

    Science.gov (United States)

    Kooij, Pepijn W.; Liberti, Joanito; Giampoudakis, Konstantinos; Schiøtt, Morten; Boomsma, Jacobus J.

    2014-01-01

    The genera Atta and Acromyrmex are often grouped as leaf-cutting ants for pest management assessments and ecological surveys, although their mature colony sizes and foraging niches may differ substantially. Few studies have addressed such interspecific differences at the same site, which prompted us to conduct a comparative study across six sympatric leaf-cutting ant species in Central Panama. We show that foraging rates during the transition between dry and wet season differ about 60 fold between genera, but are relatively constant across species within genera. These differences appear to match overall differences in colony size, especially when Atta workers that return to their nests without leaves are assumed to carry liquid food. We confirm that Panamanian Atta specialize primarily on tree-leaves whereas Acromyrmex focus on collecting flowers and herbal leaves and that species within genera are similar in these overall foraging strategies. Species within genera tended to be spaced out over the three habitat categories that we distinguished (forest, forest edge, open grassland), but each of these habitats normally had only a single predominant Atta and Acromyrmex species. We measured activities of twelve fungus garden decomposition enzymes, belonging to the amylases, cellulases, hemicellulases, pectinases and proteinases, and show that average enzyme activity per unit of fungal mass in Atta gardens is lower than in Acromyrmex gardens. Expression profiles of fungal enzymes in Atta also appeared to be more specialized than in Acromyrmex, possibly reflecting variation in forage material. Our results suggest that species- and genus-level identities of leaf-cutting ants and habitat-specific foraging profiles may give predictable differences in the expression of fungal genes coding for decomposition enzymes. PMID:24718261

  11. Differences in forage-acquisition and fungal enzyme activity contribute to niche segregation in Panamanian leaf-cutting ants.

    Directory of Open Access Journals (Sweden)

    Pepijn W Kooij

    Full Text Available The genera Atta and Acromyrmex are often grouped as leaf-cutting ants for pest management assessments and ecological surveys, although their mature colony sizes and foraging niches may differ substantially. Few studies have addressed such interspecific differences at the same site, which prompted us to conduct a comparative study across six sympatric leaf-cutting ant species in Central Panama. We show that foraging rates during the transition between dry and wet season differ about 60 fold between genera, but are relatively constant across species within genera. These differences appear to match overall differences in colony size, especially when Atta workers that return to their nests without leaves are assumed to carry liquid food. We confirm that Panamanian Atta specialize primarily on tree-leaves whereas Acromyrmex focus on collecting flowers and herbal leaves and that species within genera are similar in these overall foraging strategies. Species within genera tended to be spaced out over the three habitat categories that we distinguished (forest, forest edge, open grassland, but each of these habitats normally had only a single predominant Atta and Acromyrmex species. We measured activities of twelve fungus garden decomposition enzymes, belonging to the amylases, cellulases, hemicellulases, pectinases and proteinases, and show that average enzyme activity per unit of fungal mass in Atta gardens is lower than in Acromyrmex gardens. Expression profiles of fungal enzymes in Atta also appeared to be more specialized than in Acromyrmex, possibly reflecting variation in forage material. Our results suggest that species- and genus-level identities of leaf-cutting ants and habitat-specific foraging profiles may give predictable differences in the expression of fungal genes coding for decomposition enzymes.

  12. Rapid shifts in Atta cephalotes fungus-garden enzyme activity after a change in fungal substrate (Attini, Formicidae)

    DEFF Research Database (Denmark)

    Kooij, P W; Schiøtt, M; Boomsma, J J

    2011-01-01

    Fungus gardens of the basidiomycete Leucocoprinus gongylophorus sustain large colonies of leaf-cutting ants by degrading the plant material collected by the ants. Recent studies have shown that enzyme activity in these gardens is primarily targeted toward starch, proteins and the pectin matrix...... associated with cell walls, rather than toward structural cell wall components such as cellulose and hemicelluloses. Substrate constituents are also known to be sequentially degraded in different sections of the fungus garden. To test the plasticity in the extracellular expression of fungus-garden enzymes......, we measured the changes in enzyme activity after a controlled shift in fungal substrate offered to six laboratory colonies of Atta cephalotes. An ant diet consisting exclusively of grains of parboiled rice rapidly increased the activity of endo-proteinases and some of the pectinases attacking...

  13. Effects of four commercial fungal formulations on mortality and sporulation in house flies (Musca domestica) and stable flies (Stomoxys calcitrans).

    Science.gov (United States)

    Weeks, E N I; Machtinger, E T; Gezan, S A; Kaufman, P E; Geden, C J

    2017-03-01

    The house fly Musca domestica L. (Diptera: Muscidae) and stable fly Stomoxys calcitrans (L.) (Diptera: Muscidae) are major pests of livestock. Biological control is an important tool in an integrated control framework. Increased mortality in filth flies has been documented with entomopathogenic fungi, several strains of which are commercially available. Three strains of Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Cordycipitaceae) and one strain of Metarhizium brunneum (Petch) (Hypocreales: Clavicipitaceae) were tested in commercial formulations for pathogenicity against house flies and stable flies. There was a significant increase in mortality of house flies with three of the formulations, BotaniGard® ES, Mycotrol® O, and Met52® EC, during days 4-9 in comparison with balEnce™ and the control. In stable flies, mortality rates were highest with Met52® EC, followed by Mycotrol® O, BotaniGard® ES and, finally, balEnce™. There was a significant fungal effect on sporulation in both house flies and stable flies. Product formulation, species differences and fungal strains may be responsible for some of the differences observed. Future testing in field situations is necessary. These commercial biopesticides may represent important tools in integrated fly management programmes. © 2016 The Royal Entomological Society.

  14. Hide unhairing and characterization of commercial enzymes used in leather manufacture

    Directory of Open Access Journals (Sweden)

    A Dettmer

    2011-09-01

    Full Text Available The enzymatic treatment of hides in tannery processes is a promising technology. However, the reaction kinetics of commercial enzymes available to the leather industry are not fully understood and their activities have been mainly determined with model proteins such as casein as substrate, which are not of direct relevance for cattle hides. Therefore, it is important to determine their activities on collagen and keratin, the main proteins of skin, in order to use these enzymes in leather processing. This work describes the study of five proteases, used commercially in tanneries, to assess their ability to act upon collagen and keratin and to determine their unhairing. Results showed that all commercial enzymes tested had more activity on collagen than on keratin. Unhairing was also tested and four out of the five enzymes tested showed some unhairing activity. Optima of the temperature and pH of the enzymes were very similar for all five enzymes, with maximal activities around 55ºC and pH 9 to 12, respectively.

  15. Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens.

    Science.gov (United States)

    Viterbo, Ada; Ramot, Ofir; Chemin, Leonid; Chet, Ilan

    2002-08-01

    The use of specific mycolytic soil microorganisms to control plant pathogens is an ecological approach to overcome the problems caused by standard chemical methods of plant protection. The ability to produce lytic enzymes is a widely distributed property of rhizosphere-competent fungi and bacteria. Due to the higher activity of Trichoderma spp. lytic enzymes as compared to the same class of enzymes from other microorganisms and plants, effort is being aimed at improving biocontrol agents and plants by introducing Trichoderma genes via genetic manipulations. An overview is presented of the data currently available on lytic enzymes from the mycoparasitic fungus Trichoderma.

  16. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives.

    Science.gov (United States)

    Loi, Martina; Fanelli, Francesca; Liuzzi, Vania C; Logrieco, Antonio F; Mulè, Giuseppina

    2017-03-24

    Worldwide mycotoxins contamination has a significant impact on animal and human health, and leads to economic losses accounted for billions of dollars annually. Since the application of pre- and post- harvest strategies, including chemical or physical removal, are not sufficiently effective, biological transformation is considered the most promising yet challenging approach to reduce mycotoxins accumulation. Although several microorganisms were reported to degrade mycotoxins, only a few enzymes have been identified, purified and characterized for this activity. This review focuses on the biotransformation of mycotoxins performed with purified enzymes isolated from bacteria, fungi and plants, whose activity was validated in in vitro and in vivo assays, including patented ones and commercial preparations. Furthermore, we will present some applications for detoxifying enzymes in food, feed, biogas and biofuel industries, describing their limitation and potentialities.

  17. Analysis of the Sequences, Structures, and Functions of Product-Releasing Enzyme Domains in Fungal Polyketide Synthases

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2017-09-01

    Full Text Available Product-releasing enzyme (PRE domains in fungal non-reducing polyketide synthases (NR-PKSs play a crucial role in catalysis and editing during polyketide biosynthesis, especially accelerating final biosynthetic reactions accompanied with product offloading. However, up to date, the systematic knowledge about PRE domains is deficient. In the present study, the relationships between sequences, structures, and functions of PRE domains were analyzed with 574 NR-PKSs of eight groups (I–VIII. It was found that the PRE domains in NR-PKSs could be mainly classified into three types, thioesterase (TE, reductase (R, and metallo-β-lactamase-type TE (MβL-TE. The widely distributed TE or TE-like domains were involved in NR-PKSs of groups I–IV, VI, and VIII. The R domains appeared in NR-PKSs of groups IV and VII, while the physically discrete MβL-TE domains were employed by most NR-PKSs of group V. The changes of catalytic sites and structural characteristics resulted in PRE functional differentiations. The phylogeny revealed that the evolution of TE domains was accompanied by complex functional divergence. The diverse sequence lengths of TE lid-loops affected substrate specificity with different chain lengths. The volume diversification of TE catalytic pockets contributed to catalytic mechanisms with functional differentiations. The above findings may help to understand the crucial catalysis of fungal aromatic polyketide biosyntheses and govern recombination of NR-PKSs to obtain unnatural target products.

  18. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips.

    Science.gov (United States)

    Sode, Koji; Loew, Noya; Ohnishi, Yosuke; Tsuruta, Hayato; Mori, Kazushige; Kojima, Katsuhiro; Tsugawa, Wakako; LaBelle, Jeffrey T; Klonoff, David C

    2017-01-15

    In this study, a novel fungus FAD dependent glucose dehydrogenase, derived from Aspergillus niger (AnGDH), was characterized. This enzyme's potential for the use as the enzyme for blood glucose monitor enzyme sensor strips was evaluated, especially by investigating the effect of the presence of xylose during glucose measurements. The substrate specificity of AnGDH towards glucose was investigated, and only xylose was found as a competing substrate. The specific catalytic efficiency for xylose compared to glucose was 1.8%. The specific activity of AnGDH for xylose at 5mM concentration compared to glucose was 3.5%. No other sugars were used as substrate by this enzyme. The superior substrate specificity of AnGDH was also demonstrated in the performance of enzyme sensor strips. The impact of spiking xylose in a sample with physiological glucose concentrations on the sensor signals was investigated, and it was found that enzyme sensor strips using AnGDH were not affected at all by 5mM (75mg/dL) xylose. This is the first report of an enzyme sensor strip using a fungus derived FADGDH, which did not show any positive bias at a therapeutic level xylose concentration on the signal for a glucose sample. This clearly indicates the superiority of AnGDH over other conventionally used fungi derived FADGDHs in the application for SMBG sensor strips. The negligible activity of AnGDH towards xylose was also explained on the basis of a 3D structural model, which was compared to the 3D structures of A. flavus derived FADGDH and of two glucose oxidases. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus.

    Science.gov (United States)

    McGee, C F; Byrne, H; Irvine, A; Wilson, J

    2017-01-01

    Commercial cultivation of the button mushroom Agaricus bisporus is performed through the inoculation of a semipasteurized composted material. Pasteurization of the compost material prior to inoculation results in a substrate with a fungal community that becomes dominated by A. bisporus. However, little is known about the composition and activity in the wider fungal community beyond the presence of A. bisporus in compost throughout the mushroom cropping process. In this study, the fungal cropping compost community was characterized by sequencing nuc rDNA ITS1-5.8S-ITS2 amplified from extractable DNA and RNA. The fungal community generated from DNA extracts identified a diverse community containing 211 unique species, although only 51 were identified from cDNA. Agaricus bisporus was found to dominate in the DNA-derived fungal community for the duration of the cropping process. However, analysis of cDNA extracts found A. bisporus to dominate only up to the first crop flush, after which activity decreased sharply and a much broader fungal community became active. This study has highlighted the diverse fungal community that is present in mushroom compost during cropping.

  20. Enzymes from fungal and plant origin required for chemical diversification of insecticidal loline alkaloids in grass-Epichloë symbiota.

    Directory of Open Access Journals (Sweden)

    Juan Pan

    Full Text Available The lolines are a class of bioprotective alkaloids that are produced by Epichloë species, fungal endophytes of grasses. These alkaloids are saturated 1-aminopyrrolizidines with a C2 to C7 ether bridge, and are structurally differentiated by the various modifications of the 1-amino group: -NH2 (norloline, -NHCH3 (loline, -N(CH32 (N-methylloline, -N(CH3Ac (N-acetylloline, -NHAc (N-acetylnorloline, and -N(CH3CHO (N-formylloline. Other than the LolP cytochrome P450, which is required for conversion of N-methylloline to N-formylloline, the enzymatic steps for loline diversification have not yet been established. Through isotopic labeling, we determined that N-acetylnorloline is the first fully cyclized loline alkaloid, implying that deacetylation, methylation, and acetylation steps are all involved in loline alkaloid diversification. Two genes of the loline alkaloid biosynthesis (LOL gene cluster, lolN and lolM, were predicted to encode an N-acetamidase (deacetylase and a methyltransferase, respectively. A knockout strain lacking both lolN and lolM stopped the biosynthesis at N-acetylnorloline, and complementation with the two wild-type genes restored production of N-formylloline and N-acetylloline. These results indicated that lolN and lolM are required in the steps from N-acetylnorloline to other lolines. The function of LolM as an N-methyltransferase was confirmed by its heterologous expression in yeast resulting in conversion of norloline to loline, and of loline to N-methylloline. One of the more abundant lolines, N-acetylloline, was observed in some but not all plants with symbiotic Epichloë siegelii, and when provided with exogenous loline, asymbiotic meadow fescue (Lolium pratense plants produced N-acetylloline, suggesting that a plant acetyltransferase catalyzes N-acetylloline formation. We conclude that although most loline alkaloid biosynthesis reactions are catalyzed by fungal enzymes, both fungal and plant enzymes are responsible for

  1. Polyphenols, fungal enzymes, and the fate of organic nitrogen in a Californian pygmy forest

    Science.gov (United States)

    Slessarev, E.

    2011-12-01

    Polyphenols are a diverse family of plant secondary compounds which may influence litter decay and soil nutrient turnover. The "short circuit" hypothesis for polyphenol function proposes that polyphenolic compounds provision plants with nitrogen in nutrient-poor soils by facilitating the accumulation of organic nitrogen in soil humus. By binding peptides, polyphenols may sequester nitrogen in a bank of recalcitrant organic matter, granting competitive advantage to plants with the mycorrhizal fungi most capable of recapturing the tightly bound organic nitrogen. Specifically, fungi may retrieve nitrogen from polyphenol-peptide complexes with an extracellular enzyme, polyphenol oxidase (PPO). In order to evaluate the "short circuit" hypothesis, I measured soil PPO activity during four seasons in the Mendocino "ecological staircase," a soil age-gradient consisting of a series of wave-cut terraces along stretches of the northern California coast. Stunted, pygmy-forest plants growing in the nutrient-poor soils of the older marine terraces produce more polyphenols than their con-specifics on nutrient-rich younger terraces, potentially influencing PPO facilitated nitrogen cycling. I found that PPO activity reached its maximum in the younger terrace forest during the spring, achieving levels nearly twice as high as those observed on the younger terrace in other seasons and in the older terrace forest year-round. In both terraces, PPO activity was greatest in the organic humus at the soil surface, decreasing dramatically in the lower mineral horizon. When PPO activity reached its maximum in the younger terrace, I found that soil polyphenol content positively correlated (Rsq=0.63) with enzyme activity, suggesting that polyphenols might induce enzyme production. However, in the tannin-rich soil of the pygmy forest on the older terrace, enzyme activity remained low, and was most strongly correlated with soil moisture. The results do not support the hypothesis that nutrient

  2. Polyphosphate present in DNA preparations from fungal species of Collectotrichum inhibits restriction endonucleases and other enzymes

    Science.gov (United States)

    Rodriguez, R.J.

    1993-01-01

    During the development of a procedure for the isolation of total genomic DNA from filamentous fungi (Rodriguez, R. J., and Yoder, 0. C., Exp. Mycol. 15, 232-242, 1991) a cell fraction was isolated which inhibited the digestion of DNA by restriction enzymes. After elimination of DNA, RNA, proteins, and lipids, the active compound was purified by gel filtration to yield a single fraction capable of complete inhibition of restriction enzyme activity. The inhibitor did not absorb uv light above 220 nm, and was resistant to alkali and acid at 25°C and to temperatures as high as 100°C. More extensive analyses demonstrated that the inhibitor was also capable of inhibiting T4 DNA ligase and TaqI DNA polymerase, but not DNase or RNase. Chemical analyses indicated that the inhibitor was devoid of carbohydrates, proteins, lipids, and nucleic acids but rich in phosphorus. A combination of nuclear magnetic resonance, metachromatic shift of toluidine blue, and gel filtration indicated that the inhibitor was a polyphosphate (polyP) containing approximately 60 phosphate molecules. The mechanism of inhibition appeared to involve complexing of polyP to the enzymatic proteins. All species of Colletotrichum analyzed produced polyP equivalent in chain length and concentration. A modification to the original DNA extraction procedure is described which eliminates polyP and reduces the time necessary to obtain DNA of sufficient purity for restriction enzyme digestion and TaqI polymerase amplification.

  3. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme

    Science.gov (United States)

    Yun, Choong-Soo; Motoyama, Takayuki; Osada, Hiroyuki

    2015-01-01

    Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS–PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS–PKS hybrid enzyme. PMID:26503170

  4. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme.

    Science.gov (United States)

    Yun, Choong-Soo; Motoyama, Takayuki; Osada, Hiroyuki

    2015-10-27

    Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS-PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS-PKS hybrid enzyme.

  5. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes.

    Science.gov (United States)

    Huitron, C; Perez, R; Sanchez, A E; Lappe, P; Rocha Zavaleta, L

    2008-01-01

    Approximately 1 million tons of Agave tequilana plants are processed annually by the Mexican Tequila industry generating vast amounts of agricultural waste. The aim of this study was to investigate the potential use of Agave tequilana waste as substrate for the production of commercially important enzymes. Two strains of Aspergillus niger (CH-A-2010 and CH-A-2016), isolated from agave fields, were found to grow and propagate in submerged cultures using Agave tequilana waste as substrate. Isolates showed simultaneous extracellular inulinase, xylanase, pectinase, and cellulase activities. Aspergillus CH-A-2010 showed the highest production of inulinase activity (1.48 U/ml), whereas Aspergillus niger CH-A-2016 produced the highest xylanase (1.52 U/ml) and endo-pectinase (2.7U/ml) activities. In both cases production of enzyme activities was significantly higher on Agave tequilana waste than that observed on lemon peel and specific polymeric carbohydrates. Enzymatic hydrolysis of raw A. tequilana stems and leaves, by enzymes secreted by the isolates yielded maximum concentrations of reducing sugars of 28.2 g/l, and 9.9 g/l respectively. In conclusion, Agave tequilana waste can be utilized as substrate for the production of important biotechnological enzymes.

  6. Biological control of peach fungal pathogens by commercial products and indigenous yeasts.

    Science.gov (United States)

    Restuccia, Cristina; Giusino, Francesco; Licciardello, Fabio; Randazzo, Cinzia; Caggia, Cinzia; Muratore, Giuseppe

    2006-10-01

    The potential use of the commercial biocontrol products Serenade (Bacillus subtilis QST-713) and Trichodex (Trichoderma harzianum Rifai strain T39) to inhibit the postharvest pathogenic molds Penicillium crustosum and Mucor circinelloides was investigated. Both products exhibited antagonistic activity in vitro against the pathogens, reducing their growth at different levels. In addition, epiphytic yeasts isolated from peaches were identified as Candida maltosa, Pichia fermentans, and Pichia kluyveri by PCR-restriction fragment length polymorphism of internal transcribed spacer regions and screened for antagonistic activity against the same molds. The efficacy of biocontrol in vitro was dependent on the concentration of the yeast cells. Optimal yeast concentrations were above 10(7) CFU ml(-1). However, C. maltosa and P. fermentans were more effective than P. kluyveri in inhibiting molds. The exclusion of antifungal metabolite production and direct competition for nutrients or space with the pathogens was proposed as the mechanism of biocontrol. Application of biocontrol agents directly on artificially wounded peach fruits significantly reduced the incidence of mold rot during storage at 20 degrees C.

  7. DECREASE Final Technical Report: Development of a Commercial Ready Enzyme Application System for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Teter, Sarah A

    2012-04-18

    .5 kg kettle reactors) was performed to compare the starting enzyme mixture CZP00005 with CTec3 alone; these results indicated a 1.9X dose- reduction for 80% conversion. The CTec3 composition does not include the best available enzyme components from the DECREASE effort. While these components are not yet available in a commercial product, experimental mixtures were assayed in a smaller scale assay using DECREASE PCS, at high solids loadings (21.5% TS). The results indicated that the newer mixtures required 2.9X-less enzyme for 90% conversion, and 3.2X-less enzyme for 80% conversion, relative to the starting enzyme cocktail. In conclusion, CTec3 delivers a 1.8-1.9X dose reduction on NREL PCS at high solids loadings, and the next generation enzyme from Novozymes will continue to show dramatically improved biochemical performance. CTec3 allows reduced costs today, and the experimental cocktails point to continued biotechnological improvements that will further drive down costs for biorefineries of tomorrow.

  8. Influence of fungal morphology on the performance of industrial fermentation processes for enzyme production

    DEFF Research Database (Denmark)

    Quintanilla Hernandez, Daniela Alejandra

    is an important variable in industrial submerged fermentation since it highly impacts the broth rheology. Therefore, it is important to understand the factors that affect it. One important factor is agitation-induced fragmentation since it will dictate the size of the particles, which will then affect rheology...... at predicting mycelial fragmentation across scales, compared to the EDCF. Furthermore, the morphological development of an industrial strain of T. reesei was monitored in pilot scale fermentations. This study showed that the morphology monitored with laser diffraction also granted the possibility to study......Production of industrial enzymes is usually carried out as submerged aerobic fermentations. Filamentous microorganisms are widely used as hosts in these processes due to multiple advantages. Nevertheless, they also present major drawbacks, due to the unavoidable oxygen transfer limitations...

  9. Use of commercial anti-penicillin IgE fluorometric enzyme immunoassays to diagnose penicillin allergy.

    Science.gov (United States)

    Macy, Eric; Goldberg, Bruce; Poon, Kwun-Yee T

    2010-08-01

    The intermittent unavailability of penicilloyl-polylysine since September 2000 has focused interest on commercial anti-penicillin IgE fluorometric enzyme immunoassay (FEIA) tests to evaluate penicillin allergy. There has been no published comparison of commercial anti-penicillin IgE FEIAs and penicillin skin testing performed in the United States. To determine whether the current commercial anti-penicillin IgE FEIAs can replace or augment penicillin skin testing and oral challenges when evaluating individuals with a history of penicillin allergy for future therapeutic penicillin tolerance. A prospective convenience sample of 150 individuals with a history of penicillin allergy were evaluated between January 23, 2007, and August 4, 2009, with both penicillin skin tests and commercial anti-penicillin IgE FEIAs to penicillin G, penicillin V, and amoxicillin. All individuals with a negative penicillin skin test result underwent oral penicillin class antibiotic challenges. All individuals with a positive anti-penicillin IgE FEIA result also underwent oral penicillin class antibiotic challenges. Six individuals (4.0%; 95% confidence interval [CI], 0.9% to 7.1%) had positive penicillin skin test results, and none had positive FEIA results. Four individuals (2.7%; 95% CI, 0.1% to 5.3%) had positive FEIA results, and none had positive penicillin skin test results. Three individuals (2.0%; 95% CI, -0.2% to 4.2%) had positive oral challenge results, 1 with hives at 6 hours after challenge and 2 with delayed-onset (at >24 hours) nonurticarial rashes, and none had positive FEIA results. The current commercial anti-penicillin IgE FEIAs are not useful in diagnosing penicillin allergy in patients with remote histories of penicillin allergy. Penicillin skin testing and, if the results are negative, an oral challenge remain the criterion standard tests to determine therapeutic penicillin tolerance. Copyright 2010 American College of Allergy, Asthma & Immunology. Published by

  10. Molecular engineering of fungal GH5 and GH26 beta-(1,4-mannanases toward improvement of enzyme activity.

    Directory of Open Access Journals (Sweden)

    Marie Couturier

    Full Text Available Microbial mannanases are biotechnologically important enzymes since they target the hydrolysis of hemicellulosic polysaccharides of softwood biomass into simple molecules like manno-oligosaccharides and mannose. In this study, we have implemented a strategy of molecular engineering in the yeast Yarrowia lipolytica to improve the specific activity of two fungal endo-mannanases, PaMan5A and PaMan26A, which belong to the glycoside hydrolase (GH families GH5 and GH26, respectively. Following random mutagenesis and two steps of high-throughput enzymatic screening, we identified several PaMan5A and PaMan26A mutants that displayed improved kinetic constants for the hydrolysis of galactomannan. Examination of the three-dimensional structures of PaMan5A and PaMan26A revealed which of the mutated residues are potentially important for enzyme function. Among them, the PaMan5A-G311S single mutant, which displayed an impressive 8.2-fold increase in kcat /KM due to a significant decrease of KM, is located within the core of the enzyme. The PaMan5A-K139R/Y223H double mutant revealed modification of hydrolysis products probably in relation to an amino-acid substitution located nearby one of the positive subsites. The PaMan26A-P140L/D416G double mutant yielded a 30% increase in kcat /KM compared to the parental enzyme. It displayed a mutation in the linker region (P140L that may confer more flexibility to the linker and another mutation (D416G located at the entrance of the catalytic cleft that may promote the entrance of the substrate into the active site. Taken together, these results show that the directed evolution strategy implemented in this study was very pertinent since a straightforward round of random mutagenesis yielded significantly improved variants, in terms of catalytic efiiciency (kcat/KM.

  11. Biodegradation of Aged Residues of Atrazine and Alachlor in a Mix-Load Site Soil by Fungal Enzymes

    Directory of Open Access Journals (Sweden)

    Anastasia E. M. Chirnside

    2011-01-01

    Full Text Available Soils from bulk pesticide mixing and loading (mix-load sites are often contaminated with a complex mixture of pesticides, herbicides, and other organic compounds used in pesticide formulations that limits the success of remediation efforts. Therefore, there is a need to find remediation strategies that can successfully clean up these mix-load site soils. This paper examined the degradation of atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine; AT and alachlor (2-chloro-2, 6-diethyl-N-[methoxymethyl]-acetanilide in contaminated mix-load site soil utilizing an extracellular fungal enzyme solution derived from the white rot fungus, Phanerochaete chrysosporium, grown in a packed bed bioreactor. Thirty-two percent of AT and 54% of AL were transformed in the biometers. The pseudo first-order rate constant for AT and AL biodegradation was 0.0882 d−1 and 0.2504 d−1, respectively. The half-life (1/2 for AT and AL was 8.0 and 3.0 days, respectively. Compared to AT, the initial disappearance of AL proceeded at a faster rate and resulted in a greater amount of AL transformed. Based on the net Co2 evolved from the biometers, about 4% of the AT and AL initially present in the soil was completely mineralized.

  12. Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat).

    Science.gov (United States)

    Dao, Thai Ha; Zhang, Jian; Bao, Jie

    2013-11-01

    A high inulinase activity was found in three commercially available glucoamylase enzymes. Its origin was investigated and two proteins in the commercial glucoamylases were identified as the potential enzymes showing inulinase activity. One of the commercial glucoamylases, GA-L New from Genencor, was used for Jerusalem artichoke tubers (Jat) hydrolysis and a high hydrolysis yield of fructose was obtained. The simultaneous saccharification and lactic acid fermentation (SSF) of Jat was carried out using GA-L New as the inulinase and Pediococcus acidilactici DQ2 as the fermenting strain. A high lactic acid titer, yield, and productivity of 111.5 g/L, 0.46 g/g DM, and 1.55 g/L/h, respectively, were obtained within 72 h. The enzyme cost using the commercial glucoamylase as inulinase was compared to that using the typical inulinase and a large profit margin was identified. The results provided a practical way of Jat application for lactic acid production using cheap commercial glucoamylase enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effect of commercial Rhodiola rosea on CYP enzyme activity in humans.

    Science.gov (United States)

    Thu, Ole Kristian; Spigset, Olav; Nilsen, Odd Georg; Hellum, Bent

    2016-03-01

    The aim of the present study was to evaluate the effect of the herbal drug Rhodiola rosea on the activity of the cytochrome P-450 (CYP) enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in humans. In a randomized cross-over study, 13 healthy volunteers were given a cocktail with single doses of the CYP substrates caffeine (CYP1A2), losartan (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), and midazolam (CYP3A4) with and without 14 days of pretreatment with a commercially available R. rosea product (Arctic Root, produced by the Swedish Herbal Institute). Four hours after intake of the drug cocktail, a blood sample was obtained, the serum concentrations of the drugs and their metabolites were analyzed, and the metabolic ratios were calculated as a measure of CYP enzyme activity. A statistically significant 21% decrease in the EXP-3174/losartan ratio was found after pretreatment with R. rosea (p = 0.023), indicating a reduced CYP2C9 metabolic activity. The effect was more pronounced in CYP2C9 extensive metabolizers than in CYP2C9 intermediate and poor metabolizers. For the other CYP enzymes tested, no significant effects were observed. This study indicates that R. rosea inhibits the metabolic capacity of CYP2C9 in humans. Although the effect is modest, it might be clinically relevant during treatment with CYP2C9 substrates with a narrow therapeutic index, such as phenytoin and warfarin.

  14. Proteolysis of Sardine (Sardina pilchardus and Anchovy (Stolephorus commersonii by Commercial Enzymes in Saline Solutions

    Directory of Open Access Journals (Sweden)

    Chau Minh Le

    2015-01-01

    Full Text Available Fish sauce production is a very long process and there is a great interest in shortening it. Among the different strategies to speed up this process, the addition of external proteases could be a solution. This study focuses on the eff ect of two commercial enzymes (Protamex and Protex 51FP on the proteolysis of two fish species traditionally converted into fish sauce: sardine and anchovy, by comparison with classical autolysis. Hydrolysis reactions were conducted with fresh fish at a temperature of 30 °C and under different saline conditions (from 0 to 30 % NaCl. Hydrolysis degree and liquefaction of the raw material were used to follow the process. As expected, the proteolysis decreased with increasing amount of salt. Regarding the fi sh species, higher rate of liquefaction and higher hydrolysis degree were obtained with anchovy. Between the two proteases, Protex 51FP gave better results with both fi sh types. This study demonstrates that the addition of commercial proteases could be helpful for the liquefaction of fi sh and cleavage of peptide bonds that occur during fi sh sauce production and thus speed up the production process.

  15. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  16. Evaluation of commercial enzyme-linked immunosorbent assays to identify psychedelic phenethylamines.

    Science.gov (United States)

    Kerrigan, Sarah; Mellon, Monica Brady; Banuelos, Stephanie; Arndt, Crystal

    2011-09-01

    The 2C, 2C-T, and DO series of designer drugs pose a number of challenges to forensic toxicology laboratories. Although these drugs are seized by law enforcement agencies throughout the United States, they are not readily detected in forensic toxicology laboratories. A systematic evaluation of the cross-reactivity of 9 commercial enzyme-linked immunosorbent assays (ELISAs) was conducted using 11 designer drugs. Cross-reactivity was measured towards 2,5-dimethoxy-4-bromophenethylamine (2C-B), 2,5-dimethoxyphenethylamine (2C-H), 2,5-dimethoxy4-iodophenethylamine (2C-I), 2,5-dimethoxy-4ethylthiophenethylamine (2C-T-2), 2,5-dimethoxy-4isopropylthiophenethylamine (2C-T-4), 2,5-dimethoxy-4propylthiophenethylamine (2C-T-7), 2,5-dimethoxy-4bromoamphetamine (DOB), 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy-4-iodoamphetamine (DOI), 2,5-dimethoxy-4-methylamphetamine (DOM), and 4methylthioamphetamine (4-MTA). Cross-reactivity towards the 2C, 2C-T, and DO series of psychedelic amphetamines was psychedelic phenethylamines makes it harder to detect these drugs using routine screening. As a consequence, laboratories that rely upon immunoassay rather than more broad spectrum chromatographic screening techniques, may fail to detect these powerful psychedelic substances.

  17. Chronic Chagas Disease Diagnosis: A Comparative Performance of Commercial Enzyme Immunoassay Tests

    Science.gov (United States)

    Santos, Fred Luciano Neves; de Souza, Wayner Vieira; da Silva Barros, Michelle; Nakazawa, Mineo; Krieger, Marco Aurélio; de Miranda Gomes, Yara

    2016-01-01

    There is a significant heterogeneity in reported performance of serological assays for Chagas disease diagnosis. The conventional serology testing in laboratory diagnosis and in blood banks is unsatisfactory because of a high number of inconclusive and misclassified results. We aimed to assess the quality of four commercially available enzyme-linked immunosorbent assay tests for their ability to detect Trypanosoma cruzi antibodies in 685 sera samples. Cross-reactivity was assessed by using 748 sera from patients with unrelated diseases. Initially, we found that the reactivity index against T. cruzi antigen was statistically higher in sera from Chagas disease patients compared with those from non-chagasic patients, supporting the notion that all evaluated tests have a good discriminatory ability toward the diagnosis of T. cruzi infection in patients in the chronic phase of the disease. Although all tests were similarly sensitive for diagnosing T. cruzi infection, there were significant variations in terms of specificity and cross-reactivity among them. Indeed, we obtained divergent results when testing sera from patient with unrelated diseases, particularly leishmaniasis, with the levels of cross-reactivity being higher in tests using whole T. cruzi extracts compared with those using recombinant proteins. Our data suggest that all four tests may be used for the laboratory diagnosis and routine blood screening diagnose for Chagas disease. We also emphasize that, despite their general good performance, caution is needed when analyzing the results when these tests are performed in areas where other diseases, particularly leishmaniasis, are endemic. PMID:26976886

  18. Degs and degu operon from Bacillus-brevis: a combination that enhances the production of commercially valuable enzymes

    CSIR Research Space (South Africa)

    Louw, M

    1995-05-01

    Full Text Available A novel method has been developed for increasing the production of commercially valuable enzymes, such as proteases, beta-glucanases, alpha-amylases and levansucrase. It is dependent on two genes cloned from Bacillus brevis, expressed on a multicopy...

  19. The effects of ethanol on hydrolysis of cellulose and pretreated barley straw by some commercial cellulolytic enzyme products

    Science.gov (United States)

    The effect of ethanol at levels ranging from 2.5% v/v to 15% v/v on the activities of two recently developed commercial cellulosic biomass hydrolytic enzyme products, Accellerase® 1500 and Accellerase® XY, was investigated. The substrates used for study of the effect of ethanol on Accellerase® 1500 ...

  20. Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases.

    Science.gov (United States)

    Badhan, Ajay; Wang, Yuxi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim

    2014-04-26

    Efficient conversion of lignocellulosic biomass to fermentable sugars requires the synergistic action of multiple enzymes; consequently enzyme mixtures must be properly formulated for effective hydrolysis. The nature of an optimal enzyme blends depends on the type of pretreatment employed as well the characteristics of the substrate. In this study, statistical experimental design was used to develop mixtures of recombinant glycosyl hydrolases from thermophilic and anaerobic fungi that enhanced the digestion of alkaline peroxide treated alfalfa hay and barley straw by mixed rumen enzymes as well as commercial cellulases (Accelerase 1500, A1500; Accelerase XC, AXC). Combinations of feruloyl and acetyl xylan esterases (FAE1a; AXE16A_ASPNG), endoglucanase GH7 (EGL7A_THITE) and polygalacturonase (PGA28A_ASPNG) with rumen enzymes improved straw digestion. Inclusion of pectinase (PGA28A_ASPNG), endoxylanase (XYN11A_THITE), feruloyl esterase (FAE1a) and β-glucosidase (E-BGLUC) with A1500 or endoglucanase GH7 (EGL7A_THITE) and β-xylosidase (E-BXSRB) with AXC increased glucose release from alfalfa hay. Glucose yield from straw was improved when FAE1a and endoglucanase GH7 (EGL7A_THITE) were added to A1500, while FAE1a and AXE16A_ASPNG enhanced the activity of AXC on straw. Xylose release from alfalfa hay was augmented by supplementing A1500 with E-BGLUC, or AXC with EGL7A_THITE and XYN11A_THITE. Adding arabinofuranosidase (ABF54B_ASPNG) and esterases (AXE16A_ASPNG; AXE16B_ASPNG) to A1500, or FAE1a and AXE16A_ASPNG to AXC enhanced xylose release from barley straw, a response confirmed in a scaled up assay. The efficacy of commercial enzyme mixtures as well as mixed enzymes from the rumen was improved through formulation with synergetic recombinant enzymes. This approach reliably identified supplemental enzymes that enhanced sugar release from alkaline pretreated alfalfa hay and barley straw.

  1. Enrichment and Broad Representation of Plant Biomass-Degrading Enzymes in the Specialized Hyphal Swellings of Leucoagaricus gongylophorus, the Fungal Symbiont of Leaf-Cutter Ants

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, Frank O.; Khadempour, Lily; Tremmel, Daniel; McDonald, Bradon R.; Nicora, Carrie D.; Wu, Si; Moore, Ronald J.; Orton, Daniel J.; Monroe, Matthew E.; Piehowski, Paul D.; Purvine, Samuel O.; Smith, Richard D.; Lipton, Mary S.; Burnum-Johnson, Kristin E.; Currie, Cameron R.

    2015-08-28

    Leaf-cutter ants are prolific and conspicuous Neotropical herbivores that derive energy from specialized fungus gardens they cultivate using foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain lignocellulases that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as it is foraged by the ants. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plant biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous lignocellulases likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three-quarters of all lignocellulases identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 23 lignocellulases enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.

  2. Ligninolytic enzyme activities in mycelium of some wild and ...

    African Journals Online (AJOL)

    Lignin is probably one of the most recalcitrant compounds synthesized by plants. This compound is degraded by few microorganisms. White-rot fungi have been extensively studied due to its powerful ligninolytic enzymes. In this study, ligninolytic enzyme activities of different fungal species (six commercial and 13 wild) were ...

  3. House fly (Musca domestica) (Diptera: Muscidae) mortality after exposure to commercial fungal formulations in a sugar bait

    Science.gov (United States)

    House flies (Musca domestica L.) (Diptera: Muscidae) are major pests of livestock. Biological control is an important tool in an integrated control framework. Increased mortality in filth flies has been documented with entomopathogenic fungi, and several strains are commercially available. Three str...

  4. Effect of Flavonoid-Rich Extract of Glycyrrhiza glabra on Gut-Friendly Microorganisms, Commercial Probiotic Preparations, and Digestive Enzymes.

    Science.gov (United States)

    Asha, Mannanthendil Kumaran; Debraj, Debnath; Dethe, Shekhar; Bhaskar, Anirban; Muruganantham, Nithyanantham; Deepak, Mundkinajeddu

    2017-05-04

    Flavonoid-rich extract prepared from Glycyrrhiza glabra has been found to be beneficial in patients with functional dyspepsia and was reported to possess some gut health-promoting properties such as antioxidant, anti-inflammatory and anti-Helicobacter pylori activities. In the present study, the flavonoid-rich extract of Glycyrrhiza glabra was evaluated for its compatibility with probiotic strains (Lactobacillus casei, Lactobacillus fermentum, Lactobacillus plantarum, and Streptococcus thermophilus), commercial probiotic drinks, and digestive enzymes (pancreatic α-amylase, α-glucosidase, phytase, xylanase, and pancreatic lipase). Results of this study indicated that the flavonoid-rich extract of Glycyrrhiza glabra is compatible with the tested probiotic strains, probiotic drinks and digestive enzymes.

  5. Adaptive expression of host cell wall degrading enzymes in fungal disease: an example from Fusarium root rot of medicinal Coleus.

    Science.gov (United States)

    Bhattacharya, A

    2013-12-15

    Quantity of extracellular proteins and activities two cell wall degrading enzymes pectinase and cellulase were determined in the culture filtrate of Fusarium solani, the causal organism of root rot of Coleus forskohlii. Substitution of carbon source in the medium with either pectin or carboxymethyl cellulose led to the increased production of extracellular proteins by the fungus. Pectinase and cellulase activity in the culture filtrate was detected only when the growth medium contained substituted carbon source in the form of pectin and CMC, respectively. Pectinase activity was highest after 5 days incubation and then decreased gradually with time but cellulase activity showed a steady time dependent increase. In vitro virulence study showed the requirement of both the enzymes for complete expression of rot symptoms on Coleus plants. Thus the present study established the adaptive, substrate dependent expression of the two enzymes by the fungus and also their involvement in the root rot disease of Coleus forskohlii.

  6. Detection and quantification of soy allergens in food: study of two commercial enzyme-linked immunosorbent assays.

    Science.gov (United States)

    L'Hocine, Lamia; Boye, Joyce Irene; Munyana, Christella

    2007-04-01

    The objective of this study was to evaluate the efficacy of 2 commercially available soy enzyme-linked immunosorbent assays (ELISA) and use them in detecting soy proteins in selected food commodities. Both ELISA kits exhibited high sensitivity. The determined limits of detection (LOD) (approximately 2 and soy proteins, when tested by the Tepnel Biosystems kit, was partially reduced by papain and bromelain hydrolysis; it was significantly decreased by protein glycation (>47%). Nondenatured and nonheated soy protein isolate (SPI) samples were also significantly less antigenic than the treated ones.

  7. Evaluation of two commercial enzyme-linked immunosorbent assay kits for the detection of Mycoplasma gallisepticum antibodies.

    Science.gov (United States)

    Kempf, I; Gesbert, F; Guittet, M; Bennejean, G; Stipkovits, L

    1994-06-01

    Sensitivity and specificity of two commercial Mycoplasma gallisepticum (MG) enzyme-linked immunosorbent assay (ELISA) kits, rapid slide agglutination (SA) and haemagglutination inhibition (HI) tests were compared using sera from specific pathogen free chickens, turkeys or ducks which had been inoculated with various avian mycoplasmas, bacteria or with a reovirus. Results show that sensitivity of SA was superior to ELISA and HI tests in the ability to detect antibodies formed in early response to MG infection. However, both ELISA kits and HI tests had a higher degree of specificity.

  8. On-site hydrolytic enzymes production from fungal co-cultivation of Bermuda grass and corn cob.

    Science.gov (United States)

    Amaro-Reyes, Aldo; Gracida, Jorge; Huizache-Peña, Nelson; Elizondo-García, Norberto; Salazar-Martínez, José; García Almendárez, Blanca E; Regalado, Carlos

    2016-07-01

    Solid state fermentation (SSF) is used to produce industrial enzymes. The objective of this study was to use a co-culture of Aspergillus niger GS1 and Trichoderma reesei, grown on a mixture of Bermuda grass and corn cob to obtain fermented forage (FF) rich in hydrolytic enzymes, as a value added ingredient for animal feed. FPase, amylase and xylanase productivities (dry matter, DM) were 8.8, 181.4, and 42.1Ug(-1)h(-1), respectively (1U=reducing sugars released min(-1)), after 12-16h of SSF with C/N=60. Cellulose, hemicellulose and lignin decreased 1.6-, 2.7- and 1.9-fold (DM), respectively. In vitro ruminal and true digestibility of DM was improved 2.4- and 1.4-fold. Ruminal digestion of FF reduced 1.32-fold the acetate:propionate ratio, which may reduce the environmental impact of ruminants feeding. On-site hydrolytic enzymes productivity using SSF without enzymes extraction could be of economic potential for digestibility improvement in animal feed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fungal Keratitis

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Fungal Keratitis Sections What is Fungal Keratitis? Fungal Keratitis Causes ... Keratitis Symptoms Fungal Keratitis Treatment What is Fungal Keratitis? Leer en Español: ¿Qué Es la Queratitis Fúngica? ...

  10. Expression of fungal cutinase and swollenin in tobacco chloroplasts reveals novel enzyme functions and/or substrates.

    Directory of Open Access Journals (Sweden)

    Dheeraj Verma

    Full Text Available In order to produce low-cost biomass hydrolyzing enzymes, transplastomic lines were generated that expressed cutinase or swollenin within chloroplasts. While swollenin expressing plants were homoplasmic, cutinase transplastomic lines remained heteroplasmic. Both transplastomic lines showed interesting modifications in their phenotype, chloroplast structure, and functions. Ultrastructural analysis of chloroplasts from cutinase- and swollenin-expressing plants did not show typical lens shape and granal stacks. But, their thylakoid membranes showed unique scroll like structures and chloroplast envelope displayed protrusions, stretching into the cytoplasm. Unusual honeycomb structures typically observed in etioplasts were observed in mature chloroplasts expressing swollenin. Treatment of cotton fiber with chloroplast-derived swollenin showed enlarged segments and the intertwined inner fibers were irreversibly unwound and fully opened up due to expansin activity of swollenin, causing disruption of hydrogen bonds in cellulose fibers. Cutinase transplastomic plants showed esterase and lipase activity, while swollenin transplastomic lines lacked such enzyme activities. Higher plants contain two major galactolipids, monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG, in their chloroplast thylakoid membranes that play distinct roles in their structural organization. Surprisingly, purified cutinase effectively hydrolyzed DGDG to MGDG, showing alpha galactosidase activity. Such hydrolysis resulted in unstacking of granal thylakoids in chloroplasts and other structural changes. These results demonstrate DGDG as novel substrate and function for cutinase. Both MGDG and DGDG were reduced up to 47.7% and 39.7% in cutinase and 68.5% and 67.5% in swollenin expressing plants. Novel properties and functions of both enzymes reported here for the first time should lead to better understanding and enhanced biomass hydrolysis.

  11. Evaluation of the risk of fungal spoilage when substituting sucrose with commercial purified Stevia glycosides in sweetened bakery products.

    Science.gov (United States)

    Rodríguez, Alicia; Magan, Naresh; Medina, Angel

    2016-08-16

    The objectives of this study were to compare the effect of different Stevia-based sugar substitutes (S1-S3), sucrose alone and a mixture of sucrose+S1 on: (a) humectant properties, (b) relative colonisation rates of sponge cake slices at 0.90 aw by strains of Aspergillus flavus, Eurotium amstelodami, Fusarium graminearum and Penicillium verrucosum at 20 and 25°C and (c) shelf-life periods in days prior to visible growth. Results showed that sucrose, S1 commercial sugar substitute and the mixture of sucrose+S1 in water solutions were able to reach water activity levels similar to those of glycerol and glucose mixtures. The S2 and S3 commercial sugar substitutes were unable to reduce aw levels significantly. At 25°C, colonisation of sponge cake slices by E. amstelodami, A. flavus and P. verrucosum occurred in all the treatments. Growth of F. graminearum only occurred on sponge cake slices containing S2 and S3 Stevia-based products at both temperatures. The best control of growth (30days) was achieved in cake slices modified with sucrose or S1 Stevia treatments inoculated with A. flavus and in the sucrose treatment for E. amstelodami at 20°C. F. graminearum growth was completely inhibited when sucrose alone, S1 or sucrose+S1 treatments were used at both temperatures. This study suggests that, as part of a hurdle technology approach, replacing sucrose with low calorie sugar substitutes based on Stevia glycosides needs to be done with care. This is because different products may have variable humectant properties and bulking agents which may shorten the potential shelf-life of intermediate moisture bakery products. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Cross-reactivity of designer drugs, including cathinone derivatives, in commercial enzyme-linked immunosorbent assays.

    Science.gov (United States)

    Swortwood, Madeleine J; Hearn, W Lee; DeCaprio, Anthony P

    2014-01-01

    Since the introduction of synthetic heroin, designer drugs have been increasing in prevalence in the United States drug market over the past few decades. Recently, 'legal highs' sold as 'bath salts' have become a household term for one such class of designer drugs. While a number of federal and state bans have been enacted, the abuse of these designer drugs still continues. Few assays have been developed for the comprehensive detection of such compounds, so it is important to investigate how they may or may not react in presumptive screens, i.e. pre-existing commercial immunoassays. In this experiment, 16 different ELISA reagents were evaluated to determine the cross-reactivity of 30 designer drugs, including 24 phenylethylamines (including 8 cathinone derivatives), 3 piperazines, and 3 tryptamines. Cross-reactivity towards most drugs was designer drugs. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Aged-look vat dyed cotton with anti-bacterial/anti-fungal properties by treatment with nano clay and enzymes.

    Science.gov (United States)

    Maryan, Ali Sadeghian; Montazer, Majid; Harifi, Tina; Rad, Mahnaz Mahmoudi

    2013-06-05

    In this research, nanotechnology as a route to functional finishing of textiles was used along with bio-finishing to enhance the cotton fabrics performance. For this purpose, quaternary modified montmorillonite and common enzymes such as cellulase, laccase and their mixture were applied on vat dyed cotton fabric. Characteristic analysis of the treated samples and the dispersed nano clays in the effluent of the treatment was performed by various analyzing methods. The nano/bio-finishing is believed to impart antibacterial and antifungal activities with simultaneously higher lightness, advanced softness and handle properties into cotton fabrics. Moreover, cotton fabrics were proved to have no adverse effects (low toxicity) on human dermal fibroblasts. Findings suggest the potential of the proposed method in reducing the risk of microorganism for textile applications and imparting better handle and appearance properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Increase in milk yield of commercial dairy herds fed a microbial and enzyme supplement.

    Science.gov (United States)

    McGilliard, M L; Stallings, C C

    1998-05-01

    A microbial and enzyme supplement fed at 21.2 g/d per cow to 46 Virginia dairy herds increased the milk yield of 31 herds (17 significantly) and decreased the milk yield of 15 herds (7 significantly). Effects of season were important but consistent with overall results. Herds began receiving the supplement, which contained dried fermentation products of Aspergillus oryzae, Bacillus subtilis, Lactobacillus acidophilus, and yeast culture, midway between the first and second monthly Dairy Herd Improvement tests and continued on the supplement through the 3rd mo. Entry of herds was staggered over 8 mo to reduce the influence of season. The trial involved 3417 cows with 5 test mo between 60 and 365 d in milk. Milk yield during mo 3 averaged 0.64 kg/d per cow more (+0.73 kg/d for first lactation cows and +0.56 kg/d for later lactation cows) than the mean milk yield during mo 1 and 5. Herds completing the study before summer responded similarly to all other herds, which included herds that were fed the product during summer and those that finished the study during summer. Fat and protein yields and protein percentage differed little with or without the supplement. Fat percentage decreased (0.10%). Twenty-one herds that were fed a yeast product prior to and during the study responded similarly to the 17 herds that were not fed a yeast product.

  15. A role for small secreted proteins (SSPs) in a saprophytic fungal lifestyle: Ligninolytic enzyme regulation in Pleurotus ostreatus.

    Science.gov (United States)

    Feldman, Daria; Kowbel, David J; Glass, N Louise; Yarden, Oded; Hadar, Yitzhak

    2017-11-06

    Small secreted proteins (SSPs), along with lignocellulose degrading enzymes, are integral components of the secretome of Pleurotus ostreatus, a white rot fungus. In this study, we identified 3 genes (ssp1, 2 and 3) encoding proteins that are annotated as SSPs and that exhibited of ~4,500- fold expression, 24 hr following exposure to the toxic compound 5-hydroxymethylfurfural (HMF). Homologues to genes encoding these SSPs are present in the genomes of other basidiomycete fungi, however the role of SSPs is not yet understood. SSPs, aryl-alcohol oxidases (AAO) and the intracellular aryl-alcohol dehydrogenases (AAD) were also produced after exposure to other aryl-alcohols, known substrates and inducers of AAOs, and during idiophase (after the onset of secondary metabolism). A knockdown strain of ssp1 exhibited reduced production of AAO-and AAD-encoding genes after HMF exposure. Conversely, a strain overexpressing ssp1 exhibited elevated expression of genes encoding AAOs and ADD, resulting in a 3-fold increase in enzymatic activity of AAOs, as well as increased expression and protein abundance of versatile peroxidase 1, which directly degrades lignin. We propose that in addition to symbionts and pathogens, SSPs also have roles in saprophytes and function in P. ostreatus as components of the ligninolytic system.

  16. [State of Fungal Lipases of Rhizopus microsporus, Penicillium sp. and Oospora lactis in Border Layers Water-Solid Phase and Factors Affecting Catalytic Properties of Enzymes].

    Science.gov (United States)

    Khasanov, Kh T; Davranov, K; Rakhimov, M M

    2015-01-01

    We demonstrated that a change in the catalytic activity of fungal lipases synthesized by Rhizopus microsporus, Penicillium sp. and Oospora lactis and their ability to absorb on different sorbents depended on the nature of groups on the solid phase surface in the model systems water: lipid and water: solid phase. Thus, the stability of Penicillium sp. lipases increased 85% in the presence ofsorsilen or DEAE-cellulose, and 55% of their initial activity respectively was preserved. In the presence of silica gel and CM-cellulose, a decreased rate of lipid hydrolysis by Pseudomonas sp. enzymes was observed in water medium, and the hydrolysis rate increased by 2.4 and 1.5 times respectively in the presence of aminoaerosil and polykefamid. In an aqueous-alcohol medium, aminoaerosil and polykefamid decreased the rate of substrate hydrolysis by more than 30 times. The addition of aerosil to aqueous and aqueous-alcohol media resulted in an increase in the hydrolysis rate by 1.2-1.3 times. Sorsilen stabilized Penicillium sp. lipase activity at 40, 45, 50 and 55 degrees C. Either stabilization or inactivation of lipases was observed depending on the pH of the medium and the nature of chemical groups localized on the surface of solid phase. The synthetizing activity of lipases also changed depending on the conditions.

  17. Validation for use with coyotes (Canis latrans) of a commercially available enzyme-linked immunosorbent assay for Dirofilaria immitis.

    Science.gov (United States)

    Sacks, B N; Chomel, B B; Kasten, R W; Chang, C C; Sanders, R K; Leterme, S D

    2002-10-16

    Serological tests offer a potentially powerful tool for monitoring parasites in wildlife populations. However, such tests must be validated before using them with target wildlife populations. We evaluated in coyotes (Canis latrans) the performance of a commercially available serological test used to detect canine heartworm (Dirofilaria immitis) in domestic dogs. We obtained 265 coyote carcasses and serological specimens from 54 additional coyotes from several regions of California, USA. We necropsied coyotes to determine the adult heartworm infection status. Blood was collected at necropsy on filter paper strips and allowed to dry; it was later eluted in a buffer solution, and the supernatant was tested for heartworm. Receiver operating characteristic (ROC) analysis was used to assess discriminatory power of the test and indicated a 93% probability that a randomly selected infected coyote would exhibit a higher enzyme-linked immunosorbent assay (ELISA) value than a randomly selected uninfected coyote. We estimated specificity at 96% (95% CI: 92-98%) for 165 uninfected coyotes and sensitivity at 85% (77-91%) for 100 infected coyotes, results similar to published values for the commercial serological test used with dog serum or plasma. Test performance was similar for filter paper specimens and supernatant of frozen whole blood collected in EDTA tubes (i.e. hemolyzed plasma). We found no difference in test performance among geographic or demographic coyote groups. Our findings support application of the test to filter paper or standard serological specimens for detection of heartworm in coyote populations.

  18. Genotyping bacterial and fungal pathogens using sequence variation in the gene for the CCA-adding enzyme.

    Science.gov (United States)

    Franz, Paul; Betat, Heike; Mörl, Mario

    2016-03-18

    To allow an immediate treatment of an infection with suitable antibiotics and bactericides or fungicides, there is an urgent need for fast and precise identification of the causative human pathogens. Methods based on DNA sequence comparison like 16S rRNA analysis have become standard tools for pathogen verification. However, the distinction of closely related organisms remains a challenging task. To overcome such limitations, we identified a new genomic target sequence located in the single copy gene for tRNA nucleotidyltransferase fulfilling the requirements for a ubiquitous, yet highly specific DNA marker. In the present study, we demonstrate that this sequence marker has a higher discriminating potential than commonly used genotyping markers in pro- as well as eukaryotes, underscoring its applicability as an excellent diagnostic tool in infectology. Based on phylogenetic analyses, a region within the gene for tRNA nucleotidyltransferase (CCA-adding enzyme) was identified as highly heterogeneous. As prominent examples for pro- and eukaryotic pathogens, several Vibrio and Aspergillus species were used for genotyping and identification in a multiplex PCR approach followed by gel electrophoresis and fluorescence-based product detection. Compared to rRNA analysis, the selected gene region of the tRNA nucleotidyltransferase revealed a seven to 30-fold higher distinction potential between closely related Vibrio or Aspergillus species, respectively. The obtained data exhibit a superb genome specificity in the diagnostic analysis. Even in the presence of a 1,000-fold excess of human genomic DNA, no unspecific amplicons were produced. These results indicate that a relatively short segment of the coding region for tRNA nucleotidyltransferase has a higher discriminatory potential than most established diagnostic DNA markers. Besides identifying microbial pathogens in infections, further possible applications of this new marker are food hygiene controls or metagenome

  19. Evaluation and optimization of a commercial enzyme linked immunosorbent assay for detection of Chlamydophila pneumoniae IgA antibodies

    Directory of Open Access Journals (Sweden)

    Gargouri Jalel

    2008-07-01

    Full Text Available Abstract Background Serologic diagnosis of Chlamydophila pneumoniae (Cpn infection routinely involves assays for the presence of IgG and IgM antibodies to Cpn. Although IgA antibodies to Cpn have been found to be of interest in the diagnosis of chronic infections, their significance in serological diagnosis remains unclear. The microimmunofluorescence (MIF test is the current method for the measurement of Cpn antibodies. While commercial enzyme linked immunosorbent assays (ELISA have been developed, they have not been fully validated. We therefore evaluated and optimized a commercial ELISA kit, the SeroCP IgA test, for the detection of Cpn IgA antibodies. Methods Serum samples from 94 patients with anti-Cpn IgG titers ≥ 256 (study group and from 100 healthy blood donors (control group were tested for the presence of IgA antibodies to Cpn, using our in-house MIF test and the SeroCP IgA test. Two graph receiver operating characteristic (TG-ROC curves were created to optimize the cut off given by the manufacturer. Results The MIF and SeroCP IgA tests detected Cpn IgA antibodies in 72% and 89%, respectively, of sera from the study group, and in 9% and 35%, respectively, of sera from the control group. Using the MIF test as the reference method and the cut-off value of the ELISA test specified by the manufacturer for seropositivity and negativity, the two tests correlated in 76% of the samples, with an agreement of Ƙ = 0.54. When we applied the optimized cut-off value using TG-ROC analysis, 1.65, we observed better concordance (86% and agreement (0.72 between the MIF and SeroCP IgA tests. Conclusion Use of TG-ROC analysis may help standardize and optimize ELISAs, which are simpler, more objective and less time consuming than the MIF test. Standardization and optimization of commercial ELISA kits may result in better performance.

  20. [Fungal sinusitis].

    Science.gov (United States)

    Riechelmann, H

    2011-06-01

    The incidence of fungal sinusitis is subjected to significant geographical variation. Basically, invasive and non-invasive fungal sinusitis is distinguished. Invasive fungal sinusitis is observed mainly in immunocompromised hosts. The diagnopsis is based on positive fungus detection combined with characteristic clinical features. The treatment of invasive fungal sinusitis is based on surgical debridement and systemic antifungal therapy. Non-invasive fungal sinusitis is either treated with surgery alone or surgery combined with systemic steroid therapy. The majority of studies showed no benefit of postoperative antimycotic medical treatment in patients with non-invasive fungal sinusitis. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases.

    Science.gov (United States)

    Ovissipour, Mahmoudreza; Rasco, Barbara; Shiroodi, Setareh Ghorban; Modanlow, Maryam; Gholami, Sanaz; Nemati, Mahrokh

    2013-05-01

    The antioxidant activity and chemical properties of fish protein hydrolysates (FPHs) prepared from anchovy sprat (Clupeonella engrauliformis) using endogenous enzymes (autolysis) and commercial proteases were investigated. The highest degree of hydrolysis (DH) was observed with Alcalase and papain and the highest protein recovery (PR) with Alcalase and bromelain. FPH yield was highest with Alcalase (82.3%) and lowest with autolysis (63.64%). Increased DH resulted in increased FPH yield (R(2) = 0.77). The highest oil recovery was observed with bromelain (6.41%) and the lowest with autolysis (3.58%). Antioxidant activity determined by DPPH, reducing power and ferrous chelation assays was highest in bromelain, Promod and papain FPHs respectively. The highest ABTS activity was observed in Alcalase FPH, followed by Promod and Protamex™ FPHs. The lowest antioxidant activity was observed in autolysed and Flavourzyme FPHs (P > 0.05). Heavy metals (arsenic, lead and mercury) were recorded at levels below the regulatory limits established by the FDA. Anchovy sprat hydrolysates showed high antioxidant activities and amino acid contents and low heavy metal concentrations, indicating that they have high potential for use in human and animal diets. The high antioxidant activities are related to the high levels of hydrophobic amino acids found in this study. © 2012 Society of Chemical Industry.

  2. Screening of commercial enzymes for poly(ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources.

    Science.gov (United States)

    de Castro, Aline Machado; Carniel, Adriano; Nicomedes Junior, José; da Conceição Gomes, Absai; Valoni, Érika

    2017-06-01

    Poly(ethylene terephthalate) (PET) is one of the most consumed plastics in the world. The development of efficient technologies for its depolymerization for monomers reuse is highly encouraged, since current recycling rates are still very low. In this study, 16 commercial lipases and cutinases were evaluated for their abilities to catalyze the hydrolysis of two PET samples. Humicola insolens cutinase showed the best performance and was then used in reactions on other PET sources, solely or in combination with the efficient mono(hydroxyethyl terephthalate)-converting lipase from Candida antarctica. Synergy degrees of the final titers of up to 2.2 (i.e., more than double of the concentration when both enzymes were used, as compared to their use alone) were found, with increased terephthalic acid formation rates, reaching a maximum of 59,989 µmol/L (9.36 g/L). These findings open up new possibilities for the conversion of post-consumer PET packages into their minimal monomers, which can be used as drop in at existing industrial facilities.

  3. Fungal Tests

    Science.gov (United States)

    ... Prep Fungal Smear, Culture, Antigen and Antibody Tests Mycology Tests Fungal Molecular Tests Potassium Hydroxide Preparation Calcofluor ... February 7, Modified). Calcofluor White with 10% KOH. Mycology Online [On-line information]. Available online at http:// ...

  4. Fungal Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Fungal Meningitis Language: English Spanish Recommend on Facebook Tweet Share ... the brain or spinal cord. Investigation of Fungal Meningitis, 2012 In September 2012, the Centers for Disease ...

  5. Serologic testing for avian influenza viruses in wild birds: comparison of two commercial competition enzyme-linked immunosorbent assays.

    Science.gov (United States)

    Pérez-Ramírez, Elisa; Rodríguez, Vanessa; Sommer, Dagmar; Blanco, Juan Manuel; Acevedo, Pelayo; Heffels-Redmann, Ursula; Höfle, Ursula

    2010-03-01

    Serologic testing of wild birds for avian influenza virus (AIV) surveillance poses problems due to species differences and nonspecific inhibitors that may be present in sera of wild birds. Recently available competitive enzyme-linked immunosorbent assay (cELISA) kits offer a new species-independent approach. In this study we compare two commercial competitive cELISAs, using a total of 184 serum and plasma samples from 23 species of wild birds belonging to 10 orders. Thirteen samples were from experimentally high pathogenicity AI and low pathogenicity AI infected red-legged partridges (Alectoris rufa), 77 samples were from a flock of sentinel hybrid ducks confirmed infected by AI by real-time PCR, and 94 samples were from wild birds admitted to a rehabilitation center. Both ELISAs detected AI antibodies in the experimentally infected partridges, whereas hemagglutination inhibition (HI) was negative. Concordance in results between the two ELISAs was 51.5%. When specific subtype-H5/H7 HI-positive samples were considered for comparison, ELISA 1 appeared to perform better on ducks, whereas ELISA 2 appeared to perform better in other wild bird species. Overall, 68.2% of H5/H7 positive samples tested positive by ELISA 1 and 36% by ELISA 2. Both ELISAs detected AIV-antibody-positive samples negative by specific HI against 9 of the 16 existing hemagglutinin (HA) subtypes. Presumably this reflects either higher sensitivity of cELISA when compared to HI, presence of antibodies against HA subtypes not tested, or unspecific reactions. Performance of ELISA 1 on ducks appears to be comparable to in-house cELISA previously used by other authors in wild birds, but requires a relatively large sample volume. Alternatively, although ELISA 2 required a smaller sample volume, it was less effective at identifying HI-positive samples. The results reflect the necessity of validation of cELISA tests for individual species or at least families, as required by the OIE.

  6. Whole-cell fungal transformation of precursors into dyes

    Directory of Open Access Journals (Sweden)

    Jarosz-Wilkołazka Anna

    2010-07-01

    Full Text Available Abstract Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25. Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other

  7. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants.

    Science.gov (United States)

    Neeraja, Chilukoti; Anil, Kondreddy; Purushotham, Pallinti; Suma, Katta; Sarma, Pvsrn; Moerschbacher, Bruno M; Podile, Appa Rao

    2010-09-01

    Fungal diseases of plants continue to contribute to heavy crop losses in spite of the best control efforts of plant pathologists. Breeding for disease-resistant varieties and the application of synthetic chemical fungicides are the most widely accepted approaches in plant disease management. An alternative approach to avoid the undesired effects of chemical control could be biological control using antifungal bacteria that exhibit a direct action against fungal pathogens. Several biocontrol agents, with specific fungal targets, have been registered and released in the commercial market with different fungal pathogens as targets. However, these have not yet achieved their full commercial potential due to the inherent limitations in the use of living organisms, such as relatively short shelf life of the products and inconsistent performance in the field. Different mechanisms of action have been identified in microbial biocontrol of fungal plant diseases including competition for space or nutrients, production of antifungal metabolites, and secretion of hydrolytic enzymes such as chitinases and glucanases. This review focuses on the bacterial chitinases that hydrolyze the chitinous fungal cell wall, which is the most important targeted structural component of fungal pathogens. The application of the hydrolytic enzyme preparations, devoid of live bacteria, could be more efficacious in fungal control strategies. This approach, however, is still in its infancy, due to prohibitive production costs. Here, we critically examine available sources of bacterial chitinases and the approaches to improve enzymatic properties using biotechnological tools. We project that the combination of microbial and recombinant DNA technologies will yield more effective environment-friendly products of bacterial chitinases to control fungal diseases of crops.

  8. Fungal pretreatment of lignocellulosic biomass.

    Science.gov (United States)

    Wan, Caixia; Li, Yebo

    2012-01-01

    Pretreatment is a crucial step in the conversion of lignocellulosic biomass to fermentable sugars and biofuels. Compared to thermal/chemical pretreatment, fungal pretreatment reduces the recalcitrance of lignocellulosic biomass by lignin-degrading microorganisms and thus potentially provides an environmentally-friendly and energy-efficient pretreatment technology for biofuel production. This paper provides an overview of the current state of fungal pretreatment by white rot fungi for biofuel production. The specific topics discussed are: 1) enzymes involved in biodegradation during the fungal pretreatment; 2) operating parameters governing performance of the fungal pretreatment; 3) the effect of fungal pretreatment on enzymatic hydrolysis and ethanol production; 4) efforts for improving enzymatic hydrolysis and ethanol production through combinations of fungal pretreatment and physical/chemical pretreatment; 5) the treatment of lignocellulosic biomass with lignin-degrading enzymes isolated from fungal pretreatment, with a comparison to fungal pretreatment; 6) modeling, reactor design, and scale-up of solid state fungal pretreatment; and 7) the limitations and future perspective of this technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Effect of commercial enzymes on berry cell wall deconstruction in the context of intravineyard ripeness variation under winemaking conditions

    DEFF Research Database (Denmark)

    Gao, Yu; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2016-01-01

    Significant intravineyard variation in grape berry ripening occurs within vines and between vines. However, no cell wall data are available on such variation. Here we used a checkerboard panel design to investigate ripening variation in pooled grape bunches for enzyme-assisted winemaking. The vin......Significant intravineyard variation in grape berry ripening occurs within vines and between vines. However, no cell wall data are available on such variation. Here we used a checkerboard panel design to investigate ripening variation in pooled grape bunches for enzyme-assisted winemaking...... at the berry cell wall polymer level and occurred within the experimental vineyard block. Furthemore, all enzyme treatments reduced cell wall variation via depectination. Interestingly, cell wall esterification levels were unaffected by enzyme treatments. This study provides clear evidence that enzymes can...... positively influence the consistency of winemaking and provides a foundation for further research into the relationship between grape berry cell wall architecture and enzyme formulations....

  10. Comparison of Two Commercial Tick-Borne Encephalitis Virus IgG Enzyme-Linked Immunosorbent Assays.

    Science.gov (United States)

    Weissbach, Fabian H; Hirsch, Hans H

    2015-07-01

    Despite the availability of protective vaccines, tick-borne encephalitis virus (TBEV) infections have been increasingly reported to the European Centre for Disease Prevention and Control in the past 2 decades. Since the diagnosis of TBEV exposure relies on serological testing, we compared two commercial enzyme-linked immunosorbent assays (ELISAs), i.e., Immunozym FSME IgG assay (ELISA-1) and Euroimmun FSME Vienna IgG assay (ELISA-2). Both assays use whole TBEV antigens, but they differ in viral strains (Neudoerfl for ELISA-1 and K23 for ELISA-2) and cutoff values. In testing of samples from 398 healthy blood donors, ELISA-1 showed higher reactivity levels than ELISA-2 (P < 0.001), suggesting different assay properties. This finding was supported by Bland-Altman analysis of the optical density at 450 nm (OD450) (mean bias, +0.32 [95% limits of agreement, -0.31 to +0.95]) and persisted after transformation into Vienna units. Concordant results were observed for 276 sera (69%) (44 positive and 232 negative results). Discordant results were observed for 122 sera (31%); 15 were fully discordant, all being ELISA-1 positive and ELISA-2 negative, and 107 were partially discordant (101 being ELISA-1 indeterminate and ELISA-2 negative and 6 having positive or indeterminate reactivity in both ELISAs). Neutralization testing at a 1:10 dilution yielded positive results for 33 of 44 concordant positive sera, 1 of 15 fully discordant sera, and 1 of 33 partially discordant sera. Indirect immunofluorescence testing revealed high antibody titers of ≥100 for yellow fever virus in 18 cases and for dengue virus in one case, suggesting that cross-reactivity contributed to the ELISA-1 results. We conclude that (i) cross-reactivity among flaviviruses remains a limitation of TBEV serological testing, (ii) ELISA-2 revealed reasonable sensitivity and specificity for anti-TBEV IgG population screening of human sera, and (iii) neutralization testing is most specific and should be reserved

  11. Immobilisation of ω-transaminase for industrial application: Screening and characterisation of commercial ready to use enzyme carriers

    DEFF Research Database (Denmark)

    Lima Afonso Neto, Watson; Schürmann, Martin; Panella, Lavinia

    2015-01-01

    Despite of the advantages that enzyme immobilisation can bring to industrial biocatalysis, its utilisation is still limited to a small number of enzymes and processes. Transaminase catalysed processes are a good example where immobilisation can be of major importance and even decisive for economic...

  12. Swine torque teno virus detection in pig commercial vaccines, enzymes for laboratory use and human drugs containing components of porcine origin.

    Science.gov (United States)

    Kekarainen, Tuija; Martínez-Guinó, Laura; Segalés, Joaquim

    2009-03-01

    Torque teno viruses (TTVs) are vertebrate infecting, single-stranded circular DNA viruses. Two genetically distinct TTV genogroups (TTV1 and TTV2) infect swine worldwide with high prevalence. Currently, swine TTVs are considered non-pathogenic, although TTV2 has been linked to post-weaning multisystemic wasting syndrome, a porcine circovirus disease. On the other hand, pig materials are an important source of components used in porcine vaccine manufacturing, human drugs and commercial enzyme products. However, there is little information about the possible existence of extraneous viruses in products containing porcine-derived components. In the present study, 26 commercial swine vaccines, seven human drugs and three enzyme products from porcine origin were tested for the presence of TTV1 and TTV2 genomes by PCR. Four vaccines against Mycoplasma hyopneumoniae were positive for TTV2 by PCR. Three M. hyopneumoniae, one porcine parvovirus and one porcine reproductive and respiratory syndrome virus vaccines were PCR positive for TTV1. One human drug contained TTV1 DNA as well as a trypsin enzyme; a porcine-derived elastase product was positive for both TTV genogroups. These results show that swine TTVs are contaminants not only of swine vaccines but also of human drugs containing porcine components and enzymes for laboratory use.

  13. A single enzyme PCR-RFLP protocol targeting 16S rRNA/tRNA(val) region to authenticate four commercially important shrimp species in India.

    Science.gov (United States)

    Wilwet, Lidiya; Jeyasekaran, Geevaretnam; Shakila, Robinson Jeya; Sivaraman, Balasubramanian; Padmavathy, Pandurengan

    2018-01-15

    Food authenticity is an issue of major concern for food authorities, as mislabeling represents one of the major commercial frauds. In this study, a novel PCR-RFLP protocol was developed as a tool to authenticate four shrimp products of commercial importance belonging to the family, Penaeidae, viz. Litopenaeus vannamei, Penaeus monodon, P. semisulcatus and Fenneropenaeus indicus. PCR amplification was performed targeting 16S rRNA/tRNA(val) region having an amplicon size of 530bp using the specific primers for shrimps, 16S-Cru4/16S-Cru3. Subsequent restriction analysis with a single restriction enzyme, Tsp5091, yielded distinct RFLP pattern for each species of shrimps having fragment sizes below 150bp. The unique RFLP patterns were also obtained in processed shrimp products without any degradation or alteration in the major fragments. The method was also validated with commercial shrimp products. Thus, the developed protocol can be performed within 8h using a single enzyme to authenticate four shrimp products of commercial significance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Changes in Land Use System and Environmental Factors Affect Arbuscular Mycorrhizal Fungal Density and Diversity, and Enzyme Activities in Rhizospheric Soils of Acacia senegal (L.) Willd.

    OpenAIRE

    Ndoye, Fatou; Kane, Aboubacry; Ngonkeu Mangaptché, Eddy Léonard; Bakhoum, Niokhor; Sanon, Arsène; Diouf, Diégane; Sy, Mame Ourèye; Baudoin, Ezékiel; Noba, Kandioura; Prin, Yves

    2012-01-01

    The responses of the soil microbial community features associated to the legume tree Acacia senegal (L.) Willd. including both arbuscular mycorrhizal fungal (AMF) diversity and soil bacterial functions, were investigated under contrasting environmental conditions. Soil samples were collected during dry and rainy seasons in two contrasting rainfall sites of Senegal (Dahra and Goudiry, in arid and semiarid zone, resp.). Soils were taken from the rhizosphere of A. senegal both in plantation and ...

  15. Early-branching Gut Fungi Possess A Large, And Comprehensive Array Of Biomass-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Kevin V.; Haitjema, Charles; Henske, John K.; Gilmore, Sean P.; Borges-Rivera, Diego; Lipzen, Anna; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Theodorou, Michael K.; Grigoriev, Igor V.; Regev, Aviv; Thompson, Dawn; O' Malley, Michelle A.

    2016-03-11

    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. Its more primitive members, however, remain relatively unexploited. We developed a systems-level approach that integrates RNA-Seq, proteomics, phenotype and biochemical studies of relatively unexplored early-branching free-living fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, unpretreated plant biomass, and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite repressed, and are further regulated by a rich landscape of noncoding regulatory RNAs. Furthermore, we identified several promising sequence divergent enzyme candidates for lignocellulosic bioprocessing.

  16. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw☆

    Science.gov (United States)

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B.; Du, Chenyu

    2013-01-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. PMID:24121367

  17. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta.

    Science.gov (United States)

    Pettitt, M E; Henry, S L; Callow, M E; Callow, J A; Clare, A S

    2004-12-01

    Fouling species produce adhesive polymers during the settlement, adhesion and colonization of new surfaces in the marine environment. The present paper tests the hypothesis that enzymes of the appropriate specificity may prevent biofouling by hydrolysing these adhesive polymers. Seventeen commercially available enzyme preparations designed originally for bulk use in a range of end-use applications were tested for their effects on the settlement and/or adhesion of three major fouling species, viz. the green alga Ulva linza, the diatom Navicula perminuta and the barnacle Balanus amphitrite. The serine-proteases were found to have the broadest antifouling potential reducing the adhesion strength of spores and sporelings of U. linza, cells of N. perminuta and inhibiting settlement of cypris larvae of B. amphitrite. Mode-of-action studies on the serine-protease, Alcalase, indicated that this enzyme reduced adhesion of U. linza in a concentration-dependent manner, that spores of the species could recover their adhesive strength if the enzyme was removed and that the adhesive of U. linza and juvenile cement of B. amphitrite became progressively less sensitive to hydrolysis as they cured.

  18. Fungal keratitis

    National Research Council Canada - National Science Library

    Tuli, Sonal S

    2011-01-01

    What is the most appropriate management of fungal keratitis? Traditionally, topical Natamycin is the most commonly used medication for filamentous fungi while Amphotericin B is most commonly used for yeast...

  19. Fungal Tests

    Science.gov (United States)

    ... Testing Leptin Levetiracetam Lipase Lipid Profile Lipoprotein (a) Lithium Liver Panel Lp-PLA2 Lupus Anticoagulant Testing Luteinizing ... at http://www.thoracic.org/education/breathing-in-america/resources/chapter-9-fungal-lung-disease.pdf. Accessed ...

  20. Fungal Diseases

    Science.gov (United States)

    ... Patients Medications that Weaken Your Immune System Outbreaks Rhizopus Investigation CDC at Work Global Fungal Diseases Cryptococcal ... September 6, 2017 Content source: Centers for Disease Control and Prevention National Center for Emerging and Zoonotic ...

  1. The role of a commercial enzyme immuno assay antigen detection system for diagnosis of C. trachomatis in genital swab samples

    Directory of Open Access Journals (Sweden)

    A Mukherjee

    2011-01-01

    Full Text Available In the present pilot study, endocervical and urethral swabs collected from 100 patients attending sexually transmitted disease (STD clinics and regional centre for STD in two referral hospitals in New Delhi were analyzed by enzyme immune assay (EIA, polymerase chain reaction (PCR and direct fluorescent antibody (DFA for detection of C. trachomatis. It was found that EIA could detect a very low number of cases (3/100 as against DFA (11/100 and PCR (9/100. Thus, in spite of the widespread availability, lower cost and ease of performance of the enzyme-linked-immunosorbent serologic assay, the present study highlights the need to employ sophisticated diagnostic tools like DFA and PCR for detection of Chlamydia trachomatis in STD patients.

  2. Multicentric Evaluation of New Commercial Enzyme Immunoassays for the Detection of Immunoglobulin M and Total Antibodies against Hepatitis A Virus▿

    Science.gov (United States)

    Arcangeletti, M. C.; Dussaix, E.; Ferraglia, F.; Roque-Afonso, A. M.; Graube, A.; Chezzi, C.

    2011-01-01

    A multicentric clinical study was conducted on representative sera from 1,738 European and U.S. subjects for the evaluation of new anti-hepatitis A virus enzyme immunoassays from Bio-Rad Laboratories. Comparison with reference DiaSorin S.p.A. tests confirmed the good performance of Bio-Rad assays (99.85% and 99.47% overall agreement in detecting total antibodies and IgM, respectively). PMID:21653739

  3. Multicentric evaluation of new commercial enzyme immunoassays for the detection of immunoglobulin M and total antibodies against hepatitis A virus.

    Science.gov (United States)

    Arcangeletti, M C; Dussaix, E; Ferraglia, F; Roque-Afonso, A M; Graube, A; Chezzi, C

    2011-08-01

    A multicentric clinical study was conducted on representative sera from 1,738 European and U.S. subjects for the evaluation of new anti-hepatitis A virus enzyme immunoassays from Bio-Rad Laboratories. Comparison with reference DiaSorin S.p.A. tests confirmed the good performance of Bio-Rad assays (99.85% and 99.47% overall agreement in detecting total antibodies and IgM, respectively).

  4. Development of a biocontrol agent for plant disease control with special emphasis on the near commercial fungal antagonist Clonostachys rosea strain "IK726"

    DEFF Research Database (Denmark)

    Jensen, Dan Funck; Knudsen, Inge M.B.; Lübeck, Mette

    2007-01-01

    . Among the success stories for control of seed- and soilborne diseases are fungal biocontrol agents based on Trichoderma harzianum, Clonostachys rosea and Conithyrium minitans, and bacterial biocontrol agents based on strains of Agrobacterium, Pseudomonas and Streptomyces. We have developed C. rosea......Numerous experiments demonstrating potential biocontrol effects on soilborne diseases have been reported in the scientific literature. However, from the lists of approved and registered biocontrol agents, it is striking how few have been commercialised and are used in practise for plant disease...... strain ‘IK726', which has proved to be an effective antagonist in several crops against seed- and soilborne diseases. Although a biocontrol agent based on C. rosea ‘IK726' is not yet commercialised, this paper will be used to address some of the biological and technical aspects that must be dealt...

  5. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  6. Fungal keratitis

    Directory of Open Access Journals (Sweden)

    Sonal S Tuli

    2011-02-01

    Full Text Available Sonal S TuliUniversity of Florida, Gainesville, FL, USA  Clinical question: What is the most appropriate management of fungal keratitis?Results: Traditionally, topical Natamycin is the most commonly used medication for filamentous fungi while Amphotericin B is most commonly used for yeast. Voriconazole is rapidly becoming the drug of choice for all fungal keratitis because of its wide spectrum of coverage and increased penetration into the cornea.Implementation: Repeated debridement of the ulcer is recommended for the penetration of topical medications. While small, peripheral ulcers may be treated in the community, larger or central ulcers, especially if associated with signs suggestive of anterior chamber penetration should be referred to a tertiary center. Prolonged therapy for approximately four weeks is usually necessary.Keywords: fungal keratitis, keratomycosis, antifungal medications, debridement

  7. Commercial enzyme-linked immunosorbent assay versus polymerase chain reaction for the diagnosis of chronic Chagas disease: a systematic review and meta-analysis

    Science.gov (United States)

    do Brasil, Pedro Emmanuel Alvarenga Americano; Castro, Rodolfo; de Castro, Liane

    2016-01-01

    Chronic Chagas disease diagnosis relies on laboratory tests due to its clinical characteristics. The aim of this research was to review commercial enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) diagnostic test performance. Performance of commercial ELISA or PCR for the diagnosis of chronic Chagas disease were systematically searched in PubMed, Scopus, Embase, ISI Web, and LILACS through the bibliography from 1980-2014 and by contact with the manufacturers. The risk of bias was assessed with QUADAS-2. Heterogeneity was estimated with the I2 statistic. Accuracies provided by the manufacturers usually overestimate the accuracy provided by academia. The risk of bias is high in most tests and in most QUADAS dimensions. Heterogeneity is high in either sensitivity, specificity, or both. The evidence regarding commercial ELISA and ELISA-rec sensitivity and specificity indicates that there is overestimation. The current recommendation to use two simultaneous serological tests can be supported by the risk of bias analysis and the amount of heterogeneity but not by the observed accuracies. The usefulness of PCR tests are debatable and health care providers should not order them on a routine basis. PCR may be used in selected cases due to its potential to detect seronegative subjects. PMID:26814640

  8. Fungal Morphogenesis

    Science.gov (United States)

    Lin, Xiaorong; Alspaugh, J. Andrew; Liu, Haoping; Harris, Steven

    2015-01-01

    Morphogenesis in fungi is often induced by extracellular factors and executed by fungal genetic factors. Cell surface changes and alterations of the microenvironment often accompany morphogenetic changes in fungi. In this review, we will first discuss the general traits of yeast and hyphal morphotypes and how morphogenesis affects development and adaptation by fungi to their native niches, including host niches. Then we will focus on the molecular machinery responsible for the two most fundamental growth forms, yeast and hyphae. Last, we will describe how fungi incorporate exogenous environmental and host signals together with genetic factors to determine their morphotype and how morphogenesis, in turn, shapes the fungal microenvironment. PMID:25367976

  9. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    Directory of Open Access Journals (Sweden)

    Paolo Longoni

    2015-01-01

    Full Text Available Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  10. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    Science.gov (United States)

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  11. Fungal cultivation on glass-beads

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, Henriette

    Transcription of various bioactive compounds and enzymes are dependent on fungal cultivation method. In this study we cultivate Fusarium graminearum and Fusarium solani on glass-beads with liquid media in petri dishes as an easy and inexpensive cultivation method, that resembles in secondary...... metabolite production to agar-cultivation but with an easier and more pure RNA-extraction of total fungal mycelia....

  12. In-house validation and quality control of commercial enzyme-linked immunosorbnet assays for screening of nitrofuran metabolites in food of animal origin

    Directory of Open Access Journals (Sweden)

    Dimitrieska-Stojkovic Elizabeta

    2012-01-01

    Full Text Available Application of nitrofuran antimicrobials at food production animals was prohibited by Commission Regulation 2003/181/EC because of their potential carcinogenic and mutagenic effects on humans. Main protein-bound metabolites of nitofurans are 3-amino-5-morpholinomethyl-2-oxazolidone (AMOZ, 1-aminohydantoin (AHD, semicarbazide (SEM and 3-amino-2-oxazolidinone (AOZ. Since then numerous costly liquid chromatography with tandem mass spectrometry (LC/MS/MS methods have been developed for screening and confirmation of nitrofuran metabolites in line with the EU requirements for performing official controls. As an inexpensive and less time consuming alternative, enzyme-immunoassay methods were developed for screening of the respective compounds. In this study validation and evaluation of four commercial enzyme-linked immunosorbent assay (ELISA has been performed. According to the requirements of Commission Decision 2002/657/EC, different performance characteristics (specificity, detection capability, precision for various matrices (liver, eggs, honey have been determined for each kit. The validation study has confirmed that the methods studied possess suitable characteristics: detectionlimits between 0.126 and 0.240 μg/kg, detection capabilities ≤1.0 μg/kg and the inter-day precision in the range from 16.20% to 22.11 %. The validation study was finalized by participation in FAPAS Proficiency testing scheme in 2011, and the obtained results have confirmed the capability of applied methods for unambiguous discrimination between negative and positive sample.

  13. Production of Microbial Protease from Selected Soil Fungal Isolates

    African Journals Online (AJOL)

    Dr Oseni

    establishing the industrial and biotechnological importance of this microbial enzyme. The harvested mycelia of the fungi ... Keywords: Soil microorganism, fungal isolate, incubation period, microbial enzyme. Correspondence: ..... highlands, Sarawak. ASEAN Review of Biodiversity and Environmental Conservation (ARBEC).

  14. Autochthonous fungal strains with high ligninolytic activities from ...

    African Journals Online (AJOL)

    This work represents the first report on the ability of autochthonous fungi of Tunisia to produce ligninolytic enzymes. Three hundred fifteen fungal strains were isolated from different Tunisian biotopes. These fungal strains were first screened for lignin-modifying enzymes on solid media containing Poly R-478 or ABTS.

  15. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose.

    Science.gov (United States)

    Rosgaard, Lisa; Pedersen, Sven; Cherry, Joel R; Harris, Paul; Meyer, Anne S

    2006-01-01

    This study examined the cellulytic effects on steam-pretreated barley straw of cellulose-degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a beta-glucosidase, Novozym 188, from Aspergillus niger. The enzymatic treatments were evaluated in an experimental design template comprising a span of pH (3.5-6.5) and temperature (35-65 degrees C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased the catalytic glucose yields significantly as compared to those obtained with the benchmark Celluclast + Novozyme 188 blend. A comparison of glucose yields obtained on steam-pretreated barley straw and microcrystalline cellulose, Avicel, indicated that the yield improvements were mainly due to the presence of highly active endoglucanase activity/activities in the experimental enzyme preparations. The data demonstrated the feasibility of boosting the widely studied T. reeseicellulase enzyme system with additional enzymatic activity to achieve faster lignocellulose degradation. We conclude that this supplementation strategy appears feasible as a first step in identifying truly promising fungal enzyme sources for fast development of improved, commercially viable, enzyme preparations for lignocellulose degradation.

  16. Sublethal toxicity of commercial formulations of deltamethrin and permethrin on selected biochemical constituents and enzyme activities in liver and muscle tissues of Anabas testudineus.

    Science.gov (United States)

    Sapana Devi, Maisnam; Gupta, Abhik

    2014-10-01

    The freshwater fish Anabas testudineus was exposed for 21 days to two commercial formulations of synthetic pyrethroids deltamethrin and permethrin at sublethal concentrations of 0.007 and 0.0007 mg L(-1), and 0.093 and 0.0093 mg L(-1), that represented 10% and 1%, respectively, of the 96 h LC50 of these two pesticides for this fish. The glycogen, protein and lactic acid contents, along with succinate dehydrogenase (SDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) enzyme activities in liver and muscle tissues of control and pesticide-exposed fish were estimated. When compared with those of control fish, significant depletion of glycogen content was observed in liver, and that of protein in muscle tissue of fish treated with both the pesticides at their higher as well as lower concentrations. Lactic acid reduction was significant only in fish muscle treated with deltamethrin. SDH level was reduced significantly in both liver and muscle tissues except in fish exposed to 0.0093 mg L(-1) permethrin. AST level was reduced significantly in liver and muscle tissues and ALT in muscle tissue of deltamethrin treated fish only. It is concluded that deltamethrin, a type-II pyrethroid, is more toxic to fish than the type-I pyrethroid permethrin and is capable of rendering toxicity at a dose as low as 1% of its LC50 value. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Phytochemical composition and effects of commercial enzymes on the hydrolysis of gallic acid glycosides in mango (Mangifera indica L. cv. 'Keitt') pulp.

    Science.gov (United States)

    Krenek, Kimberly A; Barnes, Ryan C; Talcott, Stephen T

    2014-10-01

    A detailed characterization of mango pulp polyphenols and other minor phytochemicals was accomplished for the first time in the cultivar 'Keitt' whereby the identification and semiquantification of five hydroxybenzoic acids, four cinnamic acids, two flavonoids, and six apocarotenoids was accomplished. Among the most abundant compounds were two monogalloyl glucosides (MGG) identified as having an ester- or ether-linked glucose, with the ester-linked moiety present in the highest concentration among nontannin polyphenolics. Additionally, the impact of side activities of three commercial cell-wall degrading enzymes during 'Keitt' mango pulp processing was evaluated to determine their role on the hydrolysis of ester- and ether-linked phenolic acids. The use of Crystalzyme 200XL reduced the concentration of ester-linked MGG by 66%, and the use of Rapidase AR 2000 and Validase TRL completely hydrolyzed ether-linked MGG after 4 h of treatment at 50 °C. Fruit quality, in vivo absorption rate, and bioactivity of mango phytochemicals rely on their chemical characterization, and characterizing changes in composition is critical for a complete understanding of in vivo mechanisms.

  18. Use of a commercial enzyme-linked immunosorbent assay for rapid detection of Giardia duodenalis in dog stools in the environment: a Bayesian evaluation.

    Science.gov (United States)

    Papini, Roberto; Carreras, Giulia; Marangi, Marianna; Mancianti, Francesca; Giangaspero, Annunziata

    2013-05-01

    Giardia duodenalis is considered a potentially zoonotic protozoan. Some animal species, including infected dogs, may play an important role in the spread of Giardia cysts through environmental contamination with their feces. In the present study, a commercial enzyme-linked immunosorbent assay (ELISA) was used to examine 143 samples of dog feces collected in urban areas as an indicator of the risk of field contamination. Using a Bayesian statistical approach, the ELISA showed a sensitivity of 88.9% and a specificity of 95.8% with positive and negative predictive values of 89.6% and 95.4%, respectively. The test affords the advantage of rapid processing of fecal samples without a complex technical structure and extensive costly labor. Moreover, the present results show that the assay provides public health veterinarians with a practical tool that can be used in screening programs, as a valid alternative or as an adjunct to other tests, in order to assess the biological risk of exposure to G. duodenalis cysts from dogs in human settlements. However, the test may not be completely accurate for human health risk evaluation, as it does not discriminate between zoonotic and non-zoonotic isolates.

  19. Evaluation of commercially available enzymes, probiotics, or yeast on apparent total-tract nutrient digestion and growth in nursery and finishing pigs fed diets containing corn dried distillers grains with solubles

    Science.gov (United States)

    The ability of enzymes, direct fed microbials, or yeast to enhance nutrient utilization or growth performance in nursery or finishing pigs fed diets containing increased levels of corn fiber from dried distillers grains with solubles (DDGS) is largely unknown. Ten commercially available feed additiv...

  20. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  1. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  2. Soil fungal community responses to global changes

    DEFF Research Database (Denmark)

    Haugwitz, Merian Skouw

    Global change will affect the functioning and structure of terrestrial ecosystems and since soil fungi are key players in organic matter decomposition and nutrient turnover, shifts in fungal community composition might have a strong impact on soil functioning. The main focus of this thesis...... was therefore to investigate the impact of global environmental changes on soil fungal communities in a temperate and subartic heath ecosystem. The objective was further to determine global change effects on major functional groups of fungi and analyze the influence of fungal community changes on soil carbon...... and nutrient availability and storage. By combining molecular methods such as 454 pyrosequencing and quantitative PCR of fungal ITS amplicons with analyses of soil enzymes, nutrient pools of carbon, nitrogen and phosphorus we were able to characterize soil fungal communities as well as their impact on nutrient...

  3. Cytochrome P450 enzyme systems in fungi

    NARCIS (Netherlands)

    Brink, H.M. van den; Gorcom, R.F.M. van; Hondel, C.A.M.J.J. van den; Punt, P.J.

    1998-01-01

    The involvement of cytochrome P450 enzymes in many complex fungal bioconversion processes has been characterized in recent years. Accordingly, there is now considerable scientific interest in fungal cytochrome P450 enzyme systems. In contrast to S. cerevisiae, where surprisingly few P450 genes have

  4. Genetic engineering of crop plants for fungal resistance: role of antifungal genes.

    Science.gov (United States)

    Ceasar, S Antony; Ignacimuthu, S

    2012-06-01

    Fungal diseases damage crop plants and affect agricultural production. Transgenic plants have been produced by inserting antifungal genes to confer resistance against fungal pathogens. Genes of fungal cell wall-degrading enzymes, such as chitinase and glucanase, are frequently used to produce fungal-resistant transgenic crop plants. In this review, we summarize the details of various transformation studies to develop fungal resistance in crop plants.

  5. Optimization of the production of maltose syrups by different enzyme combinations

    Energy Technology Data Exchange (ETDEWEB)

    Tegge, G.; Richter, G.; Richter, G.

    1986-02-01

    Maltose syrups are of importance for the production of many sweets and baking goods. These starch hydrolysates show reduced browning capacity, retarded crystallization phenomena, and are less sweet, less viscous and less hygroscopic in comparison with syrups of higher glucose content. Enzymatic preparation of such products with regard to the influence of substrate and enzyme concentration, reaction time and added calcium on maltose formation by fungal-..cap alpha..-amylase or barley-..beta..-amylase was investigated. For increasing the maltose content pullulanase as a debranching enzyme was applied. Commercial maltodextrin was used as substrate. The maltogenic enzymes showed different substrate tolerances. High amounts of enzyme did not lead to the expected high amounts of maltose. On the other hand, low enzyme concentrations could not be compensated by extended reaction times. Different substrate tolerances also appeared when mixtures of maltogenic and debranching enzymes came into use.

  6. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design.

    Science.gov (United States)

    Suwannarangsee, Surisa; Bunterngsook, Benjarat; Arnthong, Jantima; Paemanee, Atchara; Thamchaipenet, Arinthip; Eurwilaichitr, Lily; Laosiripojana, Navadol; Champreda, Verawat

    2012-09-01

    Synergistic enzyme system for the hydrolysis of alkali-pretreated rice straw was optimised based on the synergy of crude fungal enzyme extracts with a commercial cellulase (Celluclast™). Among 13 enzyme extracts, the enzyme preparation from Aspergillus aculeatus BCC 199 exhibited the highest level of synergy with Celluclast™. This synergy was based on the complementary cellulolytic and hemicellulolytic activities of the BCC 199 enzyme extract. A mixture design was used to optimise the ternary enzyme complex based on the synergistic enzyme mixture with Bacillus subtilis expansin. Using the full cubic model, the optimal formulation of the enzyme mixture was predicted to the percentage of Celluclast™: BCC 199: expansin=41.4:37.0:21.6, which produced 769 mg reducing sugar/g biomass using 2.82 FPU/g enzymes. This work demonstrated the use of a systematic approach for the design and optimisation of a synergistic enzyme mixture of fungal enzymes and expansin for lignocellulosic degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Validation of a Commercially Available Enzyme ImmunoAssay for the Determination of Oxytocin in Plasma Samples from Seven Domestic Animal Species

    Directory of Open Access Journals (Sweden)

    Cecile Bienboire-Frosini

    2017-09-01

    Full Text Available The neurohormone oxytocin (OT has a broad range of behavioral effects in mammals. It modulates a multitude of social behaviors, e.g., affiliative and sexual interactions. Consequently, the OT role in various animal species is increasingly explored. However, several issues have been raised regarding the peripheral OT measurement. Indeed, various methods have been described, leading to assay discrepancies and inconsistent results. This highlights the need for a recognized and reliable method to measure peripheral OT. Our aim was to validate a method combining a pre-extraction step, previously demonstrated as essential by several authors, and a commercially available enzyme immunoassay (EIA for OT measurement, using plasma from seven domestic species (cat, dog, horse, cow, pig, sheep, and goat. The Oxytocin EIA kit (EnzoLifeSciences was used to assay the solid-phase extracted samples following the manufacturer's instructions with slight modifications. For all species except dogs and cats, concentration factors were applied to work above the kit's sensitivity (15 pg/ml. To validate the method, the following performance characteristics were evaluated using Validation Samples (VS at various concentrations in each species: extraction efficiency via spiking tests and intra- and inter-assay precision, allowing for the calculation of total errors. Parallelism studies to assess matrix effects could not be performed because of too low basal concentrations. Quantification ranges and associated precision profiles were established to account for the various OT plasma concentrations in each species. According to guidelines for bioanalytical validation of immunoassays, the measurements were sufficiently precise and accurate in each species to achieve a total error ≤30% in each VS sample. In each species, the inter-assay precision after 3 runs was acceptable, except in low concentration samples. The linearity under dilution of dogs and cats' samples was

  8. Chlorination and cleavage of lignin structures by fungal chloroperoxidases

    Science.gov (United States)

    Patricia Ortiz-Bermudez; Ewald Srebotnik; Kenneth E. Hammel

    2003-01-01

    Two fungal chloroperoxidases (CPOs), the heme enzyme from Caldariomyces fumago and the vanadium enzyme from Curvularia inaequalis, chlorinated 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane, a dimeric model compound that represents the major nonphenolic structure in lignin. Both enzymes also cleaved this dimer to give 1-chloro-4-ethoxy-3-...

  9. Synchronous production of conidial powder of several fungal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... A series solid-state fermentation (SSF) chamber system was designed to produce superior conidial powder of several fungal ... Key words: Aerial conidia, fungal pathogens, synchronous production, series fermentation chamber. INTRODUCTION ..... corn stover for ethanol production. Enzyme Microb.

  10. Structure and biosynthesis of fungal alpha-glucans

    NARCIS (Netherlands)

    Grün, Christian Hugo

    2003-01-01

    The fungal cell wall is unique among eukaryotes and therefore it forms an ideal target for the development of novel antifungal drugs. Fungal cell morphology and integrity depend on a cell-surrounding wall, which is composed of glycoproteins and polysaccharides. Disrupting enzymes that are involved

  11. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  12. Community Structure and Succession Regulation of Fungal Consortia in the Lignocellulose-Degrading Process on Natural Biomass

    Directory of Open Access Journals (Sweden)

    Baoyu Tian

    2014-01-01

    Full Text Available The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%, unclassified Zygomycetes (33.5%, Ascomycota (32.4%, and Basidiomycota (4.6%. When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%, Ascomycota (36.1%, and Fungi incertae sedis (1.4%. After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%, Ascomycota (11.5%, and Fungi incertae sedis (1.6%. The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex.

  13. Production of β-xylosidase from Trichoderma asperellum KIF125 and its application in efficient hydrolysis of pretreated rice straw with fungal cellulase.

    Science.gov (United States)

    Inoue, Hiroyuki; Kitao, Chiaki; Yano, Shinichi; Sawayama, Shigeki

    2016-11-01

    On-site cellulase and hemicellulase production is a promising way to reduce enzyme cost in the commercialization of the lignocellulose-to-ethanol process. A hemicellulase-producing fungal strain suitable for on-site enzyme production was selected from cultures prepared using wet disc-milling rice straw (WDM-RS) and identified as Trichoderma asperellum KIF125. KIF125 hemicellulase showed uniquely high abundance of β-xylosidase in the xylanolytic enzyme system compared to other fungal hemicellulase preparations. Supplementation of Talaromyces cellulolyticus cellulase with KIF125 hemicellulase was more effective than that with the hemicellulases from other fungal sources in reducing the total enzyme loading for the improvement of xylose yield in the hydrolysis of ball-milling RS, due to its high β-xylosidase dominance. β-Xylosidase in KIF125 hemicellulase was purified and classified as a glycosyl hydrolase family 3 enzyme with relatively high specificity for xylobiose. The production of KIF125 β-xylosidase in the fermentor was estimated as 118 U/g-WDM-RS (2350 U/L culture) at 48 h. These results demonstrate that KIF125 is promising as a practical hemicellulase source to combine with on-site cellulase production using T. cellulolyticus.

  14. A biotechnology perspective of fungal proteases

    Science.gov (United States)

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira, Edivaldo Ximenes; Pessoa, Adalberto; Magalhães, Pérola Oliveira

    2015-01-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  15. Role of fungal peroxidases in biological ligninolysis

    Science.gov (United States)

    Kenneth E. Hammel; Dan Cullen

    2008-01-01

    The degradation of lignin by filamentous fungi is a major route for the recycling of photosynthetically fixed carbon, and the oxidative mechanisms employed have potential biotechnological applications. The lignin peroxidases (LiPs), manganese peroxidases (MnPs), and closely related enzymes of white rot basidiomycetes are likely contributors to fungal ligninolysis. Many...

  16. A biotechnology perspective of fungal proteases

    Directory of Open Access Journals (Sweden)

    Paula Monteiro de Souza

    2015-06-01

    Full Text Available Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  17. Pb2+ Biosorption by Pretreated Fungal Biomass

    OpenAIRE

    Çabuk,Ahmet; İLHAN, Semra; FİLİK, Cansu; ÇALIŞKAN, Figen

    2005-01-01

    The effect of pretreatment on the Pb2+ biosorption capacity of fungal biomasses, Aspergillus versicolor, Metarrhizium anisopliae var. anisopliae, and Penicillium verrucosum, was investigated. For this purpose, the biomasses were subjected to physical treatments such as heat and autoclaving, and chemical treatments such as sodium hydroxide, formaldehyde, gluteraldehyde, acetic acid, hydrogen peroxide, commercial laundry detergent, orthophosphoric acid and dimethyl sulfoxide. Dimethyl sulfoxid...

  18. Evaluation of a commercial competitive enzyme-linked immunosorbent assay for detection of avian influenza virus subtype H5 antibodies in zoo birds

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Andersen, Jannie Holmegaard; Hjulsager, Charlotte Kristiane

    2017-01-01

    The hemagglutination inhibition (HI) test is the current gold standard for detecting antibodies to avian influenza virus (AIV). Enzyme-linked immunosorbent assays (ELISAs) have been explored for use in poultry and certain wild bird species because of high efficiency and lower cost. This study com...

  19. Allergic fungal sinusitis in children.

    Science.gov (United States)

    Thorp, Brian D; McKinney, Kibwei A; Rose, Austin S; Ebert, Charles S

    2012-06-01

    Allergic fungal sinusitis (AFS) is a subtype of eosinophilic chronic rhinosinusitis (CRS) characterized by type I hypersensitivity, nasal polyposis, characteristic computed tomography scan findings, eosinophilic mucus, and the presence of fungus on surgical specimens without evidence of tissue invasion. This refractory subtype of CRS is of the great interest in the pediatric population, given the relatively early age of onset and the difficulty in managing AFS through commercially available medical regimens. Almost universally, a diagnosis of AFS requires operative intervention. Postoperative adjuvant medical therapy is a mainstay in the treatment paradigm of pediatric AFS. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Evaluation of a Commercial Sandwich Enzyme-Linked Immunosorbent Assay for the Quantification of Beta-Casomorphin 7 in Yogurt Using Solid-Phase Extraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry as the "Gold Standard" Method.

    Science.gov (United States)

    Nguyen, Duc Doan; Busetti, Francesco; Johnson, Stuart Keith; Solah, Vicky Ann

    2017-08-01

    This study investigated beta-casomorphin 7 (BCM7) in yogurt by means of LC-tandem MS (MS/MS) and enzyme-linkedimmunosorbent assay (ELISA) and use LC-MS/MS as the "gold standard" method to evaluate the applicability of a commercial ELISA. The level of BCM7 in milk obtained from ELISA analysis was much lower than that obtained by LC-MS/MS analysis and trended to increase during fermentation and storage of yogurt. Meanwhile, the results obtained from LC-MS/MS showed that BCM7 degraded during stages of yogurt processing, and its degradation may have been caused by X-prolyl dipeptidyl aminopeptidase activity. As a result, the commercial sandwich ELISA kit was not suitable for the quantification of BCM7 in fermented dairy milk.

  1. Performance and reliability of five commercial enzyme-linked immunosorbent assay kits in screening for anti-human immunodeficiency virus antibody in high-risk subjects.

    OpenAIRE

    Ozanne, G; Fauvel, M

    1988-01-01

    Anti-human immunodeficiency virus enzyme-linked immunosorbent assay kits marketed by Electro-Nucleonics Inc. (ENI), Genetic Systems Corp. (GSC), Organon Teknika Inc. (OTI), Ortho Diagnostic Systems Inc. (ODSI), and Wellcome Diagnostics (WD) were evaluated by using 289 randomly selected serum samples from a high-risk population and 53 serum samples likely to produce false-positive results. The radioimmunoprecipitation assay was used as the reference test. Sensitivities ranged from 96.51% (ODSI...

  2. Freshwater Fungal Infections

    Directory of Open Access Journals (Sweden)

    Dennis J. Baumgardner

    2017-01-01

    Full Text Available Fungal infections as a result of freshwater exposure or trauma are fortunately rare. Etiologic agents are varied, but commonly include filamentous fungi and Candida. This narrative review describes various sources of potential freshwater fungal exposure and the diseases that may result, including fungal keratitis, acute otitis externa and tinea pedis, as well as rare deep soft tissue or bone infections and pulmonary or central nervous system infections following traumatic freshwater exposure during natural disasters or near-drowning episodes. Fungal etiology should be suspected in appropriate scenarios when bacterial cultures or molecular tests are normal or when the infection worsens or fails to resolve with appropriate antibacterial therapy.

  3. Fungal pulmonary complications.

    Science.gov (United States)

    Davies, S F; Sarosi, G A

    1996-12-01

    With AIDS has come a new level of T-cell immunosuppression, beyond that previously seen. The impact of the HIV pandemic on the field of fungal infections includes a major increase in the number of serious fungal infections, an increase in the severity of those infections, and even some entirely new manifestations of fungal illness. In this article fungal pulmonary complications of AIDS are discussed. T-cell opportunists including Cryptococcus neoformans and the endemic mycoses are the most important pathogens. Phagocyte opportunists, including Aspergillus species and agents of mucormycosis, are less important.

  4. Saccharification of ozonated sugarcane bagasse using enzymes from Myceliophthora thermophila JCP 1-4 for sugars release and ethanol production.

    Science.gov (United States)

    de Cassia Pereira, Josiani; Travaini, Rodolfo; Paganini Marques, Natalia; Bolado-Rodríguez, Silvia; Bocchini Martins, Daniela Alonso

    2016-03-01

    The saccharification of ozonated sugarcane bagasse (SCB) by enzymes from Myceliophthora thermophila JCP 1-4 was studied. Fungal enzymes provided slightly higher sugar release than commercial enzymes, working at 50°C. Sugar release increased with temperature increase. Kinetic studies showed remarkable glucose release (4.99 g/L, 3%w/w dry matter) at 60°C, 8 h of hydrolysis, using an enzyme load of 10 FPU (filter paper unit). FPase and β-glucosidase activities increased during saccharification (284% and 270%, respectively). No further significant improvement on glucose release was observed increasing the enzyme load above 7.5 FPU per g of cellulose. Higher dry matter contents increased sugars release, but not yields. The fermentation of hydrolysates by Saccharomyces cerevisiae provided glucose-to-ethanol conversions around to 63%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena

    2010-01-01

    We are developing a biorefinery concept for biological production of chemicals, drugs, feed and fuels using plant biomass as raw material in well-defined cell-factories. Among the important goals is the discovery of new biocatalysts for production of enzymes, biochemicals and fuels and already our...... screening of a large collection of fungal strains isolated from natural habitats have resulted in identification of strains with high production of hydrolytic enzymes and excretion of organic acids. Our research focuses on creating a fungal platform based on synthetic biology for developing new cell...

  6. Production of Microbial Protease from Selected Soil Fungal Isolates ...

    African Journals Online (AJOL)

    This study was undertaken to monitor the production of protease enzyme from soil fungal isolates obtained from Omo natural forest in Ogun State of Nigeria. The study also sought to determine the kinetic parameters of the enzyme with the aim of establishing the industrial and biotechnological importance of this microbial ...

  7. Simultaneous α-amylase and protease production by the soil bacterium Bacillus sp. SMIA-2 under submerged culture using whey protein concentrate and corn steep liquor: compatibility of enzymes with commercial detergents

    Directory of Open Access Journals (Sweden)

    Thamy Lívia Ribeiro Corrêa

    2011-12-01

    Full Text Available Protease and α-amylase production by a thermophilic Bacillus sp. SMIA-2 cultivated in liquid cultures containing 0.25% (w/v starch as a carbon source reached a maximum at 18 hours (47 U.mg-1 Protein and 36 hours (325 U.mg-1 Protein, respectively. Culture medium supplementation with whey protein concentrate (0.1%, w/v and corn steep liquor (0.3%, w/v not only improved the production of both enzymes but also enabled them to be produced simultaneously. Under these conditions, α-amylase and protease production reached a maximum in 18 hours with levels of 401 U.mg-1 protein and 78 U.mg-1 protein, respectively. The compatibility of the enzymes produced with commercial laundry detergent was investigated. In the presence of Campeiro® detergent, α-amylase activity increased while protease activity decreased by about 27%. These enzymes improved the cleaning power of Campeiro® detergent since they were able to remove egg yolk and tomato sauce stains when used in this detergent.

  8. The effect of commercial enzyme preparation-assisted maceration on the yield, quality, and bioactivity of essential oil from waste carrot seeds (Daucus carota L.

    Directory of Open Access Journals (Sweden)

    Śmigielski, K. B.

    2014-12-01

    Full Text Available Eight enzyme preparations were screened with a view to maximizing the yield of carrot seed essential oil. Three of the eight enzyme preparations investigated, lipase from Mucor circinelloides, XPect® pectinase, and Esperase® protease, significantly influenced the amount of essential oil obtained, with Esperase® being the most effective. The Taguchi method was applied to optimize the processing conditions for the Esperase® protease. Under the optimum conditions, the essential oil yield increased by approximately 48%. The main constituent compounds in the oil are: carotol (OeA: 40.80%–OeB: 46.17%, daucol (OeA: 7.35%–OeB: 6.22%, sabinene (OeA: 5.12%–OeB: 6.13%, alpha-pinene (OeA: 4.24%–OeB: 5.11% and geranyl acetate (OeA: 4.50%–OeB: 3.68%. As compared to the control sample, the essential oil obtained from enzyme-pretreated carrot seeds has the same biological activity against Bacillus subtilis and Candida sp., lower activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and higher activity against Aspergillus niger and Penicillium expansum.Ocho preparados enzimáticos fueron seleccionados con el fin de maximizar el rendimiento de aceites esenciales de semillas de zanahoria. Tres de los ocho preparados de las enzimas investigadas, lipasa de Mucor circinelloides, Xpect® pectinasa y Esperase® proteasa, influyeron de manera significativa sobre la cantidad de aceite esencial obtenido, siendo Esperase® el más eficaz. El método de Taguchi se aplicó para optimizar las condiciones del procesamiento para esta última. Bajo las condiciones óptimas, el rendimiento de los aceite esenciales aumentó aproximadamente un 48%. Los principales compuestos constituyentes del aceite son: carotol (OEA: 40.80%–OeB: 46,17%, ducol (OEA: 7,35%–OeB: 6,22%, sabineno (OEA: 5,12%–OeB: 6,13%, alfa-pineno (OEA: 4,24%– OeB: 5,11% y acetato de geranilo (OEA: 4,50%–OeB: 3,68%. En comparación con la muestra control, el

  9. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese.

    Science.gov (United States)

    Ozturkoglu-Budak, Sebnem; Wiebenga, Ad; Bron, Peter A; de Vries, Ronald P

    2016-11-21

    We previously identified the microbiota present during cheese ripening and observed high protease and lipase activity in Divle Cave cheese. To determine the contribution of individual isolates to enzyme activities, we investigated a range of species representing this microbiota for their proteolytic and lipolytic ability. In total, 17 fungal, 5 yeast and 18 bacterial strains, previously isolated from Divle Cave cheese, were assessed. Qualitative protease and lipase activities were performed on skim-milk agar and spirit-blue lipase agar, respectively, and resulted in a selection of strains for quantitative assays. For the quantitative assays, the strains were grown on minimal medium containing irradiated Divle Cave cheese, obtained from the first day of ripening. Out of 16 selected filamentous fungi, Penicillium brevicompactum, Penicillium cavernicola and Penicillium olsonii showed the highest protease activity, while Mucor racemosus was the best lipase producer. Yarrowia lipolytica was the best performing yeast with respect to protease and lipase activity. From the 18 bacterial strains, 14 and 11 strains, respectively showed protease and lipase activity in agar plates. Micrococcus luteus, Bacillus stratosphericus, Brevibacterium antiquum, Psychrobacter glacincola and Pseudomonas proteolytica displayed the highest protease and lipase activity. The proteases of yeast and filamentous fungi were identified as mainly aspartic protease by specific inhibition with Pepstatin A, whereas inhibition by PMSF (phenylmethylsulfonyl fluoride) indicated that most bacterial enzymes belong to serine type protease. Our results demonstrate that aspartic proteases, which usually have high milk clotting activity, are predominantly derived from fungal strains, and therefore fungal enzymes appear to be more suitable for use in the cheese industry. Microbial enzymes studied in this research might be alternatives for rennin (chymosin) from animal source because of their low cost and stable

  10. Starch Biorefinery Enzymes.

    Science.gov (United States)

    Läufer, Albrecht

    2017-03-07

    Nature uses enzymes to build and convert biomass; mankind uses the same enzymes and produces them on a large scale to make optimum use of biomass in biorefineries. Bacterial α-amylases and fungal glucoamylases have been the workhorses of starch biorefineries for many decades. Pullulanases were introduced in the 1980s. Proteases, cellulases, hemicellulases, and phytases have been on the market for a few years as process aids, improving yields, performance, and costs. Detailed studies of the complex chemical structures of biomass and of the physicochemical limitations of industrial biorefineries have led enzyme developers to produce novel tailor-made solutions for improving yield and profitability in the industry. This chapter reviews the development of enzyme applications in the major starch biorefining processes.

  11. Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass

    Science.gov (United States)

    Ximenes, E. A.; Brandon, S. K.; Doran-Peterson, J.

    Tifton 85 bermudagrass, developed at the ARS-USDA in Tifton, GA, is grown on over ten million acres in the USA for hay and forage. Of the bermudagrass cultivars, Tifton 85 exhibits improved digestibility because the ratio of ether- to ester-linked phenolic acids has been lowered using traditional plant breeding techniques. A previously developed pressurized batch hot water (PBHW) method was used to treat Tifton 85 bermudagrass for enzymatic hydrolysis. Native grass (untreated) and PBHW-pretreated material were compared as substrates for fungal cultivation to produce enzymes. Cellulase activity, measured via the filter paper assay, was higher for fungi cultivated on PBHW-pretreated grass, whereas the other nine enzyme assays produced higher activities for the untreated grass. Ferulic acid and vanillin levels increased significantly for the enzyme preparations produced using PBHW-pretreated grass and the release of these phenolic compounds may have contributed to the observed reduction in enzyme activities. Culture supernatant from Tifton 85 bermudagrass-grown fungi were combined with two commercial enzyme preparations and the enzyme activity profiles are reported. The amount of reducing sugar liberated by the enzyme mixture from Hypocrea jecorina (after 192 h incubation with untreated bermudagrass) individually or in combination with feruloyl esterase was 72.1 and 84.8%, respectively, of the commercial cellulase preparation analyzed under the same conditions.

  12. A parts list for fungal cellulosomes revealed by comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Haitjema, Charles H.; Gilmore, Sean P.; Henske, John K.; Solomon, Kevin V.; de Groot, Randall; Kuo, Alan; Mondo, Stephen J.; Salamov, Asaf A.; LaButti, Kurt; Zhao, Zhiying; Chiniquy, Jennifer; Barry, Kerrie; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Hainaut, Matthieu; Boxma, Brigitte; van Alen, Theo; Hackstein, Johannes H. P.; Henrissat, Bernard; Baker, Scott E.; Grigoriev, Igor V.; O' Malley, Michelle A.

    2017-05-26

    Cellulosomes are large, multi-protein complexes that tether plant biomass degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria where species specific dockerin domains mediate assembly of enzymes onto complementary cohesin motifs interspersed within non-catalytic protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic protein-scale pathways2,3. For decades, analogous structures have been reported in the early branching anaerobic fungi, which are known to assemble by sequence divergent non-catalytic dockerin domains (NCDD)4. However, the enzyme components, modular assembly mechanism, and functional role of fungal cellulosomes remain unknown5,6. Here, we describe the comprehensive set of proteins critical to fungal cellulosome assembly, including novel, conserved scaffolding proteins unique to the Neocallimastigomycota. High quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single molecule technology to overcome their repeat-richness and extremely low GC content. Genomic analysis coupled with proteomic validation revealed an average 320 NCDD-containing proteins per fungal strain that were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across 4 genera that contain a conserved amino acid sequence repeat that binds to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. Though many catalytic domains are shared with bacteria, the biocatalytic activity of anaerobic fungi is expanded by the inclusion of GH3, GH6, and GH45 enzymes in the enzyme complexes. Collectively, these findings suggest that the fungal cellulosome is an evolutionarily

  13. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  14. Fungal DNA barcoding.

    Science.gov (United States)

    Xu, Jianping

    2016-11-01

    Fungi are ubiquitous in both natural and human-made environments. They play important roles in the health of plants, animals, and humans, and in broad ecosystem functions. Thus, having an efficient species-level identification system could significantly enhance our ability to treat fungal diseases and to monitor the spatial and temporal patterns of fungal distributions and migrations. DNA barcoding is a potent approach for rapid identification of fungal specimens, generating novel species hypothesis, and guiding biodiversity and ecological studies. In this mini-review, I briefly summarize (i) the history of DNA sequence-based fungal identification; (ii) the emergence of the ITS region as the consensus primary fungal barcode; (iii) the use of the ITS barcodes to address a variety of issues on fungal diversity from local to global scales, including generating a large number of species hypothesis; and (iv) the problems with the ITS barcode region and the approaches to overcome these problems. Similar to DNA barcoding research on plants and animals, significant progress has been achieved over the last few years in terms of both the questions being addressed and the foundations being laid for future research endeavors. However, significant challenges remain. I suggest three broad areas of research to enhance the usefulness of fungal DNA barcoding to meet the current and future challenges: (i) develop a common set of primers and technologies that allow the amplification and sequencing of all fungi at both the primary and secondary barcode loci; (ii) compile a centralized reference database that includes all recognized fungal species as well as species hypothesis, and allows regular updates from the research community; and (iii) establish a consensus set of new species recognition criteria based on barcode DNA sequences that can be applied across the fungal kingdom.

  15. Enzyme characterisation, isolation and cDNA cloning of polyphenol oxidase in the hearts of palm of three commercially important species.

    Science.gov (United States)

    Shimizu, Milton Massao; Melo, Geraldo Aclécio; Brombini Dos Santos, Adriana; Bottcher, Alexandra; Cesarino, Igor; Araújo, Pedro; Magalhães Silva Moura, Jullyana Cristina; Mazzafera, Paulo

    2011-09-01

    Heart of palm (palmito) is the edible part of the apical meristem of palms and is considered a gourmet vegetable. Palmitos from the palms Euterpe edulis (Juçara) and Euterpe oleracea (Açaí) oxidise after harvesting, whereas almost no oxidation is observed in palmitos from Bactris gasipaes (Pupunha). Previous investigations showed that oxidation in Juçara and Açaí was mainly attributable to polyphenol oxidase (PPO; EC 1.14.18.1) activity. In this study, we partially purified PPOs from these three palmitos and analysed them for SDS activation, substrate specificity, inhibition by specific inhibitors, thermal stability, optimum pH and temperature conditions, Km and Ki. In addition, the total phenolic content and chlorogenic acid content were determined. Two partial cDNA sequences were isolated and sequenced from Açaí (EoPPO1) and Juçara (EePPO1). Semi-quantitative RT-PCR expression assays showed that Açaí and Juçara PPOs were strongly expressed in palmitos and weakly expressed in leaves. No amplification was observed for Pupunha samples. The lack of oxidation in the palmito Pupunha might be explained by the low PPO expression, low enzyme activity or the phenolic profile, particularly the low content of chlorogenic acid. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. Fungal symbiosis unearthed

    Science.gov (United States)

    Daniel Cullen

    2008-01-01

    Associations between plant roots and fungi are a feature of many terrestrial ecosystems. The genome sequence of a prominent fungal partner opens new avenues for studying such mycorrhizal interactions....

  17. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  18. Who Gets Fungal Infections?

    Science.gov (United States)

    ... Patients Medications that Weaken Your Immune System Outbreaks Rhizopus Investigation CDC at Work Global Fungal Diseases Cryptococcal ... January 25, 2017 Content source: Centers for Disease Control and Prevention National Center for Emerging and Zoonotic ...

  19. Fungal Diseases: Ringworm

    Science.gov (United States)

    ... Patients Medications that Weaken Your Immune System Outbreaks Rhizopus Investigation CDC at Work Global Fungal Diseases Cryptococcal ... August 16, 2017 Content source: Centers for Disease Control and Prevention National Center for Emerging and Zoonotic ...

  20. Fungal Eye Infections

    Science.gov (United States)

    ... Patients Medications that Weaken Your Immune System Outbreaks Rhizopus Investigation CDC at Work Global Fungal Diseases Cryptococcal ... December 6, 2017 Content source: Centers for Disease Control and Prevention National Center for Emerging and Zoonotic ...

  1. Ethanol production via in situ fungal saccharification and fermentation of mild alkali and steam pretreated corn fiber.

    Science.gov (United States)

    Shrestha, Prachand; Khanal, Samir Kumar; Pometto, Anthony L; Hans van Leeuwen, J

    2010-11-01

    The effect of mild alkali and steam pretreatments on fungal saccharification and sequential simultaneous-saccharification and fermentation (SSF) of corn fiber to ethanol was studied. The corn fiber was pretreated with: (i) 2% NaOH (w/w) at 30 degrees C for 2h and (ii) steaming at 100 degrees C for 2h. Ethanol yields were 2.6g, 2.9g and 5.5g ethanol/100g of corn fiber, respectively, for Phanerochaete chrysosporium, Gloeophyllum trabeum and Trichoderma reesei saccharification and sequential SSFs. SSF with commercial cellulase enzyme - Spezyme-CP had 7.7g ethanol/100g corn fiber. Mild alkali pretreatment resulted in higher glucose yields following fungal saccharification of corn fiber. However, the ethanol yields were comparatively similar for untreated and mild alkali pretreated corn fiber. Solid-substrate fermentation of corn fiber with fungi can be improved to either eliminate or reduce the dosage of commercial cellulase enzymes during SSF.

  2. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery

    Directory of Open Access Journals (Sweden)

    Cecilia Li

    2016-09-01

    Full Text Available Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK, which are involved in synthesizing inositol polyphosphates (IP. We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P and pyrophosphate (PP groups covalently attached at different positions. This review focuses on (1 the characterization of the Plc1/IPK pathway in C. neoformans; (2 the identification of PP-IP5 (IP7 as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3 why IPK enzymes represent suitable candidates for drug development.

  3. The influence of carbohydrases on the growth of fungal pathogens in vitro and in vivo.

    Science.gov (United States)

    Pope, A. M.; Davies, D. A.

    1979-01-01

    Mixtures of mycolytic enzymes from various sources release protoplasts from living fungal tissue under suitable conditions. Such enzyme mixtures obtained from Coprinus comatus (mycolase I), Physarum polycephalum (mycolase II) and Lycoperdon pyriforme (mycolase III) are of low toxicity in mammals when given parenterally and are able to cure experimental systemic fungal infections in mice when administered alone or in conjunction with normally ineffective levels of conventional antimycotic drugs such as amphotericin B. The effect is believed to be due to enzymic degradation of the fungal cell wall either killing the fungus directly or enhancing activity of existing antifungal agents by increasing access to the cell interior. PMID:523359

  4. Evaluation of Potential Fungal Species for the in situ Simultaneous Saccharification and Fermentation (SSF of Cellulosic Material

    Directory of Open Access Journals (Sweden)

    Leeuwen, J.

    2011-01-01

    Full Text Available Three fungal species were evaluated for their abilities to saccharify pure cellulose. The three species chosen represented three major wood-rot molds; brown rot (Gloeophyllum trabeum, white rot (Phanerochaete chrysosporium and soft rot (Trichoderma reesei. After solid state fermentation of the fungi on the filter paper for four days, the saccharified cellulose was then fermented to ethanol by using Saccharomyces cerevisiae. The efficiency of the fungal species in saccharifying the filter paper was compared against a low dose (25 FPU/g cellulose of a commercial cellulase. Total sugar, cellobiose and glucose were monitored during the fermentation period, along with ethanol, acetic acid and lactic acid. Results indicated that the most efficient fungal species in saccharifying the filter paper was T. reesei with 5.13 g/100 g filter paper of ethanol being produced at days 5, followed by P. chrysosporium at 1.79 g/100 g filter paper. No ethanol was detected for the filter paper treated with G. trabeum throughout the five day fermentation stage. Acetic acid was only produced in the sample treated with T. reesei and the commercial enzyme, with concentration 0.95 and 2.57 g/100 g filter paper, respectively at day 5. Lactic acid production was not detected for all the fungal treated filter paper after day 5. Our study indicated that there is potential in utilizing in situ enzymatic saccharification of biomass by using T. reesei and P. chrysosporium that may lead to an economical simultaneous saccharification and fermentation process for the production of fuel ethanol.

  5. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  6. Fungal His-tagged nitrilase from Gibberella intermedia: gene cloning, heterologous expression and biochemical properties.

    Directory of Open Access Journals (Sweden)

    Jin-Song Gong

    Full Text Available BACKGROUND: Nitrilase is an important member of the nitrilase superfamiliy. It has attracted substantial interest from academia and industry for its function of converting nitriles directly into the corresponding carboxylic acids in recent years. Thus nitrilase has played a crucial role in production of commercial carboxylic acids in chemical industry and detoxification of nitrile-contaminated wastes. However, conventional studies mainly focused on the bacterial nitrilase and the potential of fungal nitrilase has been far from being fully explored. Research on fungal nitrilase gene expression will advance our understanding for its biological function of fungal nitrilase in nitrile hydrolysis. METHODOLOGY/PRINCIPAL FINDINGS: A fungal nitrilase gene from Gibberella intermedia was cloned through reverse transcription-PCR. The open reading frame consisted of 963 bp and potentially encoded a protein of 320 amino acid residues with a theoretical molecular mass of 35.94 kDa. Furthermore, the catalytic triad (Glu-45, Lys-127, and Cys-162 was proposed and confirmed by site-directed mutagenesis. The encoding gene was expressed in Escherichia coli Rosetta-gami (DE3 and the recombinant protein with His(6-tag was purified to electrophoretic homogeneity. The purified enzyme exhibited optimal activity at 45°C and pH 7.8. This nitrilase was specific towards aliphatic and aromatic nitriles. The kinetic parameters V(max and K(m for 3-cyanopyridine were determined to be 0.81 µmol/min·mg and 12.11 mM through Hanes-Woolf plot, respectively. 3-Cyanopyridine (100 mM could be thoroughly hydrolyzed into nicotinic acid within 10 min using the recombinant strain with the release of about 3% nicotinamide and no substrate was detected. CONCLUSIONS/SIGNIFICANCE: In the present study, a fungal nitrilase was cloned from the cDNA sequence of G. intermedia and successfully expressed in E. coli Rosetta-gami (DE3. The recombinant strain displayed good 3-cyanopyridine

  7. Pancreatic Enzymes

    Science.gov (United States)

    ... NOW HONOR/MEMORIAL GENERAL DONATION MONTHLY PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  8. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  9. Superficial Fungal Infections.

    Science.gov (United States)

    Kaushik, Neha; Pujalte, George G A; Reese, Stephanie T

    2015-12-01

    Superficial fungal infections grow in dark and moist areas and invade various parts of the body. These infections are easily treatable in immunocompetent individuals. In immunosuppressed individuals, the presentation can be quite severe, requiring use of more potent antifungal agents. The treatment for these conditions consists of topical antifungal agents, creams, and oral systemic medications. The use of prednisone can alter the appearance of superficial fungal infections, making them difficult to diagnose. It is important for primary care providers to become adept at understanding the epidemiology, transmission, clinical presentation, diagnosis techniques, and treatment options available. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves.

    Science.gov (United States)

    Ullah, A H; Sethumadhavan, K; Mullaney, E J; Ziegelhoffer, T; Austin-Phillips, S

    1999-10-14

    The phyA gene from Aspergillus ficuum coding for a 441-amino-acid full-length phytase was expressed in Nicotiana tabacum (tobacco) leaves. The expressed phytase was purified to homogeneity using ion-exchange column chromatography. The purified phytase was characterized biochemically and its kinetic parameters were determined. When the recombinant phytase was compared with its counterpart from Aspergillus ficuum for physical and enzymatic properties, it was found that catalytically the recombinant protein was indistinguishable from the native phytase. Except for a decrease in molecular mass, the overexpressed recombinant phytase was virtually the same as the native fungal phytase. While the temperature optima of the recombinant protein remain unchanged, the pH optima shifted from pH 5 to 4. The results are encouraging enough to open the possibility of overexpressing phyA gene from Aspergillus ficuum in other crop plants as an alternative means of commercial production of this important enzyme. Copyright 1999 Academic Press.

  11. Hospitalized Patients and Fungal Infections

    Science.gov (United States)

    ... Patients Medications that Weaken Your Immune System Outbreaks Rhizopus Investigation CDC at Work Global Fungal Diseases Cryptococcal ... 16. Alangaden GJ. Nosocomial Fungal Infections: Epidemiology, Infection Control, and Prevention. Infectious Disease Clinics of North America ...

  12. Overview of fungal lipase: a review.

    Science.gov (United States)

    Singh, Abhishek Kumar; Mukhopadhyay, Mausumi

    2012-01-01

    Lipases (triacylglycerolacyl hydrolases, EC3.1.1.3) are class of enzymes which catalyze the hydrolysis of long-chain triglycerides. In this review paper, an overview regarding the fungal lipase production, purification, and application is discussed. The review describes various industrial applications of lipase in pulp and paper, food, detergent, and textile industries. Some important lipase-producing fungal genera include Aspergillus, Penicillium, Rhizopus, Candida, etc. Current fermentation process techniques such as batch, fed-batch, and continuous mode of lipase production in submerged and solid-state fermentations are discussed in details. The purification of lipase by hydrophobic interaction chromatography is also discussed. The development of mathematical models applied to lipase production is discussed with special emphasis on lipase engineering.

  13. Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification

    National Research Council Canada - National Science Library

    Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh

    2017-01-01

    .... The alteration in lignocellulolytic enzymes by use of supplements in fungal pretreatment of SSB to achieve higher lignin degradation, selectivity value and enzymatic hydrolysis to fermentable sugar was studied...

  14. The Fungal Kingdom

    NARCIS (Netherlands)

    Heitman, Joseph; Howlett, B.J.; Crous, P.W.; Stukenbrock, E.H.; James, T.Y.; Gow, N.A.R.

    2017-01-01

    Fungi research and knowledge grew rapidly following recent advances in genetics and genomics. This book synthesizes new knowledge with existing information to stimulate new scientific questions and propel fungal scientists on to the next stages of research. This book is a comprehensive guide on

  15. Thai marine fungal diversity

    Directory of Open Access Journals (Sweden)

    Rattaket Choeyklin

    2006-07-01

    Full Text Available The marine fungal diversity of Thailand was investigated and 116 Ascomycota, 3 Basidiomycota, 28 anamorphic fungi, 7 Stramenopiles recorded, with 30 tentatively identified. These species have primarily been collected from driftwood and attached decayed wood of mangrove trees. The holotype number of 15 taxa is from Thailand and 33 are new records from the country.

  16. Oral fungal infections.

    Science.gov (United States)

    Muzyka, Brian C

    2005-01-01

    Candidiasis is the most common oral fungal infection diagnosed in humans. Candidiasis may result from immune system dysfunction or as a result of local or systemic medical treatment. Because oral candidiasis is generally a localized infection, topical treatment methods are the first line of therapy, especially for the pseudomembranous and erythematous variants. Patients with dental prostheses should also be advised to disinfect the prosthesis routinely during the candidal treatment period, because the prosthesis may serve as a source of reinfection. Additionally, patients should be advised that oral hygiene aids, such as toothbrushes and denture brushes, may also be contaminated and should be discarded or disinfected. A disinfecting solution of equal parts of hydrogen peroxide and water may be used. Likewise, 2% chlorhexidine gluconate solution may be used asa disinfecting solution for dental prostheses and oral hygiene aids. Occasionally the clinician encounters a more resistant form of oral candidiasis such as the hyperplastic variant or a variant that does not respond to topical therapy. Appropriate systemic therapy should be employed for the treatment of these infections. Additionally, a biopsy should be undertaken in individuals with the hyperplastic variant of Candida because there is some degree of risk for malignant transformation. Deep fungal infections should be managed in association with appropriate medical specialists to rule out other systemic involvement. The dental health care provider plays an important part in the diagnosis and management of fungal disease, and therefore clinicians should be aware of the presenting signs and symptoms or oral fungal disease.

  17. Fungal Wound Infection

    Centers for Disease Control (CDC) Podcasts

    2016-01-28

    Dr. David Tribble, acting director of the infectious disease clinical research program at Uniformed Services University of the Health Sciences, discusses fungal wound infections after combat trauma.  Created: 1/28/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/28/2016.

  18. Hydrodynamics, Fungal Physiology, and Morphology.

    Science.gov (United States)

    Serrano-Carreón, L; Galindo, E; Rocha-Valadéz, J A; Holguín-Salas, A; Corkidi, G

    2015-01-01

    Filamentous cultures, such as fungi and actinomycetes, contribute substantially to the pharmaceutical industry and to enzyme production, with an annual market of about 6 billion dollars. In mechanically stirred reactors, most frequently used in fermentation industry, microbial growth and metabolite productivity depend on complex interactions between hydrodynamics, oxygen transfer, and mycelial morphology. The dissipation of energy through mechanically stirring devices, either flasks or tanks, impacts both microbial growth through shearing forces on the cells and the transfer of mass and energy, improving the contact between phases (i.e., air bubbles and microorganisms) but also causing damage to the cells at high energy dissipation rates. Mechanical-induced signaling in the cells triggers the molecular responses to shear stress; however, the complete mechanism is not known. Volumetric power input and, more importantly, the energy dissipation/circulation function are the main parameters determining mycelial size, a phenomenon that can be explained by the interaction of mycelial aggregates and Kolmogorov eddies. The use of microparticles in fungal cultures is also a strategy to increase process productivity and reproducibility by controlling fungal morphology. In order to rigorously study the effects of hydrodynamics on the physiology of fungal microorganisms, it is necessary to rule out the possible associated effects of dissolved oxygen, something which has been reported scarcely. At the other hand, the processes of phase dispersion (including the suspended solid that is the filamentous biomass) are crucial in order to get an integral knowledge about biological and physicochemical interactions within the bioreactor. Digital image analysis is a powerful tool for getting relevant information in order to establish the mechanisms of mass transfer as well as to evaluate the viability of the mycelia. This review focuses on (a) the main characteristics of the two most

  19. Twenty-second Fungal Genetics Conference - Asilomar, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan D. Walton

    2003-06-30

    The purpose of the Twenty Second Fungal Genetics Conference is to bring together scientists and students who are interested in genetic approaches to studying the biology of filamentous fungi. It is intended to stimulate thinking and discussion in an atmosphere that supports interactions between scientists at different levels and in different disciplines. Topics range from the basic to the applied. Filamentous fungi impact human affairs in many ways. In the environment they are the most important agents of decay and nutrient turnover. They are used extensively in the food industry for the production of food enzymes such as pectinase and food additives such as citric acid. They are used in the production of fermented foods such as alcoholic drinks, bread, cheese, and soy sauce. More than a dozen species of mushrooms are used as foods directly. Many of our most important antibiotics, such as penicillin, cyclosporin, and lovastatin, come from fungi. Fungi also have many negative impacts on human health and economics. Fungi are serious pathogens in immuno-compromised patients. Fungi are the single largest group of plant pathogens and thus a serious limit on crop productivity throughout the world. Many fungi are allergenic, and mold contamination of residences and commercial buildings is now recognized as a serious public health threat. As decomposers, fungi cause extensive damage to just about all natural and synthetic materials.

  20. Anti-fungal activity of irradiated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pham ThiLe Ha; Tran Thi Thuy; Nguyen Quoc Hien [Nuclear Research Inst., No.1 Nguyen Tu Luc, Dalat (Viet Nam); Nagasawa, Naotsugu; Kume, Tamikazu [Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Gunma (Japan)

    1999-09-01

    Anti-fungal activity of chitosan induced by irradiation has been investigated. Commercial chitosan samples of 8B (80% deacetylation) and l0B (99% deacetylation) were irradiated by {gamma}-ray in dry condition. Highly deacethylated chitosan (10B) at low dose irradiation (75 kGy) was effective for inhibition of fungal growth. The sensitivities of Exobasidium vexans, Septoria chrysanthemum and Gibberella fujikuroi for the irradiated chitosan were different and the necessary concentrations of chitosan were 550, 350 and 250 {mu}g/ml, respectively. For the plant growth, low deacethylation (chitosan 8B) and high dose (500 kGy) was effective and the growth of chrysanthemum was promoted by spraying the irradiated chitosan. (author)

  1. Photostability of Natural Orange-Red and Yellow Fungal Pigments in Liquid Food Model Systems

    DEFF Research Database (Denmark)

    Mapari, Sameer Shamsuddin; Meyer, Anne S.; Thrane, Ulf

    2009-01-01

    an enhanced photostability of fungal pigment extracts compared to the commercially available natural colorants Monascus Red and turmeric used as controls. Yellow components of the orange-red fungal pigment extract were more photostable than the red components. Chemistry of the photodegradation of the orange...

  2. Kunstige Enzymer

    DEFF Research Database (Denmark)

    Bols, Mikael; Bjerre, Jeannette; Marinescu, Lavinia

    2007-01-01

    Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin.......Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin....

  3. Fungal NRPS-dependent siderophores: From function to prediction

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Knudsen, Michael; Hansen, Frederik Teilfeldt

    2014-01-01

    discuss the function of siderophores in relation to fungal iron uptake mechanisms and their importance for coexistence with host organisms. The chemical nature of the major groups of siderophores and their regulation is described along with the function and architecture of the large multi-domain enzymes...

  4. Analytical properties of some commercially available nitrate reductase enzymes evaluated as replacements for cadmium in automated, semiautomated, and manual colorimetric methods for determination of nitrate plus nitrite in water

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2013-01-01

    A multiyear research effort at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) evaluated several commercially available nitrate reductase (NaR) enzymes as replacements for toxic cadmium in longstanding automated colorimetric air-segmented continuous-flow analyzer (CFA) methods for determining nitrate plus nitrite (NOx) in water. This research culminated in USGS approved standard- and low-level enzymatic reduction, colorimetric automated discrete analyzer NOx methods that have been in routine operation at the NWQL since October 2011. The enzyme used in these methods (AtNaR2) is a product of recombinant expression of NaR from Arabidopsis thaliana (L.) Heynh. (mouseear cress) in the yeast Pichia pastoris. Because the scope of the validation report for these new automated discrete analyzer methods, published as U.S. Geological Survey Techniques and Methods 5–B8, was limited to performance benchmarks and operational details, extensive foundational research with different enzymes—primarily YNaR1, a product of recombinant expression of NaR from Pichia angusta in the yeast Pichia pastoris—remained unpublished until now. This report documents research and development at the NWQL that was foundational to development and validation of the discrete analyzer methods. It includes: (1) details of instrumentation used to acquire kinetics data for several NaR enzymes in the presence and absence of known or suspected inhibitors in relation to reaction temperature and reaction pH; and (2) validation results—method detection limits, precision and bias estimates, spike recoveries, and interference studies—for standard- and low-level automated colorimetric CFA-YNaR1 reduction NOx methods in relation to corresponding USGS approved CFA cadmium-reduction (CdR) NOx methods. The cornerstone of this validation is paired sample statistical and graphical analysis of NOx concentrations from more than 3,800 geographically and seasonally diverse surface

  5. Biomass conversion in the fungal garden of the leaf-cutter ant Acromyrmex echinatior

    DEFF Research Database (Denmark)

    Grell, Morten Nedergaard; Nygaard, Sanne; Linde, Tore

    2011-01-01

    It has been demonstrated that fungal enzymes play a significant role in the fungal garden conversion of the fresh-cut leaves into accessible food for the ant larvae (Schiøtt et al. 2008, BMC Microbiol, 8:40; Licht et al. 2010, Evolution 64: 2055-2069). However, so far specific documentation...... through matching to an EST library produced from the same fungal garden material and 454 genome sequencing data of the fungal symbiont Leucoagaricus gongylophorus. Based on Blast searches, the deducted function of the identified genes was achieved. The results provided interesting new knowledge...

  6. Unusual fungal niches.

    Science.gov (United States)

    Cantrell, S A; Dianese, J C; Fell, J; Gunde-Cimerman, N; Zalar, P

    2011-01-01

    Fungi are found in all aerobic ecosystems, colonizing a diversity of substrates and performing a wide diversity of functions, some of which are not well understood. Many spices of fungi are cosmopolitan and generalists or habitats. Unusual fungal niches are habitats where extreme conditions would be expected to prevent the development of a mycobiota. In this review we describe five unusual fungal habitats in which fungi occupy poorly understood niches: Antarctic dry valleys, high Arctic glaciers, salt flats and salterns, hypersaline microbial mats and plant trichomes. Yeasts, black yeast-like fungi, melanized filamentous species as well as representatives of Aspergillus and Penicillium seem to be dominant among the mycobiota adapted to cold and saline niches. Plant trichomes appear to be a taxa. The advent of new sequencing technologies is helping to elucidate the microbial diversity in many ecosystems, but more studies are needed to document the functional role of fungi in the microbial communities thriving in these unusual environments.

  7. Fungal microsomes in a biotransformation perspective: protein nature of membrane-associated reactions.

    Science.gov (United States)

    Svobodová, Kateřina; Mikesková, Hana; Petráčková, Denisa

    2013-12-01

    Microsomal fraction of fungal cells grabs the attention of many researchers for it contains enzymes that play a role in biotechnologically relevant processes. Microsomal enzymes, namely, CYP450s, were shown to metabolize a wide range of xenobiotic compounds, including PAHs, PCBs, dioxins, and endocrine disruptors, and take part in other fungal biotransformation reactions. However, little is known about the nature and regulation of these membrane-associated reactions. Advanced proteomic and post-genomic techniques make it possible to identify larger numbers of microsomal proteins and thus add to a deeper study of fungal intracellular processes. In this work, proteins that were identified through a shotgun proteomic approach in fungal microsomes under various culture conditions are reviewed. However, further research is still needed to fully understand the role of microsomes in fungal biodegradation and biotransformation reactions.

  8. Allergic Fungal Sinusitis

    OpenAIRE

    Correll, Daniel P.; Luzi, Scott A.; Nelson, Brenda L.

    2014-01-01

    A 42 year old male presents with worsening pain and an increase in thick chronic drainage of the left sinus. Image studies show complete opacification of the left frontal sinus, left sphenoid sinus, and the left maxillary sinus. The patient was taken to the operating room and tissue for microscopic evaluation was obtained. The microscopic findings were classic for allergic fungal sinusitis: areas of alternating mucinous material and inflammatory cell debris and abundant Charcot–Leyden crystal...

  9. Fungal diseases of fish.

    Science.gov (United States)

    Yanong, Roy P E

    2003-05-01

    Fungal diseases of fish have become increasingly important over the past 20 years. The traditional "fungi" are comprised of members from several different taxonomic kingdoms. Saprolegnia and other typical water molds are the "classic" secondary invaders, infecting more superficial areas of the body and requiring compromise of the exterior of the fish, poor water quality, or general immunosuppression. An increasing number of other environmental fungi are being reported from diseased fish, further testament to the opportunistic nature of many fungi. Common procedures such as air bladder deflation for many marine species collected at depth under nonsterile conditions may result in fungal infections of the swim bladder. Some fungi such as Aphanomyces and Fusarium can cause more invasive or systemic disease, often associated with changes in environmental factors such as temperature and salinity. Other fungi such as I. hoferi can be even more insidious and chronic, mimicking mycobacteriosis to a degree. Fungal diseases, in general, are very difficult to control or treat once they have taken hold. Prevention is, as always, the best medicine. Increased knowledge of basic biology will help guide treatment and control methods. Further research on general predisposing factors, species susceptibilities, immune system effects and other protective mechanisms in fish and more effective chemotherapeutics for external and systemic infections are needed.

  10. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  11. Enzyme assays

    OpenAIRE

    Bisswanger, Hans

    2014-01-01

    The essential requirements for enzyme assays are described and frequently occurring errors and pitfalls as well as their avoidance are discussed. The main factors, which must be considered for assaying enzymes, are temperature, pH, ionic strength and the proper concentrations of the essential components like substrates and enzymes. Standardization of these parameters would be desirable, but the diversity of the features of different enzymes prevents unification of assay conditions. Neverthele...

  12. Medical interventions for fungal keratitis.

    OpenAIRE

    FlorCruz, NV; Evans, JR

    2015-01-01

    Fungal keratitis is a fungal infection of the cornea. It is common in lower income countries, particularly in agricultural areas but relatively uncommon in higher income countries. Although there are medications available, their effectiveness is unclear. To assess the effects of different antifungal drugs in the management of fungal keratitis. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2015, Issue 2), Ovid MEDLINE, Ovid MEDLINE In-Process and Othe...

  13. Occurrence of Fungal DNA Contamination in PCR Reagents: Approaches to Control and Decontamination.

    Science.gov (United States)

    Czurda, S; Smelik, S; Preuner-Stix, S; Nogueira, F; Lion, T

    2016-01-01

    Nucleic acid amplification techniques permitting sensitive and rapid screening in patients at risk for invasive fungal infections are an important addition to conventional fungal diagnostic methods. However, contamination with fungal DNA may be a serious threat to the validity of fungal amplification-based assays. Besides rigorous handling procedures to avoid false-positive test results from exogenous sources, we have implemented protocols for comprehensive assessment of fungal contamination in all materials involved in the analytical process. Traces of fungal DNA were found in different commercially available PCR reagents, including lyophilized primers, TaqMan probes, and master mix solutions. These contaminants resulted in a considerable rate of false-positive tests in panfungal real-time PCR analysis. To address this problem, we have established a decontamination protocol based on the activity of a double-strand specific DNase. Using this approach, we have significantly reduced the frequency of false-positive test results attributable to contaminated reagents. On the basis of our findings, we strongly recommend routine monitoring of all reagents used in fungal PCR assays for the presence of relevant contaminants. As long as fungal-grade reagents are not readily available, pretreatment methods facilitating elimination of fungal DNA are critical for reducing the risk of false-positive results in highly sensitive molecular fungal detection assays. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Occurrence of Fungal DNA Contamination in PCR Reagents: Approaches to Control and Decontamination

    Science.gov (United States)

    Czurda, S.; Smelik, S.; Preuner-Stix, S.; Nogueira, F.

    2015-01-01

    Nucleic acid amplification techniques permitting sensitive and rapid screening in patients at risk for invasive fungal infections are an important addition to conventional fungal diagnostic methods. However, contamination with fungal DNA may be a serious threat to the validity of fungal amplification-based assays. Besides rigorous handling procedures to avoid false-positive test results from exogenous sources, we have implemented protocols for comprehensive assessment of fungal contamination in all materials involved in the analytical process. Traces of fungal DNA were found in different commercially available PCR reagents, including lyophilized primers, TaqMan probes, and master mix solutions. These contaminants resulted in a considerable rate of false-positive tests in panfungal real-time PCR analysis. To address this problem, we have established a decontamination protocol based on the activity of a double-strand specific DNase. Using this approach, we have significantly reduced the frequency of false-positive test results attributable to contaminated reagents. On the basis of our findings, we strongly recommend routine monitoring of all reagents used in fungal PCR assays for the presence of relevant contaminants. As long as fungal-grade reagents are not readily available, pretreatment methods facilitating elimination of fungal DNA are critical for reducing the risk of false-positive results in highly sensitive molecular fungal detection assays. PMID:26560539

  15. Allergic Fungal Sinusitis.

    Science.gov (United States)

    Correll, Daniel P; Luzi, Scott A; Nelson, Brenda L

    2015-12-01

    A 42 year old male presents with worsening pain and an increase in thick chronic drainage of the left sinus. Image studies show complete opacification of the left frontal sinus, left sphenoid sinus, and the left maxillary sinus. The patient was taken to the operating room and tissue for microscopic evaluation was obtained. The microscopic findings were classic for allergic fungal sinusitis: areas of alternating mucinous material and inflammatory cell debris and abundant Charcot-Leyden crystals. Cultures were performed and the patient began steroid therapy and desensitization therapy.

  16. Commercializing Patents

    National Research Council Canada - National Science Library

    Ted Sichelman

    2010-01-01

    .... Although more recent "prospect" theories properly recognize the importance of patent protection for commercializing inventions, they incorrectly conclude that strong, real property-like rights...

  17. Comparison of an enzyme-linked immunosorbent assay with indirect hemagglutination and hemagglutination inhibition for determination of rubella virus antibody: evaluation of immune status with commercial reagents in a clinical laboratory.

    OpenAIRE

    Truant, A L; Barksdale, B L; Huber, T. W.; Elliott, L B

    1983-01-01

    Comparative evaluations of immune status for rubella virus are described for enzyme-linked immunosorbent assay, hemagglutination inhibition, and indirect hemagglutination. A 92.1% agreement between enzyme-linked immunosorbent assay and indirect hemagglutination assay was demonstrated for rubella immune status. Enzyme-linked immunosorbent assay and hemagglutination inhibition demonstrated a 92.6% agreement and were compared in an attempt to define the quantitative usefulness of comparisons of ...

  18. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  19. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  20. Loss of diversity in wood-inhabiting fungal communities affects decomposition activity in Norway spruce wood

    Directory of Open Access Journals (Sweden)

    Lara eValentin

    2014-05-01

    Full Text Available Hundreds of wood-inhabiting fungal species are now threatened, principally due to a lack of dead wood in intensively managed forests, but the consequences of reduced fungal diversity on ecosystem functioning are not known. Several experiments have shown that primary productivity is negatively affected by a loss of species, but the effects of microbial diversity on decomposition are less studied. We studied the relationship between fungal diversity and the in vitro decomposition rate of slightly, moderately and heavily decayed Picea abies wood with indigenous fungal communities that were diluted to examine the influence of diversity. Respiration rate, wood-degrading hydrolytic enzymes and fungal community structure were assessed during a 16-week incubation. Respiration rate increased between early- and late-decay stages. Reduced fungal diversity was associated with lower respiration rates during intermediate stages of decay, but no effects were detected at later stages. The activity of hydrolytic enzymes varied among decay stages and fungal dilutions. Our results suggest that functioning of highly diverse communities of the late-decay stage were more resistant to the loss of diversity than less diverse communities of early decomposers. This indicates the accumulation of functional redundancy during the succession of the fungal community in decomposing substrates.

  1. Enzyme Informatics

    OpenAIRE

    Alderson, Rosanna G.; De Ferrari, Luna; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B O; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCa...

  2. Managing acute invasive fungal sinusitis.

    Science.gov (United States)

    Dwyhalo, Kristina M; Donald, Carrlene; Mendez, Anthony; Hoxworth, Joseph

    2016-01-01

    Acute invasive fungal sinusitis is the most aggressive form of fungal sinusitis and can be fatal, especially in patients who are immunosuppressed. Early diagnosis and intervention are crucial and potentially lifesaving, so primary care providers must maintain a high index of suspicion for this disease. Patients may need to be admitted to the hospital for IV antifungal therapy and surgical debridement.

  3. Serious fungal infections in Pakistan.

    Science.gov (United States)

    Jabeen, K; Farooqi, J; Mirza, S; Denning, D; Zafar, A

    2017-06-01

    The true burden of fungal infection in Pakistan is unknown. High-risk populations for fungal infections [tuberculosis (TB), diabetes, chronic respiratory diseases, asthma, cancer, transplant and human immunodeficiency virus (HIV) infection] are numerous. Here, we estimate the burden of fungal infections to highlight their public health significance. Whole and at-risk population estimates were obtained from the WHO (TB), BREATHE study (COPD), UNAIDS (HIV), GLOBOCAN (cancer) and Heartfile (diabetes). Published data from Pakistan reporting fungal infections rates in general and specific populations were reviewed and used when applicable. Estimates were made for the whole population or specific populations at risk, as previously described in the LIFE methodology. Of the 184,500,000 people in Pakistan, an estimated 3,280,549 (1.78%) are affected by a serious fungal infection, omitting all cutaneous infection, oral candidiasis and allergic fungal sinusitis, which we could not estimate. Compared with other countries, the rates of candidaemia (21/100,000) and mucormycosis (14/100,000) are estimated to be very high, and are based on data from India. Chronic pulmonary aspergillosis rates are estimated to be high (39/100,000) because of the high TB burden. Invasive aspergillosis was estimated to be around 5.9/100,000. Fungal keratitis is also problematic in Pakistan, with an estimated rate of 44/100,000. Pakistan probably has a high rate of certain life- or sight-threatening fungal infections.

  4. Current management of fungal infections.

    NARCIS (Netherlands)

    Meis, J.F.G.M.; Verweij, P.E.

    2001-01-01

    The management of superficial fungal infections differs significantly from the management of systemic fungal infections. Most superficial infections are treated with topical antifungal agents, the choice of agent being determined by the site and extent of the infection and by the causative organism,

  5. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  6. Friends or foes? Emerging insights from fungal interactions with plants

    Science.gov (United States)

    Zeilinger, Susanne; Gupta, Vijai K.; Dahms, Tanya E. S.; Silva, Roberto N.; Singh, Harikesh B.; Upadhyay, Ram S.; Gomes, Eriston Vieira; Tsui, Clement Kin-Ming; Nayak, S Chandra

    2015-01-01

    Fungi interact with plants in various ways, with each interaction giving rise to different alterations in both partners. While fungal pathogens have detrimental effects on plant physiology, mutualistic fungi augment host defence responses to pathogens and/or improve plant nutrient uptake. Tropic growth towards plant roots or stomata, mediated by chemical and topographical signals, has been described for several fungi, with evidence of species-specific signals and sensing mechanisms. Fungal partners secrete bioactive molecules such as small peptide effectors, enzymes and secondary metabolites which facilitate colonization and contribute to both symbiotic and pathogenic relationships. There has been tremendous advancement in fungal molecular biology, omics sciences and microscopy in recent years, opening up new possibilities for the identification of key molecular mechanisms in plant–fungal interactions, the power of which is often borne out in their combination. Our fragmentary knowledge on the interactions between plants and fungi must be made whole to understand the potential of fungi in preventing plant diseases, improving plant productivity and understanding ecosystem stability. Here, we review innovative methods and the associated new insights into plant–fungal interactions. PMID:26591004

  7. Cellulolytic potential of thermophilic species from four fungal orders

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Lene

    2013-01-01

    Elucidation of fungal biomass degradation is important for understanding the turnover of biological materials in nature and has important implications for industrial biomass conversion. In recent years there has been an increasing interest in elucidating the biological role of thermophilic fungi...... and in characterization of their industrially useful enzymes. In the present study we investigated the cellulolytic potential of 16 thermophilic fungi from the three ascomycete orders Sordariales, Eurotiales and Onygenales and from the zygomycete order Mucorales thus covering all fungal orders that include thermophiles....... Thermophilic fungi are the only described eukaryotes that can grow at temperatures above 45 ºC. All 16 fungi were able to grow on crystalline cellulose but their secreted enzymes showed widely different cellulolytic activities, pH optima and thermostabilities. Interestingly, in contrast to previous reports, we...

  8. Fungal transcriptomics from host samples

    Directory of Open Access Journals (Sweden)

    Sara eAmorim-Vaz

    2016-01-01

    Full Text Available Candida albicans adaptation to the host requires a profound reprogramming of the fungal transcriptome as compared to in vitro laboratory conditions. A detailed knowledge of the C. albicans transcriptome during the infection process is necessary in order to understand which of the fungal genes are important for host adaptation. Such genes could be thought of as potential targets for antifungal therapy. The acquisition of the C. albicans transcriptome is however technically challenging due to the low proportion of fungal RNA in host tissues. Two emerging technologies were used recently to circumvent this problem. One consists of the detection of low abundance fungal RNA using capture and reporter gene probes which is followed by emission and quantification of resulting fluorescent signals (nanoString. The other is based first on the capture of fungal RNA by short biotinylated oligonucleotide baits covering the C. albicans ORFome permitting fungal RNA purification. Next, the enriched fungal RNA is amplified and subjected RNA sequencing (RNA-seq. Here we detail these two transcriptome approaches and discuss their advantages and limitations and future perspectives in microbial transcriptomics from host material.

  9. Potential of small-molecule fungal metabolites in antiviral chemotherapy.

    Science.gov (United States)

    Roy, Biswajit G

    2017-08-01

    Various viral diseases, such as acquired immunodeficiency syndrome, influenza, and hepatitis, have emerged as leading causes of human death worldwide. Scientific endeavor since invention of DNA-dependent RNA polymerase of pox virus in 1967 resulted in better understanding of virus replication and development of various novel therapeutic strategies. Despite considerable advancement in every facet of drug discovery process, development of commercially viable, safe, and effective drugs for these viruses still remains a big challenge. Decades of intense research yielded a handful of natural and synthetic therapeutic options. But emergence of new viruses and drug-resistant viral strains had made new drug development process a never-ending battle. Small-molecule fungal metabolites due to their vast diversity, stereochemical complexity, and preapproved biocompatibility always remain an attractive source for new drug discovery. Though, exploration of therapeutic importance of fungal metabolites has started early with discovery of penicillin, recent prediction asserted that only a small percentage (5-10%) of fungal species have been identified and much less have been scientifically investigated. Therefore, exploration of new fungal metabolites, their bioassay, and subsequent mechanistic study bears huge importance in new drug discovery endeavors. Though no fungal metabolites so far approved for antiviral treatment, many of these exhibited high potential against various viral diseases. This review comprehensively discussed about antiviral activities of fungal metabolites of diverse origin against some important viral diseases. This also highlighted the mechanistic details of inhibition of viral replication along with structure-activity relationship of some common and important classes of fungal metabolites.

  10. Strategies to Characterize Fungal Lipases for Applications in Medicine and Dairy Industry

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2013-01-01

    Full Text Available Lipases are water-soluble enzymes that act on insoluble substrates and catalyze the hydrolysis of long-chain triglycerides. Lipases play a vital role in the food, detergent, chemical, and pharmaceutical industries. In the past, fungal lipases gained significant attention in the industries due to their substrate specificity and stability under varied chemical and physical conditions. Fungal enzymes are extracellular in nature, and they can be extracted easily, which significantly reduces the cost and makes this source preferable over bacteria. Soil contaminated with spillage from the products of oil and dairy harbors fungal species, which have the potential to secrete lipases to degrade fats and oils. Herein, the strategies involved in the characterization of fungal lipases, capable of degrading fatty substances, are narrated with a focus on further applications.

  11. Widespread Occurrence of Expressed Fungal Secretory Peroxidases in Forest Soils

    OpenAIRE

    Kellner, Harald; Luis, Patricia; Pecyna, Marek J.; Barbi, Florian; Kapturska, Danuta; Krüger, Dirk; Zak, Donald R.; Marmeisse, Roland; Vandenbol, Micheline; Hofrichter, Martin

    2014-01-01

    Fungal secretory peroxidases mediate fundamental ecological functions in the conversion and degradation of plant biomass. Many of these enzymes have strong oxidizing activities towards aromatic compounds and are involved in the degradation of plant cell wall (lignin) and humus. They comprise three major groups: class II peroxidases (including lignin peroxidase, manganese peroxidase, versatile peroxidase and generic peroxidase), dye-decolorizing peroxidases, and heme-thiolate peroxidases (e.g....

  12. Toxicity profile of commercially produced indigenous banana beer.

    Science.gov (United States)

    Shale, K; Mukamugema, J; Lues, R J; Venter, P

    2012-08-01

    Mycotoxins, together with endotoxins, represent important classes of naturally occurring contaminants in food products, posing significant health risks to consumers. The aim of this study is to investigate the occurrence of both Fusarium mycotoxins and endotoxins in commercially produced traditional banana beer. Two brands of commercially produced traditional banana beer were collected from a local retail market in Kigali, Rwanda. Beer samples were analysed for the presence of deoxynivalenol (DON), fumonisin B₁ and zearalenone (ZEA), using an enzyme-linked immuno-sorbent assay (ELISA) method. The quantification of bacterial endotoxin using Limulus amoeboecyte lysate (LAL) assay was also conducted. The contamination levels were 20 and 6.7 µg kg⁻¹ for DON; 34 and 31.3 µg kg⁻¹ for FB₁; 0.66 and 2.2 µg kg⁻¹ for ZEA in brands A and B of the beers, respectively. Results indicate that the levels of Fusarium toxins and bacterial endotoxin reported in this study did not pose adverse human health effects as a result of drinking/consuming banana beer. However, exposure to low/sub-threshold doses or non-toxic levels of endotoxins magnifies the toxic effect of xenobiotic agents (e.g. fungal toxins) on liver and other target organs. Considering Fusarium toxins and/or endotoxin contamination levels in other agricultural commodities intended for human consumption, health risks might be high and the condition is aggravated when beer is contaminated by mixtures of the mycotoxins, as indicated in this study.

  13. Detection of Fumonisins in Fresh and Dehydrated Commercial Garlic.

    Science.gov (United States)

    Tonti, Stefano; Mandrioli, Mara; Nipoti, Paola; Pisi, Annamaria; Toschi, Tullia Gallina; Prodi, Antonio

    2017-08-16

    An epidemic fungal disease caused by Fusarium proliferatum, responsible for fumonisin production (FB1, FB2, and FB3), has been reported in the main garlic-producing countries in recent years. Fumonisins are a group of structurally related toxic metabolites produced by this pathogen. The aim of this work was to establish an enzyme-linked immunosorbent assay (ELISA) procedure, mostly applied to cereals, that is suitable for fumonisin detection in garlic and compare these results to those obtained by high-performance liquid chromatography (HPLC) and screening of fresh and dehydrated garlic for toxicological risk. The results show good correlation between the two analytical methods. In fresh symptomatic garlic, fumonisin levels were higher in the basal plates than those in the portions with necrotic spots. Among the 56 commercially dehydrated garlic samples screened, three were positive by ELISA test and only one was above the limit of quantitation. The same samples analyzed by HPLC showed the presence of FB1 in trace amounts that was below the limit of quantitation; FB2 and FB3 were absent. The results are reassuring, because no substantial contamination by fumonisins was found in commercial garlic.

  14. PCR-based bioprospecting for homing endonucleases in fungal mitochondrial rRNA genes.

    Science.gov (United States)

    Hafez, Mohamed; Guha, Tuhin Kumar; Shen, Chen; Sethuraman, Jyothi; Hausner, Georg

    2014-01-01

    Fungal mitochondrial genomes act as "reservoirs" for homing endonucleases. These enzymes with their DNA site-specific cleavage activities are attractive tools for genome editing and gene therapy applications. Bioprospecting and characterization of naturally occurring homing endonucleases offers an alternative to synthesizing artificial endonucleases. Here, we describe methods for PCR-based screening of fungal mitochondrial rRNA genes for homing endonuclease encoding sequences, and we also provide protocols for the purification and biochemical characterization of putative native homing endonucleases.

  15. Cancer Patients and Fungal Infections

    Science.gov (United States)

    ... Patients Medications that Weaken Your Immune System Outbreaks Rhizopus Investigation CDC at Work Global Fungal Diseases Cryptococcal ... January 25, 2017 Content source: Centers for Disease Control and Prevention National Center for Emerging and Zoonotic ...

  16. Fungal Diseases: Ringworm Risk & Prevention

    Science.gov (United States)

    ... Patients Medications that Weaken Your Immune System Outbreaks Rhizopus Investigation CDC at Work Global Fungal Diseases Cryptococcal ... August 16, 2017 Content source: Centers for Disease Control and Prevention National Center for Emerging and Zoonotic ...

  17. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious that the a......Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...... that the application of the existing methods of genome, transcriptome, proteome and metabolome analysis to other fungi has enormous potential, especially for the production of food and food ingredients. The developments in the past year demonstrate that we have only just started to exploit this potential....

  18. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    Science.gov (United States)

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.

  19. Fungal microbiota dysbiosis in IBD

    Science.gov (United States)

    Sokol, Harry; Leducq, Valentin; Aschard, Hugues; Pham, Hang-Phuong; Jegou, Sarah; Landman, Cecilia; Cohen, David; Liguori, Giuseppina; Bourrier, Anne; Nion-Larmurier, Isabelle; Cosnes, Jacques; Seksik, Philippe; Langella, Philippe; Skurnik, David; Richard, Mathias L; Beaugerie, Laurent

    2017-01-01

    Objective The bacterial intestinal microbiota plays major roles in human physiology and IBDs. Although some data suggest a role of the fungal microbiota in IBD pathogenesis, the available data are scarce. The aim of our study was to characterise the faecal fungal microbiota in patients with IBD. Design Bacterial and fungal composition of the faecal microbiota of 235 patients with IBD and 38 healthy subjects (HS) was determined using 16S and ITS2 sequencing, respectively. The obtained sequences were analysed using the Qiime pipeline to assess composition and diversity. Bacterial and fungal taxa associated with clinical parameters were identified using multivariate association with linear models. Correlation between bacterial and fungal microbiota was investigated using Spearman's test and distance correlation. Results We observed that fungal microbiota is skewed in IBD, with an increased Basidiomycota/Ascomycota ratio, a decreased proportion of Saccharomyces cerevisiae and an increased proportion of Candida albicans compared with HS. We also identified disease-specific alterations in diversity, indicating that a Crohn's disease-specific gut environment may favour fungi at the expense of bacteria. The concomitant analysis of bacterial and fungal microbiota showed a dense and homogenous correlation network in HS but a dramatically unbalanced network in IBD, suggesting the existence of disease-specific inter-kingdom alterations. Conclusions Besides bacterial dysbiosis, our study identifies a distinct fungal microbiota dysbiosis in IBD characterised by alterations in biodiversity and composition. Moreover, we unravel here disease-specific inter-kingdom network alterations in IBD, suggesting that, beyond bacteria, fungi might also play a role in IBD pathogenesis. PMID:26843508

  20. Fungal microbiota dysbiosis in IBD.

    Science.gov (United States)

    Sokol, Harry; Leducq, Valentin; Aschard, Hugues; Pham, Hang-Phuong; Jegou, Sarah; Landman, Cecilia; Cohen, David; Liguori, Giuseppina; Bourrier, Anne; Nion-Larmurier, Isabelle; Cosnes, Jacques; Seksik, Philippe; Langella, Philippe; Skurnik, David; Richard, Mathias L; Beaugerie, Laurent

    2017-06-01

    The bacterial intestinal microbiota plays major roles in human physiology and IBDs. Although some data suggest a role of the fungal microbiota in IBD pathogenesis, the available data are scarce. The aim of our study was to characterise the faecal fungal microbiota in patients with IBD. Bacterial and fungal composition of the faecal microbiota of 235 patients with IBD and 38 healthy subjects (HS) was determined using 16S and ITS2 sequencing, respectively. The obtained sequences were analysed using the Qiime pipeline to assess composition and diversity. Bacterial and fungal taxa associated with clinical parameters were identified using multivariate association with linear models. Correlation between bacterial and fungal microbiota was investigated using Spearman's test and distance correlation. We observed that fungal microbiota is skewed in IBD, with an increased Basidiomycota/Ascomycota ratio, a decreased proportion of Saccharomyces cerevisiae and an increased proportion of Candida albicans compared with HS. We also identified disease-specific alterations in diversity, indicating that a Crohn's disease-specific gut environment may favour fungi at the expense of bacteria. The concomitant analysis of bacterial and fungal microbiota showed a dense and homogenous correlation network in HS but a dramatically unbalanced network in IBD, suggesting the existence of disease-specific inter-kingdom alterations. Besides bacterial dysbiosis, our study identifies a distinct fungal microbiota dysbiosis in IBD characterised by alterations in biodiversity and composition. Moreover, we unravel here disease-specific inter-kingdom network alterations in IBD, suggesting that, beyond bacteria, fungi might also play a role in IBD pathogenesis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Enzymes: principles and biotechnological applications

    Science.gov (United States)

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  2. The fungal community structure of barley malts from diverse geographical regions correlates with malt quality parameters.

    Science.gov (United States)

    Kaur, Mandeep; Bowman, John P; Stewart, Doug C; Evans, David E

    2015-12-23

    Malt is a preferred base for fermentations that produce beer or whisky. Barley for malt is grown under diverse environments in different geographical locations. Malt provides an ecological niche for a varied range of microorganisms with both positive and negative effects on its quality for brewing. Little information exists in the literature on the microbial community structure of Australian malt as well as broader global geographical differences in the associated fungal and bacterial communities. The aims of the present study were to compare the bacterial and fungal community structures of Australian commercial malt with its international counterparts originating from different geographical regions using terminal restriction fragment length polymorphism (TRFLP) fingerprinting and clone library analyses of ribosomal RNA genes. Further, the relationship between malt associated microbial communities and conventional malt quality parameters was also compared. Results showed that differences in fungal communities of malts from different geographical location were more pronounced than bacterial communities. TRFLP analysis discriminated high quality commercial malts with low fungal loads from malts deliberately infected with fungal inocula (Fusarium/Penicillium). Malt moisture, beta-amylase, α-amylase and limit dextrinase contents showed significant correlations with fungal community structure. This investigation concluded that fungal community structure was more important to subsequent malt quality outcomes than bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Lignin depolymerization by fungal secretomes and a microbial sink

    Energy Technology Data Exchange (ETDEWEB)

    Salvachúa, Davinia; Katahira, Rui; Cleveland, Nicholas S.; Khanna, Payal; Resch, Michael G.; Black, Brenna A.; Purvine, Samuel O.; Zink, Erika M.; Prieto, Alicia; Martínez, María J.; Martínez, Angel T.; Simmons, Blake A.; Gladden, John M.; Beckham, Gregg T.

    2016-08-25

    In Nature, powerful oxidative enzymes secreted by white rot fungi and some bacteria catalyze lignin depolymerization and some microbes are able to catabolize the resulting aromatic compounds as carbon and energy sources. Taken together, these two processes offer a potential route for microbial valorization of lignin. However, many challenges remain in realizing this concept, including that oxidative enzymes responsible for lignin depolymerization also catalyze polymerization of low molecular weight (LMW) lignin. Here, multiple basidiomycete secretomes were screened for ligninolytic enzyme activities in the presence of a residual lignin solid stream from a corn stover biorefinery, dubbed DMR-EH (Deacetylation, Mechanical Refining, and Enzymatic Hydrolysis) lignin. Two selected fungal secretomes, with high levels of laccases and peroxidases, were utilized for DMR-EH lignin depolymerization assays. The secretome from Pleurotus eryngii, which exhibited the highest laccase activity, reduced the lignin average molecular weight by 63% and 75% at pH 7 compared to the Mw of the control treated at the same conditions and the initial DMR-EH lignin, respectively, and was applied in further depolymerization assays as a function of time. As repolymerization was observed after 3 days of incubation, an aromatic-catabolic microbe (Pseudomonas putida KT2440) was incubated with the fungal secretome and DMR-EH lignin. These experiments demonstrated that the presence of the bacterium enhances lignin depolymerization, likely due to bacterial catabolism of LMW lignin, which may partially prevent repolymerization. In addition, proteomics was also applied to the P. eryngii secretome to identify the enzymes present in the fungal cocktail utilized for the depolymerization assays, which highlighted a significant number of glucose/ methanol/choline (GMC) oxidoreductases and laccases. Overall, this study demonstrates that ligninolytic enzymes can be used to partially depolymerize a solid, high

  4. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    Science.gov (United States)

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  5. High cell density cultivation of six fungal strains efficient in azo dye bioremediation.

    Science.gov (United States)

    Abd El-Rahim, Wafaa M; Mostafa, Enas M; Moawad, Hassan

    2016-12-01

    This work aims at optimizing the high cell density fungal cultivation for producing large quantities of fungal biomass to be used in azo dye residues bioremediation. In our previous studies the efficacy of using certain fungal strains to decolorize a range of commercial textile dyes of different structures (azo, disazo) were investigated. Several promising fungal strains belonging to Aspergillus tubigenesis, Aspergillus niger, Aspergillus terreus, and Aspergillus fumigates demonstrated high capacity in decolorizing various azo dyes. This study focuses on the high cell density cultivation of the fungal strains identified as potential bioremediation agents. The study includes the optimization of all parameters involved in bioprocess development for high cell density cultivation of six promising fungal strains. The growth of the fungal strains was tested on the sucrose medium in 7 l-fermenter. The growth of these fungal strains having the capacity to accumulate large quantities of biomass was also tested in medium containing molasses as a cheap substrate. The residual molasses, biomass dry weight and protein content of the six fungal strains showed that the strains 20 and 2 were marked by the highest protein content. In this study a comparative analysis between the results of dry weight, residual molasses and protein content of geowth of the strains 20, 5 and 2 under uncontrolled and controlled pH of media in batch fermentation was studied to follow the accumulation of biomass and protein production in the growth media. The results indicate that the dry weight accumulated by strains No. 20, 5 and 2 grown on molasses was better than those of strains grown on sucrose. Fungal strain No. 5 had the highest biomass dry weight accumulation. The study shows that the molasses as cheaper sugar sources were better than sucrose for growing fungal biomass.

  6. High cell density cultivation of six fungal strains efficient in azo dye bioremediation

    Directory of Open Access Journals (Sweden)

    Wafaa M. Abd El-Rahim

    2016-12-01

    Full Text Available This work aims at optimizing the high cell density fungal cultivation for producing large quantities of fungal biomass to be used in azo dye residues bioremediation. In our previous studies the efficacy of using certain fungal strains to decolorize a range of commercial textile dyes of different structures (azo, disazo were investigated. Several promising fungal strains belonging to Aspergillus tubigenesis, Aspergillus niger, Aspergillus terreus, and Aspergillus fumigates demonstrated high capacity in decolorizing various azo dyes. This study focuses on the high cell density cultivation of the fungal strains identified as potential bioremediation agents. The study includes the optimization of all parameters involved in bioprocess development for high cell density cultivation of six promising fungal strains. The growth of the fungal strains was tested on the sucrose medium in 7 l-fermenter. The growth of these fungal strains having the capacity to accumulate large quantities of biomass was also tested in medium containing molasses as a cheap substrate. The residual molasses, biomass dry weight and protein content of the six fungal strains showed that the strains 20 and 2 were marked by the highest protein content. In this study a comparative analysis between the results of dry weight, residual molasses and protein content of geowth of the strains 20, 5 and 2 under uncontrolled and controlled pH of media in batch fermentation was studied to follow the accumulation of biomass and protein production in the growth media. The results indicate that the dry weight accumulated by strains No. 20, 5 and 2 grown on molasses was better than those of strains grown on sucrose. Fungal strain No. 5 had the highest biomass dry weight accumulation. The study shows that the molasses as cheaper sugar sources were better than sucrose for growing fungal biomass.

  7. Serious fungal infections in Chile.

    Science.gov (United States)

    Alvarez Duarte, E; Denning, D W

    2017-06-01

    The incidence and prevalence of fungal infections in Chile are unknown. Here, we have estimated the burden of serious fungal diseases from data obtained from clinical reports, WHO reports, Chilean census, OECD reports and comprehensive literature search available on PubMed and SciELO, among other scientific resources. Due the lack of official data about fungal diseases, frequencies were calculated based on the specific populations at risk. Recurrent vulvovaginal candidiasis (>4 episodes/year) is estimated to occur in 3108/100,000. Using a low international average rate of 5/100,000, we estimate 878 candidaemia cases and 132 patients with intra-abdominal candidiasis. Due to the low incidence of pulmonary tuberculosis (TB) in Chile, limited numbers of patients with chronic pulmonary aspergillosis are likely: a total of 1212, 25% following TB. Invasive aspergillosis is estimated to affect 296 patients following leukaemia therapy, transplantation and chronic obstructive pulmonary disease (COPD), 1.7/100,000. In addition, allergic bronchopulmonary aspergillosis (ABPA) and severe asthma with fungal sensitisation (SAFS) were estimated to be around 97.9/100,000 and 127/100,000 respectively, in 675,772 adult asthmatics and 1700 CF patients. Given a 38,000 human immunodeficiency virus (HIV) population, with around 2189 new cases of acquired immune deficiency syndrome (AIDS) annually, cryptococcal meningitis and Pneumocystis pneumonia are estimated at 0.12/100,000 and 4.3/100,000, respectively. In total, 325,000 (1.9%) people in Chile develop serious fungal infections annually. Respiratory fungal disease predominates in Chile; a national action plan for fungal disease is urgently needed, including epidemiological studies to validate the estimates.

  8. Serious fungal infections in Ecuador.

    Science.gov (United States)

    Zurita, J; Denning, D W; Paz-Y-Miño, A; Solís, M B; Arias, L M

    2017-06-01

    There is a dearth of data from Ecuador on the burden of life-threatening fungal disease entities; therefore, we estimated the burden of serious fungal infections in Ecuador based on the populations at risk and available epidemiological databases and publications. A full literature search was done to identify all epidemiology papers reporting fungal infection rates. WHO, ONU-AIDS, Index Mundi, Global Asthma Report, Globocan, and national data [Instituto Nacional de Estadística y Censos (INEC), Ministerio de Salud Pública (MSP), Sociedad de Lucha Contra el Cáncer (SOLCA), Instituto Nacional de Donación y Trasplante de Órganos, Tejidos y Células (INDOT)] were reviewed. When no data existed, risk populations were used to estimate frequencies of fungal infections, using previously described methodology by LIFE. Ecuador has a variety of climates from the cold of the Andes through temperate to humid hot weather at the coast and in the Amazon basin. Ecuador has a population of 15,223,680 people and an average life expectancy of 76 years. The median estimate of the human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) population at risk for fungal disease (<200 CD4 cell counts) is ∼10,000, with a rate of 11.1% (1100) of histoplasma, 7% (700) of cryptococcal meningitis, and 11% (1070) of Pneumocystis pneumonia. The burden of candidemia is 1037. Recurrent Candida vaginitis (≥4 episodes per year) affects 307,593 women aged 15-50 years. Chronic pulmonary aspergillosis probably affects ∼476 patients following tuberculosis (TB). Invasive aspergillosis is estimated to affect 748 patients (∼5.5/100,000). In addition, allergic bronchopulmonary aspergillosis (ABPA) in asthma and severe asthma with fungal sensitization (SAFS) were estimated to affect 26,642 and 45,013 people, respectively. Our estimates indicate that 433,856 (3%) of the population in Ecuador is affected by serious fungal infection.

  9. Enzymes From Rare Actinobacterial Strains.

    Science.gov (United States)

    Suriya, J; Bharathiraja, S; Manivasagan, P; Kim, S-K

    Actinobacteria constitute rich sources of novel biocatalysts and novel natural products for medical and industrial utilization. Although actinobacteria are potential source of economically important enzymes, the isolation and culturing are somewhat tough because of its extreme habitats. But now-a-days, the rate of discovery of novel compounds producing actinomycetes from soil, freshwater, and marine ecosystem has increased much through the developed culturing and genetic engineering techniques. Actinobacteria are well-known source of their bioactive compounds and they are the promising source of broad range of industrially important enzymes. The bacteria have the capability to degrade a range of pesticides, hydrocarbons, aromatic, and aliphatic compounds (Sambasiva Rao, Tripathy, Mahalaxmi, & Prakasham, 2012). Most of the enzymes are mainly derived from microorganisms because of their easy of growth, minimal nutritional requirements, and low-cost for downstream processing. The focus of this review is about the new, commercially useful enzymes from rare actinobacterial strains. Industrial requirements are now fulfilled by the novel actinobacterial enzymes which assist the effective production. Oxidative enzymes, lignocellulolytic enzymes, extremozymes, and clinically useful enzymes are often utilized in many industrial processes because of their ability to catalyze numerous reactions. Novel, extremophilic, oxidative, lignocellulolytic, and industrially important enzymes from rare Actinobacterial population are discussed in this chapter. © 2016 Elsevier Inc. All rights reserved.

  10. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  11. Microbiological diagnostics of fungal infections

    Directory of Open Access Journals (Sweden)

    Corrado Girmenia

    2013-07-01

    Full Text Available Laboratory tests for the detection of fungal infections are easy to perform. The main obstacle to a correct diagnosis is the correlation between the laboratory findings and the clinical diagnosis. Among pediatric patients, the most common fungal pathogen is Candida. The detection of fungal colonization may be performed through the use of chromogenic culture media, which allows also the identification of Candida subspecies, from which pathogenicity depends. In neonatology, thistest often drives the decision to begin a empiric therapy; in this regard, a close cooperation between microbiologists and clinicians is highly recommended. Blood culture, if positive, is a strong confirmation of fungal infection; however, its low sensitivity results in a high percentage of false negatives, thus decreasing its reliability. Molecular diagnostics is still under evaluation, whereas the detection of some fungal antigens, such as β-D-glucan, galactomannan, mannoprotein, and cryptococcal antigen in the serum is used for adults, but still under evaluations for pediatric patients.http://dx.doi.org/10.7175/rhc.v4i1S.862

  12. Primary immunodeficiencies underlying fungal infections.

    Science.gov (United States)

    Lanternier, Fanny; Cypowyj, Sophie; Picard, Capucine; Bustamante, Jacinta; Lortholary, Olivier; Casanova, Jean-Laurent; Puel, Anne

    2013-12-01

    We review the primary immunodeficiencies (PIDs) underlying an increasing variety of superficial and invasive fungal infections. We also stress that the occurrence of such fungal infections should lead physicians to search for the corresponding single-gene inborn errors of immunity. Finally, we suggest that other fungal infections may also result from hitherto unknown inborn errors of immunity, at least in some patients with no known risk factors. An increasing number of PIDs are being shown to underlie fungal infectious diseases in children and young adults. Inborn errors of the phagocyte NADPH oxidase complex (chronic granulomatous disease), severe congenital neutropenia (SCN) and leukocyte adhesion deficiency type I confer a predisposition to invasive aspergillosis and candidiasis. More rarely, inborn errors of interferon-γ immunity underlie endemic mycoses. Inborn errors of interleukin-17 immunity have recently been shown to underlie chronic mucocutaneous candidiasis (CMC), while inborn errors of caspase recruitment domain-containing protein 9 (CARD9) immunity underlie deep dermatophytosis and invasive candidiasis. CMC, invasive candidiasis, invasive aspergillosis, deep dermatophytosis, pneumocystosis, and endemic mycoses can all be caused by PIDs. Each type of infection is highly suggestive of a specific type of PID. In the absence of overt risk factors, single-gene inborn errors of immunity should be sought in children and young adults with these and other fungal diseases.

  13. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  14. Research Progress Concerning Fungal and Bacterial β-Xylosidases.

    Science.gov (United States)

    Bosetto, Adilson; Justo, Priscila Innocenti; Zanardi, Bruna; Venzon, Simoni Spohr; Graciano, Luciana; dos Santos, Elaine Luzia; Simão, Rita de Cássia Garcia

    2016-02-01

    In the present review, we briefly summarize the biotechnological applications of microbial β-xylosidases in the processing of agro-industrial residues into fuels and chemicals and report the importance of using immobilization techniques to study the enzyme. The advantages of utilizing genes that encode β-xylosidases are readily apparent in the bioconversion of abundant, inexpensive, and renewable resources into economically important products, such as xylitol and bioethanol. We highlight recent research characterizing fungal and bacterial β-xylosidases, including the use of classical biochemical methods such as purification, heterologous recombinant protein expression, and metagenomic approaches to discovery β-xylosidases, with focus on enzyme molecular and kinetic properties. In addition, we discuss the relevance of using experimental design optimization methodologies to increase the efficacy of these enzymes for use with residual biomass. Finally, we emphasize more extensively the advances in the regulatory mechanisms governing β-xylosidase gene expression and xylose metabolism in gram-negative and gram-positive bacteria and fungi. Unlike previous reviews, this revision covers recent research concerning the various features of bacterial and fungal β-xylosidases with a greater emphasis on their biochemical characteristics and how the genes that encode these enzymes can be better exploited to obtain products of biotechnological interest via the application of different technical approaches.

  15. Platelet immunology in fungal infections.

    Science.gov (United States)

    Speth, Cornelia; Rambach, Günter; Lass-Flörl, Cornelia

    2014-10-01

    Up to date, perception of platelets has changed from key players in coagulation to multitaskers within the immune network, connecting its most diverse elements and crucially shaping their interplay with invading pathogens such as fungi. In addition, antimicrobial effector molecules and mechanisms in platelets enable a direct inhibitory effect on fungi, thus completing their immune capacity. To precisely assess the impact of platelets on the course of invasive fungal infections is complicated by some critical parameters. First, there is a fragile balance between protective antimicrobial effects and detrimental reactions that aggravate the fungal pathogenesis. Second, some platelet effects are exerted indirectly by other immune mediators and are thus difficult to quantify. Third, drugs such as antimycotics, antibiotics, or cytostatics, are commonly administered to the patients and might modulate the interplay between platelets and fungi. Our article highlights selected aspects of the complex interactions between platelets and fungi and the relevance of these processes for the pathogenesis of fungal infections.

  16. The Fungal Defensin Family Enlarged

    Directory of Open Access Journals (Sweden)

    Jiajia Wu

    2014-08-01

    Full Text Available Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8 according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential.

  17. Sugarcane Bagasse: A Potential Medium for Fungal Cultures

    Directory of Open Access Journals (Sweden)

    Arushdeep Sidana

    2014-01-01

    Full Text Available Worldwide, sugarcane industries produce tons of sugarcane bagasse as residual/waste material. This residual material is rich in complex lignocellulosic substances and may be used as a low cost carbon and energy source for the growth of fungal species. The present work was aimed at designing a sugarcane waste-based medium as a substitute for expensive commercial media for growing fungal cultures. Eight species of fungi, namely, Aspergillus niger, Candida albicans, Saccharomyces cerevisiae, Fusarium sp., and four unidentified species F1, F2, F3, and F5, were grown on the sugarcane bagasse medium which produced remarkable results and competed with standard media like potato dextrose agar, Sabouraud dextrose agar, and cornmeal agar. The designed medium was able to provide nourishment to the fungi as well as prevent the growth of any bacterial or fungal contaminant. The production of spores was more in the sugarcane medium as compared with standard media. Hence, this study led to the discovery of a new and efficient medium for fungal cultures as well as decrease in the waste disposal expenses and efforts.

  18. Adsorption of β-glucosidases in two commercial preparations onto pretreated biomass and lignin

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard; Jørgensen, Henning

    2013-01-01

    Background: Enzyme recycling is a method to reduce the production costs for advanced bioethanol by lowering the overall use of enzymes. Commercial cellulase preparations consist of many different enzymes that are important for efficient and complete cellulose (and hemicellulose) hydrolysis...

  19. The spectrum of fungal allergy.

    Science.gov (United States)

    Simon-Nobbe, Birgit; Denk, Ursula; Pöll, Verena; Rid, Raphaela; Breitenbach, Michael

    2008-01-01

    Fungi can be found throughout the world. They may live as saprophytes, parasites or symbionts of animals and plants in indoor as well as outdoor environment. For decades, fungi belonging to the ascomycota as well as to the basidiomycota have been known to cause a broad panel of human disorders. In contrast to pollen, fungal spores and/or mycelial cells may not only cause type I allergy, the most prevalent disease caused by molds, but also a large number of other illnesses, including allergic bronchopulmonary mycoses, allergic sinusitis, hypersensitivity pneumonitis and atopic dermatitis; and, again in contrast to pollen-derived allergies, fungal allergies are frequently linked with allergic asthma. Sensitization to molds has been reported in up to 80% of asthmatic patients. Although research on fungal allergies dates back to the 19th century, major improvements in the diagnosis and therapy of mold allergy have been hampered by the fact that fungal extracts are highly variable in their protein composition due to strain variabilities, batch-to-batch variations, and by the fact that extracts may be prepared from spores and/or mycelial cells. Nonetheless, about 150 individual fungal allergens from approximately 80 mold genera have been identified in the last 20 years. First clinical studies with recombinant mold allergens have demonstrated their potency in clinical diagnosis. This review aims to give an overview of the biology of molds and diseases caused by molds in humans, as well as a detailed summary of the latest results on recombinant fungal allergens. 2007 S. Karger AG, Basel

  20. Enzyme Nanorings

    OpenAIRE

    Chou, Tsui-Fen; So, Christopher; White, Brian R.; Carlson, Jonathan C.T.; Sarikaya, Mehmet; Wagner, Carston

    2008-01-01

    We have demonstrated that nanostructures, and in particular nanorings incorporating a homodimeric enzyme, can be prepared by chemically induced self-assembly of dihydrofolate reductase (DHFR)-histidine triad nucleotide binding 1(Hint1) fusion proteins. The dimensions of the nanorings were found by static light scattering and atomic force microscopy studies to be dependent on the length and composition of the peptide linking the fusion proteins, ranging in size from 10 to 70 nm in diameter and...

  1. Fungal beta-1,3-Glucanases: production and biotechnological applications.

    Directory of Open Access Journals (Sweden)

    Robert Frans Huibert Dekker

    2010-02-01

    Full Text Available β-1,3-Glucanases are enzymes that hydrolyze glycosidic linkages of the β-1,3 type present in β-D-glucans, liberating glucose as the main product. These enzymes are produced by filamentous fungi and yeasts, as well as bacteria and have wide biotechnological applications. The objective of this work was to review the published literature on fungal β-1,3-glucanases, emphasizing their biological functions, some parameters used to determine enzyme activity, the current substrates and culture conditions to produce these hydrolases. Also reported are their applications to obtain bioactive oligosaccharides, to structurally characterize microbial cell walls, their use in biological control of some plant pathogens, as feed additives, and also their addition to wines to improve the organoleptic characteristics.

  2. Simultaneous α-amylase and protease production by the soil bacterium Bacillus sp. SMIA-2 under submerged culture using whey protein concentrate and corn steep liquor: compatibility of enzymes with commercial detergents

    OpenAIRE

    Corrêa, Thamy Lívia Ribeiro; Moutinho, Stella Karla dos Santos; Martins, Meire Lelis Leal; Martins, Marco Antônio

    2011-01-01

    Protease and α-amylase production by a thermophilic Bacillus sp. SMIA-2 cultivated in liquid cultures containing 0.25% (w/v) starch as a carbon source reached a maximum at 18 hours (47 U.mg-1 Protein) and 36 hours (325 U.mg-1 Protein), respectively. Culture medium supplementation with whey protein concentrate (0.1%, w/v) and corn steep liquor (0.3%, w/v) not only improved the production of both enzymes but also enabled them to be produced simultaneously. Under these conditions, α-amylase and ...

  3. Genomic Organization of Fungal Plant Pathogenicity

    Science.gov (United States)

    The recent large scale genomic sequencing of fungal phytopathogens has revolutionized the study of plant pathogenesis. Initially, having whole genome sequence (WGS) data for individual fungal genomes has accelerated classical forward and reverse genetic approaches for identifying pathogenicity genes...

  4. An economical and combined method for rapid and efficient isolation of fungal DNA.

    Science.gov (United States)

    Lech, T; Syguła-Cholewinska, J; Szostak-Kot, J

    2014-12-18

    DNA isolation is a crucial step of conducting genetic studies in any organism. However, this process is quite difficult when studying fungi because of the need to damage the fungal cell walls of specific structures. In this study, we developed a method for the rapid and efficient isolation of fungal DNA based on simultaneous mechanical and enzymatic cell wall degradation. There are several typical modifications of the standard phenol-chloroform DNA extraction method. This method can be modified to degrade the fungal cell wall. The first step of the presented DNA extraction included manual homogenization in modified lysis buffer. Next, enzymatic digestion using 2 enzymes was conducted, including lyticase and proteinase K. To carefully select the most favorable conditions, we developed an economical, rapid, and reliable method for fungal DNA extraction that ensures both high efficiency and proper purity, which are essential for further analyses.

  5. Evaluation of coumarin derivatives as anti-fungal agents against soil-borne fungal pathogens.

    Science.gov (United States)

    Brooker, N L; Kuzimichev, Y; Laas, J; Pavlis, R

    2007-01-01

    Development of new and safer pesticides that are target-specific is backed by a strong Federal, public and commercial mandate. In order to generate a new generation of pesticides that are more ecologically friendly and safe, natural products are being evaluated for pesticidal activities. Many plant-derived chemicals have proven pesticidal properties, including compounds like sesamol (3,4-Methylenedioxyphenol), a lipid from sesame oil and coumarins (1,2-Benzopyrone) found in a variety of plants such as clover, sweet woodruff and grasses. Both of these plant-derived compounds have been shown to inhibit a range of fungi and bacteria and it is believed that these cyclic compounds behave as natural pesticidal defense molecules for plants. These compounds represent a starting point for the exploration of new derivative compounds possessing a range of antifungal activity and for use as seed protectants. Within this study, six derivatives of coumarin that resembled sesamol's structure were screened for their antifungal activity against a range of soil-bome plant pathogenic fungi. Fungi in this in vitro screen included Macrophomina phaseolina (causal agent of charcoal rot) and Pythium spp. (causal agent of seedling blight), two phylogenetically diverse and economically important plant pathogens. Preliminary studies indicate that many of these novel coumarin derivatives work very effectively in vitro to inhibit fungal growth and several coumarin derivatives have higher antifungal activity and stability as compared to either the original coumarin or sesamol compounds alone. Interestingly, several of these highly active coumarin derivatives are halogenated compounds with solubility in water, and they are relatively easy and inexpensive to synthesize. These halogenated coumarin derivatives remained active for extended periods of time displaying 100% inhibition of fungal growth for greater than 3 weeks in vitro. In addition to the in vitro fungal inhibition assays, preliminary

  6. Microbiology of systemic fungal infections

    Directory of Open Access Journals (Sweden)

    Chakrabarti A

    2005-01-01

    Full Text Available The increased incidence of systemic fungal infections in the past two decades has been overwhelming. Earlier, it was pathogenic dimorphic fungi, which were known to cause systemic infections. However, starting from the 1960s, opportunistic fungi started causing more number of infections, especially in the immunocompromised host. More recently, newer and less common fungal agents are being increasingly associated with infection in immunosuppressed hosts. Amongst dimorphic fungi, infections due to Histoplasma capsulatum and Penicillium marneffei are increasingly reported in patients with AIDS in India. H. capsulatum is found country wide, but P. marneffei remains restricted to Manipur state. Although both varieties of C. neoformans , C. neoformans var. neoformans (serotypes A & D, and C. neoformans var. gattii (serotypes B & C are reported in India, most of the cases reported are of serotype A. Increased incidence of cryptococcosis is reported from all centers with the emergence of AIDS. Systemic infection due to species under Candida , Aspergillus and zygomycetes is widely prevalent in nosocomial setting, and outbreaks due to unusual fungi are reported occasionally from tertiary care centers. This global change in systemic fungal infections has emphasized the need to develop good diagnostic mycology laboratories in this country and to recognize this increasingly large group of potential fungal pathogens.

  7. Imaging fungal infections in children

    NARCIS (Netherlands)

    Ankrah, Alfred O.; Sathekge, Mike M; Dierckx, Rudi A.J.O.; Glaudemans, Andor W.J.M.

    Fungal infections in children rarely occur, but continue to have a high morbidity and mortality despite the development of newer antifungal agents. It is essential for these infections to be diagnosed at the earliest possible stage so appropriate treatment can be initiated promptly. The addition of

  8. Fungal infections of the oral cavity.

    Science.gov (United States)

    Zegarelli, D J

    1993-12-01

    Although several strains of Candida can infect the oral mucosa, the most commonly encountered oral fungal infection is Candida albicans, which may be highly infective because of its greater level of pathogenicity and adherence properties. C. albicans is an oral commensal in as many as 40% to 65% of healthy adult mouths. The papillated dorsal surface of the tongue and palatal mucosa beneath a maxillary denture are favored reservoir sites. Oral candidal infection almost always involves a compromised host. The compromise may be local or systemic. Local factors include decreased salivation and the weaning of dentures. Systemic factors include diabetes mellitus, pernicious anemia, and AIDS. Some have even implicated advanced age and the female gender as being mild predisposing factors. Furthermore, the C. albicans infection itself can depress a host's immune system. A patient with oral candidiasis can present with one or more of the following clinical forms: pseudomembranous, erythematous, hyperplastic, and denture erythematous. Many investigators accept median rhomboid glossitis as a form of chronic oral candidiasis. In some patients with angular cheilitis, genesis of the lesions is secondary to monilial infestation. Because C. albicans is a normal inhabitant in many mouths, diagnostic confirmation of infection often rests with successful response (i.e., resolution of lesions) to antifungal medications. This form of diagnostic confirmation can be further enhanced by culturing the offending microbe, preparing a fungal smear, or even incisional biopsy. The microscopic demonstration of fungal hyphae is highly diagnostic of the candidal infection, whether the hyphae are demonstrated on a PAS smear or on a biopsy within surface stratified squamous epithelium. Numerous medications exist for the treatment of oral candidiasis. They include the antibiotic nystatin as well as clotrimazole, ketoconazole, and fluconazole. Nystatin is safe and is used as a topical agent in rinse or

  9. Expanding the product portfolio of fungal type I fatty acid synthases

    DEFF Research Database (Denmark)

    Zhu, Zhiwei; Zhou, Yongjin J.; Krivoruchko, Anastasia

    2017-01-01

    Fungal type I fatty acid synthases (FASs) are mega-enzymes with two separated, identical compartments, in which the acyl carrier protein (ACP) domains shuttle substrates to catalytically active sites embedded in the chamber wall. We devised synthetic FASs by integrating heterologous enzymes...... into the reaction chambers and demonstrated their capability to convert acyl-ACP or acyl-CoA from canonical fatty acid biosynthesis to short/ medium-chain fatty acids and methyl ketones....

  10. Immune Recognition of Fungal Polysaccharides

    Directory of Open Access Journals (Sweden)

    Brendan D. Snarr

    2017-08-01

    Full Text Available The incidence of fungal infections has dramatically increased in recent years, in large part due to increased use of immunosuppressive medications, as well as aggressive medical and surgical interventions that compromise natural skin and mucosal barriers. There are relatively few currently licensed antifungal drugs, and rising resistance to these agents has led to interest in the development of novel preventative and therapeutic strategies targeting these devastating infections. One approach to combat fungal infections is to augment the host immune response towards these organisms. The polysaccharide-rich cell wall is the initial point of contact between fungi and the host immune system, and therefore, represents an important target for immunotherapeutic approaches. This review highlights the advances made in our understanding of the mechanisms by which the immune system recognizes and interacts with exopolysaccharides produced by four of the most common fungal pathogens: Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, and Histoplasma capsulatum. Work to date suggests that inner cell wall polysaccharides that play an important structural role are the most conserved across diverse members of the fungal kingdom, and elicit the strongest innate immune responses. The immune system senses these carbohydrates through receptors, such as lectins and complement proteins. In contrast, a greater diversity of polysaccharides is found within the outer cell walls of pathogenic fungi. These glycans play an important role in immune evasion, and can even induce anti-inflammatory host responses. Further study of the complex interactions between the host immune system and the fungal polysaccharides will be necessary to develop more effective therapeutic strategies, as well as to explore the use of immunosuppressive polysaccharides as therapeutic agents to modulate inflammation.

  11. A safe inexpensive method to isolate high quality plant and fungal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... based method (Saghai-Maroof et al., 1984). DNA yields were mea- sured using a NanoDrop ND-1000 spectrophotometer (NanoDrop. Technologies, Wilmington, DE USA) and the quality assessed by agarose gel electrophoresis, restriction enzyme digestion, and. AFLP analysis. Plant (500 ng) and fungal ...

  12. A rapid lateral flow immunoassay for the detection of fungal alpha-amylase at the workplace

    NARCIS (Netherlands)

    Koets, M.; Sander, I.; Bogdanovic, J.; Doekes, G.; Amerongen, van A.

    2006-01-01

    Fungal alpha-amylase is a flour supplement which is added to improve the quality of bakery products. Various studies have shown that exposure to this enzyme is an important risk factor for the development of bakers allergy and this allergy is reported to be one of the most frequent causes of

  13. Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases

    DEFF Research Database (Denmark)

    Berrin, Jean-Guy; Rosso, Marie-Noëlle; Abou Hachem, Maher

    2017-01-01

    to starch, the main carbon storage reservoir. In this review, we focus on the identification of lytic polysaccharide monooxygenases (LPMOs) and their redox partners in fungal secretomes to highlight the biological functions of these remarkable enzyme systems and we discuss future trends related to LPMO...

  14. Fungal mitochondrial DNases: Effectors with the potential to activate plant defenses in nonhost resistance

    Science.gov (United States)

    Previous reports on the model nonhost resistance interaction between Fusarium solani f. sp. phaseoli (Fsph) and pea endocarp tissue, have described the signaling role of a fungal DNase1-like protein. This enzyme termed, FsphDNase, induced complete resistance in pea tissue against pea pathogens, no ...

  15. Clarification of orange juice by crude fungal pectinase from citrus peel

    African Journals Online (AJOL)

    Fungal pectinase enzyme was produced by Rhizopus oryzae on a solid culture containing citrus peel of orange (35% w/v). The crude extract with maximum pectinase activity of 1, 360 u/ml was used to clarify orange juice. The yield, turbidity and viscosity as well as pH, total soluble solids, ascorbic acids and total titratable ...

  16. Leucoagaricus gongylophorus uses leaf-cutting ants to vector proteolytic enzymes towards new plant substrate

    DEFF Research Database (Denmark)

    Kooij, Pepijn Wilhelmus; Rogowska-Wrzesinska, Adelina; Hoffmann, Daniel

    2014-01-01

    The mutualism between leaf-cutting ants and their fungal symbionts revolves around processing and inoculation of fresh leaf pulp in underground fungus gardens, mediated by ant fecal fluid deposited on the newly added plant substrate. As herbivorous feeding often implies that growth is nitrogen...... upregulated in the gongylidia, specialized hyphal tips whose only known function is to provide food to the ants. These combined results indicate that the enzymes are derived from the ingested fungal tissues. We infer that the five proteases are likely to accelerate protein extraction from plant cells...... fungi, consistent with previous indications of convergent evolution of decomposition enzymes in attine ant fungal symbionts and phytopathogenic fungi....

  17. Has substrate-dependent co-evolution of enzyme function occured in the attine ant-fungus symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the plant material that the ants provide or different efficiencies of enzyme function. Here we present the fist partial amino acid sequences from a fungal xylanase gene to test the hypothesis that fungal enzymes that degrade plant cell walls have functionally co-evolved with the ants....... as substrate for their fungus gardens, whereas the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down...

  18. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW.

    Science.gov (United States)

    Shuping, D S S; Eloff, J N

    2017-01-01

    Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms "plant fungal pathogen", "plant extracts" and "phytopathogens". Proposals are made on the best extractants and bioassay techniques to be used. In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase

  19. Highly efficient immobilization of glycosylated enzymes into polyurethane foams.

    Science.gov (United States)

    Bakker, M; van De Velde, F; van Rantwijk, F; Sheldon, R A

    2000-11-05

    Glycosylated enzymes, including aminoacylase from Aspergillus melleus, chloroperoxidase from Caldariomyces fumago, and phytase from Aspergillus ficuum, were covalently immobilized into polyurethane foams with very high enzyme loadings of up to 0.2 g protein per gram dry foam. The immobilization efficiency (retained activity) ranged from 100% at a low loading to 60% at high loadings. In contrast to many other immobilization methods no leaching of the enzyme from the support took place under the reaction conditions. In short, a universal method for the immobilization of enzymes from fungal sources was developed, affording a highly active, stable, and reusable biocatalyst. Copyright 2000 John Wiley & Sons, Inc.

  20. The role of enzymes in fungus-growing ant evolution

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard

    behaviour. Here we report the first large-scale comparative study on fungus garden enzyme profiles and show that various interesting changes can be documented. A more detailed analysis of laccase expression, an enzyme that is believed to oxidize phenols in defensive secondary plant compounds such as tannins......, showed that this enzyme is exclusively found in the gardens of leaf-cutting ants, where it is significantly upregulated in the gongylidia. I’ll discuss the possible role of this enzyme and other fungal modifications in the evolution of the leafcutter ants and their non-leafcutting attine relatives....

  1. Commercial applications

    Science.gov (United States)

    The near term (one to five year) needs of domestic and foreign commercial suppliers of radiochemicals and radiopharmaceuticals for electromagnetically separated stable isotopes are assessed. Only isotopes purchased to make products for sale and profit are considered. Radiopharmaceuticals produced from enriched stable isotopes supplied by the Calutron facility at ORNL are used in about 600,000 medical procedures each year in the United States. A temporary or permanent disruption of the supply of stable isotopes to the domestic radiopharmaceutical industry could curtail, if not eliminate, the use of such diagnostic procedures as the thallium heart scan, the gallium cancer scan, the gallium abscess scan, and the low radiation dose thyroid scan. An alternative source of enriched stable isotopes exist in the USSR. Alternative starting materials could, in theory, eventually be developed for both the thallium and gallium scans. The development of a new technology for these purposes, however, would take at least five years and would be expensive. Hence, any disruption of the supply of enriched isotopes from ORNL and the resulting unavailability of critical nuclear medicine procedures would have a dramatic negative effect on the level of health care in the United States.

  2. Fungal Exopolysaccharide: Production, Composition and Applications

    Science.gov (United States)

    Mahapatra, Subhadip; Banerjee, Debdulal

    2013-01-01

    Fungal exopolysaccharides (EPSs) have been recognized as high value biomacromolecules for the last two decades. These products, including pullulan, scleroglucan, and botryosphaeran, have several applications in industries, pharmaceuticals, medicine, foods etc. Although fungal EPSs are highly relevant, to date information concerning fungal biosynthesis is scarce and an extensive search for new fugal species that can produce novel EPSs is still needed. In most cases, the molecular weight variations and sugar compositions of fungal EPSs are dependent to culture medium composition and different physical conditions provided during fermentation. An inclusive and illustrative review on fungal EPS is presented here. The general outline of the present work includes fungal EPS production, their compositions and applications. An emphasis is also given to listing out different fungal strains that can produce EPSs. PMID:24826070

  3. Classification of fungal and bacterial lytic polysaccharide monooxygenases.

    Science.gov (United States)

    Busk, Peter K; Lange, Lene

    2015-05-09

    Lytic polysaccharide monooxygenases are important enzymes for the decomposition of recalcitrant biological macromolecules such as plant cell wall and chitin polymers. These enzymes were originally designated glycoside hydrolase family 61 and carbohydrate-binding module family 33 but are now classified as auxiliary activities 9, 10 and 11 in the CAZy database. To obtain a systematic analysis of the divergent families of lytic polysaccharide monooxygenases we used Peptide Pattern Recognition to divide 5396 protein sequences resembling enzymes from families AA9 (1828 proteins), AA10 (2799 proteins) and AA11 (769 proteins) into subfamilies. The results showed that the lytic polysaccharide monooxygenases have two conserved regions identified by conserved peptides specific for each AA family. The peptides were used for in silico PCR discovery of the lytic polysaccharide monooxygenases in 79 fungal and 95 bacterial genomes. The bacterial genomes encoded 0-7 AA10s (average 0.6). No AA9 or AA11 were found in the bacteria. The fungal genomes encoded 0-40 AA9s (average 7) and 0-15 AA11s (average 2) and two of the fungi possessed a gene encoding a putative AA10. The AA9s were mainly found in plant cell wall-degrading asco- and basidiomycetes in agreement with the described role of AA9 enzymes. In contrast, the AA11 proteins were found in 36 of the 39 ascomycetes and in only two of the 32 basidiomycetes and their abundance did not correlate to the degradation of cellulose and hemicellulose. These results provides an overview of the sequence characteristics and occurrence of the divergent AA9, AA10 and AA11 families and pave the way for systematic investigations of the of lytic polysaccharide monooxygenases and for structure-function studies of these enzymes.

  4. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman(®) real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Röder, Martin; Vieths, Stefan; Holzhauser, Thomas

    2011-01-24

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg(-1) almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg(-1). We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman(®) probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg(-1) almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg(-1). Further, between 100 and 100,000 mg kg(-1) spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman(®) real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n=5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a specific and

  5. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, Martin; Vieths, Stefan [Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Germany); Holzhauser, Thomas, E-mail: holth@pei.de [Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Germany)

    2011-01-24

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg{sup -1} almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg{sup -1}. We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg{sup -1} almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg{sup -1}. Further, between 100 and 100,000 mg kg{sup -1} spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n = 5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a

  6. Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins

    Science.gov (United States)

    In commercial maize, there are at least two different alleles of the chiA gene that encode alloforms of ChitA chitinase, a protein that is abundant in developing seed. Both known alloforms are modified by Bz-cmp, a protein secreted by the fungal pathogen Bipolaris zeicola. One alloform (ChitA-B73) i...

  7. Pathogenesis of indoor fungal diseases.

    Science.gov (United States)

    McGinnis, Michael R

    2004-04-01

    Mold growth within homes and other buildings has been associated to varying degrees with human health problems. These problems vary from allergenic disease to toxicosis. Case definitions for mold exposure have not been adequately defined to allow for a pathognomonic diagnosis of mold-caused disease following indoor exposure. Some important factors that may contribute to the pathogenesis of indoor mold induced disease include beta (1,3)-D-glucans, outer cell wall fungal hydrophobins, 1,8-dihydroxynaphthalene melanin, fungal volatile organic compounds, mycotoxins, and stachylysin. The information in this contribution was presented as the ISHAM Presidential address as a means to clarify some of the confusing surrounding indoor mold-related health issues.

  8. Fungal Endophyte Diversity in Sarracenia

    Science.gov (United States)

    Glenn, Anthony; Bodri, Michael S.

    2012-01-01

    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers. PMID:22427921

  9. Ensaio imunoenzimático comercial no diagnóstico sorológico das infecções por herpesvírus bovino 1 A commercial enzyme immune assay in serodiagnosis of bovine herpesvirus 1 infections

    Directory of Open Access Journals (Sweden)

    Kerlei Cristina Médici

    2000-04-01

    Full Text Available Avaliou-se o desempenho de um ensaio imunoenzimático, obtido de fonte comercial, na identificação de anticorpos contra herpesvírus bovino tipo 1 (BHV-1, induzidos tanto por infecção natural quanto por vacinação, em 1000 amostras de soros sangüíneos de bovinos. A análise comparativa dos resultados obtidos no sistema avaliado e na técnica padrão de soroneutralização mostrou uma concordância de 97,05% (K=0,94 entre as duas metodologias de diagnóstico sorológico.The performance of a commercial immune assay in the identification antibody of natural infection or vaccination against bovine herpesvirus type 1 (BHV-1 in 1000 samples of bovine serum was evaluated. The comparative analysis from the result of the evaluated system and standard serum neutralization technique showed a rate of agreement of 97.05% (K=0.94 between the two serologic diagnotic methods.

  10. Systems biology of fungal infection

    Directory of Open Access Journals (Sweden)

    Fabian eHorn

    2012-04-01

    Full Text Available Elucidation of pathogenicity mechanisms of the most important human pathogenic fungi, Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the steadily increasing number of cases of invasive fungal infections.A key feature of these infections is the interaction of the different fungal morphotypes with epithelial and immune effector cells in the human host. Because of the high level of complexity, it is necessary to describe and understand invasive fungal infection by taking a systems biological approach, i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions of a large number of functionally diverse, and frequently multifunctional, sets of elements, e.g., genes, proteins, metabolites, which produce coherent and emergent behaviours in time and space. The recent advances in systems biology will now make it possible to uncover the structure and dynamics of molecular and cellular cause-effect relationships within these pathogenic interactions.We review current efforts to integrate omics and image-based data of host-pathogen interactions into network and spatio-temporal models. The modelling will help to elucidate pathogenicity mechanisms and to identify diagnostic biomarkers and potential drug targets for therapy and could thus pave the way for novel intervention strategies based on novel antifungal drugs and cell therapy.

  11. Fungal Biofilms and Polymicrobial Diseases.

    Science.gov (United States)

    Costa-Orlandi, Caroline B; Sardi, Janaina C O; Pitangui, Nayla S; de Oliveira, Haroldo C; Scorzoni, Liliana; Galeane, Mariana C; Medina-Alarcón, Kaila P; Melo, Wanessa C M A; Marcelino, Mônica Y; Braz, Jaqueline D; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José S

    2017-05-10

    Biofilm formation is an important virulence factor for pathogenic fungi. Both yeasts and filamentous fungi can adhere to biotic and abiotic surfaces, developing into highly organized communities that are resistant to antimicrobials and environmental conditions. In recent years, new genera of fungi have been correlated with biofilm formation. However, Candida biofilms remain the most widely studied from the morphological and molecular perspectives. Biofilms formed by yeast and filamentous fungi present differences, and studies of polymicrobial communities have become increasingly important. A key feature of resistance is the extracellular matrix, which covers and protects biofilm cells from the surrounding environment. Furthermore, to achieve cell-cell communication, microorganisms secrete quorum-sensing molecules that control their biological activities and behaviors and play a role in fungal resistance and pathogenicity. Several in vitro techniques have been developed to study fungal biofilms, from colorimetric methods to omics approaches that aim to identify new therapeutic strategies by developing new compounds to combat these microbial communities as well as new diagnostic tools to identify these complex formations in vivo. In this review, recent advances related to pathogenic fungal biofilms are addressed.

  12. Fungal Biofilms and Polymicrobial Diseases

    Science.gov (United States)

    Costa-Orlandi, Caroline B.; Sardi, Janaina C. O.; Pitangui, Nayla S.; de Oliveira, Haroldo C.; Scorzoni, Liliana; Galeane, Mariana C.; Medina-Alarcón, Kaila P.; Melo, Wanessa C. M. A.; Marcelino, Mônica Y.; Braz, Jaqueline D.; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José S.

    2017-01-01

    Biofilm formation is an important virulence factor for pathogenic fungi. Both yeasts and filamentous fungi can adhere to biotic and abiotic surfaces, developing into highly organized communities that are resistant to antimicrobials and environmental conditions. In recent years, new genera of fungi have been correlated with biofilm formation. However, Candida biofilms remain the most widely studied from the morphological and molecular perspectives. Biofilms formed by yeast and filamentous fungi present differences, and studies of polymicrobial communities have become increasingly important. A key feature of resistance is the extracellular matrix, which covers and protects biofilm cells from the surrounding environment. Furthermore, to achieve cell–cell communication, microorganisms secrete quorum-sensing molecules that control their biological activities and behaviors and play a role in fungal resistance and pathogenicity. Several in vitro techniques have been developed to study fungal biofilms, from colorimetric methods to omics approaches that aim to identify new therapeutic strategies by developing new compounds to combat these microbial communities as well as new diagnostic tools to identify these complex formations in vivo. In this review, recent advances related to pathogenic fungal biofilms are addressed. PMID:29371540

  13. Induction of defensive enzymes (isozymes) during defense against ...

    African Journals Online (AJOL)

    ... related to mitigating pathogen-induced oxidative damage which result in the decrease of calli decay, and this implies that antioxidant defense response may be involved in the mechanisms of plant against fungal pathogen. Keywords: Pear callus, fungi infection, defense enzyme, isozyme, biochemical defense mechanism ...

  14. Chapter Three -- Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Eric R. [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry and BioFrontiers Inst.; Himmel, Michael E. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Biosciences Center; Beckham, Gregg T. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center; Tan, Zhongping [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry and BioFrontiers Inst.

    2015-10-24

    Methods for the manipulation of glycan structures have been recently reported that employ genetic tuning of glycan-active enzymes expressed from homogeneous and heterologous fungal hosts. Taken together, these studies have enabled new strategies for the exploitation of protein glycosylation for the production of enhanced cellulases for biofuel production.

  15. Prevalence and clinical profile of fungal rhinosinusitis.

    Science.gov (United States)

    Suresh, Sandeep; Arumugam, Dayanand; Zacharias, George; Palaninathan, Sengottaiah; Vishwanathan, Ravisankar; Venkatraman, Vaidyanathan

    2016-01-01

    There are only a few landmark studies from the Indian subcontinent on fungal rhinosinusitis. The lack of awareness among clinicians regarding the varying clinical presentations of fungal rhinosinusitis prompted us to undertake this study. To determine the prevalence, etiologic basis, clinical features, radiologic features, and microscopic features of fungal rhinosinusitis, and to evaluate the various treatment modalities available. This was a prospective study in which evaluation of 100 patients with chronic rhinosinusitis was done. Specimens collected were subjected to both microbiology and pathologic examination; data collected, including clinical and radiologic features, were analyzed by the Pearson χ(2) test and Fisher's exact test. The prevalence of fungal rhinosinusitis in our study was 30% (n = 30). Mucor was the most commonly isolated species (n = 15 [50%]) of fungus. Pathologic examination had a higher sensitivity (76.67%) compared with microbiology tests (50%) in the diagnosis of fungal rhinosinusitis. Fungus ball (n = 14 [46.6%]) was the most prevalent entity in the spectrum of fungal rhinosinusitis. Forty percent of cases (n = 12) were of invasive fungal rhinosinusitis. The prevalence of fungal rhinosinusitis was higher among individuals who were immunocompetent (n = 17 [56.6%]). Of patients who were immunocompromised, 84.6% (n = 11) had mucormycosis. Unilateral involvement of paranasal sinuses was more in favor of fungal etiology. Complications were more common in fungal rhinosinusitis caused by Mucor species. Mucormycosis, a rare clinical entity, in subjects who were immunocompetent, had a high prevalence in our study.

  16. Fungal Metabolites for the Control of Biofilm Infections

    Directory of Open Access Journals (Sweden)

    Andréia Bergamo Estrela

    2016-08-01

    Full Text Available Many microbes attach to surfaces and produce a complex matrix of polymers surrounding their cells, forming a biofilm. In biofilms, microbes are much better protected against hostile environments, impairing the action of most antibiotics. A pressing demand exists for novel therapeutic strategies against biofilm infections, which are a grave health wise on mucosal surfaces and medical devices. From fungi, a large number of secondary metabolites with antimicrobial activity have been characterized. This review discusses natural compounds from fungi which are effective against fungal and bacterial biofilms. Some molecules are able to block the cell communication process essential for biofilm formation (known as quorum sensing, others can penetrate and kill cells within the structure. Several targets have been identified, ranging from the inhibition of quorum sensing receptors and virulence factors, to cell wall synthesizing enzymes. Only one group of these fungal metabolites has been optimized and made it to the market, but more preclinical studies are ongoing to expand the biofilm-fighting arsenal. The broad diversity of bioactive compounds from fungi, their activities against various pathogens, and the multi-target trait of some molecules are promising aspects of fungal secondary metabolites. Future screenings for biofilm-controlling compounds will contribute to several novel clinical applications.

  17. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    Full Text Available BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade, and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol, and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles target reactions in

  18. Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose

    Directory of Open Access Journals (Sweden)

    Lin eChen

    2015-11-01

    Full Text Available The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled 7 times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors.

  19. Links between plant and fungal diversity in habitat fragments of coastal shrubland.

    Science.gov (United States)

    Maltz, Mia R; Treseder, Kathleen K; McGuire, Krista L

    2017-01-01

    Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant litter diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance of restoring

  20. Links between plant and fungal diversity in habitat fragments of coastal shrubland.

    Directory of Open Access Journals (Sweden)

    Mia R Maltz

    Full Text Available Habitat fragmentation is widespread across ecosystems, detrimentally affecting biodiversity. Although most habitat fragmentation studies have been conducted on macroscopic organisms, microbial communities and fungal processes may also be threatened by fragmentation. This study investigated whether fragmentation, and the effects of fragmentation on plants, altered fungal diversity and function within a fragmented shrubland in southern California. Using fluorimetric techniques, we assayed enzymes from plant litter collected from fragments of varying sizes to investigate enzymatic responses to fragmentation. To isolate the effects of plant richness from those of fragment size on fungi, we deployed litter bags containing different levels of plant litter diversity into the largest fragment and incubated in the field for one year. Following field incubation, we determined litter mass loss and conducted molecular analyses of fungal communities. We found that leaf-litter enzyme activity declined in smaller habitat fragments with less diverse vegetation. Moreover, we detected greater litter mass loss in litter bags containing more diverse plant litter. Additionally, bags with greater plant litter diversity harbored greater numbers of fungal taxa. These findings suggest that both plant litter resources and fungal function may be affected by habitat fragmentation's constraints on plants, possibly because plant species differ chemically, and may thus decompose at different rates. Diverse plant assemblages may produce a greater variety of litter resources and provide more ecological niche space, which may support greater numbers of fungal taxa. Thus, reduced plant diversity may constrain both fungal taxa richness and decomposition in fragmented coastal shrublands. Altogether, our findings provide evidence that even fungi may be affected by human-driven habitat fragmentation via direct effects of fragmentation on plants. Our findings underscore the importance

  1. Posaconazole: clinical pharmacology and potential for management of fungal infections.

    Science.gov (United States)

    Groll, Andreas H; Walsh, Thomas J

    2005-08-01

    Posaconazole is a novel lipophilic antifungal triazole that inhibits cytochrome P450-dependent 14-alpha demethylase in the biosynthetic pathway of ergosterol. Inhibition of this enzyme leads to an accumulation of toxic 14-alpha methylsterols and a depletion of ergosterol, resulting in a perturbation of the function of the fungal cell membrane and blockage of cell growth and division. In vitro, posaconazole has potent and broad-spectrum activity against opportunistic, endemic and dermatophytic fungi. This activity extends to organisms that are often refractory to existing triazoles, amphotericin B or echinocandins, such as Candida glabrata, Candida krusei, Aspergillus terreus, Fusarium spp. and the Zygomycetes. A large variety of animal models of invasive fungal infections have provided consistent evidence of efficacy against these organisms in vivo, both in normal and immunocompromised animals. Posaconazole is available as an oral suspension and optimal exposure is achieved when the drug is administered in two to four divided doses along with food or a nutritional supplement. The compound has a large volume of distribution, in the order of 5 l/kg, and a half-life of approximately 20 h. Posaconazole is not metabolized to a significant extent through the cytochrome P450 enzyme system and is primarily excreted in an unchanged form in the feces. Although it is inhibitory, cytochrome P3A4 has no effect on 1A2, 2C8, 2C9, 2D6 and 2E1 isoenzymes, and therefore, a limited spectrum of drug-drug interactions can be expected. Pharmacokinetic studies in special populations revealed no necessity for dosage adjustment based on differences in age, gender, race, renal or hepatic function. Posaconazole has demonstrated strong antifungal efficacy in Phase II and III clinical trials in immunocompromised patients with oropharyngeal and esophageal candidiasis. Posaconazole also showed promising efficacy as salvage therapy in a large Phase II study including 330 patients with invasive

  2. Expansion of the aspartate [beta]-semialdehyde dehydrogenase family: the first structure of a fungal ortholog

    Energy Technology Data Exchange (ETDEWEB)

    Arachea, B.T.; Liu, X.; Pavlovsky, A.G.; Viola, R.E. (Toledo)

    2010-08-13

    The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a critical transformation that produces the first branch-point intermediate in an essential microbial amino-acid biosynthetic pathway. The first structure of an ASADH isolated from a fungal species (Candida albicans) has been determined as a complex with its pyridine nucleotide cofactor. This enzyme is a functional dimer, with a similar overall fold and domain organization to the structurally characterized bacterial ASADHs. However, there are differences in the secondary-structural elements and in cofactor binding that are likely to cause the lower catalytic efficiency of this fungal enzyme. Alterations in the dimer interface, through deletion of a helical subdomain and replacement of amino acids that participate in a hydrogen-bonding network, interrupt the intersubunit-communication channels required to support an alternating-site catalytic mechanism. The detailed functional information derived from this new structure will allow an assessment of ASADH as a possible target for antifungal drug development.

  3. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    with previously reported H2O2-induced oxidation studies of Savinase® in solutions. Preliminary formulation studies were conducted and application of the designed setup on stability measurements of commercial granulates was illustrated. Addition of salts resulted in a considerable conservation of enzyme activity...... stability was significantly conserved, while at multilayer hydration level, especially when samples were exposed to 100% RH, the activity was reduced by 80% in a one week period. Since no auto-proteolytic activity and covalently-bound aggregate formation were detected, humidity possibly induced formation...... with the enzyme provided better protection than coating the salt as a separate layer. The effect of site-directed mutagenesis on Savinase® stability was illustrated and possible stability enhancing additives for enzyme granulates were proposed. The present study is the first to report the solid-state inactivation...

  4. Bacterial and fungal endophthalmitis in Upper Egypt: related species and risk factors

    Science.gov (United States)

    Gharamah, AA; Moharram, AM; Ismail, MA; AL-Hussaini, AK

    2012-01-01

    Objective To study risk factors, contributing factors of bacterial and fungal endophthalmitis in Upper Egypt, test the isolated species sensitive to some therapeutic agents, and to investigate the air-borne bacteria and fungi in opthalmology operating rooms. Methods Thirty one cases of endophthalmitis were clinically diagnosed and microbiologically studied. Indoor air-borne bacteria and fungi inside four air-conditioned operating rooms in the Ophthalmology Department at Assiut University Hospitals were also investigated. The isolated microbes from endophthalmitis cases were tested for their ability to produce some extracellular enzymes including protease, lipase, urease, phosphatase and catalase. Also the ability of 5 fungal isolates from endophthalmitis origin to produce mycotoxins and their sensitivity to some therapeutic agents were studied. Results Results showed that bacteria and fungi were responsihle for infection in 10 and 6 cases of endophthalmitis, respectively and only 2 cases produced a mixture of bacteria and fungi. Trauma was the most prevalent risk factor of endophthalmitis where 58.1% of the 31 cases were due to trauma. In ophthalmology operating rooms, different bacterial and fungal species were isolated. 8 bacterial and 5 fungal isolates showed their ability to produce enzymes while only 3 fungal isolates were able to produce mycotoxins. Terbinafine showed the highest effect against most isolates in vitro. Conclusions The ability of bacterial and fungal isolates to produce extracellular enzymes and mycotoxins may be aid in the invasion and destruction of eye tissues. Microbial contamination of operating rooms with air-borne bacteria and fungi in the present work may be a source of postoperative endophthalmitis. PMID:23569989

  5. [Secondary fungal metabolites (mycotoxins) in lichens of different taxonomic groups].

    Science.gov (United States)

    Burkin, A A; Kononenko, G P

    2014-01-01

    Secondary fungal metabolites (mycotoxins) in 22 lichen species of the families Parmeliaceae, Nephromataceae, Umbilicariaceae, Ramalinaceae, Cladoniaceae, Peltigeraceae, and Teloschistaceae were identified determined by enzyme immunoassay enzyme-linked immunosorbent assay. The following mycotoxins were identified found in these lichens in a broad concentration range with a frequency of 70-100%: sterigmatocystin (7-2090 ng/g), alternariol (20-6460 ng/g), and emodin (45-94500 ng/g). Mycophenolic acid frequently occurred in 19 lichen species; citrinin, in 17 species; diacetoxyscirpenol, in 11 species; cyclopiazonic acid, in 10 species; and zearalenone, in 9 species. PR toxin was regularly detected in three lichen species; deoxynivalenol, fumonisins, and ochratoxin A, in two species; and T-2 toxin and ergot alkaloids, in one species. Aflatoxin B1 was detected in only six species with a frequency of 2-42%, whereas roridin A was identified present in 10% of Hypogymnia physodes samples.

  6. Invasive fungal infections after natural disasters.

    Science.gov (United States)

    Benedict, Kaitlin; Park, Benjamin J

    2014-03-01

    The link between natural disasters and subsequent fungal infections in disaster-affected persons has been increasingly recognized. Fungal respiratory conditions associated with disasters include coccidioidomycosis, and fungi are among several organisms that can cause near-drowning pneumonia. Wound contamination with organic matter can lead to post-disaster skin and soft tissue fungal infections, notably mucormycosis. The role of climate change in the environmental growth, distribution, and dispersal mechanisms of pathogenic fungi is not fully understood; however, ongoing climate change could lead to increased disaster-associated fungal infections. Fungal infections are an often-overlooked clinical and public health issue, and increased awareness by health care providers, public health professionals, and community members regarding disaster-associated fungal infections is needed.

  7. Prevalence and clinical profile of fungal rhinosinusitis

    OpenAIRE

    Suresh, Sandeep; Arumugam, Dayanand; Zacharias, George; Palaninathan, Sengottaiah; Vishwanathan, Ravisankar; Venkatraman, Vaidyanathan

    2016-01-01

    Background: There are only a few landmark studies from the Indian subcontinent on fungal rhinosinusitis. The lack of awareness among clinicians regarding the varying clinical presentations of fungal rhinosinusitis prompted us to undertake this study. Objective: To determine the prevalence, etiologic basis, clinical features, radiologic features, and microscopic features of fungal rhinosinusitis, and to evaluate the various treatment modalities available. Methods: This was a prospective study ...

  8. It’s War Out There: Fighting for life with xenobiotic degrading enzymes

    Science.gov (United States)

    It’s War Out There: Fighting for life with xenobiotic degrading enzymes Beta-lactamase enzymes are well studied because of their tremendous impact on medicine. Their prominent role is in resistance to beta-lactam (four membered lactam ring) antibiotics including the first and most famous fungally d...

  9. Addition of enzymes to improve sensory quality of composite wheat–cassava bread

    DEFF Research Database (Denmark)

    Serventi, Luca; Jensen, Sidsel; Skibsted, Leif Horsfelt

    2016-01-01

    Composite wheat–cassava (WC) bread was recently proposed as a sustainable alternative to wheat bread. Nonetheless, using >20 % cassava flour on flour basis in bread baking has consistently been proven to impair the sensory quality. Selected enzymes: fungal alpha-amylase Fungamyl® 2500 SG (Fungamyl......-containing WC bread samples as compared to their enzyme-free counterpart....

  10. Widespread occurrence of expressed fungal secretory peroxidases in forest soils.

    Science.gov (United States)

    Kellner, Harald; Luis, Patricia; Pecyna, Marek J; Barbi, Florian; Kapturska, Danuta; Krüger, Dirk; Zak, Donald R; Marmeisse, Roland; Vandenbol, Micheline; Hofrichter, Martin

    2014-01-01

    Fungal secretory peroxidases mediate fundamental ecological functions in the conversion and degradation of plant biomass. Many of these enzymes have strong oxidizing activities towards aromatic compounds and are involved in the degradation of plant cell wall (lignin) and humus. They comprise three major groups: class II peroxidases (including lignin peroxidase, manganese peroxidase, versatile peroxidase and generic peroxidase), dye-decolorizing peroxidases, and heme-thiolate peroxidases (e.g. unspecific/aromatic peroxygenase, chloroperoxidase). Here, we have repeatedly observed a widespread expression of all major peroxidase groups in leaf and needle litter across a range of forest ecosystems (e.g. Fagus, Picea, Acer, Quercus, and Populus spp.), which are widespread in Europe and North America. Manganese peroxidases and unspecific peroxygenases were found expressed in all nine investigated forest sites, and dye-decolorizing peroxidases were observed in five of the nine sites, thereby indicating biological significance of these enzymes for fungal physiology and ecosystem processes. Transcripts of selected secretory peroxidase genes were also analyzed in pure cultures of several litter-decomposing species and other fungi. Using this information, we were able to match, in environmental litter samples, two manganese peroxidase sequences to Mycena galopus and Mycena epipterygia and one unspecific peroxygenase transcript to Mycena galopus, suggesting an important role of this litter- and coarse woody debris-dwelling genus in the disintegration and transformation of litter aromatics and organic matter formation.

  11. Widespread occurrence of expressed fungal secretory peroxidases in forest soils.

    Directory of Open Access Journals (Sweden)

    Harald Kellner

    Full Text Available Fungal secretory peroxidases mediate fundamental ecological functions in the conversion and degradation of plant biomass. Many of these enzymes have strong oxidizing activities towards aromatic compounds and are involved in the degradation of plant cell wall (lignin and humus. They comprise three major groups: class II peroxidases (including lignin peroxidase, manganese peroxidase, versatile peroxidase and generic peroxidase, dye-decolorizing peroxidases, and heme-thiolate peroxidases (e.g. unspecific/aromatic peroxygenase, chloroperoxidase. Here, we have repeatedly observed a widespread expression of all major peroxidase groups in leaf and needle litter across a range of forest ecosystems (e.g. Fagus, Picea, Acer, Quercus, and Populus spp., which are widespread in Europe and North America. Manganese peroxidases and unspecific peroxygenases were found expressed in all nine investigated forest sites, and dye-decolorizing peroxidases were observed in five of the nine sites, thereby indicating biological significance of these enzymes for fungal physiology and ecosystem processes. Transcripts of selected secretory peroxidase genes were also analyzed in pure cultures of several litter-decomposing species and other fungi. Using this information, we were able to match, in environmental litter samples, two manganese peroxidase sequences to Mycena galopus and Mycena epipterygia and one unspecific peroxygenase transcript to Mycena galopus, suggesting an important role of this litter- and coarse woody debris-dwelling genus in the disintegration and transformation of litter aromatics and organic matter formation.

  12. Active invasion of bacteria into living fungal cells

    Science.gov (United States)

    Moebius, Nadine; Üzüm, Zerrin; Dijksterhuis, Jan; Lackner, Gerald; Hertweck, Christian

    2014-01-01

    The rice seedling blight fungus Rhizopus microsporus and its endosymbiont Burkholderia rhizoxinica form an unusual, highly specific alliance to produce the highly potent antimitotic phytotoxin rhizoxin. Yet, it has remained a riddle how bacteria invade the fungal cells. Genome mining for potential symbiosis factors and functional analyses revealed that a type 2 secretion system (T2SS) of the bacterial endosymbiont is required for the formation of the endosymbiosis. Comparative proteome analyses show that the T2SS releases chitinolytic enzymes (chitinase, chitosanase) and chitin-binding proteins. The genes responsible for chitinolytic proteins and T2SS components are highly expressed during infection. Through targeted gene knock-outs, sporulation assays and microscopic investigations we found that chitinase is essential for bacteria to enter hyphae. Unprecedented snapshots of the traceless bacterial intrusion were obtained using cryo-electron microscopy. Beyond unveiling the pivotal role of chitinolytic enzymes in the active invasion of a fungus by bacteria, these findings grant unprecedented insight into the fungal cell wall penetration and symbiosis formation. DOI: http://dx.doi.org/10.7554/eLife.03007.001 PMID:25182414

  13. Produção de proteases por Bacillus sp SMIA-2 crescido em soro de leite e água de maceração de milho e compatibilidade das enzimas com detergentes comerciais Production of proteases by Bacillus sp. SMIA-2 grow on whey and corn steep liquor and compatibility of the enzyme with commercial detergents

    Directory of Open Access Journals (Sweden)

    Wellingta Cristina Almeida do Nascimento

    2006-09-01

    Full Text Available A produção de proteases por Bacillus sp. SMIA-2 cultivado em um meio de cultura contendo soro de leite e água de maceração de milho foi estudada. Além disso, a compatibilidade da enzima com detergentes comerciais foi também avaliada. A atividade máxima da enzima (70 U/mg proteína foi observada na fase estacionária de crescimento, com 32 h de incubação. Estudos sobre a caracterização da protease revelaram que a temperatura ótima para atividade desta enzima foi 70 °C e que a mesma manteve 91% de sua atividade quando incubada a 70 °C na presença do cálcio. O valor ótimo de pH encontrado para a protease foi 8,0, sendo que a enzima manteve 85% e 46% de sua atividade quando incubada por 1 h em pH 9 e pH 10 respectivamente. A protease manteve 64% e 50% de sua atividade quando incubada a 70 °C por 30 min com os detergentes Cheer® e Tide® respectivamente. A utilização da glicina juntamente com íons cálcio resultou em um aumento da estabilidade enzimática em todos os detergentes testados. Em presença dos detergentes Ultra bizz®, Cheer® e Tide®, a enzima manteve aproximadamente 100% de atividade, após 30 min de incubação a 70 °C.The production of protease by the thermophilic Bacillus sp. SMIA-2 cultivated in a medium containing whey and corn steep liquor was studied. In addition, the compatibility of the enzyme with commercial detergents was evaluated. The maximum activity of the enzyme (70 U/mg protein was observed in the phase stationary of growth, with 32 h of incubation. Studies on the protease characterization revealed that the optimum temperature of this enzyme was 70 °C and that it maintained 91% of its activity when incubated a 70 °C in the presence of calcium. The optimum pH of the enzyme was found to be 8.0 and the enzyme maintained 85% and 46% of its original activity when incubated for 1 h at pH 9 and pH 10 respectively. Protease retained 64% and 50% of its activity after 30 min incubation at 70 °C in

  14. Repression of fungal plant pathogens and fungal-related contaminants: Selected ecosystem services by soil fauna communities in agroecosystems

    Science.gov (United States)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Brunotte, Joachim; Weinert, Joachim

    2017-04-01

    In agroecosystems soil-borne fungal plant diseases are major yield-limiting factors which are difficult to control. Fungal plant pathogens, like Fusarium species, survive as a saprophyte in infected tissue like crop residues and endanger the health of the following crop by increasing the infection risk for specific plant diseases. In infected plant organs, these pathogens are able to produce mycotoxins. Mycotoxins like deoxynivalenol (DON) persist during storage, are heat resistant and of major concern for human and animal health after consumption of contaminated food and feed, respectively. Among fungivorous soil organisms, there are representatives of the soil fauna which are obviously antagonistic to a Fusarium infection and the contamination with mycotoxins. Specific members of the soil macro-, meso-, and microfauna provide a wide range of ecosystem services including the stimulation of decomposition processes which may result in the regulation of plant pathogens and the degradation of environmental contaminants. Investigations under laboratory conditions and in field were conducted to assess the functional linkage between soil faunal communities and plant pathogenic fungi (Fusarium culmorum). The aim was to examine if Fusarium biomass and the content of its mycotoxin DON decrease substantially in the presence of soil fauna (earthworms: Lumbricus terrestris, collembolans: Folsomia candida and nematodes: Aphelenchoides saprophilus) in a commercial cropping system managed with conservation tillage located in Northern Germany. The results of our investigations pointed out that the degradation performance of the introduced soil fauna must be considered as an important contribution to the biodegradation of fungal plant diseases and fungal-related contaminants. Different size classes within functional groups and the traits of keystone species appear to be significant for soil function and the provision of ecosystem services as in particular L. terrestris revealed to

  15. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted by that enzyme......Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...

  16. [Iron and invasive fungal infection].

    Science.gov (United States)

    Álvarez, Florencio; Fernández-Ruiz, Mario; Aguado, José María

    2013-01-01

    Iron is an essential factor for both the growth and virulence of most of microorganisms. As a part of the innate (or nutritional) immune system, mammals have developed different mechanisms to store and transport this element in order to limit free iron bioavailability. To survive in this hostile environment, pathogenic fungi have specific uptake systems for host iron sources, one of the most important of which is based on the synthesis of siderophores-soluble, low-molecular-mass, high-affinity iron chelators. The increase in free iron that results from iron-overload conditions is a well-established risk factor for invasive fungal infection (IFI) such as mucormycosis or aspergillosis. Therefore, iron chelation may be an appealing therapeutic option for these infections. Nevertheless, deferoxamine -the first approved iron chelator- paradoxically increases the incidence of IFI, as it serves as a xeno-siderophore to Mucorales. On the contrary, the new oral iron chelators (deferiprone and deferasirox) have shown to exert a deleterious effect on fungal growth both in vitro and in animal models. The present review focuses on the role of iron metabolism in the pathogenesis of IFI and summarises the preclinical data, as well as the limited clinical experience so far, in the use of new iron chelators as treatment for mucormycosis and invasive aspergillosis. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  17. Immune response to fungal infection.

    Science.gov (United States)

    Diamond, R D

    1989-01-01

    In general, fungi are saprophytes that are well adapted to grow in nature supported by diverse nutritional substrates. For fungi, in contrast to many other microorganisms that infect humans, parasitism is an accidental phenomenon rather than an obligatory requirement for survival. Thus, with progressive improvement in our capabilities to prolong survival of patients with global defects in host defense mechanisms, clinical experience suggests that human tissues may support growth of numerous species of saprophytic fungi that share the capacity to grow at 37 degrees C. Normally, however, a broad array of natural and acquired host defense mechanisms make the occurrence of progressive, systemic, life-threatening mycoses extremely rare events. When one or another of these host defense mechanisms is compromised, one of a variety of significant fungal infections may then progress. Mycoses may be broadly categorized into those controlled largely by natural cellular defenses vs. acquired cell-mediated immunity. Notwithstanding data that permit such general classification of host factors controlling one or another invasive mycosis, the diverse structural and antigenic properties of individual fungi create unique patterns of infections in individual, characteristic host settings. Thus, while some broad generalizations are possible, definition of predisposing factors for specific individual mycoses (and, ultimately, prospects for corrective immunotherapy) requires careful characterization of diverse features of fungal forms mediating divergent immune responses.

  18. Highlights in pathogenic fungal biofilms.

    Science.gov (United States)

    Sardi, Janaina De Cássia Orlandi; Pitangui, Nayla De Souza; Rodríguez-Arellanes, Gabriela; Taylor, Maria Lucia; Fusco-Almeida, Ana Maria; Mendes-Giannini, Maria José Soares

    2014-01-01

    A wide variety of fungi have demonstrated the ability to colonize surfaces and form biofilms. Most studies on fungal biofilms have focused on Candida albicans and more recently, several authors have reported the involvement of other genera of yeasts and Candida species, as well as of filamentous fungi in the formation of biofilms, including: Cryptococcus neoformans, Cryptococcus gattii, Rhodotorula species, Aspergillus fumigatus, Malassezia pachydermatis, Histoplasma capsulatum, Paracoccidioides brasiliensis, Pneumocystis species, Coccidioides immitis, Fusarium species, Saccharomyces cerevisiae, Trichosporon asahii, Mucorales and Blastoschizomyces. There is a current interest in describing the particular characteristics of the biofilm formation by of these fungi. A major concern is the control of biofilms, requiring knowledge of the biofilm mechanisms. However, our knowledge of these microbial communities is limited, due to the complexity of these systems and metabolic interactions that remain unknown. This mini-review aims to highlight recently discovered fungal biofilms and to compare them with the current knowledge on biofilms. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  19. Fungal infections of the orbit

    Directory of Open Access Journals (Sweden)

    Bipasha Mukherjee

    2016-01-01

    Full Text Available Fungal infections of the orbit can lead to grave complications. Although the primary site of inoculation of the infective organism is frequently the sinuses, the patients can initially present to the ophthalmologist with ocular signs and symptoms. Due to its varied and nonspecific clinical features, especially in the early stages, patients are frequently misdiagnosed and even treated with steroids which worsen the situation leading to dire consequences. Ophthalmologists should be familiar with the clinical spectrum of disease and the variable presentation of this infection, as early diagnosis and rapid institution of appropriate therapy are crucial elements in the management of this invasive sino-orbital infection. In this review, relevant clinical, microbiological, and imaging findings are discussed along with the current consensus on local and systemic management. We review the recent literature and provide a comprehensive analysis. In the immunocompromised, as well as in healthy patients, a high index of suspicion must be maintained as delay in diagnosis of fungal pathology may lead to disfiguring morbidity or even mortality. Obtaining adequate diagnostic material for pathological and microbiological examination is critical. Newer methods of therapy, particularly oral voriconazole and topical amphotericin B, may be beneficial in selected patients.

  20. Bacterial and fungal chitinase chiJ orthologs evolve under different selective constraints following horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Ubhayasekera Wimal

    2012-10-01

    Full Text Available Abstract Background Certain bacteria from the genus Streptomyces are currently used as biological control agents against plant pathogenic fungi. Hydrolytic enzymes that degrade fungal cell wall components, such as chitinases, are suggested as one possible mechanism in biocontrol interactions. Adaptive evolution of chitinases are previously reported for plant chitinases involved in defence against fungal pathogens, and in fungal chitinases involved in fungal-fungal interactions. In this study we investigated the molecular evolution of chitinase chiJ in the bacterial genus Streptomyces. In addition, as chiJ orthologs are previously reported in certain fungal species as a result from horizontal gene transfer, we conducted a comparative study of differences in evolutionary patterns between bacterial and fungal taxa. Findings ChiJ contained three sites evolving under strong positive selection and four groups of co-evolving sites. Regions of high amino acid diversity were predicted to be surface-exposed and associated with coil regions that connect certain α-helices and β-strands in the family 18 chitinase TIM barrel structure, but not associated with the catalytic cleft. The comparative study with fungal ChiJ orthologs identified three regions that display signs of type 1 functional divergence, where unique adaptations in the bacterial and fungal taxa are driven by positive selection. Conclusions The identified surface-exposed regions of chitinase ChiJ where sequence diversification is driven by positive selection may putatively be related to functional divergence between bacterial and fungal orthologs. These results show that ChiJ orthologs have evolved under different selective constraints following the horizontal gene transfer event.

  1. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  2. Archaeal Enzymes and Applications in Industrial Biocatalysts

    Directory of Open Access Journals (Sweden)

    Jennifer A. Littlechild

    2015-01-01

    Full Text Available Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  3. POSSIBLE ROLE OF FUNGAL HEMOLYSINS IN SICK BUILDING SYNDROME

    Science.gov (United States)

    Many fungi produce proteinaceous hemolytic agents. Like bacterial hemolysins, fungal hemolysins create pores or holes in membranes. Depending on which membranes are damaged, fungal hemolysins can produce a variety of effects. Fungal hemolysins can cause histamine release from ...

  4. Culture independent PCR: an alternative enzyme discovery strategy

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Lydolph, Magnus; Lange, Lene

    2005-01-01

    Degenerate primers were designed for use in a culture-independent PCR screening of DNA from composite fungal communities, inhabiting residues of corn stovers and leaves. According to similarity searches and alignments amplified clone sequences affiliated with glycosyl hydrolase family 7 and glyco......Degenerate primers were designed for use in a culture-independent PCR screening of DNA from composite fungal communities, inhabiting residues of corn stovers and leaves. According to similarity searches and alignments amplified clone sequences affiliated with glycosyl hydrolase family 7...... the value of culture-independent PCR in microbial diversity studies and could add to development of a new enzyme screening technology....

  5. Secreted fungal aspartic proteases: A review.

    Science.gov (United States)

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application. Copyright © 2016 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  6. The burden of fungal disease in Denmark.

    Science.gov (United States)

    Mortensen, Klaus L; Denning, David W; Arendrup, Maiken C

    2015-10-01

    The aim of this study is to calculate the burden of fungal disease in Denmark. We identified all published epidemiology papers reporting fungal infection rates in Denmark. Where no data existed, we used numbers of specific populations at risk and fungal infection frequencies in those populations to estimate national incidence or prevalence. Approximately, one in six Danes will suffer from a fungal infection each year, most of which are skin or mucosal diseases causing disability but no deaths. Good data exist on candidaemia where a national voluntary reporting system is in place and have shown a high rate (9.6 per 100,000 inhabitants) compared other European countries. We present estimates of invasive aspergillosis and chronic pulmonary aspergillosis with rates of 4.4 per 100,000 and 3.1 per 100,000 inhabitants, respectively. Further studies are needed in order to better ascertain high-burden fungal infections such as recurrent vulvovaginal candidiasis (~1350 cases in 100,000 women) as well as allergic bronchopulmonary aspergillosis (~131 cases in 100,000 inhabitants) and severe asthma with fungal sensitisation (cases in 100,000 inhabitants). In conclusion, more than 93,000 Danes or about 2% of Denmark's population will have a non-trivial fungal infection during 1 year, which underscores the magnitude of the fungal burden. © 2015 Blackwell Verlag GmbH.

  7. Tropospheric ozone as a fungal elicitor

    Indian Academy of Sciences (India)

    Tropospheric ozone has been proven to trigger biochemical plant responses that are similar to the ones induced by an attack of fungal pathogens, i.e. it resembles fungal elicitors. This suggests that ozone can represent a valid tool for the study of stress responses and induction of resistance to pathogens. This review ...

  8. HIV-associated opportunistic fungal infections

    African Journals Online (AJOL)

    Elton

    indicated for mucosal candidiasis. AST may be requested in treatment-refractory cases,9 if the laboratory has the capacity to perform testing using a standardised method. FUNGAL INFECTIONS – LABORATORY. HIV-associated opportunistic fungal infections: a guide to using the clinical microbiology laboratory.

  9. Changes in enzymatic activities and microbial properties in vermicompost of water hyacinth as affected by pre-composting and fungal inoculation: a comparative study of ergosterol and chitin for estimating fungal biomass.

    Science.gov (United States)

    Pramanik, P

    2010-01-01

    In this experiment, three different fungal species, viz. Trichoderma viridae, Aspergillus niger and Phanerochaete chrysosporium, were inoculated in 7 day and 15 day partially decomposed water hyacinth to study their effect on enzymatic activities, microbial respiration and fungal biomass of the final stabilized product. The results suggested that increasing the duration of pre-composting from 7 days to 15 days did not show any significant effect on the activities of hydrolytic enzymes. Inoculation of fungi significantly (P vermicomposts. Inoculation of P. chrysosporium in initial organic waste registered the highest chitin content in vermicompost. A comparison of fungal biomass and chitin content revealed a conversion factor of 2.628 with a standard deviation of 0.318. Due to significant correlation (r = 0.864), this conversion factor allows for the calculation of fungal biomass from chitin, which is comparatively more stable than ergosterol. 2010 Elsevier Ltd. All rights reserved.

  10. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  11. Allergic fungal sinusitis causing nasolacrimal duct obstruction.

    Science.gov (United States)

    Kim, Charles; Kacker, Ashutosh; Chee, Ru-Ik; Lelli, Gary J

    2013-04-01

    Allergic fungal sinusitis is thought to represent a chronic autoimmune reaction directed against fungal elements within the sinuses, and is commonly seen in individuals with a history of chronic sinusitis that is refractory to medical therapy. The authors present a case of allergic fungal sinusitis involving the lacrimal drainage system. A 54-year-old woman initially presented with recurrent erythema and induration of the left nasolacrimal sac due to dacryocystitis, which was unresponsive to treatment with topical and systemic antibiotics. Radiological evaluation demonstrated the presence of multiple soft tissue masses along the medial canthi. During subsequent endoscopic dacryocystorhinostomy, significant amounts of allergic mucin were found within the sinuses and marked eosinophilia was present within tissue obtained from the lacrimal sac, findings highly suggestive of allergic fungal sinusitis. A diagnosis of allergic fungal sinusitis should be considered in patients presenting with epiphora in the appropriate clinical context. However, involvement of the lacrimal drainage system is an exceedingly unusual presentation.

  12. Fungal BVMOs as alternatives to cyclohexanone monooxygenase.

    Science.gov (United States)

    Mthethwa, Katlego Siphamandla; Kassier, Karin; Engel, Jennifer; Kara, Selin; Smit, Martha Sophia; Opperman, Diederik Johannes

    2017-11-01

    FAD-dependent Baeyer-Villiger monooxygenases (BVMOs) have proven to be useful biocatalysts in the selective and specific oxygenation of various ketones. Despite the cloning, heterologous expression and characterization of close to 80 members of this enzyme family, some sub-groups of BVMOs still remain underrepresented and their evolutionary relationship uncertain. Until recently, very few fungal BVMOs have been described. Our previous investigations into BVMOs from the fungus Aspergillus flavus, yielded very little activity on simple cyclic ketones. Here we report on another four BVMOs from A. flavus that are more closely related to cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. NCIMB 9871. Evolutionary analysis with other characterized BVMOs show their closest relationship to be with either cycloalkanone monooxygenase (CAMO) or 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase (OTEMO). The OTEMO-related BVMOAFL706 and BVMOAFL334 were heterologously expressed in E. coli, purified and shown to be able to convert a range of cyclic and substituted cyclic ketones. Of the unsubstituted cyclic ketones, cyclohexanone showed the highest conversion with maximum turnover frequencies reaching 4.3s-1 for BVMOAFL706. Unlike CHMOacinet, and many of the closely related BVMOs, no substrate inhibition was observed with cyclohexanone to a concentration of up to 30mM, creating the possibility for applications requiring high substrate loading. Aliphatic ketones were also readily converted with excellent regioselectivity. Similar to CHMOacinet, acetophenones were not converted and the oxidation of rac-cis-bicyclo[3.2.0]hept-2-en-6-one occurs enantiodivergently, with the (1R,5S) isomer converted to the "normal" lactone and the (1S,5R) isomer to the "abnormal" lactone. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Allergic fungal rhinosinusitis: detection of fungal DNA in sinus aspirate using polymerase chain reaction.

    Science.gov (United States)

    El-Morsy, S M; Khafagy, Y W; El-Naggar, M M; Beih, A A

    2010-02-01

    This study investigated allergic fungal rhinosinusitis cases, and aimed to compare the detection of fungi in sinus aspirate by culture and by polymerase chain reaction assay, and to relate the presence of fungi in the nasal sinuses to the type of fungal allergen causing disease. Sixty-eight cases of allergic fungal rhinosinusitis underwent fungal culture and polymerase chain reaction assay for universal fungal, aspergillus and bipolaris DNA. Aspergillus-specific immunoglobulin E levels were measured in sinus aspirate, and total serum immunoglobulin E levels were calculated. A control group of 10 cases was included in the study. Of the 68 allergic fungal rhinosinusitis cases, only 42 (61.7 per cent) had positive fungal cultures; of the 10 controls, only three (30 per cent) had positive cultures. Species from the dematiaceous family were most commonly grown, being isolated in 30 cases (71.4 per cent). Bipolaris was the most commonly isolated species (18 cases) followed by curvularia (11 cases) and alternaria (one case). Polymerase chain reaction assay detected fungal DNA in all the allergic fungal rhinosinusitis cases and also in four controls (40 per cent). Ten patients (of 68; 14.7 per cent) were positive for Aspergillus fumigatus specific immunoglobulin E. The mean concentration of this immunoglobulin was 11.32 +/- 4.12 IU/ml in patients and 0 IU/ml in controls, a statistically significant difference. Detection of fungal DNA in nasal aspirate by polymerase chain reaction was superior to fungal cultures as a method of detecting fungal growth. In allergic fungal rhinosinusitis, fungal growth is not always accompanied by an allergic reaction.

  14. Bioprospecting and biotechnological applications of fungal laccase.

    Science.gov (United States)

    Upadhyay, Pooja; Shrivastava, Rahul; Agrawal, Pavan Kumar

    2016-06-01

    Laccase belongs to a small group of enzymes called the blue multicopper oxidases, having the potential ability of oxidation. It belongs to enzymes, which have innate properties of reactive radical production, but its utilization in many fields has been ignored because of its unavailability in the commercial field. There are diverse sources of laccase producing organisms like bacteria, fungi and plants. In fungi, laccase is present in Ascomycetes, Deuteromycetes, Basidiomycetes and is particularly abundant in many white-rot fungi that degrade lignin. Laccases can degrade both phenolic and non-phenolic compounds. They also have the ability to detoxify a range of environmental pollutants. Due to their property to detoxify a range of pollutants, they have been used for several purposes in many industries including paper, pulp, textile and petrochemical industries. Some other application of laccase includes in food processing industry, medical and health care. Recently, laccase has found applications in other fields such as in the design of biosensors and nanotechnology. The present review provides an overview of biological functions of laccase, its mechanism of action, laccase mediator system, and various biotechnological applications of laccase obtained from endophytic fungi.

  15. Chapter 8: Invasive fungal rhinosinusitis.

    Science.gov (United States)

    Duggal, Praveen; Wise, Sarah K

    2013-05-01

    Invasive fungal rhinosinusitis (IFRS) is a disease of the paranasal sinuses and nasal cavity that typically affects immunocompromised patients in the acute fulminant form. Early symptoms can often mimic rhinosinusitis, while late symptoms can cause significant morbidity and mortality. Swelling and mucosal thickening can quickly progress to pale or necrotic tissue in the nasal cavity and sinuses, and the disease can rapidly spread and invade the palate, orbit, cavernous sinus, cranial nerves, skull base, carotid artery, and brain. IFRS can be life threatening if left undiagnosed or untreated. While the acute fulminant form of IFRS is the most rapidly progressive and destructive, granulomatous and chronic forms also exist. Diagnosis of IFRS often mandates imaging studies in conjunction with clinical, endoscopic, and histopathological examination. Treatment of IFRS consists of reversing the underlying immunosuppression, antifungal therapy, and aggressive surgical debridement. With early diagnosis and treatment, IFRS can be treated and increase patient survival.

  16. Dancing genomes: fungal nuclear positioning

    Science.gov (United States)

    Gladfelter, Amy; Berman, Judith

    2009-01-01

    The many different mechanisms that fungi use to transmit and share genetic material are mediated by a broad range of chromosome and nuclear dynamics. The mechanics underlying nuclear migration are well integrated into detailed models, in which the forces supplied by plus- and minus-end-directed microtubule motors position and move the nucleus in a cell. Although we know much about how cells move nuclei, we know much less about why the cell invests in so many different nuclear ‘dances’. Here, we briefly survey the available models for the mechanics of nuclear migration in fungi and then focus on examples of how fungal cells use these nuclear dances — the movement of intact nuclei in and between cells — to control the integrity, ploidy and assortment of specific genomes or individual chromosomes. PMID:19898490

  17. Towards a commercially potential process

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    2012-01-01

    In order to examine the industrial potential to indirectly isolate phytosterols from deodoriser distillates (DODs), enzymatic transesterification of an industrial rapeseed and soybean oil DOD mixture with bioethanol was investigated using commercial lipases and a few newly immobilised preparations...... esters from DODs. The optimum conditions are 10% enzyme load (wt% of DODs), ethanol/DODs of 3.0:1.0 (mol/mol), water content 0.125% (based on the weight of total mixture), and reaction at 30 °C for 5 h. The results demonstrated that >95% sterols can be recovered as free form (>85% sterol esters were...

  18. Seasonal dynamics of fungal communities in a temperate oak forest soil.

    Science.gov (United States)

    Voříšková, Jana; Brabcová, Vendula; Cajthaml, Tomáš; Baldrian, Petr

    2014-01-01

    Fungi are the agents primarily responsible for the transformation of plant-derived carbon in terrestrial ecosystems. However, little is known of their responses to the seasonal changes in resource availability in deciduous forests, including photosynthate allocation below ground and seasonal inputs of fresh litter. Vertical stratification of and seasonal changes in fungal abundance, activity and community composition were investigated in the litter, organic and upper mineral soils of a temperate Quercus petraea forest using ergosterol and extracellular enzyme assays and amplicon 454-pyrosequencing of the rDNA-ITS region. Fungal activity, biomass and diversity decreased substantially with soil depth. The highest enzyme activities were detected in winter, especially in litter, where these activities were followed by a peak in fungal biomass during spring. The litter community exhibited more profound seasonal changes than did the community in the deeper horizons. In the litter, saprotrophic genera reached their seasonal maxima in autumn, but summer typically saw the highest abundance of ectomycorrhizal taxa. Although the composition of the litter community changes over the course of the year, the mineral soil shows changes in biomass. The fungal community is affected by season. Litter decomposition and phytosynthate allocation represent important factors contributing to the observed variations. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  19. Endophytes in commercial micropropagation - friend or foe?

    Directory of Open Access Journals (Sweden)

    Rödel, Philipp

    2016-07-01

    Full Text Available Medicinal and aromatic plants are superorganisms like all plant species- naturally colonized by bacteria, fungi and protists. Micropropagated plants are facing different challenges under in vitro and ex vitro conditions: Mixotrophic growth under low light conditions on artificial nutrient media, poor gas exchange in small vessels, abiotic stress, bad rooting, transplanting stress, low survival rate during acclimatization in greenhouse. The use of endophytes in micropropagation can improve plant growth, yield, and health and induce tolerance to abiotic and biotic stress. A tool for the use of competent endophytes in micropropagation under in vitro and ex vitro conditions is “biotization” of plantlets with useful bacterial and fungal inocula. Fungal inocula which are used commercially are e.g. arbuscular mycorrhizal fungi in form of spores and extraradical mycelium on different carrier materials like expanded clay, vermiculite, sand or peat. Furthermore representatives of the root fungal genus Trichoderma are applied as spores formulated in powder. Plantgrowth promoting rhizobacteria of the important genera Bacillus, Pseudomonas, Azospirillum and Azotobacter in form of lyophilised endospores/bacterial cells in powder or liquid formulation are also available on the market.

  20. Medical interventions for fungal keratitis.

    Science.gov (United States)

    FlorCruz, Nilo Vincent; Evans, Jennifer R

    2015-04-09

    Fungal keratitis is a fungal infection of the cornea. It is common in lower income countries, particularly in agricultural areas but relatively uncommon in higher income countries. Although there are medications available, their effectiveness is unclear. To assess the effects of different antifungal drugs in the management of fungal keratitis. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2015, Issue 2), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to March 2015), EMBASE (January 1980 to March 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to March 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 16 March 2015. We included randomised controlled trials of medical therapy for fungal keratitis. Two review authors selected studies for inclusion in the review, assessed trials for risk of bias and extracted data. The primary outcome was clinical cure at two to three months. Secondary outcomes included best-corrected visual acuity, time to clinical cure, compliance with treatment, adverse outcomes and quality of life. We included 12 trials in this review; 10 trials were conducted in India, one in Bangladesh and one in Egypt. Seven of these trials were at high risk of bias in one or more domains, two of these studies were at low risk of bias in all domains. Participants were randomised to the following comparisons: topical 5% natamycin compared to topical 1% voriconazole; topical 5% natamycin compared to topical 2% econazole; topical 5% natamycin compared to topical chlorhexidine gluconate (0

  1. Conversion of ammonia-pretreated switchgrass to biofuel precursors by bacterial-fungal consortia under solid-state and submerged-state cultivation.

    Science.gov (United States)

    Jain, A; Pelle, H S; Baughman, W H; Henson, J M

    2017-04-01

    The aim of this study was to develop and evaluate bacterial-fungal communities to deconstruct switchgrass to biofuel precursors. Bacterial-fungal consortia, mesophilic (25°C) and thermophilic (50°C), were enriched from switchgrass bales from which enzyme mixtures were used to deconstruct delignified switchgrass (DSG). The bacterial-fungal consortia were able to produce enzymes including endoglucanase, exoglucanase, β-glucosidase, xylanase, xylosidase and pectinase to convert DSG to soluble carbohydrates. 454 pyrosequencing revealed that Paenibacillus and Streptomyces were the dominant bacteria in the mesophilic and thermophilic consortia respectively. Penicillium and Acremonium were the dominant fungi in the mesophilic consortia, whereas Aspergillus and Penicillium were the dominant fungi present in the thermophilic consortia. The results show that the state of cultivation, solid-state or submerged-state, affects the community structure as well as enzyme activities produced by these bacterial-fungal consortia. The enzyme mixture produced by the bacterial-fungal consortia released a higher amount of xylose than glucose during saccharification of DSG. The study provides a novel approach to produce enzymes for conversion of lignocellulolytic feedstocks to soluble sugars which can be used to produce biofuel precursors. © 2016 The Society for Applied Microbiology.

  2. Isolated secondary fungal infections of pleural cavity

    Directory of Open Access Journals (Sweden)

    Makbule Ergin

    2013-12-01

    Full Text Available Objectives: Pleural fungal infections are rare, but the incidence has been increasing with immunosuppressant diseases and use of immunosuppressive medications. In this report, we present 6 patients with pleural effusions that have been determined fungal infection. Methods: The medical records of patients with followed and treated due to fungal infection of the pleural were retrospectively reviewed. Result: The 6 cases whom was 58 of the value median for age were treated as surgical and medical due to fungal infection of the pleural cavity. Dyspnea, cough and chest pain were the most common symptoms. Fever, night sweats and expectoration are relatively rare. In 4 patients, the infections of pleural cavity developed on the bases of rheumatoid arthritis, tuberculosis, pleural mesothelioma and esophagopleural fistula. In two patients had isolated fungal infections. Cultural positivity was seen in 5 patients. Fungal hyphae were determined by cytopathology in all of the patients. As a surgical procedure, all of the patients underwent decortication or pleural biopsy and pleural irrigation. In all patients, antifungal agents were added to surgical procedures. Full recovery of infection was seen in 5 patients. One patient died. Conclusion: In immunosuppressive patients, the incidence of pleural effusions due to or associated with fungal infections are more common. Addition to culture of pleural fluid, histopathological evaluation of pleura will aid diagnosis. J Clin Exp Invest 2013; 4 (4: 443-446

  3. Clinical Characteristics of Fungal Sensitization in Children with Allergic Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Pınar Uysal

    2016-08-01

    Full Text Available Objective: The aim of the study was to evaluate the prevelance of fungal sensitization among school-aged children with allergic respiratory diseases who attended our outpatient clinic and to evaluate its clinical impact on disease severity. Materials and Methods: Children with allergic symptoms during mould season, who attended our outpatient clinic between January 2014 and August 2015, were evaluated for allergic respiratory diseases. Skin prick testing with fungal and other commercial standardized solutions of aeroallergens was performed in all children. Spirometry was performed in children with asthma. Serum total immunoglobulin E (IgE and aeroallergen specific IgE (sIgE levels were measured. Results: A total of 112 children were included in the study. The prevelance of fungal sensitization was 6.4%. Alternaria alterna was the most common fungal allergen in both mono and polysensitized groups (p=0.002, p=0.004, respectively. Alternaria alterna sensitization was significantly higher in patients with persistent allergic rhinitis compared to those with intermittant allergic rhinitis (p=0.002. The patients with mild asthma were mostly monosensitized (p=0.003, but cases with severe asthma (SA were polysensitized (p=0.007. In polysensitized cases, Alternaria alterna and Cladosporium spp. coexistance was the most common combination compared to other fungal combinations (p<0.001. The sensitivity rate of sIgE was found to be 88%. In spirometric analysis, forced expiratory volume in 1 second (FEV1 and FEV1/forced vital capacity values were lower in polysensitized children with asthma and in children with asthma coexisting allergic rhinitis compared to children with allergic rhinitis only (p=0.004, p=0.001, respectively. Conclusion: The most common fungal allergen was Alternaria alterna in children with mono or polysensitization. Polysensitization with fungal allergens was closely associated with SA and lower spirometric parameters.

  4. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.

    2007-01-01

    A systematic overview is presented of the literature that reports the antifouling (AF) protection of underwater structures via the action of enzymes. The overall aim of this review is to assess the state of the art of enzymatic AF technology, and to highlight the obstacles that have to be overcome...... for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...... to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An indirect AF...

  5. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  6. Enzyme-Immobilized Microfluidic Process Reactors

    Directory of Open Access Journals (Sweden)

    Hideaki Maeda

    2011-07-01

    Full Text Available Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.

  7. Presentation and diagnosis of allergic fungal sinusitis.

    Science.gov (United States)

    Zakirullah; Nawaz, Ghareeb; Sattar, Syed Fazle

    2010-01-01

    Allergic fungal sinusitis (AFS) is a form of fungal disease that has recently been considered a distinct clinicopathologic entity. Other forms of fungal sinusitis include acute-fulminant (invasive), chronic indolent (invasive) and mycetoma (non-invasive). Objectives were to assess the presentation and to describe the diagnostic techniques for allergic fungal sinusitis in our setup. Descriptive study was conducted in the Department of ENT and Head & Neck Surgery, Khyber Medical College and Khyber Teaching Hospital, Peshawar from January 2002 to April 2008. Twenty-three cases of allergic fungal sinusitis (ASF) were selected for the study. Data like, name, age, sex, address, clinical features, labs (Eosinophil count) and imaging studies (CT and/or MRI) were recorded, including the pre- and postoperative treatment, operative findings and postoperative results, recurrence of disease were also recorded. Surgical procedures were performed on all cases followed by medical treatment. Study revealed that AFS is a disease of younger age, mainly occurring in 2nd & 3rd decade of life, with male to female ratio 1:1.3. Allergic rhinitis (91%) and nasal polyposis (91%) were important associated factors. Nasal obstruction (96%), nasal discharge (91%), post-nasal discharge (87%) and unilateral multi sinus extension were important clinical features. Increased eosinophil count and increased IgE level was found in 78% cases. Histopathological analysis showed fungal hyphae in all cases and aspergillus was predominant organism on culture. Orbital erosion was seen in 78% and skull base erosion was observed in 9%. Recurrence of disease was seen in nine cases. Allergic fungal sinusitis (AFS) is a disease of young immunocompetent adults. Nasal obstruction, nasal discharge, nasal allergy and proptosis were the most common presentations. Initial diagnosis of allergic fungal sinusitis requires high index of suspicion in patients presenting with chronic rhinosinusitis, such cases should be

  8. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors.

    Science.gov (United States)

    Ray, Monalisa; Ray, Asit; Dash, Swagatika; Mishra, Abtar; Achary, K Gopinath; Nayak, Sanghamitra; Singh, Shikha

    2017-01-15

    Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Performance of hemicellulolytic enzymes in culture supernatants from a wide range of fungi on insoluble wheat straw and corn fiber fractions

    NARCIS (Netherlands)

    Gool, van M.P.; Toth, K.; Schols, H.A.; Szakacs, G.; Gruppen, H.

    2012-01-01

    Filamentous fungi are a good source of hemicellulolytic enzymes for biomass degradation. Enzyme preparations were obtained as culture supernatants from 78 fungal isolates grown on wheat straw as carbon source. These enzyme preparations were utilized in the hydrolysis of insoluble wheat straw and

  10. Production of fungal chitosan from date wastes and its application as a biopreservative for minced meat.

    Science.gov (United States)

    Tayel, Ahmed A; Ibrahim, Sami I A; Al-Saman, Mahmoud A; Moussa, Shaaban H

    2014-08-01

    Raw and processed meat contaminated with pathogenic microorganisms is a continuing worldwide problem facing health and industry overseers. Fungal chitosan was extracted, purified and characterized from Aspergillus brasiliensis (niger) ATCC 16404 grown in date syrup (dips) and applied as a potential meat biopreservative. The main features of produced chitosan were a deacetylation degree of 81.3%, a molecular weight of 31,000Da, 96% solubility in 1% acetic acid solution and a harmonized IR-spectrum to standard commercial chitosan. The application of fungal chitosan, as a natural and safe biopreservative for minced meat, was conducted in comparison with potassium sorbate, as a commercial meat preservative. Treated meat samples with 0.02% chitosan was the least trials in microbial contents, i.e. total count, coliforms, β-glucuronidase-positive Escherichia coli, Enterobacteriaceae, yeasts and molds, Staphylococcus aureus and coagulase positive staphylococci. The antimicrobial activity of fungal chitosan was considerably greater than that of potassium sorbate or their combination at 0.01% from each. Sensory characteristics, e.g. color, odor and texture, of treated meat with chitosan, were higher than those of control and potassium sorbate treated samples. Fungal chitosan, however, could be recommended as a powerful, natural and eco-friendly alternative for meat preservation and overall quality maintenance. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Fungal phyA gene expressed in potato leaves produces active and stable phytase.

    Science.gov (United States)

    Ullah, Abul H J; Sethumadhavan, Kandan; Mullaney, Edward J; Ziegelhoffer, Thomas; Austin-Phillips, Sandra

    2003-06-27

    Fungal phyA gene from Aspergillus ficuum (niger) was cloned and expressed in potato leaves. The recombinant enzyme was stable and catalytically active. The expressed protein in the leaves of the dicotyledonous plant retained most physical and catalytic properties of the benchmark A. ficuum phytase. The expressed enzyme was, however, 15% less glycosylated than the native phytase. The usual bi-hump pH optima profile, which is characteristic of the fungal phytase, was altered; however, the pH optimum at 5.0 was unchanged for phytate and at 4.0 for synthetic substrate p-nitrophenyl phosphate. The temperature was, however, unchanged. The expressed phytase was found to be as sensitive as the native enzyme to the inhibitory action of pseudo substrate, myo-inositol hexasulfate, while losing about 90% of the activity at 20 microM inhibitor concentration. Similar to the benchmark phytase, the expressed phytase in leaves was completely inactivated by Arg modifier phenylglyoxal at 60 nM. In addition, the expressed phytase in the leaves was inhibited by antibody raised against a 20-mer internal peptide, which is present on the surface of the molecule as shown by the X-ray deduced 3D structure of fungal phytase. Taken together, the biochemical evidences indicate that fungal phytase when cloned and expressed in potato leaves produces a stable and active biocatalyst. 'Biofarming,' therefore, is an alternative way to produce functional hydrolytic enzymes as exemplified by the expression of A. ficuum (niger) phyA gene in potato leaf.

  12. Modified kinetics of enzymes interacting with nanoparticles

    Science.gov (United States)

    Díaz, Sebastián. A.; Breger, Joyce C.; Malanoski, Anthony; Claussen, Jonathan C.; Walper, Scott A.; Ancona, Mario G.; Brown, Carl W.; Stewart, Michael H.; Oh, Eunkeu; Susumu, Kimihiro; Medintz, Igor L.

    2015-08-01

    Enzymes are important players in multiple applications, be it bioremediation, biosynthesis, or as reporters. The business of catalysis and inhibition of enzymes is a multibillion dollar industry and understanding the kinetics of commercial enzymes can have a large impact on how these systems are optimized. Recent advances in nanotechnology have opened up the field of nanoparticle (NP) and enzyme conjugates and two principal architectures for NP conjugate systems have been developed. In the first example the enzyme is bound to the NP in a persistent manner, here we find that key factors such as directed enzyme conjugation allow for enhanced kinetics. Through controlled comparative experiments we begin to tease out specific mechanisms that may account for the enhancement. The second system is based on dynamic interactions of the enzymes with the NP. The enzyme substrate is bound to the NP and the enzyme is free in solution. Here again we find that there are many variables , such as substrate positioning and NP selection, that modify the kinetics.

  13. Expanding Fungal Diets Through Synthetic Algal-Fungal Mutualism

    Science.gov (United States)

    Sharma, Alaisha; Galazka, Jonathan (Editor)

    2015-01-01

    Fungi can synthesize numerous molecules with important properties, and could be valuable production platforms for space exploration and colonization. However, as heterotrophs, fungi require reduced carbon. This limits their efficiency in locations such as Mars, where reduced carbon is scarce. We propose a system to induce mutualistic symbiosis between the green algae Chlamydomonas reinhardtii and the filamentous fungi Neurospora crassa. This arrangement would mimic natural algal-fungal relationships found in lichens, but have added advantages including increased growth rate and genetic tractability. N. crassa would metabolize citrate (C6H5O7 (sup -3)) and release carbon dioxide (CO2) that C. reinhardtii would assimilate into organic sugars during photosynthesis. C. reinhardtii would metabolize nitrate (NO3-) and release ammonia (NH3) as a nitrogen source for N. crassa. A N. crassa mutant incapable of reducing nitrate will be used to force this interaction. This system eliminates the need to directly supply its participants with carbon dioxide and ammonia. Furthermore, the release of oxygen by C. reinhardtii via photosynthesis would enable N. crassa to respire. We hope to eventually create a system closer to lichen, in which the algae transfers not only nitrogen but reduced carbon, as organic sugars, to the fungus for growth and production of valuable compounds.

  14. Fundamentals of enzyme kinetics.

    Science.gov (United States)

    Seibert, Eleanore; Tracy, Timothy S

    2014-01-01

    This chapter provides a general introduction to the kinetics of enzyme-catalyzed reactions, with a focus on drug-metabolizing enzymes. A prerequisite to understanding enzyme kinetics is having a clear grasp of the meanings of "enzyme" and "catalysis." Catalysts are reagents that can increase the rate of a chemical reaction without being consumed in the reaction. Enzymes are proteins that form a subset of catalysts. These concepts are further explored below.

  15. Industrial enzyme applications.

    Science.gov (United States)

    Kirk, Ole; Borchert, Torben Vedel; Fuglsang, Claus Crone

    2002-08-01

    The effective catalytic properties of enzymes have already promoted their introduction into several industrial products and processes. Recent developments in biotechnology, particularly in areas such as protein engineering and directed evolution, have provided important tools for the efficient development of new enzymes. This has resulted in the development of enzymes with improved properties for established technical applications and in the production of new enzymes tailor-made for entirely new areas of application where enzymes have not previously been used.

  16. Commercial Buildings Characteristics, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  17. Novel fungal proteins in the chalkbrood infection of honey bee larvae

    DEFF Research Database (Denmark)

    Roth, Doris; Jensen, Annette Bruun; Grell, Morten Nedergaard

    2009-01-01

    . Here we investigate the interaction between the honey bee and its fungal pathogen Ascosphaera apis, the causative agent of chalkbrood, by identifying enzymes secreted by bee and fungus during different timepoints of infection. Upon testing A. apis-infected larvae for enzyme activity, the larvae...... the trappants are sequenced and annotated, selected genes are further described. As a result, we will deepen the understanding of chalkbrood, one of the main honey bee pests with relevant impact on the economy, among others due to the essential role of bees in pollination....

  18. Purification, characterization of phytase enzyme from Lactobacillus ...

    African Journals Online (AJOL)

    However, the ones with microbial origin are the most promising for commercial uses and biotechnological applications. In this study, phytase enzyme isolation from Lactobacillus spp. ATCC strain and its characterization was carried out. Phytase production from bacterial strains was determined by zone production formed ...

  19. PNNL Fungal Biotechnology Core DOE-OBP Project

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Scott E.; Bruno, Kenneth S.; Butcher, Mark G.; Collett, James R.; Culley, David E.; Dai, Ziyu; Magnuson, Jon K.; Panisko, Ellen A.

    2009-11-30

    In 2009, we continued to address barriers to fungal fermentation in the primary areas of morphology control, genomics, proteomics, fungal hyperproductivity, biomass-to-products via fungal based consolidated bioprocesses, and filamentous fungal ethanol. “Alternative renewable fuels from fungi” was added as a new subtask. Plans were also made to launch a new advanced strain development subtask in FY2010.

  20. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  1. Hydrolysis of Brewers' Spent Grain by Carbohydrate Degrading Enzymes

    NARCIS (Netherlands)

    Forssell, P.; Kontkanen, H.; Schols, H.A.; Hinz, S.W.A.; Eijsink, V.G.H.; Treimo, J.; Robertson, J.A.; Waldron, K.W.; Faulds, C.B.; Buchert, J.

    2008-01-01

    In this work four commercial cellulase-hemicellulase mixtures with different activity profiles were used for solubilization of carbohydrates from brewers' spent grain (BSG). After the enzyme treatment, both the solubilised fraction and the unhydrolysed residue were characterized. Treatment with

  2. Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE.

    Science.gov (United States)

    Gao, Guanpeng; Yin, Danhan; Chen, Shengju; Xia, Fei; Yang, Jie; Li, Qing; Wang, Wei

    2012-01-01

    Fungi and fungal community play important roles in the soil ecosystem, and the diversity of fungal community could act as natural antagonists of various plant pathogens. Biological control is a promising method to protect plants as chemical pesticides may cause environment pollution. Pseudomonas fluorescens 2P24 had strong inhibitory on Rastonia solanacearum, Fusarium oxysporum and Rhizoctonia solani, etc., and was isolated from the wheat rhizosphere take-all decline soils in Shandong province, China. However, its potential effect on soil fungal community was still unknown. In this study, the gfp-labeled P. fluorescens 2P24 was inoculated into cucumber rhizosphere, and the survival of 2P24 was monitored weekly. The amount decreased from 10(8) to 10(5) CFU/g dry soils. The effect of 2P24 on soil fungal community in cucumber rhizosphere was investigated using T-RFLP and DGGE. In T-RFLP analysis, principle component analysis showed that the soil fungal community was greatly influenced at first, digested with restriction enzyme Hinf I and Taq I. However, there was little difference as digested by different enzymes. DGGE results demonstrated that the soil fungal community was greatly shocked at the beginning, but it recovered slowly with the decline of P. fluorescens 2P24. Four weeks later, there was little difference between the treatment and control. Generally speaking, the effect of P. fluorescens 2P24 on soil fungal community in cucumber rhizosphere was just transient.

  3. Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE.

    Directory of Open Access Journals (Sweden)

    Guanpeng Gao

    Full Text Available Fungi and fungal community play important roles in the soil ecosystem, and the diversity of fungal community could act as natural antagonists of various plant pathogens. Biological control is a promising method to protect plants as chemical pesticides may cause environment pollution. Pseudomonas fluorescens 2P24 had strong inhibitory on Rastonia solanacearum, Fusarium oxysporum and Rhizoctonia solani, etc., and was isolated from the wheat rhizosphere take-all decline soils in Shandong province, China. However, its potential effect on soil fungal community was still unknown. In this study, the gfp-labeled P. fluorescens 2P24 was inoculated into cucumber rhizosphere, and the survival of 2P24 was monitored weekly. The amount decreased from 10(8 to 10(5 CFU/g dry soils. The effect of 2P24 on soil fungal community in cucumber rhizosphere was investigated using T-RFLP and DGGE. In T-RFLP analysis, principle component analysis showed that the soil fungal community was greatly influenced at first, digested with restriction enzyme Hinf I and Taq I. However, there was little difference as digested by different enzymes. DGGE results demonstrated that the soil fungal community was greatly shocked at the beginning, but it recovered slowly with the decline of P. fluorescens 2P24. Four weeks later, there was little difference between the treatment and control. Generally speaking, the effect of P. fluorescens 2P24 on soil fungal community in cucumber rhizosphere was just transient.

  4. Implications of variation in social-ecological systems for the development of U.S. fungal management policy

    Science.gov (United States)

    Elizabeth S. Barron; Marla R. Emery

    2012-01-01

    Public lands fungal management in the United States developed in direct response to commercial harvesting in the Pacific Northwest (PNW) in the 1980s. In the early 2000s, concerns over declining morel mushroom abundance in national parks in the greater Washington, DC, region (NCR) led to the creation of harvest limits and stimulated research on the social-ecological...

  5. The structure and function of fungal cells

    Science.gov (United States)

    Nozawa, Y.

    1984-01-01

    The structure and function of fungal cell walls were studied with particular emphasis on dermatophytes. Extraction, isolation, analysis, and observation of the cell wall structure and function were performed. The structure is described microscopically and chemically.

  6. Fungal keratitis - improving diagnostics by confocal microscopy

    DEFF Research Database (Denmark)

    Nielsen, Esben; Heegaard, S; Prause, J U

    2013-01-01

    Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological...... analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience...... with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12...

  7. HIV/AIDS and Fungal Infections

    Science.gov (United States)

    ... you for a fungal infection. Where you live (geography) matters. Some disease-causing fungi are more common ... which occur in sub-Saharan Africa. 8 In Latin America, histoplasmosis is one of the most common opportunistic ...

  8. Fungal rhino sinusitisin in tehran, iran

    NARCIS (Netherlands)

    Nazeri, M.; Hashemi, S.J.; Ardehali, M.; Rezaei, S.; Seyedmousavi, S.; Zareei, M.; Hosseinjani, E.

    2015-01-01

    BACKGROUND: Fungal rhino sinusitis (FRS) is an important infection of para nasal sinuses, which encompasses two main categories; invasive and noninvasive forms according to histopathological findings. Aspergillus spp are the most common species isolated from noninvasive form, while Mucorales are

  9. Foreword: Special issue on fungal grapevine diseases

    Science.gov (United States)

    An impressively large proportion of fungicides applied in European, North American and Australian agriculture has been used to manage grapevine powdery mildew (Erysiphe necator), grapevine downy mildew (Plasmopara viticola), and botrytis bunch rot (Botrytis cinerea). These fungal and oomycetous plan...

  10. Organ Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Patients Medications that Weaken Your Immune System Outbreaks Rhizopus Investigation CDC at Work Global Fungal Diseases Cryptococcal ... January 25, 2017 Content source: Centers for Disease Control and Prevention National Center for Emerging and Zoonotic ...

  11. Stem Cell Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Patients Medications that Weaken Your Immune System Outbreaks Rhizopus Investigation CDC at Work Global Fungal Diseases Cryptococcal ... January 25, 2017 Content source: Centers for Disease Control and Prevention National Center for Emerging and Zoonotic ...

  12. Radiation sterilization of enzyme hybrids with biodegradable polymers

    Science.gov (United States)

    Furuta, Masakazu; Oka, Masahito; Hayashi, Toshio

    2002-03-01

    Ionizing radiations, which have already been utilized for the sterilization of medical supplies as well as gas fumigation, should be the final candidate to decontaminate "hybrid" biomaterials containing bio-active materials including enzymes because irradiation induces neither heat nor substances affecting the quality of the materials and our health. In order to check the feasibility of 60Co-gamma rays on these materials, we selected commercial proteases including papain and bromelain hybridized with commercial activated chitosan beads and demonstrated that these enzyme-hybrids suspended in water showed the significant radiation durability of more than twice as much as free enzyme solution at 25-kGy irradiation. Enhanced thermal and storage stability of the enzyme hybrids were not affected by the same dose level of irradiation, either, indicating that commercial irradiation sterilization method is applicable to enzyme hybrids without modification.

  13. Radiation sterilization of enzyme hybrids with biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu E-mail: mfuruta@riast.osakafu-u.ac.jp; Oka, Masahito; Hayashi, Toshio

    2002-03-01

    Ionizing radiations, which have already been utilized for the sterilization of medical supplies as well as gas fumigation, should be the final candidate to decontaminate 'hybrid' biomaterials containing bio-active materials including enzymes because irradiation induces neither heat nor substances affecting the quality of the materials and our health. In order to check the feasibility of {sup 60}Co-gamma rays on these materials, we selected commercial proteases including papain and bromelain hybridized with commercial activated chitosan beads and demonstrated that these enzyme-hybrids suspended in water showed the significant radiation durability of more than twice as much as free enzyme solution at 25-kGy irradiation. Enhanced thermal and storage stability of the enzyme hybrids were not affected by the same dose level of irradiation, either, indicating that commercial irradiation sterilization method is applicable to enzyme hybrids without modification.

  14. Fungal peroxisomes as biosynthetic organelles.

    Science.gov (United States)

    Stehlik, Thorsten; Sandrock, Björn; Ast, Julia; Freitag, Johannes

    2014-12-01

    Peroxisomes are nearly ubiquitous single-membrane organelles harboring multiple metabolic pathways beside their prominent role in the β-oxidation of fatty acids. Here we review the diverse metabolic functions of peroxisomes in fungi. A variety of fungal metabolites are at least partially synthesized inside peroxisomes. These include the essential co-factor biotin but also different types of secondary metabolites. Peroxisomal metabolites are often derived from acyl-CoA esters for example β-oxidation intermediates. In several ascomycetes a subtype of peroxisomes has been identified that is metabolically inactive but is required to plug the septal pores of wounded hyphae. Thus, peroxisomes are versatile organelles that can adapt their function to the life style of an organism. This remarkable variability suggests that the full extent of the biosynthetic capacity of peroxisomes is still elusive. Moreover, in fungi peroxisomes are non-essential under laboratory conditions making them attractive organelles for biotechnological approaches and the design of novel metabolic pathways in customized peroxisomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Genomics of Fungal Disease Resistance in Tomato

    OpenAIRE

    Panthee, Dilip R.; Chen, Feng

    2010-01-01

    Tomato (Solanum lycopersicum) is an important vegetable crop worldwide. Often times, its production is hindered by fungal diseases. Important fungal diseases limiting tomato production are late blight, caused by Phytophthora infestans, early blight, caused by Alternaria solanii, and septoria leaf spot, caused by Septoria lycopersici, fusarium wilt caused by Fusarium oxysporium fsp. oxysporium, and verticilium wilt caused by Verticilium dahlea. The Phytophthora infestans is the same fungus tha...

  16. Fungal Endophthalmitis Associated with Compounded Products

    OpenAIRE

    Mikosz, Christina A.; Smith, Rachel M.; Kim, Moon; Tyson, Clara; Lee, Ellen H.; Adams, Eleanor; Straif-Bourgeois, Susanne; Sowadsky, Rick; Arroyo, Shannon; Grant-Greene, Yoran; Duran, Julie; Vasquez, Yvonne; Robinson, Byron F.; Harris, Julie R.; Lockhart, Shawn R.

    2014-01-01

    Fungal endophthalmitis is a rare but serious infection. In March 2012, several cases of probable and laboratory-confirmed fungal endophthalmitis occurring after invasive ocular procedures were reported nationwide. We identified 47 cases in 9 states: 21 patients had been exposed to the intraocular dye Brilliant Blue G (BBG) during retinal surgery, and the other 26 had received an intravitreal injection containing triamcinolone acetonide. Both drugs were produced by Franck’s Compounding Lab (Oc...

  17. Structure and biological functions of fungal cerebrosides

    Directory of Open Access Journals (Sweden)

    Barreto-Bergter Eliana

    2004-01-01

    Full Text Available Ceramide monohexosides (CMHs, cerebrosides are glycosphingolipids composed of a hydrophobic ceramide linked to one sugar unit. In fungal cells, CMHs are very conserved molecules consisting of a ceramide moiety containing 9-methyl-4,8-sphingadienine in amidic linkage to 2-hydroxyoctadecanoic or 2-hydroxyhexadecanoic acids, and a carbohydrate portion consisting of one residue of glucose or galactose. 9-Methyl 4,8-sphingadienine-containing ceramides are usually glycosylated to form fungal cerebrosides, but the recent description of a ceramide dihexoside (CDH presenting phytosphingosine in Magnaporthe grisea suggests the existence of alternative pathways of ceramide glycosylation in fungal cells. Along with their unique structural characteristics, fungal CMHs have a peculiar subcellular distribution and striking biological properties. In Pseudallescheria boydii, Candida albicans, Cryptococcus neoformans, Aspergillus nidulans, A. fumigatus, and Schizophyllum commune, CMHs are apparently involved in morphological transitions and fungal growth. The elucidation of structural and functional aspects of fungal cerebrosides may therefore contribute to the design of new antifungal agents inhibiting growth and differentiation of pathogenic species.

  18. Fungal keratitis - improving diagnostics by confocal microscopy.

    Science.gov (United States)

    Nielsen, E; Heegaard, S; Prause, J U; Ivarsen, A; Mortensen, K L; Hjortdal, J

    2013-09-01

    Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12-69), 6 out of 17 (35%) cultures were positive and a total of 6/7 (86%) IVCM scans were positive. Three different categories of IVCM results for the grading of diagnostic certainty were formed. IVCM is a valuable tool for diagnosing filamentous fungal keratitis. In order to improve the reliability of IVCM, we suggest implementing a simple and clinically applicable grading system for aiding the interpretation of IVCM images of filamentous fungal keratitis.

  19. Fungal Keratitis - Improving Diagnostics by Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Esben Nielsen

    2013-12-01

    Full Text Available Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12-69, 6 out of 17 (35% cultures were positive and a total of 6/7 (86% IVCM scans were positive. Three different categories of IVCM results for the grading of diagnostic certainty were formed. Conclusion: IVCM is a valuable tool for diagnosing filamentous fungal keratitis. In order to improve the reliability of IVCM, we suggest implementing a simple and clinically applicable grading system for aiding the interpretation of IVCM images of filamentous fungal keratitis.

  20. Estimated burden of fungal infections in Germany.

    Science.gov (United States)

    Ruhnke, Markus; Groll, Andreas H; Mayser, Peter; Ullmann, Andrew J; Mendling, Werner; Hof, Herbert; Denning, David W

    2015-10-01

    In the late 1980's, the incidence of invasive fungal diseases (IFDs) in Germany was estimated with 36.000 IFDs per year. The current number of fungal infections (FI) occurring each year in Germany is still not known. In the actual analysis, data on incidence of fungal infections in various patients groups at risk for FI were calculated and mostly estimated from various (mostly national) resources. According to the very heterogenous data resources robust data or statistics could not be obtained but preliminary estimations could be made and compared with data from other areas in the world using a deterministic model that has consistently been applied in many countries by the LIFE program ( www.LIFE-worldwide.org). In 2012, of the 80.52 million population (adults 64.47 million; 41.14 million female, 39.38 million male), 20% are children (0-14 years) and 16% of population are ≥65 years old. Using local data and literature estimates of the incidence or prevalence of fungal infections, about 9.6 million (12%) people in Germany suffer from a fungal infection each year. These figures are dominated (95%) by fungal skin disease and recurrent vulvo-vaginal candidosis. In general, considerable uncertainty surrounds the total numbers because IFDs do not belong to the list of reportable infectious diseases in Germany and most patients were not hospitalised because of the IFD but a distinct underlying disease. © 2015 Blackwell Verlag GmbH.

  1. Trametes suaveolens as ligninolytic enzyme producer

    Directory of Open Access Journals (Sweden)

    Knežević Aleksandar

    2013-01-01

    Full Text Available Species of the genus Trametes represent one of the most efficient lignin-degraders which can be attributed to a well developed ligninolytic enzyme system. Current trends are screening of ability of new species to produce these enzymes, as well as the optimization of conditions for their overproduction. Therefore, the aim of the study was to evaluate the potential of T. suaveolens to synthesize laccase and Mn-oxidizing peroxidases during fermentation of the selected plant raw materials. Level of enzyme activities was measured on 7, 10 and 14th day of submersion, as well as the solid-state fermentation of wheat straw and oak sawdust in the presence of NH4NO3 in previously determined optimal nitrogen concentration of 25 mM. The enzyme activity was determined spectrophotometrically using ABTS and phenol red as the substrates. The highest level of laccase activity (1087.1 U/L was noted after 7 days of wheat straw solid-state fermentation, while during the submerged cultivation the production of the enzyme was not noted. Submerged cultivation in oak sawdust-enriched medium was the optimal for activity of Mn-dependent peroxidase (1767.7 U/L on day 14 and Mn-independent peroxidase (1113.7 U/L on day 7. Introduction of T. suaveolens to produce ligninolytic enzyme represented the base for further study, as well as the determination of relation between enzyme activity and rate of lignin degradation. It could lead to greater possibility of fungal species selection with high delignification capacity, which could take participation in sustainable production of food, feed, fibres, and energy, environmentally friendly pollution prevention, and bioremediation.

  2. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    Directory of Open Access Journals (Sweden)

    Cedar N Hesse

    2015-04-01

    Full Text Available Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 75,000 carbohydrate active enzyme transcript sequences (CAZymes in each metatranscriptome. Parallel ribosomal RNA surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.

  3. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests.

    Science.gov (United States)

    Hesse, Cedar N; Mueller, Rebecca C; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D; Zak, Donald R; Kuske, Cheryl R

    2015-01-01

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.

  4. Transcriptional profiling of a yeast colony provides new insight into the heterogeneity of multicellular fungal communities.

    Directory of Open Access Journals (Sweden)

    Ana Traven

    Full Text Available Understanding multicellular fungal structures is important for designing better strategies against human fungal pathogens. For example, the ability to form multicellular biofilms is a key virulence property of the yeast Candida albicans. C. albicans biofilms form on indwelling medical devices and are drug resistant, causing serious infections in hospital settings. Multicellular fungal communities are heterogeneous, consisting of cells experiencing different environments. Heterogeneity is likely important for the phenotypic characteristics of communities, yet it is poorly understood. Here we used colonies of the yeast Saccharomyces cerevisiae as a model fungal multicellular structure. We fractionated the outside colony layers from the cells in the center by FACS, using a Cit1-GFP marker expressed exclusively on the outside. Transcriptomics analysis of the two subpopulations revealed that the outside colony layers are actively growing by fermentative metabolism, while the cells residing on the inside are in a resting state and experience changes to mitochondrial activity. Our data shows several parallels with C. albicans biofilms providing insight into the contributions of heterogeneity to biofilm phenotypes. Hallmarks of C. albicans biofilms - the expression of ribosome and translation functions and activation of glycolysis and ergosterol biosynthesis occur on the outside of colonies, while expression of genes associates with sulfur assimilation is observed in the colony center. Cell wall restructuring occurs in biofilms, and cell wall functions are enriched in both fractions: the outside cells display enrichment of cell wall biosynthesis enzymes and cell wall proteins, while the inside cells express cell wall degrading enzymes. Our study also suggests that noncoding transcription and posttranscriptional mRNA regulation play important roles during growth of yeast in colonies, setting the scene for investigating these pathways in the development

  5. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  6. On commercial media bias

    OpenAIRE

    Germano, Fabrizio

    2008-01-01

    Within the spokes model of Chen and Riordan (2007) that allows for non-localized competition among arbitrary numbers of media outlets, we quantify the effect of concentration of ownership on quality and bias of media content. A main result shows that too few commercial outlets, or better, too few separate owners of commercial outlets can lead to substantial bias in equilibrium. Increasing the number of outlets (commercial and non-commercial) tends to bring down this bias; but the strongest ef...

  7. An evaluation of antifungal agents for the treatment of fungal contamination in indoor air environments.

    Science.gov (United States)

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-06-02

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®), 70% ethanol, vinegar (4.0%-4.2% acetic acid), and a plant-derived compound (tea tree (Melaleuca alternifolia) oil) tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum), which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%-4.2% acetic acid) was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to inhibit the growth

  8. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    Directory of Open Access Journals (Sweden)

    Senthaamarai Rogawansamy

    2015-06-01

    Full Text Available Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®, 70% ethanol, vinegar (4.0%-4.2% acetic acid, and a plant-derived compound (tea tree (Melaleuca alternifolia oil tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum, which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%–4.2% acetic acid was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to

  9. Structure of the dimeric N-glycosylated form of fungal β-N-acetylhexosaminidase revealed by computer modeling, vibrational spectroscopy, and biochemical studies

    Directory of Open Access Journals (Sweden)

    Sklenář Jan

    2007-05-01

    Full Text Available Abstract Background Fungal β-N-acetylhexosaminidases catalyze the hydrolysis of chitobiose into its constituent monosaccharides. These enzymes are physiologically important during the life cycle of the fungus for the formation of septa, germ tubes and fruit-bodies. Crystal structures are known for two monomeric bacterial enzymes and the dimeric human lysosomal β-N-acetylhexosaminidase. The fungal β-N-acetylhexosaminidases are robust enzymes commonly used in chemoenzymatic syntheses of oligosaccharides. The enzyme from Aspergillus oryzae was purified and its sequence was determined. Results The complete primary structure of the fungal β-N-acetylhexosaminidase from Aspergillus oryzae CCF1066 was used to construct molecular models of the catalytic subunit of the enzyme, the enzyme dimer, and the N-glycosylated dimer. Experimental data were obtained from infrared and Raman spectroscopy, and biochemical studies of the native and deglycosylated enzyme, and are in good agreement with the models. Enzyme deglycosylated under native conditions displays identical kinetic parameters but is significantly less stable in acidic conditions, consistent with model predictions. The molecular model of the deglycosylated enzyme was solvated and a molecular dynamics simulation was run over 20 ns. The molecular model is able to bind the natural substrate – chitobiose with a stable value of binding energy during the molecular dynamics simulation. Conclusion Whereas the intracellular bacterial β-N-acetylhexosaminidases are monomeric, the extracellular secreted enzymes of fungi and humans occur as dimers. Dimerization of the fungal β-N-acetylhexosaminidase appears to be a reversible process that is strictly pH dependent. Oligosaccharide moieties may also participate in the dimerization process that might represent a unique feature of the exclusively extracellular enzymes. Deglycosylation had only limited effect on enzyme activity, but it significantly affected

  10. Protection by fungal starters against growth and secondary metabolite production of fungal spoilers of cheese.

    Science.gov (United States)

    Nielsen, M S; Frisvad, J C; Nielsen, P V

    1998-06-30

    The influence of fungal starter cultures on growth and secondary metabolite production of fungal contaminants associated with cheese was studied on laboratory media and Camembert cheese. Isolates of the species Penicillium nalgiovense, P. camemberti, P. roqueforti and Geotrichum candidum were used as fungal starters. The species P. commune, P. caseifulvum, P. verrucosum, P. discolor, P. solitum, P. coprophilum and Aspergillus versicolor were selected as contaminants. The fungal starters showed different competitive ability on laboratory media and Camembert cheese. The presence of the Penicillium species, especially P. nalgiovense, showed an inhibitory effect on the growth of the fungal contaminants on laboratory media. G. candidum caused a significant inhibition of the fungal contaminants on Camembert cheese. The results indicate that G. candidum plays an important role in competition with undesirable microorganisms in mould fermented cheeses. Among the starters, P. nalgiovense caused the largest reduction in secondary metabolite production of the fungal contaminants on the laboratory medium. On Camembert cheese no significant changes in metabolite production of the fungal contaminants was observed in the presence of the starters.

  11. Etiological Analysis of Fungal Keratitis and Rapid Identification of Predominant Fungal Pathogens.

    Science.gov (United States)

    He, Dan; Hao, Jilong; Gao, Song; Wan, Xue; Wang, Wanting; Shan, Qiushi; Wang, Li

    2016-02-01

    Fungal keratitis is a worldwide-distributed refractory and potentially blinding ocular infection caused by various fungi. It is necessary to investigate the etiological and epidemiological characteristics of this disease and establish a rapid and specific pathogenic identification method. Here, we isolated and identified fungal pathogens of 275 patients with presumed fungal keratitis from Jilin Province, China, and conducted statistical analyses of epidemiological information. The positive rate of fungal culture was 72.0 %. Fusarium sp. was the most common genus among 210 fungal isolates. The predominant species were Fusarium solani, Aspergillus fumigatus, and Candida glabrata, which accounted for over 50 % of the isolated organisms. Corneal trauma and previous use of drugs were the most important predisposing factors. In addition, a multiplex polymerase chain reaction (PCR) was designed with species-specific primers of the three species that could identify them with amplicons of approximately 330 bp from F. solani, 275 bp from A. fumigatus, and 230 bp from C. glabrata. Additionally, PCR with fungal universal primers and multiplex PCR were performed using DNA prepared by an improved DNA extraction method from corneal scrapings. With this method, fungal pathogens from corneal scrapings could be specifically and rapidly identified within 8 h. The culture-independent rapid identification of corneal scrapings may have great significance for the early diagnosis and treatment of fungal keratitis.

  12. Burden of serious fungal infections in Guatemala.

    Science.gov (United States)

    Medina, N; Samayoa, B; Lau-Bonilla, D; Denning, D W; Herrera, R; Mercado, D; Guzmán, B; Pérez, J C; Arathoon, E

    2017-06-01

    Guatemala is a developing country in Central America with a high burden of HIV and endemic fungal infections; we attempted to estimate the burden of serious fungal infections for the country. A full literature search was done to identify epidemiology papers reporting fungal infections from Guatemala. We used specific populations at risk and fungal infection frequencies in the population to estimate national rates. The population of Guatemala in 2013 was 15.4 million; 40% were younger than 15 and 6.2% older than 60. There are an estimated 53,000 adults with HIV infection, in 2015, most presenting late. The estimated cases of opportunistic fungal infections were: 705 cases of disseminated histoplasmosis, 408 cases of cryptococcal meningitis, 816 cases of Pneumocystis pneumonia, 16,695 cases of oral candidiasis, and 4,505 cases of esophageal candidiasis. In the general population, an estimated 5,568 adult asthmatics have allergic bronchopulmonary aspergillosis (ABPA) based on a 2.42% prevalence of asthma and a 2.5% ABPA proportion. Amongst 2,452 pulmonary tuberculosis patients, we estimated a prevalence of 495 for chronic pulmonary aspergillosis in this group, and 1,484 for all conditions. An estimated 232,357 cases of recurrent vulvovaginal candidiasis is likely. Overall, 1.7% of the population are affected by these conditions. The true fungal infection burden in Guatemala is unknown. Tools and training for improved diagnosis are needed. Additional research on prevalence is needed to employ public health measures towards treatment and improving the reported data of fungal diseases.

  13. Flow Cytometry Is a Powerful Tool for Assessment of the Viability of Fungal Conidia in Metalworking Fluids.

    Science.gov (United States)

    Vanhauteghem, D; Demeyere, K; Callaert, N; Boelaert, A; Haesaert, G; Audenaert, K; Meyer, E

    2017-08-15

    Fungal contamination of metalworking fluids (MWF) is a dual problem in automated processing plants because resulting fungal biofilms obstruct cutting, drilling, and polishing machines. Moreover, some fungal species of MWF comprise pathogens such as Fusarium solani Therefore, the development of an accurate analytical tool to evaluate conidial viability in MWF is important. We developed a flow cytometric method to measure fungal viability in MWF using F. solani as the model organism. To validate this method, viable and dead conidia were mixed in several proportions and flow was cytometrically analyzed. Subsequently, we assessed the fungicidal activity of two commercial MWF using flow cytometry (FCM) and compared it with microscopic analyses and plating experiments. We evaluated the fungal growth in both MWF after 7 days using quantitative PCR (qPCR) to assess the predictive value of FCM. Our results showed that FCM distinguishes live from dead conidia as early as 5 h after exposure to MWF, whereas the microscopic germination approach detected conidial viability much later and less accurately. At 24 h, microscopic analyses of germinating conidia and live/dead analyses by FCM correlated well, although the former consistently underestimated the proportion of viable conidia. In addition, the reproducibility and sensitivity of the flow cytometric method were high and allowed assessment of the fungicidal properties of two commercial MWF. Importantly, the obtained flow cytometric results on viability of F. solani conidia at both early time points (5 h and 24 h) correlated well with fungal biomass measurements assessed via a qPCR methodology 7 days after the start of the experiment. IMPORTANCE This result shows the predictive power of flow cytometry (FCM) in assessing the fungicidal capacity of MWF formulations. It also implies that FCM can be implemented as a rapid detection tool to estimate the viable fungal load in an industrial processing matrix (MWF). Copyright © 2017

  14. Ligninolytic enzyme activities in mycelium of some wild and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... and commercial mushrooms. Erbil Kalmış. 1, İhsan Yaşa2, Fatih Kalyoncu3*, ... ligninolytic enzyme production. Key words: Basidiomycetes, enzymatic activity, lignocellulose. INTRODUCTION ... In this study, we used mycelia that belong to 19 mushroom species. (six commercial and 13 wild) to determine ...

  15. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  16. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.

    2003-01-01

    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  17. Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation.

    Science.gov (United States)

    Bhalla, Tek Chand; Kumar, Vijay; Kumar, Virender; Thakur, Neerja; Savitri

    2018-01-30

    Nitrile metabolizing enzymes, i.e., aldoxime dehydratase, hydroxynitrile lyase, nitrilase, nitrile hydratase, and amidase, are the key catalysts in carbon nitrogen triple bond anabolism and catabolism. Over the past several years, these enzymes have drawn considerable attention as prominent biocatalysts in academia and industries because of their wide applications. Research on various aspects of these biocatalysts, i.e., sources, screening, function, purification, molecular cloning, structure, and mechanisms, has been conducted, and bioprocesses at various scales have been designed for the synthesis of myriads of useful compounds. This review is focused on the potential of nitrile metabolizing enzymes in the production of commercially important fine chemicals such as nitriles, carboxylic acids, and amides. A number of opportunities and challenges of nitrile metabolizing enzymes in bioprocess development for the production of bulk and fine chemicals are discussed.

  18. Expression of a fungal glucoamylase in transgenic rice seeds.

    Science.gov (United States)

    Xu, Xiaoli; Huang, Jinming; Fang, Jun; Lin, Chaoyang; Cheng, Jiaan; Shen, Zhicheng

    2008-10-01

    Glucoamylase, which catalyses the hydrolysis of the alpha-1,4 glycosidic bonds of starch, is an important industrial enzyme used in starch enzymatic saccharification. In this study, a glucoamylase gene from Aspergillus awamori, under the control of the promoter of seed storage protein Gt1, was introduced into rice by Agrobacterium-mediated transformation. Significant glucoamylase activity was detected specifically in the seeds but not other tissues of the transgenic rice lines. The highest enzymatic activity was found in the transgenic line Bg17-2, which was estimated to have about 500 units per gram of seeds (one unit is defined as the amount of enzyme that produces 1 micromol of reducing sugar in 1 min at 60 degrees C using soluble starch as substrate). The optimum pH for the activity of the rice produced enzyme is 5.0-5.5, and the optimum temperature is around 60 degrees C. One part of this transgenic glucoamylase rice seed flour fully converted 25 parts of corn starch pre-liquefied by an alpha-amylase also produced by a transgenic rice into glucose in 16 h incubation. This study suggests that this hydrolysis enzyme may substitute commercial fermentation enzymes for industrial starch conversion.

  19. Burden of fungal infections in Algeria.

    Science.gov (United States)

    Chekiri-Talbi, M; Denning, D W

    2017-06-01

    We report for the first time in Algeria and provide burden estimates. We searched for existing data and estimated the incidence and prevalence of fungal diseases based on the population at risk and available epidemiological data. Demographic data were derived from the National Office of Statistics (Office National des Statistiques: ONS), World Health Organization (WHO), The Joint Nations Programme on HIV/AIDS (UNAIDS) and national published reports. When no data existed, risk populations were used to estimate frequencies of fungal infections, using previously described methodology. Algeria has 40.4 million inhabitants, and probably at least 568,900 (1.41%) of Algerians have a serious fungal infection each year. Recurrent vulvovaginal candidiasis (485,000) and fungal asthma (72,000) are probably the commonest problems, as there are over 1 million adult asthmatics. Candidaemia is estimated in 2,020 people, invasive aspergillosis in 2,865 people, and intra-abdominal candidiasis in 303 people; these are the most common life-threatening problems. AIDS is uncommon, but cancer is not (45,000 new cases of cancer including 1,500 in children), nor is COPD (an estimated 317,762 patients, of whom 20.3% are admitted to hospital each year). A focus on improving the diagnosis and epidemiological data related to fungal infection is necessary in Algeria.

  20. Towards a Cancer Drug of Fungal Origin

    Science.gov (United States)

    Kornienko, Alexander; Evidente, Antonio; Vurro, Maurizio; Mathieu, Véronique; Cimmino, Alessio; Evidente, Marco; van Otterlo, Willem A. L.; Dasari, Ramesh; Lefranc, Florence; Kiss, Robert

    2015-01-01

    Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi-derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed and potential solutions that could be pursued by researchers are highlighted. PMID:25850821

  1. Toward a Cancer Drug of Fungal Origin.

    Science.gov (United States)

    Kornienko, Alexander; Evidente, Antonio; Vurro, Maurizio; Mathieu, Véronique; Cimmino, Alessio; Evidente, Marco; van Otterlo, Willem A L; Dasari, Ramesh; Lefranc, Florence; Kiss, Robert

    2015-09-01

    Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi-derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed, and potential solutions that could be pursued by researchers are highlighted. © 2015 Wiley Periodicals, Inc.

  2. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  3. Burden of serious fungal infections in Belgium.

    Science.gov (United States)

    Lagrou, Katrien; Maertens, Johan; Van Even, Ellen; Denning, David W

    2015-10-01

    We aimed to estimate the total number of serious fungal infections occurring yearly in Belgium. The number of cryptococcal infections was retrieved from the National Reference Center for Mycosis. Populations at risk and fungal infections frequencies in these populations were used to estimate incidence or prevalence of other fungal infections. The Belgian population consists of 11.10 million people. Cryptococcal meningitis is rare. In all, 15 of the 1227 newly diagnosed HIV/AIDS cases presented with Pneumocystis jirovecii pneumonia. This accounts for ±14% of total PCP cases (n = 120). The incidence of candidaemia is estimated as 5/100,000 resulting in 555 cases and 213 deaths. A total number of 675 invasive aspergillosis cases and ≥169 deaths attributed to this infection were calculated. Chronic pulmonary aspergillosis is estimated to be prevalent in 662 cases. Allergic bronchopulmonary aspergillosis cases were estimated to be 23,119 applying a 2.5% and 15% rate in adult asthma and cystic fibrosis patients respectively. Severe asthma with fungal sensitisation cases was estimated to be 30,402. There were 174,760 women with recurrent Candida vaginitis assuming a 6% rate in women aged between 15 and 50. Approximately 233,000 people of the Belgian population (2.1%) are estimated to suffer from a fungal infection on a yearly basis. © 2015 Blackwell Verlag GmbH.

  4. Fueling the Future with Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  5. CRISPR-Cas9, the new kid on the block of fungal molecular biology.

    Science.gov (United States)

    Krappmann, Sven

    2017-01-01

    Research on fungal pathogens with the aim to identify virulence determinants strictly relies on the generation of defined, recombinant strains, a task that is executed by means of a sophisticated molecular biology toolbox. Recent developments in fungal genome engineering have opened a new frontier by implementing the CRISPR-Cas9 technology, based on expression of the Cas9 endonuclease that is loaded by a single guiding RNA (sgRNA) molecule to target a defined site in the recipient genome. This novel approach has been adapted successfully to engineer fungal genomes, among them the one of the human-pathogenic mould Aspergillus fumigatus Implementation of the required components was achieved by various means that differ with respect to expression of the Cas9 enzyme and sgRNA delivery. Validation of CRISPR-Cas9-mediated mutagenesis could be executed by targeting selected candidate genes of A. fumigatus to provide a promising perspective for screening and multiplexing approaches to scrutinize the virulome of this opportunistic fungal pathogen in a comprehensive manner, such as by analyzing genetic polymorphisms or the function of gene families. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Identification and characterization of ethanol utilizing fungal flora of oil refinery contaminated soil.

    Science.gov (United States)

    Srivastava, Alok Kumar; Singh, Pratiksha; Singh, Rajesh Kumar; Kashyap, Prem Lal; Chakdar, Hillol; Kumar, Sudheer; Sharma, Arun Kumar

    2014-02-01

    The indigenous fungal flora of three oil refinery contaminated sites (Bharuch, Valsad and Vadodara) of India has been documented in the present investigation. A total seventy-five fungal morphotypes were isolated from these sites and out of them, only fifteen isolates were capable of utilizing ethanol (0-8%; v:v) as a sole source of carbon and energy for growth. Ten percent ethanol was completely lethal for the growth of all the isolated fungus. Biochemical characterization of the potent ethanol utilizing fungal isolates was studied based on substrate utilization profiles using BIOLOG phenotype microarray plates. Based on the morphological characters and Internal Transcribed Spacer region of ribosomal DNA, the fungal isolates were identified as Fusarium brachygibbosum, Fusarium equiseti, Fusarium acuminatum, Pencillium citrinum, Alternaria tenuissima, Septogloeum mori, Hypocrea lixii, Aureobasidium sp., Penicillium sp., and Fusarium sp. Intra-species genetic diversity among Fusarium sp. was evaluated by whole genome analysis with repetitive DNA sequences (ERIC, REP and BOX) based DNA fingerprinting. It was found that these fungus use alcohol dehydrogenase and acetaldehyde dehydrogenase enzymes based metabolism pathway to utilize ethanol for their growth and colonization.

  7. Potential Roles of Fungal Extracellular Vesicles during Infection

    Science.gov (United States)

    Joffe, Luna S.; Nimrichter, Leonardo

    2016-01-01

    ABSTRACT Extracellular vesicles (EVs) are produced by virtually all cell types. Within the past few years, work in this field has revealed more information about fungal EVs. Fungal EVs have been shown to carry proteins, lipids, pigments, polysaccharides, and RNA; these components are known virulence factors, a fact which supports the hypothesis that fungal EVs concentrate pathogenic determinants. Additionally, recent studies have demonstrated that fungal EVs stimulate the host immune system. In this review, putative roles of fungal EVs are discussed, including their potential as vaccination tools and their possible contribution to pathogenesis in invasive fungal diseases. PMID:27390779

  8. Production and Partial Purification of a Neutral Metalloprotease by Fungal Mixed Substrate Fermentation

    Directory of Open Access Journals (Sweden)

    Alagarsamy Sumantha

    2005-01-01

    Full Text Available Five strains of fungi belonging to Aspergillus sp. were evaluated by casein agar plate assay and a wheat bran-based solid-state fermentation for selecting a neutral protease-producing culture. Based on the results, A. oryzae NRRL 2217 was selected for further studies. Sixteen different agro-industrial residues were evaluated for their potential to serve as a substrate for neutral protease production by this fungal strain. Results showed that a combination of coconut oil cake and wheat bran in the mass ratio of 1:3 was the best substrate for enzyme production. Various process parameters influencing protease production including fermentation time, initial moisture content, and fermentation temperature were optimised. The medium was supplemented with different nutrients in the form of organic and inorganic nitrogen and carbon sources. Supplementation of chitin increased the enzyme production significantly. Ammonium nitrate as inorganic nitrogen supplement slightly enhanced enzyme production. No organic nitrogen supplement was effective enhancer of enzyme production. Fermentation was performed under optimised conditions (initial moisture content V/m = 50 %, temperature 30 °C, 48 h. Partial purification of the enzyme resulted in a 3-fold increase in the specific activity of the enzyme. The partially purified enzyme was characterised by various features that govern the enzyme activity such as assay temperature, assay pH and substrate concentration. The effect of various metal ions and known protease inhibitors on the enzyme activity was also studied. The enzyme was found to be stable in pH range 7.0–7.5, and at temperature of 50 °C for 35 min. By the activating effect of divalent cations (Mg2+, Ca2+, Fe2+ and inhibiting effect of certain chelating agents (EGTA, EDTA, the enzyme was found to be a metalloprotease.

  9. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions.

    Science.gov (United States)

    Langner, Thorsten; Göhre, Vera

    2016-05-01

    In the past decades our knowledge about fungal cell wall architecture increased tremendously and led to the identification of many enzymes involved in polysaccharide synthesis and remodeling, which are also of biotechnological interest. Fungal cell walls play an important role in conferring mechanic stability during cell division and polar growth. Additionally, in phytopathogenic fungi the cell wall is the first structure that gets into intimate contact with the host plant. A major constituent of fungal cell walls is chitin, a homopolymer of N-acetylglucosamine units. To ensure plasticity, polymeric chitin needs continuous remodeling which is maintained by chitinolytic enzymes, including lytic polysaccharide monooxygenases N-acetylglucosaminidases, and chitinases. Depending on the species and lifestyle of fungi, there is great variation in the number of encoded chitinases and their function. Chitinases can have housekeeping function in plasticizing the cell wall or can act more specifically during cell separation, nutritional chitin acquisition, or competitive interaction with other fungi. Although chitinase research made huge progress in the last decades, our knowledge about their role in phytopathogenic fungi is still scarce. Recent findings in the dimorphic basidiomycete Ustilago maydis show that chitinases play different physiological functions throughout the life cycle and raise questions about their role during plant-fungus interactions. In this work we summarize these functions, mechanisms of chitinase regulation and their putative role during pathogen/host interactions.

  10. Marsupialized fungal mycetoma masquerading as conjunctival melanoma.

    Science.gov (United States)

    Sayyad, Fouad E; Karp, Carol L; Wong, James R; Weiss, Matthew J; Bermudez-Magner, J Antonio; Dubovy, Sander

    2014-07-01

    To report a case of a fungal mass misdiagnosed as a pigmented conjunctival melanoma. Case report. A 38-year-old woman was referred for a pigmented conjunctival lesion that was diagnosed as a melanoma. She had a history of a scleral buckle in that eye for retinal detachment 2 years before presentation. Slit-lamp examination revealed a pigmented mass from the 11- to 2-o'clock position. This was noted to be imbricated within the invagination of a conjunctival fold from the previous surgery. The mass was removed, cultured, and confirmed to be a fungal infection from Scytalidium sp. Scleral buckles can cause folds in the conjunctiva, which can be foci for fungal infection.

  11. Population genetics of fungal diseases of plants

    Directory of Open Access Journals (Sweden)

    Giraud T.

    2008-09-01

    Full Text Available Although parasitism is one of the most common lifestyles among eukaryotes, population genetics on parasites lag far behind those on free-living organisms. Yet, the advent of molecular markers offers great tools for studying important processes, such as dispersal, mating systems, adaptation to host and speciation. Here we highlight some studies that used molecular markers to address questions about the population genetics of fungal (including oomycetes plant pathogens. We conclude that population genetics approaches have provided tremendous insights into the biology of a few fungal parasites and warrant more wide use in phytopathology. However, theoretical advances are badly needed to best apply the existing methods. Fungi are of prime interest not only because they are major parasites of plants and animals, but they also constitute tractable and highly useful models for understanding evolutionary processes. We hope that the emerging field of fungal evolution will attract more evolutionary biologists in the near future.

  12. Molecular Diagnostics for Soilborne Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    E.J. Paplomatas

    2004-08-01

    Full Text Available Several classical approaches have been developed to detect and identify soil fungal inhabitants through the years. Selective media have been devised to exclude the large number of soil organisms and allow growth of target fungi. However the advent of molecular biology has offered a number of revolutionary insights into the detection and enumeration of soilborne fungal pathogens and also has started to provide information on the identification of unknown species from DNA sequences. This review paper focuses on the application of various molecular techniques in the detection, identification, characterization and quantification of soilborne fungal plant pathogens. This is based on information from the literature and is combined with personal research findings of the author.

  13. The immune response to fungal infections.

    Science.gov (United States)

    Shoham, Shmuel; Levitz, Stuart M

    2005-06-01

    During the past two decades, invasive fungal infections have emerged as a major threat to immunocompromised hosts. Patients with neoplastic diseases are at significant risk for such infections as a result of their underlying illness and its therapy. Aspergillus, Candida, Cryptococcus and emerging pathogens, such as the zygomycetes, dark walled fungi, Trichosporon and Fusarium, are largely opportunists, causing infection when host defences are breached. The immune response varies with respect to the fungal species and morphotype encountered. The risk for particular infections differs, depending upon which aspect of immunity is impaired. This article reviews the current understanding of the role and relative importance of innate and adaptive immunity to common and emerging fungal pathogens. An understanding of the host response to these organisms is important in decisions regarding use of currently available antifungal therapies and in the design of new therapeutic modalities.

  14. Biomolecular computers with multiple restriction enzymes

    Directory of Open Access Journals (Sweden)

    Sebastian Sakowski

    2017-10-01

    Full Text Available Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases.

  15. Biomolecular computers with multiple restriction enzymes.

    Science.gov (United States)

    Sakowski, Sebastian; Krasinski, Tadeusz; Waldmajer, Jacek; Sarnik, Joanna; Blasiak, Janusz; Poplawski, Tomasz

    2017-01-01

    The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann "bottleneck". Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro's group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases.

  16. Commercialization in Innovation Management

    DEFF Research Database (Denmark)

    Sløk-Madsen, Stefan Kirkegaard; Ritter, Thomas; Sornn-Friese, Henrik

    For any firm, the ultimate purpose of new product development is the commercialization of the new offerings. Despite its regular use in the product innovation and general management science literature, commercialization is only loosely defined and applied. This lack of conceptual clarity about...... the processes at the interface between product development and customer application is noteworthy as it hinders the theoretical development of the field. In this paper, we explore how research has advanced our understanding of commercialization in product innovation over a 30 year period by mapping different...... definitions and interpretations of commercialization. We offer a process-oriented definition of commercialization that is theoretically founded in the capability-based view of the firm. We also outline an agenda for future theoretical development and empirical research on commercialization aimed at advancing...

  17. Synthetic β-sheet forming peptide amphiphiles for treatment of fungal keratitis.

    Science.gov (United States)

    Wu, Hong; Ong, Zhan Yuin; Liu, Shaoqiong; Li, Yan; Wiradharma, Nikken; Yang, Yi Yan; Ying, Jackie Y

    2015-03-01

    Fungal keratitis is a leading cause of ocular morbidity. It is frequently misdiagnosed as bacterial keratitis, causing a delay in proper treatment. Furthermore, due to the lack of safe and effective anti-fungal agents for clinical use, treatment of fugal keratitis remains a challenge. In recent years, antimicrobial peptides (AMPs) have received considerable attention as potent and broad-spectrum antimicrobial agents with the potential to overcome antibiotics resistance. We previously reported the design of short synthetic β-sheet forming peptides (IKIK)2-NH2 and (IRIK)2-NH2 with excellent antimicrobial activities and selectivities against various clinically relevant microorganisms, including Gram-positive Staphylococcus epidermidis and Staphylococcus aureus, Gram-negative Escherichia coli and Pseudomonas aeruginosa, and yeast Candida albicans (C. albicans). In this study, we evaluated the application of the two most promising synthetic β-sheet forming peptide candidates for in vivo fungal keratitis treatment in comparison with the commercially available amphotericin B. It was found that topical solutions of the designed peptides are safe, and as effective as the clinically used amphotericin B. Compared to the costly and unstable amphotericin B, (IKIK)2-NH2 and (IRIK)2-NH2 are water-soluble, less expensive and stable. Thus, the synthetic β-sheet forming peptides are presented as promising candidates for the treatment of fungal keratitis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants.

    Science.gov (United States)

    Singh, B; Satyanarayana, T

    2015-08-01

    Fungal phytases are histidine acid phosphatases, a subclass of acid phosphatases, which catalyse the hydrolysis of phytic acid resulting in the release of phosphate moieties and thus mitigate its antinutritional properties. The supplementation of feed with phytases increases the bioavailability of phosphorus and minerals in non-ruminant animals and reduces the phosphorus pollution due to phosphorus excretion in the areas of intensive livestock production. Although phytases are reported in plants, animals and micro-organisms, fungal sources are used extensively for the production of phytases on a commercial scale. Phytases have been produced by fungi in both solid-state fermentation (SSF) and submerged fermentation (SmF). The fungal phytases are high molecular weight proteins ranging from 35 to 500 kDa. They are optimally active within pH and temperature ranges between 4.5 and 6.0, and 45 and 70 °C respectively. Phytate degradation leads to amelioration in the nutritional status of foods and feeds by improving the availability of minerals, phosphorus and proteins in non-ruminant animals and human beings and thus mitigates the environmental phosphorus pollution. Our article focuses on the role of fungal phytases in improving nutritional value of foods and feeds with concomitant increase in growth of non-ruminant animals and mitigating environmental phosphorus pollution. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  19. [The burden of fungal infections in Algeria].

    Science.gov (United States)

    Chekiri-Talbi, M; Denning, D W

    2017-06-01

    In Algeria, superficial mycoses are very commonly diagnosed. Deep fungal infections are less often observed. Few data from Algeria are found in the literature. We report for the first time the main causes of these diseases in our country and provide burden estimates. We searched for existing data and estimated the incidence and prevalence of fungal diseases based on the population at risk and available epidemiological data. Demographic data were derived from the Service (Office) of the Statistics (ONES), World Health Organization (WHO), The Joint Nations Programme on HIV/AIDS (UNAIDS) and national published reports. When no data existed, risk populations were used to estimate frequencies of fungal infections, using previously described methodology. Algeria has 40.4 million inhabitants and probably at least 568,900 (1.41 %) of Algerians have a serious fungal infection each year. Recurrent vulvovaginal candidiasis (485,000) and fungal asthma (72,000) are probably the commonest problems as there are over 1 million adult asthmatics. Candidaemia is estimated in 2020, invasive aspergillosis in 2865, intra-abdominal candidiasis in 303 people and are the most common life-threatening problems. AIDS is uncommon, but cancer is not (45,000 new cases of cancer among including 1500 in children) and nor is COPD (an estimated 317,762 patients of whom 20.3 % are admitted to hospital each year). A focus on improving the diagnosis and epidemiological data related to fungal infection is necessary in Algeria. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Fungal infections in burns: Diagnosis and management

    Directory of Open Access Journals (Sweden)

    Capoor Malini

    2010-10-01

    Full Text Available Burn wound infection (BWI is a major public health problem and the most devastating form of trauma worldwide. Fungi cause BWI as part of monomicrobial or polymicrobial infection, fungaemia, rare aggressive soft tissue infection and as opportunistic infections. The risk factors for acquiring fungal infection in burns include age of burns, total burn size, body surface area (BSA (30-60%, full thickness burns, inhalational injury, prolonged hospital stay, late surgical excision, open dressing, artificial dermis, central venous catheters, antibiotics, steroid treatment, long-term artificial ventilation, fungal wound colonisation (FWC, hyperglycaemic episodes and other immunosuppressive disorders. Most of the fungal infections are missed owing to lack of clinical awareness and similar presentation as bacterial infection coupled with paucity of mycology laboratories. Expedient diagnosis and treatment of these mycoses can be life-saving as the mortality is otherwise very high. Emergence of resistance in non-albicans Candida spp., unusual yeasts and moulds in fungal BWI, leaves very few fungi susceptible to antifungal drugs, leaving many patients susceptible. There is a need to speciate fungi as far as the topical and systemic antifungal is concerned. Deep tissue biopsy and other relevant samples are processed by standard mycological procedures using direct microscopy, culture and histopathological examination. Patients with FWC should be treated by aggressive surgical debridement and, in the case of fungal wound infection (FWI, in addition to surgical debridement, an intravenous antifungal drug, most commonly amphotericin B or caspofungin, is prescribed followed by de-escalating with voriconazole or itraconazole, or fluconazole depending upon the species or antifungal susceptibility, if available. The propensity for fungal infection increases, the longer the wound is present. Therefore, the development of products to close the wound more rapidly

  1. Fungal infections of the lung in children

    Energy Technology Data Exchange (ETDEWEB)

    Toma, Paolo; Colafati, Giovanna Stefania; D' Andrea, Maria Luisa [IRCCS Bambino Gesu Children' s Hospital, Department of Imaging, Rome (Italy); Bertaina, Alice; Mastronuzzi, Angela [IRCCS Bambino Gesu Children' s Hospital, Department of Pediatric Hematology/Oncology and Transfusion Medicine, Rome (Italy); Castagnola, Elio [IRCCS Istituto Giannina Gaslini, Department of Infective Diseases, Genoa (Italy); Finocchi, Andrea [IRCCS Bambino Gesu Children' s Hospital, Department of Pediatrics, Rome (Italy); Lucidi, Vincenzina [IRCCS Bambino Gesu Children' s Hospital, Cystic Fibrosis Center, Rome (Italy); Granata, Claudio [IRCCS Istituto Giannina Gaslini, Department of Pediatric Radiology, Genoa (Italy)

    2016-12-15

    Fungal infections of the lungs are relatively common and potentially life-threatening conditions in immunocompromised children. The role of imaging in children with lung mycosis is to delineate the extension of pulmonary involvement, to assess response to therapy, and to monitor for adverse sequelae such as bronchiectasis and cavitation. The aim of this paper is to show imaging findings in a series of patients with fungal pneumonia from two tertiary children's hospitals, to discuss differential diagnoses and to show how imaging findings can vary depending on the host immune response. (orig.)

  2. Yeast-based genome mining, production and mechanistic studies of the biosynthesis of fungal polyketide and peptide natural products.

    Science.gov (United States)

    Tsunematsu, Yuta; Ishiuchi, Kan'ichiro; Hotta, Kinya; Watanabe, Kenji

    2013-08-01

    In this article, we review recent successful efforts to engineer biosynthesis of several important fungal natural products through heterologous expression of relevant biosynthetic genes in Saccharomyces cerevisiae. We also describe an innovative method of rapidly cloning fungal polyketide synthase or nonribosomal peptide synthetase genes, which can be 5-20 kb or longer, from a pool of total RNA obtained from the fungus of interest using the technique we termed the "overlap extension PCR-yeast homologous recombination (ExRec)" method. The process concomitantly incorporates the cloned genes into yeast expression vectors for biosynthesis of corresponding polyketide and nonribosomal peptide compounds in our engineered S. cerevisiae strain, allowing detailed chemical characterizations to identify the activities of those previously uncharacterized biosynthetic megaenzymes. Studies reviewed here highlight yeast as a useful and versatile host not only for production of various natural products and mechanistic investigation of biosynthetic enzymes, but also for mining of uncharacterized fungal genomes for novel secondary metabolite biosynthetic pathways.

  3. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities.

    Science.gov (United States)

    Kyaschenko, Julia; Clemmensen, Karina E; Karltun, Erik; Lindahl, Björn D

    2017-12-01

    Plant-soil interactions link ecosystem fertility and organic matter accumulation below ground. Soil microorganisms play a central role as mediators of these interactions, but mechanistic understanding is still largely lacking. Correlative data from a coniferous forest ecosystem support the hypothesis that interactions between fungal guilds play a central role in regulating organic matter accumulation in relation to fertility. With increasing ecosystem fertility, the proportion of saprotrophic basidiomycetes increased in deeper organic layers, at the expense of ectomycorrhizal fungal species. Saprotrophs correlated positively with the activity of oxidative enzymes, which in turn favoured organic matter turnover and nitrogen recycling to plants. Combined, our findings are consistent with a fungus-mediated feedback loop, which results in a negative correlation between ecosystem fertility and below-ground carbon storage. These findings call for a shift in focus from plant litter traits to fungal traits in explaining organic matter dynamics and ecosystem fertility in boreal forests. © 2017 John Wiley & Sons Ltd/CNRS.

  4. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting

    Directory of Open Access Journals (Sweden)

    Ajay Badhan

    2015-01-01

    Full Text Available Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  5. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

    Science.gov (United States)

    Badhan, Ajay; Wang, Yu-Xi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim A

    2015-01-01

    Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR) collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  6. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Pilgaard, Bo; Lezyk, Mateusz Jakub

    2017-01-01

    for prediction of enzyme function. A fastand reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interestas demonstrated for the glycosyl hydrolase...... and the lytic polysaccharide monooxygenase families. This approach notonly assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. Results: We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition....... The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared...

  7. MycoCosm, an Integrated Fungal Genomics Resource

    Energy Technology Data Exchange (ETDEWEB)

    Shabalov, Igor; Grigoriev, Igor

    2012-03-16

    MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/month or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.

  8. Enzymes and muscle diseases

    Directory of Open Access Journals (Sweden)

    M. Plebani

    2011-09-01

    Full Text Available Skeletal muscle disorders may result in release of muscle enzymes into the circulation and give increased serum enzyme activity. A variety of enzymes routinely determined in the clinical laboratory may be elevated, but creatine kinase is the enzyme present in the highest concentration in muscle, and in every variety of muscle disease is the serum enzyme which shows the greatest incidence and degree of elevation. Aspartate aminotransferase is the enzyme associated most significantly with inflammation. A diagnostic algorithm based on the combined measurement of creatine kinase, aspartate aminotransferase and aldolase has been found to discriminate muscular distrophies from polymyositis and other myopathies. This combination of laboratory tests has diagnostic application and thus allows the clinician to better select patients who need to have a skeletal muscle biopsy as a diagnostic procedure.

  9. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  10. Biocombinatorial Engineering of Fungal PKS-NRPS Hybrids for Production of Novel Synthetic Natural Products

    DEFF Research Database (Denmark)

    Nielsen, Maria Lund

    , as exemplified by many antimicrobial agents as well as anti-cancer agents, immunosuppressants and cholesterol-lowering drugs. A common approach for the discovery of new natural drug leads relies on screening of a large number of organisms, which is often followed by semi-synthetic modifications for final drug...... and engineering of a certain type of fungal enzymes – natural fusions of polyketide synthases and nonribosomal peptide synthetases (PKS-NRPSs). The thesis is divided into two topics: 1) Expanding fungal chemodiversity through combinatorial biosynthesis 2) Two CRISPR-Cas9-based approaches to linking SMs...... and NRPS modules. In the third study (chapter 4), I describe how CRISPR-Cas9, which was recently implemented for genome editing in filamentous fungi, can be used to link SMs to their genetic origin in a fungus where no genetic tools were previously available. Using CRISPR-Cas9, I identified a novel gene...

  11. Efficient Biosynthesis of Fungal Polyketides Containing the Dioxabicyclo-octane Ring System.

    Science.gov (United States)

    Mao, Xu-Ming; Zhan, Zha-Jun; Grayson, Matthew N; Tang, Man-Cheng; Xu, Wei; Li, Yong-Quan; Yin, Wen-Bing; Lin, Hsiao-Ching; Chooi, Yit-Heng; Houk, K N; Tang, Yi

    2015-09-23

    Aurovertins are fungal polyketides that exhibit potent inhibition of adenosine triphosphate synthase. Aurovertins contain a 2,6-dioxabicyclo[3.2.1]octane ring that is proposed to be derived from a polyene precursor through regioselective oxidations and epoxide openings. In this study, we identified only four enzymes required to produce aurovertin E. The core polyketide synthase produces a polyene α-pyrone. Following pyrone O-methylation by a methyltransferase, a flavin-dependent mono-oxygenase and an epoxide hydrolase can iteratively transform the terminal triene portion of the precursor into the dioxabicyclo[3.2.1]octane scaffold. We demonstrate that a tetrahydrofuranyl polyene is the first stable intermediate in the transformation, which can undergo epoxidation and anti-Baldwin 6-endo-tet ring opening to yield the cyclic ether product. Our results further demonstrate the highly concise and efficient ways in which fungal biosynthetic pathways can generate complex natural product scaffolds.

  12. Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil.

    Science.gov (United States)

    Snajdr, Jaroslav; Dobiášová, Petra; Větrovský, Tomáš; Valášková, Vendula; Alawi, Alaa; Boddy, Lynne; Baldrian, Petr

    2011-10-01

    Saprotrophic cord-forming basidiomycetes are important decomposers of lignocellulosic substrates in soil. The production of extracellular hydrolytic enzymes was studied during the growth of two saprotrophic basidiomycetes, Hypholoma fasciculare and Phanerochaete velutina, across the surface of nonsterile soil microcosms, along with the effects of these basidiomycetes on fungi and bacteria within the soil. Higher activities of α-glucosidase, β-glucosidase, cellobiohydrolase, β-xylosidase, phosphomonoesterase and phosphodiesterase, but not of arylsulphatase, were recorded beneath the mycelia. Despite the fact that H. fasciculare, with exploitative hyphal growth, produced much denser hyphal cover on the soil surface than P. velutina, with explorative growth, both fungi produced similar amounts of extracellular enzymes. In the areas where the mycelia of H. fasciculare and P. velutina interacted, the activities of N-acetylglucosaminidase, α-glucosidase and phosphomonoesterase, the enzymes potentially involved in hyphal cell wall damage, and the utilization of compounds released from damaged hyphae of interacting fungi, were particularly increased. No significant differences in fungal biomass were observed between basidiomycete-colonized and noncolonized soil, but bacterial biomass was reduced in soil with H. fasciculare. The increases in the activities of β-xylosidase, β-glucosidase, phosphomonoesterase and cellobiohydrolase with increasing fungal:bacterial biomass ratio indicate the positive effects of fungal enzymes on nutrient release and bacterial abundance, which is reflected in the positive correlation of bacterial and fungal biomass content. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Production of lignocellulolytic enzymes from three white-rot fungi by ...

    African Journals Online (AJOL)

    The objective of the work was to evaluate the effect of the media formulation on the production of lignocellulolytic enzymes and degradation of lignocellulosic components by the three fungal species. C. versicolor exhibited the highest ability to degrade the three main polymers of the lignocellulosic waste materials employed ...

  14. Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme

    NARCIS (Netherlands)

    Record, E.; Punt, P.J.; Chamkha, M.; Labat, M.; Hondel, C.A.M.J.J. van den; Asther, M.

    2002-01-01

    Pycnoporus cinnabarinus laccase lac1 gene was overexpressed in Aspergillus niger, a well-known fungal host producing a large amount of homologous or heterologous enzymes for industrial applications. The corresponding cDNA was placed under the control of the glyceraldehyde-3-phosphate dehydrogenase

  15. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  16. Enzymes in animal nutrition

    OpenAIRE

    Scientific Committee on Animal Nutrition

    2011-01-01

    This report brings overview of endogenous as well as exogenous enzymes and their role and importance in animal nutrition. Enzymes for animal nutrition have been systematically developed since 1980´s. Phytase, xylanase and β-glucanase are used in poultry-rising, pig breeding, aquaculture and begin to push to the ruminant nutrition. Phytase increase availability of P, Ca, Zn, digestibility of proteins and fats. Its positive effect on the environment is well described – enzymes decrease the cont...

  17. Enzyme catalysed tandem reactions

    OpenAIRE

    Oroz-Guinea, Isabel; García-Junceda, Eduardo

    2013-01-01

    To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, had to mimic several synthetic strategies used by the living organisms. Biosynthetic pathways are examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of isolated multi-enzyme systems in the homogeneous phase. The concurrent action of several enzymes that work sequentially presents extraordinary advantages from the synthetic point of view, since it permits a r...

  18. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation.

    Science.gov (United States)

    Awasthi, Manika; Jaiswal, Nivedita; Singh, Swati; Pandey, Veda P; Dwivedi, Upendra N

    2015-09-01

    Laccase, widely distributed in bacteria, fungi, and plants, catalyzes the oxidation of wide range of compounds. With regards to one of the important physiological functions, plant laccases are considered to catalyze lignin biosynthesis while fungal laccases are considered for lignin degradation. The present study was undertaken to explain this dual function of laccases using in-silico molecular docking and dynamics simulation approaches. Modeling and superimposition analyses of one each representative of plant and fungal laccases, namely, Populus trichocarpa and Trametes versicolor, respectively, revealed low level of similarity in the folding of two laccases at 3D levels. Docking analyses revealed significantly higher binding efficiency for lignin model compounds, in proportion to their size, for fungal laccase as compared to that of plant laccase. Residues interacting with the model compounds at the respective enzyme active sites were found to be in conformity with their role in lignin biosynthesis and degradation. Molecular dynamics simulation analyses for the stability of docked complexes of plant and fungal laccases with lignin model compounds revealed that tetrameric lignin model compound remains attached to the active site of fungal laccase throughout the simulation period, while it protrudes outwards from the active site of plant laccase. Stability of these complexes was further analyzed on the basis of binding energy which revealed significantly higher stability of fungal laccase with tetrameric compound than that of plant. The overall data suggested a situation favorable for the degradation of lignin polymer by fungal laccase while its synthesis by plant laccase.

  19. Commercial applications of ferrofluids

    Science.gov (United States)

    Raj, K.; Moskowitz, R.

    1990-04-01

    Ferrofluids have been in the commercial arena for over two decades. In this paper, the most advanced, successful commercial applications of ferrofluids are discussed. These applications center around the tribological characteristics of ferrofluids, e.g., sealing, damping and hydrodynamic bearings. Also, an account of some lesser known applications is presented.

  20. Recycling Sounds in Commercials

    DEFF Research Database (Denmark)

    Larsen, Charlotte Rørdam

    2012-01-01

    Commercials offer the opportunity for intergenerational memory and impinge on cultural memory. TV commercials for foodstuffs often make reference to past times as a way of authenticating products. This is frequently achieved using visual cues, but in this paper I would like to demonstrate how suc...

  1. DemaDb: an integrated dematiaceous fungal genomes database.

    Science.gov (United States)

    Kuan, Chee Sian; Yew, Su Mei; Chan, Chai Ling; Toh, Yue Fen; Lee, Kok Wei; Cheong, Wei-Hien; Yee, Wai-Yan; Hoh, Chee-Choong; Yap, Soon-Joo; Ng, Kee Peng

    2016-01-01

    Many species of dematiaceous fungi are associated with allergic reactions and potentially fatal diseases in human, especially in tropical climates. Over the past 10 years, we have isolated more than 400 dematiaceous fungi from various clinical samples. In this study, DemaDb, an integrated database was designed to support the integration and analysis of dematiaceous fungal genomes. A total of 92 072 putative genes and 6527 pathways that identified in eight dematiaceous fungi (Bipolaris papendorfii UM 226, Daldinia eschscholtzii UM 1400, D. eschscholtzii UM 1020, Pyrenochaeta unguis-hominis UM 256, Ochroconis mirabilis UM 578, Cladosporium sphaerospermum UM 843, Herpotrichiellaceae sp. UM 238 and Pleosporales sp. UM 1110) were deposited in DemaDb. DemaDb includes functional annotations for all predicted gene models in all genomes, such as Gene Ontology, EuKaryotic Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes (KEGG), Pfam and InterProScan. All predicted protein models were further functionally annotated to Carbohydrate-Active enzymes, peptidases, secondary metabolites and virulence factors. DemaDb Genome Browser enables users to browse and visualize entire genomes with annotation data including gene prediction, structure, orientation and custom feature tracks. The Pathway Browser based on the KEGG pathway database allows users to look into molecular interaction and reaction networks for all KEGG annotated genes. The availability of downloadable files containing assembly, nucleic acid, as well as protein data allows the direct retrieval for further downstream works. DemaDb is a useful resource for fungal research community especially those involved in genome-scale analysis, functional genomics, genetics and disease studies of dematiaceous fungi. Database URL: http://fungaldb.um.edu.my. © The Author(s) 2016. Published by Oxford University Press.

  2. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Directory of Open Access Journals (Sweden)

    C. L. Phillips

    2012-06-01

    Full Text Available Distinct aggregations of fungal hyphae and rhizomorphs, or "mats", formed by some genera of ectomycorrhizal (EcM fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was higher respiration from mats, and to estimate mat contributions to total soil respiration. We found that areas where Piloderma mats colonized the organic horizon often had higher soil surface flux than non-mats, with the relative increase in respiration averaging 16% across two growing seasons. Both soil physical factors and biochemistry were related to the higher surface flux of mat soils. When soil moisture was high, soil CO2 production was concentrated into near-surface soil horizons where mats tend to colonize, resulting in greater apparent differences in respiration between mat and non-mat soils. Respiration rates were also correlated with the activity of chitin-degrading soil enzymes. This finding supports the notion that the abundance of fungal biomass in EcM mats is an important driver of C and N cycling. We found Piloderma mats present across 57% of the exposed soil, and use this value to estimate a respiratory contribution from mats at the stand-scale of about 9% of total soil respiration. The activity of EcM mats, which includes both EcM fungi and microbial associates, appeared to constitute a substantial portion of total soil respiration in this old-growth Douglas-fir forest.

  3. Food and feed enzymes.

    Science.gov (United States)

    Fraatz, Marco Alexander; Rühl, Martin; Zorn, Holger

    2014-01-01

    Humans have benefited from the unique catalytic properties of enzymes, in particular for food production, for thousands of years. Prominent examples include the production of fermented alcoholic beverages, such as beer and wine, as well as bakery and dairy products. The chapter reviews the historic background of the development of modern enzyme technology and provides an overview of the industrial food and feed enzymes currently available on the world market. The chapter highlights enzyme applications for the improvement of resource efficiency, the biopreservation of food, and the treatment of food intolerances. Further topics address the improvement of food safety and food quality.

  4. Culture and molecular identification of fungal contaminants in edible bird nests.

    Science.gov (United States)

    Chen, Jennifer Xiao Jing; Wong, Shew Fung; Lim, Patricia Kim Chooi; Mak, Joon Wah

    2015-01-01

    Widespread food poisoning due to microbial contamination has been a major concern for the food industry, consumers and governing authorities. This study is designed to determine the levels of fungal contamination in edible bird nests (EBNs) using culture and molecular techniques. Raw EBNs were collected from five house farms, and commercial EBNs were purchased from five Chinese traditional medicine shops (companies A-E) in Peninsular Malaysia. The fungal contents in the raw and commercial EBNs, and boiled and unboiled EBNs were determined. Culturable fungi were isolated and identified. In this study, the use of these methods revealed that all EBNs had fungal colony-forming units (CFUs) that exceeded the limit set by Standards and Industrial Research Institute of Malaysia (SIRIM) for yeast and moulds in EBNs. There was a significant difference (p 0.05). The types of fungi isolated from the unboiled raw EBNs were mainly soil, plant and environmental fungi, while the types of fungi isolated from the boiled raw EBNs, unboiled and boiled commercial EBNs were mainly environmental fungi. Aspergillus sp., Candida sp., Cladosporium sp., Neurospora sp. and Penicillum sp. were the most common fungi isolated from the unboiled and boiled raw and commercial EBNs. Some of these fungi are mycotoxin producers and cause opportunistic infections in humans. Further studies to determine the mycotoxin levels and methods to prevent or remove these contaminations from EBNs for safe consumption are necessary. The establishment and implementation of stringent regulations for the standards of EBNs should be regularly updated and monitored to improve the quality of the EBNs and consumer safety.

  5. Rumen fungal degradation of Digitaria pentzii

    African Journals Online (AJOL)

    blades was determined by using an Instron Universal Testing. Instrument. Observations of plant structure and fungal col- onization were made by light, scanning and transmission electron microscopy. Bacterial counts were performed as described previously (Akin, 1980; Joblin, l98l). Results and Discussion. As is usual with ...

  6. Standard methods for fungal brood disease research

    DEFF Research Database (Denmark)

    Jensen, Annette Bruun; Aronstein, Kathrine; Manuel Flores, Jose

    2013-01-01

    Chalkbrood and stonebrood are two fungal diseases associated with honey bee brood. Chalkbrood, caused by Ascosphaera apis, is a common and widespread disease that can result in severe reduction of emerging worker bees and thus overall colony productivity. Stonebrood is caused by Aspergillus spp. ...

  7. Fungal Planet description sheets: 371-399

    Czech Academy of Sciences Publication Activity Database

    Crous, P. W.; Wingfield, M. J.; Le Roux, J. J.; Richardson, D. M.; Strasberg, D.; Shivas, R.G.; Alvarado, P.; Edwards, J.; Moreno, G.; Sharma, R.; Sonawane, M.S.; Tan, Y.P.; Altés, A.; Barasubiye, T.; Barnes, C.W.; Blanchette, R.A.; Boertmann, D.; Bogo, A.; Carlavilla, J.R.; Cheewangkoon, R.; Daniel, R.; de Beer, Z.W.; de Yáňez-Morales, J.; Duong, T.A.; Fernández-Vicente, J.; Geering, A.D.W.; Guest, D.I.; Held, B.W.; Heykoop, M.; Hubka, V.; Ismail, A.M.; Kajale, S.C.; Khemmuk, W.; Kolařík, Miroslav; Kurli, R.; Lebeuf, R.; Levesque, C.A.; Lombard, L.; Magista, D.; Manjón, J.L.; Marincowitz, S.; Mohedano, J.M.; Nováková, Alena; Oberlies, N.H.; Otto, E.C.; Paguigan, N.D.; Pascoe, I.G.; Peréz-Butrón, J.L.; Perrone, G.; Rahi, P.; Raja, H.A.; Rintoul, T.; Sanhueza, R.M.V.; Scarlett, K.; Shouche, Y.S.; Shuttleworth, L.A.; Taylor, P.W.J.; Thorn, R.G.; Vawdrey, L.L.; Solano-Vidal, R.; Voitk, A.; Wong, P.T.W.; Wood, A.R.; Zamora, J.C.; Groenewald, J.Z.

    2015-01-01

    Roč. 35, December (2015), s. 264-327 ISSN 0031-5850 R&D Projects: GA ČR(CZ) GAP506/12/1064 Institutional support: RVO:61388971 Keywords : ITS DNA barcodes * LSU * novel fungal species Subject RIV: EE - Microbiology, Virology Impact factor: 5.725, year: 2015

  8. Pre- and postharvest fungal apple diseases

    Science.gov (United States)

    The domesticated apple (Malus domestica) is the most significant pome fruit grown and consumed worldwide. China is the largest producer followed by the United States on a global scale. However, fungal plant pathogens cause significant economic losses in the field and in storage which negatively impa...

  9. Fungal peroxidases : molecular aspects and applications

    NARCIS (Netherlands)

    Conesa, A.; Punt, P.J.; Hondel, C.A.M.J.J.

    2002-01-01

    Peroxidases are oxidoreductases that utilize hydrogen peroxide to catalyze oxidative reactions. A large number of peroxidases have been identified in fungal species and are being characterized at the molecular level. In this manuscript we review the current knowledge on the molecular aspects of this

  10. Fungal endophytes of sorghum in Burkina Faso

    DEFF Research Database (Denmark)

    Zida, E P; Thio, I G; Néya, B J

    2014-01-01

    A survey was conducted to assess the natural occurrence and distribution of fungal endophytes in sorghum in relation to plant performance in two distinct agro-ecological zones in Burkina Faso. Sorghum farm-saved seeds were sown in 48 farmers’ fields in Sahelian and North Sudanian zones to produce...

  11. Packaging conditions hindering fungal growth on cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Haasum, Iben

    1997-01-01

    Fungal contamination is one of the most important quality deteriorating factors on cheese. During the last 5 years we have studied in detail the underlying factors controlling these unwanted processes in a collaborative project financed by the Danish Dairy Board and the Ministry of Agriculture...

  12. Fungal Planet description sheets: 400-468

    Czech Academy of Sciences Publication Activity Database

    Crous, P.W.; Wingfield, M. J.; Richardson, D. M.; Le Roux, J. J.; Strasberg, D.; Edwards, J.; Roets, F.; Hubka, V.; Taylor, P.W.J.; Heykoop, M.; Martín, M.P.; Moreno, G.; Sutton, D.A.; Wiederhold, N.P.; Barnes, C.W.; Carlavilla, J.R.; Gené, J.; Giraldo, A.; Guarnaccia, V.; Guarro, J.; Hernández-Restrepo, M.; Kolařík, Miroslav; Manjón, J.L.; Pascoe, I.G.; Popov, E.S.; Sandoval-Denis, M.; Woudenberg, J.H.C.; Acharya, K.; Alexandrova, A.V.; Alvarado, P.; Barbosa, R.N.; Baseia, I.G.; Blanchette, R.A.; Boekhout, T.; Burgess, T.I.; Cano-Lira, J.F.; Čmoková, A.; Dimitrov, R.A.; Dyakov, M.Yu.; Dueñas, M.; Dutta, A.K.; Esteve- Raventós, F.; Fedosova, A.G.; Fournier, J.; Gamboa, P.; Gouliamova, D.E.; Grebenc, T.; Groenewald, M.; Hanse, B.; Hardy, G.E.St.J.; Held, B.W.; Jurjević, Ž.; Kaewgrajang, T.; Latha, K.P.D.; Lombard, L.; Luangsa-Ard, J.J.; Lysková, P.; Mallátová, N.; Manimohan, P.; Miller, A.N.; Mirabolfathy, M.; Morozova, O.V.; Obodai, M.; Oliveira, N.T.; Otto, E.C.; Paloi, S.; Peterson, S.W.; Phosri, C.; Roux, J.; Salazar, W.A.; Sánchez, A.; Sarria, G.A.; Shin, H.-D.; Silva, B.D.B.; Silva, G.A.; Smith, M.Th.; Souza-Motta, C.M.; Stchigel, A.M.; Stoilova-Disheva, M.M.; Sulzbacher, M.A.; Telleria, M.T.; Toapanta, C.; Traba, J.M.; Valenzuela-Lopez, N.; Watling, R.; Groenewald, J.Z.

    2016-01-01

    Roč. 36, July (2016), s. 316-458 ISSN 0031-5850 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : ITS DNA barcodes * LSU * fungal species Subject RIV: EE - Microbiology, Virology Impact factor: 7.511, year: 2016

  13. Fungal hydrophobins in medical and technical applications

    NARCIS (Netherlands)

    Scholtmeijer, K; Wessels, JGH; Woster, HAB

    Class I and class II hydrophobins are small secreted fungal proteins that self-assemble at hydrophilic-hydrophobic interfaces into amphipathic films. Apart from eight conserved cysteine residues, the amino acid sequences between and within both classes have diverged considerably, and this is

  14. Fungal Systematics and Evolution: FUSE 1

    NARCIS (Netherlands)

    Crous, Pedro W; Schumacher, René K; Wingfield, Michael J; Lombard, Lorenzo; Giraldo, Alejandra; Christensen, Martha; Gardiennet, Alain; Nakashima, Chiharu; Pereira, Olinto L; Smith, Alexander J; Groenewald, Johannes Z

    2015-01-01

    Fungal Systematics and Evolution (FUSE) is introduced as a new series to expedite the publication of issues relating to the epitypification of formerly described species, report new sexual-asexual connections, the merging of sexual and asexual gen¬era following the end of dual nomenclature, and to

  15. Meeting report : fungal its workshop (october 2012)

    NARCIS (Netherlands)

    Bates, Scott T; Ahrendt, Steven; Bik, Holly M; Bruns, Thomas D; Caporaso, J Gregory; Cole, James; Dwan, Michael; Fierer, Noah; Gu, Dai; Houston, Shawn; Knight, Rob; Leff, Jon; Lewis, Christopher; Maestre, Juan P; McDonald, Daniel; Nilsson, R Henrik; Porras-Alfaro, Andrea; Robert, Vincent; Schoch, Conrad; Scott, James; Taylor, D Lee; Parfrey, Laura Wegener; Stajich, Jason E

    2013-01-01

    This report summarizes a meeting held in Boulder, CO USA (19-20 October 2012) on fungal community analyses using ultra-high-throughput sequencing of the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA (rRNA) genes. The meeting was organized as a two-day workshop, with the

  16. Invasive fungal infections in acute leukemia.

    Science.gov (United States)

    Bhatt, Vijaya R; Viola, George M; Ferrajoli, Alessandra

    2011-08-01

    Invasive fungal infection (IFI) is among the leading causes for morbidity, mortality, and economic burden for patients with acute leukemia. In the past few decades, the incidence of IFI has increased dramatically. The certainty of diagnosis of IFI is based on host factors, clinical evidence, and microbiological examination. Advancement in molecular diagnostic modalities (e.g. non-culture-based serum biomarkers such as β-glucan or galactomannan assays) and high-resolution radiological imaging has improved our diagnostic approach. The early use of these diagnostic tests assists in the early initiation of preemptive therapy. Nonetheless, the complexity of IFI in patients with leukemia and the limitations of these diagnostic tools still mandate astute clinical acumen. Its management has been further complicated by the increasing frequency of infection by non-Aspergillus molds (e.g. zygomycosis) and the emergence of drug-resistant fungal pathogens. In addition, even though the antifungal armamentarium has expanded rapidly in the past few decades, the associated mortality remains high. The decision to initiate antifungal treatment and the choice of anti-fungal therapy requires careful consideration of several factors (e.g. risk stratification, local fungal epidemiologic patterns, concomitant comorbidities, drug-drug interactions, prior history of antifungal use, overall cost, and the pharmacologic profile of the antifungal agents). In order to optimize our diagnostic and therapeutic management of IFI in patients with acute leukemia, further basic research and clinical trials are desperately needed.

  17. High prevalence of a fungal prion

    NARCIS (Netherlands)

    Debets, A.J.M.; Dalstra, H.J.P.; Slakhorst, S.M.; Koopmanschap-Memelink, A.B.; Hoekstra, R.F.; Saupe, S.J.

    2012-01-01

    Prions are infectious proteins that cause fatal diseases in mammals. Prions have also been found in fungi, but studies on their role in nature are scarce. The proposed biological function of fungal prions is debated and varies from detrimental to benign or even beneficial. [Het-s] is a prion of the

  18. Assessment of soil fungal communities using pyrosequencing.

    Science.gov (United States)

    Lim, Young Woon; Kim, Byung Kwon; Kim, Changmu; Jung, Hack Sung; Kim, Bong-Soo; Lee, Jae-Hak; Chun, Jongsik

    2010-06-01

    Pyrosequencing, a non-electrophoretic method of DNA sequencing, was used to investigate the extensive fungal community in soils of three islands in the Yellow Sea of Korea, between Korea and China. Pyrosequencing was carried out on amplicons derived from the 5' region of 18S rDNA. A total of 10,166 reads were obtained, with an average length of 103 bp. The maximum number of fungal phylotypes in soil predicted at 99% similarity was 3,334. The maximum numbers of phylotypes predicted at 97% and 95% similarities were 736 and 286, respectively. Through phylogenetic assignment using BLASTN, a total of 372 tentative taxa were identified. The majority of true fungal sequences recovered in this study belonged to the Ascomycota (182 tentative taxa in 2,708 reads) and Basidiomycota (172 tentative taxa in 6,837 reads). The predominant species of Ascomycota detected have been described as lichen-forming fungi, litter/wood decomposers, plant parasites, endophytes, and saprotrophs: Peltigera neopolydactyla (Lecanoromycetes), Paecilomyces sp. (Sordariomycetes), Phacopsis huuskonenii (Lecanoromycetes), and Raffaelea hennebertii (mitosporicAscomycota). The majority of sequences in the Basidiomycota matched ectomycorrhizal and wood rotting fungi, including species of the Agaricales and Aphyllophorales, respectively. A high number of sequences in the Thelephorales, Boletales, Stereales, Hymenochaetales, and Ceratobasidiomycetes were also detected. By applying high-throughput pyrosequencing, we observed a high diversity of soil fungi and found evidence that pyrosequencing is a reliable technique for investigating fungal communities in soils.

  19. October 2012 Multistate Fungal Meningitis Outbreak

    Centers for Disease Control (CDC) Podcasts

    2012-10-17

    This podcast gives an overview of the October 2012 multistate fungal meningitis outbreak, including symptoms to watch for and a website for up-to-date information.  Created: 10/17/2012 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/17/2012.

  20. 50-plus years of fungal viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ghabrial, Said A., E-mail: saghab00@email.uky.edu [Plant Pathology Department, University of Kentucky, Lexington, KY (United States); Castón, José R. [Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid (Spain); Jiang, Daohong [State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province (China); Nibert, Max L. [Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA (United States); Suzuki, Nobuhiro [Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama (Japan)

    2015-05-15

    Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution. - Highlights: • Historical perspective of fungal virus research. • Description, classification and diversity of fungal virus families. • Structural features of fungal virus particles. • Hypovirulence and exploitation of mycoviruses in biological control of plant pathogenic fungi.

  1. Grass fungal endophytes and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Craven, Kelly

    2015-03-10

    The invention provides isolated fungal endophytes and synthetic combinations thereof with host grass plants. Methods for inoculating grass plant with the endophytes, for propagating the grass-endophyte combinations, and for producing feeds and biofuels from grass-endophyte combinations are also provided.

  2. Fungal biology and agriculture: revisiting the field

    Science.gov (United States)

    Yarden, O.; Ebbole, D.J.; Freeman, S.; Rodriguez, R.J.; Dickman, M. B.

    2003-01-01

    Plant pathology has made significant progress over the years, a process that involved overcoming a variety of conceptual and technological hurdles. Descriptive mycology and the advent of chemical plant-disease management have been followed by biochemical and physiological studies of fungi and their hosts. The later establishment of biochemical genetics along with the introduction of DNA-mediated transformation have set the stage for dissection of gene function and advances in our understanding of fungal cell biology and plant-fungus interactions. Currently, with the advent of high-throughput technologies, we have the capacity to acquire vast data sets that have direct relevance to the numerous subdisciplines within fungal biology and pathology. These data provide unique opportunities for basic research and for engineering solutions to important agricultural problems. However, we also are faced with the challenge of data organization and mining to analyze the relationships between fungal and plant genomes and to elucidate the physiological function of pertinent DNA sequences. We present our perspective of fungal biology and agriculture, including administrative and political challenges to plant protection research.

  3. Fungal infections in corn picker hand injury

    Directory of Open Access Journals (Sweden)

    Obradović-Tomašev Milana

    2016-01-01

    Full Text Available Introduction. Hand injuries caused by corn pickers are relatively rare but in most cases extensive, with massive tissue destruction. Severe wounds sustained during agricultural work are contaminated, with high incidence of infection. Objective. The aim of the study was to determine the frequency and type of fungal infection in corn picker injuries and their impact on the course and outcome of treatment. Methods. Corn picker hand injuries for the period 2006-2012 were analyzed. After setting up clinical suspicion, direct examination of repeated swabs and histopathological analysis of biopsy material were done in order to detect fungi. Results. From the total number of 60 patients, there was a fungal infection in nine of them (which makes 15% of the total number of patients. Aspergillus spp. was isolated in seven patients, Candida spp. in three, and Mucor spp. in one patient. None of the patients had increased risk factors for developing a fungal infection. In most cases, there was loss of graft and tissue necrosis in previously normally looking wound, after seven or more days. All patients were treated with repeated surgical debridement and concomitant parenteral and topical application of appropriate antifungal agents. There was no need for reamputation in any patient. Conclusion. A high degree of suspicion and a multidisciplinary approach are needed for early diagnosis of fungal infection. Confirmation of diagnosis and the initiation of surgical and appropriate antifungal therapy are essential for a successful outcome.

  4. Genetics of fungal resistance to systemic fungicides

    NARCIS (Netherlands)

    Tuyl, van J.M.

    1977-01-01

    Since the introduction of the systemic fungicides, fungicide resistance has become a serious problem in plant disease control. This study was carried out in order to contribute to the knowledge about the genetics of fungal resistance to fungicides both from a practical and a fundamental

  5. Fungal peritonitis in children on peritoneal dialysis.

    NARCIS (Netherlands)

    Raaijmakers, R.; Schroder, C.; Monnens, L.A.H.; Cornelissen, E.A.M.; Warris, A.

    2007-01-01

    Fungal peritonitis is a rare but serious complication in children on peritoneal dialysis (PD). In this study, risk factors were evaluated, and therapeutic measures were reviewed. A retrospective, multi-centre study was performed in 159 Dutch paediatric PD patients, between 1980 and 2005 (3,573

  6. Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Khan, Abdul Latif; Lee, In-Jung

    2013-12-01

    In the present study, four endophytic fungi (GM-1, GM-2, GM-3, and GM-4) were tested for their ability to improve soybean plant growth under salinity stress conditions. The seed germination and plant growth were higher in seeds pretreated with endophytic fungal cultures than their controls. The positive influence of fungi on plant growth was supported by gibberellins analysis of culture filtrate (CF), which showed wide diversity and various concentrations of GAs. Specifically, GA4, GA7, GA8, GA9, GA12, and GA20 were found in fungal CFs. Under salinity stress conditions, GM-1 significantly enhanced the length and fresh weight of soybean plants relative to other fungal treatments. GM-1 effectively mitigated the adverse effects of salinity by limiting lipid peroxidation and accumulating protein content. GM-2, GM-3, and GM-4 also counteracted the salinity induced oxidative stress in soybean plants through reduction of lipid peroxidation and enhancement of protein content, maintaining the length and fresh weight of shoots. The activities of the antioxidant enzymes catalase, superoxide dismutase and peroxidase were inhibited in salinity exposed plants, while GM-1 significantly enhanced these antioxidant enzyme activities in plants under salt stress. GM-1 treatment also showed lower levels of abscisic acid and elevated levels of salicylic acid in plants under salinity stress. Hence, GM-1 was identified as Fusarium verticillioides (teleomorph Gibberella moniliformis) isolate RK01 based on its DNA sequence homology. These results suggest that endophytic fungal (F. verticillioides) pre-treatment of soybean seeds would be an effective method to promote soybean plant growth under salinity stress conditions.

  7. Potential enzyme activities in cryoturbated organic matter of arctic soils

    Science.gov (United States)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    microbial biomass, was significantly higher in topsoil organic horizons than in cryoturbated and mineral horizons. Changes in the microbial community composition were mainly caused by the relative amount of fungal biomarkers. Within the fungal community the biomarker 18:2w6, which is often associated with ectomycorrhiza, was negatively correlated to the general fungal biomarker 18:1w9. This negative correlation indicates a shift from mycorrhizal to saprotrophic fungi from topsoil towards cryoturbatad and mineral subsoil horizons. In summary, the measured oxidative and hydrolytic (potential) enzyme activities cannot explain the previously observed retarded decomposition in cryoturbated horizons. The measured actual cellulase activity however was strongly reduced in cryoturbated material compared to topsoil horizons. A possible explanation for the observed strong reduction of actual cellulase activity could lie within the fungal community structure which shifted towards saprotrophic fungi from topsoil to cryoturbated horizons.

  8. Polyphosphorylated fungal cell wall glycopeptides

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, S.J.; Black, B.; Gander, J.E.

    1987-05-01

    Penicillium charlesii secretes a 65 kDa peptidophosphogalactomannan (pPGM) containing 10 phosphodiester residues and 10 galactofuranosyl-containing galactin chains attached to a linear mannan; the polysaccharides is attached to a 3 kDa seryl- and threonyl-rich peptide. The authors have now isolated and partially characterized a form of pPGM released from mycelia of P. charlesii treated at 50/sup 0/C for 15, 30, 60 or 120 min. Two- to 3-fold more pPGM was released by heat treatment than is secreted. Crude pPGM, released by heat, was fractionated on DE-52 and was fractionated into two major fractions on the basis of its difference in negative charge. /sup 1/H-decoupled /sup 13/C NMR spectroscopy of these two fractions provided spectra very similar to that of secreted pPGM previously reported from this laboratory. /sup 1/H-decoupled /sup 31/P NMR showed major signals at 1.47, and 0.22 ppm and minor signals at 1.32, 1.15, 1.00, 0.91 and 0.76 ppm. These signals are upfield from phosphomonoesters and are in the region observed for (6-O-phosphorylcholine)- and (6-O-phosphorylethanolamine)-..cap alpha..-D-mannopyranosyl residues which are 0.22 and 0.90 ppm, respectively. These polymers contain 30 phosphodiester residues per molecule of 70 kDa mass compared with 10 phosphodiesters in secreted pPGM. Acid phosphatase and alkaline protease were the only lytic enzymes released by heat treatment. The evidence suggests that much of the pPGM is derived from cell walls; and that the polysaccharide is highly phosphorylated.

  9. Top-down control of soil fungal community composition by a globally distributed keystone consumer.

    Science.gov (United States)

    Crowther, Thomas W; Stanton, David W G; Thomas, Stephen M; A'Bear, A Donald; Hiscox, Jennifer; Jones, T Hefin; Vorísková, Jana; Baldrian, Petr; Boddy, Lynne

    2013-11-01

    The relative contribution of top-down and bottom-up processes regulating primary decomposers can influence the strength of the link between the soil animal community and ecosystem functioning. Although soil bacterial communities are regulated by bottom-up and top-down processes, the latter are considered to be less important in structuring the diversity and functioning of fungal-dominated ecosystems. Despite the huge diversity of mycophagous (fungal-feeding) soil fauna, and their potential to reverse the outcomes of competitive fungal interactions, top-down grazing effects have never been found to translate to community-level changes. We constructed soil mesocosms to investigate the potential of isopods grazing on cord-forming basidiomycete fungi to influence the community composition and functioning of a complex woodland soil microbial community. Using metagenomic sequencing we provide conclusive evidence of direct top-down control at the community scale in fungal-dominated woodland soil. By suppressing the dominant cord-forming basidiomycete fungi, isopods prevented the competitive exclusion of surrounding litter fungi, increasing diversity in a community containing several hundred fungal species. This isopod-induced modification of community composition drove a shift in the soil enzyme profile, and led to a restructuring of the wider mycophagous invertebrate community. We highlight characteristics of different soil ecosystems that will give rise to such top-down control. Given the ubiquity of isopods and basidiomycete fungi in temperate and boreal woodland ecosystems, such top-down community control could be of widespread significance for global carbon and nutrient cycling.

  10. Burden of Serious Fungal Infections in Jordan

    Directory of Open Access Journals (Sweden)

    Jamal Wadi

    2018-01-01

    Full Text Available Objective: To estimate the burden of fungal infections in Jordan for the first time. Material and Methods: Population data was from UN 2011 statistics and TB cases from WHO in 2012. Fewer than 100 patients with HIV were recorded in Jordan in 2013. Approximately 100 renal transplants and eight liver transplants are performed annually. There were 12,233 major surgical procedures in Jordan in 2013, of which 5.3% were major abdominal surgeries; candidemia was estimated in 5% of the population based on other countries, with 33% occurring in the ICU. Candida peritonitis/intra-abdominal candidiasis was estimated to affect 50% of the number of ICU candidemia cases. No adult asthma rates have been recorded for Jordan, so the rate from the Holy Land (8.54% clinical asthma from To et al. has been used. There are an estimated 49,607 chronic obstructive pulmonary disease (COPD patients in Jordan, with 64% symptomatic, 25% Gold stage 3% or 4%, and 7% (3472 are assumed to be admitted to hospital each year. No cystic fibrosis cases have been recorded. Literature searches on fungal infections revealed few data and no prevalence data on fungal keratitis or tinea capitis, even though tinea capitis comprised 34% of patients with dermatophytoses in Jordan. Results: Jordan has 6.3 million inhabitants (65% adults, 6% are >60 years old. The current burden of serious fungal infections in Jordan was estimated to affect ~119,000 patients (1.9%, not including any cutaneous fungal infections. Candidemia was estimated at 316 cases and invasive aspergillosis in leukemia, transplant, and COPD patients at 84 cases. Chronic pulmonary aspergillosis prevalence was estimated to affect 36 post-TB patients, and 175 in total. Allergic bronchopulmonary aspergillosis (ABPA and severe asthma with fungal sensitization (SAFS prevalence in adults with asthma were estimated at 8900 and 11,748 patients. Recurrent vulvovaginal candidiasis was estimated to affect 97,804 patients, using a 6

  11. Comparison of pectin-degrading fungal communities in temperate forests using glycosyl hydrolase family 28 pectinase primers targeting Ascomycete fungi.

    Science.gov (United States)

    Gacura, Matthew D; Sprockett, Daniel D; Heidenreich, Bess; Blackwood, Christopher B

    2016-04-01

    Fungi have developed a wide assortment of enzymes to break down pectin, a prevalent polymer in plant cell walls that is important in plant defense and structure. One enzyme family used to degrade pectin is the glycosyl hydrolase family 28 (GH28). In this study we developed primers for the amplification of GH28 coding genes from a database of 293 GH28 sequences from 40 fungal genomes. The primers were used to successfully amplify GH28 pectinases from all Ascomycota cultures tested, but only three out of seven Basidiomycota cultures. In addition, we further tested the primers in PCRs on metagenomic DNA extracted from senesced tree leaves from different forest ecosystems, followed by cloning and sequencing. Taxonomic specificity for Ascomycota GH28 genes was tested by comparing GH28 composition in leaves to internal transcribed spacer (ITS) amplicon composition using pyrosequencing. All sequences obtained from GH28 primers were classified as Ascomycota; in contrast, ITS sequences indicated that fungal communities were up to 39% Basidiomycetes. Analysis of leaf samples indicated that both forest stand and ecosystem type were important in structuring fungal communities. However, site played the prominent role in explaining GH28 composition, whereas ecosystem type was more important for ITS composition, indicating possible genetic drift between populations of fungi. Overall, these primers will have utility in understanding relationships between fungal community composition and ecosystem processes, as well as detection of potentially pathogenic Ascomycetes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution.

    Science.gov (United States)

    Janusz, Grzegorz; Pawlik, Anna; Sulej, Justyna; Swiderska-Burek, Urszula; Jarosz-Wilkolazka, Anna; Paszczynski, Andrzej

    2017-11-01

    Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. © FEMS 2017.

  13. Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents

    Energy Technology Data Exchange (ETDEWEB)

    Holan, Z.R.; Volesky, B. [McGill Univ., Montreal (Canada)

    1995-05-01

    Native fungal biomass of fungi Absidia orchids, Penicillium chrysogenum, Rhizopus arrhizus, Rhizopus nugricans, and modified spruce sawdust (Picea engelmanii) sequestered metals in the following decreasing preference: Pb>Cd>Ni. The highest metal uptake was q{sub max}=351 mg Pb/g for A. orchidis biomass. P. chrysogenum biomass could accumulate cadmium best at 56 mg Cd/G. The sorption of nickel was the weakest always at >5 mg Ni/g. The spruce sawdust was modified by crosslinking, oxidation to acidic oxoforms, and by substitution. The highest metal uptake was observed in phosorylated sawdust reaching q{sub max}=224 mg Pb/g, 56 mg Cd/g, and 26 mg Ni/g. The latter value is comparable to the value of nickel sorption by wet commercial resin Duolite GT-73. Some improvement in metal uptake was also observed after reinforcement of fungal biomass. 40 refs., 5 figs., 3 tabs.

  14. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants.

    Science.gov (United States)

    Wally, Owen; Punja, Zamir K

    2010-01-01

    We review the current and future potential of genetic engineering strategies used to make fungal and bacterial pathogen-resistant GM crops, illustrating different examples of the technologies and the potential benefits and short-falls of the strategies. There are well- established procedures for the production of transgenic plants with resistance towards these pathogens and considerable progress has been made using a range of new methodologies. There are no current commercially available transgenic plant species with increased resistance towards fungal and bacterial pathogens; only plants with increased resistance towards viruses are available. With an improved understanding of plant signaling pathways in response to a range of other pathogens, such as fungi, additional candidate genes for achieving resistance are being investigated. The potential for engineering plants for resistance against individual devastating diseases or for plants with resistance towards multiple pathogens is discussed in detail.

  15. Interactions between abundant fungal species influence the fungal community assemblage on limestone.

    Directory of Open Access Journals (Sweden)

    Alejandro Morón-Ríos

    Full Text Available The assembly of fungal communities on stone materials is mainly influenced by the differential bioreceptivity of such materials and environmental conditions. However, little is known about the role of fungal interactions in the colonization and establishment of fungal species. We analyzed the effects of intra- and interspecific interactions between 11 species of fungi in oligotrophic and copiotrophic media and on limestone coupons. In a previous study, these species were the most frequently isolated in the epilithic biofilms of limestone walls exposed to a subtropical climate. In the culture media, we found a greater frequency of intra- and interspecific inhibitory effects in the oligotrophic medium than in the copiotrophic medium. On the limestone coupons, all fungi were able to establish; however, the colonization success rate varied significantly. Cladosporium cladosporioides had a less extensive colonization in isolation (control than in dual interactions (coexistence with other species. Phoma eupyrena exhibited the highest colonization success rate and competitive dominance among all tested species. X-ray diffraction (XRD and scanning electron microscope (SEM analyses revealed that Pestalotiopsis maculans and Paraconiothyrium sp. produced calcium oxalate crystals during their growth on coupon surfaces, both in isolation and in dual interactions. Our results demonstrate that interactions between abundant fungal species influence the fungal colonization on substrates, the biomineralization and the fungal community assemblage growing in limestone biofilms.

  16. Interactions between abundant fungal species influence the fungal community assemblage on limestone

    Science.gov (United States)

    Morón-Ríos, Alejandro; Ortega-Morales, Benjamin Otto; De la Rosa-García, Susana; Partida-Martínez, Laila Pamela; Quintana, Patricia; Alayón-Gamboa, José Armando; Cappello-García, Silvia; González-Gómez, Santiago

    2017-01-01

    The assembly of fungal communities on stone materials is mainly influenced by the differential bioreceptivity of such materials and environmental conditions. However, little is known about the role of fungal interactions in the colonization and establishment of fungal species. We analyzed the effects of intra- and interspecific interactions between 11 species of fungi in oligotrophic and copiotrophic media and on limestone coupons. In a previous study, these species were the most frequently isolated in the epilithic biofilms of limestone walls exposed to a subtropical climate. In the culture media, we found a greater frequency of intra- and interspecific inhibitory effects in the oligotrophic medium than in the copiotrophic medium. On the limestone coupons, all fungi were able to establish; however, the colonization success rate varied significantly. Cladosporium cladosporioides had a less extensive colonization in isolation (control) than in dual interactions (coexistence) with other species. Phoma eupyrena exhibited the highest colonization success rate and competitive dominance among all tested species. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that Pestalotiopsis maculans and Paraconiothyrium sp. produced calcium oxalate crystals during their growth on coupon surfaces, both in isolation and in dual interactions. Our results demonstrate that interactions between abundant fungal species influence the fungal colonization on substrates, the biomineralization and the fungal community assemblage growing in limestone biofilms. PMID:29211748

  17. Cytochemical Labeling for Fungal and Host Components in Plant Tissues Inoculated with Fungal Wilt Pathogens

    Science.gov (United States)

    Ouellette, G. B.; Baayen, R. P.; Chamberland, H.; Simard, M.; Rioux, D.; Charest, P. M.

    2004-08-01

    Antibodies to detect pectin in present investigations attached to distinct fibrils in vessel lumina. In carnation infected with an isolate of Fusarium oxysporum f.sp., labeling of pathogen cells also occurred; in a resistant cultivar (cv.), it was coincident with proximate pectin fibrils and linked to altered fungal walls, which was the opposite in the susceptible cv., indicating that hindrance of pathogen ability to degrade pectin may be related to resistance. Labeling of the fungus in culture was nil, except in media containing pectin, showing that pectin is not native to the pathogen. Labeling of fungal walls for cellulose in elm (inoculated with Ophiostoma novo-ulmi) and carnation also occurred, linked to adsorbed host wall components. The chitin probe often attached to dispersed matter, in vessel lumina, traceable to irregularly labeled fungal cells and host wall degradation products. With an anti-horseradish peroxidase probe, host and fungal walls were equally labeled, and with a glucosidase, differences of labeling between these walls were observed, depending on pH of the test solution. Fungal extracellular matter and filamentous structures, present in fungal walls, predominantly in another elm isolate (Phaeotheca dimorphospora), did not label with any of the probes used. However, in cultures of this fungus, extracellular material labeled, even at a distance from the colony margin, with an anti-fimbriae probe.

  18. Utilizing Extracted Fungal Pigments for Wood Spalting: A Comparison of Induced Fungal Pigmentation to Fungal Dyeing

    Directory of Open Access Journals (Sweden)

    Sara C. Robinson

    2014-01-01

    Full Text Available The lengthy time periods required by current spalting methods prohibit the economically viable commercialization of spalted wood on a large scale. This work aimed to compare the effects of induced spalting in 16 Pacific Northwest woods using three common spalting fungi, Chlorociboria aeruginosa, Scytalidium cuboideum, and Scytalidium ganodermophthorum, with the significantly less time-consuming treatment of these woods using dichloromethane-extracted green, red, and yellow pigments from the same fungi. For pigment extracts, the dosage required for a pigment to internally color various wood species to 30% internal coverage was investigated. With few exceptions, treatment with pigment extracts outperformed induced spalting in terms of percent internal color coverage. Cottonwood consistently performed best with all three pigment solutions, although chinkapin performed as well as cottonwood with the red pigment, and Port Orford cedar performed as well with the yellow pigment. While no wood species showed 30% internal color coverage with the green pigment solution, a number of additional species, including pacific silver fir, madrone, dogwood, and mountain hemlock showed internal color coverage on the order of 20–30% for red and/or yellow. Cottonwood was determined to be the best suited wood species for this type of spalting application.

  19. Amperometric enzyme electrodes

    OpenAIRE

    Calvo,E.J.; Danilowicz, C.

    1997-01-01

    Recent advances on amperometric enzyme electrodes are reviewed with particular emphasis on biosensors based on Glucose Oxidase and Horseradish Peroxidase. Redox mediation by artificial soluble and polymer attached redox mediators is discussed in terms of recent theoretical developments and experimental verification. The dependence of the amperometric response on substrate and mediator concentration, enzyme concentration, electrode potential and film thickness are analyzed. Possible applicatio...

  20. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    industries, while Taq polymerase T 4 lysozyme, ribonuclease and malate dehydrogenase are enzymes used in research laboratories. A major limitation of most enzymes used in the industries/ research .... pol 1 , (8) Small domain of Klentaq 1 and (C) Superimposed cluster of aromatic residues in K1entaq1. (thick lines) ...

  1. Initial fungal colonizer affects mass loss and fungal community development in Picea abies logs 6 yr after inoculation

    Science.gov (United States)

    Daniel L. Lindner; Rimvydas Vasaitis; Ariana Kubartova; Johan Allmer; Hanna Johannesson; Mark T. Banik; Jan. Stenlid

    2011-01-01

    Picea abies logs were inoculated with Resinicium bicolor, Fomitopsis pinicola or left un-inoculated and placed in an old-growth boreal forest. Mass loss and fungal community data were collected after 6 yr to test whether simplification of the fungal community via inoculation affects mass loss and fungal community development. Three...

  2. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases.

    Science.gov (United States)

    Guerriero, Gea; Hausman, Jean-Francois; Strauss, Joseph; Ertan, Haluk; Siddiqui, Khawar Sohail

    2015-05-01

    The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification. Copyright © 2015. Published by Elsevier Ireland Ltd.

  3. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    Science.gov (United States)

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  4. Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times

    Science.gov (United States)

    Neher, Deborah A.; Weicht, Thomas R.; Bates, Scott T.; Leff, Jonathan W.; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  5. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    Directory of Open Access Journals (Sweden)

    Deborah A Neher

    Full Text Available Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here

  6. Commercial considerations for immunoproteomics.

    Science.gov (United States)

    Ferguson, Scott M

    2013-01-01

    The underlying drivers of scientific processes have been rapidly evolving, but the ever-present need for research funding is typically foremost amongst these. Successful laboratories are embracing this reality by making certain that their projects have commercial value right from the beginning of the project conception. Which factors to be considered for commercial success need to be well thought out and incorporated into a project plan with similar levels of detail as would be the technical elements. Specific examples of commercial outcomes in the field of Immunoproteomics are exemplified in this discussion.

  7. Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters.

    Science.gov (United States)

    Jung, Mi-Ja; Nam, Young-Do; Roh, Seong Woon; Bae, Jin-Woo

    2012-05-01

    Makgeolli is a traditional Korean alcoholic beverage manufactured with a natural starter, called nuruk, and grains. Nuruk is a starchy disk or tablet formed from wheat or grist containing various fungal and bacterial strains from the surrounding environment that are allowed to incorporate naturally into the starter, each of which simultaneously participates in the makgeolli fermentation process. In the current study, changes in microbial dynamics during laboratory-scale fermentation of makgeolli inoculated with six different kinds of nuruk were evaluated by barcoded pyrosequencing using fungal- and bacterial-specific primers targeting the internal transcribed spacer 2 region and hypervariable regions V1 to V3 of the 16S rRNA gene, respectively. A total of 61,571 fungal and 68,513 bacterial sequences were used for the analysis of microbial diversity in ferment samples. During fermentation, the proportion of fungal microorganisms belonging to the family Saccharomycetaceae increased significantly, and the major bacterial phylum of the samples shifted from γ-Proteobacteria to Firmicutes. The results of quantitative PCR indicated that the bacterial content in the final ferments was higher than in commercial rice beers, while total fungi appeared similar. This is the first report of a comparative analysis of bacterial and fungal dynamics in parallel during the fermentation of Korean traditional alcoholic beverage using barcoded pyrosequencing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications

    Directory of Open Access Journals (Sweden)

    Manik Prabhu Narsing Rao

    2017-06-01

    Full Text Available The demand for natural colors is increasing day by day due to harmful effects of some synthetic dyes. Bacterial and fungal pigments provide a readily available alternative source of naturally derived pigments. In contrast to other natural pigments, they have enormous advantages including rapid growth, easy processing, and independence of weather conditions. Apart from colorant, bacterial and fungal pigments possess many biological properties such as antioxidant, antimicrobial and anticancer activity. This review outlines different types of pigments. It lists some bacterial and fungal pigments and current bacterial and fungal pigment status and challenges. It also focuses on possible fungal and bacterial pigment applications.

  9. Characterization and heterologous expression of an age-dependent fungal/bacterial type chitinase of Aspergillus nidulans.

    Science.gov (United States)

    Erdei, Eva; Pusztahelyi, Tünde; Miskei, M; Barna, Teréz; Pócsi, I

    2008-09-01

    Under carbon starvation, Aspergillus nidulans produced a fungal/bacterial type chitinase, ChiB. The chiB gene was cloned and subcloned into pJC40 expression vector containing a 10XHis fusion tag, and the ChiB protein was expressed heterologously in Escherichia coli. Recombinant and native ChiB enzymes shared the same optimal pH ranges and showed similar substrate specificities with endo-acting cleavage patterns.

  10. Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii

    Directory of Open Access Journals (Sweden)

    Chunliang Xie

    2016-09-01

    Full Text Available Background/Aims: Pleurotus eryngii is one of the most valued and delicious mushrooms which are commercially cultivated on various agro-wastes. How different substrates affect lignocellulosic biomass degradation, lignocellulosic enzyme production and biological efficiency in Pleurotus eryngii was unclear. Methods and Results: In this report, Pleurotus eryngii was cultivated in substrates including ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks. The results showed that ramie stalks and kenaf stalks were found to best suitable to cultivate Pleurotus eryngii with the biological efficiency achieved at 55% and 57%, respectively. In order to establish correlations between different substrates and lignocellulosic enzymes expression, the extracellular proteins from four substrates were profiled with high throughput TMT-based quantitative proteomic approach. 241 non-redundant proteins were identified and 74 high confidence lignocellulosic enzymes were quantified. Most of the cellulases, hemicellulases and lignin depolymerization enzymes were highly up-regulated when ramie stalks and kenaf stalks were used as carbon sources. The enzyme activities results suggested cellulases, hemicellulases and lignin depolymerization enzymes were significantly induced by ramie stalks and kenaf stalks. Conclusion: The lignocelluloses degradation, most of the lignocellulosic enzymes expressions and activities of Pleurotus eryngii had positive correlation with the biological efficiency, which depend on the nature of lignocellulosic substrates. In addition, the lignocellulosic enzymes expression profiles during Pleurotus eryngii growth in different substrates were obtained. The present study suggested that most of the lignocellulosic enzymes expressions and activities can be used as tools for selecting better performing substrates for commercial mushroom cultivation.

  11. Commercial Landing System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Fisheries Statistics Division of the NOAA Fisheries has automated data summary programs that anyone can use to rapidly and easily summarize U.S. commercial...

  12. Commercial Manure Applicators

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This layer represents the office location for Commercial Manure Services (CMS). They transport, handle, store or apply manure for a fee. The company must be licensed...

  13. Regional hydrothermal commercialization plan

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-14

    This plan for the Rocky Mountain Basin and Range Region articulates the complete range of initiatives (federal, state, local, and industrial) required for the early commercialization of the regions geothermal resources. (MHR)

  14. Different types of fungal sinusitis occurring concurrently: implications for therapy.

    Science.gov (United States)

    Rupa, V; Thomas, Meera

    2013-02-01

    The purpose of this study is to describe the clinical and histopathological features, management and outcome of a series of patients with simultaneous occurrence of invasive and non-invasive fungal sinusitis (mixed fungal sinusitis). The histopathological records of patients with fungal sinusitis seen over the last 6 years were reviewed. The clinical, histopathological, treatment and follow up details of all cases with mixed fungal sinusitis were noted. Six cases of mixed fungal sinusitis with concurrent occurrence of chronic granulomatous fungal sinusitis and allergic fungal sinusitis (AFS) were seen during the study period. Most (83.3 %) had bilateral disease. All patients had undergone prior endoscopic sinus surgery at least once within the previous 2 years. Histopathological features showed predominance of invasive disease in half the patients. Except for one patient who did not report for follow up, all patients with predominant chronic granulomatous fungal sinusitis received systemic antifungal therapy and inhaled steroids. Those with predominant features of AFS received oral and inhaled steroids. Five patients with mixed fungal sinusitis who had follow up ranging from 6 months to 5 years were disease free following treatment. Mixed fungal sinusitis should be recognized by the surgeon and pathologist as a separate category of fungal sinusitis whose treatment depends on accurate histological diagnosis. A good outcome may be expected with appropriate therapy.

  15. Fungal atopy in adult cystic fibrosis.

    LENUS (Irish Health Repository)

    Henry, M

    2012-02-03

    This study set out to estimate the prevalence of atopy to a variety of common ubiquitous fungi, including A. fumigatus, in cystic fibrosis (CF), and to evaluate the investigations by which the diagnosis was made. Particular attention was paid to the usefulness of skin testing and immunoassays in detecting which patients had simple fungal atopy, and which patients were at high risk of developing allergic bronchopulmonary mycoses. This cross-sectional study included 21 adult CF patients and 20 matched controls. Serum samples were taken for the measurement of total serum IgE and specific serum IgE to nine common fungi. Immediate hypersensitivity skin prick testing to each of the fungi was also performed. Simple fungal atopy was described in subjects fulfilling the following criteria: total serum IgE > 100 KU l(-1) with specific radioimmunoassay > or = grade 1 to at least one fungus and a positive skin prick test (SPT) > or = 3 mm to the same fungus. \\'High risk\\' for developing allergic bronchopulmonary mycosis (ABPM) was described in subjects fulfilling the following criteria: total serum IgE > 200 KU l(-1) with specific radioimmunoassay > or = grade 2 to at least one fungus and a positive skin prick test (SPT) > or = 6 mm to the same fungus. The adult CF group had a significantly higher total SPT score (P=0.005) and mean total serum IgE (P<0.05) than controls. Forty-three percent of CF patients fulfilled the criteria for fungal atopy to at least a single fungus. Over half this group had an atopic tendency to more than one fungus. Nineteen percent of the CF group were at least \\'high risk\\' of developing ABPM. Skin prick testing is a better marker of fungal atopy and a better predictor of those adult CF patients at higher risk of developing ABPM than specific radioimmunoassay serum testing. There is a high prevalence of fungal atopy in the adult CF population. Total serum IgE and skin prick testing are good predictors of fungal atopy and help predict those at

  16. Mycotic pododermatitis and mycotic pneumonia in commercial turkey poults in northern California.

    Science.gov (United States)

    Stoute, Simone T; Bickford, Arthur A; Walker, Richard L; Charlton, Bruce R

    2009-07-01

    Seven 5-week-old broad-breasted white commercial meat turkeys were submitted to the California Animal Health and Food Safety laboratory in Turlock with a history of respiratory illness. The primary diagnostic findings were mycotic pododermatitis and mycotic pneumonia. The unique feature of this case was the colonization of footpad epidermis and subcutis by fungal hyphae in commercial turkey species. No fungal cultures were undertaken at the time of the necropsy; therefore, paraffin-embedded tissue sections of lung and footpads were used to extract, amplify, and sequence mycotic DNA. A mixed population of fungi was identified in both lung and footpads by polymerase chain reaction amplification of part of the large subunit ribosomal RNA gene using broad-range fungal primers and DNA sequencing. In footpads, sequences matching Cryptococcus saitoi and Cladosporium and Cudoniella species were identified. It is believed that these fungi were opportunistic pathogens originating from the litter. The fungi identified from lungs were Aspergillus species, most closely matching Aspergillus flavus and Arxiozyma telluris (most likely a contaminant). Mycotic pododermatitis in avian species is considered a rare pathologic finding, and few documented reports are available. The on-farm prevalence of footpad lesions was estimated at 3%, and there was no associated increase in the incidence of lameness or weight depression in affected birds. Microscopically, a granulomatous inflammatory reaction associated with fungal hyphae was observed in lung parenchyma. Disruption of keratinized epidermis, encrustations, and acute inflammation were also noted in footpads invaded with fungal hyphae.

  17. LEGO-inspired drug design: Discovery of novel fungal Plasma membrane H+-ATPase (Pma1) inhibitors from small molecule libraries: An introduction of HFSA-SBS_DOS-RD strategy in drug discovery.

    OpenAIRE

    Tung, Truong Thanh; Dao, Trong Tuan; Palmgren, Michael B.; Fuglsang, Anja T.; Christensen, Soeren B.; Nielsen, John.

    2017-01-01

    Fungal plasma membrane H+-ATPase (Pma1) has recently emerged as a potential target for the discovery of new antifungal agents. This p-type pump which localized on the surface of fungal cells plays a crucial role in many physiol. functions and processes inside the cell. Esp., by pumping proton to extracellular, this enzyme generates a transmembrane electrochem. gradient, as a consequence, fungi can uptake nutrients by secondary transport systems. Until now, only low resoln. of protein structur...

  18. Technology Commercialization Program 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  19. EFFECTS OF COMMERCIAL CONTRACT

    OpenAIRE

    Ana-Maria Florea; Constantin Giurca

    2014-01-01

    The contract is a legal instrument used to organize economic and social life. International trade agreement has certain features in order to ensure the international exchange of goods and services between the Contracting Parties. In terms of commercial contract, there is a foreign origin element, that gives the parties the right to determine the law to govern the contract. A fundamental aspect of commercial contract, in addition to that of determining the law applicable to judicial report est...

  20. Commodification and commercial surrogacy.

    Science.gov (United States)

    Arneson, Richard J

    1992-01-01

    ... In this article I shall argue tentatively for the claim that commercial surrogacy should be legally permissible. I am more strongly convinced that a commitment to feminism should not predispose anyone against surrogacy. At least, no arguments offered so far should persuade anyone who is committed to equal rights for women and men and the dismantling of gender-based hierarchies to favor either legal prohibition or moral condemnation of commercial surrogacy.