WorldWideScience

Sample records for commercial buildings research

  1. Industry Research and Recommendations for New Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, B.; Leach, M.; Gregory, N.; Pless, S.; Selkowitz, S.; Matthew, P.

    2014-05-01

    Researchers evaluated industry needs and developed logic models to support possible future commercial new construction research and deployment efforts that could be led or supported by DOE's Commercial Building Integration program or other national initiatives. The authors believe that these recommendations support a proposed course of action from the current state of commercial building energy efficiency to a possible long-term goal of achieving significant market penetration of cost-effective NZE buildings in all building sectors and climates by 2030.

  2. Commercial Building Energy Asset Rating Program -- Market Research

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

  3. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Ahlfeldt, Christopher [Navigant Consulting, Inc., Burlington, MA (United States); Hiraiwa, Hirokazu [Navigant Consulting, Inc., Burlington, MA (United States); Sathe, Amul [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States)

    2009-12-01

    This study characterizes and assesses the appliances used in commercial buildings. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development and demonstration (RD&D) opportunities for efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration equipment, and distributed generation systems. The study included equipment descriptions, characteristics of the equipment’s market, national energy consumption, estimates of technical potential for energy-saving technologies, and recommendations for U.S. Department of Energy programs that can promote energy savings in commercial appliances.

  4. High-performance commercial building systems

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  5. Commercial Buildings Characteristics, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  6. Green commercial building insurance in Malaysia

    Science.gov (United States)

    Yang, Yu Xin Ou; Chew, Boon Cheong; Loo, Heoy Shin; Tan, Lay Hong

    2017-03-01

    Green building construction is growing tremendously globally even in Malaysia. Currently, there are approximate 636 buildings have registered and to be certified with Green Building Index. Among these buildings, 45 buildings have already fulfilled the requirements and fully certified. The other buildings still under provisional certification stage. Malaysia had adopted Green Building Index in 2009 to support a move to promote green building concept. Malaysia starts to move towards green building because Malaysian construction and building industry realizes that both energy consumed and waste produced are reduced without irreversible impacts to ecosystems. Consequently, insurance companies such as Fireman's Fund from America has started the green building insurance policies for their green building in the year of 2006, while Malaysia still remain the coverage for green buildings using conventional property insurance. There are lacks of efforts to be seen from insurance companies to propose green building insurance for these green buildings. There are a few factors which can take into consideration for insurance companies to start the very first green building insurance in Malaysia. Although there are challenges, some efficient strategies have been identified to overcome the problems. The methods used in this research topic is qualitative research. The results obtained shows that green commercial building insurance has a huge business opportunity in Malaysia because the number of green commercial buildings are increasing tremendously in Malaysia. It is a favor to implement green building insurance in Malaysia. Furthermore, insurance companies can consider to add in extra coverage in standard building policy to provide extra protection for non-certified green buildings which have the intention to rebuilt in green when damage happens. Generally, it is very important to introduce green commercial buildings insurance into Malaysia so that all of the green commercial

  7. Predictive Solar-Integrated Commercial Building Load Control

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, Nathan [EdgePower Inc., Aspen, CO (United States)

    2017-01-31

    This report is the final technical report for the Department of Energy SunShot award number EE0007180 to EdgePower Inc., for the project entitled “Predictive Solar-Integrated Commercial Building Load Control.” The goal of this project was to successfully prove that the integration of solar forecasting and building load control can reduce demand charge costs for commercial building owners with solar PV. This proof of concept Tier 0 project demonstrated its value through a pilot project at a commercial building. This final report contains a summary of the work completed through he duration of the project. Clean Power Research was a sub-recipient on the award.

  8. Commercial Building Partnerships Replication and Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  9. U.S. Department of Energy Commercial Reference Building Models of the National Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

    2011-02-01

    The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

  10. The Role of Energy Storage in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

    2010-09-30

    Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of

  11. Commercial building energy use in six cities in Southern China

    International Nuclear Information System (INIS)

    Xu, Peng; Huang, Joe; Shen, Pengyuan; Ma, Xiaowen; Gao, Xuefei; Xu, Qiaolin; Jiang, Han; Xiang, Yong

    2013-01-01

    With China’s continuing economic growth, the percentage of government offices and large commercial buildings has increased tremendously; thus, the impact of their energy usage has grown drastically. In this survey, a database with more than 400 buildings was created and analyzed. We researched energy consumption by region, building type, building size and vintage, and we determined the total energy use and performed end use breakdowns of typical buildings in six cities in southern China. The statistical analysis shows that, on average, the annual building electricity use ranged from 50 to 100 kW h/m 2 for office buildings, 120 to 250 kW h/m 2 for shopping malls and hotels, and below 40 kW h/m 2 for education facilities. Building size has no direct correlation with building energy intensity. Although modern commercial buildings built in the 1990s and 2000s did not use more energy on average than buildings built previously, the highest electricity intensive modern buildings used much more energy than those built prior to 1990. Commercial buildings in China used less energy than buildings in equivalent weather locations in the US and about the same amount of energy as buildings in India. However, commercial buildings in China provide comparatively less thermal comfort than buildings in comparable US climates. - Highlights: ► The worst modern buildings use more energy than the worst old buildings. ► Government office buildings did not use more energy than private office buildings. ► Commercial buildings in China use less energy than buildings in the US. ► Modern commercial buildings don't use more energy than old buildings.

  12. Maintenance and Safety Practices of Escalator in Commercial Buildings

    Science.gov (United States)

    Afida Isnaini Janipha, Nurul; Nur Aina Syed Alwee, Sharifah; Ariff, Raihan Mohd; Ismail, Faridah

    2018-02-01

    The escalator is very crucial to transport a person from one place to another. Nevertheless, there are many cases recorded the accidents in relation to escalator. These may occur due to lack of maintenance which leads to systems breakdown, poor safety practices, wear and tear, users’ negligence and others. Thus, proper maintenance systems need to be improvised to prevent and reduce escalator accident in future. This research was aimed to determine the escalator maintenance activities and safety practices in a commercial building. Three case studies were selected within Selangor area. Semi-structured interviews were conducted for collecting data from these three case studies. To achieve the aim of this research, the study was carried out on the maintenance activities, safety practices and cost related to escalator maintenance. As one of the important means of access in building, it is very crucial to increase effectiveness of escalator particularly in commercial building. It is expected that readers will get clear information on the maintenance activities and safety practices of escalator in commercial building.

  13. California commercial building energy benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the

  14. Challenges in Commercial Buildings | Buildings | NREL

    Science.gov (United States)

    systems Assessing the energy and economic impacts of various technologies, giving priority to those that standardized language for commercial building energy audit data that can be used by software developers to exchange data between audit tools, and can be required by building owners and audit program managers to

  15. Commercial Buildings Energy Performance within Context

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Kjærgaard, Mikkel Baun; Shaker, Hamid Reza

    2015-01-01

    Existing commercial buildings represent a challenge in the energy efficiency domain. Energy efficiency of a building, very often equalized to a building’s performance should not be observed as a standalone issue. For commercial buildings, energy efficiency needs to be observed and assessed within...

  16. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Yazdanian, Mehry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2009-10-01

    Windows play a significant role in commercial buildings targeting the goal of net zero energy. This report summarizes research methodology and findings in evaluating the energy impact of windows technologies for commercial buildings. The large office prototypical building, chosen from the DOE commercial building benchmarks, was used as the baseline model which met the prescriptive requirements of ASHRAE Standard 90.1-2004. The building simulations were performed with EnergyPlus and TMY3 weather data for five typical US climates to calculate the energy savings potentials of six windows technologies when compared with the ASHRAE 90.1-2004 baseline windows. The six windows cover existing, new, and emerging technologies, including ASHRAE 189.1 baseline windows, triple pane low-e windows, clear and tinted double pane highly insulating low-e windows, electrochromic (EC) windows, and highly insulating EC windows representing the hypothetically feasible optimum windows. The existing stocks based on average commercial windows sales are included in the analysis for benchmarking purposes.

  17. Lost opportunities: Modeling commercial building energy code adoption in the United States

    International Nuclear Information System (INIS)

    Nelson, Hal T.

    2012-01-01

    This paper models the adoption of commercial building energy codes in the US between 1977 and 2006. Energy code adoption typically results in an increase in aggregate social welfare by cost effectively reducing energy expenditures. Using a Cox proportional hazards model, I test if relative state funding, a new, objective, multivariate regression-derived measure of government capacity, as well as a vector of control variables commonly used in comparative state research, predict commercial building energy code adoption. The research shows little political influence over historical commercial building energy code adoption in the sample. Colder climates and higher electricity prices also do not predict more frequent code adoptions. I do find evidence of high government capacity states being 60 percent more likely than low capacity states to adopt commercial building energy codes in the following year. Wealthier states are also more likely to adopt commercial codes. Policy recommendations to increase building code adoption include increasing access to low cost capital for the private sector and providing noncompetitive block grants to the states from the federal government. - Highlights: ► Model the adoption of commercial building energy codes from 1977–2006 in the US. ► Little political influence over historical building energy code adoption. ► High capacity states are over 60 percent more likely than low capacity states to adopt codes. ► Wealthier states are more likely to adopt commercial codes. ► Access to capital and technical assistance is critical to increase code adoption.

  18. Commercial Building Partnership General Merchandise Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  19. 76 FR 63913 - Commercial Building Workforce Job/Task Analyses

    Science.gov (United States)

    2011-10-14

    ... were developed for the following six job classifications: Commercial Building Energy Auditor.... Workshops were held for each of the following job classifications: Commercial Building Energy Auditor... field (e.g., commercial building energy auditor, commercial building energy modeler, commissioning/retro...

  20. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  1. Development of a California commercial building benchmarking database

    International Nuclear Information System (INIS)

    Kinney, Satkartar; Piette, Mary Ann

    2002-01-01

    Building energy benchmarking is a useful starting point for commercial building owners and operators to target energy savings opportunities. There are a number of tools and methods for benchmarking energy use. Benchmarking based on regional data can provides more relevant information for California buildings than national tools such as Energy Star. This paper discusses issues related to benchmarking commercial building energy use and the development of Cal-Arch, a building energy benchmarking database for California. Currently Cal-Arch uses existing survey data from California's Commercial End Use Survey (CEUS), a largely underutilized wealth of information collected by California's major utilities. Doe's Commercial Building Energy Consumption Survey (CBECS) is used by a similar tool, Arch, and by a number of other benchmarking tools. Future versions of Arch/Cal-Arch will utilize additional data sources including modeled data and individual buildings to expand the database

  2. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  3. Assessment of the Technical Potential for Achieving Net Zero-Energy Buildings in the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2007-12-01

    This report summarizes the findings from research conducted at NREL to assess the technical potential for zero-energy building technologies and practices to reduce the impact of commercial buildings on the U.S. energy system. Commercial buildings currently account for 18% of annual U.S. energy consumption, and energy use is growing along with overall floor area. Reducing the energy use of this sector will require aggressive research goals and rapid implementation of the research results.

  4. Development of a California commercial building benchmarking database

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Satkartar; Piette, Mary Ann

    2002-05-17

    Building energy benchmarking is a useful starting point for commercial building owners and operators to target energy savings opportunities. There are a number of tools and methods for benchmarking energy use. Benchmarking based on regional data can provides more relevant information for California buildings than national tools such as Energy Star. This paper discusses issues related to benchmarking commercial building energy use and the development of Cal-Arch, a building energy benchmarking database for California. Currently Cal-Arch uses existing survey data from California's Commercial End Use Survey (CEUS), a largely underutilized wealth of information collected by California's major utilities. Doe's Commercial Building Energy Consumption Survey (CBECS) is used by a similar tool, Arch, and by a number of other benchmarking tools. Future versions of Arch/Cal-Arch will utilize additional data sources including modeled data and individual buildings to expand the database.

  5. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  6. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    International Nuclear Information System (INIS)

    Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

    2000-01-01

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards

  7. BEPS redesign of 168 commercial buildings: summary report

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, J.L.; Deringer, J.J.; Moreno, S.; Misuriello, H.P.

    1984-05-01

    The objective of this report is to present, in usable form, summary data from the Building Energy Performance Standards (BEPS) Phase II commercial buildings energy research conducted in 1978-1979. Summary data presented were obtained from two major research efforts: the BEPS Phase II Redesign experiment; and the related research on ASHRAE Standard 90-75R. The bulk of this report consists of data tabulations of key energy parameters for the 168 sample buildings, which were tabulated from computer-stored files of the 1978-1979 data. Two kinds of tabulations are included: numerical tabulations that extracted information from the computer-stored data base for the 168 sample buildings; and graphic presentations of the computer-generated data, plus data extracted from other sources. The intent is to provide a single data compendium of key energy-related factors from the 1978 redesign experiment and the associated 1978-1979 ASHRAE Standard 90-75R research. This report also supplements the information for which there was not space in the magazine articles. Thus, for some building types, additional analysis, comments, and data tabulations are included that could not be included in the articles because space was limited. These additional analysis items are not consistent across building types because both the energy conservation opportunities and the design strategies applied by the building designers varied considerably by building type. The chapters have been entered individually into EDB and ERA.

  8. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-04-01

    This report describes background research for preparation of a plan for development of whole-building energy targets for new commercial buildings. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research development, and technology transfer activities with other interested organizations are actively pursued.

  9. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  10. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  11. Overview of Commercial Building Partnerships in Higher Education

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, Glenn [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-03-01

    Higher education uses less energy per square foot than most commercial building sectors. However, higher education campuses house energy-intensive laboratories and data centers that may spend more than this average; laboratories, in particular, are disproportionately represented in the higher education sector. The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems–including some considered too costly or technologically challenging–and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions.

  12. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  13. Transactive Control of Commercial Buildings for Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Hao, He; Corbin, Charles D.; Kalsi, Karanjit; Pratt, Robert G.

    2017-01-01

    Transactive control is a type of distributed control strategy that uses market mechanism to engage self-interested responsive loads to achieve power balance in the electrical power grid. In this paper, we propose a transactive control approach of commercial building Heating, Ventilation, and Air- Conditioning (HVAC) systems for demand response. We first describe the system models, and identify their model parameters using data collected from Systems Engineering Building (SEB) located on our Pacific Northwest National Laboratory (PNNL) campus. We next present a transactive control market structure for commercial building HVAC system, and describe its agent bidding and market clearing strategies. Several case studies are performed in a simulation environment using Building Control Virtual Test Bed (BCVTB) and calibrated SEB EnergyPlus model. We show that the proposed transactive control approach is very effective at peak clipping, load shifting, and strategic conservation for commercial building HVAC systems.

  14. Characterization of commercial building appliances. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.F.; Teagan, P.W.; Dieckmann, J.T.

    1993-08-01

    This study focuses on ``other`` end-uses category. The purpose of this study was to determine the relative importance of energy end-use functions other than HVAC and lighting for commercial buildings, and to identify general avenues and approaches for energy use reduction. Specific energy consuming technologies addressed include non-HVAC and lighting technologies in commercial buildings with significant energy use to warrant detailed analyses. The end-uses include office equipment, refrigeration, water heating, cooking, vending machines, water coolers, laundry equipment and electronics other than office equipment. The building types include offices, retail, restaurants, schools, hospitals, hotels/motels, grocery stores, and warehouses.

  15. Energy savings potential from improved building controls for the US commercial building sector

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Xie, Yulong; Zhao, Mingjie

    2017-09-27

    The U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) sponsored a study to determine the potential national savings achievable in the commercial building sector through widespread deployment of best practice controls, elimination of system and component faults, and use of better sensing. Detailed characterization of potential savings was one source of input to set research, development, and deployment (RD&D) goals in the field of building sensors and controls. DOE’s building energy simulation software, EnergyPlus, was employed to estimate the potential savings from 34 measures in 9 building types and across 16 climates representing almost 57% of commercial building sector energy consumption. In addition to estimating savings from individual measures, three packages of measures were created to estimate savings from the packages. These packages represented an 1) efficient building, 2) typical building, and 3) inefficient building. To scale the results from individual measures or a package to the national scale, building weights by building type and climate locations from the Energy Information Administration’s 2012 Commercial Building Energy Consumption Survey (CBECS) were used. The results showed significant potential for energy savings across all building types and climates. The total site potential savings from individual measures by building type and climate location ranged between 0% and 25%. The total site potential savings by building type aggregated across all climates (using the CBECS building weights) for each measure varied between 0% and 16%. The total site potential savings aggregated across all building types and climates for each measure varied between 0% and 11%. Some individual measures had negative savings because correcting underlying operational problems (e.g., inadequate ventilation) resulted in increased energy consumption. When combined into packages, the overall national savings potential is estimated to be 29

  16. Recovery Act: Training Program Development for Commercial Building Equipment Technicians

    Energy Technology Data Exchange (ETDEWEB)

    Leah Glameyer

    2012-07-12

    The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how to best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project

  17. Building communities and social potential: Between and beyond organizations and individuals in commercial properties

    International Nuclear Information System (INIS)

    Janda, Kathryn B.

    2014-01-01

    Axon et al., (2012) argue that maximizing the potential for energy efficiency and demand reduction in tenanted commercial properties requires a “building communities” approach. This paper develops and extends Axon et al.′s proposed framework in two ways. First, by extending its applicability from tenanted to owner-occupied properties. Second, by situating it within the literature related to organizational culture, occupant behaviours, and technology adoption. The paper begins with a brief review of the existing research on people, energy and commercial buildings. This literature tends to address either organizational choices, or occupant behavior, but it rarely crosses the analytical boundaries between these two groups. The paper then explores these different levels of analysis within a 3Cs – “concern, capacity, and conditions” – framework, which was developed to describe and distinguish organizational responses to an energy crisis. The combination of the “building communities” and 3Cs frames reveals gaps and grey areas between organizational culture, occupant behaviour, and technology adoption where further conservation opportunities may lie. These understudied areas suggest that there may be “social potential” for change that is between and beyond the frames used by previous research in the field. - Highlights: • We discuss literature on occupant behaviour and organisational factors in commercial buildings. • We introduce two frameworks drawn from previous research: “3Cs” (concern, capacity, and conditions) and “building communities”. • Gaps in the literature call for a “building communities” approach to the 3Cs, which we recommend for near-term research. • We introduce the concept of “social potential” as a counterpoint to technical potential for longer-term research

  18. ISO 50001 for US Commercial Buildings - Current Status and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jingjing; Sheaffer, Paul

    2017-12-01

    ''ISO 50001: 2011 Energy management systems – Requirements with guidance for use'' is a voluntary International Standard which provides organizations a proven framework to manage energy and continuously improve their energy performance. Implementing ISO 50001 in the commercial building sector has its unique opportunities and challenges in comparison with the industrial sector. The energy footprint of a portfolio of commercial buildings can be just as significant as a large industrial facility in comparison. There are many energy-saving opportunities in commercial buildings that can be addressed without capital investments, and the perceived risks for making energy improvements can be lower than in the industrial sector. In addition, the energy-consuming systems in commercial buildings are limited in types and have many similarities across buildings, which makes it much easier to standardize many ISO 50001 required processes, 5 procedures and documents to simplify implementation. There are also some sector-unique challenges, such as less familiar with ISO systems and the certification process. Another challenge arises from the complexity in some buildings’ ownership, tenancy, and O&M responsibilities. This whitepaper discusses these opportunities and issues in detail. The paper also recommends the characteristics of organizations in the commercial building sector that can benefit the most from adopting the ISO 50001 standard – namely the “suitable market”. Eight segments (education, food sales, retail, inpatient health care, hospitality, office buildings, laboratories and data centers) within the commercial building sector are highlighted.

  19. A review study of maintenance and management issues in Malaysian commercial building towards sustainable future practice

    Science.gov (United States)

    Nawi, Mohd Nasrun Mohd; Baharum, Faizal; Ibrahim, Siti Halipah; Riazi, Salman Riazi Mehdi

    2017-10-01

    Good management of the building will be able to influence the quality of the buildings that remain long, safe and beautiful without any damage and problems. This research paper aims to explore the issue of maintenance and management that appear in managing the commercial building in Malaysian construction and property industry. The data in this research has been gathered through the reviewing process of secondary data such as journals, proceeding, thesis etc. in the area that related to maintenance and management issue in commercial building. As highlighted by previous study, building a good management can ensure that the facilities available in the building are well and meet the standard. Thus, exposure to the problems and needs in the management of the building would be able to improve the quality of building management systems to be more effective and fulfil the client needs and features.

  20. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  1. An Examination of the Performance Based Building Code on the Design of a Commercial Building

    Directory of Open Access Journals (Sweden)

    John Greenwood

    2012-11-01

    Full Text Available The Building Code of Australia (BCA is the principal code under which building approvals in Australia are assessed. The BCA adopted performance-based solutions for building approvals in 1996. Performance-based codes are based upon a set of explicit objectives, stated in terms of a hierarchy of requirements beginning with key general objectives. With this in mind, the research presented in this paper aims to analyse the impact of the introduction of the performance-based code within Western Australia to gauge the effect and usefulness of alternative design solutions in commercial construction using a case study project. The research revealed that there are several advantages to the use of alternative designs and that all parties, in general, are in favour of the performance-based building code of Australia. It is suggested that change in the assessment process to streamline the alternative design path is needed for the greater use of the performance-based alternative. With appropriate quality control measures, minor variations to the deemed-to-satisfy provisions could easily be managed by the current and future building surveying profession.

  2. Commercial Building Energy Asset Rating Tool User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Makhmalbaf, Atefe; Matsumoto, Steven W.

    2012-05-01

    The U.S. Department of Energy’s Commercial Building Energy Asset Rating Tool is a web-based system that is designed to allow building owners, managers, and operators to more accurately assess the energy performance of their commercial buildings. This document provide a step-by-step instruction on how to use the tool.

  3. Energy consumption quota management of Wanda commercial buildings in China

    Science.gov (United States)

    Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.

    2016-08-01

    There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.

  4. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatten, Mike [Solarc Energy Group, LLC, Seattle, WA (United States); Jones, Dennis [Group 14 Engineering, Inc., Denver, CO (United States); Cooper, Matthew [Group 14 Engineering, Inc., Denver, CO (United States)

    2017-03-24

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research is to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.

  5. Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Petritchenko, Oxana [Navigant Consulting, Burlington, MA (United States); Ringo, Decker [Navigant Consulting, Burlington, MA (United States); McClive, Sam [Navigant Consulting, Burlington, MA (United States)

    2017-12-01

    The Building Technologies Office (BTO) commissioned this characterization and technology assessment of heating, ventilation, and air-conditioning (HVAC) systems for commercial buildings. The main objectives of this study: Identify a wide range of technology options in varying stages of development that could reduce commercial HVAC energy consumption; Characterize these technology options based on their technical energy-savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and the ability to compete with conventional HVAC technologies; Make specific recommendations to DOE and other stakeholders on potential research, development, and demonstration (RD&D) activities that would support further development of the most promising technology options.

  6. Development of a Training Program for Commercial Building Technicians

    Energy Technology Data Exchange (ETDEWEB)

    Rinholm, Rod

    2013-05-31

    This project focused on developing and deploying a comprehensive program of 22 training modules, including certification requirements, and accreditation standards for commercial building technicians, to help achieve the full savings potential of energy efficient buildings, equipment, and systems. This curriculum extended the currently available commercial building technician programs -- training a labor force in a growing market area focused on energy efficiency. The program helps to remove a major market impediment to low energy/zero energy commercial building system acceptance, namely a lack of operating personnel capable of handling more complex high efficiency systems. The project developed a training curriculum for commercial building technicians, with particular focus on high-efficiency building technology, and systems. In Phase 1, the project team worked collaboratively in developing a draft training syllabus to address project objectives. The team identified energy efficiency knowledge gaps in existing programs and plans and plans to address the gaps with either modified or new curricula. In Phase 2, appropriate training materials were developed to meet project objectives. This material was developed for alternative modes of delivery, including classroom lecture materials, e-learning elements, video segments, exercises, and hands-on training elements. A Certification and Accreditation Plan and a Commercialization and Sustainability Plan were also investigated and developed. The Project Management Plan was updated quarterly and provided direction on the management approaches used to accomplish the expected project objectives. GTI project management practices tightly coordinate project activities using management controls to deliver optimal customer value. The project management practices include clear scope definition, schedule/budget tracking, risk/issue resolution and team coordination.

  7. LEARNING FROM COMMERCIAL VERNACULAR BUILDING TYPES: A NORTH AMERICAN CASE STUDY

    Directory of Open Access Journals (Sweden)

    Stephen Verderber

    2016-07-01

    Full Text Available A substantial literature exists on commercial vernacular architecture in North America. This literature has examined everyday places and iconic building types including suburbia, roadside motels, vintage diners, fast food franchises, residential trailer parks, signage, unique commercial establishments, and shopping malls. These places and buildings are generally classified as expressions of folk vernacular culture. In response, Attention Restoration Theory, an environmental cognition perspective based in human information processing research, provided the foundation for an investigation of the food truck/ trailer and its immediate installation context within a North American case study context. Visual documentation, interviews, and archival fieldwork provided the basis for the articulation of a typology. These structures were found to express automaticity, as satisfying the timeless human preference for association with nature, a sense of psychological respite, and as a physical setting visually distinct from its larger urban environment context. Directions for future research on this topic are outlined together with insights for application by architects and urban planners.

  8. A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

  9. VOLTTRON™: Tech-to-Market Best-Practices Guide for Small- and Medium-Sized Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haack, Jereme N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nicholls, Andrew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-11

    VOLTTRON™ is an open-source distributed control and sensing platform developed by Pacific Northwest National Laboratory for the U.S. Department of Energy. It was developed to be used by the Office of Energy Efficiency and Renewable Energy to support transactive controls research and deployment activities. VOLTTRON is designed to be an overarching integration platform that could be used to bring together vendors, users, and developers and enable rapid application development and testing. The platform is designed to support modern control strategies, including the use of agent- and transaction-based controls. It also is designed to support the management of a wide range of applications, including heating, ventilation, and air-conditioning systems; electric vehicles; and distributed-energy and whole-building loads. This report was completed as part of the Building Technologies Office’s Technology-to-Market Initiative for VOLTTRON’s Market Validation and Business Case Development efforts. The report provides technology-to-market guidance and best practices related to VOLTTRON platform deployments and commercialization activities for use by entities serving small- and medium-sized commercial buildings. The report characterizes the platform ecosystem within the small- and medium-sized commercial building market and articulates the value proposition of VOLTTRON for three core participants in this ecosystem: 1) platform owners/adopters, 2) app developers, and 3) end-users. The report also identifies key market drivers and opportunities for open platform deployments in the small- and medium-sized commercial building market. Possible pathways to the market are described—laboratory testing to market adoption to commercialization. We also identify and address various technical and market barriers that could hinder deployment of VOLTTRON. Finally, we provide “best practice” tech-to-market guidance for building energy-related deployment efforts serving small- and

  10. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  11. Procedure for Measuring and Reporting Commercial Building Energy Performance

    Energy Technology Data Exchange (ETDEWEB)

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  12. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  13. Commercializing Government-sponsored Innovations: Twelve Successful Buildings Case Studies

    Science.gov (United States)

    Brown, M. A.; Berry, L. G.; Goel, R. K.

    1989-01-01

    This report examines the commercialization and use of R and D results funded by DOE's Office of Buildings and Community Systems (OBCS), an office that is dedicated to improving the energy efficiency of the nation's buildings. Three goals guided the research described in this report: to improve understanding of the factors that hinder or facilitate the transfer of OBCS R and D results, to determine which technology transfer strategies are most effective and under what circumstances each is appropriate, and to document the market penetration and energy savings achieved by successfully-commercialized innovations that have received OBCS support. Twelve successfully-commercialized innovations are discussed here. The methodology employed involved a review of the literature, interviews with innovation program managers and industry personnel, and data collection from secondary sources. Six generic technology transfer strategies are also described. Of these, contracting R and D to industrial partners is found to be the most commonly used strategy in our case studies. The market penetration achieved to date by the innovations studied ranges from less than 1% to 100%. For the three innovations with the highest predicted levels of energy savings (i.e., the flame retention head oil burner, low-E windows, and solid-state ballasts), combined cumulative savings by the year 2000 are likely to approach 2 quads. To date the energy savings for these three innovations have been about 0.2 quads. Our case studies illustrate the important role federal agencies can play in commercializing new technologies.

  14. Establishing a commercial building energy data framework for India

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Maithili [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumar, Satish [Alliance for an Energy Efficient Economy, New Delhi (India); Mathew, Sangeeta [Alliance for an Energy Efficient Economy, New Delhi (India); Stratton, Hannah [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathew, Paul A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singh, Mohini [Synurja, Inc. (India)

    2018-04-18

    Buildings account for over 40% of the world’s energy consumption and are therefore a key contributor to a country’s energy as well as carbon budget. Understanding how buildings use energy is critical to understanding how related policies may impact energy use. Data enables decision making, and good quality data arms consumers with the tools to compare their energy performance to their peers, allowing them to differentiate their buildings in the real estate market on the basis of their energy footprint. Good quality data are also essential for policy makers to prioritize their energy saving strategies and track implementation. The United States’ Commercial Building Energy Consumption Survey (CBECS) is an example of a successful data framework that is highly useful for governmental and nongovernmental initiatives related to benchmarking energy forecasting, rating systems and metrics, and more. The Bureau of Energy Efficiency (BEE) in India developed the Energy Conservation Building Code (ECBC) and launched the Star Labeling program for a few energy-intensive building segments as a significant first step. However, a data driven policy framework for systematically targeting energy efficiency in both new construction and existing buildings has largely been missing. There is no quantifiable mechanism currently in place to track the impact of code adoption through regular reporting/survey of energy consumption in the commercial building stock. In this paper we present findings from our study that explored use cases and approaches for establishing a commercial buildings data framework for India.

  15. Commercial Building Energy Saver: An energy retrofit analysis toolkit

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Piette, Mary Ann; Chen, Yixing; Lee, Sang Hoon; Taylor-Lange, Sarah C.; Zhang, Rongpeng; Sun, Kaiyu; Price, Phillip

    2015-01-01

    Highlights: • Commercial Building Energy Saver is a powerful toolkit for energy retrofit analysis. • CBES provides benchmarking, load shape analysis, and model-based retrofit assessment. • CBES covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • CBES includes a web app, API, and a database of energy efficiency performance. • CBES API can be extended and integrated with third party energy software tools. - Abstract: Small commercial buildings in the United States consume 47% of the total primary energy of the buildings sector. Retrofitting small and medium commercial buildings poses a huge challenge for owners because they usually lack the expertise and resources to identify and evaluate cost-effective energy retrofit strategies. This paper presents the Commercial Building Energy Saver (CBES), an energy retrofit analysis toolkit, which calculates the energy use of a building, identifies and evaluates retrofit measures in terms of energy savings, energy cost savings and payback. The CBES Toolkit includes a web app (APP) for end users and the CBES Application Programming Interface (API) for integrating CBES with other energy software tools. The toolkit provides a rich set of features including: (1) Energy Benchmarking providing an Energy Star score, (2) Load Shape Analysis to identify potential building operation improvements, (3) Preliminary Retrofit Analysis which uses a custom developed pre-simulated database and, (4) Detailed Retrofit Analysis which utilizes real-time EnergyPlus simulations. CBES includes 100 configurable energy conservation measures (ECMs) that encompass IAQ, technical performance and cost data, for assessing 7 different prototype buildings in 16 climate zones in California and 6 vintages. A case study of a small office building demonstrates the use of the toolkit for retrofit analysis. The development of CBES provides a new contribution to the field by providing a straightforward and uncomplicated decision

  16. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  17. Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China

    International Nuclear Information System (INIS)

    Hou, Jing; Liu, Yisheng; Wu, Yong; Zhou, Nan; Feng, Wei

    2016-01-01

    The energy efficiency of existing commercial buildings is more challenging to regulate and improve than the energy efficiency of new constructions. In 2011 and 2012, the Chinese Government selected four cities- Shanghai, Tianjin, Shenzhen, and Chongqing- to implement pilot commercial building energy efficiency retrofit program. Based on site surveys and expert interviews in these pilot cities, this research conducted a comparative analysis on incentive policies of local city level. The analysis results show that policy designs of existing commercial buildings should be further improved. The aspects that influence the implementation effect in the future, such as subsidy level, installments, and business model promotion, should be specified in the policy clauses. Referring to the technical solution and cost-benefit in Chongqing, we found that lighting system is the most common retrofit objects while envelope system is the least common one. And the subsidy incentive is greatest for educational buildings, followed by office buildings. In the end, we further discussed the problems and obstacles in commercial building retrofit market, and provided a series of recommendations. - Highlights: • Data and information were collected through site surveys to the four pilot cities. • Policy design and effectiveness in four cities were comparatively analyzed. • Well-designed policy increases market response, energy savings and EMC adoption. • Lighting is the most common retrofit while envelope is the least common one. • Subsidy incentive is greatest for educational buildings due to the utility tariff.

  18. Commercializing government-sponsored innovations: Twelve successful buildings case studies

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Berry, L.G.; Goel, R.K.

    1989-01-01

    This report examines the commercialization and use of R and D results funded by DOE's Office of Buildings and Community Systems (OBCS), an office that is dedicated to improving the energy efficiency of the nation's buildings. Three goals guided the research described in this report: to improve understanding of the factors that hinder or facilitate the transfer of OBCS R and D results, to determine which technology transfer strategies are most effective and under what circumstances each is appropriate, and to document the market penetration and energy savings achieved by successfully-commercialized innovations that have received OBCS support. Twelve successfully-commercialized innovations are discussed here. The methodology employed involved a review of the literature, interviews with innovation program managers and industry personnel, and data collection from secondary sources. Six generic technology transfer strategies are also described. Of these, contracting R and D to industrial partners is found to be the most commonly used strategy in our case studies. The market penetration achieved to date by the innovations studied ranges from less than 1% to 100%. For the three innovations with the highest predicted levels of energy savings (i.e., the flame retention head oil burner, low-E windows, and solid-state ballasts), combined cumulative savings by the year 2000 are likely to approach 2 quads. To date the energy savings for these three innovations have been about 0.2 quads. Our case studies illustrate the important role federal agencies can play in commercializing new technologies. 27 refs., 21 figs., 4 tabs.

  19. BizWatts: A modular socio-technical energy management system for empowering commercial building occupants to conserve energy

    International Nuclear Information System (INIS)

    Gulbinas, R.; Jain, R.K.; Taylor, J.E.

    2014-01-01

    Highlights: • We developed a socio-technical commercial building energy management system. • It was designed for directly engaging and connecting building occupants via feedback. • We collected an array of clickstream data for internal design validation. • A pilot study validated its ability to drive energy savings in commercial buildings. - Abstract: Commercial buildings represent a significant portion of energy consumption and environmental emissions worldwide. To help mitigate the environmental impact of building operations, building energy management systems and behavior-based campaigns designed to reduce energy consumption are becoming increasingly popular. In this paper, we describe the development of a modular socio-technical energy management system, BizWatts, which combines the two approaches by providing real-time, appliance-level power management and socially contextualized energy consumption feedback. We describe in detail the physical and virtual architecture of the system, which simultaneously engages building occupants and facility managers, as well as the main principles behind the interface design and component functionalities. A discussion about how the data collection capabilities of the system enable insightful commercial building energy efficiency studies and quantitative network analysis is also included. We conclude by commenting on the validation of the system, identifying current system limitations and introducing new research avenues that the development and deployment of BizWatts enables

  20. Strategies for Demand Response in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  1. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  2. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  3. Analysis of institutional mechanisms affecting residential and commercial buildings retrofit

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

  4. Commercial Buildings Partnerships - Overview of Higher education projects

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Kristen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-02-01

    The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems – including some considered too costly or technologically challenging – and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions. CBP design goals aimed to achieve 50 percent energy savings compared to ANSI/ASHRAE/IES Standard 90.1-2004 for new construction, while retrofits are designed to consume at least 30 percent less energy than either Standard 90.1-2004 or current consumption. After construction and commissioning of the project, laboratory staff continued to work with partners to collect and analyze data for verification of the actual energy reduction. CBP projects represent diverse building types in commercial real estate, including lodging, grocery, retail, higher education, office, and warehouse/storage facilities. Partners also commit to replicating low-energy technologies and strategies from their CBP projects throughout their building portfolios. As a result of CBP projects, five sector overviews (Lodging, Food Sales, General Merchandise, Higher Education, Offices) were created to capture successful strategies and recommended energy efficiency measures that could broadly be applied across these sectors. These overviews are supplemented with individual case studies providing specific details on the decision criteria, modeling results, and lessons learned on specific projects. Sector overviews and CBP case studies will also be updated to reflect verified data and replication strategies as they become available.

  5. Accuracy of CO2 sensors in commercial buildings: a pilotstudy

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2006-10-01

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used to automatically modulate rates of outdoor air supply. The goal is to keep ventilation rates at or above code requirements, but to also to save energy by avoiding over ventilation relative to code requirements. However, there have been many anecdotal reports of poor CO{sub 2} sensor performance in actual commercial building applications. This study evaluated the accuracy of 44 CO{sub 2} sensors located in nine commercial buildings to determine if CO{sub 2} sensor performance, in practice, is generally acceptable or problematic. CO{sub 2} measurement errors varied widely and were sometimes hundreds of parts per million. Despite its small size, this study provides a strong indication that the accuracy of CO{sub 2} sensors used in commercial buildings is frequently less than is needed to measure peak indoor-outdoor CO{sub 2} concentration differences with less than a 20% error. Thus, we conclude that there is a need for more accurate CO{sub 2} sensors and/or better sensor maintenance or calibration procedures.

  6. End-use energy consumption estimates for U.S. commercial buildings, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.B.; Wrench, L.E.

    1997-03-01

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs of the US Department of Energy, utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1992 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Statistical Adjusted Engineering (SAE) models were estimated by building type. The nonlinear SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption (based upon utility billing information). End-use consumption by fuel was estimated for each of the 6,751 buildings in the 1992 CBECS. The report displays the summary results for 11 separate building types as well as for the total US commercial building stock. 4 figs., 15 tabs.

  7. Residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, Svend; Furbo, S.

    2012-11-15

    Low-energy buildings can make a major contribution to general sustainable development by providing a solution to problems related to the use of fossil fuels. The EPBD (EU Directive on Energy Performance of Buildings) requirements that by 2020 new building shall be constructed to use nearly zero energy, and no fossil fuels, can be accomplished by combining low-energy buildings with renewable energy via low-temperature district heating in cities and suburbs, and via heat pumps for low-density settlements. Based on experience with passive houses, low-energy buildings meeting the energy performance requirements of 2020 are expected to cost only a few percent more than conventional buildings. The very large and rapid changes needed in the energy performance of buildings is a challenge for the building sector, but one that can be overcome by better methods of developing products and designing, constructing and operating buildings. Simulation-based analysis and optimisation, and considerations of durability, will be important here. Building may thus be transformed from an experience-based sector to one based on knowledge and research, with high-quality sustainable products and good business opportunities. (Author)

  8. Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas E.P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-30

    Commercial buildings in the United States use about 18 Quadrillion British thermal units (Quads) of primary energy annually . Studies have shown that as much as 30% of building energy consumption can be avoided by using more accurate sensing, using existing controls better, and deploying advanced controls; hence, the motivation for the work described in this report. Studies also have shown that 10% to 20% of the commercial building peak load can be temporarily managed/curtailed to provide grid services. Although many studies have indicated significant potential for reducing the energy consumption in commercial buildings, very few have documented the actual savings. The studies that did so only provided savings at the whole building level, which makes it difficult to assess the savings potential of each individual measure deployed.

  9. Industry Research and Recommendations for Small Buildings and Small Portfolios

    Energy Technology Data Exchange (ETDEWEB)

    Langner, Rois [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hendron, Bob [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States); Huppert, Mark [National Trust for Historic Preservation, Washington, DC (United States); Cochrane, Ric [National Trust for Historic Preservation, Washington, DC (United States)

    2013-12-01

    Small buildings have been left behind in the energy efficiency marketplace because financial and technical resources have flowed to larger commercial buildings. DOE's Building Technologies Office works with the commercial building industry to accelerate the uptake of energy efficiency technologies and techniques in existing and new commercial buildings (DOE 2013). BTO recognizes the SBSP sector'spotential for significant energy savings and the need for investments in resources that are tailored to this sector's unique needs. The industry research and recommendations described in this report identify potential approaches and strategic priorities that BTO could explore over the next 3-5 years that will support the implementation of high-potential energy efficiency opportunities for thisimportant sector. DOE is uniquely positioned to provide national leadership, objective information, and innovative tools, technologies, and services to support cost-effective energy savings in the fragmented and complex SBSP sector. Properly deployed, the DOE effort could enhance and complement current energy efficiency approaches. Small portfolios are loosely and qualitatively defined asportfolios of buildings that include only a small number of small buildings. This distinction is important because the report targets portfolio owners and managers who generally do not have staff and other resources to track energy use and pursue energy efficiency solutions.

  10. Saving energy by using underfloor-air-distribution (UFAD) system in commercial buildings

    International Nuclear Information System (INIS)

    Alajmi, Ali; El-Amer, Wid

    2010-01-01

    The number of attempts by researchers to reduce building energy consumption has increased, ever since global warming became a serious issue. In this trend, a relatively new approach of air distribution, underfloor-air-distribution system (UFAD), has been widely used in new commercial buildings. This technique is simply accomplished by supplying air through a raised floor using different types of distribution configurations and outlets. In UFAD, the air is directly supplied to the occupants' area (occupied zone) causing occupants plumes and zone heat load stratify to the upper layer of the zone (unoccupied zone), which are later extracted from return points at high level. This flow pattern gives UFAD the advantage of using less energy than a conventional air-distribution system, ceiling-based air distribution (CBAD) due to lower pressure drop and lower air flow rate. This paper investigates the effectiveness of UFAD systems in commercial buildings for various types of application and at different air supply temperatures in a hot climate (The State of Kuwait). The findings show that UFAD has a significant saving of energy compared to CBAD (∼30%); in particular with high ceiling building types, as well as providing satisfactory comfort conditions for the occupants. Ultimately, more investigations should be done on conventional building heights (offices) to optimize the utilization of thermal stratification at design and operation stages.

  11. Commercial Building Energy Asset Score Program Overview and Technical Protocol (Version 1.1)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    2013-08-09

    The U.S. Department of Energy (DOE) is developing a voluntary national scoring system for commercial buildings to help building owners and managers assess a building’s energy-related systems independent of operations. The goal of the score is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system, known as the Commercial Building Energy Asset Score, will allow building owners and managers to compare their building infrastructure against peers and track building upgrades over time. The system will also help other building stakeholders (e.g., building investors, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset scoring tool. The alternative methods that were considered prior to developing the current approach are described in the Program Overview and Technical Protocol Version 1.0.

  12. Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening Process and Results

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Srinandini [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); McKone, Thomas E. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Apte, Michael G. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2011-04-29

    This report summarizes the screening procedure and its results for selecting contaminants of concern (COC), whose concentrations are affected by ventilation in commercial buildings. Many pollutants comprising criteria pollutants, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and biological contaminants are found in commercial buildings. In this report, we focus primarily on identifying potential volatile organic COC, which are impacted by ventilation. In the future we plan to extend this effort to inorganic gases and particles. Our screening considers compounds detected frequently in indoor air and compares the concentrations to health-guidelines and thresholds. However, given the range of buildings under consideration, the contaminant sources and their concentrations will vary depending on the activity and use of the buildings. We used a literature review to identify a large list of chemicals found in commercial-building indoor air. The VOCs selected were subject to a two stage screening process, and the compounds of greater interest are included in priority List A. Other VOCs that have been detected in commercial buildings are included in priority List B. The compounds in List B, were further classified into groups B1, B2, B3, B4 in order of decreasing interest.

  13. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review

    International Nuclear Information System (INIS)

    Sun, Yongjun; Wang, Shengwei; Xiao, Fu; Gao, Diance

    2013-01-01

    Highlights: • Little study reviews the load shifting control using different facilities. • This study reviews load shifting control using building thermal mass. • This study reviews load shifting control using thermal energy storage systems. • This study reviews load shifting control using phase change material. • Efforts for developing more applicable load shifting control are addressed. - Abstract: For decades, load shifting control, one of most effective peak demand management methods, has attracted increasing attentions from both researchers and engineers. Different load shifting control strategies have been developed when diverse cold thermal energy storage facilities are used in commercial buildings. The facilities include building thermal mass (BTM), thermal energy storage system (TES) and phase change material (PCM). Little study has systematically reviewed these load shifting control strategies and therefore this study presents a comprehensive review of peak load shifting control strategies using these thermal energy storage facilities in commercial buildings. The research and applications of the load shifting control strategies are presented and discussed. The further efforts needed for developing more applicable load shifting control strategies using the facilities are also addressed

  14. Research and Development Needs for Building-Integrated Solar Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  15. The analysis of energy consumption of a commercial building in Tianjin, China

    International Nuclear Information System (INIS)

    Zhao Jing; Zhu Neng; Wu Yong

    2009-01-01

    According to statistics and field investigation, the energy consumption situation and reality of commercial building is described in this paper. As the first step of large-scale public building energy efficiency supervision system encouraged by central government of China, the energy consumption of several typical commercial buildings and public buildings was analyzed in detail. The main contents of investigation are as follows: basic information of building, operational record of energy consumption equipment, energy consumption of indoor equipments, energy-efficiency assessment of energy consumption systems and equipments, investigation of behavior energy saving, etc. On this basis further analysis and diagnosis including indoor thermal and humid environment, operation state of air-conditioning water system, operation state of air-conditioning duct system and operation management of air-conditioning system were implemented. The results show that the most energy consumption of buildings in this city is commercial buildings, which can reach to about 240 W/m 2 per year. Further analysis tells that air conditioning systems play the major role of building energy consumption, and building energy saving has great potential in this city. In this paper, the ways of diagnosis work for building energy consumption are also described and discussed. Reasonable test, diagnosis and analysis are meaningful for building energy efficiency retrofit and management.

  16. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  17. Regression Tree-Based Methodology for Customizing Building Energy Benchmarks to Individual Commercial Buildings

    Science.gov (United States)

    Kaskhedikar, Apoorva Prakash

    According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI

  18. Load shape development for Swedish commercial and public buildings - methodologies and results

    Energy Technology Data Exchange (ETDEWEB)

    Noren, C.

    1999-06-01

    The knowledge concerning electricity consumption, and especially load demand, in Swedish commercial buildings is very limited. The current study deals with methods for electricity consumption indicator development and application of the different methodologies on measured data. Typical load shapes and consumption indicators are developed for four different types of commercial buildings: schools, hotels, grocery stores and department stores. Two different methodologies for consumption indicator development are presented and discussed. The influence on load demand from different factors such as, installations, outdoor temperature and building activities is studied. It is suggested that building floor area is not an accurate determinant of building electricity consumption and it is necessary to consider other factors as those just mentioned to understand commercial building electricity consumption. The application of the two methodologies on measured data shows that typical load shapes can be developed with reasonable accuracy. For most of the categories it is possible to use the typical load shapes for approximation of whole-building load shapes with error rates about 10-25% depending on day-type and building type. Comparisons of the developed load shapes with measured data show good agreement 49 refs, 22 figs, 3 tabs

  19. Energy Savings Potential and RD&D Opportunities for Commercial Building Appliances (2015 Update)

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Foley, Kevin [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Chung, Greg [Navigant Consulting, Burlington, MA (United States)

    2016-06-01

    The Department of Energy commissioned a technology characterization and assessment of appliances used in commercial buildings for cooking, cleaning, water heating, and other end-uses. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development, and demonstration opportunities to improve energy efficiency in each end-use. This report serves as an update to a 2009 report of the same name by incorporating updated data and sources where possible and updating the available technology options that provide opportunities for efficiency improvements.

  20. Building the Commercial Education Professional Competency Profile

    Directory of Open Access Journals (Sweden)

    Isabel Araya-Muñoz

    2012-12-01

    Full Text Available This paper provides a complete description of the Commercial Education Professional Competency Profile that resulted from the curricular diagnosis of the Licenciatura en Educación Comercial , at the Universidad Nacional, Costa Rica.  The methodological strategy used relies on the principles of research on education. Upon expert validation, written questionnaires were applied to first-year students, students of the licenciatura, practicing professionals and employers. The objective was to describe a particular education situation. Data was analyzed according to two categories: intentions/principles and scope/development. The findings resulted in the characteristics of the Commercial Education professionals, i.e. characteristics related to the discipline, characteristics related to the administrative management of teaching, specific and general characteristics of education and pedagogy, and characteristics associated to human development. Based on those criteria, on the curricular requirements of the information sources and on the curricular perspectives of the Academic Unit, ideas were put into practice to build the competency profile. The ideas proposed comprise the curricular fundamentals of the educational project on which the profile is set out, which include the subject of the study program, the global competency or training goal, the generic competencies as cross-cutting approaches, as well as the –pedagogical and disciplinary− specific competencies. The specific competencies of the discipline are focused on four competency areas: document production, organizational support, technological resources and information management. (1 Translator’s Note: One-year post-Bachelor study program in Commercial Education.

  1. Energy Efficiency Potential in Existing Commercial Buildings: Review of Selected Recent Studies

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B.

    2009-04-03

    This report reviews six recent studies (from 2002 through 2006) by states and utilities to assess the energy saving potential in existing commercial buildings. The studies cover all or portions of California, Connecticut, Vermont, Colorado, Illinois, and the Pacific Northwest. The studies clearly reveal that lighting remains the single largest and most cost effective end use that can be reduced to save energy. Overall the study indicated that with existing technologies and costs, a reasonable range of economic savings potential in existing commercial buildings is between 10 and 20 percent of current energy use. While not a focus of the study, an additional conclusion is that implementation of commercial building monitoring and controls would also play an important role in the nation’s efforts to improve energy efficiency of existing buildings.

  2. Radon concentrations inside public and commercial buildings in the Pittsburgh area

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L; Kulwicki, D R; Warner, Jr, K R; Grassi, C L

    1984-09-01

    Radon concentrations in ambient air from numerous schools, stores and other public and commercial buildings in the Pittsburgh, PA, area were measured by grab sampling. This is more appropriate than using long-term integrating monitors because of the correlation between times of occupancy and Rn levels. Results indicate that Rn concentrations in these buildings are nearly an order of magnitude less than in homes, and not much higher than outdoors. Variations among sites is also much less than for homes, probably because there is less variability in ventilation and building maintenance practices. Colleges and universities have somewhat higher Rn levels and a larger degree of variability than commercial buildings or hospitals. There was no indication of higher Rn levels in cold weather than in warm weather, or of correlations with the age of the building.

  3. Radon concentrations inside public and commercial buildings in the Pittsburgh area.

    Science.gov (United States)

    Cohen, B L; Kulwicki, D R; Warner, K R; Grassi, C L

    1984-09-01

    Radon concentrations in ambient air from numerous schools, stores and other public and commercial buildings in the Pittsburgh, PA, area were measured by grab sampling. This is more appropriate than using long-term integrating monitors because of the correlation between times of occupancy and Rn levels. Results indicate that Rn concentrations in these buildings are nearly an order of magnitude less than in homes, and not much higher than outdoors. Variations among sites is also much less than for homes, probably because there is less variability in ventilation and building maintenance practices. Colleges and universities have somewhat higher Rn levels and a larger degree of variability than commercial buildings or hospitals. There was no indication of higher Rn levels in cold weather than in warm weather, or of correlations with the age of the building.

  4. SUPERVISORY CONTROL FOR PEAK REDUCTION IN COMMERCIAL BUILDINGS WHILE MAINTAINING COMFORT

    Energy Technology Data Exchange (ETDEWEB)

    Nutaro, James J [ORNL; Olama, Mohammed M [ORNL; Kuruganti, Teja [ORNL

    2016-01-01

    This paper describes a supervisory control strategy for limiting peak power demand by small and medium commercial buildings while still meeting the business needs of the occupants. This control strategy has two features that make it relevant to new and existing buildings. First, it is designed to operate with building equipment, such as air conditioning and refrigeration systems, as they are presently installed in most small and medium commercial buildings. Because of this, the supervisory control could be realized as a software-only retrofit to existing building management systems. Second, the proposed control acts as a supervisory management layer over existing control systems, rather than replacing them outright. The primary idea of this approach is that the controls for individual building equipment request energy resources for a control action and the supervisory control examines the requests and decides which control actions to allow while satisfying a limit on peak power demand.

  5. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  6. Solar-Energy System for a Commercial Building--Topeka, Kansas

    Science.gov (United States)

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  7. Energy consumption in commercial buildings: A comparison with BEPS budgets

    Science.gov (United States)

    1980-09-01

    Metered energy consumption data were collected on existing commercial buildings to help establish the proposed building energy performance standards (BEPS). The search has identified 84 buildings whose metered energy consumption is equal to or less than that proposed for their BEPS budgets and another 7 buildings whose metered consumption is less than 20 percent above their BEPS budgets. The methodology used to identify the buildings and to collect their metered energy consumption data are described. The data are analyzed and summarized and conclusions are drawn.

  8. Project Management Plan/Progress Report UT/GTKS Training Program Development for Commercial Building Operators

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-31

    Universidad del Turabo (UT), in a collaborative effort with Global Turn Key Services, Inc. (GTKS), proposed to develop a training program and a commercialization plan for the development of Commercial Building Operators (CBOs). The CBOs will operate energy efficient buildings to help maintain existing buildings up to their optimal energy performance level, and ensure that net-zero-energy buildings continuously operate at design specifications, thus helping achieve progress towards meeting BTP Strategic Goals of creating technologies and design approaches that enable net-zero-energy buildings at low incremental costs by 2025. The proposed objectives were then: (1) Develop a Commercial Building Operator (CBO) training program and accreditation that will in turn provide a certification to participants recognized by Accreditation Boards such as the North American Board of Certified Energy Practitioners (NABCEP) and Leadership in Energy & Environmental Designs (LEED). (2) Develop and implement a commercialization and sustainability plan that details marketing, deployment, financial characterization, job placement, and other goals required for long-term sustainability of the project after the funding period. (3) After program development and deployment, provide potential candidates with the knowledge and skill sets to obtain employment in the commercial building green energy (net-zero-energy building) job market. The developed CBO training program will focus on providing skills for participants, such as displaced and unemployed workers, to enter the commercial building green energy (net-zeroenergy building) job market. This course was designed to allow a participant with minimal to no experience in commercial building green technology to obtain the required skill sets to enter the job market in as little as 12 weeks of intensive multi-faceted learning. After completion of the course, the CBO staff concluded the participant will meet minimum established accreditation

  9. An analysis of heating and cooling conservation features in commercial buildings

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1990-01-01

    One purpose of this study is to estimate the relationship in commercial buildings between conservation investments, fuel prices, building occupancy and building characteristics for new buildings and for existing buildings. The data base is a nationwide survey of energy in commercial buildings conducted by the Energy Information Administration (EIA) in 1986. Some simple cross-tabulations indicate that conservation measures vary with building size, building age, type of building, and fuel used for building heating. Regression estimates of a conservation model indicate that the number of conservation features installed during construction is a positive function of the price of the heating fuel at the time of construction. Subsequent additions of conservation features are positively correlated with increases in heating fuel prices. Given the EIA projection of relatively stable future energy prices, the number of retrofits may not increase significantly. Also, energy efficiency in new buildings may not continue to increase relative to current new buildings. If fuel prices affect consumption via initial conservation investments, current fuel prices, marginal or average, are not the appropriate specification. The fuel price regression results indicate that conservation investments in new buildings are responsive to market signals. Retrofits are less responsive to market signals. The number of conservation features in a building is not statistically related to the type of occupancy (owner versus renter), which implies that conservation strategies are not impeded by the renting or leasing of buildings

  10. Building energy, building leadership : recommendations for the adoption, development, and implementation of a commercial building energy code in Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Akerstream, T. [Manitoba Hydro, Winnipeg, MB (Canada); Allard, K. [City of Thompson, Thompson, MB (Canada); Anderson, N.; Beacham, D. [Manitoba Office of the Fire Commissioner, Winnipeg, MB (Canada); Andrich, R. [The Forks North Portage Partnership, MB (Canada); Auger, A. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency; Downs, R.G. [Shindico Realty Inc., Winnipeg, MB (Canada); Eastwood, R. [Number Ten Architectural Group, Winnipeg, MB (Canada); Hewitt, C. [SMS Engineering Ltd., Winnipeg, MB (Canada); Joshi, D. [City of Winnipeg, Winnipeg, MB (Canada); Klassen, K. [Manitoba Dept. of Energy Science and Technology, Winnipeg, MB (Canada); Phillips, B. [Unies Ltd., Winnipeg, MB (Canada); Wiebe, R. [Ben Wiebe Construction Ltd., Winnipeg, MB (Canada); Woelk, D. [Bockstael Construction Ltd., Winnipeg, MB (Canada); Ziemski, S. [CREIT Management LLP, Winnipeg, MB (Canada)

    2006-09-15

    This report presented a strategy and a set of recommendations for the adoption, development and implementation of an energy code for new commercial construction in Manitoba. The report was compiled by an advisory committee comprised of industry representatives and government agency representatives. Recommendations were divided into 4 categories: (1) advisory committee recommendations; (2) code adoption recommendations; (3) code development recommendations; and (4) code implementation recommendations. It was suggested that Manitoba should adopt an amended version of the Model National Energy Code for Buildings (1997) as a regulation under the Buildings and Mobile Homes Act. Participation in a national initiative to update the Model National Energy Code for Buildings was also advised. It was suggested that the energy code should be considered as the first step in a longer-term process towards a sustainable commercial building code. However, the code should be adopted within the context of a complete market transformation approach. Other recommendations included: the establishment of a multi-stakeholder energy code task group; the provision of information and technical resources to help build industry capacity; the establishment of a process for energy code compliance; and an ongoing review of the energy code to assess impacts and progress. Supplemental recommendations for future discussion included the need for integrated design by building design teams in Manitoba; the development of a program to provide technical assistance to building design teams; and collaboration between post-secondary institutions to develop and deliver courses on integrated building design to students and professionals. 17 refs.

  11. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  12. The Power of Flexibility: Autonomous Agents That Conserve Energy in Commercial Buildings

    Science.gov (United States)

    Kwak, Jun-young

    Agent-based systems for energy conservation are now a growing area of research in multiagent systems, with applications ranging from energy management and control on the smart grid, to energy conservation in residential buildings, to energy generation and dynamic negotiations in distributed rural communities. Contributing to this area, my thesis presents new agent-based models and algorithms aiming to conserve energy in commercial buildings. More specifically, my thesis provides three sets of algorithmic contributions. First, I provide online predictive scheduling algorithms to handle massive numbers of meeting/event scheduling requests considering flexibility , which is a novel concept for capturing generic user constraints while optimizing the desired objective. Second, I present a novel BM-MDP ( Bounded-parameter Multi-objective Markov Decision Problem) model and robust algorithms for multi-objective optimization under uncertainty both at the planning and execution time. The BM-MDP model and its robust algorithms are useful in (re)scheduling events to achieve energy efficiency in the presence of uncertainty over user's preferences. Third, when multiple users contribute to energy savings, fair division of credit for such savings to incentivize users for their energy saving activities arises as an important question. I appeal to cooperative game theory and specifically to the concept of Shapley value for this fair division. Unfortunately, scaling up this Shapley value computation is a major hindrance in practice. Therefore, I present novel approximation algorithms to efficiently compute the Shapley value based on sampling and partitions and to speed up the characteristic function computation. These new models have not only advanced the state of the art in multiagent algorithms, but have actually been successfully integrated within agents dedicated to energy efficiency: SAVES, TESLA and THINC. SAVES focuses on the day-to-day energy consumption of individuals and

  13. Web-based energy information systems for energy management and demand response in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS

  14. Techno-Economic Analysis of Solar Absorption Cooling for Commercial buildings in India

    Directory of Open Access Journals (Sweden)

    Muthalagappan Narayanan

    2017-11-01

    Full Text Available Space cooling and heating always tends to be a major part of the primary energy usage. By using fossil fuel electricity for these purposes, the situation becomes even worse. One of the major electricity consumptions in India is air conditioning. There are a lot of different technologies and few researchers have come up with a debate between solar absorption cooling and PV electric cooling. In a previous paper, PV electric cooling was studied and now as a continuation, this paper focuses on solar thermal absorption cooling systems and their application in commercial/office buildings in India. A typical Indian commercial building is taken for the simulation in TRNSYS. Through this simulation, the feasibility and operational strategy of the system is analysed, after which parametric study and economic analysis of the system is done. When compared with the expenses for a traditional air conditioner unit, this solar absorption cooling will take 13.6 years to pay back and will take 15.5 years to payback the price of itself and there after all the extra money are savings or profit.  Although the place chosen for this study is one of the typical tropical place in India, this payback might vary with different places, climate and the cooling demand. Article History: Received May 12th 2017; Received in revised form August 15th 2017; Accepted 1st Sept 2017; Available online How to Cite This Article: Narayanan, M. (2017. Techno-Economic Analysis of Solar Absorption Cooling for Commercial Buildings in India.  International Journal of Renewable Energy Development, 6(3, 253-262. https://doi.org/10.14710/ijred.6.3.253-262

  15. In-Depth Analysis of Energy Efficiency Related Factors in Commercial Buildings Using Data Cube and Association Rule Mining

    Directory of Open Access Journals (Sweden)

    Byeongjoon Noh

    2017-11-01

    Full Text Available Significant amounts of energy are consumed in the commercial building sector, resulting in various adverse environmental issues. To reduce energy consumption and improve energy efficiency in commercial buildings, it is necessary to develop effective methods for analyzing building energy use. In this study, we propose a data cube model combined with association rule mining for more flexible and detailed analysis of building energy consumption profiles using the Commercial Buildings Energy Consumption Survey (CBECS dataset, which has accumulated over 6700 existing commercial buildings across the U.S.A. Based on the data cube model, a multidimensional commercial sector building energy analysis was performed based upon on-line analytical processing (OLAP operations to assess the energy efficiency according to building factors with various levels of abstraction. Furthermore, the proposed analysis system provided useful information that represented a set of energy efficient combinations by applying the association rule mining method. We validated the feasibility and applicability of the proposed analysis model by structuring a building energy analysis system and applying it to different building types, weather conditions, composite materials, and heating/cooling systems of the multitude of commercial buildings classified in the CBECS dataset.

  16. Ready to Retrofit: The Process of Project Team Selection, Building Benchmarking, and Financing Commercial Building Energy Retrofit Projects

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Mark D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parrish, Kristen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    This guide presents a process for three key activities for the building owner in preparing to retrofit existing commercial buildings: selecting project teams, benchmarking the existing building, and financing the retrofit work. Although there are other essential steps in the retrofit process, the three activities presented in this guide are the critical elements where the building owner has the greatest influence on the outcome of the project.

  17. Analysis of variables that influence electric energy consumption in commercial buildings in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.M.Q. [Technical Drawing Department, Fluminense Federal University, Niteroi, Rio de Janeiro (Brazil); Energy Planning Program, Alberto Luiz Coimbra Institute for Research and Graduate Studies in Engineering - COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); La Rovere, E.L. [Energy Planning Program, Alberto Luiz Coimbra Institute for Research and Graduate Studies in Engineering - COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Goncalves, A.C.M. [Program for Graduate Studies in Architecture, School of Architecture and Urbanism, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil)

    2010-12-15

    Air conditioning systems in commercial buildings in Brazil are responsible for about 70% share of their energy consumption. According to BEN 2009 (The Brazilian Energy Balance), energy consumption in the residential, commercial and public sectors, where most buildings are found, represents 9.3% of the final energy consumption in Brazil. This paper aims to examine design factors that could contribute to greater reductions of electric energy consumption in commercial buildings, with emphasis on air conditioning. Simulations were carried out using shades and different types of glass, walls, flooring and roofing. The VisualDOE 2.61 was used as a simulation tool for calculating energy consumption of the analyzed building. This paper shows that the energy performance of the building is considerably influenced by the facade protection and shows, through tables, the impact that decisions related to the top-level and facades have on the energy consumption of the building. The authors concluded that the results confirm the importance of taking energy use into account in the very first design stages of the project, since appropriate choices of types of glass, external shading and envelope materials have a significant impact on energy consumption. (author)

  18. Results and Lessons Learned From the DOE Commercial Building Partnerships: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, A.; Deru, M.; Langner, R.; Stark, G.; Doebber, I.; Scheib, J.; Sheppy, M.; Bonnema, E.; Pless, S.; Livingood, B.; Torcellini, P.

    2014-09-01

    Over the course of 5 years, NREL worked with commercial building owners and their design teams in the DOE Commercial Building Partnerships (CBP) to cut energy consumption by 50% in new construction (versus code) and by 30% in existing building pilot projects (versus code or pre-retrofit operational energy use depending on the preference of the Partner) using strategies that could be replicated across their building portfolios. A number of different building types were addressed, including supermarket, retail merchandise, combination big box (general merchandise and food sales), high rise office space, and warehouse. The projects began in pre-design and included a year of measurement data to evaluate performance against design expectations. Focused attention was required throughout the entire process to achieve a design with the potential to hit the energy performance target and to operate the resulting building to reach this potential. This paper will report quantitative results and cover both the technical and the human sides of CBP, including the elements that were required to succeed and where stumbling blocks were encountered. It will also address the impact of energy performance goals and intensive energy modeling on the design process innovations and best practices.

  19. Opportunities for low carbon sustainability in large commercial buildings in China

    International Nuclear Information System (INIS)

    Jiang Ping; Keith Tovey, N.

    2009-01-01

    China's building sector consumes one quarter of total energy consumption in the country and plays an important role in long-term ability of the country to achieve sustainable development. This paper discusses a comprehensive approach to achieving low carbon sustainability in large commercial buildings in China incorporating both energy and carbon-reduction strategies. The approach concentrates primarily on three complementary aspects: (a) the introduction of an effective energy management system; (b) the incorporation of relevant advanced energy saving technologies and measures and (c) the promotion of awareness among occupants to make changes in their behaviour towards a more environmental-friendly behaviour. However, reference is also made to the role that renewable energy and offsetting may have in the effective management and environmental performance of buildings. Nine examples of large commercial buildings in Beijing and Shanghai were studied and the average electricity consumption of around 153 kWh/m 2 per annum is about 5 times higher than average electricity use in residential buildings. At the same time the associated green house gas (GHG) emissions are around 158 kg/m 2 per annum.

  20. Energy Code Compliance in a Detailed Commercial Building Sample: The Effects of Missing Data

    Energy Technology Data Exchange (ETDEWEB)

    Biyani, Rahul K.; Richman, Eric E.

    2003-09-30

    Most commercial buildings in the U.S. are required by State or local jurisdiction to meet energy standards. The enforcement of these standards is not well known and building practice without them on a national scale is also little understood. To provide an understanding of these issues, a database has been developed at PNNL that includes detailed energy related building characteristics of 162 commercial buildings from across the country. For this analysis, the COMcheck? compliance software (developed at PNNL) was used to assess compliance with energy codes among these buildings. Data from the database for each building provided the program input with percentage energy compliance to the ASHRAE/IESNA Standard 90.1-1999 energy as the output. During the data input process it was discovered that some essential data for showing compliance of the building envelope was missed and defaults had to be developed to provide complete compliance information. This need for defaults for some data inputs raised the question of what the effect on documenting compliance could be due to missing data. To help answer this question a data collection effort was completed to assess potential differences. Using the program Dodge View, as much of the missing envelope data as possible was collected from the building plans and the database input was again run through COMcheck?. The outputs of both compliance runs were compared to see if the missing data would have adversely affected the results. Both of these results provided a percentage compliance of each building in the envelope and lighting categories, showing by how large a percentage each building either met or fell short of the ASHRAE/IESNA Standard 90.1-1999 energy code. The results of the compliance runs showed that 57.7 % of the buildings met or exceeded envelope requirements with defaults and that 68 % met or exceeded envelope requirements with the actual data. Also, 53.6 % of the buildings met or surpassed the lighting requirements

  1. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  2. Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.; Taasevigen, Danny J.; Piette, M. A.; Granderson, J.; Brown, Rich E.; Lanzisera, Steven M.; Kuruganti, T.

    2012-10-31

    Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), about 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.

  3. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  4. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-09-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  5. What drives the carbon mitigation in Chinese commercial building sector? Evidence from decomposing an extended Kaya identity.

    Science.gov (United States)

    Ma, Minda; Cai, Weiguang

    2018-09-01

    Energy efficiency in the building sector is expected to contribute >50% to the nationwide carbon mitigation efforts for achieving China's carbon emission peak in 2030, and carbon mitigation in Chinese commercial buildings (CMCCB) is an indicator of this effort. However, the CMCCB assessment has faced the challenge of ineffective and inadequate approaches; therefore, we have followed a different approach. Using the China Database of Building Energy Consumption and Carbon Emissions as our data source, our study is the first to employ the Logarithmic Mean Divisia Index (LMDI) to decompose five driving forces from the Kaya identity of Chinese commercial building carbon emissions (CCBCE) to assess the CMCCB values in 2001-2015. The results of our study indicated that: (1) Only two driving forces (i.e., the reciprocal of GDP per capita of Tertiary Industry in China and the CCBCE intensity) contributed negatively re m i to CCBCE during 2001-2015, and the quantified negative contributions denoted the CMCCB values. Specifically, the CMCCB values in 2001-2005, 2006-2010, and 2011-2015 were 123.96, 252.83, and 249.07 MtCO 2 , respectively. (2) The data quality control involving the CMCCB values proved the reliability of our CMCCB assessment model, and the universal applicability of this model was also confirmed. (3) The substantial achievements of the energy efficiency project in the Chinese commercial building sector were the root cause of the rapidly growing CMCCB. Overall, we believe that our model successfully bridges the research gap of the nationwide CMCCB assessment and that the proposed model is also suitable either at the provincial level or in different building climate zones in China. Meanwhile, a global-level assessment of the carbon mitigation in the commercial building sector is feasible through applying our model. Furthermore, we consider our contribution as constituting significant guidance for developing the building energy efficiency strategy in China in the

  6. A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks

    International Nuclear Information System (INIS)

    Azar, Elie; Menassa, Carol C.

    2014-01-01

    While studies highlight the significant impact of actions performed by occupants and facility managers on building energy performance, current policies ignore the importance of human actions and the potential energy savings from a more efficient operation of building systems. This is mainly attributed to the lack of methods that evaluate non-technological drivers of energy use for large stocks of commercial buildings to support policy making efforts. Therefore, this study proposes a scientific approach to quantifying the energy savings potential due to improved operations of any stock of commercial buildings. The proposed framework combines energy modeling techniques, studies on human actions in buildings, and surveying and sampling methods. The contributions of this study to energy policy are significant as they reinforce the role of human actions in energy conservation, and support efforts to integrate operation-focused solutions in energy conservation policy frameworks. The framework's capabilities are illustrated in a case study performed on the stock of office buildings in the United States (US). Results indicate a potential 21 percent reduction in the current energy use levels of these buildings through realistic changes in current building operation patterns. - Highlights: • Human actions highly influence energy performance of commercial building stocks. • It is challenging to quantify operation-related energy savings potential. • The proposed framework quantifies potential energy savings from improved operations. • The framework can be applied on any stock of commercial buildings. • Applications include support for operation-focused solutions in energy policies

  7. India Commercial Buildings Data Framework: A Summary of Potential Use Cases

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Sangeeta [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kumar, Satish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singh, Mohini [Synurja, LLC, Vienna, VA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Iyer, Maithili [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    This report details a potential set of use cases for India’s Commercial Buildings Data Framework. The use cases are aimed at enabling data-driven, evidence-based policy making and at transforming the market for energy efficiency in the building sector by facilitating the adoption of (1) superior energy-efficient building design and operation and maintenance practices, and (2) better specification and procurement of end-use equipment and systems.

  8. 40 CFR 745.228 - Accreditation of training programs: public and commercial buildings, bridges and superstructures...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Accreditation of training programs: public and commercial buildings, bridges and superstructures. [Reserved] 745.228 Section 745.228... Accreditation of training programs: public and commercial buildings, bridges and superstructures. [Reserved] ...

  9. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  10. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  11. Weather Correlations to Calculate Infiltration Rates for U. S. Commercial Building Energy Models.

    Science.gov (United States)

    Ng, Lisa C; Quiles, Nelson Ojeda; Dols, W Stuart; Emmerich, Steven J

    2018-01-01

    As building envelope performance improves, a greater percentage of building energy loss will occur through envelope leakage. Although the energy impacts of infiltration on building energy use can be significant, current energy simulation software have limited ability to accurately account for envelope infiltration and the impacts of improved airtightness. This paper extends previous work by the National Institute of Standards and Technology that developed a set of EnergyPlus inputs for modeling infiltration in several commercial reference buildings using Chicago weather. The current work includes cities in seven additional climate zones and uses the updated versions of the prototype commercial building types developed by the Pacific Northwest National Laboratory for the U. S. Department of Energy. Comparisons were made between the predicted infiltration rates using three representations of the commercial building types: PNNL EnergyPlus models, CONTAM models, and EnergyPlus models using the infiltration inputs developed in this paper. The newly developed infiltration inputs in EnergyPlus yielded average annual increases of 3 % and 8 % in the HVAC electrical and gas use, respectively, over the original infiltration inputs in the PNNL EnergyPlus models. When analyzing the benefits of building envelope airtightening, greater HVAC energy savings were predicted using the newly developed infiltration inputs in EnergyPlus compared with using the original infiltration inputs. These results indicate that the effects of infiltration on HVAC energy use can be significant and that infiltration can and should be better accounted for in whole-building energy models.

  12. "Watts per person" paradigm to design net zero energy buildings: Examining technology interventions and integrating occupant feedback to reduce plug loads in a commercial building

    Science.gov (United States)

    Yagi Kim, Mika

    As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.

  13. Evaluation of a energy consumption index for commercial buildings in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Eduardo Correa Santana; Hernandez Neto, Alberto [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica], Emails: jose.edu@gmail.com, ahneto@usp.br

    2010-07-01

    The present paper proposes a energy consumption index for commercial buildings located in four different Brazilian climates. For such evaluations, the building simulation tool EnergyPlus was used and a sensitivity analysis was made for some of the main parameters of an air-conditioned building. The analysis showed that the electrical power and lighting density as well as the COP of the air conditioning system promotes the higher variations on the proposed energy index. (author)

  14. The role of grid-connected, building-integrated photovoltaic generation in commercial building energy and power loads in a warm and sunny climate

    International Nuclear Information System (INIS)

    Braun, P.; Ruether, R.

    2010-01-01

    For large commercial buildings, power load delivery limits are contracted with the local electricity distribution utility, and are usually fixed at one or more levels over the year, according to the seasonal building loads, and depending on the specific country regulations. Especially in warm and sunny climates, solar electricity generation using building-integrated photovoltaics (BIPV) can assist in reducing commercial building loads, offering peak-shaving (power) benefits on top of the on-site generation of electricity (energy). This on-site power delivery capability gives these consumers the possibility of renegotiating demand contracts with their distribution utility. Commercial buildings that operate during daytime quite often have an energy consumption profile that is well matched by solar radiation availability, and depending on the building's available surface areas, BIPV can generate considerable portions of the energy requirements. In this work we present the role of grid-connected BIPV in reducing the load demands of a large and urban commercial building located in a warm climate in Brazil. The building and adjacent car parking lots can accommodate a 1 MWp BIPV generator, which closely matches the building's typical maximum power demands. Based on real solar radiation data and simultaneous building electricity demands for the year 2007, simulation of the annual solar generation profile of this on-site generator showed that the 1 MWp BIPV system could account for around 30% of the total building's energy consumption. In addition to the energy benefit, maximum power demands were reduced due to a good match between midday air-conditioning cooling loads and solar radiation availability on both a daily and seasonal basis. Furthermore, we have simulated the effect of this considerably large urban-sited generator on the local distribution network load, and have shown that the 1 MWp BIPV installation can also offer considerable benefits to the local utility in

  15. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    Science.gov (United States)

    Kamal, Rajeev

    Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at

  16. Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

    2005-03-04

    The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

  17. Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions for Buildings in 2016 and Later

    Energy Technology Data Exchange (ETDEWEB)

    Deru, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Field-Macumber, Kristin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); and service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.

  18. Energy retrofit of commercial buildings. Case study and applied methodology

    Energy Technology Data Exchange (ETDEWEB)

    Aste, N.; Del Pero, C. [Department of Building Environment Science and Technology (BEST), Politecnico di Milano, Via Bonardi 3, 20133 Milan (Italy)

    2013-05-15

    Commercial buildings are responsible for a significant share of the energy requirements of European Union countries. Related consumptions due to heating, cooling, and lighting appear, in most cases, very high and expensive. Since the real estate is renewed with a very small percentage each year and current trends suggest reusing the old structures, strategies for improving energy efficiency and sustainability should focus not only on new buildings, but also and especially on existing ones. Architectural renovation of existing buildings could provide an opportunity to enhance their energy efficiency, by working on the improvement of envelopes and energy supply systems. It has also to be noted that the measures aimed to improve the energy performance of buildings should pay particular attention to the cost-effectiveness of the interventions. In general, there is a lack of well-established methods for retrofitting, but if a case study achieves effective results, the adopted strategies and methodologies can be successfully replicated for similar kinds of buildings. In this paper, an iterative methodology for energy retrofit of commercial buildings is presented, together with a specific application on an existing office building. The case study is particularly significant as it is placed in an urban climatic context characterized by cold winters and hot summers; consequently, HVAC energy consumption is considerable throughout the year. The analysis and simulations of energy performance before and after the intervention, along with measured data on real energy performance, demonstrate the validity of the applied approach. The specifically developed design and refurbishment methodology, presented in this work, could be also assumed as a reference in similar operations.

  19. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  20. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Science.gov (United States)

    2010-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION...

  1. Correlation between temperature satisfaction and unsolicited complaint rates in commercial buildings.

    Science.gov (United States)

    Wang, D; Federspiel, C C; Arens, E

    2005-02-01

    This paper analyzes the relation between temperature satisfaction ratings expressed on a questionnaire and unsolicited complaint rates recorded in a maintenance database. The key findings are as follows: (i) the satisfaction ratings and complaint rates are negatively correlated with a moderate magnitude (r(s) = -0.31 to -0.36), and the correlation is statistically significant (P = 0.01-0.005), and (ii) the percent dissatisfied with temperature and the complaint rate are positively correlated with moderate magnitude (r(s) = 0.31-0.36), and the correlation is statistically significant (P = 0.01-0.004). Both data sets contain 'real-world' measures of temperature satisfaction, with the complaints contributing directly to the cost of operations and maintenance. The relationship between two validates a new method of assessing the economic cost of thermal discomfort in commercial buildings. Complaints in commercial buildings indicate occupants' dissatisfaction to their environments. It not only deteriorates occupants' performance and organization productivity, but also increases building maintenance and operating cost. Nailing economic consequences of complaints will enable monetary comparison of discomfort cost with building and operating costs. This comparison may be desirable for building owners and tenants to make well-informed decisions on construction, rental, and retrofit. It may also be used to evaluate complaint diagnostic and eliminating techniques.

  2. Accelerating the energy retrofit of commercial buildings using a database of energy efficiency performance

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Hong, Tianzhen; Piette, Mary Ann; Sawaya, Geof; Chen, Yixing; Taylor-Lange, Sarah C.

    2015-01-01

    Small and medium-sized commercial buildings can be retrofitted to significantly reduce their energy use, however it is a huge challenge as owners usually lack of the expertise and resources to conduct detailed on-site energy audit to identify and evaluate cost-effective energy technologies. This study presents a DEEP (database of energy efficiency performance) that provides a direct resource for quick retrofit analysis of commercial buildings. DEEP, compiled from the results of about ten million EnergyPlus simulations, enables an easy screening of ECMs (energy conservation measures) and retrofit analysis. The simulations utilize prototype models representative of small and mid-size offices and retails in California climates. In the formulation of DEEP, large scale EnergyPlus simulations were conducted on high performance computing clusters to evaluate hundreds of individual and packaged ECMs covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and service hot water. The architecture and simulation environment to create DEEP is flexible and can expand to cover additional building types, additional climates, and new ECMs. In this study DEEP is integrated into a web-based retrofit toolkit, the Commercial Building Energy Saver, which provides a platform for energy retrofit decision making by querying DEEP and unearthing recommended ECMs, their estimated energy savings and financial payback. - Highlights: • A DEEP (database of energy efficiency performance) supports building retrofit. • DEEP is an SQL database with pre-simulated results from 10 million EnergyPlus runs. • DEEP covers 7 building types, 6 vintages, 16 climates, and 100 energy measures. • DEEP accelerates retrofit of small commercial buildings to save energy use and cost. • DEEP can be expanded and integrated with third-party energy software tools.

  3. Courthouse Prototype Building

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2018-02-01

    As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, and jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses

  4. The potential for energy efficiency gains in the Canadian commercial building sector: A stochastic frontier study

    International Nuclear Information System (INIS)

    Buck, J.; Young, D.

    2007-01-01

    The achievement of energy efficiency in commercial buildings is a function of the activities undertaken, the technology in place, and the extent to which those technologies are used efficiently. We study the factors that affect efficient energy use in the Canadian commercial sector by applying a stochastic frontier approach to a cross-section of Canadian commercial buildings included in the Commercial and Institutional Building Energy Use Survey (CIBEUS). Structural and climate-control features of the buildings as well as climatic conditions are assumed to determine the location of the frontier, while management-related variables including such factors as ownership type and activities govern whether or not the maximally attainable efficiency along the frontier is achieved. Our results indicate that although, on average, buildings appear to be fairly efficient, certain types of operations are more likely than others to exhibit energy efficiencies that are significantly worse than average. These results, along with those related to the effects of physical characteristics on the stochastic efficiency frontier, suggest that there is scope for focused policy initiatives to increase energy efficiency in this sector

  5. Using DOE Commercial Reference Buildings for Simulation Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Field, K.; Deru, M.; Studer, D.

    2010-08-01

    The U.S. Department of Energy developed 256 EnergyPlus models for use in studies that aim to characterize about 70% of the U.S. commercial building stock. Sixteen building types - including restaurants, health care, schools, offices, supermarkets, retail, lodging, and warehouses - are modeled across 16 cities to represent the diversity of U.S. climate zones. Weighting factors have been developed to combine the models in proportions similar to those of the McGraw-Hill Construction Projects Starts Database for 2003-2007. This paper reviews the development and contents of these models and their applications in simulation studies.

  6. Building energy governance in Shanghai

    Science.gov (United States)

    Kung, YiHsiu Michelle

    With Asia's surging economies and urbanization, the region is adding to its built environment at an unprecedented rate, especially those population centers in China and India. With numerous existing buildings, plus a new building boom, construction in these major Asian cities has caused momentous sustainability challenges. This dissertation focuses on China's leading city, Shanghai, to explore and assess its existing commercial building energy policies and practices. Research estimates that Shanghai's commercial buildings might become a key challenge with regard to energy use and CO2 emissions as compared to other major Asian cities. Relevant building energy policy instruments at national and local levels for commercial buildings are reviewed. In addition, two benchmarks are established to further assess building energy policies in Shanghai. The first benchmark is based on the synthesis of relevant criteria and policy instruments as recommended by professional organizations, while the second practical benchmark is drawn from an analysis of three global cities: New York, London and Tokyo. Moreover, two large-scale commercial building sites - Shanghai IKEA and Plaza 66 - are selected for investigation and assessment of their efforts on building energy saving measures. Detailed building energy savings, CO2 reductions, and management cost reductions based on data availability and calculations are presented with the co-benefits approach. The research additionally analyzes different interventions and factors that facilitate or constrain the implementation process of building energy saving measures in each case. Furthermore, a multi-scale analytical framework is employed to investigate relevant stakeholders that shape Shanghai's commercial building energy governance. Research findings and policy recommendations are offered at the close of this dissertation. Findings and policy recommendations are intended to facilitate commercial building energy governance in Shanghai and

  7. 2020 Leadership Agenda for Existing Commercial and Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Burr, Andrew [Dept. of Energy (DOE), Washington DC (United States). Office of Energy Efficiency and Renewable Energy; Goldthwaite, Carolyn Sarno [Northeast Energy Efficiency Partnerships (NEEP), Boston, MA (United States). High Performance Buildings; Coffman, Eric [Montgomery County Dept. of General Services, Rockville, MD (United States). Office of Energy and Sustainability

    2016-01-21

    Leadership by state and local governments is critical to unlock national energy efficiency opportunities and deliver the benefits of efficiency to all Americans. But related to building energy efficiency, what will it mean to be a public sector leader over the next several years? What are the energy efficiency solutions that cities, counties, and states are implementing today that will make their communities more affordable, livable, healthy, and economically competitive? The SEE Action Network 2020 Leadership Agenda for Existing Commercial and Multifamily Buildings establishes a benchmark for state and local government leadership on improving the energy efficiency of buildings and seeks two-way collaboration among state, local, and federal officials. It defines a suite of innovative, yet practical policies and programs for policymakers to consider implementing by 2020, focusing on six important areas.

  8. Intelligent Buildings and pervasive computing - research perspectives and discussions

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Krogh, Peter Gall; Kyng, Morten

    2001-01-01

    computers are everywhere, for everyone, at all times. Where IT becomes a still more integrated part of our environments with processors, sensors, and actuators connected via high-speed networks and combined with new visualization devices ranging from projections directly in the eye to large panorama......Intelligent Buildings have been the subject of research and commercial interest for more than two decades. The different perspectives range from monitoring and controlling energy consumption over interactive rooms supporting work in offices and leisure in the home, to buildings providing...... information to by-passers in plazas and urban environments. This paper puts forward the hypothesis that the coming decade will witness a dramatic increase in both quality and quantity of intelligent buildings due to the emerging field of pervasive computing: the next generation computing environments where...

  9. Comparison of Actual Costs to Integrate Commercial Buildings with the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Black, Doug [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Yin, Rongxin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2016-05-01

    During the past decade, the technology to automate demand response (DR) in buildings and industrial facilities has advanced significantly. Automation allows rapid, repeatable, reliable operation. This study focuses on costs for DR automation in commercial buildings with some discussion on residential buildings and industrial facilities. DR automation technology relies on numerous components, including communication systems, hardware and software gateways, standards-based messaging protocols, controls and integration platforms, and measurement and telemetry systems. This paper discusses the impact factors that contribute to the costs of automated DR systems, with a focus on OpenADR 1.0 and 2.0 systems. In addition, this report compares cost data from several DR automation programs and pilot projects, evaluates trends in the cost per unit of DR and kilowatts (kW) available from automated systems, and applies a standard naming convention and classification or taxonomy for system elements. In summary, median costs for the 56 installed automated DR systems studied here are about $200/kW. The deviation around this median is large with costs in some cases being an order of magnitude greater or less than median. Costs to automate fast DR systems for ancillary services are not fully analyzed in this report because additional research is needed to determine the total such costs.

  10. Start point to savings - Better load demand analysis in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Abaravicius, Juozas; Pyrko, Jurek [Lund Univ., Dept of Energy Sciences (Sweden)

    2007-07-01

    Existing installations and energy systems in most commercial buildings could be used in a more efficient way to provide savings - both in terms of energy and load demand. The key for effective operation is a thorough and detailed analysis of energy use patterns that creates essential baseline for energy savings and the development of demand response (DR) strategies. The knowledge of energy demand variations is still very limited and the use of methods to analyse the load demand is rare. Many utilities have recently installed interval (hourly) metering even for smaller commercial users and households. This is a big step forward; however, experience shows that the data is being used only to a limited extent, mostly for billing purposes only. This paper reports about a study conducted with the objective of developing a detailed load demand analysis for commercial buildings. The study results should provide essential information for the formation and evaluation of future DR and energy efficiency strategies. This study was performed in collaboration with IKEA and E.ON and contributes to an ongoing IKEA energy efficiency programme. Two sample department stores in Sweden were selected and analysed within this project. The demand data analysis covers almost 3 years period, 2004-2006.This study contributes to new knowledge of energy use patterns (load demand) in commercial buildings. It proposes solutions of load-related problems, evaluates energy and load savings potential, identifies and analyses the needs, motives and barriers for participation in DR programmes. The study provides recommendations for ongoing and future efficiency and DR strategies and discusses the potential economic benefits from the DR measures.

  11. Regulation proposal for voluntary energy efficiency labelling of commercial buildings

    International Nuclear Information System (INIS)

    Lamberts, Roberto; Goulart, Solange; Carlo, Joyce; Westphal, Fernando

    2006-01-01

    Despite of Brazil not being between the major world energy consumers, the consumption of electricity has significantly increased in the late years. The National Energy Balance of 2005, published by the Brazilian Ministry of Energy, showed an increasing of the participation of electricity in the final energy consumption of 15.7% in 2002 to 16.2% in 2004. Initially, a brief review of the initiatives taken by Brazilian Government aiming to limit and control the energy consumption in buildings is presented. Then, the regulation proposal containing the technical requirements to classify the energy efficiency level of buildings is shown. The purpose of this voluntary regulation is to provide conditions to certify the energy efficiency level of Brazilian buildings (commercial and public). It specifies the methods for energy efficiency rating of buildings and includes requirements to attend energy conservation measures in three main issues: lighting system; air conditioning system and envelope. The regulation applies to large buildings (minimum total area of 500 m 2 or when the energy demand is greater than or equal to 2,3 kV, including: Conditioned buildings; Partially conditioned buildings and Naturally ventilated buildings. (author)

  12. Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings

    International Nuclear Information System (INIS)

    Chung, William

    2012-01-01

    Highlights: ► Fuzzy linear regression method is used for developing benchmarking systems. ► The systems can be used to benchmark energy efficiency of commercial buildings. ► The resulting benchmarking model can be used by public users. ► The resulting benchmarking model can capture the fuzzy nature of input–output data. -- Abstract: Benchmarking systems from a sample of reference buildings need to be developed to conduct benchmarking processes for the energy efficiency of commercial buildings. However, not all benchmarking systems can be adopted by public users (i.e., other non-reference building owners) because of the different methods in developing such systems. An approach for benchmarking the energy efficiency of commercial buildings using statistical regression analysis to normalize other factors, such as management performance, was developed in a previous work. However, the field data given by experts can be regarded as a distribution of possibility. Thus, the previous work may not be adequate to handle such fuzzy input–output data. Consequently, a number of fuzzy structures cannot be fully captured by statistical regression analysis. This present paper proposes the use of fuzzy linear regression analysis to develop a benchmarking process, the resulting model of which can be used by public users. An illustrative example is given as well.

  13. Energy optimization methodology of multi-chiller plant in commercial buildings

    International Nuclear Information System (INIS)

    Thangavelu, Sundar Raj; Myat, Aung; Khambadkone, Ashwin

    2017-01-01

    This study investigates the potential energy savings in commercial buildings through optimized operation of a multi-chiller plant. The cooling load contributes 45–60% of total power consumption in commercial and office buildings, especially at tropics. The chiller plant operation is not optimal in most of the existing buildings because the chiller plant is either operated at design condition irrespective of the cooling load or optimized locally due to lack of overall chiller plant behavior. In this study, an overall energy model of chiller plant is developed to capture the thermal behavior of all systems and their interactions including the power consumption. An energy optimization methodology is proposed to derive optimized operation decisions for chiller plant at regular intervals based on building thermal load and weather condition. The benefits of proposed energy optimization methodology are examined using case study problems covering different chiller plant configurations. The case studies result confirmed the energy savings achieved through optimized operations is up to 40% for moderate size chiller plant and around 20% for small chiller plant which consequently reduces the energy cost and greenhouse gas emissions. - Highlights: • Energy optimization methodology improves the performance of multi-chiller plant. • Overall energy model of chiller plant accounts all equipment and the interactions. • Operation decisions are derived at regular interval based on time-varying factors. • Three case studies confirmed 20 to 40% of energy savings than conventional method.

  14. Review of California and National Methods for Energy PerformanceBenchmarking of Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Nance E.; Piette, Mary Ann

    2005-09-05

    This benchmarking review has been developed to support benchmarking planning and tool development under discussion by the California Energy Commission (CEC), Lawrence Berkeley National Laboratory (LBNL) and others in response to the Governor's Executive Order S-20-04 (2004). The Executive Order sets a goal of benchmarking and improving the energy efficiency of California's existing commercial building stock. The Executive Order requires the CEC to propose ''a simple building efficiency benchmarking system for all commercial buildings in the state''. This report summarizes and compares two currently available commercial building energy-benchmarking tools. One tool is the U.S. Environmental Protection Agency's Energy Star National Energy Performance Rating System, which is a national regression-based benchmarking model (referred to in this report as Energy Star). The second is Lawrence Berkeley National Laboratory's Cal-Arch, which is a California-based distributional model (referred to as Cal-Arch). Prior to the time Cal-Arch was developed in 2002, there were several other benchmarking tools available to California consumers but none that were based solely on California data. The Energy Star and Cal-Arch benchmarking tools both provide California with unique and useful methods to benchmark the energy performance of California's buildings. Rather than determine which model is ''better'', the purpose of this report is to understand and compare the underlying data, information systems, assumptions, and outcomes of each model.

  15. Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California.

    Science.gov (United States)

    Bennett, D H; Fisk, W; Apte, M G; Wu, X; Trout, A; Faulkner, D; Sullivan, D

    2012-08-01

    This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale. © 2012 John Wiley & Sons A/S.

  16. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  17. Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark J.; Fisk, William J.

    2014-02-01

    Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each

  18. Technology data characterizing refrigeration in commercial buildings: Application to end-use forecasting with COMMEND 4.0

    Energy Technology Data Exchange (ETDEWEB)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    In the United States, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of the refrigeration end use in terms of specific technologies, however, is complicated by several factors. First, the number of configurations of refrigeration cases and systems is quite large. Also, energy use is a complex function of the refrigeration-case properties and the refrigeration-system properties. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. Expanding end-use forecasting models so that they address individual technology options requires characterization of the present floorstock in terms of service requirements, energy technologies used, and cost-efficiency attributes of the energy technologies that consumers may choose for new buildings and retrofits. This report describes the process by which we collected refrigeration technology data. The data were generated for COMMEND 4.0 but are also generally applicable to other end-use forecasting frameworks for the commercial sector.

  19. Job/Task Analysis: Enhancing the Commercial Building Workforce Through the Development of Foundational Materials; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D.; Kemkar, S.

    2012-09-01

    For many commercial building operation job categories, industry consensus has not been reached on the knowledge, skills, and abilities that practitioners should possess. The goal of this guidance is to help streamline the minimum competencies taught or tested by organizations catering to building operations and maintenance personnel while providing a basis for developing and comparing new and existing training programs in the commercial building sector. The developed JTAs will help individuals identify opportunities to enhance their professional skills, enable industry to identify an appropriately skilled workforce, and allow training providers to ensure that they are providing the highest quality product possible.

  20. Valuation of Green Commercial Office Building: A Preliminary Study of Malaysian Valuers' Insight

    OpenAIRE

    Tuti Haryati Jasimin; Hishamuddin Mohd Ali

    2015-01-01

    Malaysia's green building development is gaining momentum and green buildings have become a key focus area, especially within the commercial sector with the encouragement of government legislation and policy. Due to the emerging awareness among the market players' views of the benefits associated with the ownership of green buildings in Malaysia, there is a need for valuers to incorporate consideration of sustainability into their assessments of property market value to e...

  1. Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Peffer, Therese [Univ. of California, Berkeley, CA (United States); Council on International Education Exchange (CIEE), Portland, ME (United States); Blumstein, Carl [Council on International Education Exchange (CIEE), Portland, ME (United States); Culler, David [Univ. of California, Berkeley, CA (United States). Electrical Engineering and Computer Sciences (EECS); Modera, Mark [Univ. of California, Davis, CA (United States). Western Cooling Efficiency Center (WCEC); Meier, Alan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-10

    The Project uses state-of-the-art computer science to extend the benefits of Building Automation Systems (BAS) typically found in large buildings (>100,000 square foot) to medium-sized commercial buildings (<50,000 sq ft). The BAS developed in this project, termed OpenBAS, uses an open-source and open software architecture platform, user interface, and plug-and-play control devices to facilitate adoption of energy efficiency strategies in the commercial building sector throughout the United States. At the heart of this “turn key” BAS is the platform with three types of controllers—thermostat, lighting controller, and general controller—that are easily “discovered” by the platform in a plug-and-play fashion. The user interface showcases the platform and provides the control system set-up, system status display and means of automatically mapping the control points in the system.

  2. Measurement Issues for Energy Efficient Commercial Buildings: Productivity and Performance Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    In previous reports, we have identified two potentially important issues, solutions to which would increase the attractiveness of DOE-developed technologies in commercial buildings energy systems. One issue concerns the fact that in addition to saving energy, many new technologies offer non-energy benefits that contribute to building productivity (firm profitability). The second issue is that new technologies are typically unproven in the eyes of decision makers and must bear risk premiums that offset cost advantages resulting from laboratory calculations. Even though a compelling case can be made for the importance of these issues, for building decision makers to incorporate them in business decisions and for DOE to use them in R&D program planning there must be robust empirical evidence of their existence and size. This paper investigates how such measurements could be made and offers recommendations as to preferred options. There is currently little systematic information on either of these concepts in the literature. Of the two there is somewhat more information on non-energy benefits, but little as regards office buildings. Office building productivity impacts can be observed casually, but must be estimated statistically, because buildings have many interacting attributes and observations based on direct behavior can easily confuse the process of attribution. For example, absenteeism can be easily observed. However, absenteeism may be down because a more healthy space conditioning system was put into place, because the weather was milder, or because firm policy regarding sick days had changed. There is also a general dearth of appropriate information for purposes of estimation. To overcome these difficulties, we propose developing a new data base and applying the technique of hedonic price analysis. This technique has been used extensively in the analysis of residential dwellings. There is also a literature on its application to commercial and industrial

  3. Strategies for Controlling Plug Loads. A Tool for Reducing Plug Loads in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bonnema, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sheppy, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Plug loads are often not considered as part of the energy savings measures in Commercial Buildings; however, they can account for up to 50% of the energy used in the building. These loads are numerous and often scattered throughout a building. Some of these loads are purchased by the owner and some designed into the building or the tenant finishes for a space. This document provides a strategy and a tool for minimizing these loads.

  4. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-02-28

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

  5. Characterization of changes in commercial building structure, equipment, and occupants: End-Use Load and Consumer Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, R.G.; Taylor, Z.T.; Miller, N.E.; Pratt, R.G.

    1990-12-01

    Changes in commercial building structure, equipment, and occupants result in changes in building energy use. The frequency and magnitude of those changes have substantial implications for conservation programs and resource planning. For example, changes may shorten the useful lifetime of a conservation measure as well as impact the savings from that measure. This report summarizes the frequency of changes in a commercial building sample that was end-use metered under the End-Use Load and Consumer Assessment Program (ELCAP). The sample includes offices, dry good retails, groceries, restaurants, warehouses, schools, and hotels. Two years of metered data, site visit records, and audit data were examined for evidence of building changes. The observed changes were then classified into 12 categories, which included business type, equipment, remodel, vacancy, and operating schedule. The analysis characterized changes in terms of frequency of types of change; relationship to building vintage and floor area; and variation by building type. The analysis also examined the energy impacts of various changes. The analysis determined that the rate of change in commercial buildings is high--50% of the buildings experienced one type of change during the 2 years for which monitoring data were examined. Equipment changes were found to be most frequent in offices and retail stores. Larger, older office buildings tend to experience a wider variety of changes more frequently than the smaller, newer buildings. Key findings and observations are presented in Section 2. Section 3 provides the underlying motivation and objectives. In Section 4, the methodology used is documented, including the commercial building sample and the data sources used. Included are the definitions of change events and the overall approach taken. Results are analyzed in Section 5, with additional technical details in Appendixes. 2 refs., 46 figs., 22 tabs. (JF)

  6. Development of an Online Toolkit for Measuring Commercial Building Energy Efficiency Performance -- Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na

    2013-03-13

    This study analyzes the market needs for building performance evaluation tools. It identifies the existing gaps and provides a roadmap for the U.S. Department of Energy (DOE) to develop a toolkit with which to optimize energy performance of a commercial building over its life cycle.

  7. Lux level enhancement and reduction in electricity cost in commercial buildings by retrofitting with PMR luminaries

    International Nuclear Information System (INIS)

    Mariun, N.; Mohibullah; Jasni, J.; Lam, S.Y.

    2006-01-01

    Most of the existing commercial buildings are illuminated by luminaries systems during broad daylight and night which is provided by the renowned lighting industry. However, back in 1980s, the installed luminaries within the office compound were limited in choice of luminaire selection and cost factor impact. Some of the old commercial building are still using prismatic acrylic lens diffuser luminaries in order to brighten up the building for their business activities and a large number of luminaries are needed to illuminate equivalent illumination level as per requirement of the building bye-laws code. With the advancement in luminaries technology, the lighting industries have offered better solution to reduce energy costs by 50% or more, also able to improve the quality of light and reducing the quantity of luminaries requirement by introducing the parabolic mirror reflector (PMR) luminaries system. The selected commercial building as a case study to support this luminaries retrofitting program by comparing the existing luminaries with the retrofit luminaries in terms of the lux measurement and energy cost saving calculation is presented in this paper. Nevertheless, some general lighting design principle rules are also discussed

  8. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan; Anderson, Katie

    2016-11-01

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape of the load profile is the most significant predictor of the size of the battery.

  9. Commercial mitigation techniques used in remediating a 2200 pCi/L public building

    International Nuclear Information System (INIS)

    Davidson, J.G.

    1990-01-01

    This paper reports on commercial mitigation techniques used in remediating a 2200 pCi/L public building. In March of 1989 EPA and Pa. DER officials were amazed to discover a school in Pennsylvania with levels in its library of 2200 pCi/L. The library was a 30 year old, three story slab-on-grade structure more like a commercial building than a typical school structure. It had three separate and complex HVAC systems. Initial diagnostics indicated radon levels under the slab at over 80,000 pCi/L. Further investigations revealed major entry routes and a HVAC system terribly out of balance. Remediation consisted of installing a complex sub-slab depressurization system with an exterior commercial fan unit, major entry route sealing, and working closely with a mechanical contractor to bring the HVAC systems back into balance. Initial post remediation testing showed a 99% drop in radon levels. Refinements to the system are still in progress

  10. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    International Nuclear Information System (INIS)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-01-01

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  11. Thermal energy storage for cooling of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  12. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

    2010-05-14

    California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

  13. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee; Scheihing, Paul

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energy consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.

  14. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  15. Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development concept stage report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Deringer, J.J. (Deringer Group, Riva, MD (USA)); Hall, J.D. (American Inst. of Architects, Washington, DC (USA)) (comps.)

    1990-09-01

    The Whole-Building Energy Design Targets project is being conducted for the US Department of Energy (DOE) by the Pacific Northwest Laboratory (PNL). The objective of the project is to develop a flexible methodology for setting energy performance guidelines with which architects, engineers, planners, and owners can assess energy efficiency in commercial building design. This volume, the third in the four-volume report on the Targets project concept stage, contains the minutes of the workshops as well as summaries of the expert's written comments prepared at the close of each workshop. In Section 2, the building energy simulation workshop is summarized. Section 3 provides a summary of the building cost workshop.

  16. Implementation of life cycle costing for a commercial building: case of a residential apartment at Yogyakarta

    Directory of Open Access Journals (Sweden)

    Kaming Peter F

    2017-01-01

    Full Text Available Analysis of a design process is very important in controlling the initial costs and future costs in possession of an investment project such as commercial building. Therefore, it should be wise to perform a life cycle cost analysis to determine the cost of any category contained in future cost of the building. The analysis also provide information to see how much the total cost incurred by a development project from initial to the future cost by implementing BS ISO 15686 part 5: 2008, regarding life cycle costing. The purpose of this study is to identify the cost proportion and make long-term plans of a commercial building in term of its life cycle costing from a case of a residential apartment in Yogyakarta, Indonesia. Results of the study show that there are three groups that make up the life cycle cost: the cost of development of the building, the operating costs, and the cost of maintenance and replacement. For a long-term plan the life cycle cost for 25 years the percentage obtained as follows, initial development cost of 42%, operational costs 39%, maintenance and replacement costs 19%. The results would also make comparison with other existing commercial buildings.

  17. Comparison of Standard 90.1-2007 and the 2009 IECC with Respect to Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Conover, David R.; Bartlett, Rosemarie; Halverson, Mark A.

    2009-12-11

    The U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP) has been asked by some states and energy code stakeholders to address the comparability of the 2009 International Energy Conservation Code® (IECC) as applied to commercial buildings and ANSI/ASHRAE/IESNA Standard 90.1-2007 (hereinafter referred to as Standard 90.1-07). An assessment of comparability will help states respond to and implement conditions specified in the State Energy Program (SEP) Formula Grants American Recovery and Reinvestment Act Funding Opportunity, Number DE-FOA-0000052, and eliminate the need for the states individually or collectively to perform comparative studies of the 2009 IECC and Standard 90.1-07. The funding opportunity announcement contains the following conditions: (2) The State, or the applicable units of local government that have authority to adopt building codes, will implement the following: (A) A residential building energy code (or codes) that meets or exceeds the most recent International Energy Conservation Code, or achieves equivalent or greater energy savings. (B) A commercial building energy code (or codes) throughout the State that meets or exceeds the ANSI/ASHRAE/IESNA Standard 90.1-2007, or achieves equivalent or greater energy savings . (C) A plan to achieve 90 percent compliance with the above energy codes within eight years. This plan will include active training and enforcement programs and annual measurement of the rate of compliance. With respect to item (B) above, many more states, regardless of the edition date, directly adopt the IECC than Standard 90.1-07. This is predominately because the IECC is a model code and part of a coordinated set of model building codes that state and local government have historically adopted to regulate building design and construction. This report compares the 2009 IECC to Standard 90.1-07 with the intent of helping states address whether the adoption and application of the 2009 IECC for commercial

  18. Field Experience with and Potential for Multi-time Scale Grid Transactions from Responsive Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2014-08-01

    The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis is based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.

  19. Measured energy savings and cost-effectiveness of conservation retrofits in commercial buildings

    International Nuclear Information System (INIS)

    Greely, K.M.; Harris, J.P.; Hatcher, A.M.

    1990-01-01

    In this study, the authors examine the measured savings and cost-effectiveness of 447 commercial retrofit projects in the US, Canada, and Europe, representing over 1,700 buildings. For these projects, they examine savings and cost-effectiveness by building type and retrofit strategy, savings from individual measures, peak electric demand savings, comparisons of measured vs. predicted savings, and the persistence of savings in the years following a retrofit. Median annual site energy savings amounted to 20 kBtu/ft 2 , or 18% of whole-building usage; median retrofit cost was $0.56/ft 2 (1988 $), the median payback time was 3.1 years, and the median cost of conserved energy was $3.10/site MBtu. When examined by retrofit strategy, they found that projects with only HVAC and/or lighting retrofits had median payback times of one to three years, while those affecting the building shell, either alone or in combination with other types of measures, had payback times of five or more years. Projects in which only maintenance practices were changed typically saved 12% of their pre-retrofit consumption, often using in-house labor. Their research suggests that, despite significant savings and short payback times for the majority of projects, optimum savings are often not being achieved, due to limited owner willingness to invest in all cost-effective measures, as well as to improper retrofit installation and/or maintenance. A comprehensive understanding of energy management as a process is needed, including both inspection and commissioning of installed retrofits and ongoing tracking of energy consumption as an indicator of operating problems

  20. Commercial thermal distribution systems, Final report for CIEE/CEC

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

    1999-12-01

    According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct

  1. The analysis of energy consumption and greenhouse gas emissions of a large-scale commercial building in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-02-01

    Full Text Available Reasonable test, diagnosis, and analysis are meaningful for building energy efficiency retrofit and management. Energy consumption and greenhouse gas emission of a large-scale commercial building are described in this article. Basic information about energy consumption equipment is included in the investigation. Further diagnoses about the operational state of air-conditioning water systems, and ducted systems were implemented. Energy consumption decreased 200 kWh/m2 per year from 2007 to 2009 after energy-saving reconstruction in 2006. Next, a carbon audit was carried out; this comprised CO2 emission statistics associated with the energy use and categorization and structural analysis (categorization refers to energy categorization and structural analysis means the composition and its proportion relationship of all kinds of primary energy and secondary energy in energy production or consumption. Greenhouse gas emissions could be less than 150 kg/m2 per year from 2007 to 2009. An analysis of the correlation between CO2 emissions, building gross domestic product, and energy efficiency is also presented. This article makes an analysis on the energy utilization and energy-saving reconstruction of a public commercial building in Shanghai and then makes an analysis of carbon audit about greenhouse gas emissions related to energy utilization (it analyzes the status of building’s energy utilization and greenhouse gas emissions, to have a more comprehensive understanding on the internal relationship between energy consumption and its greenhouse gas emissions and provide researchful reference data for the development with reduction strategies of greenhouse gas emission in future building.

  2. Peak reduction for commercial buildings using energy storage

    Science.gov (United States)

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  3. Enabling VOLTTRON: Energy Management of Commercial Buildings at the University of Maryland

    Science.gov (United States)

    Ebhojiaye, Itohan Omisi

    Buildings waste approximately 30% of energy they consume due to inefficient HVAC and lighting operation. Building Automation Systems (BAS) can aid in reducing such wasted energy, but 90% of U.S. commercial buildings lack a BAS due to their high capital costs. This thesis demonstrates how VOLTTRON, an open source operating system developed by Pacific Northwest National Laboratory, was used to disable the mechanical cooling of a rooftop unit (RTU) during unoccupied hours, on a building without a BAS. With cooling off, the RTU's electricity dropped from 18 kW to 7kW. These results indicate 450 to 550 can be saved on the monthly electric bill of the building during the summer, compared to when the RTU operated in cooling mode continuously. The installation cost of the equipment that enabled the RTU to be controlled via VOLTTRON was $6,400, thus the project has a payback period of 13 months.

  4. BREEAM [Building Research Establishment Environmental Assessment Method] BRE [Building Research Establishment] assessment method for buildings

    International Nuclear Information System (INIS)

    Baldwin, R.

    1994-01-01

    Buildings account for a large share of environmental impacts in their construction, use, and demolition. In western Europe, buildings account for ca 50% of primary energy use (hence CO 2 output), far outweighing the contribution of the transport and industrial sectors. Other impacts from building energy use include the use of chemicals such as chlorofluorocarbons for cooling. In the United Kingdom, the Building Research Establishment (BRE) has developed a certificate system for environmental labelling of buildings so that the performance of the building against a set of defined environmental criteria can be made visible to clients. This system thus rewards positive actions to improve the environmental performance of buildings and assists in marketing to an environmentally aware clientele. Issues included in assessments for awarding the certificate are addressed under three main headings: global issues and use of resources, local issues, and indoor issues. Global issues include ozone depletion and CO 2 emissions; local issues include public health and water conservation; and indoor issues include air quality and lighting. 8 refs., 1 tab

  5. Assessing Potential Energy Cost Savings from Increased Energy Code Compliance in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Wang, Weimin

    2016-02-15

    The US Department of Energy’s most recent commercial energy code compliance evaluation efforts focused on determining a percent compliance rating for states to help them meet requirements under the American Recovery and Reinvestment Act (ARRA) of 2009. That approach included a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. With its binary approach to compliance determination, the previous methodology failed to answer some important questions. In particular, how much energy cost could be saved by better compliance with the commercial energy code and what are the relative priorities of code requirements from an energy cost savings perspective? This paper explores an analytical approach and pilot study using a single building type and climate zone to answer those questions.

  6. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  7. Development and Evaluation of Algorithms to Improve Small- and Medium-Size Commercial Building Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woohyun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutes, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Underhill, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Small- and medium-sized (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. commercial building stock and consume over 60% of total site energy consumption. Many of these buildings use rudimentary controls that are mostly manual, with limited scheduling capability, no monitoring or failure management. Therefore, many of these buildings are operated inefficiently and consume excess energy. SMBs typically utilize packaged rooftop units (RTUs) that are controlled by an individual thermostat. There is increased urgency to improve the operating efficiency of existing commercial building stock in the U.S. for many reasons, chief among them is to mitigate the climate change impacts. Studies have shown that managing set points and schedules of the RTUs will result in up to 20% energy and cost savings. Another problem associated with RTUs is short-cycling, where an RTU goes through ON and OFF cycles too frequently. Excessive cycling can lead to excessive wear and lead to premature failure of the compressor or its components. The short cycling can result in a significantly decreased average efficiency (up to 10%), even if there are no physical failures in the equipment. Also, SMBs use a time-of-day scheduling is to start the RTUs before the building will be occupied and shut it off when unoccupied. Ensuring correct use of the zone set points and eliminating frequent cycling of RTUs thereby leading to persistent building operations can significantly increase the operational efficiency of the SMBs. A growing trend is to use low-cost control infrastructure that can enable scalable and cost-effective intelligent building operations. The work reported in this report describes three algorithms for detecting the zone set point temperature, RTU cycling rate and occupancy schedule detection that can be deployed on the low-cost infrastructure. These algorithms only require the zone temperature data for detection. The algorithms have been tested and validated using

  8. Building America Research-to-Market Plan

    Energy Technology Data Exchange (ETDEWEB)

    Werling, Eric [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2015-11-01

    This report presents the Building America Research-to-Market Plan (Plan), including the integrated Building America Technology-to-Market Roadmaps (Roadmaps) that will guide Building America’s research, development, and deployment (RD&D) activities over the coming years. The Plan and Roadmaps will be updated as necessary to adapt to research findings and evolving stakeholder needs, and they will reflect input from DOE and stakeholders.

  9. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Stephen; Heaney, Michael; Jin, Xin; Robertson, Joseph; Cheung, Howard; Elmore, Ryan; Henze, Gregor

    2016-08-01

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energy models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.

  10. NASA's commercial research plans and opportunities

    Science.gov (United States)

    Arnold, Ray J.

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  11. Research Staff | Buildings | NREL

    Science.gov (United States)

    Research Staff Research Staff Photo of Roderick Jackson Roderick Jackson Laboratory Program Manager -related research at NREL. He works closely with senior laboratory management to set the strategic agenda for NREL's buildings portfolio, including all research, development, and market implementation

  12. Accuracy of automated measurement and verification (M&V) techniques for energy savings in commercial buildings

    International Nuclear Information System (INIS)

    Granderson, Jessica; Touzani, Samir; Custodio, Claudine; Sohn, Michael D.; Jump, David; Fernandes, Samuel

    2016-01-01

    Highlights: • A testing procedure and metrics to asses the performance of whole-building M&V methods is presented. • The accuracy of ten baseline models is evaluated on measured data from 537 commercial buildings. • The impact of reducing the training period from 12-months to shorter time horizon is examined. - Abstract: Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming manual data acquisition and often do not deliver results until years after the program period has ended. The rising availability of “smart” meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost, with comparable or improved accuracy. These meter- and software-based approaches, increasingly referred to as “M&V 2.0”, are the subject of surging industry interest, particularly in the context of utility energy efficiency programs. Program administrators, evaluators, and regulators are asking how M&V 2.0 compares with more traditional methods, how proprietary software can be transparently performance tested, how these techniques can be integrated into the next generation of whole-building focused efficiency programs. This paper expands recent analyses of public-domain whole-building M&V methods, focusing on more novel M&V 2.0 modeling approaches that are used in commercial technologies, as well as approaches that are documented in the literature, and/or developed by the academic building research community. We present a testing procedure and metrics to assess the performance of whole-building M&V methods. We then illustrate the test procedure

  13. Indoor particle levels in small- and medium-sized commercial buildings in California.

    Science.gov (United States)

    Wu, Xiangmei May; Apte, Michael G; Bennett, Deborah H

    2012-11-20

    This study monitored indoor and outdoor particle concentrations in 37 small and medium commercial buildings (SMCBs) in California with three buildings sampled on two occasions, resulting in 40 sampling days. Sampled buildings included offices, retail establishments, restaurants, dental offices, and hair salons, among others. Continuous measurements were made for both ultrafine and fine particulate matter as well as black carbon inside and outside of the building. Integrated PM(2.5), PM(2.5-10), and PM(10) samples were also collected inside and outside the building. The majority of the buildings had indoor/outdoor (I/O) particle concentration ratios less than 1.0, indicating that contributions from indoor sources are less than removal of outdoor particles. However, some of the buildings had I/O ratios greater than 1, indicating significant indoor particle sources. This was particularly true of restaurants, hair salons, and dental offices. The infiltration factor was estimated from a regression analysis of indoor and outdoor concentrations for each particle size fraction, finding lower values for ultrafine and coarse particles than for submicrometer particles, as expected. The I/O ratio of black carbon was used as a relative measure of the infiltration factor of particles among buildings, with a geometric mean of 0.62. The contribution of indoor sources to indoor particle levels was estimated for each building.

  14. A Techno-Economic Analysis of Photovoltaic System Design as Specifically Applied to Commercial Buildings in Ireland

    Directory of Open Access Journals (Sweden)

    Jonathan Blackledge

    2012-11-01

    Full Text Available This paper evaluates the viability of installing photovoltaic (PV systems in existing commercial buildings in Dublin. Data collected from previously installed photovoltaic systems at the Dublin Institute of Technology was analysed in order to determine the potential solar resource available in Ireland. A 1.1 kWp photovoltaic system installed in Dublin can produce over 900 kWh of electricity in a given year depending on the available solar resource for that year. A feasibility study was conducted in Dublin city centre in order to evaluate the technical, financial and environmental aspects of integrating a PV system into an existing building. The intention is that the results from this work will help in demonstrating the benefits and challenges associated with installing PV systems in existing commercial buildings in Ireland.

  15. Analysis of impact of large commercial aircraft on a prestressed containment building

    International Nuclear Information System (INIS)

    Lee, Kyoungsoo; Han, Sang Eul; Hong, Jung-Wuk

    2013-01-01

    Highlights: • Aircraft impact analyses are performed using the missile–target interaction method. • A large commercial B747 aircraft is considered with erosion effect. • The rigid wall impact test shows the validity of the developed aircraft model. • The parametric studies on the fictitious containment building are performed. • The plastic failure of the target is governed by the impulse of aircraft at the first momentum peak. - Abstract: In this paper, the results of nonlinear dynamic analyses of a concrete containment building under extreme loads are presented. The impact of a large commercial B747 airliner is investigated as the extreme load, and a rigid wall impact test is performed using commercial nonlinear finite element codes. The impact forces exerted by the aircraft are verified compared with the time-dependent impact force provided by OECD/NEA (2002), which was calculated based on the so-called Riera method. The rigid wall impact analysis shows that the finite element model of a B747 is appropriate for the purpose of the aircraft crash analysis exposed to the external hazard of “Beyond Design-Basis Events” defined by U.S. Nuclear Regulatory Commission. Finally, the applicability of this methodology is further studied and verified by conducting parametric studies on the critical infrastructures of nuclear power plant containment structures

  16. Analysis of impact of large commercial aircraft on a prestressed containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoungsoo, E-mail: kylee@pvamu.edu [Center for Energy and Environmental Sustainability, Prairie View A and M University, Prairie view, TX, 77446 (United States); Han, Sang Eul, E-mail: hsang@inha.ac.kr [Department of Architectural Engineering, School of Architecture, Inha University, 253 Yonghyundong Nam-gu, Incheon, 402-751 (Korea, Republic of); Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr [Department of Civil and Environmental Engineering, KAIST, 373-1 Guseon-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2013-12-15

    Highlights: • Aircraft impact analyses are performed using the missile–target interaction method. • A large commercial B747 aircraft is considered with erosion effect. • The rigid wall impact test shows the validity of the developed aircraft model. • The parametric studies on the fictitious containment building are performed. • The plastic failure of the target is governed by the impulse of aircraft at the first momentum peak. - Abstract: In this paper, the results of nonlinear dynamic analyses of a concrete containment building under extreme loads are presented. The impact of a large commercial B747 airliner is investigated as the extreme load, and a rigid wall impact test is performed using commercial nonlinear finite element codes. The impact forces exerted by the aircraft are verified compared with the time-dependent impact force provided by OECD/NEA (2002), which was calculated based on the so-called Riera method. The rigid wall impact analysis shows that the finite element model of a B747 is appropriate for the purpose of the aircraft crash analysis exposed to the external hazard of “Beyond Design-Basis Events” defined by U.S. Nuclear Regulatory Commission. Finally, the applicability of this methodology is further studied and verified by conducting parametric studies on the critical infrastructures of nuclear power plant containment structures.

  17. Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Brian; Borgeson, Sam; Selkowitz, Stephen; Apte, Josh; Mathew, Paul; Haves, Philip

    2009-07-01

    This paper describes the origin, structure and continuing development of a model of time varying energy consumption in the US commercial building stock. The model is based on a flexible structure that disaggregates the stock into various categories (e.g. by building type, climate, vintage and life-cycle stage) and assigns attributes to each of these (e.g. floor area and energy use intensity by fuel type and end use), based on historical data and user-defined scenarios for future projections. In addition to supporting the interactive exploration of building stock dynamics, the model has been used to study the likely outcomes of specific policy and innovation scenarios targeting very low future energy consumption in the building stock. Model use has highlighted the scale of the challenge of meeting targets stated by various government and professional bodies, and the importance of considering both new construction and existing buildings.

  18. Economic analysis of solar assisted absorption chiller for a commercial building

    Science.gov (United States)

    Antonyraj, Gnananesan

    Dwindling fossil fuels coupled with changes in global climate intensified the drive to make use of renewable energy resources that have negligible impact on the environment. In this attempt, the industrial community produced various devices and systems to make use of solar energy for heating and cooling of building space as well as generate electric power. The most common components employed for collection of solar energy are the flat plate and evacuated tube collectors that produce hot water that can be employed for heating the building space. In order to cool the building, the absorption chiller is commonly employed that requires hot water at high temperatures for its operation. This thesis deals with economic analysis of solar collector and absorption cooling system to meet the building loads of a commercial building located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly building loads and performance of the flat plate and evacuated tube solar collectors using the hourly weather data. The key variables affecting the economic evaluation of such system are identified and the influence of these parameters is presented. The results of this investigation show that the flat plate solar collectors yield lower payback period compared to the evacuated tube collectors and economic incentives offered by the local and federal agencies play a major role in lowering the payback period.

  19. Energy Performance and CO2 Emissions of HVAC Systems in Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Rafat Al-Waked

    2017-10-01

    Full Text Available Energy performance of buildings has attracted much attention among building physicists and engineers worldwide. The effects of building heating; ventilation; and air conditioning (HVAC systems’ design upgrade on the building energy performance are the focus of the current study. The adopted HVAC system consisted of chilled ceiling and chilled beam systems served by a centrifugal water chiller. An energy simulation study was undertaken in accordance with the national Australian built environment rating system-rules for collecting and using data. A three-dimensional simulation study was carried out utilizing the virtual environment-integrated environmental solutions software. Results from the current study have shown the importance of utilizing energy-efficient HVAC systems and HVAC strategies for achieving a high building energy star rating. Recommended strategies in order to achieve the nominated star rating; as predicted by the simulation analysis; were presented. Moreover; the effects of solar radiation inside the building atrium were significant; which cannot be overcome by simply installing a low shading coefficient glazing type at the atrium skylight. In addition to providing chilled ceiling technology; a high efficiency chiller and low energy lighting; it is recommended that the building be well tuned during the commissioning period. The current approach could be extended to accommodate higher energy ratings of commercial buildings at different locations worldwide.

  20. Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Gorrissen, Willy J.

    2013-01-11

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.

  1. Typical load shapes for six categories of Swedish commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Noren, C.

    1997-01-01

    In co-operation with several Swedish electricity suppliers, typical load shapes have been developed for six categories of commercial buildings located in the south of Sweden. The categories included in the study are: hotels, warehouses/grocery stores, schools with no kitchen, schools with kitchen, office buildings, health, health buildings. Load shapes are developed for different mean daily outdoor temperatures and for different day types, normally standard weekdays and standard weekends. The load shapes are presented as non-dimensional normalized 1-hour load. All measured loads for an object are divided by the object`s mean load during the measuring period and typical load shapes are developed for each category of buildings. Thus errors were kept lower as compared to use of W/m{sup 2}-terms. Typical daytime (9 a.m. - 5 p.m.) standard deviations are 7-10% of the mean values for standard weekdays but during very cold or warm weather conditions, single objects can deviate from the typical load shape. On weekends, errors are higher and depending on very different activity levels in the buildings, it is difficult to develop weekend load shapes with good accuracy. The method presented is very easy to use for similar studies and no building simulation programs are needed. If more load data is available, a good method to lower the errors is to make sure that every category only consists of objects with the same activity level, both on weekdays and weekends. To make it easier to use the load shapes, Excel load shape workbooks have been developed, where it is even possible to compare typical load shapes with measured data. 23 refs, 53 figs, 20 tabs

  2. Energy Efficiency, Building Productivity and the Commercial Buildings Market

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.W.

    2002-05-16

    The energy-efficiency gap literature suggests that building buyers are often short-sighted in their failure to apply life-cycle costing principles to energy efficient building technologies, with the result that under investment in these advanced technology occurs. This study examines the reasons this behavior may occur, by analyzing the pressures that market forces place on purchasers of buildings. Our basic conclusion is that the fundamental manner in which the buildings sector does business creates pressures to reduce initial capital outlays and to hedge against a variety of risks, including the ability of building owners to capture benefits from energy efficiency. Starting from the position that building buyers' willingness to pay drives choices over building attributes, we examine basic market principles, the structure of the buildings market, including the role of lenders, and policies that promote penetration of energy efficient technologies. We conclude that greater attention to buyers, and to the incentives and constraints they face, would promote a better understanding of building investment choices and contribute to better policies to promote the penetration of these technologies into markets.

  3. Experience implementing energy standards for commercial buildings and its lessons for the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Busch, John; Deringer, Joseph

    1998-10-01

    Energy efficiency standards for buildings have been adopted in over forty countries. This policy mechanism is pursued by governments as a means of increasing energy efficiency in the buildings sector, which typically accounts for about a third of most nations' energy consumption and half of their electricity consumption. This study reports on experience with implementation of energy standards for commercial buildings in a number of countries and U.S. states. It is conducted from the perspective of providing useful input to the Government of the Philippines' (GOP) current effort at implementing their building energy standard. While the impetus for this work is technical assistance to the Philippines, the intent is to shed light on the broader issues attending implementation of building energy standards that would be applicable there and elsewhere. The background on the GOP building energy standard is presented, followed by the objectives for the study, the approach used to collect and analyze information about other jurisdictions' implementation experience, results, and conclusions and recommendations.

  4. Notes on Commercialization of Biotechnology Research

    DEFF Research Database (Denmark)

    Høy Jakobsen, Palle

    This book introduces aspects of commercialization of biomedical & biotech research including pharmaceutical drug and medical device development, innovation concepts, patent protection & commercialisation of research by securing investments in new companies and by licensing of the commersialisatio...

  5. Enabling Energy Efficiency in South Africa's Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    South Africa is leading a number of efforts to support a thriving economy while also reducing energy use. Increasing energy demand coupled with a highly energy intensive economy and energy inefficient industries provide the backdrop for strong government action underway in South Africa. This brochure details how the Clean Energy Solutions Center supported development of the Regulations on Allowance for the Energy Efficiency Savings legislation designed to provide a framework for effective energy efficiency regulation, incentives and energy reduction targets for South Africa's commercial buildings sector.

  6. Benchmarking the energy efficiency of commercial buildings

    International Nuclear Information System (INIS)

    Chung, William; Hui, Y.V.; Lam, Y. Miu

    2006-01-01

    Benchmarking energy-efficiency is an important tool to promote the efficient use of energy in commercial buildings. Benchmarking models are mostly constructed in a simple benchmark table (percentile table) of energy use, which is normalized with floor area and temperature. This paper describes a benchmarking process for energy efficiency by means of multiple regression analysis, where the relationship between energy-use intensities (EUIs) and the explanatory factors (e.g., operating hours) is developed. Using the resulting regression model, these EUIs are then normalized by removing the effect of deviance in the significant explanatory factors. The empirical cumulative distribution of the normalized EUI gives a benchmark table (or percentile table of EUI) for benchmarking an observed EUI. The advantage of this approach is that the benchmark table represents a normalized distribution of EUI, taking into account all the significant explanatory factors that affect energy consumption. An application to supermarkets is presented to illustrate the development and the use of the benchmarking method

  7. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei; Pistikopoulos, Efstratios N. [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li, Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach. (author)

  8. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    International Nuclear Information System (INIS)

    Liu Pei; Pistikopoulos, Efstratios N.; Li Zheng

    2010-01-01

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  9. An energy systems engineering approach to the optimal design of energy systems in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu Pei [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Pistikopoulos, Efstratios N., E-mail: e.pistikopoulos@imperial.ac.u [Centre for Process Systems Engineering (CPSE), Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Li Zheng [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    Energy consumption in commercial buildings accounts for a significant proportion of worldwide energy consumption. Any increase in the energy efficiency of the energy systems for commercial buildings would lead to significant energy savings and emissions reductions. In this work, we introduce an energy systems engineering framework towards the optimal design of such energy systems with improved energy efficiency and environmental performance. The framework features a superstructure representation of the various energy technology alternatives, a mixed-integer optimization formulation of the energy systems design problem, and a multi-objective design optimization solution strategy, where economic and environmental criteria are simultaneously considered and properly traded off. A case study of a supermarket energy systems design is presented to illustrate the key steps and potential of the proposed energy systems engineering approach.

  10. ISO 50001 for Commercial Buildings: Lessons Learned From U.S. DOE Pilot Project: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deru, M.; Field, K.; Punjabi, S.

    2014-08-01

    In the U.S., the ISO 50001 Standard, which establishes energy management systems (EnMSs) and processes, has shown uptake primarily in the industrial sector. The U.S. Department of Energy (DOE) undertook a pilot program to explore ISO 50001 implementation in commercial buildings. Eight organizations participated as pilots, with technical assistance provided by DOE, the National Renewable Energy Laboratory (NREL), the Lawrence Berkeley National Laboratory (LBNL), and the Georgia Institute of Technology (Georgia Tech). This paper shares important lessons learned from the pilot. Staff time was the most critical resource required to establish effective EnMSs in commercial buildings. The pilot also revealed that technical support and template/example materials were essential inputs. Crucial activities included evaluating performance, identifying goals, making connections, communicating operational controls, and tracking/reviewing progress. Benefits realized included enhanced intra-organizational connections, greater energy awareness, increased process efficiencies, and improved ability to make business cases. Incremental benefits for ISO 50001 certification were greater accountability, assurance of best practices, public relations opportunities, and potential to unlock verified savings credits or incentive money. Incremental certification costs included more staff/consultant time, money for certification, and a tendency to limit EnMS scope in order to ensure favorable audit results. Five best practices were identified - utilizing expert technical assistance, training, and other resources; focusing on implementation over documentation; keeping top management involved; considering organizational structure when selecting EnMS scope; and matching the implementation level to an EnMS's scope and scale. The last two practices are particularly relevant to the commercial buildings sector.

  11. Quantification protocol for energy efficiency in commercial and institutional buildings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Alberta Environment has developed an approved methodology that can be used to quantify the reduction of direct and indirect greenhouse gas emission observed after the implementation of energy efficiency measures in commercial and institutional buildings. This methodology concerns energy conservation measures that target the heating system, the ventilation, the air conditioning and lightning systems, but also includes building envelope, tap water heating, elevators, occupant small electrical equipment, outdoor lighting, swimming pool pumping or heating. Calculation methodologies for energy conservation proposed by the Efficiency Valuation Organization were adapted by Alberta Environment. The protocol detailed in this document is based on the fact that emissions reductions are represented by the difference between the energy use in the project condition and a baseline. This approach proposes simple and advanced calculation methodologies that allow project developers to use one or the other, depending on the availability of data and on the limitations of the project, to maximize the greenhouse gas emissions reductions quantified. 14 refs., 11 tabs., 5 figs.

  12. Open science versus commercialization: a modern research conflict?

    Science.gov (United States)

    Caulfield, Timothy; Harmon, Shawn He; Joly, Yann

    2012-02-27

    Efforts to improve research outcomes have resulted in genomic researchers being confronted with complex and seemingly contradictory instructions about how to perform their tasks. Over the past decade, there has been increasing pressure on university researchers to commercialize their work. Concurrently, they are encouraged to collaborate, share data and disseminate new knowledge quickly (that is, to adopt an open science model) in order to foster scientific progress, meet humanitarian goals, and to maximize the impact of their research. We present selected guidelines from three countries (Canada, United States, and United Kingdom) situated at the forefront of genomics to illustrate this potential policy conflict. Examining the innovation ecosystem and the messages conveyed by the different policies surveyed, we further investigate the inconsistencies between open science and commercialization policies. Commercialization and open science are not necessarily irreconcilable and could instead be envisioned as complementary elements of a more holistic innovation framework. Given the exploratory nature of our study, we wish to point out the need to gather additional evidence on the coexistence of open science and commercialization policies and on its impact, both positive and negative, on genomics academic research.

  13. Better Buildings Neighborhood Program: BetterBuildings Lowell Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Heslin, Thomas

    2014-01-31

    The City of Lowell set four goals at the beginning of the Better Buildings Neighborhood Program: 1. Improve the Downtown Historic Park District’s Carbon Footprint 2. Develop a sustainable and replicable model for energy efficiency in historic buildings 3. Create and retain jobs 4. Promote multi-stakeholder partnerships The City of Lowell, MA was awarded $5 million in May 2010 to conduct energy efficiency retrofits within the downtown National Historical Park (NHP). The City’s target was to complete retrofits in 200,000 square feet of commercial space and create 280 jobs, while adhering to the strict historical preservation regulations that govern the NHP. The development of a model for energy efficiency in historic buildings was successfully accomplished. BetterBuildings Lowell’s success in energy efficiency in historic buildings was due to the simplicity of the program. We relied strongly on the replacement of antiquated HVAC systems and air sealing and a handful of talented energy auditors and contractors. BetterBuildings Lowell was unique for the Better Buildings Neighborhood Program because it was the only program that focused solely on commercial properties. BetterBuildings Lowell did target multi-family properties, which were reported as commercial, but the majority of the building types and uses were commercial. Property types targeted were restaurants, office buildings, museums, sections of larger buildings, mixed use buildings, and multifamily buildings. This unique fabric of building type and use allows for a deeper understanding to how different properties use energy. Because of the National Historical Park designation of downtown Lowell, being able to implement energy efficiency projects within a highly regulated historical district also provided valuable research and precedent proving energy efficiency projects can be successfully completed in historical districts and historical buildings. Our program was very successful in working with the local

  14. A Testbed Environment for Buildings-to-Grid Cyber Resilience Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, Siddharth; Ashok, Aditya; Mylrea, Michael E.; Pal, Seemita; Rice, Mark J.; Gourisetti, Sri Nikhil Gup

    2017-09-19

    The Smart Grid is characterized by the proliferation of advanced digital controllers at all levels of its operational hierarchy from generation to end consumption. Such controllers within modern residential and commercial buildings enable grid operators to exercise fine-grained control over energy consumption through several emerging Buildings-to-Grid (B2G) applications. Though this capability promises significant benefits in terms of operational economics and improved reliability, cybersecurity weaknesses in the supporting infrastructure could be exploited to cause a detrimental effect and this necessitates focused research efforts on two fronts. First, the understanding of how cyber attacks in the B2G space could impact grid reliability and to what extent. Second, the development and validation of cyber-physical application-specific countermeasures that are complementary to traditional infrastructure cybersecurity mechanisms for enhanced cyber attack detection and mitigation. The PNNL B2G testbed is currently being developed to address these core research needs. Specifically, the B2G testbed combines high-fidelity buildings+grid simulators, industry-grade building automation and Supervisory Control and Data Acquisition (SCADA) systems in an integrated, realistic, and reconfigurable environment capable of supporting attack-impact-detection-mitigation experimentation. In this paper, we articulate the need for research testbeds to model various B2G applications broadly by looking at the end-to-end operational hierarchy of the Smart Grid. Finally, the paper not only describes the architecture of the B2G testbed in detail, but also addresses the broad spectrum of B2G resilience research it is capable of supporting based on the smart grid operational hierarchy identified earlier.

  15. High-performance commercial building facades

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

    2002-06-01

    This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to

  16. Commercializing research: the leadership challenges for the 21st century

    International Nuclear Information System (INIS)

    Gardner, P.L.; Verma, V.

    2000-06-01

    R and D today is a large industry that consumes vast amounts of public and private funds in most countries. It is becoming increasingly evident that technology transfer and the commercialization of research done at universities and government funded research laboratories must be a key element of their comprehensive strategic plan. It involves using a verified and organized knowledge and research to develop commercially viable products. It requires a visionary leader with effective project management skills to manage and motivate a team of scientists and engineers, otherwise even a top rated researcher will enervate and wither within the walls of research laboratories. This paper will highlight the importance, challenges and techniques of commercializing technology from accelerator research laboratories. It will provide an overview of the requirements of scientific leadership for both commercialization of research and technology, together with some case studies based on the experience at TRIUMF - Canada's national sub-atomic research facility in Vancouver. TRIUMF's experience with both research and commercial developments involving innovative technologies, along with some of the important leadership and management factors that lead to successful projects will be described. (author)

  17. Commercializing research: the leadership challenges for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, P.L.; Verma, V

    2000-06-01

    R and D today is a large industry that consumes vast amounts of public and private funds in most countries. It is becoming increasingly evident that technology transfer and the commercialization of research done at universities and government funded research laboratories must be a key element of their comprehensive strategic plan. It involves using a verified and organized knowledge and research to develop commercially viable products. It requires a visionary leader with effective project management skills to manage and motivate a team of scientists and engineers, otherwise even a top rated researcher will enervate and wither within the walls of research laboratories. This paper will highlight the importance, challenges and techniques of commercializing technology from accelerator research laboratories. It will provide an overview of the requirements of scientific leadership for both commercialization of research and technology, together with some case studies based on the experience at TRIUMF - Canada's national sub-atomic research facility in Vancouver. TRIUMF's experience with both research and commercial developments involving innovative technologies, along with some of the important leadership and management factors that lead to successful projects will be described. (author)

  18. Sources of indoor air contamination on the ground floor of a high-rise commercial building

    International Nuclear Information System (INIS)

    Nayebzadeh, A.; Cragg-Elkouh, S.; Rancy, R.; Dufresne, A.

    1999-01-01

    Indoor air quality is a subject of growing concern in the developed world. Many sources of indoor air contamination in commercial and office buildings are recognised and have been investigated. In addition to the usual internal sources of air contaminants, other external sources from attached facilities can find their way into the building. This report presents the results of an indoor air quality survey in a high-rise office building which demonstrated an obvious seasonal change in regard to the concentrations of carbon dioxide (CO 2 ), nitric oxide (NO) and nitrogen dioxide (NO 2 ). Furthermore, a complementary survey in the same building was carried out to identify the relevant sources of air contamination in the building and the results indicated that an attached train station and the nearby street traffic had a significant impact on indoor air quality. (author)

  19. Radon in large buildings

    International Nuclear Information System (INIS)

    Wilson, D.L.; Dudney, C.S.; Gammage, R.B.

    1993-01-01

    Over the past several years, considerable research has been devoted by the U.S. Environmental Protection Agency (USEPA) and others to develop radon sampling protocols for single family residences and schools. However, very little research has been performed on measuring radon in the work place. To evaluate possible sampling protocols, 833 buildings throughout the United States were selected for extensive radon testing. The buildings tested (warehouses, production plants and office buildings) were representative of commercial buildings across the country both in design, size and use. Based on the results, preliminary radon sampling protocols for the work place have been developed. (orig.). (5 refs., 3 figs.)

  20. Research achievements and commercial interaction

    International Nuclear Information System (INIS)

    Garnett, H.M.

    2001-01-01

    ANSTO, in partnership with Australian and overseas organisations, continues to make significant contributions to selected fields of research and development. Major revenue for ANSTO is generated through sales of radiopharmaceuticals and radioisotopes for medical, industrial, environmental and research purposes and through neutron irradiation services. Further, ANSTO is actively trying to generate maximum value from its knowledge and know-how through protection and exploitation of its intellectual property. Strategic alliances have been developed to further the commercial utilisation of ANSTO know-how in, for example, delivery systems for tumour treatments, commercial waste remediation and applications of plasma implantation. The 2000-2001 financial year saw the establishment of an ANSTO business unit called Sulfide Solutions targeted at better management of environmental issues arising from mining operations. Overall, ANSTO's capacity to generate value from the application of its knowledge and know-how is being increasingly acknowledged, the organisation attaining credibility as an international leader in the application of nuclear science and technology in targeted areas

  1. Modeling and Analysis of Commercial Building Electrical Loads for Demand Side Management

    Science.gov (United States)

    Berardino, Jonathan

    In recent years there has been a push in the electric power industry for more customer involvement in the electricity markets. Traditionally the end user has played a passive role in the planning and operation of the power grid. However, many energy markets have begun opening up opportunities to consumers who wish to commit a certain amount of their electrical load under various demand side management programs. The potential benefits of more demand participation include reduced operating costs and new revenue opportunities for the consumer, as well as more reliable and secure operations for the utilities. The management of these load resources creates challenges and opportunities to the end user that were not present in previous market structures. This work examines the behavior of commercial-type building electrical loads and their capacity for supporting demand side management actions. This work is motivated by the need for accurate and dynamic tools to aid in the advancement of demand side operations. A dynamic load model is proposed for capturing the response of controllable building loads. Building-specific load forecasting techniques are developed, with particular focus paid to the integration of building management system (BMS) information. These approaches are tested using Drexel University building data. The application of building-specific load forecasts and dynamic load modeling to the optimal scheduling of multi-building systems in the energy market is proposed. Sources of potential load uncertainty are introduced in the proposed energy management problem formulation in order to investigate the impact on the resulting load schedule.

  2. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Belzer, David B.; Richman, Eric E.; Winiarski, David W.

    2002-09-07

    The state of Iowa is considering adpoting ASHRAE 90.1-1999 as its commercial building energy code. In an effort to evaluate whether or not this is an appropraite code for the state, the potential benefits and costs of adopting this standard are considered. Both qualitative and quantitative benefits are assessed. The energy simulation and economic results suggest that adopting ASHRAE 90.1-1999 would provide postitive net benefits to the state relative to the building and design requirements currently in place.

  3. Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-2001 as the Commercial Building Energy Code in Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Winiarski, David W.; Belzer, David B.; Richman, Eric E.

    2004-09-30

    ASHRAE Standard 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings (hereafter referred to as ASHRAE 90.1-2001 or 90.1-2001) was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The State of Tennessee is considering adopting ASHRAE 90.1-2001 as its commercial building energy code. In an effort to evaluate whether or not this is an appropriate code for the state, the potential benefits and costs of adopting this standard are considered in this report. Both qualitative and quantitative benefits and costs are assessed. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST) simulations combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits. Tennessee currently has ASHRAE Standard 90A-1980 as the statewide voluntary/recommended commercial energy standard; however, it is up to the local jurisdiction to adopt this code. Because 90A-1980 is the recommended standard, many of the requirements of ASHRAE 90A-1980 were used as a baseline for simulations.

  4. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov (United States)

    only an estimated 1% of commercial buildings are built to net-zero energy criteria. One reason for this Continuum Magazine | NREL Net-Zero Building Technologies Create Substantial Energy Savings Net -Zero Building Technologies Create Substantial Energy Savings Researchers work to package and share step

  5. Using EMIS to Identify Top Opportunities for Commercial Building Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guanjing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singla, Rupam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    Energy Management and Information Systems (EMIS) comprise a broad family of tools and services to manage commercial building energy use. These technologies offer a mix of capabilities to store, display, and analyze energy use and system data, and in some cases, provide control. EMIS technologies enable 10–20 percent site energy savings in best practice implementations. Energy Information System (EIS) and Fault Detection and Diagnosis (FDD) systems are two key technologies in the EMIS family. Energy Information Systems are broadly defined as the web-based software, data acquisition hardware, and communication systems used to analyze and display building energy performance. At a minimum, an EIS provides daily, hourly or sub-hourly interval meter data at the whole-building level, with graphical and analytical capability. Fault Detection and Diagnosis systems automatically identify heating, ventilation, and air-conditioning (HVAC) system or equipment-level performances issues, and in some cases are able to isolate the root causes of the problem. They use computer algorithms to continuously analyze system-level operational data to detect faults and diagnose their causes. Many FDD tools integrate the trend log data from a Building Automation System (BAS) but otherwise are stand-alone software packages; other types of FDD tools are implemented as “on-board” equipment-embedded diagnostics. (This document focuses on the former.) Analysis approaches adopted in FDD technologies span a variety of techniques from rule-based methods to process history-based approaches. FDD tools automate investigations that can be conducted via manual data inspection by someone with expert knowledge, thereby expanding accessibility and breath of analysis opportunity, and also reducing complexity.

  6. Buildings R&D Breakthroughs. Technologies and Products Supported by the Building Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-04-01

    This report identifies and characterizes commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects sponsored by BTP’s Emerging Technologies subprogram from 2005-2009.

  7. A Study on the Revitalizing of technology commercialization in KAERI

    International Nuclear Information System (INIS)

    Choi, J. I.; Jang, S. K.; Hong, G. P.; Lee, E. S.

    2009-02-01

    The TEC training program should be implemented for researches who want to commercialize their own technologies. To build creative organization culture is essential for technology commercialization. Collaboration strategy is related to analyze how KAERI is catching up their technological capabilities in nuclear technology, and what the success factors of KAERI in technology commercialization are.

  8. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Belzer, David B.; Winiarski, David W.; Richman, Eric E.

    2004-04-30

    The state of North Dakota is considering updating its commercial building energy code. This report evaluates the potential costs and benefits to North Dakota residents from updating and requiring compliance with ASHRAE Standard 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in the analysis. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST simulation combined with a Life-cycle Cost (LCC) approach to assess correspodning economic costs and benefits.

  9. U.S.– India Joint Center for Building Energy Research and Development (CBERD) Caring for the Energy Health of Healthcare Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Reshma [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Srivastava, Rohini [Carnegie Mellon Univ., Pittsburgh, PA (United States); Shukla, Rash [Center for Environmental Planning and Technology (India)

    2016-03-01

    The U.S.-India Joint Center for Building Energy Research & Development (CBERD), created through the Partnership to Accelerate Clean Energy (PACE) agreement between the United States and India, is a research and development (R&D) center with over 30 institutional and industry partners from both nations. This five-year presidential initiative is jointly funded by the U.S. Department of Energy and the Government of India. CBERD aims to build upon a foundation of collaborative knowledge, tools, and technologies, and human capabilities that will increase development of high-performance buildings. To reach this goal, the R&D focuses on energy use reduction throughout the entire life cycle of buildings—i.e., design, construction, and operations. During the operations phase of buildings, even with best-practice energy-efficient design, actual energy use can be much higher than the design intent. Every day, much of the energy consumed by buildings serves no purpose (Roth et al. 2005). Building energy information systems (EIS) are commercially available systems that building owners and facility managers use to assess their building operations, measure, visualize, analyze, and report energy cost and consumption. Energy information systems can enable significant energy savings by tracking energy use, identifying consumption patterns, and benchmarking performance against similar buildings, thereby identifying improvement opportunities. The CBERD team has identified potential energy savings of approximately 2 quads of primary energy in the United States, while industry building energy audits in India have indicated potential energy savings of up to 30 percent in commercial buildings such as offices. Additionally, the CBERD team has identified healthcare facilities (e.g., hospitals, clinics), hotels, and offices as the three of the highest-growth sectors in India that have significant energy consumption, and that would benefit the most from implementation of EIS.

  10. Next-generation heat pump systems in residential buildings and commercial premises; Naesta generations vaermepumpssystem i bostaeder och lokaler

    Energy Technology Data Exchange (ETDEWEB)

    Haglund Stignor, Caroline; Lindahl, Markus; Alsbjer, Markus; Nordman, Roger; Rolfsman, Lennart; Axell, Monica

    2009-07-01

    Summarising, the following conclusions can be drawn from this work. - Installation of a heat pump system is a very efficient way of reducing a building's energy demand without making any greater changes to the building's climate screen, and can therefore assist Sweden's achievement of its energy efficiency improvement targets. - A new generation of cost-effective smaller heat pumps is needed for installation in new detached houses or those being renovated and upgraded. - There also seems to be an excellent market potential for heat pumps that are larger than has previously been common: there should be good prospects for selling them for use in apartment buildings and in commercial or similar premises. - Heat pump installations are particularly competitive in applications where there are simultaneous heating and cooling demands in the property, and also in those cases where heating is required for most of the year and cooling for some other part of the year. If these suggested system arrangements are to be fully realised, there will be a need for further research in certain cases. Particularly, there is a need for research and development of more efficient pumps, fans and speed-controlled compressors in order to get such products on to the market. Performance measurements and follow-up of real systems are needed in order to obtain a clear picture of the efficiency of both present-day and proposed systems. This knowledge is essential for further development of systems, not only for residential buildings but also, even more importantly, for commercial and similar premises. Actual heating and cooling requirements in different types of non-residential premises need to be known more accurately in order to decide how systems should be controlled in order to minimise total energy use. Much indicates that future detached houses will be more energy-efficient, which could have the undesirable result of greater use of direct electric heating, as the investment

  11. Establishing a Commercial Buildings Energy Data Framework for India: A Comprehensive Look at Data Collection Approaches, Use Cases and Institutions

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Maithili [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kumar, Satish [Synurja, LLC, Vienna, VA (United States); Mathew, Sangeeta [Synurja, LLC, Vienna, VA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singh, Mohini [Synurja, LLC, Vienna, VA (United States)

    2016-10-01

    Enhancing energy efficiency of the commercial building stock is an important aspect of any national energy policy. Understanding how buildings use energy is critical to formulating any new policy that may impact energy use, underscoring the importance of credible data. Data enables informed decision making and good quality data is essential for policy makers to prioritize energy saving strategies and track implementation. Given the uniqueness of the buildings sector and challenges to collecting relevant energy data, this study characterizes various elements involved in pertinent data collection and management, with the specific focus on well-defined data requirements, appropriate methodologies and processes, feasible data collection mechanisms, and approaches to institutionalizing the collection process. This report starts with a comprehensive review of available examples of energy data collection frameworks for buildings across different countries. The review covers the U.S. experience in the commercial buildings sector, the European experience in the buildings sector and other data collection initiatives in Singapore and China to capture the more systematic efforts in Asia in the commercial sector. To provide context, the review includes a summary and status of disparate efforts in India to collect and use commercial building energy data. Using this review as a key input, the study developed a data collection framework for India with specific consideration to relevant use cases. Continuing with the framework for data collection, this study outlines the key performance indicators applicable to the use cases and their collection feasibility, as well as immediate priorities of the participating stakeholders. It also discusses potential considerations for data collection and the possible approaches for survey design. With the specific purpose of laying out the possible ways to structure and organize data collection institutionally, the study collates existing

  12. A cash flow model of development activity and the scope for energy savings. [Commercial office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Leifer, D [Queensland Univ., St. Lucia (AU). Dept. of Architecture

    1991-01-01

    When proposing energy saving measures to the developers of large commercial office projects, it is necessary to appreciate what the developers' goals and perceptions are. This paper looks at a simple cash-flow model of development activity, and illustrates the potential for energy savings with reference to some data from two major Australian cities. This data was collected between July and November 1989 by surveys which were carried out on the basic design of 26 of the tallest Brisbane commercial office buildings. This survey followed an extensive investigation into the premises needs of modern office building tenants in Brisbane, in which over 200 CBD tenants were questioned. This investigation showed that there was an increasing need for air conditioning capacity and electrical power; greater tendencies for ''after hours'' office work; a desire for larger floor-plates to cater for expanding tenant organizations, and the emergence of ''professional tenants''. These observations have been documented elsewhere in the orbit reports amongst others. The buildings surveyed represent 60% of the estimated Brisbane central business district (CBD) office stock of area 1,256,000 m{sup 2}. (author).

  13. Building Evidence for Health: Green Buildings, Current Science, and Future Challenges.

    Science.gov (United States)

    Cedeño-Laurent, J G; Williams, A; MacNaughton, P; Cao, X; Eitland, E; Spengler, J; Allen, J

    2018-04-01

    Civilizational challenges have questioned the status quo of energy and material consumption by humans. From the built environment perspective, a response to these challenges was the creation of green buildings. Although the revolutionary capacity of the green building movement has elevated the expectations of new commercial construction, its rate of implementation has secluded the majority of the population from its benefits. Beyond reductions in energy usage and increases in market value, the main strength of green buildings may be the procurement of healthier building environments. Further pursuing the right to healthy indoor environments could help the green building movement to attain its full potential as a transformational public health tool. On the basis of 40 years of research on indoor environmental quality, we present a summary of nine environment elements that are foundational to human health. We posit the role of green buildings as a critical research platform within a novel sustainability framework based on social-environmental capital assets.

  14. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of

  15. Future buildings Forum-2025: Toward a methodology for future buildings research

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.S.

    1990-10-01

    The purpose of this paper is to explore methods that could be used in studying buildings of the future. The methodology that the forum will develop will have a number of likely applications, among them: the development of research agendas for new building energy technologies; the development of information and analytical capabilities usable by other IEA annexes to address their technology assessment needs; and the generation of information that can serve as input to global energy models designed to inform energy policy decisions. This paper is divided into two major sections. The first is an overview of existing methods of futures research. Terms and concepts are explained, providing the basis for the second section. The second section proposes a framework and general methodology for studying future buildings. This preliminary, or strawman, methodology is intended to provoke early thinking and discussions on how the research should be approached. 24 refs., 8 figs.

  16. Identifying Critical Factors in the Cost-Effectiveness of Solar and Battery Storage in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Anderson, Katherine H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laws, Nicholas D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gagnon, Pieter J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DiOrio, Nicholas A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Li, Xiangkun [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-21

    This analysis elucidates the emerging market for distributed solar paired with battery energy storage in commercial buildings across the United States. It provides insight into the near-term and future solar and solar-plus-storage market opportunities as well as the variables that impact the expected savings from installing behind-the-meter systems.

  17. Building research capacity to inform practical policymaking | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-08-17

    Aug 17, 2017 ... IDRC is committed to supporting cutting-edge research led by developing country experts to create lasting change. Building strong partnerships with regional researchers and organizations through research support and capacity building is integral to the success of this approach. The African Economic ...

  18. Building visual identity of scientific and research units and the role of visualization in cooperation with business

    Directory of Open Access Journals (Sweden)

    Alfreda Kamińska

    2014-12-01

    Full Text Available The need for commercialization of scientific research leads to the necessity of changing the orientation of scientific-research units to marketing orientation, which is characterized by, among others, conducting research aimed at learning the clients’ needs and building better communication with the recipients. What is an important element of a unit’s marketing communication is its visual identity system, which the recipients use to build their opinion and their picture of the unit. The goal of this article is an attempt to define the key rules of designing visual identity of scientific and research institutions, as well as presenting the role of visualization in their cooperation with business. In the article the notions of image, identity, corporate identity and visual identity are subject to analysis. The article also presents the significance of visualization in the functioning of research and scientific units, elements of visual identity system and the rules of designing visual identity of scientific and research institutions. An analysis of chosen research-scientific units was carried out with regard to visualization.

  19. Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-04-01

    The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.

  20. Electric Propulsion Research Building (EPRB)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electric Propulsion Research Building (EPRB) capability centers on its suite of vacuum chambers, which are configured to meet the unique requirements related to...

  1. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Saifur [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-08-25

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they are not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.

  2. Understanding the potential of facilities managers to be advocates for energy efficiency retrofits in mid-tier commercial office buildings

    International Nuclear Information System (INIS)

    Curtis, Jim; Walton, Andrea; Dodd, Michael

    2017-01-01

    Realising energy efficiency opportunities in new commercial office buildings is an easier task than retrofitting older, mid-tier building stock. As a result, a number of government programs aim to support retrofits by offering grants, upgrades, and energy audits to facilitate energy efficiency opportunities. This study reports on a state government program in Victoria, Australia, where the uptake of such offerings was lower than expected, prompting the program team to consider whether targeting facilities managers (FMs), rather than building owners, might be a better way of delivering the program. The influences and practices of FMs that impact on their ability to be advocates for energy efficiency were explored. The results revealed that complex building ownership arrangements, poor communication skills, isolation from key decision making processes, a lack of credible business cases and information, split incentives, and the prospect of business disruptions can all impact on FMs’ ability to drive organizational change. Future program efforts should continue to interrogate the social context of retrofits in mid-tier buildings, including other influences and influencers beyond FMs, and adapt accordingly. - Highlights: • Energy efficiency retrofits of older commercial buildings can be a challenge. • Government support for retrofits is not always taken up by building owners. • Targeting facilities managers (FMs) to encourage retrofits is proposed. • FMs’ ability to be advocates for energy efficiency is constrained. • Government offerings need to better fit with the realities of the problem.

  3. Small Commercial Building Re-tuning: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Hostick, Donna J.; Underhill, Ronald M.; Fernandez, Nicholas; Katipamula, Srinivas

    2013-09-30

    To help building owners and managers address issues related to energy-efficient operation of small buildings, DOE has developed a Small Building Re-tuning training curriculum. This "primer" provides additional background information to understand some of the concepts presented in the Small Building Re-tuning training. The intent is that those who are less familiar with the buidling energy concepts will review this material before taking the building re-tuning training class.

  4. 2nd International Conference on Construction and Building Research

    CERN Document Server

    Fernández-Plazaola, Igor; Hidalgo-Delgado, Francisco; Martínez-Valenzuela, María; Medina-Ramón, Francisco; Oliver-Faubel, Inmaculada; Rodríguez-Abad, Isabel; Salandin, Andrea; Sánchez-Grandia, Rafael; Tort-Ausina, Isabel; Construction and Building Research

    2014-01-01

    Many areas of knowledge converge in the building industry and therefore research in this field necessarily involves an interdisciplinary approach. Effective research requires strong relations between a broad variety of scientific and technological domains and more conventional construction or craft processes, while also considering advanced management processes, where all the main actors permanently interact. This publication takes an interdisciplinary approach grouping various studies on the building industry chosen from among the works presented for the 2nd International Conference on Construction and Building Research. The papers examine aspects of materials and building systems; construction technology; energy and sustainability; construction management; heritage, refurbishment and conservation. The information contained within these pages may be of interest to researchers and practitioners in construction and building activities from the academic sphere, as well as public and private sectors.

  5. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    Energy Technology Data Exchange (ETDEWEB)

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  6. Soft Robotics Commercialization: Jamming Grippers from Research to Product

    Science.gov (United States)

    Cheng, Nadia; Fakhouri, Sami; Culley, Bill

    2016-01-01

    Abstract Recent work in the growing field of soft robotics has demonstrated a number of very promising technologies. However, to make a significant impact in real-world applications, these new technologies must first transition out of the laboratory through successful commercialization. Commercialization is perhaps the most critical future milestone facing the field of soft robotics today, and this process will reveal whether the apparent impact we now perceive has been appropriately estimated. Since 2012, Empire Robotics has been one of the first companies to attempt to reach this milestone through our efforts to commercialize jamming-based robotic gripper technology in a product called VERSABALL®. However, in spring 2016 we are closing our doors, having not been able to develop a sustainable business around this technology. This article presents some of the key takeaways from the technical side of the commercialization process and lessons learned that may be valuable to others. We hope that sharing this information will provide a frame of reference for technology commercialization that can help others motivate research directions and maximize research impact. PMID:28078197

  7. Non-commercial vs. commercial clinical trials: a retrospective study of the applications submitted to a research ethics committee.

    Science.gov (United States)

    Fuentes Camps, Inmaculada; Rodríguez, Alexis; Agustí, Antonia

    2018-02-15

    There are many difficulties in undertaking independent clinical research without support from the pharmaceutical industry. In this retrospective observational study, some design characteristics, the clinical trial public register and the publication rate of noncommercial clinical trials were compared to those of commercial clinical trials. A total of 809 applications of drug-evaluation clinical trials were submitted from May 2004 to May 2009 to the research ethics committee of a tertiary hospital, and 16.3% of trials were noncommercial. They were mainly phase IV, multicentre national, and unmasked controlled trials, compared to the commercial trials that were mainly phase II or III, multicentre international, and double-blind masked trials. The commercial trials were registered and published more often than noncommercial trials. More funding for noncommercial research is still needed. The results of the research, commercial or noncommercial, should be disseminated in order not to compromise either its scientific or its social value. © 2018 The British Pharmacological Society.

  8. Alliance for Sustainable Colorado Renovation Raises Its Energy Performance to New Heights, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Alliance for Sustainable Colorado (The Alliance) is a nonprofit organization aiming to transform sustainability from vision to reality. Part of its mission is to change the operating paradigms of commercial building design to make them more sustainable. Toward that end The Alliance uses its headquarters, The Alliance Center at 1536 Wynkoop Street in Denver, as a living laboratory, conductingpilot studies of innovative commercial-building-design solutions for using and generating energy.

  9. Building Efficiency Technologies by Tomorrow’s Engineers and Researchers (BETTER) Capstone. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Shannon [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-09-30

    BETTER Capstone supported 29 student project teams consisting of 155 students over two years in developing transformative building energy efficiency technologies through a capstone design experience. Capstone is the culmination of an undergraduate student’s engineering education. Interdisciplinary teams of students spent a semester designing and prototyping a technological solution for a variety building energy efficiency problems. During this experience students utilized the full design process, including the manufacturing and testing of a prototype solution, as well as publically demonstrating the solution at the Capstone Design Expo. As part of this project, students explored modern manufacturing techniques and gained hands-on experience with these techniques to produce their prototype technologies. This research added to the understanding of the challenges within building technology education and engagement with industry. One goal of the project was to help break the chicken-and-egg problem with getting students to engage more deeply with the building technology industry. It was learned however that this industry is less interested in trying innovative new concept but rather interested in hiring graduates for existing conventional building efforts. While none of the projects yielded commercial success, much individual student growth and learning was accomplished, which is a long-term benefit to the public at large.

  10. Sport Commercialism and its Impact on Sponsorship Strategy

    Directory of Open Access Journals (Sweden)

    Tracy Trachsler

    2015-10-01

    Full Text Available Sport commercialism has increased tremendously over the past twenty years. Major sporting events and organizations are at the point where most cannot survive without outside sponsor- ship revenue. This study on American attitudes towards sport sponsorships analyzes the increased sport commercialism’s impact on sport fans. Previous studies on sport sponsorship and commercialism showed that increased sport commercial- ism leads to a negative purchase intent although a younger fan may be resistant to the negative influence of over-commercial- ism. This study builds upon such research by comparing gen- der, age, type of sport (professional versus amateur and fan- avidity. Perhaps paradoxically, this research suggests there is no correlation between over-commercialism and sport interest across numerous demographic categories. This data of corporate influence on sport commercialism may provide insights for sport sponsors as they best position their brands to the sport avid consumer.

  11. Destruction of Spores on Building Decontamination Residue in a Commercial Autoclave▿

    Science.gov (United States)

    Lemieux, P.; Sieber, R.; Osborne, A.; Woodard, A.

    2006-01-01

    The U.S. Environmental Protection Agency conducted an experiment to evaluate the effectiveness of a commercial autoclave for treating simulated building decontamination residue (BDR). The BDR was intended to simulate porous materials removed from a building deliberately contaminated with biological agents such as Bacillus anthracis (anthrax) in a terrorist attack. The purpose of the tests was to assess whether the standard operating procedure for a commercial autoclave provided sufficiently robust conditions to adequately destroy bacterial spores bound to the BDR. In this study we investigated the effects of several variables related to autoclaving BDR, including time, temperature, pressure, item type, moisture content, packing density, packing orientation, autoclave bag integrity, and autoclave process sequence. The test team created simulated BDR from wallboard, ceiling tiles, carpet, and upholstered furniture, and embedded in the BDR were Geobacillus stearothermophilus biological indicator (BI) strips containing 106 spores and thermocouples to obtain time and temperature profile data associated with each BI strip. The results indicated that a single standard autoclave cycle did not effectively decontaminate the BDR. Autoclave cycles consisting of 120 min at 31.5 lb/in2 and 275°F and 75 min at 45 lb/in2 and 292°F effectively decontaminated the BDR material. Two sequential standard autoclave cycles consisting of 40 min at 31.5 lb/in2 and 275°F proved to be particularly effective, probably because the second cycle's evacuation step pulled the condensed water out of the pores of the materials, allowing better steam penetration. The results also indicated that the packing density and material type of the BDR in the autoclave could have a significant impact on the effectiveness of the decontamination process. PMID:17012597

  12. Destruction of spores on building decontamination residue in a commercial autoclave.

    Science.gov (United States)

    Lemieux, P; Sieber, R; Osborne, A; Woodard, A

    2006-12-01

    The U.S. Environmental Protection Agency conducted an experiment to evaluate the effectiveness of a commercial autoclave for treating simulated building decontamination residue (BDR). The BDR was intended to simulate porous materials removed from a building deliberately contaminated with biological agents such as Bacillus anthracis (anthrax) in a terrorist attack. The purpose of the tests was to assess whether the standard operating procedure for a commercial autoclave provided sufficiently robust conditions to adequately destroy bacterial spores bound to the BDR. In this study we investigated the effects of several variables related to autoclaving BDR, including time, temperature, pressure, item type, moisture content, packing density, packing orientation, autoclave bag integrity, and autoclave process sequence. The test team created simulated BDR from wallboard, ceiling tiles, carpet, and upholstered furniture, and embedded in the BDR were Geobacillus stearothermophilus biological indicator (BI) strips containing 10(6) spores and thermocouples to obtain time and temperature profile data associated with each BI strip. The results indicated that a single standard autoclave cycle did not effectively decontaminate the BDR. Autoclave cycles consisting of 120 min at 31.5 lb/in2 and 275 degrees F and 75 min at 45 lb/in2 and 292 degrees F effectively decontaminated the BDR material. Two sequential standard autoclave cycles consisting of 40 min at 31.5 lb/in2 and 275 degrees F proved to be particularly effective, probably because the second cycle's evacuation step pulled the condensed water out of the pores of the materials, allowing better steam penetration. The results also indicated that the packing density and material type of the BDR in the autoclave could have a significant impact on the effectiveness of the decontamination process.

  13. Walmart - Saving Energy, Saving Money Through Comprehensive Retrofits, Commercial Building Energy Efficiency (Fact Sheet); Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    Walmart partnered with the U.S. Department of Energy (DOE) in 2009 to develop and demonstrate energy retrofits for existing buildings. The goal was to reduce energy consumption by at least 30% versus ASHRAE Standard 90.1-2007, as part of DOE's Commercial Building Partnerships (CBP) Program. The project presented here, the retrofit of a 213,000 square foot store in Centennial, Colorado, withefficiency measures across multiple building systems, is part of Walmart's ongoing environmental sustainability program, which originated in 2005.

  14. Capability and deficiency of the simplified model for energy calculation of commercial buildings in the Brazilian regulation

    NARCIS (Netherlands)

    Melo, A.P.; Lamberts, R.; Costola, D.; Hensen, J.L.M.

    2011-01-01

    This paper provides a preliminary assessment on the accuracy of the Brazilian regulation simplified model for commercial buildings. The first step was to compare its results with BESTEST. The study presents a straightforward approach to apply the BESTEST in other climates than the original one

  15. Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip N.; Granderson, Jessica; Sohn, Michael; Addy, Nathan; Jump, David

    2013-09-01

    The overarching goal of this work is to advance the capabilities of technology evaluators in evaluating the building-level baseline modeling capabilities of Energy Management and Information System (EMIS) software. Through their customer engagement platforms and products, EMIS software products have the potential to produce whole-building energy savings through multiple strategies: building system operation improvements, equipment efficiency upgrades and replacements, and inducement of behavioral change among the occupants and operations personnel. Some offerings may also automate the quantification of whole-building energy savings, relative to a baseline period, using empirical models that relate energy consumption to key influencing parameters, such as ambient weather conditions and building operation schedule. These automated baseline models can be used to streamline the whole-building measurement and verification (M&V) process, and therefore are of critical importance in the context of multi-measure whole-building focused utility efficiency programs. This report documents the findings of a study that was conducted to begin answering critical questions regarding quantification of savings at the whole-building level, and the use of automated and commercial software tools. To evaluate the modeling capabilities of EMIS software particular to the use case of whole-building savings estimation, four research questions were addressed: 1. What is a general methodology that can be used to evaluate baseline model performance, both in terms of a) overall robustness, and b) relative to other models? 2. How can that general methodology be applied to evaluate proprietary models that are embedded in commercial EMIS tools? How might one handle practical issues associated with data security, intellectual property, appropriate testing ‘blinds’, and large data sets? 3. How can buildings be pre-screened to identify those that are the most model-predictable, and therefore those

  16. Building Space Management | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    , repurposing underused space and through the use of electronic media. Several space management principles can Building Space Management Building Space Management Building space represents one of the largest recruiting and successful acquisition of research funding. Learn more about how space management is necessary

  17. Building Research Capacity to Understand and Adapt to Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Building Research Capacity to Understand and Adapt to Climate Change in the Indus Basin ... Eleven world-class research teams set to improve livestock vaccine development ... Building resilience through socially equitable climate action.

  18. Construction cost impact analysis of the U.S. Department of Energy mandatory performance standards for new federal commercial and multi-family, high-rise residential buildings

    International Nuclear Information System (INIS)

    Di Massa, F.V.; Hadley, D.L.; Halverson, M.A.

    1993-12-01

    In accordance with federal legislation, the U.S. Department of Energy (DOE) has conducted a project to demonstrate use of its Energy Conservation Voluntary Performance Standards for Commercial and Multi-Family High-Rise Residential Buildings; Mandatory for New Federal Buildings; Interim Rule (referred to in this report as DOE-1993). A key requisite of the legislation requires DOE to develop commercial building energy standards that are cost effective. During the demonstration project, DOE specifically addressed this issue by assessing the impacts of the standards on (1) construction costs, (2) builders (and especially small builders) of multi-family, high-rise buildings, and (3) the ability of low-to moderate-income persons to purchase or rent units in such buildings. This document reports on this project

  19. Pilot project for a commercial buildings Energy Analysis and Diagnostic Center (EADC) program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Capehart, B.L.

    1996-02-01

    Commercial energy use costs businesses around $70 billion annually. Many of these businesses are small and medium sized organizations that do not have the resources to help themselves, or to pay for professional engineering services to help reduce their energy costs and improve their economic competitiveness. Energy cost reduction actions with payback times of around two years could save the commercial sector 15--20%, or $10--$15 billion per year. This project was initially intended to evaluate the feasibility of performing commercial energy audits as an adjunct to the industrial audit program run by the US Department of Energy Industrial Office. This program is housed in 30 universities throughout the United States. Formerly known as Energy Analysis and Diagnostic Centers (EADC`s), the university programs are now called Industrial Assessment Centers (IAC`s) to reflect their expansion from energy use analyses to include waste and productivity analyses. The success of the EADC/IAC program in helping the manufacturing sector provides an excellent model for a similar program in the commercial buildings sector. This project has investigated using the EADC/IAC approach to performing energy audits for the commercial sector, and has determined that such an approach is feasible and cost effective.

  20. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  1. Functional Testing Protocols for Commercial Building Efficiency Baseline Modeling Software

    Energy Technology Data Exchange (ETDEWEB)

    Jump, David; Price, Phillip N.; Granderson, Jessica; Sohn, Michael

    2013-09-06

    This document describes procedures for testing and validating proprietary baseline energy modeling software accuracy in predicting energy use over the period of interest, such as a month or a year. The procedures are designed according to the methodology used for public domain baselining software in another LBNL report that was (like the present report) prepared for Pacific Gas and Electric Company: ?Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing Protocols? (referred to here as the ?Model Analysis Report?). The test procedure focuses on the quality of the software?s predictions rather than on the specific algorithms used to predict energy use. In this way the software vendor is not required to divulge or share proprietary information about how their software works, while enabling stakeholders to assess its performance.

  2. Researches and commercialization of food irradiation technology in China

    International Nuclear Information System (INIS)

    Gao Meixu; Ha Yiming; Chen Hao; Liu Chunquan; Chen Xiulan

    2007-01-01

    The status of food irradiation on research, standard and commercialization is described in the paper. The main research fields now include degradation of chloramphenicol residue by irradiation, promoting safety of meat products, frozen seafood and ready-to-eat products by irradiation, lower activity of allergic protein by irradiation, identification of irradiated food and irradiation as a phytosanitary treatment. The existed standards need to be revised, and new standard need to be established. The commercialization stages of food irradiation and quality assurance system of irradiation company are also analyzed. (authors)

  3. Commercial Building Tenant Energy Usage Aggregation and Privacy

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

    2014-10-31

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

  4. 77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-08-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [12-069] NASA Advisory Council; Commercial Space.... DATES: Tuesday, September 18, 2012, 11:45 a.m.-5:30 p.m.; Local Time. ADDRESSES: NASA Ames Research Center (ARC), The Showroom, Building M-3, NASA Ames Conference Center, 500 Severyns Road, NASA Research...

  5. Radon investigations - Soil and commercial projects

    International Nuclear Information System (INIS)

    Goodwin, R.W.

    1987-01-01

    The liability issues of radon exposure have prompted potential purchasers of vacant land for commercial/industrial development, and commercial landlords, renting large commercial buildings, to determine the radon gas levels at such sites. This paper deals with both pre-construction sites subject to freezing conditions and to large commercial structures. A correlation of radon gas levels within a commercial building and a sister pre-construction site confirms the validity of using activated charcoal canisters as a cost effective means to combating radon in large structures

  6. Building America Research Benchmark Definition, Updated December 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engebrecht, Cheryn [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-01-01

    To track progress toward aggressive multi-year, whole-house energy savings goals of 40%–70% and on-site power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America (BA) Research Benchmark in consultation with the Building America industry teams.

  7. Distributed Flexibility Characterization and Resource Allocation Strategies for Multi-zone Commercial Buildings in the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Hao, He; Lian, Jianming; Kalsi, Karanjit; Stoustrup, Jakob

    2015-12-15

    The HVAC (Heating, Ventilation, and Air- Conditioning) system of commercial buildings is a complex system with a large number of dynamically interacting components. In particular, the thermal dynamics of each zone are coupled with those of the neighboring zones. In this paper, we study a multi-agent based approach to model and control commercial building HVAC system for providing grid services. In the multi-agent system (MAS), individual zones are modeled as agents that can communicate, interact, and negotiate with one another to achieve a common objective. We first propose a distributed characterization method on the aggregated airflow (and thus fan power) flexibility that the HVAC system can provide to the ancillary service market. Then, we propose a Nash-bargaining based airflow allocation strategy to track a dispatch signal (that is within the offered flexibility limit) while respecting the preference and flexibility of individual zones. Moreover, we devise a distributed algorithm to obtain the Nash bargaining solution via dual decomposition and average consensus. Numerical simulations illustrate that the proposed distributed protocols are much more scalable than the centralized approaches especially when the system becomes larger and more complex.

  8. Radon in large buildings: The development of a protocol

    International Nuclear Information System (INIS)

    Wilson, D.L.; Dudney, C.S.; Gammage, R.B.

    1993-01-01

    Over the past several years, considerable research has been devoted by the US Environmental Protection Agency (USEPA) and others to develop radon sampling protocols for single family residences and schools. However, very little research has been performed on measuring radon in the work place. To evaluate possible sampling protocols, 833 buildings throughout the United States were selected for extensive radon testing. The buildings tested (warehouses, production plants and office buildings) were representative of commercial buildings across the country both in design, size and use. Based on the results, preliminary radon sampling protocols for the work place have been developed

  9. Toward a General Research Process for Using Dubin's Theory Building Model

    Science.gov (United States)

    Holton, Elwood F.; Lowe, Janis S.

    2007-01-01

    Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…

  10. An analysis of buildings-related energy use in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  11. Building National Health Research Information Systems (COHRED ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Building National Health Research Information Systems (COHRED). This grant will allow the Council on Health Research for Development (COHRED) to create, host and maintain a web-based resource on national health research in low- and middle-income countries in partnership with institutions in the South. Called ...

  12. Progress on Enabling an Interactive Conversation Between Commercial Building Occupants and Their Building To Improve Comfort and Energy Efficiency: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schott, M.; Scheib, J.; Long, N.; Fleming, K.; Benne, K.; Brackney, L.

    2012-06-01

    Many studies have reported energy savings after installing a dashboard, but dashboards provide neither individual feedback to the occupant nor the ability to report individual comfort. The Building Agent (BA) provides an interface to engage the occupant in a conversation with the building control system and the building engineer. Preliminary outcomes of the BA-enabled feedback loop are presented, and the effectiveness of the three display modes will be compared to other dashboard studies to baseline energy savings in future research.

  13. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  14. Building America Research Benchmark Definition: Updated December 19, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.

    2008-12-01

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams.

  15. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Helcio; Sathaye, Jayant

    2010-05-14

    We investigate the existence of the principal-agent (PA) problem in non-government, non-mall commercial buildings in the U.S. in 2003. The analysis concentrates on space heating and cooling energy consumed by centrally installed equipment in order to verify whether a market failure caused by the PA problem might have prevented the installation of energy-efficient devices in non-owner-occupied buildings (efficiency problem) and/or the efficient operation of space-conditioning equipment in these buildings (usage problem). Commercial Buildings Energy Consumption Survey (CBECS) 2003 data for single-owner, single-tenant and multi-tenant occupied buildings were used for conducting this evaluation. These are the building subsets with the appropriate conditions for assessing both the efficiency and the usage problems. Together, these three building types represent 51.9percent of the total floor space of all buildings with space heating and 59.4percent of the total end-use energy consumption of such buildings; similarly, for space cooling, they represent 52.7percent of floor space and 51.6percent of energy consumption. Our statistical analysis shows that there is a usage PA problem. In space heating it applies only to buildings with a small floor area (<_50,000 sq. ft.). We estimate that in 2003 it accounts for additional site energy consumption of 12.3 (+ 10.5 ) TBtu (primary energy consumption of 14.6 [+- 12.4] TBtu), corresponding to 24.0percent (+- 20.5percent) of space heating and 10.2percent (+- 8.7percent) of total site energy consumed in those buildings. In space cooling, however, the analysis shows that the PA market failure affects the complete set of studied buildings. We estimate that it accounts for a higher site energy consumption of 8.3 (+-4.0) TBtu (primary energy consumption of 25.5 [+- 12.2]TBtu), which corresponds to 26.5percent (+- 12.7percent) of space cooling and 2.7percent (+- 1.3percent) of total site energy consumed in those buildings.

  16. Two-stage commercial evaluation of engineering systems production projects for high-rise buildings

    Science.gov (United States)

    Bril, Aleksander; Kalinina, Olga; Levina, Anastasia

    2018-03-01

    The paper is devoted to the current and debatable problem of methodology of choosing the effective innovative enterprises for venture financing. A two-stage system of commercial innovation evaluation based on the UNIDO methodology is proposed. Engineering systems account for 25 to 40% of the cost of high-rise residential buildings. This proportion increases with the use of new construction technologies. Analysis of the construction market in Russia showed that the production of internal engineering systems elements based on innovative technologies has a growth trend. The production of simple elements is organized in small enterprises on the basis of new technologies. The most attractive for development is the use of venture financing of small innovative business. To improve the efficiency of these operations, the paper proposes a methodology for a two-stage evaluation of small business development projects. A two-stage system of commercial evaluation of innovative projects allows creating an information base for informed and coordinated decision-making on venture financing of enterprises that produce engineering systems elements for the construction business.

  17. Two-stage commercial evaluation of engineering systems production projects for high-rise buildings

    Directory of Open Access Journals (Sweden)

    Bril Aleksander

    2018-01-01

    Full Text Available The paper is devoted to the current and debatable problem of methodology of choosing the effective innovative enterprises for venture financing. A two-stage system of commercial innovation evaluation based on the UNIDO methodology is proposed. Engineering systems account for 25 to 40% of the cost of high-rise residential buildings. This proportion increases with the use of new construction technologies. Analysis of the construction market in Russia showed that the production of internal engineering systems elements based on innovative technologies has a growth trend. The production of simple elements is organized in small enterprises on the basis of new technologies. The most attractive for development is the use of venture financing of small innovative business. To improve the efficiency of these operations, the paper proposes a methodology for a two-stage evaluation of small business development projects. A two-stage system of commercial evaluation of innovative projects allows creating an information base for informed and coordinated decision-making on venture financing of enterprises that produce engineering systems elements for the construction business.

  18. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha; Tan, Qing; Evans, Meredydd; Kyle, Page; Vu, Linh; Patel, Pralit L.

    2017-11-01

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

  19. Evaluating the benefits of commercial building energy codes and improving federal incentives for code adoption.

    Science.gov (United States)

    Gilbraith, Nathaniel; Azevedo, Inês L; Jaramillo, Paulina

    2014-12-16

    The federal government has the goal of decreasing commercial building energy consumption and pollutant emissions by incentivizing the adoption of commercial building energy codes. Quantitative estimates of code benefits at the state level that can inform the size and allocation of these incentives are not available. We estimate the state-level climate, environmental, and health benefits (i.e., social benefits) and reductions in energy bills (private benefits) of a more stringent code (ASHRAE 90.1-2010) relative to a baseline code (ASHRAE 90.1-2007). We find that reductions in site energy use intensity range from 93 MJ/m(2) of new construction per year (California) to 270 MJ/m(2) of new construction per year (North Dakota). Total annual benefits from more stringent codes total $506 million for all states, where $372 million are from reductions in energy bills, and $134 million are from social benefits. These total benefits range from $0.6 million in Wyoming to $49 million in Texas. Private benefits range from $0.38 per square meter in Washington State to $1.06 per square meter in New Hampshire. Social benefits range from $0.2 per square meter annually in California to $2.5 per square meter in Ohio. Reductions in human/environmental damages and future climate damages account for nearly equal shares of social benefits.

  20. Strengthening Equity through Applied Research Capacity Building ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    There exists limited understanding of how e-Health solutions are perceived, designed, implemented and used. ... The Strengthening Equity through Applied Research Capacity Building in e-Health (SEARCH) program will cultivate local research capacity to examine e-health and ... Liverpool School of Tropical Medicine.

  1. Rehabilitation medicine summit: building research capacity Executive Summary

    Directory of Open Access Journals (Sweden)

    Kemp John D

    2006-01-01

    Full Text Available Abstract The general objective of the "Rehabilitation Medicine Summit: Building Research Capacity" was to advance and promote research in medical rehabilitation by making recommendations to expand research capacity. The five elements of research capacity that guided the discussions were: 1 researchers; 2 research culture, environment, and infrastructure; 3 funding; 4 partnerships; and 5 metrics. The 100 participants included representatives of professional organizations, consumer groups, academic departments, researchers, governmental funding agencies, and the private sector. The small group discussions and plenary sessions generated an array of problems, possible solutions, and recommended actions. A post-Summit, multi-organizational initiative is called to pursue the agendas outlined in this report (see Additional File 1. Additional File 1 A table outlining the Final Action Plan of the Rehabilitation Medicine Summit: Building Research Capacity held on April 28–29, 2005 in Washington, DC. Click here for file

  2. Research projects and capacity building | Breen | Water SA

    African Journals Online (AJOL)

    ... by capacity building in the context of research projects. Based on this interpretation, reasonable and unreasonable expectations with respect to the extent to which capacity building can be achieved within a given project duration are discussed. A model is suggested, which would improve understanding and delivery and ...

  3. Design-Build Process for the Research Support Facility (RSF) (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.

  4. Cost analysis of LEED certified United States navy buildings

    OpenAIRE

    Kirar, Carl V.

    2011-01-01

    CIVINS (Civilian Institutions) Thesis document A study was completed at UW-Madison in 2010 that reviewed the energy consumption of US Navy buildings which earned Leadership in Energy and Environmental Design (LEED) certification by the United States Green Building Council (USGBC). The research compared LEED certified buildings to a commercial counterpart within the US Navy inventory against Executive Order (EO) 13423. The EO mandated that all federal agencies meet a 30 percent reduction of...

  5. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  6. Research Methods for Business : A Skill Building Approach (5th Edition)

    NARCIS (Netherlands)

    Sekaran, U.; Bougie, J.R.G.

    2009-01-01

    Research Methods for Business: A Skill-Building Approach is a concise and straightforward introduction for students to the world of business research. The skill-building approach provides students with practical perspectives on how research can be applied in real business situations. Maintaining Uma

  7. Information management for commercial aviation - A research perspective

    Science.gov (United States)

    Ricks, Wendell R.; Abbott, Kathy H.; Jonsson, Jon E.; Boucek, George; Rogers, William H.

    1991-01-01

    The problem of flight deck information management (IM), defined as processing, controlling, and directing information, for commercial flight decks, and a research effort underway to address this problem, are discussed. The premises provided are utilized to lay the groundwork required for such research by providing a framework to describe IM problems and an avenue to follow when investigating solution concepts. The research issues presented serve to identify specific questions necessary to achieve a better understanding of the IM problem, and to provide assessments of the relative merit of various solution concepts.

  8. Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-1999 as a Commercial Building Energy Code in Illinois Jurisdictions

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.; Friedrich, Michele

    2002-05-01

    ASHRAE Standard 90.1-1999 was developed in an effort to set minimum requirements for energy efficienty design and construction of new commercial buildings. This report assesses the benefits and costs of adopting this standard as the building energy code in Illinois. Energy and economic impacts are estimated using BLAST combined with a Life-Cycle Cost approach to assess corresponding economic costs and benefits.

  9. Commercial Aspect of Research Reactor Fuel Element Production

    International Nuclear Information System (INIS)

    Susanto, B.G; Suripto, A

    1998-01-01

    Several aspects affecting the commercialization of the Research Reactor Fuel Element Production Installation (RR FEPI) under a BUMN (state-owned company)have been studied. The break event point (BEP) value based on total production cost used is greatly depending upon the unit selling price of the fuel element. At a selling price of USD 43,500/fuel element, the results of analysis shows that the BEP will be reached at 51% of minimum available capacity. At a selling price of US$ 43.500/fuel element the total income (after tax) for 7 years ahead is US $ 4.620.191,- The net present value in this study has a positive value is equal to US $ 2.827.527,- the internal rate of return will be 18% which is higher than normal the bank interest rare (in US dollar) at this time. It is concluded therefore that the nuclear research reactor fuel element produced by state-owned company BUMN has a good prospect to be sold commercially

  10. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  11. Estimating energy impacts of residential and commercial building development. A manual for the Pacific Northwest and Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-22

    This energy-impact manual presents information on energy implications of new building design and operation, providing a reasonably accurate means of assessing the total energy impact of new construction in the commercial and residential sectors. While developed specifically for the states of Alaska, Idaho, Oregon, and Washington, much of the data used are national averages; the procedures described are applicable to other regions of the nation, with appropriate adjustments for climatic differences. The manual is organized into three parts, each covering one aspect of the energy impacts of building development. Part I addresses the energy impact of erecting the building(s). This includes the energy cost of grading and excavating and other site preparation. It also takes into account the energy embodied in the fabrication of materials used in building construction, as well as the energy cost of transporting materials to the site and assembling them. Part II focuses on the end use of energy during normal building operation, i.e., the energy consumed for space heating, cooling, lighting, water heating, etc. A simplified calculation sequence is provided which allows the user to estimate the consumption of most combinations of building orientation, characteristics, and operating conditions. Part III examines the relationship of land use to energy consumption, principally the transportation energy impact of various land-development patterns, the embodied energy impacts of infrastructure requirements, and the impacts of various orientation and siting schemes. (MCW)

  12. Economics for the Environment: Research Capacity Building in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Economics for the Environment: Research Capacity Building in South Asia. This project will enhance environmental economics research capacity in South Asia through a program of research grants, training, and networking. It provides funds to the South Asian Network for Development and Environmental Economics ...

  13. Assessment of the Energy Impacts of Outside Air in the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Benne, K.; Griffith, B.; Long, N.; Torcellini, P.; Crawley, D.; Logee, T.

    2009-04-01

    The enormous quantity of energy consumed by U.S. commercial buildings places a significant burden on the energy supply and is a potential source of economic strain. To address this, the DOE Building Technologies Program has established the goal of developing market-viable zero energy buildings by 2025. This study focuses on the effects of outside air, and considers various outside air sources, types of building construction, building subsectors, and climates. Based on the information about energy consumption attributed to outside air, it identifies topics for further research that have the greatest potential to achieve energy savings.

  14. Construction of a Solid State Research Facility, Building 3150

    International Nuclear Information System (INIS)

    1993-07-01

    The Department of Energy (DOE) proposes to construct a new facility to house the Materials Synthesis Group (MSG) and the Semiconductor Physics Group (SPG) of the Solid State Division, Oak Ridge National Laboratory (ORNL). The location of the proposed action is Roane County, Tennessee. MSG is involved in the study of crystal growth and the preparation and characterization of advanced materials, such as high-temperature superconductors, while SPG is involved in semiconductor physics research. All MSG and a major pardon of SPG research activities are now conducted in Building 2000, a deteriorating structure constructed in the 1940. The physical deterioration of the roof; the heating, ventilation, and air conditioning (HVAC) system; and the plumbing make this building inadequate for supporting research activities. The proposed project is needed to provide laboratory and office space for MSG and SPG and to ensure that research activities can continue without interruption due to deficiencies in the building and its associated utility systems

  15. Building bridges in economics research: John Whalley (Canada ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-09

    Dec 9, 2010 ... IDRC Communications ... in Waterloo, Canada, and Beijing Normal University, has helped to build a research network on poverty in ... This kind of research is essential for developing effective public policy to reduce inequality.

  16. A Case Study of the Impediments to the Commercialization of Research at the University of Kentucky.

    Science.gov (United States)

    Vanderford, Nathan L; Marcinkowski, Elizabeth

    2015-01-01

    The commercialization of university-based research occurs to varying degrees between academic institutions. Previous studies have found that multiple barriers can impede the effectiveness and efficiency by which academic research is commercialized. This case study was designed to analyze the status of the commercialization activity at the University of Kentucky via a survey and interview with a successful academic entrepreneur in order to determine the impediments the individual perceived during the commercialization process. The study also garnered insight from the individual as to how the commercialization process could be improved. Issues with infrastructure were highlighted as the most significant barrier faced by the individual. The research subject also suggested that commercialization activity may generally increase if a number of factors were mitigated. Such insight can be communicated to the administrative leadership of the commercialization process at the University of Kentucky. Long term, improving university-based research commercialization will allow academic researchers to be more active and successful entrepreneurs such that intellectual property will progress more freely to the marketplace for the benefit of inventors, universities, and society.

  17. Building research infrastructure in community health centers: a Community Health Applied Research Network (CHARN) report.

    Science.gov (United States)

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E

    2013-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and "matchmaking" between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings.

  18. Closing the Loop with Sensors in Commercial Building Systems: Applying Lessons from Automotive Vehicles

    International Nuclear Information System (INIS)

    Mantese, Joseph

    2011-01-01

    Automotive systems have evolved extensively over the past 50 years, providing a fully integrated system of sub-systems that work in concert for optimal vehicle level closed loop control. In this talk we look at several automotive sub-systems: stability and control, safety and security, emissions and comfort, diagnostics and maintenance, infotainment and communications; with an eye toward understanding their technology drivers and associated value propositions. Conversely, we examine how commercial building systems currently are represented as a collection of sub-systems that often work independently of each other for local optimization, often relying upon open loop control systems developed and installed decades ago. Reasoning primarily by analogy we explore opportunities for energy and efficiency, comfort and environment, and safety/security; asking whether there is sufficient value associated with a new class of building sensors and how those technologies might be brought to bear in improving performance. Finally, we examine the fundamental architecture of detection systems built upon sensing elements, with the aim of understanding trade-offs between: detection, false alarm rate, power, and cost.

  19. Building America Research Benchmark Definition, Updated December 19, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2008-12-19

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Bui

  20. Costs and Operating Dynamics of Integrating Distributed Energy Resources in Commercial and Industrial Buildings with Electric Vehicle Charging

    Science.gov (United States)

    Flores, Robert Joseph

    Growing concerns over greenhouse gas and pollutant emissions have increased the pressure to shift energy conversion paradigms from current forms to more sustainable methods, such as through the use of distributed energy resources (DER) at industrial and commercial buildings. This dissertation is concerned with the optimal design and dispatch of a DER system installed at an industrial or commercial building. An optimization model that accurately captures typical utility costs and the physical constraints of a combined cooling, heating, and power (CCHP) system is designed to size and operate a DER system at a building. The optimization model is then used with cooperative game theory to evaluate the financial performance of a CCHP investment. The CCHP model is then modified to include energy storage, solar powered generators, alternative fuel sources, carbon emission limits, and building interactions with public and fleet PEVs. Then, a separate plugin electric vehicle (PEV) refueling model is developed to determine the cost to operate a public Level 3 fast charging station. The CCHP design and dispatch results show the size of the building load and consistency of the thermal loads are critical to positive financial performance. While using the CCHP system to produce cooling can provide savings, heat production drives positive financial performance. When designing the DER system to reduce carbon emissions, the use of renewable fuels can allow for a gas turbine system with heat recovery to reduce carbon emissions for a large university by 67%. Further reductions require large photovoltaic installations coupled with energy storage or the ability to export electricity back to the grid if costs are to remain relatively low. When considering Level 3 fast charging equipment, demand charges at low PEV travel levels are sufficiently high to discourage adoption. Integration of the equipment can reduce demand charge costs only if the building maximum demand does not coincide

  1. Data on the interaction between thermal comfort and building control research.

    Science.gov (United States)

    Park, June Young; Nagy, Zoltan

    2018-04-01

    This dataset contains bibliography information regarding thermal comfort and building control research. In addition, the instruction of a data-driven literature survey method guides readers to reproduce their own literature survey on related bibliography datasets. Based on specific search terms, all relevant bibliographic datasets are downloaded. We explain the keyword co-occurrences of historical developments and recent trends, and the citation network which represents the interaction between thermal comfort and building control research. Results and discussions are described in the research article entitled "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review" (Park and Nagy, 2018).

  2. Commercial Research and Development: Power to Explore, Opportunities from Discovery

    Science.gov (United States)

    Casas, Joseph C.; Nall, Mark; Powers, C. Blake; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    The technical and economic goals of commercial use of space are laudable, and are addressed as a high priority by almost every national space program and most major aerospace companies the world over. Yet, the focus of most organizational agendas and discussions tends to focus on one or two very narrow enabling aspects of this potentially large technological and economic opportunity. While government sponsored commercial launch activities and private space platforms are an integral part of efforts to leverage the commercial use of space, these activities are possibly one of the smallest parts of creating, a viable and sustainable market for the commercial use of space. Most of the current programs usually do not appropriately address some of the critical issues of the current, already interested, potential space user communities. Current programs place the focus of the majority of the user requirements on the vehicle payload weight and mass performance considerations as the primary payload economical factor in providing a commercial market with a stimulating price for gaining access to the space environment. The larger user challenges of transformation from Earth-based research and development approaches to space environment approaches are not addressed early enough in programs to impact the new business considerations of potential users. Currently, space-based research and development user activities require a large user investment in time, in development of new areas of support expertise, in development of new systems, in risk of schedule to completion, and in long term capital positioning. The larger opportunities for stimulating a strong market driven interest in commercial use of space that could result from the development of vehicle payload "leap ahead technologies" for users are being missed, and there is a real risk of limiting the potentially broader market base to support a more technologically advanced and economically lucrative outcome. A major driving

  3. Research utilization in the building industry: decision model and preliminary assessment

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Johnson, D.R.; Smith, S.A.; Westergard, E.J.

    1985-10-01

    The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formating information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.

  4. Radon Remediation and Protective Measures in UK Buildings: The Work of the Building Research Establishment Ltd. (invited paper)

    International Nuclear Information System (INIS)

    Scivyer, C.; Woolliscroft, M.

    1998-01-01

    The scope is described of work carried out by the Building Research Establishment Ltd (BRE) in the UK. BRE, funded by the UK Department of the Environment and the Regions (DETR), have been carrying out research into radon in UK buildings for over 10 years. Research has resulted in the successful development of a range of reliable, practical and cost effective radon remedial measures. The measures, which are described in a series of practical guides, are applicable to almost all building types found in the UK, and would be appropriate for use in many buildings found in other countries. The principal aims of this work have been to develop practical, cost effective and appropriate methods for reducing radon levels in existing buildings and to develop protective measures for new buildings. It is considered particularly important to ensure that measures recommended not only reduce radon levels, but that they do not cause adverse effects to the structure or indoor environment, whilst also being cost effective. A comprehensive series of field trials has been undertaken to test a variety of different solutions in more than 300 existing buildings and protective measures in more than 500 new buildings. To support the field trials BRE have a test house located in the South West of England which allows researchers access to a real house without causing considerable disruption to householders in conducting experiments. BRE have also carried out computer modelling work to try to understand the processes which cause radon entry, and how measures taken might affect these processes. A comprehensive database of work carried out in some 300 UK houses is also maintained. (author)

  5. Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-1999 as a Commercial Building Energy Code in Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Belzer, David B.; Halverson, Mark A.; Richman, Eric E.; Winiarski, David W.

    2002-09-30

    The state of Michigan is considering adpoting ASHRAE 90.1-1999 as its commercial building energy code. In an effort to evaluate whether or not this is an appropraite code for the state, the potential benefits and costs of adopting this standard are considered. Both qualitative and quantitative benefits are assessed. The energy simulation and economic results suggest that adopting ASHRAE 90.1-1999 would provide postitive net benefits to the state relative to the building and design requirements currently in place.

  6. Ash-Based Building Panels Production and Demonstration of Aerock Decking Building Product

    International Nuclear Information System (INIS)

    Alan E. Bland; Jesse Newcomer

    2007-01-01

    Western Research Institute (WRI) of Laramie, Wyoming and AeRock, LLC of Eagar, Arizona (formerly of Bellevue, Washington) partnered, under sponsorship of the U.S. Department of Energy National Energy Technology Laboratory (U.S. DOE-NETL), to support the development of rapid-setting, ash-based, fiber-incorporated ''green'' building products. Green building materials are a rapidly growing trend in the building and construction industry in the US. A two phase project was implemented wherein Phase I assessed, through chemical and physical testing, ash, ash-based cement and fiber composites exhibiting superior structural performance when applied to the AeRock mixing and extrusion process and involved the conduct of pilot-scale production trials of AeRock products, and wherein Phase II involved the design, construction, and operation of a commercial-scale plant to confirm production issues and to produce panels for performance evaluations. Phase I optimized the composite ingredients including ash-based cement, Class F and Class C DFGD ash, and various fiber reinforcements. Additives, such as retardants and accelerators, were also evaluated as related to extruder performance. The optimized composite from the Phase I effort was characterized by a modulus of rupture (MOR) measured between 1,931 and 2,221 psi flexural strength, comparable to other wood and non-wood building materials. Continuous extrusion of the optimum composite in the AeRock pilot-scale facility produced an excellent product that was assembled into a demonstration for exhibit and durability purposes. Finishes, from plain to marbled, from bright reds to muted earth tones and with various textures, could easily be applied during the mixing and extrusion process. The successful pilot-scale demonstration was in turn used to design the production parameters and extruder dies for a commercial scale demonstration at Ultrapanel Pty, Ltd of Ballarat, Australia under Phase II. The initial commercial-scale production

  7. The Role of Research Education Coordinators in Building Research Cultures in Doctoral Education

    Science.gov (United States)

    Brew, Angela; Boud, David; Malfroy, Janne

    2017-01-01

    The development of cultures of support has become important in programmes for the preparation of research students. The paper draws on in-depth interviews with 21 research education coordinators from Australian and United Kingdom institutions to identify the strategies that they use to build research cultures and integrate research students into…

  8. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    Science.gov (United States)

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  9. 2013 Building America Research Planning Meeting Summary

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hunt, S. [Confluence Communications, Missoula, MT (united States)

    2014-02-01

    The Building America Research Planning Meeting was held October 28-30, 2013, in Washington, DC. This meeting provides one opportunity each year for the research teams, national laboratories and Department of Energy (DOE) managers to meet in person to share the most pertinent information and collaboration updates. This report documents the presentations, highlights key program updates, and outlines next steps for the program.

  10. Sustainable Building in China—A Green Leap Forward?

    Directory of Open Access Journals (Sweden)

    Jialiang Wang

    2013-09-01

    Full Text Available China is constructing new commercial buildings at an enormous rate—roughly 2 billion square meters per year, with considerable interest and activity in green design and construction. We review the context of commercial building design and construction in China, and look at a specific project as an example of a high performance, sustainable design, the Shenzhen Institute of Building Research (IBR. The IBR building incorporates over 40 sustainable technologies and strategies, including daylighting, natural ventilation, gray-water recycling, solar-energy generation, and highly efficient Heating Ventilation and Air Conditioning (HVAC systems. We present measured data on the performance of the building, including detailed analysis by energy end use, water use, and occupant comfort and satisfaction. Total building energy consumption in 2011 was 1151 MWh, with an Energy Use Intensity (EUI of 63 kWh/m2 (20 kBtu/ft2, which is 61% of the mean EUI value of 103 kWh/m2 (33 kBtu/ft2 for similar buildings in the region. We also comment on the unique design process, which incorporated passive strategies throughout the building, and has led to high occupant satisfaction with the natural ventilation, daylighting, and green patio work areas. Lastly we present thoughts on how the design philosophy of the IBR building can be a guide for low-energy design in different climate regions throughout China and elsewhere.

  11. Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology

    International Nuclear Information System (INIS)

    Altwies, Joy E.; Nemet, Gregory F.

    2013-01-01

    Buildings are crucial to addressing energy problems because they are large consumers of end-use energy, and potential exists to dramatically improve their efficiencies. However, the pace of innovation in buildings is generally characterized as inadequate, despite the implementation of an array of policy instruments aimed at promoting efficiency. The literature on innovation in the building industry provides several explanations including: fragmented decision-making, principal agent problems, inadequate information, and limited learning across heterogeneous projects. We investigate the innovation process for buildings in the U.S. with a case study of patenting in energy management control systems (EMCS) for commercial buildings and programmable thermostats (PT) for residential buildings. Using U.S. patent data, we find that: (1) patenting activity peaked around 1980, subsequently declined, and then increased considerably in the past decade; (2) commercial, rather than residential, buildings account for the recent increase; and (3) building control technologies have benefitted from inventions originating outside the industry, notably from electronics and computers, with a shift toward the latter in recent years. - Highlights: ► We investigate the innovation process for buildings in the U.S. using patents. ► We use commercial and residential building controls technology as a case study. ► Patenting peaked around 1980, declined, and then increased in the past decade. ► Commercial building control patents account for most of the recent increase. ► Inventions in electronics and computers have led to innovation in building controls.

  12. Buildings interoperability landscape - Draft

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Dave B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Stephan, Eric G. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Widergren, Steven E. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-02-01

    Buildings are an integral part of our nation’s energy economy. The advancement in information and communications technology (ICT) has revolutionized energy management in industrial facilities and large commercial buildings. As ICT costs decrease and capabilities increase, buildings automation and energy management features are transforming the small-medium commercial and residential buildings sectors. A vision of a connected world in which equipment and systems within buildings coordinate with each other to efficiently meet their owners’ and occupants’ needs, and where buildings regularly transact business with other buildings and service providers (such as gas and electric service providers) is emerging. However, while the technology to support this collaboration has been demonstrated at various degrees of maturity, the integration frameworks and ecosystems of products that support the ability to easily install, maintain, and evolve building systems and their equipment components are struggling to nurture the fledging business propositions of their proponents.

  13. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Patrick O' Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests

  14. African Health Economics and Policy Research Capacity Building ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    African Health Economics and Policy Research Capacity Building and Dissemination. As African countries move toward universal health coverage, it is clear there is a shortage of African experts with applied research skills in health financing such as fiscal space analysis, needs-based resource allocation methods, and ...

  15. 2013 Building America Research Planning Meeting Summary

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hunt, Stacy [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    The Building America (BA) Research Planning Meeting was held October 28-30, 2013, in Washington, DC. This meeting provides one opportunity each year for the research teams, national laboratories and Department of Energy (DOE) managers to meet in person to share the most pertinent information and collaboration updates. This report documents the presentations, highlights key program updates, and outlines next steps for the program.

  16. Drinking Water Quality in Hospitals and Other Buildings ...

    Science.gov (United States)

    Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pathogen activity and metallic corrosion. Disinfection systems are available to building managers and are being installed in a variety of commercial buildings (hospitals, hotels, office buildings.) Yet our understanding of such additional treatment and of how to monitor end water quality at these buildings is limited. This class lecture will discuss challenges in maintaining acceptable water quality in hospitals, schools and other buildings. To give a lecture to a class of graduate students (ENVE 6054: Physical/Chemical Processes for Water Quality Control) at the University of Cincinnati, by presenting past research projects.

  17. Organizational knowledge building through action research

    DEFF Research Database (Denmark)

    Hansen, Lone Hersted; Frimann, Søren

    learning and change processes in relation to organizational knowledge building and knowledge sharing. The project draws on the dialogue tradition within action research (Coghlan et al.; 2010; Reason & Bradbury, 2001; Ripamonti et al 2016) and social constructionist ideas (Cunliffe 2002, 2004; Gergen 2003...... 2005; Chia 1996; Tsoukas, & Chia (2002)) based on a dialogical approach. Two internal consultants fulfill the roles as process facilitators of the action research process, and the two researchers from Aalborg University (LH and SF) are contributing with ideas, sparring, qualitative research design...... in a collaborative setting for learning, involving employees and managers, including as well the sharing of knowledge throughout the organization? In addition, we are curious to examine whether action research as an inquiry for learning and change can act as an alternative to the New Public Management paradigm...

  18. Solar buildings program contract summary, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-07

    The mission of the US Department of Energy's Solar Buildings Program is to advance the development and widespread deployment of competitive solar thermal technologies for use in buildings. The long-term goal of the Program is to combine solar energy technologies with energy-efficient construction techniques and create cost-effective buildings that have a zero net need for fossil fuel energy on an annual basis. The Solar Buildings Program conducts research and development on solar technologies that can deliver heat, light, and hot water to residential and commercial buildings. By working closely with manufacturers in both the buildings and solar energy industries and by supporting research at universities and national laboratories, the Solar Buildings Program brings together the diverse players developing reliable and affordable solar technologies for building applications. The National Renewable Energy Laboratory (NREL) in Golden, Colorado, and Sandia National Laboratories (SNL) in Albuquerque, New Mexico, jointly participate in the Solar Buildings Program. These two national laboratories work closely with industry researching new concepts, developing technology improvements, reducing manufacturing costs, monitoring system performance, promoting quality assurance, and identifying potential new markets. In calendar year 1999, the Solar Buildings Program focused primarily on solar hot water system research and development (R and D), US industry manufacturing assistance, and US market assistance. The Program also completed a number of other projects that were begun in earlier years. This Contract Summary describes the Program's contracted activities that were active during 1999.

  19. Research & Development Roadmap for Next-Generation Appliances

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Sutherland, Timothy [Navigant Consulting, Inc., Burlington, MA (United States); Foley, Kevin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-03-01

    Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on the proposed initiatives.

  20. Automated Continuous Commissioning of Commercial Buildings

    Science.gov (United States)

    2011-10-01

    through an Ethernet connection. The sampling interval is 5 minutes. The data then is transferred to the Postgre structured query language (SQL...and how corrective actions should be prioritized. BACnet Interface EnergyPlus Interface EnergyPlus Building Model Matlab Data Diagnostics Postgre

  1. Technology Transfer: From the Research Bench to Commercialization

    Directory of Open Access Journals (Sweden)

    Gail A. Van Norman, MD

    2017-02-01

    Full Text Available Summary: Progress in medicine hinges on the successful translation of basic science discoveries into new medical devices, diagnostics, and therapeutics. “Technology transfer” is the process by which new innovations flow from the basic research bench to commercial entities and then to public use. In academic institutions, intellectual property rights do not usually fall automatically to the individual inventor per se, but most often are the property of the institution. Technology transfer offices are tasked with seeing to it that such intellectual property rights are properly managed and commercialized. This 2-part series explores the technology transfer process from invention to commercialization. Part 1 reviews basic aspects of intellectual property rights, primarily patents and copyrights. Part 2 will discuss the ways in which inventions become commercialized through startup companies and licensing arrangements with industry players. Key Words: copyright, intellectual property, patent, technology transfer

  2. The Theory Question in Research Capacity Building in Education: Towards an Agenda for Research and Practice

    Science.gov (United States)

    Biesta, Gert; Allan, Julie; Edwards, Richard

    2011-01-01

    The question of capacity building in education has predominantly been approached with regard to the methods and methodologies of educational research. Far less attention has been given to capacity building in relation to theory. In many ways the latter is as pressing an issue as the former, given that good research depends on a combination of high…

  3. Recent progress of seismic research on tall buildings in China Mainland

    Science.gov (United States)

    Lu, Xilin; Jiang, Huanjun

    2014-08-01

    As a result of rapid economic growth and urbanization in the past two decades, many tall buildings have been constructed in China Mainland, offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings, focusing on three major topics that impact the seismic performance of tall buildings. These are: (1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns, (2) earthquake resilient shear wall structures such as shear walls with replaceable structural components, self-centering shear walls and rocking walls, and (3) performance-based seismic design, including seismic performance index, performance level and design method. The paper concludes by presenting future research needs and directions in this field.

  4. A Model of U.S. Commercial Distributed Generation Adoption

    Energy Technology Data Exchange (ETDEWEB)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  5. Distributed Generation potential of the U.S. commercial sector

    International Nuclear Information System (INIS)

    Hamachi LaCommare, Kristina; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

    2005-01-01

    Small-scale (100 kW - 5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25% of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Dept. of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored

  6. BUILDING BRANDING BASED ON CONSUMER RESEARCH

    Directory of Open Access Journals (Sweden)

    Igor BELOSTECINIC

    2017-06-01

    Full Text Available This article is dedicated to the modern branding,which builds brand management in close relation to current customer behavior trends on the market. The subject is relevant, since the practice shows that only adequate brand management can lead to the increase of companies’ brand capital, their development and income growth.The thesis analyses the use of modern market research methods.

  7. Insect-resistant genetically modified rice in China: from research to commercialization.

    Science.gov (United States)

    Chen, Mao; Shelton, Anthony; Ye, Gong-yin

    2011-01-01

    From the first insect-resistant genetically modified (IRGM) rice transformation in 1989 in China to October 2009 when the Chinese Ministry of Agriculture issued biosafety certificates for commercial production of two cry1Ab/Ac Bacillus thuringiensis (Bt) lines, China made a great leap forward from IRGM rice basic research to potential commercialization of the world's first IRGM rice. Research has been conducted on developing IRGM rice, assessing its environmental and food safety impacts, and evaluating its socioeconomic consequences. Laboratory and field tests have confirmed that these two Bt rice lines can provide effective and economic control of the lepidopteran complex on rice with less risk to the environment than present practices. Commercializing these Bt plants, while developing other GM plants that address the broader complex of insects and other pests, will need to be done within a comprehensive integrated pest management program to ensure the food security of China and the world.

  8. Energy Factors in Commercial Mortgages: Gaps and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coleman, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wallace, Nancy [Univ. of California, Berkeley, CA (United States); Issler, Paulo [Univ. of California, Berkeley, CA (United States); Kolstad, Lenny [Inst. for Market Transformation, Washington, DC (United States); Sahadi, Robert [Inst. for Market Transformation, Washington, DC (United States)

    2016-09-01

    The commercial real estate mortgage market is enormous, with almost half a trillion dollars in deals originated in 2015. Relative to other energy efficiency financing mechanisms, very little attention has been paid to the potential of commercial mortgages as a channel for promoting energy efficiency investments. The valuation and underwriting elements of the business are largely driven by the “net operating income” (NOI) metric – essentially, rents minus expenses. While NOI ostensibly includes all expenses, energy factors are in several ways given short shrift in the underwriting process. This is particularly interesting when juxtaposed upon a not insignificant body of research revealing that there are in fact tangible benefits (such as higher valuations and lower vacancy and default rates) for energy-efficient and “green” commercial buildings. This scoping report characterizes the current status and potential interventions to promote greater inclusion of energy factors in the commercial mortgage process.

  9. Research Equity: A Capacity Building Workshop of Research Methodology for Medical Health Professionals

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Bhardwaj

    2013-01-01

    Full Text Available Research is a cornerstone for knowledge generation, which in turns requires capacity building for its tools and techniques. Despite having a vast infrastructure in India the research in medical science has been carried out in limited and focused institutions. In order to build the capacity in carrying out research activities a five-day planning workshop was conducted at state run medical college. Total 22 medical faculty members participated in the workshop with average public health experience of 12 years (range: 5–25 years. The knowledge was assessed objectively by multiple-choice questionnaire. The mean score increased from 6.7 to 7.9 from pre- to posttest. About seventy-percent participants showed improvement, whereas 21.0% showed deterioration in the knowledge and the rest showed the same score. Apart from knowledge skills also showed improvement as total 12 research projects were generated and eight were approved for funding by the Indian Council of Medical Research (ICMR, New Delhi. It can be concluded that a supportive environment for research can be built with the technical assistance.

  10. Stem cell research funding policies and dynamic innovation: a survey of open access and commercialization requirements.

    Science.gov (United States)

    Lévesque, Maroussia; Kim, Jihyun Rosel; Isasi, Rosario; Knoppers, Bartha Maria; Plomer, Aurora; Joly, Yann

    2014-08-01

    This article compares and contrasts the pressures of both open access data sharing and commercialization policies in the context of publicly funded embryonic stem cell research (SCR). First, normative guidelines of international SCR organizations were examined. We then examined SCR funding guidelines and the project evaluation criteria of major funding organizations in the EU, the United Kingdom (UK), Spain, Canada and the United States. Our survey of policies revealed subtle pressures to commercialize research that include: increased funding availability for commercialization opportunities, assistance for obtaining intellectual property rights (IPRs) and legislation mandating commercialization. In lieu of open access models, funders are increasingly opting for limited sharing models or "protected commons" models that make the research available to researchers within the same region or those receiving the same funding. Meanwhile, there still is need for funding agencies to clarify and standardize terms such as "non-profit organizations" and "for-profit research," as more universities are pursuing for-profit or commercial opportunities.

  11. Building Support for Research Data Management: Biographies of Eight Research Universities

    Directory of Open Access Journals (Sweden)

    Katherine G. Akers

    2014-10-01

    Full Text Available Academic research libraries are quickly developing support for research data management (RDM, including both new services and infrastructure. Here, we tell the stories of how eight different universities have developed programs of RDM support, focusing on the prominent role of the library in educating and assisting researchers with managing their data throughout the research lifecycle. Based on these stories, we construct timelines for each university depicting key steps in building support for RDM, and we discuss similarities and dissimilarities among universities in motivation to provide RDM support, collaborations among campus units, assessment of needs and services, and changes in staffing.

  12. Sustainable Building in China -- A Green Leap Forward?

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ye, Qing [Shenzhen Inst. of Building Research (China); Feng, Wei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yan, Tao [Shenzhen Inst. of Building Research (China); Mao, Hongwei [Shenzhen Inst. of Building Research (China); Li, Yutong [Shenzhen Inst. of Building Research (China); Guo, Yongcong [Shenzhen Inst. of Building Research (China); Wang, Jialiang [Shenzhen Inst. of Building Research (China)

    2013-09-01

    China is constructing new commercial buildings at an enormous rate -- roughly 2 billion square meters per year, with considerable interest and activity in green design and construction. We review the context of commercial building design and construction in China, and look at a specific project as an example of a high performance, sustainable design, the Shenzhen Institute of Building Research (IBR). The IBR building incorporates over 40 sustainable technologies and strategies, including daylighting, natural ventilation, gray-water recycling, solar-energy generation, and highly efficient Heating Ventilation and Air Conditioning (HVAC) systems. We present measured data on the performance of the building, including detailed analysis by energy end use, water use, and occupant comfort and satisfaction. Total building energy consumption in 2011 was 1151 MWh, with an Energy Use Intensity (EUI) of 63 kWh/m2 (20 kBtu/ft2), which is 61% of the mean EUI value of 103 kWh/m2 (33 kBtu/ft2) for similar buildings in the region. We also comment on the unique design process, which incorporated passive strategies throughout the building, and has led to high occupant satisfaction with the natural ventilation, daylighting, and green patio work areas. Lastly we present thoughts on how the design philosophy of the IBR building can be a guide for low-energy design in different climate regions throughout China and elsewhere.

  13. ACEEE 1990 summer study on energy efficiency in buildings: Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This panel on commercial data, design, and technologies offers both an archival set of data analyses that capture much of what is known today about commercial building energy use and a look into new technologies. The emphasis on data appears to be a trend likely to continue in the coming years. Utilities are sponsoring load research to produce, at a local level, building energy use intensities and load shapes. Data analysis techniques, many of which have been and continue to be reported in the Performance Measurement and Analysis panel, are stronger and are increasingly grounded in solid data. Ongoing programs that have produced rich data sets are now yielding useful results area such issues as the cost of energy conservation measures. Finally, data analysis should naturally lead to improved technologies and building designs, as architects and engineers profit from what is shaping up as a very fruitful period of building performance assessment. For these conference proceedings, individual papers are processed separately for the Energy Data Base

  14. Application of BIM technology in green scientific research office building

    Science.gov (United States)

    Ni, Xin; Sun, Jianhua; Wang, Bo

    2017-05-01

    BIM technology as a kind of information technology, has been along with the advancement of building industrialization application in domestic building industry gradually. Based on reasonable construction BIM model, using BIM technology platform, through collaborative design tools can effectively improve the design efficiency and design quality. Vanda northwest engineering design and research institute co., LTD., the scientific research office building project in combination with the practical situation of engineering using BIM technology, formed in the BIM model combined with related information according to the energy energy model (BEM) and the application of BIM technology in construction management stage made exploration, and the direct experience and the achievements gained by the architectural design part made a summary.

  15. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Avril Challoner

    2015-12-01

    Full Text Available NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM, to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.

  16. Research Progress of Building Materials Used in Construction Land

    Science.gov (United States)

    Niu, Yan

    2018-01-01

    Construction land preparation is an important aspect of land remediation project. The research of materials in the process of land improvement is the foundation and the core. Therefore, it is necessary to study the materials that may be involved in the process of building land preparation. In this paper, the research on the construction materials such as recycled concrete, geosynthetics, soil stabilizers, soil improvers, building insulation materials and inorganic fibrous insulation materials, which are commonly used in construction sites, is reviewed and discussed in this paper. Land remediation project involved in the construction of land materials to provide reference.

  17. Capacity-building for health research in developing countries: a manager's approach

    Directory of Open Access Journals (Sweden)

    Franklin White

    2002-09-01

    Full Text Available Research may be viewed as rigorous inquiry to advance knowledge and improve practices. An international commission has argued that strengthening research capacity is one of the most powerful, cost-effective, and sustainable means of advancing health and development. However, the global effort to promote research in developing countries has been mostly policy driven, and largely at the initiative of donor agencies based in developed countries. This policy approach, although essential, both contrasts with and is complementary to that of research managers, who must build capacity "from the ground up" in a variety of health service settings within countries and with differing mandates, resources, and constraints. In health organizations the concept of research is broad, and practices vary widely. However, building research capacity is not altogether different from building other kinds of organizational capacity, and it involves two major dimensions: strategic and operational. In organizations in the health field, if reference to research is not in the mission statement, then developing a relevant research capacity is made vastly more difficult. Research capacities that take years to develop can be easily damaged through inadequate support, poor management, or other negative influences associated with both internal and external environments. This paper draws from key international research policy documents and observations on the behavior of research and donor agencies in relation to developing countries. It examines capacity-building primarily as a challenge for research managers, realities underlying operational effectiveness and efficiency, approaches to resource mobilization, and the need for marketing the research enterprise. Selected examples from South Asia and Latin America and the Caribbean are presented.

  18. The use of energy management and control systems to monitor the energy performance of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeier, Kristin Elizabeth [Univ. of California, Berkeley, CA (United States). Dept. of Architecture

    1994-12-01

    Monitored data play a very important part in the implementation and evaluation of energy conservation technologies and programs. However, these data can be expensive to collect, so there is a need for lower-cost alternatives. In many situations, using the computerized Energy Management and Control Systems (EMCSs)--already installed in many buildings--to collect these commercial building performance data has advantages over more conventional methods. This method provides data without installing incremental hardware, and the large amounts of available operational data can be a very rich resource for understanding building performance. This dissertation addresses several of these issues. One specific objective is to describe a monitoring-project planning process that includes definition of objectives, constraints, resources and approaches for the monitoring. The choice of tools is an important part of this process. The dissertation goes on to demonstrate, through eight case studies, that EMCS monitoring is possible, and to identify and categorize the problems and issues that can be encountered. These issues lead to the creation, use, and testing of a set of methods for evaluation of EMCS monitoring, in the form of guidelines. Finally, EMCS monitoring is demonstrated and compared with conventional monitoring more methodically in a detailed case study.

  19. Intelligent Buildings and pervasive computing

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Kyng, Morten; Krogh, Peter Gall

    2001-01-01

    computers are everywhere, for everyone, at all times. Where IT becomes a still more integrated part of our environments with processors, sensors, and actuators connected via high-speed networks and combined with new visualiza-tion devices ranging from projections directly in the eye to large panorama......Intelligent Buildings have been the subject of research and commercial interest for more than two decades. The different perspectives range from monitoring and controlling energy consumption over interactive rooms supporting work in offices and leisure in the home, to buildings providing...... information to by-passers in plazas and urban environments. This paper puts forward the hypothesis that the coming decade will witness a dramatic increase in both quality and quantity of intelligent buildings due to the emerging field of pervasive computing: the next generation computing environments where...

  20. Strategic approach to building research capacity in inter-professional education and collaboration.

    Science.gov (United States)

    Suter, Esther; Lait, Jana; Macdonald, Laura; Wener, Pamela; Law, Rebecca; Khalili, Hossein; McCarthy, Patricia L

    2011-01-01

    The purpose of this paper is to describe the process used to initiate research capacity building in a community of practice (CoP) focused on the research and evaluation of inter-professional education and collaboration. This CoP, composed of members from across Canada, is a committee of the Canadian Interprofessional Health Collaborative (CIHC), a national collaborative that aims to advance inter-professional education and collaboration in healthcare. The committee mapped recommendations that emerged from a number of CIHC reports onto a research capacity building framework. The expertise of the diverse members in conjunction with this unique mapping process allowed the committee to identify its long-term research and evaluation objectives and strategies. This resulted in the formation of three working groups, each tasked with activities that contribute to the committee's overall goal of building research capacity in inter-professional education and collaboration. A framework provides a structured approach to identifying research and evaluation priorities and objectives. Furthermore, the process of applying the framework engages the committee members in determining the course of action. The process can be easily transferred to other areas in need of research capacity building.

  1. Unintended anchors: Building rating systems and energy performance goals for U.S. buildings

    International Nuclear Information System (INIS)

    Klotz, Leidy; Mack, Daniel; Klapthor, Brent; Tunstall, Casey; Harrison, Jennilee

    2010-01-01

    In the U.S., where buildings account for 40% of energy use, commercial buildings use more energy per unit area than ever before. However, exemplary buildings demonstrate the feasibility of much better energy performance at no additional first cost. This research examines one possible explanation for this inconsistency. The aim is to investigate whether the anchoring bias, which refers to our tendency to gravitate towards a pre-defined standard regardless of its relevance, influences energy performance goals in building design. The scope examines professionals who help set energy performance goals for U.S. buildings. Prior to being asked to set an energy performance goal, these professionals were randomly directed to one of three series of questions. One series set an anchor of 90% energy reduction beyond standard practice, one set a 30% anchor, and one set no anchor. Respondents exposed to the 90% anchor, and respondents exposed to no anchor at all, set higher energy performance goals than respondents exposed to the 30% anchor. These results suggest that building rating systems that only reward incremental energy improvements may inadvertently create anchors, thereby discouraging more advanced energy performance goals and inhibiting energy performance that is technically and economically feasible.

  2. Energy efficient direct current distribution in commercially used buildings with smart power link to the AC distribution grid; Energieeffiziente Gleichstromverteilung in kommerziell genutzten Gebaeuden mit intelligenter Kopplung zum Niederspannungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Roland [Siemens AG, Erlangen (Germany); Boeke, Ulrich [Philips Group Innovation-Research, Eindhoven (Netherlands); Maurer, Wilhelm [Infineon Technologies AG, Neubiberg (Germany); Zeltner, Stefan [Fraunhofer-Inst. fuer Integrierte Systeme und Bauelementetechnologie (IISB), Erlangen (Germany)

    2012-07-01

    The joint undertaking ''Direct Current Components and Grid'' (DCC+G) takes on the strategic challenge to reduce energy consumption and thus the reduction of CO{sub 2} emission caused by commercially used buildings through research in the fields of Direct Current distribution at a voltage level of {+-} 380 V. The major energy consumers in commercially used buildings, ready for the ''net-zero-energy'' goal of the European Union, are heat pumps for heating, ventilation systems, air conditioning units, cooling units (HVAC), lighting systems and information technology. All these components and subsystems have in common, that the most efficient versions would benefit from a direct current supply. Additionally the local producers of electric energy like photovoltaic systems usually generate DC-current. A Direct Current distribution grid within buildings would avoid the repeating conversion from DC and AC an vice versa and therefore reduce conversion losses. Important components of a direct current distribution grid are central, smart, high efficient, bidirectional rectifiers replacing the large number of small, less efficient rectifiers used today. Such large central rectifiers units could additionally be used to actively improve the power quality of the smart local AC distribution grid. One major part of the described activities is to show energy savings of about 5 % of electrical energy with a 2-phase direct current distribution grid using a voltage level of {+-} 380 V. (orig.)

  3. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  4. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eley, Charles [Consultant; Gupta, Smita [Itron; McHugh, Jon [McHugh Energy Consultants; Lui, Bing [Pacific Northwest National Laboratory; Higgins, Cathy [New Buildings Institute; Iplikci, Jessica [Energy Trust of Oregon; Rosenberg, Michael [Pacific Northwest National Laboratory

    2017-06-01

    Recently, zero net energy (ZNE) buildings have moved from state-of-the-art small project demonstrations to a more widely adopted approach across the country among various building types and sizes. States such as California set policy goals of all new residential construction to be NZE by 2020 and all commercial buildings to be NZE by 2030. However, the market for designing, constructing, and operating ZNE buildings is still relatively small. We bring together distinguished experts to share their thoughts on making ZNE buildings more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This conversation also presents the benefits of ZNE and ways to achieve that goal in the design and operation of buildings. The following is a roundtable conducted by ASHRAE Journal and Bing Liu with Charles Eley, Smita Gupta, Cathy Higgins, Jessica Iplikci, Jon McHugh, Michael Rosenberg, and Paul Torcellini.

  5. Moving research to patient applications through commercialization: understanding and evaluating the role of intellectual property.

    Science.gov (United States)

    Patino, Robert M

    2010-03-01

    The advancement of research from discovery to the delivery of medical care can be limited without the support of industry to sponsor its continued development. Federal government financial support is generally crucial in early-stage development through funding from the NIH, National Science Foundation, and other federal agencies; however, government support generally stops shortly after basic research discoveries have been reported. Much of the cessation of financial support derives from the government's regulatory responsibilities, as sponsoring the commercialization of a product conflicts with regulation of the approval for clinical use of a drug or device. Furthermore, differences in goals, resources, and flexibility render government, as compared with private industry, inefficient and less responsive to market demands with regard to stream-lining the development of and enhancing the quality of products and services offered. Thus, industry and private investment provide the bridge that converts new discoveries into healthcare products that are available to consumers and patients. This conversion occurs through commercialization, which involves both high risks and high rewards. Taking advantage of the commercialization option for research development requires an understanding of the technology transfer process. This article reviews 5 topics: 1) industry motivation to invest in academic research; 2) institutional considerations in partnering with industry; 3) academia's interactions with inventors in the commercialization process; 4) the research institution's route to commercialization, and 5) the role of intellectual property and commercialization in the advancement of healthcare.

  6. Custom mentholation of commercial cigarettes for research purposes

    Directory of Open Access Journals (Sweden)

    Ian C. MacGregor

    2014-01-01

    Full Text Available In the U.S. menthol remains the sole permitted characterizing cigarette flavor additive in part because efforts to link menthol cigarette use to increased tobacco-related disease risk have been inconclusive. To perform definitive studies, cigarettes that differ only in menthol content are required, yet these are not commercially available. We prepared research cigarettes differing only in menthol content by deposition of l-menthol vapor directly onto commercial nonmenthol cigarettes, and developed a method to measure a cigarette's menthol and nicotine content. With our custom-mentholation technique we achieved the desired moderately high menthol content (as compared to commercial brands of 6.7 ± 1.0 mg/g (n = 25 without perturbing the cigarettes’ nicotine content (17.7 ± 0.7 mg/g [n = 25]. We also characterized other pertinent attributes of our custom-mentholated cigarettes, including percent transmission of menthol and nicotine to mainstream smoke and the rate of loss of menthol over time during storage at room temperature. We are currently using this simple mentholation technique to investigate the differences in human exposure to selected chemicals in cigarette smoke due only to the presence of the added menthol. Our cigarettes will also aid in the elucidation of the effects of menthol on the toxicity of tobacco smoke.

  7. Hypothesis-based research on the causes of sick building symptoms: A design for Phases 2 and 3 of the California Healthy Building Study

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, W.J.; Hodgson, A.T.; Daisey, J.M.; Faulkner, D. [Lawrence Berkeley Lab., CA (United States); Macher, J.M. [California Dept. of Health Services, Berkeley, CA (United States). Air and Industrial Hygiene Lab.; Mendell, M.J. [National Inst. for Occupational Safety and Health, Cincinnati, OH (United States). Industrywide Studies Branch

    1992-07-01

    The California Healthy Building Study (CHBS) is a multidisciplinary research based in 12 office buildings within California. The overall goal the CHBS is to elucidate relationships between occurrences of office worker health symptoms and characteristics of the workers` buildings, ventilation systems, work spaces, jobs, and indoor environments. A Phase-1 study was completed during 1990. The California Institute for Energy Efficiency (CIEE), through its Exploratory Research Program, supported the design of research plans for two future phases of the CHBS. The intent of the CIEE-supported effort was to design research to be conducted in the Phase-1 buildings that capitalizes on the Phase-1 research findings and also on recently-published results of research from other institutions. This report describes the research plans developed with CIEE support and presents the rationale for these research plans.

  8. Hypothesis-based research on the causes of sick building symptoms: A design for Phases 2 and 3 of the California Healthy Building Study

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, W.J.; Hodgson, A.T.; Daisey, J.M.; Faulkner, D. (Lawrence Berkeley Lab., CA (United States)); Macher, J.M. (California Dept. of Health Services, Berkeley, CA (United States). Air and Industrial Hygiene Lab.); Mendell, M.J. (National Inst. for Occupational Safety and Health, Cincinnati, OH (United States). Industrywide Studies Branch)

    1992-07-01

    The California Healthy Building Study (CHBS) is a multidisciplinary research based in 12 office buildings within California. The overall goal the CHBS is to elucidate relationships between occurrences of office worker health symptoms and characteristics of the workers' buildings, ventilation systems, work spaces, jobs, and indoor environments. A Phase-1 study was completed during 1990. The California Institute for Energy Efficiency (CIEE), through its Exploratory Research Program, supported the design of research plans for two future phases of the CHBS. The intent of the CIEE-supported effort was to design research to be conducted in the Phase-1 buildings that capitalizes on the Phase-1 research findings and also on recently-published results of research from other institutions. This report describes the research plans developed with CIEE support and presents the rationale for these research plans.

  9. Lessons Learned from Case Studies of Six High-Performance Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, P.; Pless, S.; Deru, M.; Griffith, B.; Long, N.; Judkoff, R.

    2006-06-01

    Commercial buildings have a significant impact on energy use and the environment. They account for approximately 18% (17.9 quads) of the total primary energy consumption in the United States (DOE 2005). The energy used by the building sector continues to increase, primarily because new buildings are added to the national building stock faster than old buildings are retired. Energy consumption by commercial buildings will continue to increase until buildings can be designed to produce more energy than they consume. As a result, the U.S. Department of Energy's (DOE) Building Technologies Program has established a goal to create the technology and knowledge base for marketable zero-energy commercial buildings (ZEBs) by 2025.

  10. Building bridges in American Indian bereavement research.

    Science.gov (United States)

    Walker, Andrea C

    2009-01-01

    Due to the severity of the risks involved in violation of ethical principles with research of American Indian populations, more attention in literature is needed on the topic. This article reviews discussions of ethical and methodological issues, uses Muscogee Creeks' responses from the author's prior study (Walker, 2008; Walker & Balk, 2007) as an example and application, and specifically focuses on the research of death and bereavement. The article provides ethical reflection and recommendations for designing death and bereavement research as an outsider to the culture, as well as for building trust with participants in American Indian populations.

  11. Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na

    2014-11-17

    In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level of aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.

  12. Occupancy-Based Energy Management in Buildings: Final Report to Sponsors

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Michael D.; Black, Douglas R.; Price, Phillip N.; Lin, Yiqing; Brahme, Rohini; Surana, Amit; Narayanan, Satish; Cerpa, Alberto; Ericson, Varick; Kamthe, Ankur

    2010-07-01

    The Lawrence Berkeley National Laboratory (LBNL), the University of California Merced (UCM), and the United Technologies Research Center (UTRC) conducted field studies and modeling analyses in the Classroom and Office Building (COB) and the Science and Engineering Building (S&E) at the University of California, Merced. In the first year, of a planned multiyear project, our goal was to study the feasibility and efficacy of occupancy-based energy management. The first-year research goals were twofold. The first was to explore the likely energy savings if we know the number and location of building occupants in a typical commercial building. The second was to model and estimate people movement in a building. Our findings suggest that a 10-14percent reduction in HVAC energy consumption is possible over typical HVAC operating conditions when we know occupancy throughout the building. With the conclusion of the first-year tasks, we plan to review these results further before this group pursues follow-on funding.

  13. Building Air Quality Guide: A Guide for Building Owners and Facility Managers

    Science.gov (United States)

    The Building Air Quality, developed by the EPA and the National Institute for Occupational Safety and Health, provides practical suggestions on preventing, identifying, and resolving indoor air quality (IAQ) problems in public and commercial buildings.

  14. NASA commercial programs

    Science.gov (United States)

    1990-01-01

    Highlights of NASA-sponsored and assisted commercial space activities of 1989 are presented. Industrial R and D in space, centers for the commercial development of space, and new cooperative agreements are addressed in the U.S. private sector in space section. In the building U.S. competitiveness through technology section, the following topics are presented: (1) technology utilization as a national priority; (2) an exploration of benefits; and (3) honoring Apollo-Era spinoffs. International and domestic R and D trends, and the space sector are discussed in the section on selected economic indicators. Other subjects included in this report are: (1) small business innovation; (2) budget highlights and trends; (3) commercial programs management; and (4) the commercial programs advisory committee.

  15. ImBuild: Impact of building energy efficiency programs

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Hostick, D.J.; Belzer, D.B.

    1998-04-01

    As part of measuring the impact of government programs on improving the energy efficiency of the Nation`s building stock, the Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the economic impacts of its portfolio of programs, specifically the potential impact on national employment and income. The special-purpose version of the IMPLAN model used in this study is called ImBuild. In comparison with simple economic multiplier approaches, such as Department of Commerce RIMS 2 system, ImBuild allows for more complete and automated analysis of the economic impacts of energy efficiency investments in buildings. ImBuild is also easier to use than existing macroeconomic simulation models. The authors conducted an analysis of three sample BTS energy programs: the residential generator-absorber heat exchange gas heat pump (GAX heat pump), the low power sulfur lamp (LPSL) in residential and commercial applications, and the Building America program. The GAX heat pump would address the market for the high-efficiency residential combined heating and cooling systems. The LPSL would replace some highly efficient fluorescent commercial lighting. Building America seeks to improve the energy efficiency of new factory-built, modular, manufactured, and small-volume, site-built homes through use of systems engineering concepts and early incorporation of new products and processes, and by increasing the demand for more energy-efficient homes. The authors analyze a scenario for market penetration of each of these technologies devised for BTS programs reported in the BTS GPRA Metrics Estimates, FY99 Budget Request, December 19, 1997. 46 figs., 4 tabs.

  16. California Commercial End-Use Survey - CEUS

    Science.gov (United States)

    Efficiency in Existing Buildings Energy Efficiency Program Contacts Financing Opportunities Home Energy Rebates and Incentives Energy Efficiency Financing Energy Innovations Small Grant (EISG) EPIC Funding commercial building type categories. Download the CEUS Project Final Report. Publication # CEC-400-2006-005

  17. Supporting Theory Building in Integrated Services Research

    Science.gov (United States)

    Robinson, Mark; Atkinson, Mary; Downing, Dick

    2008-01-01

    This literature review was commissioned by the National Foundation for Educational Research (NFER) to draw together current and recent studies of integrated working, in order to build an overview of the theories and models of such working. The review is important for current work on evaluating the early impact of integrated children's services and…

  18. Commercial facilities in future cities and urban redevelopment

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The future trends of commercial facilities were clarified by interviewing the people concerned in the commercial facilities with large floor area and relatively large energy consumption per unit area such as office building, hospital, hotel, department store, restaurant, educational facilities, sports facilities and urban redevelopment. Since an intelligent building will basically employ the office automation, it is estimated that most of the commercial buildings constructed for the future redevelopment will be intelligent buildings. Hospitals will require the system maintaining the quality of life of individual patient. It is expected that high quality hotels focusing on a touch of high class will be constructed. Department stores will aim at the daily living industry. Future restaurants will need a definite concept. Universities will have to increase new sections according to new students and change in social conditions. It is expected that high quality businesses districts and living quarters in business-centered cities will be planned for urban redevelopment. (4 figs. 3 tabs.)

  19. Open Automated Demand Response for Small Commerical Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  20. A New Approach to Commercialization of NASA's Human Research Program Technologies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal describes, "A New Approach to Commercialization of NASA's Human Research Program Technologies." NASA has a powerful research program that...

  1. Transnational Degree Program Franchising and the Challenge of Commercial Franchisees

    Science.gov (United States)

    Juusola, Katariina; Rensimer, Lee

    2018-01-01

    Purpose: The purpose of this paper is to explore the interrelationship of branding practices and legitimacy-building of commercial degree program franchising within transnational higher education (TNHE). It aims to understand how commercial franchisees' branding practices employ discursive and symbolic strategies for building legitimacy, and how…

  2. Motivators, enablers, and barriers to building allied health research capacity

    Science.gov (United States)

    Pager, Susan; Holden, Libby; Golenko, Xanthe

    2012-01-01

    Purpose A sound, scientific base of high quality research is needed to inform service planning and decision making and enable improved policy and practice. However, some areas of health practice, particularly many of the allied health areas, are generally considered to have a low evidence base. In order to successfully build research capacity in allied health, a clearer understanding is required of what assists and encourages research as well as the barriers and challenges. Participants and methods This study used written surveys to collect data relating to motivators, enablers, and barriers to research capacity building. Respondents were asked to answer questions relating to them as individuals and other questions relating to their team. Allied health professionals were recruited from multidisciplinary primary health care teams in Queensland Health. Eighty-five participants from ten healthcare teams completed a written version of the research capacity and culture survey. Results The results of this study indicate that individual allied health professionals are more likely to report being motivated to do research by intrinsic factors such as a strong interest in research. Barriers they identified to research are more likely to be extrinsic factors such as workload and lack of time. Allied health professionals identified some additional factors that impact on their research capacity than those reported in the literature, such as a desire to keep at the “cutting edge” and a lack of exposure to research. Some of the factors influencing individuals to do research were different to those influencing teams. These results are discussed with reference to organizational behavior and theories of motivation. Conclusion Supporting already motivated allied health professional individuals and teams to conduct research by increased skills training, infrastructure, and quarantined time is likely to produce better outcomes for research capacity building investment. PMID

  3. Transactive Control of Commercial Building HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ngo, Hung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-30

    This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus for validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.

  4. Building Grounded Theory in Entrepreneurship Research

    DEFF Research Database (Denmark)

    Mäkelä, Markus; Turcan, Romeo V.

    2007-01-01

    In this chapter we describe the process of building of theory from data (Glaser and Strauss 1967; Strauss and Corbin 1998). We discuss current grounded theory in relation to research in entrepreneurship and point out directions and potential improvements for further research in this field....... The chapter has two goals. First, we wish to provide an explicit paradigmatic positioning of the grounded theory methodology, discussing the most relevant views of ontology and epistemology that can be used as alternative starting points for conducting grounded theory research. While the chapter introduces...... our approach to grounded theory, we acknowledge the existence of other approaches and try to locate our approach in relation to them. As an important part of this discussion, we take a stand on how to usefully define ‘grounded theory’ and ‘case study research’. Second, we seek to firmly link our...

  5. A review on wind-driven rain research in building science

    NARCIS (Netherlands)

    Blocken, B.J.E.; Carmeliet, J.E.

    2004-01-01

    Wind-driven rain (WDR) or driving rain is rain that is given a horizontal velocity component by the wind. WDR research is of importance in a number of research areas including earth sciences, meteorology and building science. Research methods and results are exchangeable between these domains but no

  6. Facility overview for commercial application of selected Rocky Flats facilities

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this Facility Overview is to support the Rocky Flats Local Impacts Initiative's Request for Interest, to solicit interest from commercial corporations for utilizing buildings 865 and 883, and the equipment contained within each building, for a commercial venture. In the following sections, this document describes the Rocky Flats Site, the buildings available for lease, the equipment within these buildings, the site services available to a tenant, the human resources available to support operations in buildings 865 and 883, and the environmental condition of the buildings and property. In addition, a brief description is provided of the work performed to date to explore the potential products that might be manufactured in Buildings 865 and 883, and the markets for these products

  7. PV and PV/hybrid products for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H. P.; Hayter, S. J.; Martin, R. L., Pierce, L. K.

    2000-05-15

    Residential, commercial, and industrial buildings combined are the largest consumers of electricity in the United States and represent a significant opportunity for photovoltaic (PV) and PV/hybrid systems. The U.S. Department of Energy (DOE) is conducting a phased research and product development program, Building Opportunities in the United States for Photovoltaics (PV:BONUS), focused on this market sector. The purpose of the program is to develop technologies and foster business arrangements integrating cost-effective PV or hybrid products into buildings. The first phase was completed in 1996 and a second solicitation, PV:BONUS2, was initiated during 1997. These projects are resulting in a variety of building-integrated products. This paper summarizes the recent progress of the seven firms and collaborative teams currently participating in PV:BONUS2 and outlines planned work for the final phase of their work.

  8. Photovoltaic electricity generation: Value for residential and commercial sectors

    Science.gov (United States)

    Bhattacharjee, Ujjwal

    The photovoltaic (PV) industry in the US has seen an upsurge in recent years, and PV holds great promise as a renewable technology with no greenhouse gas emissions with its use. We aim to assess the value of PV based electricity for users in the residential and commercial sectors focusing on the financial impacts it has, which may not be greatly recognized. Specifically, we pursue two goals. First, the emerging 'renewable portfolio standard (RPS)' adopted in several states in the country has been a driving force for large scale PV deployment, but financial incentives offered to PV in different RPS states differ considerably. We use life cycle cost model to estimate the cost of PV based electricity for thirty-two RPS states in the country. Results indicate that the levelized cost of PV electricity is high (40 to 60 Cents/kWh). When the contribution of the financial incentives (along with the cost of energy saved) is taken into account, the cost of PV based electricity is negative in some RPS states such as California, New Jersey, New York, while for most of the RPS states the cost of PV electricity continues to remain high. In addition, the states with negative or low cost of PV electricity have been driving the PV diffusion in the residential sector. Therefore, a need to adjust the financial incentive structure in different RPS states is recommended for homogenous development of the residential PV market in the country. Second, we assess the value of the PV in reducing the highest peak load demand in commercial buildings and hence the high value demand charge. The Time-of-Use (TOU) based electricity tariff is widely used by electric utilities in the commercial sector. Energy and peak load are two important facets of the TOU tariff regime. Tools are well established to estimate the energy contribution from a PV system (installed in a commercial building), but not power output on a short time interval. A joint conditional probability model has been developed that

  9. Advanced LWR technology for commercial application

    International Nuclear Information System (INIS)

    Redding, J.R.

    1993-01-01

    Advanced Light Water Reactors (ALWRs) are now being deployed and commercialized around the world. In Japan, the Tokyo Electric Power Company (TEPCO) is building the world's first ALWRs, two 1300 MWe Advanced BWRs (ABWRs). In the United States, the Department of Energy, utilities and suppliers are undertaking a cooperative program called First of a Kind Engineering (FOAKE). The purpose of FOAKE is to perform the detailed engineering of ALWRs to that they will be commercially available to U.S. utilities in the mid-1990s. The U.S. industry is in the second year of its strategic plan to have an ALWR in commercial operation by the year 2000. Elsewhere, the Taiwan Power Company has issued a Request for Proposal for two ALWRs so be built at its Lungmen site, with commercial operation of the first unit to be in the year 2000. Korea is formulating plans for an ALWR and other countries, such as Indonesia and Mexico, are looking into the feasibility of building ALWRs

  10. Building America Research Benchmark Definition: Updated December 20, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.

    2008-01-01

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a 'moving target'.

  11. Building America Research Benchmark Definition: Updated August 15, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.

    2007-09-01

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a 'moving target'.

  12. Intelligent Facades for High Performance Green Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building

  13. A preliminary study on the relevancy of sustainable building design ...

    African Journals Online (AJOL)

    This preliminary study aims to explore the relationship between sustainable building design paradigms and commercial property depreciation, to assist in the understanding of sustainable building design impact towards commercial building value and rental de employs the qualitative method and analyses valuers' current ...

  14. Knowledge Building in an Online Environment: A Design-Based Research Study

    Science.gov (United States)

    Li, Qing

    2009-01-01

    This article explores knowledge-building in an online distance-learning environment. The research examines how knowledge-building principles can be translated into online classroom practice for graduate students. Specifically, how do the course components and the online learning environments created in two online graduate courses contribute to…

  15. Understanding the Conceptual Development Phase of Applied Theory-Building Research: A Grounded Approach

    Science.gov (United States)

    Storberg-Walker, Julia

    2007-01-01

    This article presents a provisional grounded theory of conceptual development for applied theory-building research. The theory described here extends the understanding of the components of conceptual development and provides generalized relations among the components. The conceptual development phase of theory-building research has been widely…

  16. Capacity Building for Sustainable Marine Research in the Asia-Pacific Region

    Science.gov (United States)

    Hu, Liuming; Avril, Bernard; Zhang, Jing

    2013-01-01

    An international workshop on capacity building (CB) for marine research in the Asia-Pacific region (http://www.imber.info/index.php/Science/Working-Groups/Capacity-Building/2012-CB-Workshop) was held at the East China Normal University (ECNU), in Shanghai, China. The workshop brought together about 20 marine researchers and CB experts from 14 countries to discuss CB experiences, assess regional CB needs, and consider recommendations to improve regional CB, which would be of interest to other groups and other geographical regions.

  17. Addressing NCDs through research and capacity building in LMICs: lessons learned from tobacco control.

    Science.gov (United States)

    Sturke, Rachel; Vorkoper, Susan; Duncan, Kalina; Levintova, Marya; Parascondola, Mark

    2016-01-01

    Confronting the global non-communicable diseases (NCDs) crisis requires a critical mass of scientists who are well versed in regional health problems and understand the cultural, social, economic, and political contexts that influence the effectiveness of interventions. Investments in global NCD research must be accompanied by contributions to local research capacity. The National Institutes of Health (NIH) and the Fogarty International Center have a long-standing commitment to supporting research capacity building and addressing the growing burden of NCDs in low- and middle-income countries. One program in particular, the NIH International Tobacco and Health Research and Capacity Building Program (TOBAC program), offers an important model for conducting research and building research capacity simultaneously. This article describes the lessons learned from this unique funding model and demonstrates how a relatively modest investment can make important contributions to scientific evidence and capacity building that could inform ongoing and future efforts to tackle the global burden of NCDs.

  18. Addressing NCDs through research and capacity building in LMICs: lessons learned from tobacco control

    Directory of Open Access Journals (Sweden)

    Rachel Sturke

    2016-08-01

    Full Text Available Confronting the global non-communicable diseases (NCDs crisis requires a critical mass of scientists who are well versed in regional health problems and understand the cultural, social, economic, and political contexts that influence the effectiveness of interventions. Investments in global NCD research must be accompanied by contributions to local research capacity. The National Institutes of Health (NIH and the Fogarty International Center have a long-standing commitment to supporting research capacity building and addressing the growing burden of NCDs in low- and middle-income countries. One program in particular, the NIH International Tobacco and Health Research and Capacity Building Program (TOBAC program, offers an important model for conducting research and building research capacity simultaneously. This article describes the lessons learned from this unique funding model and demonstrates how a relatively modest investment can make important contributions to scientific evidence and capacity building that could inform ongoing and future efforts to tackle the global burden of NCDs.

  19. Building America Research Benchmark Definition, Updated December 15, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.

    2007-01-01

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a ''moving target''.

  20. APPLICATION OF FUZZY ANALYTIC HIERARCHY PROCESS TO BUILDING RESEARCH TEAMS

    Directory of Open Access Journals (Sweden)

    Karol DĄBROWSKI

    2016-01-01

    Full Text Available Building teams has a fundamental impact for execution of research and development projects. The teams appointed for the needs of given projects are based on individuals from both inside and outside of the organization. Knowledge is not only a product available on the market but also an intangible resource affecting their internal and external processes. Thus it is vitally important for businesses and scientific research facilities to effectively manage knowledge within project teams. The article presents a proposal to use Fuzzy AHP (Analytic Hierarchy Process and ANFIS (Adaptive Neuro Fuzzy Inference System methods in working groups building for R&D projects on the basis of employees skills.

  1. Application of Fuzzy Analytic Hierarchy Process to Building Research Teams

    Science.gov (United States)

    Dąbrowski, Karol; Skrzypek, Katarzyna

    2016-03-01

    Building teams has a fundamental impact for execution of research and development projects. The teams appointed for the needs of given projects are based on individuals from both inside and outside of the organization. Knowledge is not only a product available on the market but also an intangible resource affecting their internal and external processes. Thus it is vitally important for businesses and scientific research facilities to effectively manage knowledge within project teams. The article presents a proposal to use Fuzzy AHP (Analytic Hierarchy Process) and ANFIS (Adaptive Neuro Fuzzy Inference System) methods in working groups building for R&D projects on the basis of employees skills.

  2. Commercialization of genetic research and its impact on the communication of results.

    Science.gov (United States)

    Cardinal, G

    1999-01-01

    Canada has recently seen significant commercial growth in biotechnology; at the same time we have witnessed a considerable reduction in public funding for research. One result is the development of partnerships between academic institutions and industry, which has had important effects on the relationships between researchers, companies, research subjects and society, particularly in the field of genetics. Commercialization of research creates obstacles to the diffusion of research results which is fundamental to the advancement of science. Several recent studies and cases, which are briefly reviewed here, have highlighted these problems. In this paper, the author examines clauses in research contracts in order to analyze and categorize the types of provisions these contracts may contain regarding publication and disclosure of research results. She then discusses the relationships between various actors in genetic research and the issues and conflicts that may arise. Finally, an examination of some recently developed policies in this area reveals the complex network of norms to which a researcher must adhere. The normative framework must take into account the interests of all the various actors, should apply to the broadest possible population, and its various parts must be consistent. Researchers must then be vigilant that they do not enter into contracts which conflict with their rights and obligations regarding publication and dissemination of results.

  3. The Building of a Responsible Research Community: The Role of Ethics

    Science.gov (United States)

    Lategan, Laetus O. K.

    2012-01-01

    This paper looks into the importance of a responsible research community and how ethics can contribute towards the building of such a community. The paper starts off by outlining the many challenges facing a responsible research community. These challenges range from doing research, transferring the research results, commercialising the…

  4. Building Capacity for Feminist Research in Africa : Gender, Sexuality ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Building Capacity for Feminist Research in Africa : Gender, Sexuality and Politics ... feminist work and gender theory, but be relatively new to issues of sexuality. ... long-term climate action to reduce social inequality, promote greater gender ...

  5. Potential benefits of cool roofs on commercial buildings. Conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants

    International Nuclear Information System (INIS)

    Levinson, R.; Akbari, H.

    2010-01-01

    Cool roofs - roofs that stay cool in the sun by minimizing solar absorption and maximizing thermal emission - lessen the flow of heat from the roof into the building, reducing the need for space cooling energy in conditioned buildings. Cool roofs may also increase the need for heating energy in cold climates. For a commercial building, the decrease in annual cooling load is typically much greater than the increase in annual heating load. This study combines building energy simulations, local energy prices, local electricity emission factors, and local estimates of building density to characterize local, state average, and national average cooling energy savings, heating energy penalties, energy cost savings, and emission reductions per unit conditioned roof area. The annual heating and cooling energy uses of four commercial building prototypes - new office (1980+), old office (pre-1980), new retail (1980+), and old retail (pre-1980) - were simulated in 236 US cities. Substituting a weathered cool white roof (solar reflectance 0.55) for a weathered conventional gray roof (solar reflectance 0.20) yielded annually a cooling energy saving per unit conditioned roof area ranging from 3.30 kWh/m 2 in Alaska to 7.69 kWh/m 2 in Arizona (5.02 kWh/m 2 nationwide); a heating energy penalty ranging from 0.003 therm/m 2 in Hawaii to 0.14 therm/m 2 in Wyoming (0.065 therm/m 2 nationwide); and an energy cost saving ranging from USD 0.126/m 2 in West Virginia to USD 1.14/m 2 in Arizona (USD 0.356/m 2 nationwide). It also offered annually a CO2 reduction ranging from 1.07 kg/m 2 in Alaska to 4.97 kg/m 2 in Hawaii (3.02 kg/m 2 nationwide); an NOx reduction ranging from 1.70 g/m 2 in New York to 11.7 g/m 2 in Hawaii (4.81 g/m 2 nationwide); an SO2 reduction ranging from 1.79 g/m 2 in California to 26.1 g/m 2 in Alabama (12.4 g/m 2 nationwide); and an Hg reduction ranging from 1.08 μg/m 2 in Alaska to 105 μg/m 2 in Alabama (61.2 μg/m 2 nationwide). Retrofitting 80% of the 2

  6. The implications of future building scenarios for long-term building energy research and development

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  7. ANALYTIC HIERARCHY PROCESS: AN APPLICATION IN GREEN BUILDING MARKET RESEARCH

    Directory of Open Access Journals (Sweden)

    Sharmin Attaran

    2013-01-01

    Full Text Available Sustainability has become a necessity in the building industry. In recent years, as the general public is more informed and aware of sustainability related issues, they are becoming major players in the decision making process regarding their built environment. However, there are still challenges with how sustainability is communicated to occupants and owners of buildings. As the global economic crisis is continuing, the marketing of green buildings needs to be refined to communicate the lifetime benefits of sustainability. One of the ways to develop effective marketing strategies, is to understand what the occupants value the most among many aspects of green buildings thus develop focused marketing solutions. Authors present a conceptual methodology using Analytic Hierarchy Process toward identifying consumer ranking and weights of a major green building rating system’s categories. Authors use sample non-representative data to illustrate the proposed methodology, while sharing preliminary qualitative data from the research in progress.

  8. Building Energy Benchmarking in India: an Action Plan for Advancing the State-of-the-Art

    Energy Technology Data Exchange (ETDEWEB)

    Sarraf, Saket [Centre for Environmental Planning and Technology (CEPT) Univ., Ahmedabad (India); Anand, Shilpi [Centre for Environmental Planning and Technology (CEPT) Univ., Ahmedabad (India); Shukla, Yash [Centre for Environmental Planning and Technology (CEPT) Univ., Ahmedabad (India); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singh, Reshma [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    This document describes an action plan for advancing the state of the art of commercial building energy benchmarking in the Indian context. The document is primarily intended for two audiences: (a) Research and development (R&D) sponsors and researchers can use the action plan to frame, plan, prioritize and scope new energy benchmarking R&D in order to ensure that their research is market relevant; (b) Policy makers and program implementers engaged in the deployment of benchmarking and building efficiency rating programmes can use the action plan for policy formulation and enforcement .

  9. Control of disturbing loads in residential and commercial buildings via geometric algebra.

    Science.gov (United States)

    Castilla, Manuel-V

    2013-01-01

    Many definitions have been formulated to represent nonactive power for distorted voltages and currents in electronic and electrical systems. Unfortunately, no single universally suitable representation has been accepted as a prototype for this power component. This paper defines a nonactive power multivector from the most advanced multivectorial power theory based on the geometric algebra (GA). The new concept can have more importance on harmonic loads compensation, identification, and metering, between other applications. Likewise, this paper is concerned with a pioneering method for the compensation of disturbing loads. In this way, we propose a multivectorial relative quality index δ(~) associated with the power multivector. It can be assumed as a new index for power quality evaluation, harmonic sources detection, and power factor improvement in residential and commercial buildings. The proposed method consists of a single-point strategy based of a comparison among different relative quality index multivectors, which may be measured at the different loads on the same metering point. The comparison can give pieces of information with magnitude, direction, and sense on the presence of disturbing loads. A numerical example is used to illustrate the clear capabilities of the suggested approach.

  10. An annotated bibliography of completed and in-progress behavioral research for the Office of Buildings and Community Systems. [About 1000 items, usually with abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Weijo, R.O.; Roberson, B.F.; Eckert, R.; Anderson, M.R.

    1988-05-01

    This report provides an annotated bibliography of completed and in-progress consumer decision research useful for technology transfer and commercialization planning by the US Department of Energy's (DOE) Office of Buildings and Community Systems (OBCS). This report attempts to integrate the consumer research studies conducted across several public and private organizations over the last four to five years. Some of the sources of studies included in this annotated bibliography are DOE National Laboratories, public and private utilities, trade associations, states, and nonprofit organizations. This study divides the articles identified in this annotated bibliography into sections that are consistent with or similar to the system of organization used by OBCS.

  11. Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry

    Energy Technology Data Exchange (ETDEWEB)

    Lamm, D.

    1980-06-01

    The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

  12. Integrated fuel cell energy system for modern buildings

    Energy Technology Data Exchange (ETDEWEB)

    Moard, D.M.; Cuzens, J.E.

    1998-07-01

    Energy deregulation, building design efficiency standards and competitive pressures all encourage the incorporation of distributed fuel cell cogeneration packages into modern buildings. The building marketplace segments to which these systems apply include office buildings, retail stores, hospitals, hotels, food service and multifamily residences. These applications represent approximately 60% of the commercial building sector's energy use plus a portion of the residential sector's energy use. While there are several potential manufacturers of fuel cells on the verge of marketing equipment, most are currently using commercial hydrogen gas to fuel them. There are few suppliers of equipment, which convert conventional fuels into hydrogen. Hydrogen Burner Technology, Inc. (HBT) is one of the few companies with a proven under-oxidized-burner (UOB) technology, patented and already proven in commercial use for industrial applications. HBT is developing a subsystem based on the UOB technology that can produce a hydrogen rich product gas using natural gas, propane or liquid fuels as the feed stock, which may be directly useable by proton exchange membrane (PEM) fuel cells for conversion into electricity. The combined thermal output can also be used for space heating/cooling, water heating or steam generation applications. HBT is currently analyzing the commercial building market, integrated system designs and marketplace motivations which will allow the best overall subsystem to be designed, tested and introduced commercially in the shortest time possible. HBT is also actively involved in combined subsystem designs for use in automotive and small residential services.

  13. 4 CFR 25.11 - Photographs for news, advertising, or commercial purposes.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Photographs for news, advertising, or commercial purposes... GOVERNMENT ACCOUNTABILITY OFFICE BUILDING AND ON ITS GROUNDS § 25.11 Photographs for news, advertising, or commercial purposes. Photographs may be taken in the GAO Building only with the approval or authorization of...

  14. Building Research Capacity to Understand and Adapt to Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Building Research Capacity to Understand and Adapt to Climate Change in the Indus Basin ... Site internet ... L'honorable Chrystia Freeland, ministre du Commerce international, a annoncé le lancement d'un nouveau projet financé par le ...

  15. Research Data Management - Building Service Infrastructure and Capacity

    KAUST Repository

    Baessa, Mohamed A.

    2018-03-07

    Research libraries support the missions of their institutions by facilitating the flow of scholarly information to and from the institutions’ researchers. As research in many disciplines becomes more data and software intensive, libraries are finding that services and infrastructure developed to preserve and provide access to textual documents are insufficient to meet their institutions’ needs. In response, libraries around the world have begun assessing the data management needs of their researchers, and expanding their capacity to meet the needs that they find. This discussion panel will discuss approaches to building research data management services and infrastructure in academic libraries. Panelists will discuss international efforts to support research data management, while highlighting the different models that universities have adopted to provide a mix of services and infrastructure tailored to their local needs.

  16. Investing in nursing research in practice settings: a blueprint for building capacity.

    Science.gov (United States)

    Jeffs, Lianne; Smith, Orla; Beswick, Susan; Maoine, Maria; Ferris, Ella

    2013-12-01

    Engaging clinical nurses in practice-based research is a cornerstone of professional nursing practice and a critical element in the delivery of high-quality patient care. Practising staff nurses are well suited to identify the phenomena and issues that are clinically relevant and appropriate for research. In response to the need to invest in and build capacity in nursing research, hospitals have developed creative approaches to spark interest in nursing research and to equip clinical nurses with research competencies. This paper outlines a Canadian hospital's efforts to build research capacity as a key strategy to foster efficacious, safe and cost-effective patient care practices. Within a multi-pronged framework, several strategies are described that collectively resulted in enhanced research and knowledge translation productivity aimed at improving the delivery of safe and high-quality patient care.

  17. Straw insulated buildings. Nature building materials; Strohgedaemmte Gebaeude. Naturbaustoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Straw is one of the major agricultural by-products and is mainly used as litter in animal husbandry and to compensate the balance of humus. A relatively recent development is the use of straw bales for the construction of buildings. The brochure under consideration documents the technical development of straw construction in Germany. Possibilities of the use of straw in single family homes up to commercial buildings are described.

  18. Research capacity building integrated into PHIT projects: leveraging research and research funding to build national capacity.

    Science.gov (United States)

    Hedt-Gauthier, Bethany L; Chilengi, Roma; Jackson, Elizabeth; Michel, Cathy; Napua, Manuel; Odhiambo, Jackline; Bawah, Ayaga

    2017-12-21

    Inadequate research capacity impedes the development of evidence-based health programming in sub-Saharan Africa. However, funding for research capacity building (RCB) is often insufficient and restricted, limiting institutions' ability to address current RCB needs. The Doris Duke Charitable Foundation's African Health Initiative (AHI) funded Population Health Implementation and Training (PHIT) partnership projects in five African countries (Ghana, Mozambique, Rwanda, Tanzania and Zambia) to implement health systems strengthening initiatives inclusive of RCB. Using Cooke's framework for RCB, RCB activity leaders from each country reported on RCB priorities, activities, program metrics, ongoing challenges and solutions. These were synthesized by the authorship team, identifying common challenges and lessons learned. For most countries, each of the RCB domains from Cooke's framework was a high priority. In about half of the countries, domain specific activities happened prior to PHIT. During PHIT, specific RCB activities varied across countries. However, all five countries used AHI funding to improve research administrative support and infrastructure, implement research trainings and support mentorship activities and research dissemination. While outcomes data were not systematically collected, countries reported holding 54 research trainings, forming 56 mentor-mentee relationships, training 201 individuals and awarding 22 PhD and Masters-level scholarships. Over the 5 years, 116 manuscripts were developed. Of the 59 manuscripts published in peer-reviewed journals, 29 had national first authors and 18 had national senior authors. Trainees participated in 99 conferences and projects held 37 forums with policy makers to facilitate research translation into policy. All five PHIT projects strongly reported an increase in RCB activities and commended the Doris Duke Charitable Foundation for prioritizing RCB, funding RCB at adequate levels and time frames and for allowing

  19. Qualitative Research in an International Research Program: Maintaining Momentum while Building Capacity in Nurses

    Directory of Open Access Journals (Sweden)

    Judy Mill RN, PhD

    2014-02-01

    Full Text Available Nurses are knowledgeable about issues that affect quality and equity of care and are well qualified to inform policy, yet their expertise is seldom acknowledged and their input infrequently invited. In 2007, a large multidisciplinary team of researchers and decision-makers from Canada and five low- and middle-income countries (Barbados, Jamaica, Uganda, Kenya, and South Africa received funding to implement a participatory action research (PAR program entitled “Strengthening Nurses' Capacity for HIV Policy Development in sub-Saharan Africa and the Caribbean.” The goal of the research program was to explore and promote nurses' involvement in HIV policy development and to improve nursing practice in countries with a high HIV disease burden. A core element of the PAR program was the enhancement of the research capacity, and particularly qualitative capacity, of nurses through the use of mentorship, role-modeling, and the enhancement of institutional support. In this article we: (a describe the PAR program and research team; (b situate the research program by discussing attitudes to qualitative research in the study countries; (c highlight the incremental formal and informal qualitative research capacity building initiatives undertaken as part of this PAR program; (d describe the approaches used to maintain rigor while implementing a complex research program; and (e identify strategies to ensure that capacity building was locally-owned. We conclude with a discussion of challenges and opportunities and provide an informal analysis of the research capacity that was developed within our international team using a PAR approach.

  20. Optimization of a hybrid electric power system design for large commercial buildings: An application design guide

    Science.gov (United States)

    Lee, Keun

    Renewable energy in different forms has been used in various applications for survival since the beginning of human existence. However, there is a new dire need to reevaluate and recalibrate the overall energy issue both nationally and globally. This includes, but is not limited to, the finite availability of fossil fuel, energy sustainability with an increasing demand, escalating energy costs, environmental impact such as global warming and green-house gases, to name a few. This dissertation is primarily focused and related to the production and usage of electricity from non-hydro renewable sources. Among non-hydro renewable energy sources, electricity generation from wind and solar energy are the fastest-growing technologies in the United States and in the world. However, due to the intermittent nature of such renewable sources, energy storage devices are required to maintain proper operation of the grid system and in order to increase reliability. A hybrid system, as the name suggests, is a combination of different forms of non-renewable and renewable energy generation, with or without storage devices. Hybrid systems, when applied properly, are able to improve reliability and enhance stability, reduce emissions and noise pollution, provide continuous power, increase operation life, reduce cost, and efficiently use all available energy. In the United States (U.S.), buildings consume approximately 40% of the total primary energy and 74% of the total electricity. Therefore, reduction of energy consumption and improved energy efficiency in U.S. buildings will play a vital role in the overall energy picture. Electrical energy usage for any such building varies widely depending on age (construction technique), electricity and natural gas usage, appearance, location and climate. In this research, a hybrid system including non-renewable and renewable energy generation with storage devices specifically for building applications, is studied in detail. This research deals

  1. The New Commercial Suborbital Vehicles: An Opportunity for Scientific and Microgravity Research

    Science.gov (United States)

    Moro-Aguilar, Rafael

    2014-11-01

    As of 2013, a number of companies had announced their intention to start flying suborbital vehicles, capable of transporting people to high altitudes out of any airport or launch site, on a commercial and regular basis. According to several studies, a market for suborbital "space tourism" exists. Another very promising application of suborbital flight is scientific research. The present paper provides an overview of the potential of commercial suborbital flight for science, including microgravity research. Suborbital flight provides a much-needed intermediate-duration opportunity between research performed in Earth orbit and more affordable but shorter duration alternatives, such as drop towers and zero-g parabolic flights. Moreover, suborbital flight will be less expensive and more frequent than both orbital flight and sounding rockets, and it has the capability to fly into sub-orbit the researcher together with the payload, and thus enable on-site interaction with the experiment. In the United States, both the National Aeronautics and Space Administration (NASA) and a number of private institutions have already shown interest in conducting scientific experiments, particularly microgravity research, aboard these new platforms. Researchers who intend to participate in future suborbital flights as payload specialists will need training, given the physical challenges posed by the flight. Finally, suborbital researchers may also want to have a basic knowledge of the legal status that will apply to them as passengers of such flights.

  2. Roadmap for the Future of Commercial Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    Building energy codes have significantly increased building efficiency over the last 38 years, since the first national energy code was published in 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, the inability to handle optimization that is specific to building type and use, the inability to account for project-specific energy costs, and the lack of follow-through or accountability after a certificate of occupancy is granted. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. This report provides a high-level review of different formats for commercial building energy codes, including prescriptive, prescriptive packages, capacity constrained, outcome based, and predictive performance approaches. This report also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria.

  3. Building a sustainable complementary and alternative medicine research network in Europe.

    Science.gov (United States)

    Reiter, Bettina; Baumhöfener, Franziska; Dlaboha, Meike; Odde Madsen, Jesper; Regenfelder, Stephanie; Weidenhammer, Wolfgang

    2012-01-01

    Since CAMbrella is a networking project funded by the European Commission explicitly to build and sustain a complementary and alternative medicine (CAM) research network in Europe, communication and dissemination play a large role and form a work package of their own. The present article gives an outline of the communication and dissemination work in the CAMbrella consortium. The intensive building of sound internal communication is an essential part in establishing a functioning structure for collaboration in a diverse group of 16 partner institutions from 12 countries, as exists in the CAMbrella project. The means and tools for dissemination of results to the scientific community and the European public at large, as well as to the European policy makers, are presented. The development of the corporate design and a dissemination strategy are described in detail. In addition, some basic information regarding previous CAM research efforts, which might be interesting for future consortium building in the field of CAM research, is given. Internal communication within a heterogeneous research group, the maintenance of a work-oriented style of communication and a consensus oriented effort in establishing dissemination tools and products will be essential for any future consortium in the CAM field. The outlook shows the necessity for active political encouragement of CAM research and the desideratum of a Pan-European institution analogous to the NIH (National Institutes of Health) in the USA.

  4. SOLCOST. Solar Hot Water Handbook. A Simplified Design Method for Sizing and Costing Residential and Commercial Solar Service Hot Water Systems. Second Edition.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet offers a preview of information services available from Solcost, a research and development project. The first section explains that Solcost calculates system and costs performance for solar heated and cooled new and retrofit constructions, such as residential buildings and single zone commercial buildings. For a typical analysis,…

  5. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    International Nuclear Information System (INIS)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies

  6. Building Bridges between Researchers and Patient Research Partners: A Report from the GRAPPA 2014 Annual Meeting

    NARCIS (Netherlands)

    de Wit, M.P.T.; Campbell, W.; Orbai, A.M.; Tillett, W.; Fitzgerald, O.; Gladman, D.D.; Lindsay, C.A.; McHugh, N.J.; Mease, P.J.; O'Sullivan, D.; Steinkoenig, I.; Windisch, G.; Goel, N.

    2015-01-01

    for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) recently engaged patients as collaborative partners in psoriatic arthritis (PsA) research. We summarize Building Bridges, a session held at the GRAPPA 2014 annual meeting, where interactive dialogue was encouraged between all

  7. 76 FR 48152 - Commercial Building Asset Rating Program

    Science.gov (United States)

    2011-08-08

    ... European Union, although the meaning of each grade could be very different across regions. A series of.... Year built. Climate zone. Building type. Year rating is issued. Report serial number (for tracking...

  8. Review of Building Data Frameworks across Countries: Lessons for India

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Maithili [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Sangeeta [Alliance for an Energy Efficient Economy, New Delhi (India); Kumar, Satish [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singh, Mohini [Synurja, LLC, New Delhi (India)

    2017-07-31

    The report outlines the initial explorations carried out by LBNL on available examples of energy data collection frameworks for buildings. Specifically, this monograph deals with European experience in the buildings sector, the US experience in the commercial buildings sector, and examples of data collection effort in Singapore and China to capture the Asian experience in the commercial sector. The review also provides a summary of the past efforts in India to collect and use commercial building energy data and its strengths and weaknesses. The overall aim of this activity is to help understand the use cases that drive the granularity of data being collected and the range of methodologies adopted for the data collection effort. This review is a key input and reference for developing a data collection framework for India, and also clarifies general thinking on the institutional structure that may be amenable for data collection effort to match the needs and requirements of commercial building sector in India.

  9. Bellanca building, Yellowknife : building envelope retrofit project

    Energy Technology Data Exchange (ETDEWEB)

    Rajewski, G. [A.D. Williams Engineering Inc., Edmonton, AB (Canada)

    2008-07-01

    The Bellanca building is a ten-story, commercial office building, located in Yellowknife, Northwest Territories. The owner was concerned about annual fuel consumption, relative to other buildings of similar size. Tenants reported cold drafts and some ice build-up had been reported in the past, on the exterior of the cladding. In addition, some water penetration had occurred during rainfall. This presentation provided background information on the Bellanca building and discussed a building envelope retrofit project. A.D. Williams was hired in late 2006 in order to provide an opinion on the present condition of the building envelope. This presentation described the site investigation and presented an interior and exterior review of the building. It also presented a thermographic survey in order to map thermal anomalies and establish trends. Following acceptance of the report on findings, one of five options was selected for further development. This included removal of existing cladding, exterior gypsum wallboard, fiberglass insulation and application of BASF Walltite CT foam, sheathing, rigid insulation, drainage plane and new cladding. The preliminary design was then presented. This paper also described the tender and award of the contract; construction phase; and substantial completion of the project. tabs, figs.

  10. Commercial Building Loads Providing Ancillary Services in PJM

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Jason; Kiliccote, Sila; Boch, Jim; Chen, Jonathan; Nawy, Robert

    2014-06-27

    The adoption of low carbon energy technologies such as variable renewable energy and electric vehicles, coupled with the efficacy of energy efficiency to reduce traditional base load has increased the uncertainty inherent in the net load shape. Handling this variability with slower, traditional resources leads to inefficient system dispatch, and in some cases may compromise reliability. Grid operators are looking to future energy technologies, such as automated demand response (DR), to provide capacity-based reliability services as the need for these services increase. While DR resources are expected to have the flexibility characteristics operators are looking for, demonstrations are necessary to build confidence in their capabilities. Additionally, building owners are uncertain of the monetary value and operational burden of providing these services. To address this, the present study demonstrates the ability of demand response resources providing two ancillary services in the PJM territory, synchronous reserve and regulation, using an OpenADR 2.0b signaling architecture. The loads under control include HVAC and lighting at a big box retail store and variable frequency fan loads. The study examines performance characteristics of the resource: the speed of response, communications latencies in the architecture, and accuracy of response. It also examines the frequency and duration of events and the value in the marketplace which can be used to examine if the opportunity is sufficient to entice building owners to participate.

  11. Demand side management for commercial buildings using an in line heat pump water heating methodology

    International Nuclear Information System (INIS)

    Rankin, Riaan; Rousseau, Pieter G.; Eldik, Martin van

    2004-01-01

    Most of the sanitary hot water used in South African buildings is heated by means of direct electrical resistance heaters. This is one of the major contributors to the undesirably high morning and afternoon peaks imposed on the national electricity supply grid. For this reason, water heating continues to be of concern to the electricity supplier, ESCOM. Previous studies, conducted by the Potchefstroom University for Christian Higher Education in South Africa, indicated that extensive application of the so called inline heat pump water heating methodology in commercial buildings could result in significant demand side management savings to ESKOM. Furthermore, impressive paybacks can be obtained by building owners who choose to implement the design methodology on existing or new systems. Currently, a few examples exist where the design methodology has been successfully implemented. These installations are monitored with a fully web centric monitoring system that allows 24 h access to data from each installation. Based on these preliminary results, a total peak demand reduction of 108 MW can be achieved, which represents 18% of the peak load reduction target set by ESKOM until the year 2015. This represents an avoided cost of approximately MR324 (ZAR) [Int J Energy Res 25(4) (1999) 2000]. Results based on actual data from the monitored installations shows a significant peak demand reduction for each installation. In one installation, a hotel with an occupancy of 220 people, the peak demand contribution of the hot water installation was reduced by 86%, realizing a 36% reduction in peak demand for the whole building. The savings incurred by the building owner also included significant energy consumption savings due to the superior energy efficiency of the heat pump water heater. The combined savings result in a conservatively calculated straight payback period of 12.5 months, with an internal rate of return of 98%. The actual cost of water heating is studied by

  12. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Martha [Pennsylvania State Univ., University Park, PA (United States)

    2016-07-29

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with a focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.

  13. A research agenda for helminth diseases of humans: health research and capacity building in disease-endemic countries for helminthiases control.

    Directory of Open Access Journals (Sweden)

    Mike Y Osei-Atweneboana

    Full Text Available Capacity building in health research generally, and helminthiasis research particularly, is pivotal to the implementation of the research and development agenda for the control and elimination of human helminthiases that has been proposed thematically in the preceding reviews of this collection. Since helminth infections affect human populations particularly in marginalised and low-income regions of the world, they belong to the group of poverty-related infectious diseases, and their alleviation through research, policy, and practice is a sine qua non condition for the achievement of the United Nations Millennium Development Goals. Current efforts supporting research capacity building specifically for the control of helminthiases have been devised and funded, almost in their entirety, by international donor agencies, major funding bodies, and academic institutions from the developed world, contributing to the creation of (not always equitable North-South "partnerships". There is an urgent need to shift this paradigm in disease-endemic countries (DECs by refocusing political will, and harnessing unshakeable commitment by the countries' governments, towards health research and capacity building policies to ensure long-term investment in combating and sustaining the control and eventual elimination of infectious diseases of poverty. The Disease Reference Group on Helminth Infections (DRG4, established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR, was given the mandate to review helminthiases research and identify research priorities and gaps. This paper discusses the challenges confronting capacity building for parasitic disease research in DECs, describes current capacity building strategies with particular reference to neglected tropical diseases and human helminthiases, and outlines recommendations to redress the balance of alliances and partnerships for health research between the developed countries of

  14. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability:A Study of Commercial Buildings in California and New York States

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2008-12-01

    In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM). Given end-use energy details for a facility, a description of its economic environment and a menu of available equipment, DER-CAM finds the optimal investment portfolio and its operating schedule which together minimize the cost of meeting site service, e.g., cooling, heating, requirements. Past studies have considered combined heat and power (CHP) technologies. Methods and software have been developed to solve this problem, finding optimal solutions which take simultaneity into account. This project aims to extend on those prior capabilities in two key dimensions. In this research storage technologies have been added as well as power quality and reliability (PQR) features that provide the ability to value the additional indirect reliability benefit derived from Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid capability. This project is intended to determine how attractive on-site generation becomes to a medium-sized commercial site if economical storage (both electrical and thermal), CHP opportunities, and PQR benefits are provided in addition to avoiding electricity purchases. On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from utility service would provide the facility with ride-through capability for minor grid disturbances. Three building types in both California and New York are assumed to have a share of their sensitive electrical load separable. Providing enhanced service to this load fraction has an unknown value to the facility, which is estimated analytically. In summary, this project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York; (2) to extend the analysis capability of DER-CAM to include both heat and

  15. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  16. Smoking in uranium enrichment research building in Tokai Research Establishment, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1990-01-01

    On the smoking occurred on May 30, 1989 in the uranium enrichment research building, the investigation has been carried out about the presumed cause and the countermeasures for preventing the recurrence, and the following report was presented. In the uranium scrap after the oxidation treatment of vapor-deposited metallic uranium was carried out, a small quantity of unoxidized part having reactivity remained. This unoxidized part existing locally reacts with air in a container, and there is the possibility of generating heat after about one day. In this accident, unoxidized part existed near the wall of a polyethylene vessel, and the oxidation and heat generation reaction advanced. The vessel broke, air supply increased, and heat generation spread. After the temperature reached 300degC, the oxidation of UO 2 to U 3 O 8 took part, thus the polyethylene vessel and others generated smoke. As the countermeasures, for the preservation of uranium scrap, metallic vessels are used, and the atmosphere of inert gas or vacuum is maintained. The uranium scrap containing unoxidized part is rapidly oxidized. The uranium enrichment research building was decontamination. (K.I.)

  17. Universities innovation and technology commercialization challenges and solutions from the perspectives of Malaysian research universities

    Science.gov (United States)

    Rasli, Amran; Kowang, Tan Owee

    2017-11-01

    The roles of universities in the context of a nation's shift towards sustainable competitive advantage have changed drastically recently. Universities are now expected to contribute to the creation of new knowledge-based industries, i.e. to support knowledge-based economic growth through the creation of industrially-relevant knowledge/innovation and their commercialization, and to attract global MNCs in new emerging industries; and foster entrepreneurial mindset to support the future knowledge economy where stable job opportunities are no longer guaranteed. As such, there is a need to inculcate the spirit of enterprise as compared to the past where high economic growth has provided graduates with good career prospects as salaried employees, particularly in MNC subsidiaries and the government. The shift requires a bigger role in supporting innovation and commercialization, i.e. to venture beyond its traditional function of teaching, research and publication by incorporating a technology commercialization role which will inevitably help the institution to improve its global ranking. However, there are many national and operational obstacles that impede the progression of research and development to commercialization and entrepreneurship. The main challenges include: (I) lack of connectivity between the industry and academia; (2) myopic perception of the market; (3) inability to evaluate viability from ideas to innovations and beyond; (4) lack of support for investment in new technologies, and (5) lack of positive culture among academic researchers. To overcome the aforementioned obstacles, priority in developing a complete commercialization ecosystem has become a national agenda for most emerging economies.

  18. Analysis for Building Envelopes and Mechanical Systems Using 2012 CBECS Data

    Energy Technology Data Exchange (ETDEWEB)

    Winiarski, David W.; Halverson, Mark A.; Butzbaugh, Joshua B.; Cooke, Alan L.; Bandyopadhyay, Gopal K.; Elliott, Douglas B.

    2018-03-14

    This report describes the aggregation and mapping of certain building characteristics data available in the most recent Commercial Building Energy Consumption Survey (CBECS) (DOE EIA 2012) to describe most typical building construction practices. This report provides summary data for potential use in the support of modifications to the Pacific Northwest National Laboratory’s commercial building prototypes used for building energy code analysis. Specifically, this report outlines findings and most typical design choices for certain building envelope and heating, ventilating, and air-conditioning (HVAC) system choices.

  19. Challenges and opportunities in building health research capacity in ...

    African Journals Online (AJOL)

    Capacity building is considered a priority for health research institutions in developing countries to achieve the Millennium Development Goals by 2015. However, in many countries including Tanzania, much emphasis has been directed towards human resources for health with the total exclusion of human resources for ...

  20. Building Capacity for Feminist Research in Africa : Gender, Sexuality ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Building Capacity for Feminist Research in Africa : Gender, Sexuality and Politics. Over the past decade, there has been increasing interest in African scholarship on the importance of understanding sexualities and on connecting this understanding to more relevant policy prescriptions so that African women can enjoy their ...

  1. Commentary: Building Web Research Strategies for Teachers and Students

    Science.gov (United States)

    Maloy, Robert W.

    2016-01-01

    This paper presents web research strategies for teachers and students to use in building Dramatic Event, Historical Biography, and Influential Literature wiki pages for history/social studies learning. Dramatic Events refer to milestone or turning point moments in history. Historical Biographies and Influential Literature pages feature…

  2. Technology for Building Systems Integration and Optimization – Landscape Report

    Energy Technology Data Exchange (ETDEWEB)

    William Goetzler, Matt Guernsey, Youssef Bargach

    2018-01-31

    BTO's Commercial Building Integration (CBI) program helps advance a range of innovative building integration and optimization technologies and solutions, paving the way for high-performing buildings that could use 50-70% less energy than typical buildings. CBI’s work focuses on early stage technology innovation, with an emphasis on how components and systems work together and how whole buildings are integrated and optimized. This landscape study outlines the current body of knowledge, capabilities, and the broader array of solutions supporting integration and optimization in commercial buildings. CBI seeks to support solutions for both existing buildings and new construction, which often present very different challenges.

  3. Computer-based Monitoring for Decision Support Systems and Disaster Preparedness in Buildings

    Directory of Open Access Journals (Sweden)

    Alan Vinh

    2009-04-01

    Full Text Available The operation of modern buildings can support a vast amount of static and real-time data. Static information such as building schematics is vital for security and rescue purposes. There is a need for building managers and for first responders to be notified of designated building alerts in real-time so that actions can be performed promptly. The capability to monitor building devices and to keep the first responder community updated with the latest building information during emergency situations, as well as the ability to remotely control certain building devices and processes, can be realized today. This paper describes the various challenges encountered in the research area of building interoperability and proposes methods and insights for developing a standards framework to enable communication between building information systems and first responder information systems. Having a standards framework in place will assist in the development and deployment of commercial products in support of building interoperability.

  4. Methodology to Assess No Touch Audit Software Using Simulated Building Utility Data

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard [Purdue Univ., West Lafayette, IN (United States); Braun, James E. [Purdue Univ., West Lafayette, IN (United States); Langner, M. Rois [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    This report describes a methodology developed for assessing the performance of no touch building audit tools and presents results for an available tool. Building audits are conducted in many commercial buildings to reduce building energy costs and improve building operation. Because the audits typically require significant input obtained by building engineers, they are usually only affordable for larger commercial building owners. In an effort to help small building and business owners gain the benefits of an audit at a lower cost, no touch building audit tools have been developed to remotely analyze a building's energy consumption.

  5. The Commercial Energy Consumer: About Whom Are We Speaking?

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Christopher

    2006-05-12

    Who are commercial sector customers, and how do they make decisions about energy consumption and energy efficiency investment? The energy policy field has not done a thorough job of describing energy consumption in the commercial sector. First, the discussion of the commercial sector itself is dominated by discussion of large businesses/buildings. Second, discussion of this portion of the commercial sectors consumption behavior is driven primarily by theory, with very little field data collected on the way commercial sector decision-makers describe their own options, choices, and reasons for taking action. These limitations artificially constrain energy policy options. This paper reviews the extant literature on commercial sector energy consumption behavior and identifies gaps in our knowledge. In particular, it argues that the primary energy policy model of commercial sector energy consumption is a top-down model that uses macro-level investment data to make conclusions about commercial behavior. Missing from the discussion is a model of consumption behavior that builds up to a theoretical framework informed by the micro-level data provided by commercial decision-makers themselves. Such a bottom-up model could enhance the effectiveness of commercial sector energy policy. In particular, translation of some behavioral models from the residential sector to the commercial sector may offer new opportunities for policies to change commercial energy consumption behavior. Utility bill consumption feedback is considered as one example of a policy option that may be applicable to both the residential and small commercial sector.

  6. Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  7. A framework to evaluate research capacity building in health care

    Directory of Open Access Journals (Sweden)

    Cooke Jo

    2005-10-01

    Full Text Available Abstract Background Building research capacity in health services has been recognised internationally as important in order to produce a sound evidence base for decision-making in policy and practice. Activities to increase research capacity for, within, and by practice include initiatives to support individuals and teams, organisations and networks. Little has been discussed or concluded about how to measure the effectiveness of research capacity building (RCB Discussion This article attempts to develop the debate on measuring RCB. It highlights that traditional outcomes of publications in peer reviewed journals and successful grant applications may be important outcomes to measure, but they may not address all the relevant issues to highlight progress, especially amongst novice researchers. They do not capture factors that contribute to developing an environment to support capacity development, or on measuring the usefulness or the 'social impact' of research, or on professional outcomes. The paper suggests a framework for planning change and measuring progress, based on six principles of RCB, which have been generated through the analysis of the literature, policy documents, empirical studies, and the experience of one Research and Development Support Unit in the UK. These principles are that RCB should: develop skills and confidence, support linkages and partnerships, ensure the research is 'close to practice', develop appropriate dissemination, invest in infrastructure, and build elements of sustainability and continuity. It is suggested that each principle operates at individual, team, organisation and supra-organisational levels. Some criteria for measuring progress are also given. Summary This paper highlights the need to identify ways of measuring RCB. It points out the limitations of current measurements that exist in the literature, and proposes a framework for measuring progress, which may form the basis of comparison of RCB

  8. The Future of Air Conditioning for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Fujrman, Jay [Navigant Consulting, Burlington, MA (United States); Abdelaziz, Amar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    BTO works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.

  9. Key Strategies for Building Research Capacity of University Faculty Members.

    Science.gov (United States)

    Huenneke, Laura F; Stearns, Diane M; Martinez, Jesse D; Laurila, Kelly

    2017-12-01

    Universities are under pressure to increase external research funding, and some federal agencies offer programs to expand research capacity in certain kinds of institutions. However, conflicts within faculty roles and other aspects of university operations influence the effectiveness of particular strategies for increasing research activity. We review conventional approaches to increasing research, focusing on outcomes for individual faculty members and use one federally-funded effort to build cancer-related research capacity at a public university as an example to explore the impact of various strategies on research outcomes. We close with hypotheses that should be tested in future formal studies.

  10. Predicting the hurricane damage ratio of commercial buildings by claim payout from Hurricane Ike

    OpenAIRE

    J. M. Kim; P. K. Woods; Y. J. Park; T. H. Kim; J. S. Choi; K. Son

    2013-01-01

    The increasing occurrence of natural disaster events and related damages have led to a growing demand for models that predict financial loss. Although considerable research has studied the financial losses related to natural disaster events, and has found significant predictors, there has not yet been a comprehensive study that addresses the relationship among the vulnerabilities, natural disasters, and economic losses of the individual buildings. This study...

  11. Research and Development Roadmap for Water Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  12. Premium cost optimization of operational and maintenance of green building in Indonesia using life cycle assessment method

    Science.gov (United States)

    Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Budiman, Rachmat; Riswanto

    2017-06-01

    Building has a big impact on the environmental developments. There are three general motives in building, namely the economy, society, and environment. Total completed building construction in Indonesia increased by 116% during 2009 to 2011. It made the energy consumption increased by 11% within the last three years. In fact, 70% of energy consumption is used for electricity needs on commercial buildings which leads to an increase of greenhouse gas emissions by 25%. Green Building cycle costs is known as highly building upfront cost in Indonesia. The purpose of optimization in this research improves building performance with some of green concept alternatives. Research methodology is mixed method of qualitative and quantitative approaches through questionnaire surveys and case study. Assessing the successful of optimization functions in the existing green building is based on the operational and maintenance phase with the Life Cycle Assessment Method. Choosing optimization results were based on the largest efficiency of building life cycle and the most effective cost to refund.

  13. MEMS CHIP CO2 SENSOR FOR BUILDING SYSTEMS INTEGRATION

    Energy Technology Data Exchange (ETDEWEB)

    Anton Carl Greenwald

    2005-09-14

    The objective of this research was to develop an affordable, reliable sensor to enable demand controlled ventilation (DCV). A significant portion of total energy consumption in the United States is used for heating or air conditioning (HVAC) buildings. To assure occupant safety and fresh air levels in large buildings, and especially those with sealed windows, HVAC systems are frequently run in excess of true requirements as automated systems cannot now tell the occupancy level of interior spaces. If such a sensor (e.g. thermostat sized device) were available, it would reduce energy use between 10 and 20% in such buildings. A quantitative measure of ''fresh air'' is the concentration of carbon dioxide (CO{sub 2}) present. An inert gas, CO{sub 2} is not easily detected by chemical sensors and is usually measured by infrared spectroscopy. Ion Optics research developed a complete infrared sensor package on a single MEMS chip. It contains the infrared (IR) source, IR detector and IR filter. The device resulting from this DOE sponsored research has sufficient sensitivity, lifetime, and drift rate to meet the specifications of commercial instrument manufacturers who are now testing the device for use in their building systems.

  14. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    Science.gov (United States)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  15. The prefabricated building risk decision research of DM technology on the basis of Rough Set

    Science.gov (United States)

    Guo, Z. L.; Zhang, W. B.; Ma, L. H.

    2017-08-01

    With the resources crises and more serious pollution, the green building has been strongly advocated by most countries and become a new building style in the construction field. Compared with traditional building, the prefabricated building has its own irreplaceable advantages but is influenced by many uncertainties. So far, a majority of scholars have been studying based on qualitative researches from all of the word. This paper profoundly expounds its significance about the prefabricated building. On the premise of the existing research methods, combined with rough set theory, this paper redefines the factors which affect the prefabricated building risk. Moreover, it quantifies risk factors and establish an expert knowledge base through assessing. And then reduced risk factors about the redundant attributes and attribute values, finally form the simplest decision rule. This simplest decision rule, which is based on the DM technology of rough set theory, provides prefabricated building with a controllable new decision-making method.

  16. Intelligent building operating technologies : a cost-effective reduction in building energy consumption[Business case for a climate change solution]. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, J.

    2004-04-01

    Much of the energy consumed in the commercial and institutional (C and I) buildings sector is wasted due to poor building operation. The sector accounts for 13 per cent of secondary energy use in Canada, and contributes about the same proportion of greenhouse gas (GHG) emissions. Energy use in this sector could be reduced if the operation of the buildings were improved. The CANMET Energy Technology Centre in Varennes, Quebec has developed a set of software solutions called Intelligent Building Operating Technologies to address this problem. The software program applies artificial intelligence algorithms to existing building energy management control systems to diagnose equipment and system problems. The software provides performance reports and allows the operator to optimize the operation of the building. The proposed control strategies could be applied to 60 per cent of the building surface area in Canada, resulting energy consumption reductions of 12 per cent annually, or 14 TWh of electricity and 1.5 billion cubic metres of natural gas. The savings amount to $1.8 billion and 7 Mt of GHG emissions annually. It was suggested that a national retro-commissioning program would eliminate the barriers to improving building operation and help research and development aimed at Intelligent Building Operating Technologies. 8 refs., 5 tabs., 3 figs.

  17. Test analysis and research on static choice reaction ability of commercial vehicle drivers

    Science.gov (United States)

    Zhang, Lingchao; Wei, Lang; Qiao, Jie; Tian, Shun; Wang, Shengchang

    2017-03-01

    Drivers' choice reaction ability has a certain relation with safe driving. It has important significance to research its influence on traffic safety. Firstly, the paper uses a choice reaction detector developed by research group to detect drivers' choice reaction ability of commercial vehicles, and gets 2641 effective samples. Then by using mathematical statistics method, the paper founds that average reaction time from accident group has no difference with non-accident group, and then introduces a variance rate of reaction time as a new index to replace it. The result shows that the test index choice reaction errors and variance rate of reaction time have positive correlations with accidents. Finally, according to testing results of the detector, the paper formulates a detection threshold with four levels for helping transportation companies to assess commercial vehicles drivers.

  18. Building organizational supports for research-minded practitioners.

    Science.gov (United States)

    Austin, Michael J; Dal Santo, Teresa S; Lee, Chris

    2012-01-01

    One of the biggest challenges facing human service organizations is the proliferation of information from inside and outside the agency that needs to be managed if it is to be of use. The concepts of tacit and explicit knowledge can inform an approach to this challenge. Tacit knowledge is stored in the minds of practitioners (often called practice wisdom) and the explicit knowledge is often found in organizational procedure manuals and educational and training materials. Building on this perspective, this analysis provides a preliminary definition of research-minded practitioners by explicating the elements of curiosity, critical reflection, and critical thinking. The organizational implications of developing a cadre of research-minded practitioners include the commitment of top management to support "link officers", evidence request services, research and development units, and service standards. The challenges include the capacity to identify/support research-minded practitioners, promote an organizational culture of evidence-informed practice, redefine staff development and training, redefine job descriptions, and specify the nature of managerial leadership. Copyright © Taylor & Francis Group, LLC

  19. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.

  20. Building Capacity in Community-Based Participatory Research Partnerships Through a Focus on Process and Multiculturalism.

    Science.gov (United States)

    Corbie-Smith, Giselle; Bryant, Angela R; Walker, Deborah J; Blumenthal, Connie; Council, Barbara; Courtney, Dana; Adimora, Ada

    2015-01-01

    In health research, investigators and funders are emphasizing the importance of collaboration between communities and academic institutions to achieve health equity. Although the principles underlying community-academic partnered research have been well-articulated, the processes by which partnerships integrate these principles when working across cultural differences are not as well described. We present how Project GRACE (Growing, Reaching, Advocating for Change and Empowerment) integrated participatory research principles with the process of building individual and partnership capacity. We worked with Vigorous Interventions In Ongoing Natural Settings (VISIONS) Inc., a process consultant and training organization, to develop a capacity building model. We present the conceptual framework and multicultural process of change (MPOC) that was used to build individual and partnership capacity to address health disparities. The process and capacity building model provides a common language, approach, and toolset to understand differences and the dynamics of inequity. These tools can be used by other partnerships in the conduct of research to achieve health equity.

  1. 1998 ACEEE summer study on energy efficiency in buildings: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    These proceedings are contained in the following 10 volumes: (1) Residential buildings--Technologies, design and performance analysis; (2) Residential buildings--Program design, implementation and evaluation; (3) Commercial buildings--Technologies, design and performance analysis; (4) Commercial buildings--Program design, implementation and evaluation; (5) International collaborations and global market issues; (6) Deregulation of the utility industry and role of energy services companies; (7) Market transformation; (8) Information technologies, consumer behavior, and non-energy benefits; (9) Sustainable development, climate change, energy planning, and policy; and (10) Building industry trends. Papers have been processed separately for inclusion on the data base.

  2. University of Utah, Energy Commercialization Center

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James [Univ. of Utah, Salt Lake City, UT (United States)

    2014-01-17

    culture all played a role in inhibiting the development and distribution of a regional ecosystem and commercialization process. Had the University and the ECC been able to develop a software platform, some of these challenges may have been overcome, but without the final development and release of the Western Innovation Network, the ECC realistically could not scale and distribute a commercialization platform. Further, cleantech startups need to engage in a more intensive customer validation process, and establish strong community connections if they are to succeed in commercializing their products. The university system incentivizes research and access to research funding and risk capital is competitive, so by nature collaboration on commercialization was difficult. Each of the local ecosystems within the Rocky Mountain West was unique. Utah did not, and does not, have a system outside of the universities to support entrepreneurs and cleantech commercialization. Through the ECC’s efforts developing a regional ecosystem, it became clear that successful ecosystems had a community and associated mechanisms that supported local entrepreneurs and startups. Most importantly the ECC aided in the creation of Utah’s cleantech ecosystem, one that supports entrepreneurs and startup companies that need help and support in their efforts to commercialize clean technologies. The absence of support for clean tech from state government and local organizations was a significant impediment to cleantech commercialization. To overcome this challenge, the ECC has formed Sustainable Startups. Sustainable Startups is a new non-profit organization designed to build a culture and community in Utah that supports and understands the importance of cleantech and sustainable development. While the ECC generated mixed success in building a regional commercialization ecosystem for cleantech, the organization did provide tremendous benefit to startups and the broader public. Over 60 companies were

  3. Indoor Air Quality Building Education and Assessment Model Forms

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  4. Computer modeling of commercial refrigerated warehouse facilities

    International Nuclear Information System (INIS)

    Nicoulin, C.V.; Jacobs, P.C.; Tory, S.

    1997-01-01

    The use of computer models to simulate the energy performance of large commercial refrigeration systems typically found in food processing facilities is an area of engineering practice that has seen little development to date. Current techniques employed in predicting energy consumption by such systems have focused on temperature bin methods of analysis. Existing simulation tools such as DOE2 are designed to model commercial buildings and grocery store refrigeration systems. The HVAC and Refrigeration system performance models in these simulations tools model equipment common to commercial buildings and groceries, and respond to energy-efficiency measures likely to be applied to these building types. The applicability of traditional building energy simulation tools to model refrigerated warehouse performance and analyze energy-saving options is limited. The paper will present the results of modeling work undertaken to evaluate energy savings resulting from incentives offered by a California utility to its Refrigerated Warehouse Program participants. The TRNSYS general-purpose transient simulation model was used to predict facility performance and estimate program savings. Custom TRNSYS components were developed to address modeling issues specific to refrigerated warehouse systems, including warehouse loading door infiltration calculations, an evaporator model, single-state and multi-stage compressor models, evaporative condenser models, and defrost energy requirements. The main focus of the paper will be on the modeling approach. The results from the computer simulations, along with overall program impact evaluation results, will also be presented

  5. Research on the factors influencing the price of commercial housing based on support vector machine (SVM)

    Science.gov (United States)

    Xiaoyang, Zhong; Hong, Ren; Jingxin, Gao

    2018-03-01

    With the gradual maturity of the real estate market in China, urban housing prices are also better able to reflect changes in market demand and the commodity property of commercial housing has become more and more obvious. Many scholars in our country have made a lot of research on the factors that affect the price of commercial housing in the city and the number of related research papers increased rapidly. These scholars’ research results provide valuable wealth to solve the problem of urban housing price changes in our country. However, due to the huge amount of literature, the vast amount of information is submerged in the library and cannot be fully utilized. Text mining technology has been widely concerned and developed in the field of Humanities and Social Sciences in recent years. But through the text mining technology to obtain the influence factors on the price of urban commercial housing is still relatively rare. In this paper, the research results of the existing scholars were excavated by text mining algorithm based on support vector machine in order to further make full use of the current research results and to provide a reference for stabilizing housing prices.

  6. Estimation of the Relationship Between Remotely Sensed Anthropogenic Heat Discharge and Building Energy Use

    Science.gov (United States)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.

  7. Quantitative assessment of graded burn wounds using a commercial and research grade laser speckle imaging (LSI) system

    Science.gov (United States)

    Ponticorvo, A.; Rowland, R.; Yang, B.; Lertsakdadet, B.; Crouzet, C.; Bernal, N.; Choi, B.; Durkin, A. J.

    2017-02-01

    Burn wounds are often characterized by injury depth, which then dictates wound management strategy. While most superficial burns and full thickness burns can be diagnosed through visual inspection, clinicians experience difficulty with accurate diagnosis of burns that fall between these extremes. Accurately diagnosing burn severity in a timely manner is critical for starting the appropriate treatment plan at the earliest time points to improve patient outcomes. To address this challenge, research groups have studied the use of commercial laser Doppler imaging (LDI) systems to provide objective characterization of burn-wound severity. Despite initial promising findings, LDI systems are not commonplace in part due to long acquisition times that can suffer from artifacts in moving patients. Commercial LDI systems are being phased out in favor of laser speckle imaging (LSI) systems that can provide similar information with faster acquisition speeds. To better understand the accuracy and usefulness of commercial LSI systems in burn-oriented research, we studied the performance of a commercial LSI system in three different sample systems and compared its results to a research-grade LSI system in the same environments. The first sample system involved laboratory measurements of intralipid (1%) flowing through a tissue simulating phantom, the second preclinical measurements in a controlled burn study in which wounds of graded severity were created on a Yorkshire pig, and the third clinical measurements involving a small sample of clinical patients. In addition to the commercial LSI system, a research grade LSI system that was designed and fabricated in our labs was used to quantitatively compare the performance of both systems and also to better understand the "Perfusion Unit" output of commercial systems.

  8. Building a Cohesive Body of Design Knowledge: Developments from a Design Science Research Perspective

    DEFF Research Database (Denmark)

    Cash, Philip; Piirainen, Kalle A.

    2015-01-01

    researchers have identified difficulties in building on past works, and combining insights from across the field. This work starts to dissolve some of these issues by drawing on Design Science Research to propose an integrated approach for the development of design research knowledge, coupled with pragmatic......Design is an extremely diverse field where there has been widespread debate on how to build a cohesive body of scientific knowledge. To date, no satisfactory proposition has been adopted across the field – hampering scientific development. Without this basis for bringing research together design...... advice for design researchers. This delivers a number of implications for researchers as well as for the field as a whole....

  9. Strategic research roadmap on ICT-enabled energy efficiency in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, A.S., Email: sami.kazi@vtt.fi

    2012-06-15

    The REEB Project (The European strategic research Roadmap to ICT-enabled Energy- Efficiency in Buildings and construction projects) was a Coordination Action project funded under the European Commission's Seventh Framework Programme. Its main purpose was to provide a strategic research roadmap on information and communications technology (ICT) support for energy efficiency in the built environment and a collection of implementation actions supporting the realisation of the roadmap. (orig.)

  10. Good collaborative practice: reforming capacity building governance of international health research partnerships.

    Science.gov (United States)

    Ward, Claire Leonie; Shaw, David; Sprumont, Dominique; Sankoh, Osman; Tanner, Marcel; Elger, Bernice

    2018-01-08

    In line with the policy objectives of the United Nations Sustainable Development Goals, this commentary seeks to examine the extent to which provisions of international health research guidance promote capacity building and equitable partnerships in global health research. Our evaluation finds that governance of collaborative research partnerships, and in particular capacity building, in resource-constrained settings is limited but has improved with the implementation guidance of the International Ethical Guidelines for Health-related Research Involving Humans by The Council for International Organizations of Medical Sciences (CIOMS) (2016). However, more clarity is needed in national legislation, industry and ethics guidelines, and regulatory provisions to address the structural inequities and power imbalances inherent in international health research partnerships. Most notably, ethical partnership governance is not supported by the principal industry ethics guidelines - the International Conference on Harmonization Technical Requirements for Registration of Pharmaceutical for Human Use (ICH) Good Clinical Practice (ICH-GCP). Given the strategic value of ICH-GCP guidelines in defining the role and responsibility of global health research partners, we conclude that such governance should stipulate the minimal requirements for creating an equitable environment of inclusion, mutual learning, transparency and accountability. Procedurally, this can be supported by i) shared research agenda setting with local leadership, ii) capacity assessments, and iii) construction of a memorandum of understanding (MoU). Moreover, the requirement of capacity building needs to be coordinated amongst partners to support good collaborative practice and deliver on the public health goals of the research enterprise; improving local conditions of health and reducing global health inequality. In this respect, and in order to develop consistency between sources of research governance, ICH

  11. Energy Saving Homes and Buildings, Continuum Magazine, Spring 2014 / Issue 6 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2014-03-01

    This issue of Continuum focuses on NREL's research to improve the energy efficiency of residential and commercial buildings. Heating, cooling, and lighting our homes and commercial structures account for more than 70% of all electricity used in the United States. That costs homeowners, businesses, and government agencies more than $400 billion annually, about 40% of our nation's total energy costs. Producing that energy contributes almost 40% of our nation's carbon dioxide emissions.By 2030, an estimated 900 billion square feet of new and rebuilt construction will be developed worldwide, providing an unprecedented opportunity to create efficient, sustainable buildings. Increasing the energy performance of our homes alone could potentially eliminate up to 160 million tons of greenhouse gas emissions and lower residential energy bills by $21 billion annually by the end of the decade.

  12. Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle with Electric Energy Storage in Different Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2018-01-01

    Full Text Available This paper presents an analysis to determine the economic, energetic, and environmental benefits that could be obtained from the implementation of a combined solar-power organic Rankine cycle (ORC with electric energy storage (EES to supply electricity to several commercial buildings including a large office, a small office, and a full service restaurant. The operational strategy for the ORC-EES system consists in the ORC charging the EES when the irradiation level is sufficient to generate power, and the EES providing electricity to the building when there is not irradiation (i.e., during night time. Electricity is purchased from the utility grid unless it is provided by the EES. The potential of the proposed system to reduce primary energy consumption (PEC, carbon dioxide emission (CDE, and cost was evaluated. Furthermore, the available capital cost for a variable payback period for the ORC-EES system was determined for each of the evaluated buildings. The effect of the number of solar collectors on the performance of the ORC-EES is also studied. Results indicate that the proposed ORC-EES system is able to satisfy 11%, 13%, and 18% of the electrical demand for the large office, the small office and the restaurant, respectively.

  13. MARKETING STRATEGY OF COMMERCIALIZATION OF INNOVATION

    Directory of Open Access Journals (Sweden)

    Savelyeva Irina Petrovna

    2013-04-01

    Full Text Available The purpose of the article is to develop an original approach to the formation of a marketing strategy of commercialization of innovations. The existing views on the process of creating marketing strategies were examined and classified and the algorithm of building marketing strategies for the processes commercialization of innovations was offered. The results can be used by industrial companies and in the educational process of marketing, strategic marketing and innovation management disciplines.

  14. Technical - Economic Research for Passive Buildings

    Science.gov (United States)

    Miniotaite, Ruta

    2017-10-01

    A newly constructed passive house must save 80 % of heat resources; otherwise it is not a passive house. The heating energy demand of a passive building is less than 15 kWh/m2 per year. However, a passive house is something more than just an energy-saving house. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Features of a passive house: high insulation of envelope components, high-quality windows, good tightness of the building, regenerative ventilation system and elimination of thermal bridges. The Energy Performance of Buildings Directive (EPBD) 61 requires all new public buildings to become near-zero energy buildings by 2019 and will be extended to all new buildings by 2021. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Foundation, walls and roofs are the most essential elements of a house. The type of foundation for a private house is selected considering many factors. The article examines technological and structural solutions for passive buildings foundation, walls and roofs. The technical-economic comparison of the main structures of a passive house revealed that it is cheaper to install an adequately designed concrete slab foundation than to build strip or pile foundation and the floor separately. Timber stud walls are the cheapest wall option for a passive house and 45-51% cheaper compared to other options. The comparison of roofs and ceilings showed that insulation of the ceiling is 25% more efficient than insulation of the roof. The comparison of the main envelope elements efficiency by multiple-criteria evaluation methods showed that it is economically feasible to install concrete slab on ground foundation, stud walls with sheet cladding and a pitched roof with insulated ceiling.

  15. Climate impacts on extreme energy consumption of different types of buildings.

    Science.gov (United States)

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  16. Building research and evaluation capacity in population health: the NSW Health approach.

    Science.gov (United States)

    Edwards, Barry; Stickney, Beth; Milat, Andrew; Campbell, Danielle; Thackway, Sarah

    2016-02-01

    Issue addressed An organisational culture that values and uses research and evaluation (R&E) evidence to inform policy and practice is fundamental to improving health outcomes. The 2016 NSW Government Program Evaluation Guidelines recommend investment in training and development to improve evaluation capacity. The purpose of this paper is to outline the approaches taken by the NSW Ministry of Health to develop R&E capacity and assess these against existing models of practice. Method The Ministry of Health's Centre for Epidemiology and Evidence (CEE) takes an evidence-based approach to building R&E capacity in population health. Strategies are informed by: the NSW Population Health Research Strategy, R&E communities of practice across the Ministry and health Pillar agencies and a review of the published evidence on evaluation capacity building (ECB). An internal survey is conducted biennially to monitor research activity within the Ministry's Population and Public Health Division. One representative from each of the six centres that make up the Division coordinates completion of the survey by relevant staff members for their centre. Results The review identified several ECB success factors including: implementing a tailored multifaceted approach; an organisational commitment to R&E; and offering experiential training and ongoing technical support to the workforce. The survey of research activity found that the Division funded a mix of research assets, research funding schemes, research centres and commissioned R&E projects. CEE provides technical advice and support services for staff involved in R&E and in 2015, 22 program evaluations were supported. R&E capacity building also includes a series of guides to assist policy makers, practitioners and researchers to commission, undertake and use policy-relevant R&E. Staff training includes workshops on critical appraisal, program logic and evaluation methods. From January 2013 to June 2014 divisional staff published 84

  17. Research capacity building in midwifery: Case study of an Australian Graduate Midwifery Research Intern Programme.

    Science.gov (United States)

    Hauck, Yvonne L; Lewis, Lucy; Bayes, Sara; Keyes, Louise

    2015-09-01

    Having the research capacity to identify problems, create new knowledge and most importantly translate this knowledge into practice is essential within health care. Midwifery, as well as other health professions in Australia, is challenged in building its research capacity to contribute evidence to inform clinical practice. The aim of this project was to evaluate an innovative Graduate Midwifery Research Intern Programme offered at a tertiary obstetric hospital in Western Australia, to determine what was working well and how the programme could be improved. A case study approach was used to gain feedback from graduate midwives within a Graduate Research Intern (GRI) Programme. In addition outcomes were compiled of all projects the GRI midwives contributed to. Six GRI midwives participated in a survey comprising of four open ended questions to provide feedback about the programme. Findings confirm that the GRI programme increased the graduates understanding of how research works, its capacity to define a problem, generate new knowledge and inform clinical practice. The GRI midwives' feedback suggested the programme opened their thinking to future study and gave them enhanced insight into women's experiences around childbirth. To grow our knowledge as a professional group, midwives must develop and promote programmes to build our pool of research capable midwives. By sharing our programme evaluation we hope to entice other clinical settings to consider the value in replicating such a programme within their context. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  18. Interpretive Research Aiming at Theory Building: Adopting and Adapting the Case Study Design

    Science.gov (United States)

    Diaz Andrade, Antonio

    2009-01-01

    Although the advantages of case study design are widely recognised, its original positivist underlying assumptions may mislead interpretive researchers aiming at theory building. The paper discusses the limitations of the case study design for theory building and explains how grounded theory systemic process adds to the case study design. The…

  19. Innovation ecosystem model for commercialization of research results

    Directory of Open Access Journals (Sweden)

    Vlăduţ Gabriel

    2017-07-01

    Full Text Available Innovation means Creativity and Added value recognise by the market. The first step in creating a sustainable commercialization of research results, Technological Transfer – TT mechanism, on one hand is to define the “technology” which will be transferred and on other hand to define the context in which the TT mechanism work, the ecosystem. The focus must be set on technology as an entity, not as a science or a study of the practical industrial arts and certainly not any specific applied science. The transfer object, the technology, must rely on a subjectively determined but specifiable set of processes and products. Focusing on the product is not sufficient to the transfer and diffusion of technology. It is not merely the product that is transferred but also knowledge of its use and application. The innovation ecosystem model brings together new companies, experienced business leaders, researchers, government officials, established technology companies, and investors. This environment provides those new companies with a wealth of technical expertise, business experience, and access to capital that supports innovation in the early stages of growth.

  20. Evaluating the Cost of Line Capacity Limitations in Aggregations of Commercial Buildings

    DEFF Research Database (Denmark)

    Ziras, Charalampos; Delikaraoglou, Stefanos; Kazempour, Jalal

    2017-01-01

    -ahead optimization strategy to assess the cost of imposing capacity limitations in the total consumption of individual buildings, as well as aggregations of buildings. We show that such capacity limitations lead to an increase for the buildings operational costs, which can be interpreted as the value...... of these limitations. Based on such calculations, the aggregator can value capacity-limitation services to the distribution system operator. Moreover, the value of aggregation is also highlighted, since it leads to lower costs than imposing the same total capacity limitation on individual buildings....

  1. Transforming Ordinary Buildings into Smart Buildings via Low-Cost, Self-Powering Wireless Sensors & Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Philip [Case Western Reserve Univ., Cleveland, OH (United States)

    2017-06-09

    The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products will have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.

  2. To Crowdfund Research, Scientists Must Build an Audience for Their Work.

    Science.gov (United States)

    Byrnes, Jarrett E K; Ranganathan, Jai; Walker, Barbara L E; Faulkes, Zen

    2014-01-01

    As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for one's work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientist's abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or "fanbase" and actively engaging with that audience as well as seeking to broaden the reach of one's audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientist's project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public.

  3. Jonkershoek research catchments: history and impacts on commercial forestry in South Africa.

    CSIR Research Space (South Africa)

    Chapman, A

    2007-09-01

    Full Text Available conservation and allied problems” was endorsed by the 1935 Fourth Empire Forestry Conference held in Cape Town. By 1936 construction was underway on weirs in the Jonkershoek State Forest and a programme of research was developed, with Dr CL Wicht as Founder... collected within these research catchments. Other national impacts include: • Regulation of the R22 billion/a forest industry. The commercial forest industry today derives benefit in export markets from the Sustainable Forest Certification (FSC...

  4. Researching for sustained translation from site cluster permeability into building courtyard and interior atrium

    Science.gov (United States)

    Teddy Badai Samodra, FX; Defiana, Ima; Setyawan, Wahyu

    2018-03-01

    Many previous types of research have discussed the permeability of site cluster. Because of interaction and interconnected attribute, it will be better that there is its translation into lower context such as building and interior scale. In this paper, the sustainability design performance of both similar designs of courtyard and atrium are investigated continuing the recommendation of site space permeability. By researching related literature review and study through Ecotect Analysis and Ansys Fluent simulations, the pattern transformation and optimum courtyard and atrium design could comply the requirement. The results highlighted that the air movement from the site could be translated at the minimum of 50% higher to the building and indoor environment. Thus, it has potency for energy efficiency when grid, loop, and cul-de-sac site clusters, with 25% of ground coverage, have connectivity with building courtyard compared to the atrium. Energy saving is higher when using low thermal transmittance of transparent material and its lower area percentages for the courtyard walls. In general, it was more energy efficient option as part of a low rise building, while the courtyard building performed better with increasing irregular building height more than 90% of the difference.

  5. Life cycle cost analysis of commercial buildings with energy efficient approach

    Directory of Open Access Journals (Sweden)

    Nilima N. Kale

    2016-09-01

    Full Text Available In any construction project, cost effectiveness plays a crucial role. The Life Cycle Cost (LCC analysis provides a method of determining entire cost of a structure over its expected life along with operational and maintenance cost. LCC can be improved by adopting alternative modern techniques without much alteration in the building. LCC effectiveness can be calculated at various stages of entire span of the building. Moreover this provides decision makers with the financial information necessary for maintaining, improving, and constructing facilities. Financial benefits associated with energy use can also be calculated using LCC analysis. In the present work, case study of two educational buildings has been considered. The LCC of these buildings has been calculated with existing condition and with proposed energy efficient approach (EEA using net present value method. A solar panel having minimum capacity as well as solar panel with desired capacity as per the requirements of the building has been suggested. The comparison of LCC of existing structure with proposed solar panel system shows that 4% of cost can be reduced in case of minimum capacity solar panel and 54% cost can be reduced for desired capacity solar panel system, along with other added advantages of solar energy.

  6. Commercial equipment loads: End-Use Load and Consumer Assessment Program (ELCAP)

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.G.; Williamson, M.A.; Richman, E.E.; Miller, N.E.

    1990-07-01

    The Office of Energy Resources of the Bonneville Power Administration is generally responsible for the agency's power and conservation resource planning. As associated responsibility which supports a variety of office functions is the analysis of historical trends in and determinants of energy consumption. The Office of Energy Resources' End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side planning, load forecasting, and demand-side program development and delivery. Part of this on-going program is known as the End-Use Load and Consumer Assessment Program (ELCAP), an effort designed to collect electricity usage data through direct monitoring of end-use loads in buildings. This program is conducted for Bonneville by the Pacific Northwest Laboratory. This report provides detailed information on electricity consumption of miscellaneous equipment from the commercial portion of ELCAP. Miscellaneous equipment includes all commercial end-uses except heating, ventilating, air conditioning, and central lighting systems. Some examples of end-uses covered in this report are office equipment, computers, task lighting, refrigeration, and food preparation. Electricity consumption estimates, in kilowatt-hours per square food per year, are provided for each end-use by building type. The following types of buildings are covered: office, retail, restaurant, grocery, warehouse, school, university, and hotel/motel. 6 refs., 35 figs., 12 tabs.

  7. Summary of Prioritized Research Opportunities. Building America Planning Meeting, November 2-4, 2010

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-02-01

    This report outlines the results of brainstorming sessions conducted at the Building America Fall 2010 planning meeting, in which research teams and national laboratories identified key research priorities to incorporate into multi-year planning, team research agendas, expert meetings, and technical standing committees.

  8. Evaluating Post-Earthquake Building Safety Using Economical MEMS Seismometers.

    Science.gov (United States)

    Hsu, Ting-Yu; Yin, Ren-Cheng; Wu, Yih-Min

    2018-05-05

    The earthquake early warning (EEW)-research group at National Taiwan University has been developing a microelectromechanical system-based accelerometer called “P-Alert”, designed for issuing EEWs. The main advantage of P-Alert is that it is a relatively economical seismometer. However, because of the expensive nature of commercial hardware for structural health monitoring (SHM) systems, the application of SHM to buildings remains limited. To determine the performance of P-Alert for evaluating post-earthquake building safety, we conducted a series of steel-frame shaking table tests with incremental damage. We used the fragility curves of different damage levels and the interstory drift ratios (calculated by the measured acceleration of each story using double integration and a filter) to gauge the potential damage levels. We concluded that the acceptable detection of damage for an entire building is possible. With improvements to the synchronization of the P-Alert sensors, we also anticipate a damage localization feature for the stories of a building.

  9. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  10. Analysis of Plug Load Capacities and Power Requirements in Commercial Buildings: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sheppy, M.; Torcellini, P.; Gentile-Polese, L.

    2014-08-01

    Plug and process load power requirements are frequently overestimated because designers often use estimates based on 'nameplate' data, or design assumptions are high because information is not available. This generally results in oversized heating, ventilation, and air-conditioning systems; increased initial construction costs; and increased energy use caused by inefficiencies at low, part-load operation. Rightsizing of chillers in two buildings reduced whole-building energy use by 3%-4%. If an integrated design approach could enable 3% whole-building energy savings in all U.S. office buildings stock, it could save 34 TBtu of site energy per year.

  11. A self-sustainable winery, an advanced passive building and remote monitoring of environments in wineries

    Directory of Open Access Journals (Sweden)

    Roger Boulton

    2017-08-01

    Full Text Available The self-sustainable winery was conceived in 2006 and the intention was to create a building and its related utility systems that would operate independently from the energy and water grids and to eliminate hydrocarbon fuels from its operation, capture and sequester the carbon dioxide from its fermentations and create a zero carbon footprint facility. The winery was the highest scoring LEED building at any university when it was completed and the first LEED Platinum Winery in the USA. The adjacent Jess Jackson sustainable winery building is a highly passive research and utility space that will house the advanced energy and water systems that make this off-grid performance possible. Together these buildings will operate every daily in energy and water positive modes and at capacities, which exceed the demands even during the harvest season. The data system incorporated into these buildings for one hundred and fifty research fermentors, fourteen teaching fermentors will also monitor all energy, water and building activities in a secure, cloud-based software system that supports both web and handheld access, with the potential for bidirectional date and control functions. This data network has been extended to include real time monitoring of temperature, humidity, carbon dioxide and volatile organic compounds in five production areas within two commercial winery sites and two creamery facilities, located more than 100 km from Davis. This now provides an example of a distributed dynamic network for the monitoring of the built environment in remote commercial food and wine facilities.

  12. Techno-economic feasibility analysis of solar photovoltaic power generation for buildings

    International Nuclear Information System (INIS)

    Zhang, Xiongwen; Li, Menyu; Ge, Yuanfei; Li, Guojun

    2016-01-01

    Highlights: • A model for optimal component sizes of hybrid energy system (HES) is presented. • The techno-economic feasibility of PV for building in context of China is studied. • The use of PV reduces COE by 46% for customers in the commercial building. • The use of PV increases COE by 9.55% for customers in the residential building. - Abstract: The Building Added PV (BAPV) plays an important role for developing green buildings. This work conducts a techno-economic feasibility study of BAPV for commercial and residential building hybrid energy systems (HES). A component sizing model based on the optimal power dispatch simulations with the objective of minimum cost of energy (COE) is used to determine the component sizes of HES. The techno-economic performances of two HES composed of BAPV and batteries for residential and commercial buildings are investigated. The results show that the use of BAPV in the commercial building HES can reduce the electricity bill for customers owing to the government subsidies on PV as well as due to the similar characteristics of the load profile as to the solar radiation profile. However, due to temporal dislocation between the load and solar radiation patterns, the use of PV in the residential building HES may significantly increase the initial capital cost and replacement cost of battery, resulting in the COE of the residential building HES with BAPV even higher than the residential electricity price. The techno-economic performances of battery (e.g., the lifetime and capital cost) have more effect on the COE of the residential building HES than that of PV.

  13. Human-centered sensor-based Bayesian control: Increased energy efficiency and user satisfaction in commercial lighting

    Science.gov (United States)

    Granderson, Jessica Ann

    2007-12-01

    The need for sustainable, efficient energy systems is the motivation that drove this research, which targeted the design of an intelligent commercial lighting system. Lighting in commercial buildings consumes approximately 13% of all the electricity generated in the US. Advanced lighting controls1 intended for use in commercial office spaces have proven to save up to 45% in electricity consumption. However, they currently comprise only a fraction of the market share, resulting in a missed opportunity to conserve energy. The research goals driving this dissertation relate directly to barriers hindering widespread adoption---increase user satisfaction, and provide increased energy savings through more sophisticated control. To satisfy these goals an influence diagram was developed to perform daylighting actuation. This algorithm was designed to balance the potentially conflicting lighting preferences of building occupants, with the efficiency desires of building facilities management. A supervisory control policy was designed to implement load shedding under a demand response tariff. Such tariffs offer incentives for customers to reduce their consumption during periods of peak demand, trough price reductions. In developing the value function occupant user testing was conducted to determine that computer and paper tasks require different illuminance levels, and that user preferences are sufficiently consistent to attain statistical significance. Approximately ten facilities managers were also interviewed and surveyed to isolate their lighting preferences with respect to measures of lighting quality and energy savings. Results from both simulation and physical implementation and user testing indicate that the intelligent controller can increase occupant satisfaction, efficiency, cost savings, and management satisfaction, with respect to existing commercial daylighting systems. Several important contributions were realized by satisfying the research goals. A general

  14. Fire Risk Analysis and Optimization of Fire Prevention Management for Green Building Design and High Rise Buildings: Hong Kong Experience

    Directory of Open Access Journals (Sweden)

    Yau Albert

    2014-12-01

    Full Text Available There are many iconic high rise buildings in Hong Kong, for example, International Commercial Centre, International Financial Centre, etc. Fire safety issue in high rise buildings has been raised by local fire professionals in terms of occupant evacuation, means of fire-fighting by fire fighters, sprinkler systems to automatically put off fires in buildings, etc. Fire risk becomes an important issue in building fire safety because it relates to life safety of building occupants where they live and work in high rise buildings in Hong Kong. The aim of this research is to identify the fire risk for different types of high rise buildings in Hong Kong and to optimise the fire prevention management for those high rise buildings with higher level of fire risk and to validate the model and also to carry out the study of the conflict between the current fire safety building code and the current trend of green building design. Survey via the 7-point scale questionnaire was conducted through 50 participants and their responses were received and analysed via the statistical tool SPSS software computer program. A number of statistical methods of testing for significantly difference in samples were adopted to carry out the analysis of the data received. When the statistical analysis was completed, the results of the data analysis were validated by two Fire Safety Experts in this area of specialisation and also by quantitative fire risk analysis.

  15. Commercial products and services of research reactors. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2013-07-01

    Although the number of operational research reactors is steadily decreasing, more than half of those that remain are greatly underutilized and, in most cases, underfunded. To continue to play a key role in the development of peaceful uses of nuclear technology, the remaining research reactors will need to provide useful products and services to private, national and regional customers, in some cases with adequate revenue generation for reliable, safe and secure facility management and operation. In the light of declining governmental financial support and the need for improved physical security and conversion to low enriched uranium (LEU) fuel, many research reactors have been challenged to generate income to offset increasing operational and maintenance costs. The renewed interest in nuclear power (and therefore in nuclear education and training), the global expansion of diagnostic and therapeutic nuclear medicine, and the extensive use of semiconductors in electronics and in other areas have created new opportunities for research reactors, prominent among them, markets for products and services in regions and countries without such facilities. It is clear that such initiatives towards greater self-reliance will need to address such aspects as market surveys, marketing and business plans, and cost of delivery services. It will also be important to better inform present and future potential end users of research reactor services of the capabilities and products that can be provided. This publication is a compilation of material from an IAEA technical meeting on “Commercial Products and Services of Research Reactors”, held in Vienna, Austria, from 28 June to 2 July 2010. The overall objective of the meeting was to exchange information on good practices and to provide concrete examples, in technical presentations and brainstorming discussions, to promote and facilitate the development of commercial applications of research reactors. The meeting also aimed to

  16. Climate impacts on extreme energy consumption of different types of buildings.

    Directory of Open Access Journals (Sweden)

    Mingcai Li

    Full Text Available Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382. The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  17. Supporting Latino communities' natural helpers: a case study of promotoras in a research capacity building course.

    Science.gov (United States)

    Otiniano, Angie Denisse; Carroll-Scott, Amy; Toy, Peggy; Wallace, Steven P

    2012-08-01

    Promotores have unique access to underserved and hard-to-reach Latino communities facing health disparities. Although promotores are involved in community change, they rarely receive training that gives them the skills to be partners in research. We present a case study of promotoras who participated in a research capacity building course focused on assessing community health needs. Data comes from course application surveys, follow-up notes, and narratives from qualitative phone interviews of eight promotoras. Content analysis drawing from grounded theory was conducted to identify and describe emerging themes. Four themes emerged as promotoras discussed their experience learning basic research skills and teaching others: (1) challenges, (2) support, (3) building capacity, and (4) using research. Promotores play an important role in the health of Latino communities and are increasingly asked to participate in research processes; however they have few opportunities for training and professional development in this area. Capacity building opportunities for promotores need to be tailored to their needs and provide them with support. Fostering collaboration between promotores and partnering with local community-based organizations can help facilitate needed research skill-building among promotores.

  18. Adaptation of commercial microscopes for advanced imaging applications

    Science.gov (United States)

    Brideau, Craig; Poon, Kelvin; Stys, Peter

    2015-03-01

    Today's commercially available microscopes offer a wide array of options to accommodate common imaging experiments. Occasionally, an experimental goal will require an unusual light source, filter, or even irregular sample that is not compatible with existing equipment. In these situations the ability to modify an existing microscopy platform with custom accessories can greatly extend its utility and allow for experiments not possible with stock equipment. Light source conditioning/manipulation such as polarization, beam diameter or even custom source filtering can easily be added with bulk components. Custom and after-market detectors can be added to external ports using optical construction hardware and adapters. This paper will present various examples of modifications carried out on commercial microscopes to address both atypical imaging modalities and research needs. Violet and near-ultraviolet source adaptation, custom detection filtering, and laser beam conditioning and control modifications will be demonstrated. The availability of basic `building block' parts will be discussed with respect to user safety, construction strategies, and ease of use.

  19. A Disability and Health Institutional Research Capacity Building and Infrastructure Model Evaluation: A Tribal College-Based Case Study

    Science.gov (United States)

    Moore, Corey L.; Manyibe, Edward O.; Sanders, Perry; Aref, Fariborz; Washington, Andre L.; Robertson, Cherjuan Y.

    2017-01-01

    Purpose: The purpose of this multimethod study was to evaluate the institutional research capacity building and infrastructure model (IRCBIM), an emerging innovative and integrated approach designed to build, strengthen, and sustain adequate disability and health research capacity (i.e., research infrastructure and investigators' research skills)…

  20. Strengthening maintenance and reconstruction of scientific experiment building and creating a good working environment for scientific research and production

    International Nuclear Information System (INIS)

    Fu Jianping

    2005-01-01

    The quality of scientific experiment building directly influences the scientific research work and production. To create a good working environment for scientific research and production, it is necessary to strengthen the maintenance and reconstruction for old scientific experiment building. The paper briefly introduces the site supervisory work of maintaining and reconstructing old scientific experiment building in Beijing Research Institute of Uranium Geology, as well as some measures taken to ensure the project quality, and the reconstructed building. (authors)

  1. Research on Memetic Phenomena in Commercial Advertisements

    Institute of Scientific and Technical Information of China (English)

    张丽

    2015-01-01

    Meme plays an important role in the development of advertisement as a unit of culture.Its replication and transmission provide an effective means for creating advertisements and a new way for us to analyze advertising language.Two ways including memetic genotype and memetic phenotype for memes to be replicated and transmitted in the advertising language are analyzed.Then,how to successfully create commercial advertisements is explored.Finally,it is concluded that the concise,familiar,popular and original memes can contribute to successful commercial advertisements.

  2. Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities

    Energy Technology Data Exchange (ETDEWEB)

    Stadel, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Drexel Univ., Philadelphia, PA (United States); Gursel, Petek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-18

    Structural materials in commercial buildings in the United States account for a significant fraction of national energy use, resource consumption, and greenhouse gas (GHG) emissions. Robust decisions for balancing and minimizing these various environmental effects require that structural materials selections follow a life-cycle, systems modeling approach. This report provides a concise overview of the development and use of a new life-cycle assessment (LCA) model for structural materials in U.S. commercial buildings-the Berkeley Lab Building Materials Pathways (B-PATH) model. B-PATH aims to enhance environmental decision-making in the commercial building LCA, design, and planning communities through the following key features: (1) Modeling of discrete technology options in the production, transportation, construction, and end of life processes associated U.S. structural building materials; (2) Modeling of energy supply options for electricity provision and directly combusted fuels across the building life cycle; (3) Comprehensiveness of relevant building mass and energy flows and environmental indicators; (4) Ability to estimate modeling uncertainties through easy creation of different life-cycle technology and energy supply pathways for structural materials; and (5) Encapsulation of the above features in a transparent public use model. The report summarizes literature review findings, methods development, model use, and recommendations for future work in the area of LCA for commercial buildings.

  3. The Feasibility of Utilizing Wind Energy in Commercial Buildings With Special Reference to the Kingdom of Bahrain

    Science.gov (United States)

    Abdulrahim Saeed, Saeed

    2017-11-01

    This article shall investigate the feasibility of utilizing wind energy for commercial buildings with special reference to the Kingdom of Bahrain. Bahrain World Trade Center which was built in 2008, is located in the city of Manama. The fifty-story complex contains identical twin towers that rise over 240 meters in height. The towers are connected by three bridges which hold three turbines each 29 meters long. The three turbines were originally design to provide electric energy required for lighting. The Bahrain World Trade Center was selected as a case study to investigate the feasibility of utilizing wind energy technologies in skyscrapers with special reference to the Kingdom of Bahrain. It is hoped that the findings and conclusion of the study shall be of some value for future utilization of wind energy in the GCC countries and the world at large.

  4. Health research capacity building in Georgia: a case-based needs assessment.

    Science.gov (United States)

    Squires, A; Chitashvili, T; Djibuti, M; Ridge, L; Chyun, D

    2017-06-01

    Research capacity building in the health sciences in low- and middle-income countries (LMICs) has typically focused on bench-science capacity, but research examining health service delivery and health workforce is equally necessary to determine the best ways to deliver care. The Republic of Georgia, formerly a part of the Soviet Union, has multiple issues within its healthcare system that would benefit from expended research capacity, but the current research environment needs to be explored prior to examining research-focused activities. The purpose of this project was to conduct a needs assessment focused on developing research capacity in the Republic of Georgia with an emphasis on workforce and network development. A case study approach guided by a needs assessment format. We conducted in-country, informal, semi-structured interviews in English with key informants and focus groups with faculty, students, and representatives of local non-governmental organizations. Purposive and snowball sampling approaches were used to recruit participants, with key informant interviews scheduled prior to arrival in country. Documents relevant to research capacity building were also included. Interview results were coded via content analysis. Final results were organized into a SWOT (strengths, weaknesses, opportunities, threat) analysis format, with the report shared with participants. There is widespread interest among students and faculty in Georgia around building research capacity. Lack of funding was identified by many informants as a barrier to research. Many critical research skills, such as proposal development, qualitative research skills, and statistical analysis, were reported as very limited. Participants expressed concerns about the ethics of research, with some suggesting that research is undertaken to punish or 'expose' subjects. However, students and faculty are highly motivated to improve their skills, are open to a variety of learning modalities, and have

  5. Technical-financial evaluation of rainwater harvesting systems in commercial buildings-case ase studies from Sonae Sierra in Portugal and Brazil.

    Science.gov (United States)

    Sousa, Vitor; Silva, Cristina Matos; Meireles, Inês C

    2017-11-10

    Water is an essential and increasingly scarce resource that should be preserved. The evolution of the human population and communities has contributed to the global decrease of potable water availability and the reduction of its consumption is now compulsory. Rainwater harvesting systems (RWHS) are emerging as a viable alternative source for water consumption in non-potable uses. The present study aims to contribute to the promotion of water efficiency, focusing on the application of rainwater harvesting systems in commercial buildings, and comprises four stages: (i) development of a technical evaluation tool to aid the design of RWHS and support their financial evaluation; (ii) validation of the tool using operational data from an existing RWHS installed at Colombo Shopping Center, in Lisbon, Portugal; (iii) assessment of the sensibility of the technical evaluation tool results to the variation of the inputs, namely the precipitation and consumption, through a parametric analysis for the Colombo Shopping Center; and (iv) comparison of the performance and financial feasibility of hypothetical RWHS in two existing commercial buildings. The technical tool was applied to two Sonae Sierra's shopping centers, one in Portugal and one in Brazil. The installation of a 200-m 3 tank is advised for the first case study, allowing non-potable water savings of 60% but a payback period of about 19 years. In the Brazilian shopping, the implementation of a tank with a capacity ranging from 100 to 400 m 3 leads to non-potable savings between 20 and 50%, but with smaller payback period, under 2 years, due to the relatively lower investment costs and higher water fees.

  6. To Crowdfund Research, Scientists Must Build an Audience for Their Work.

    Directory of Open Access Journals (Sweden)

    Jarrett E K Byrnes

    Full Text Available As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for one's work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientist's abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or "fanbase" and actively engaging with that audience as well as seeking to broaden the reach of one's audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientist's project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public.

  7. Intelligent Facades for High Performance Green Buildings. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for

  8. Proceedings of the workshop on cool building materials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Fishman, B. [Lawrence Berkeley Lab., CA (United States); Frohnsdorff, G. [National Inst. of Standards and Technology (NEL), Gaithersburg, MD (United States). Building Materials Div.] [eds.

    1994-04-01

    The Option 9, Cool Communities, of the Clinton-Gore Climate Change Action Plan (CCAP) calls for mobilizing community and corporate resources to strategically plant trees and lighten the surfaces of buildings and roads in order to reduce cooling energy use of the buildings. It is estimated that Cool Communities Project will potentially save over 100 billion kilowatt-hour of energy per year corresponding to 27 million tons of carbon per year by the year 2015. To pursue the CCAP`s objectives, Lawrence Berkeley Laboratory (LBL) on behalf of the Department of Energy and the Environmental Protection Agency, in cooperation with the Building and Fire Research Laboratory of the National Institute of Standards and Technology (NIST), organized a one-day meeting to (1) explore the need for developing a national plan to assess the technical feasibility and commercial potential of high-albedo (``cool``) building materials, and if appropriate, to (2) outline a course of action for developing the plan. The meeting took place on February 28, 1994, in Gaithersburg, Maryland. The proceedings of the conference, Cool Building Materials, includes the minutes of the conference and copies of presentation materials distributed by the conference participants.

  9. Building a Data Science capability for USGS water research and communication

    Science.gov (United States)

    Appling, A.; Read, E. K.

    2015-12-01

    Interpreting and communicating water issues in an era of exponentially increasing information requires a blend of domain expertise, computational proficiency, and communication skills. The USGS Office of Water Information has established a Data Science team to meet these needs, providing challenging careers for diverse domain scientists and innovators in the fields of information technology and data visualization. Here, we detail the experience of building a Data Science capability as a bridging element between traditional water resources analyses and modern computing tools and data management techniques. This approach includes four major components: 1) building reusable research tools, 2) documenting data-intensive research approaches in peer reviewed journals, 3) communicating complex water resources issues with interactive web visualizations, and 4) offering training programs for our peers in scientific computing. These components collectively improve the efficiency, transparency, and reproducibility of USGS data analyses and scientific workflows.

  10. Gas-cooled reactor commercialization study. Interim report

    International Nuclear Information System (INIS)

    1977-01-01

    This report of the gas-cooled reactor commercialization study completes the technical and cost evaluation portions of this study contract. A final report in December will update the status of the incentive analyses and the issues of commercialization. This study was designed to bring together potential industry participants (utilities and suppliers) to evaluate the commercial potential of the HTGR-SC and to build channels of communication among the participating organizations at the same time that technical, economic and institutional issues were being evaluated. RAMCO, Inc., in suggesting and using this study approach, believes its application extends to any commercialization problem involving multi-party involvement in high capital, intensive, high risk energy technologies

  11. Building capacity for the conduct of nursing research at a Veterans Administration hospital.

    Science.gov (United States)

    Phelan, Cynthia H; Schumacher, Sandra; Roiland, Rachel; Royer, Heather; Roberts, Tonya

    2015-05-01

    Evidence is the bedrock of nursing practice, and nursing research is the key source for this evidence. In this article, we draw distinctions between the use and the conduct of nursing research and provide a perspective for how the conduct of nursing research in a Veterans Administration hospital can build an organization's capacity for nursing research.

  12. Energy Innovations for Healthy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Bogucz, Edward A. [Syracuse Univ., NY (United States)

    2016-09-23

    Healthy buildings provide high indoor environmental quality for occupants while simultaneously reducing energy consumption. This project advanced the development and marketability of envisioned healthy, energy-efficient buildings through studies that evaluated the use of emerging technologies in commercial and residential buildings. The project also provided resources required for homebuilders to participate in DOE’s Builders Challenge, concomitant with the goal to reduce energy consumption in homes by at least 30% as a first step toward achieving envisioned widespread availability of net-zero energy homes by 2030. In addition, the project included outreach and education concerning energy efficiency in buildings.

  13. Energy performance of solar-assisted liquid desiccant air-conditioning system for commercial building in main climate zones

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2014-01-01

    Highlights: • Simulation of solar liquid desiccant AC system in four climate regions was conducted. • System performance was determined by relationship of sensible and latent cooling load. • For humid area, saving amount is large by handling latent load with solar energy. • For dry area, electricity saving rate is considerable due to the high COP of chillers. • For buildings with mild SHR, the system performance was not as good as others. - Abstract: Liquid desiccant air-conditioning (LDAC) system, which consists of a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, has become a promising alternative for conventional technology. To evaluate its feasibility and applicability, the simulation of solar-assisted LDAC (SLDAC) in commercial buildings in five cities of four main climate regions were conducted, including Singapore in Tropical, Houston and Beijing in Temperate, Boulder in Arid and Los Angeles in Mediterranean. Results showed that the system’s performance was seriously affected by the ratios of building’s sensible and latent cooling load. For buildings located in humid areas with low sensible-total heat ratio (SHR), the electricity energy reduction of SLDAC was high, about 450 MW h in Houston and Singapore, which accounted for 40% of the total energy consumption in cooling seasons. The cost payback period was as short as approximately 7 years. The main reason is that the energy required for handling the moisture could be saved by liquid desiccant dehumidification, and the regeneration heat could be covered by solar collectors. For buildings in dry climate with high SHR, the total cooling load was low, but up to 45% electricity of AC system could be saved in Boulder because the chiller COP could be significantly improved during more than 70% operation time. The cost payback period was around 22 years, which was acceptable. However, for the buildings with mild SHR, such as those in Beijing and Los

  14. Energy-related indoor environmental quality research: A priority agenda

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, W.J.; Brager, G.; Burge, H.; Cummings, J.; Levin, H.; Loftness, V.; Mendell, M.J.; Persily, A.; Taylor, S.; Zhang, J.S.

    2002-08-01

    A multidisciplinary team of IEQ and energy researchers has defined a program of priority energy-related IEQ research. This paper describes the methods employed to develop the agenda, and 35 high priority research and development (R&D) project areas related to four broad goals: (1) identifying IEQ problems and opportunities; (2) developing and evaluating energy-efficient technologies for improving IEQ; (3) developing and evaluating energy-efficient practices for improving IEQ; and (4) encouraging or assisting the implementation of technologies or practices for improving IEQ. The identified R&D priorities reflect a strong need to benchmark IEQ conditions in small commercial buildings, schools, and residences. The R&D priorities also reflect the need to better understand how people are affected by IEQ conditions and by the related building characteristics and operation and maintenance practices. The associated research findings will provide a clearer definition of acceptable IEQ that is required to guide the development of technologies, practices, standards, and guidelines. Quantifying the effects of building characteristics and practices on IEQ conditions, in order to provide the basis for development of energy efficient and effective IEQ control measures, was also considered a priority. The development or advancement in a broad range of IEQ tools, technologies, and practices are also a major component of the priority research agenda. Consistent with the focus on ''energy-related'' research priorities, building ventilation and heating, ventilating and air conditioning (HVAC) systems and processes are very prominent in the agenda. Research related to moisture and microbiological problems, particularly within hot and humid climates, is also prominent within the agenda. The agenda tends to emphasize research on residences, small commercial buildings, and schools because these types of buildings have been underrepresented in prior research. Most of

  15. Building integrated pathways to independence for diverse biomedical researchers: Project Pathways, the BUILD program at Xavier University of Louisiana.

    Science.gov (United States)

    Foroozesh, Maryam; Giguette, Marguerite; Morgan, Kathleen; Johanson, Kelly; D'Amour, Gene; Coston, Tiera; Wilkins-Green, Clair

    2017-01-01

    Xavier University of Louisiana is a historically Black and Catholic university that is nationally recognized for its science, technology, engineering and mathematics (STEM) curricula. Approximately 73% of Xavier's students are African American, and about 77% major in the biomedical sciences. Xavier is a national leader in the number of STEM majors who go on to receive M.D. degrees and Ph.D. degrees in science and engineering. Despite Xavier's advances in this area, African Americans still earn about 7.5% of the Bachelor's degrees, less than 8% of the Master's degrees, and less than 5% of the doctoral degrees conferred in STEM disciplines in the United States. Additionally, although many well-prepared, highly-motivated students are attracted by Xavier's reputation in the sciences, many of these students, though bright and capable, come from underperforming public school systems and receive substandard preparation in STEM disciplines. The purpose of this article is to describe how Xavier works to overcome unequal education backgrounds and socioeconomic challenges to develop student talent through expanding biomedical training opportunities and build on an established reputation in science education. The National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS)-funded BUILD (Building Infrastructure Leading to Diversity) Program at Xavier University of Louisiana, Project Pathways , is a highly-innovative program designed to broaden the career interests of students early on, and to engage them in activities that entice them to continue their education towards biomedical research careers. Project strategies involve a transformation of Xavier's academic and non-academic programs through the redesign, supplementation and integration of academic advising, tutoring, career services, personal counseling, undergraduate research training, faculty research mentoring, and development of new biomedical and research skills courses. The Program also

  16. Virale commercials: de consument als marketeer. Onderzoek naar de redenen waarom consumenten virale commercials doorsturen: hun motieven, de inhoudskenmerken van viral commercials en de mediumcontext waarin virale commercials verschijnen

    NARCIS (Netherlands)

    Ketelaar, P.E.; Lucassen, P.; Kregting, G.H.J.

    2010-01-01

    Research into the reasons why consumers pass along viral commercials: their motives, the content characteristics of viral commercials and the medium context in which viral commercials appear. Based on the uses and gratifications perspective this study has determined which motives of consumers,

  17. BUILDING MECHATRONICS SIMULATION SYSTEM

    OpenAIRE

    HUSI Géza; SZÁSZ Csaba; HASHIMOTO Hideki; NIITSUMA Mihoko

    2014-01-01

    In international references a net zero-energy building (NZEB) is defined as a residential or commercial building with greatly reduced energy needs through efficiency gains such that the balance of energy needs can be supplied with renewable technologies. According to this general term definition, the essence of the concept is that by using low-cost and locally available nonpolluting sources, they generate energy onsite, in a quantity equal or greater than the total amo...

  18. Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-04-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  19. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-04-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

  20. Commercial Video Games As Therapy: A New Research Agenda to Unlock the Potential of a Global Pastime.

    Science.gov (United States)

    Colder Carras, Michelle; Van Rooij, Antonius J; Spruijt-Metz, Donna; Kvedar, Joseph; Griffiths, Mark D; Carabas, Yorghos; Labrique, Alain

    2017-01-01

    Emerging research suggests that commercial, off-the-shelf video games have potential applications in preventive and therapeutic medicine. Despite these promising findings, systematic efforts to characterize and better understand this potential have not been undertaken. Serious academic study of the therapeutic potential of commercial video games faces several challenges, including a lack of standard terminology, rapidly changing technology, societal attitudes toward video games, and understanding and accounting for complex interactions between individual, social, and cultural health determinants. As a vehicle to launch a new interdisciplinary research agenda, the present paper provides background information on the use of commercial video games for the prevention, treatment, and rehabilitation of mental and other health conditions, and discusses ongoing grassroots efforts by online communities to use video games for healing and recovery.

  1. Commercial Video Games As Therapy: A New Research Agenda to Unlock the Potential of a Global Pastime

    Science.gov (United States)

    Colder Carras, Michelle; Van Rooij, Antonius J.; Spruijt-Metz, Donna; Kvedar, Joseph; Griffiths, Mark D.; Carabas, Yorghos; Labrique, Alain

    2018-01-01

    Emerging research suggests that commercial, off-the-shelf video games have potential applications in preventive and therapeutic medicine. Despite these promising findings, systematic efforts to characterize and better understand this potential have not been undertaken. Serious academic study of the therapeutic potential of commercial video games faces several challenges, including a lack of standard terminology, rapidly changing technology, societal attitudes toward video games, and understanding and accounting for complex interactions between individual, social, and cultural health determinants. As a vehicle to launch a new interdisciplinary research agenda, the present paper provides background information on the use of commercial video games for the prevention, treatment, and rehabilitation of mental and other health conditions, and discusses ongoing grassroots efforts by online communities to use video games for healing and recovery. PMID:29403398

  2. Commercial Video Games As Therapy: A New Research Agenda to Unlock the Potential of a Global Pastime

    Directory of Open Access Journals (Sweden)

    Michelle Colder Carras

    2018-01-01

    Full Text Available Emerging research suggests that commercial, off-the-shelf video games have potential applications in preventive and therapeutic medicine. Despite these promising findings, systematic efforts to characterize and better understand this potential have not been undertaken. Serious academic study of the therapeutic potential of commercial video games faces several challenges, including a lack of standard terminology, rapidly changing technology, societal attitudes toward video games, and understanding and accounting for complex interactions between individual, social, and cultural health determinants. As a vehicle to launch a new interdisciplinary research agenda, the present paper provides background information on the use of commercial video games for the prevention, treatment, and rehabilitation of mental and other health conditions, and discusses ongoing grassroots efforts by online communities to use video games for healing and recovery.

  3. Bibliography for the Indoor Air Quality Building Education and Assessment Model

    Science.gov (United States)

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  4. New building technology based on low energy design

    International Nuclear Information System (INIS)

    Meggers, Forrest; Leibundgut, Hansjurg

    2009-01-01

    Full text: The construction, operation and maintenance of all residential, commercial, and industrial buildings are responsible for over half of global greenhouse gas emissions, and two-thirds of global electricity is generated solely for building operation. This single sector has a huge potential impact on the future sustainability of society, and therefore new advanced technologies must be rapidly developed and implemented in what is often a slow-moving sector. The concept of the low exergy building has created a new framework for the development of high performance building systems. Exergy analysis has been used to help minimize the primary energy demands of buildings through the minimization of losses in the chain of energy supply in a building system. The new systems that have been created have been shown to be more comfortable and more energy efficient. These systems include integrated thermal mass systems heated by high efficiency heat pumps integrated with energy recovery systems that eliminate the waste that is common in building systems. The underlying principles and concepts of low exergy building systems will be presented along with the analysis of several technologies being implemented in a low Ex building in Zurich, Switzerland. These include an advanced ground source heat pump strategy with integrated heat recovery, decentralized ventilation, and a unique active wall insulation system, which are being researched as part of the IEA ECBCS Annex 49 (www.annex49.org). (author)

  5. Research on Building Urban Sustainability along the Coastal Area in China

    OpenAIRE

    Sun Jiaojiao; Fu Jiayan

    2015-01-01

    At present, in China, the research about the urban sustainability construction is still in the exploratory stage. The ecological problems of the coastal area are more sensitive and complicated. In the background of global warming with serious ecological damage, this paper deeply researches on the main characteristics of urban sustainability and measures how to build urban sustainability. Through combining regional environmental with economic ability along the coastal area...

  6. Research on statistical methodology to investigate energy consumption in public buildings sector in China

    International Nuclear Information System (INIS)

    Chen Shuqin; Li Nianping; Guan Jun

    2008-01-01

    The purpose of this research is to find a statistical methodology to investigate the national energy consumption in the public buildings sector in China, in order to look into the actuality of the national energy consumption of public buildings and to provide abundant data for building energy efficiency work. The frame of a national statistical system of energy consumption for public buildings is presented in this paper. The statistical index system of energy consumption is constituted, which refers to the general characteristics of public buildings, their possession and utilization of energy consumption equipment and their energy consumption quantities. Sequentially, a set of statistical report forms is designed to investigate the energy consumption of cities, provinces and the country, respectively. On this base, the above statistical methodology is used to gather statistics of a public building for annual energy consumption

  7. Commercial demand for energy: a disaggregated approach. [Model validation for 1970-1975; forecasting to 2000

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.R.; Cohn, S.; Cope, J.; Johnson, W.S.

    1978-04-01

    This report describes the structure and forecasting accuracy of a disaggregated model of commercial energy use recently developed at Oak Ridge National Laboratory. The model forecasts annual commercial energy use by ten building types, five end uses, and four fuel types. Both economic (utilization rate, fuel choice, capital-energy substitution) and technological factors (equipment efficiency, thermal characteristics of buildings) are explicitly represented in the model. Model parameters are derived from engineering and econometric analysis. The model is then validated by simulating commercial energy use over the 1970--1975 time period. The model performs well both with respect to size of forecast error and ability to predict turning points. The model is then used to evaluate the energy-use implications of national commercial buildings standards based on the ASHRAE 90-75 recommendations. 10 figs., 12 tables, 14 refs.

  8. DEVELOPMENT OF AN ENVIRONMENTAL RATING TOOL FOR BUILDINGS THROUGH A NEW KIND OF DIALOGUE BETWEEN STAKEHOLDERS AND RESEARCHERS

    Directory of Open Access Journals (Sweden)

    Mauritz Glaumann

    2009-03-01

    Full Text Available Buildings need to be more environmentally benign since the building sector is responsible for about 40% of all of energy and material use in Sweden. For this reason a unique cooperation between companies, municipalities and the Government called “Building- Living and Property Management for the future”, in short “The Building Living Dialogue” has going on since 2003. The project focuses on: a healthy indoor environment, b efficient use of energy, and c efficient resource management. In accordance with the dialogue targets, two research projects were initiated aiming at developing an Environmental rating tool taking into accounts both building sector requirements and expectations and national and international research findings. This paper describes the first phase in the development work where stakeholders and researchers cooperate. It includes results from inventories and based on this experience discusses procedures for developing assessment tools and what the desirable features of a broadly accepted building rating tool could be.

  9. Climate adaptation of buildings through MOM- and upgrading - State of the art and research needs

    OpenAIRE

    Grynning, Steinar; Wærnes, Elisabeth Gaal; Kvande, Tore; Time, Berit

    2017-01-01

    This study presents an overview of research initiatives and projects addressing climate adaption in management operation and maintenance (MOM) and upgrade of existing buildings. The aim was to identify knowledge needs and research demand necessary for decision makers to address climate adaptation in their MOM and upgrade plans. Climate adaptation of buildings in the Norwegian climate very much concerns increased moisture robustness and risk reduction of moisture damages. Thus, a strong focus ...

  10. Renovation and Expansion of the Caspary Research Building. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Grassia, V. L.

    2004-02-07

    Critical to the Hospital's rebuilding efforts have been its public partners at the federal, state, and local government levels who have made a major financial commitment to renovating the Hospital's research infrastructure. To date, the Hospital for Special Surgery (HSS) has been awarded a total of nearly $8.5 million to create and equip new, state-of-the-art laboratories for scientific investigations. The modernization of the Hospital's research facilities was jump-started in 1998 with a $950,000 seed grant from the National Institutes of Health (NIH) to renovate laboratories for immunology research in the Caspary Research Building. Coupled with a matching $5.5 million commitment from HSS, this infusion of NIH funding laid the groundwork for an overhaul of all of the Hospital's research space.

  11. MillionTreesNYC, Green infrastructure, and urban ecology: building a research agenda

    Science.gov (United States)

    Jacqueline W.T. Lu; Megan Shane; Erika Svendsen; Lindsay Campbell; Cristiana Fragola; Marianne Krasny; Gina Lovasl; David Maddox; Simon McDonnell; P. Timon McPhearson; Franco Montalto; Andrew Newman; Ellen Pehek; Ruth A. Rae; Richard Stedman; Keith G. Tidball; Lynne Westphal; Tom Whitlow

    2009-01-01

    MillionTreesNYC is a citywide, public-private initiative with an ambitious goal: to plant and care for one million new trees across New York City's five boroughs by 2017. The Spring 2009 workshop MillionTreesNYC, Green Infrastructure, and Urban Ecology: Building a Research Agenda brought together more than 100 researchers, practitioners and New York City...

  12. Bonneville Power Administration`s Commercial Sector Conservation Market.

    Energy Technology Data Exchange (ETDEWEB)

    Gordan, Frederick M. [Pacific Energy Associates, Inc. (United States)

    1992-11-10

    Bonneville has, as part of its resource plan, accepted targets for commercial conservation which are quite ambitious. To meet these targets, Bonneville will need to acquire as much cost-effective conservation as possible over the next twelve years. With this in mind, this document explores the relative importance of different commercial market segments and the types of assistance each market needs to install as many cost-effective conservation measures in as many buildings as possible. This document reviews Bonneville`s marketing environment and position, and suggests goals for commercial sector conservation marketing at Bonneville. Then it presents a broad market segmentation and series of additional demographic analyses. These analyses assess what groups of consumers Bonneville must reach to achieve most of the commercial conservation potential and what is needed to reach them. A final section reviews the success of Bonneville programs at reaching various markets. The market segmentation identifies different types of consumers and opportunities which would require distinct program approaches. Four large market segments are identified that have distinct program needs. Then four ``building life-cycle events`` are identified which provide important conservation opportunities and also require distinct program services. This creates a matrix of 16 cells which delineate distinct needs for program marketing. Each of the four key market segments manages at least 20% of the Region`s commercial floorspace.

  13. Radon concentration variations between and within buildings of a research institute

    International Nuclear Information System (INIS)

    Antignani, S.; Bochicchio, F.; Ampollini, M.; Venoso, G.; Bruni, B.; Innamorati, S.; Malaguti, L.; Stefano, A.

    2009-01-01

    Radon concentration in indoor air has been measured in many countries in a large number of buildings - mainly in houses but also in apartments and workplaces - mostly as a result of the application of radon policies and regulation requirements. However, few systematic analyses are available on radon concentration variations within buildings and between close buildings, especially as regards workplaces; such variations can have a significant impact on indoor radon exposure evaluation, and ultimately on the assessment of the dose from radon received by workers. Therefore, a project was started in 2006 aimed to study the spatial variation of radon concentration among and within about 40 buildings of the Istituto Superiore di Sanita (ISS), a research institute of public health located in Rome over a small area of less than 1 km 2 . Nuclear track detectors (CR-39) were used to measure radon concentration for two consecutive six-month periods, in more than 700 rooms of the surveyed buildings. The paper describes the project in detail and preliminary results regarding 558 rooms in 29 buildings. Coefficient of variation (CV) was calculated as a measure of relative variation of radon concentration between buildings, between floors, and between rooms on the same floor. The CV between buildings resulted quite high (88%), a lower CV (42%) was found for variation between floors, whereas room-to-room CV on the same floor ranged from 25% at first floor level to 48% at basement level. Floor mean ratios, with ground floor as the reference level, were calculated for each building in order to study the correlation between radon concentration and floor levels. Although no clear trend was observed, the average basement/ground floor ratio of radon concentrations resulted about 2.0, whereas the average sixth floor/ground floor ratio of radon concentrations was 0.5. Some discussion on the potential impact of the results of this study on policies and radon regulations are also included in

  14. Windows and Building Envelope Research and Development: A Roadmap for Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and performance targets are identified for each key R&D area. The roadmap describes the technical and market challenges to be overcome, R&D activities and milestones, key stakeholders, and potential energy savings that could result if cost and performance targets are met. Methods for improving technology performance and specific strategies for reducing installed costs and mitigating any other market barriers, which would increase the likelihood of mass-market technology adoption, are identified. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

  15. Building the hydrogen/fuel cell industry: an EDC perspective

    International Nuclear Information System (INIS)

    FitzGerald, A.

    2004-01-01

    'Full text:' Canada has world-leading expertise in a number of hydrogen and fuel cell research segments. However, there are no guarantees that a strong research position necessarily translates into a large industry sector. The challenge facing Canada is to remain a leader in the coming years and decades as this hub of research activity evolves into an actual business sector. Many other countries are actively investing in hydrogen and fuel cell research. If these countries and their national governments are more committed than Canada to this commercial pursuit, then we will be left behind. Mr. Stothart's presentation will highlight a number of observations and recommendations regarding what is needed to build a successful hydrogen and fuel cell sector in Canada. (author)

  16. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a

  17. Four centuries on from Bacon: progress in building health research systems to improve health systems?

    Science.gov (United States)

    Hanney, Stephen R; González-Block, Miguel A

    2014-09-23

    In 1627, Francis Bacon's New Atlantis described a utopian society in which an embryonic research system contributed to meeting the needs of the society. In this editorial, we use some of the aspirations described in New Atlantis to provide a context within which to consider recent progress in building health research systems to improve health systems and population health. In particular, we reflect on efforts to build research capacity, link research to policy, identify the wider impacts made by the science, and generally build fully functioning research systems to address the needs identified. In 2014, Health Research Policy and Systems has continued to publish one-off papers and article collections covering a range of these issues in both high income countries and low- and middle-income countries. Analysis of these contributions, in the context of some earlier ones, is brought together to identify achievements, challenges and possible ways forward. We show how 2014 is likely to be a pivotal year in the development of ways to assess the impact of health research on policies, practice, health systems, population health, and economic benefits.We demonstrate how the increasing focus on health research systems will contribute to realising the hopes expressed in the World Health Report, 2013, namely that all nations would take a systematic approach to evaluating the outputs and applications resulting from their research investment.

  18. Indicators of sustainable capacity building for health research: analysis of four African case studies.

    Science.gov (United States)

    Bates, Imelda; Taegtmeyer, Miriam; Squire, S Bertel; Ansong, Daniel; Nhlema-Simwaka, Bertha; Baba, Amuda; Theobald, Sally

    2011-03-28

    Despite substantial investment in health capacity building in developing countries, evaluations of capacity building effectiveness are scarce. By analysing projects in Africa that had successfully built sustainable capacity, we aimed to identify evidence that could indicate that capacity building was likely to be sustainable. Four projects were selected as case studies using pre-determined criteria, including the achievement of sustainable capacity. By mapping the capacity building activities in each case study onto a framework previously used for evaluating health research capacity in Ghana, we were able to identify activities that were common to all projects. We used these activities to derive indicators which could be used in other projects to monitor progress towards building sustainable research capacity. Indicators of sustainable capacity building increased in complexity as projects matured and included- early engagement of stakeholders; explicit plans for scale up; strategies for influencing policies; quality assessments (awareness and experiential stages)- improved resources; institutionalisation of activities; innovation (expansion stage)- funding for core activities secured; management and decision-making led by southern partners (consolidation stage).Projects became sustainable after a median of 66 months. The main challenges to achieving sustainability were high turnover of staff and stakeholders, and difficulties in embedding new activities into existing systems, securing funding and influencing policy development. Our indicators of sustainable capacity building need to be tested prospectively in a variety of projects to assess their usefulness. For each project the evidence required to show that indicators have been achieved should evolve with the project and they should be determined prospectively in collaboration with stakeholders.

  19. Natural radioactivity in different commercial ceramic samples used in Yemeni buildings

    International Nuclear Information System (INIS)

    Amin, Sahar A.; Naji, Mustafa

    2013-01-01

    In this work we calculated the radioactivity concentrations of the natural radioactive nuclides 238 U, 232 Th, 226 Ra and 40 K for 10 commercial samples collected from 10 different companies which are used in the construction of Yemeni buildings. Gamma ray spectroscopy was used to analyze the samples and the concentrations of radioisotopes were determined using a hyper-pure germanium (HPGe) detector in Bq/kg dry-weight. The average concentrations of 238 U, 232 Th, 226 Ra and 40 K were found to be 131.4, 83.55, 131.88 and 400.7 Bq/kg respectively. Different hazard indices were also determined. The results showed that the average radium equivalent activity (Ra eq ), the absorbed dose rate (D r ), the annual effective dose equivalent (AEDE), the external hazard index (H ex ) and representation level index (I γ ) were: 307.52 Bq/kg, 139.31 nGy/h, 1.40 mSv/yr, 0.83 and 2.15 respectively. The mean value of (Ra eq ) obtained in this study is in good agreement with that of the international value while the mean values of the other indices are found to be higher than the international reference values. The measured activity concentrations for these radionuclide were compared with the reported data obtained from similar materials used in other countries. - Highlights: ► Concentrations of the natural radioactive nuclides 238 U, 232 Th, 226 Ra and 40 K were measured. ► Ten samples collected from 10 different companies have been analyzed. ► Gamma ray spectroscopy is used to analyze the samples. ► Concentrations in Bq/kg were determined using a HPGe detector. ► Different hazard indices (Ra eq ), (D r ), (AEDE), (H ex ) and (I γ ) were also determined

  20. KLIMA 2050: a research-based innovation centre for risk reduction through climate adaptation of infrastructure and buildings

    Science.gov (United States)

    Solheim, Anders; Time, Berit; Kvande, Tore; Sivertsen, Edvard; Cepeda, Jose; Lappegard Hauge, Åshild; Bygballe, Lena; Almås, Anders-Johan

    2016-04-01

    Klima 2050 - Risk reduction through climate adaptation of buildings and infrastructure is a Centre for Research based Innovation (SFI), funded jointly by the Research Council of Norway (RCN) and the partners of the centre. The aim of Klima 2050 is to reduce the societal risks associated with climate changes, including enhanced precipitation and flood water exposure within the built environment. The Centre will strengthen companies' innovation capacity through a focus on long-term research. It is also a clear objective to facilitate close cooperation between Research & Development, performing companies, public entities, and prominent research groups. Emphasis will be placed on development of moisture-resilient buildings, storm-water management, blue-green solutions, mitigation measures for water-triggered landslides, socio-economic incentives and decision-making processes. Both extreme weather and gradual climatic changes will be addressed. The Centre consists of a consortium of 18 partners from three sectors: industry, public entities and research/education organizations. The partners from the industry/private sector include a variety of companies from the building industry. The public entities comprise the most important infrastructure owners in Norway (public roads, railroads, buildings, airports), as well as the directorate for water and energy. The research and education partners are SINTEF Building and Infrastructure, the Norwegian Business School, the Norwegian University of Science and Technology, the Norwegian Meteorological Institute, and the Norwegian Geotechnical Institute. This contribution presents the main research plans and activities of this Centre, which was started in 2015 and will run for 8 years, until 2023. The presentation also includes options for international cooperation in the Centre via PhD and postdoctoral positions, MSc projects and guest-researcher stays with Klima 2050 partners.