WorldWideScience

Sample records for commercial aircraft integrated

  1. Commercial Aircraft Integrated Vehicle Health Management Study

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  2. Integrated Design of a Long-Haul Commercial Aircraft Optimized for Formation Flying

    OpenAIRE

    Dijkers, H.P.A.; Van Nunen, R.; Bos, D.A.; Gutleb, T.L.M.; Herinckx, L.E.; Radfar, H.; Van Rompuy, E.; Sayin, S.E.; Wit, J; Beelaerts van Blokland, W.W.A.

    2011-01-01

    The airline industry is under continuous pressure to reduce emissions and costs. This paper investigates the feasibility for commercial airlines to use formation flight to reduce emissions and fuel burn. To fly in formation, an aircraft needs to benefit from the wake vortices of the preceding aircraft. This requires a stable aerodynamic flow, accurate navigation and a highly sophisticated aircraft to counteract the negative consequences of flying in formation. It is found that the most stable...

  3. Integrated Design of a Long-Haul Commercial Aircraft Optimized for Formation Flying

    NARCIS (Netherlands)

    Dijkers, H.P.A.; Van Nunen, R.; Bos, D.A.; Gutleb, T.L.M.; Herinckx, L.E.; Radfar, H.; Van Rompuy, E.; Sayin, S.E.; De Wit, J.; Beelaerts van Blokland, W.W.A.

    2011-01-01

    The airline industry is under continuous pressure to reduce emissions and costs. This paper investigates the feasibility for commercial airlines to use formation flight to reduce emissions and fuel burn. To fly in formation, an aircraft needs to benefit from the wake vortices of the preceding aircra

  4. Integrated Design of a Long-Haul Commercial Aircraft Optimized for Formation Flying

    NARCIS (Netherlands)

    Dijkers, H.P.A.; Van Nunen, R.; Bos, D.A.; Gutleb, T.L.M.; Herinckx, L.E.; Radfar, H.; Van Rompuy, E.; Sayin, S.E.; De Wit, J.; Beelaerts van Blokland, W.W.A.

    2011-01-01

    The airline industry is under continuous pressure to reduce emissions and costs. This paper investigates the feasibility for commercial airlines to use formation flight to reduce emissions and fuel burn. To fly in formation, an aircraft needs to benefit from the wake vortices of the preceding

  5. Solid Oxide Fuel Cell APU Feasibility Study for a Long Range Commercial Aircraft Using UTC ITAPS Approach. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    Science.gov (United States)

    Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry

    2006-01-01

    The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.

  6. Commercial Aircraft Protection

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, David A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-26

    This report summarizes the results of theoretical research performed during 3 years of P371 Project implementation. In results of such research a new scientific conceptual technology of quasi-passive individual infrared protection of heat-generating objects – Spatial Displacement of Thermal Image (SDTI technology) was developed. Theoretical substantiation and description of working processes of civil aircraft individual IR-protection system were conducted. The mathematical models and methodology were presented, there were obtained the analytical dependencies which allow performing theoretical research of the affect of intentionally arranged dynamic field of the artificial thermal interferences with variable contrast onto main parameters of optic-electronic tracking and homing systems.

  7. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  8. Integrated Reconfigurable Aero and Propulsion Control for Improved Flight Safety of Commercial Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this project is to develop and test a novel innovative Integrated Reconfigurable Aero & Propulsion Control (IRAP) system that achieves...

  9. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    Science.gov (United States)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  10. Nonlinear analysis of commercial aircraft impact on a reactor building—Comparison between integral and decoupled crash simulation

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, A., E-mail: siefert@woelfel.de; Henkel, F.O.

    2014-04-01

    Since 9/11, the crash of a commercial aeroplane on the reactor building of a nuclear power plant is a realistic design scenario. Before that the structural behaviour under a crash of a military plane was investigated by a procedure using load-time functions (Riera, 1968). Thereby, the computation of the load-time-function was based on a conceptional model considering the main stiffness parts and masses by discrete elements. With respect to the homogeneous structural set-up of a military plane, the application of this model and the derived load-time-function applied as lumped load case seems very feasible. Contrary thereto the structural set-up of a commercial aeroplane, with e.g. the high mass concentration of the turbine or the high stiffness of the wing box compared to other parts, is different. This can be counteracted by using a more detailed finite element (FE) model for the computation of the load-time-function and by dividing the load case for the reactor building in different main load zones. Although this represents a more detailed investigation, the procedure of using a load-time-function still has the disadvantage to separate the real scenario into two steps. Thereby, the direct interaction between the structure and the aeroplane including all softening effects due to material respectively structural compliances is neglected. This leads to the general conclusion that by applying load-time-functions the results are conservative compared to the real behaviour. Due to the increased capabilities of numerical software solutions it is also possible nowadays to carry out integral crash simulations, combining all effects within one simulation. Compared to the procedure of using load-time-functions, the numerical complexity and therefore the amount of work for this integral method are increased. Within this paper both procedures (load-time function by detailed FE-model and the integral method) are exemplarily compared to each other by a crash analysis of an

  11. Aerodynamic design trends for commercial aircraft

    Science.gov (United States)

    Hilbig, R.; Koerner, H.

    1986-01-01

    Recent research on advanced-configuration commercial aircraft at DFVLR is surveyed, with a focus on aerodynamic approaches to improved performance. Topics examined include transonic wings with variable camber or shock/boundary-layer control, wings with reduced friction drag or laminarized flow, prop-fan propulsion, and unusual configurations or wing profiles. Drawings, diagrams, and graphs of predicted performance are provided, and the need for extensive development efforts using powerful computer facilities, high-speed and low-speed wind tunnels, and flight tests of models (mounted on specially designed carrier aircraft) is indicated.

  12. Advanced energy systems (APU) for large commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Westenberger, A.; Bleil, J.; Arendt, M. [Airbus Deutschland GmbH, Hamburg (Germany)

    2013-06-01

    The intention of using a highly integrated component using on fuel cell technology installed on board of large commercial passenger aircraft for the generation of onboard power for the systems demand during an entire aircraft mission was subject of several studies. The results of these studies have been based on the simulation of the whole system in the context of an aircraft system environment. In front of the work stood the analyses of different fuel cell technologies and the analyses of the aircraft system environment. Today onboard power is provided on ground by an APU and in flight by the main engines. In order to compare fuel cell technology with the today's usual gas turbine operational characteristics have been analysed. A second analysis was devoted to the system demand for typical aircraft categories. The MEA system concept was supposed in all cases. The favourable concept represented an aircraft propelled by conventional engines with starter generator units, providing AC electrical power, covering in total proximately half of the power demand and a component based on fuel cell technology. This component provided electrical DC power, clean potable water, thermal energy at 180 degrees Celsius and nitrogen enriched air for fire suppression and fire extinguishing agent. In opposite of a usual gas turbine based APU, this new unit was operated as the primary power system. (orig.)

  13. Escorting commercial aircraft to reduce the MANPAD threat

    Science.gov (United States)

    Hock, Nicholas; Richardson, M. A.; Butters, B.; Walmsley, R.; Ayling, R.; Taylor, B.

    2005-11-01

    This paper studies the Man-Portable Air Defence System (MANPADS) threat against large commercial aircraft using flight profile analysis, engagement modelling and simulation. Non-countermeasure equipped commercial aircraft are at risk during approach and departure due to the large areas around airports that would need to be secured to prevent the use of highly portable and concealable MANPADs. A software model (CounterSim) has been developed and was used to simulate an SA-7b and large commercial aircraft engagement. The results of this simulation have found that the threat was lessened when a escort fighter aircraft is flown in the 'Centreline Low' position, or 25 m rearward from the large aircraft and 15 m lower, similar to the Air-to-Air refuelling position. In the model a large aircraft on approach had a 50% chance of being hit or having a near miss (within 20m) whereas escorted by a countermeasure equipped F-16 in the 'Centerline Low' position, this was reduced to only 14%. Departure is a particularly vulnerable time for large aircraft due to slow climb rates and the inability to fly evasive manoeuvres. The 'Centreline Low' escorted departure greatly reduced the threat to 16% hit or near miss from 62% for an unescorted heavy aircraft. Overall the CounterSim modelling has showed that escorting a civilian aircraft on approach and departure can reduce the MANPAD threat by 3 to 4 times.

  14. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  15. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  16. Indoor air quality investigation on commercial aircraft.

    Science.gov (United States)

    Lee, S C; Poon, C S; Li, X D; Luk, F

    1999-09-01

    Sixteen flights had been investigated for indoor air quality (IAQ) on Cathay Pacific aircraft from June 1996 to August 1997. In general, the air quality on Cathay Pacific aircraft was within relevant air quality standards because the average age of aircraft was less than 2 years. Carbon dioxide (CO2) levels on all flights measured were below the Federal Aviation Administration (FAA) standard (30,000 ppm). The CO2 level was substantially higher during boarding and de-boarding than cruise due to low fresh air supply. Humidity on the aircraft was low, especially for long-haul flights. Minimum humidity during cruise was below the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) minimum humidity standard (20%). The average temperature was within a comfortable temperature range of 23 +/- 2 degrees C. The vertical temperature profile on aircraft was uniform and below the International Standard Organization (ISO) standard. Carbon monoxide levels were below the FAA standard (50 ppm). Trace amount of ozone detected ranged from undetectable to 90 ppb, which was below the FAA standard. Particulate level was low for most non-smoking flights, but peaks were observed during boarding and de-boarding. The average particulate level in smoking flights (138 micrograms/m3) was higher than non-smoking flights (7.6 micrograms/m3). The impact on IAQ by switching from low-mode to high-mode ventilation showed a reduction in CO2 levels, temperature, and relative humidity.

  17. 78 FR 47778 - The Boeing Company Boeing Commercial Aircraft (BCA) Auburn, Washington; The Boeing Company Boeing...

    Science.gov (United States)

    2013-08-06

    ...; TA-W-82,705E] The Boeing Company Boeing Commercial Aircraft (BCA) Auburn, Washington; The Boeing Company Boeing Commercial Aircraft (BCA) Everett, Washington; The Boeing Company Boeing Commercial Aircraft (BCA) Puyallup, Washington; The Boeing Company Boeing Commercial Aircraft (BCA) Including Four...

  18. Finite-difference modeling of commercial aircraft using TSAR

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  19. Development and validation of bonded composite doubler repairs for commercial aircraft.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Rackow, Kirk A.

    2007-07-01

    repair using a substandard design and a flawed installation. In addition, the new Sol-Gel surface preparation technique was evaluated. Fatigue coupon tests produced Sol-Gel results that could be compared with a large performance database from conventional, riveted repairs. It was demonstrated that not only can composite doublers perform well in severe off-design conditions (low doubler stiffness and presence of defects in doubler installation) but that the Sol-Gel surface preparation technique is easier and quicker to carry out while still producing optimum bonding properties. Nondestructive inspection (NDI) methods were developed so that the potential for disbond and delamination growth could be monitored and crack growth mitigation could be quantified. The NDI methods were validated using full-scale test articles and the FedEx aircraft installations. It was demonstrated that specialized NDI techniques can detect flaws in composite doubler installations before they reach critical size. Probability of Detection studies were integrated into the FedEx training in order to quantify the ability of aircraft maintenance depots to properly monitor these repairs. In addition, Boeing Structural Repair and Nondestructive Testing Manuals were modified to include composite doubler repair and inspection procedures. This report presents the results from the FedEx Pilot Program that involved installation and surveillance of numerous repairs on operating aircraft. Results from critical NDI evaluations are reported in light of damage tolerance assessments for bonded composite doublers. This work has produced significant interest from airlines and aircraft manufacturers. The successful Pilot Program produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. This report discusses both the laboratory data and Pilot Program results from repair installations on operating aircraft to introduce composite

  20. Integrated lift/drag controller for aircraft

    Science.gov (United States)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  1. Nuclear containment structure subjected to commercial and fighter aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Sadique, M.R., E-mail: rehan.sadique@gmail.com; Iqbal, M.A., E-mail: iqbalfce@iitr.ernet.in; Bhargava, P., E-mail: bhpdpfce@iitr.ernet.in

    2013-07-15

    Highlights: • Nuclear containment response has been studied against aircraft crash. • Concrete damaged plasticity and Johnson–Cook elasto-viscoplastic models were employed. • Boeing 747-400 and Boeing 767-400 aircrafts caused global failure of containment. • Airbus A320 and Boeing 707-320 aircrafts caused local damage. • Tension damage of concrete was found more prominent compared to compression damage. -- Abstract: The response of a boiling water reactor (BWR) nuclear containment vessel has been studied against commercial and fighter aircraft crash using a nonlinear finite element code ABAQUS. The aircrafts employed were Boeing 747-400, Boeing 767-400, Airbus A-320, Boeing 707-320 and Phantom F4. The containment was modeled as a three-dimensional deformable reinforced concrete structure while the loading of aircraft was assigned using the respective reaction–time curve. The location of strike was considered near the junction of dome and cylinder, and the angle of incidence, normal to the containment surface. The material behavior of the concrete was incorporated using the damaged plasticity model while that of the reinforcement, the Johnson–Cook elasto-viscoplastic model. The containment could not sustain the impact of Boeing 747-400 and Boeing 767-400 aircrafts and suffered rupture of concrete around the impact region leading to global failure. On the other hand, the maximum local deformation at the point of impact was found to be 0.998 m, 0.099 m, 0.092 m, 0.089 m, and 0.074 m against Boeing 747-400, Phantom F4, Boeing 767, Boeing 707-320 and Airbus A-320 aircrafts respectively. The results of the present study were compared with those of the previous analytical and numerical investigations with respect to the maximum deformation and overall behavior of the containment.

  2. Sensor integritY Management and Prognostics Technology with On-line fault Mitigation (SYMPTOM) for Improved Flight Safety of Commercial Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to develop and test the Sensor integritY Management and Prognostics Technology with On-line fault Mitigation (SYMPTOM) system. The SYMPTOM assures...

  3. The global decentralization of commercial aircraft production: Implications for United States-based manufacturing activity

    Science.gov (United States)

    Pritchard, David John

    This research explores the role of industrial offset agreements and international subcontracting patterns in the global decentralization of US commercial aircraft production. Particular attention is given to the manufacturing processes involved in the design and assembly of large passenger jets (100 seats or more). It is argued that the current geography of aircraft production at the global level has been shaped by a new international distribution of input costs and technological capability. Specifically, low-cost producers within several of the newly emerging markets (NEMs) have acquired front-end manufacturing expertise as a direct result of industrial offset contracts and/or other forms of technology transfer (e.g. international joint-ventures, imports of advanced machine tools). The economic and technological implications of industrial offset (compensatory trade) are examined with reference to the commercial future of US aircraft production. Evidence gathered via personal interviews with both US and foreign producers suggests that the current Western duopoly (Boeing and Airbus) faces a rather uncertain future. In particular, the dissertation shows that the growth of subcontracting and industrial offset portends the transformation of Boeing from an aircraft manufacturer to a systems integrator. The economic implications of this potential reconfiguration of the US aircraft industry are discussed in the context of several techno-market futures, some of which look rather bleak for US workers in this industry.

  4. Aircraft Integral Fuel Tank Corrosion Study

    Science.gov (United States)

    2007-11-02

    biology of Amorphoteca resinae . Materials und Organismen, 6, (3), p. 161, (1971). 8. D. Cabral. Corrosion by microorganisms of jet aircraft integral fuel...the mycelium of the fungus Hormoconis resinae in the MIC of Al alloys. Proc. XI Int. Corrosion Congress, Houston, USA, 5B, p. 3773, (1993). 14. M

  5. Structural concept trends for commercial supersonic cruise aircraft design

    Science.gov (United States)

    Sakat, I. F.; Davis, G. W.; Saelman, B.

    1980-01-01

    Structural concept trends for future commercial supersonic transport aircraft are considered. Highlights, including the more important design conditions and requirements, of two studies are discussed. Knowledge of these design parameters, as determined through studies involving the application of flexible mathematical models, enabled inclusion of aeroelastic considerations in the structural-material concepts evaluation. The design trends and weight data of the previous contractual study of Mach 2.7 cruise aircraft were used as the basis for incorporating advanced materials and manufacturing approaches to the airframe for reduced weight and cost. Structural studies of design concepts employing advanced aluminum alloys, advanced composites, and advanced titanium alloy and manufacturing techniques are compared for a Mach 2.0 arrow-wing configuration concept. Appraisals of the impact of these new materials and manufacturing concepts to the airframe design are shown and compared. The research and development to validate the potential sources of weight and cost reduction identified as necessary to attain a viable advanced commercial supersonic transport are discussed.

  6. Aircraft System Design and Integration

    Directory of Open Access Journals (Sweden)

    D. P. Coldbeck

    2000-01-01

    Full Text Available In the 1980's the British aircraft industry changed its approach to the management of projects from a system where a project office would manage a project and rely on a series of specialist departments to support them to a more process oriented method, using systems engineering models, whose most outwardly visible signs were the introduction of multidisciplinary product teams. One of the problems with the old method was that the individual departments often had different priorities and projects would get uneven support. The change in the system was only made possible for complex designs by the electronic distribution of data giving instantaneous access to all involved in the project. In 1997 the Defence and Aerospace Foresight Panel emphasised the need for a system engineering approach if British industry was to remain competitive. The Royal Academy of Engineering recognised that the change in working practices also changed what was required of a chartered engineer and redefined their requirements in 1997 [1]. The result of this is that engineering degree courses are now judged against new criteria with more emphasis placed on the relevance to industry rather than on purely academic content. At the University of Glasgow it was realized that the students ought to be made aware of current working practices and that there ought to be a review to ensure that the degrees give students the skills required by industry. It was decided to produce a one week introduction course in systems engineering for Masters of Engineering (MEng students to be taught by both university lecturers and practitioners from a range of companies in the aerospace industry with the hope of expanding the course into a module. The reaction of the students was favourable in terms of the content but it seems ironic that the main criticism was that there was not enough discussion involving the students. This paper briefly describes the individual teaching modules and discusses the

  7. Primary VOC emissions from Commercial Aircraft Jet Engines

    Science.gov (United States)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    . References 1."Annual Review 2013", International Air Transport Association (IATA) 2014, Page 8, available on: http://www.iata.org/about/Documents/iata-annual-review-2013-en.pdf. 2."Summary for Policymakers: IPCC Special Report Aviation and the Global Atmosphere", 1999, pp. 5-10. 3."Hydrocarbon emissions from in-use commercial aircraft during airport operations", Herndon S.C., Rogers T., Dunlea E.J., Jayne J.T., Miake-Lye R., Knighton B., Environ Sci. Technol. 2006 Jul 15;40(14):4406-13.

  8. Characterization of emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    Science.gov (United States)

    The fine particulate matter emissions from aircraft operations at large airports located in areas of the U. S. designated as non-attainment for the National Ambient Air Quality Standard for PM-2.5 are of major environmental concern. PM emissions data for commercial aircraft engin...

  9. Modeling flight attendants' exposure to secondhand smoke in commercial aircraft: historical trends from 1955 to 1989.

    Science.gov (United States)

    Liu, Ruiling; Dix-Cooper, Linda; Hammond, S Katharine

    2015-01-01

    Flight attendants were exposed to elevated levels of secondhand smoke (SHS) in commercial aircraft when smoking was allowed on planes. During flight attendants' working years, their occupational SHS exposure was influenced by various factors, including the prevalence of active smokers on planes, fliers' smoking behaviors, airplane flight load factors, and ventilation systems. These factors have likely changed over the past six decades and would affect SHS concentrations in commercial aircraft. However, changes in flight attendants' exposure to SHS have not been examined in the literature. This study estimates the magnitude of the changes and the historic trends of flight attendants' SHS exposure in U.S. domestic commercial aircraft by integrating historical changes of contributing factors. Mass balance models were developed and evaluated to estimate flight attendants' exposure to SHS in passenger cabins, as indicated by two commonly used tracers (airborne nicotine and particulate matter (PM)). Monte Carlo simulations integrating historical trends and distributions of influence factors were used to simulate 10,000 flight attendants' exposure to SHS on commercial flights from 1955 to 1989. These models indicate that annual mean SHS PM concentrations to which flight attendants were exposed in passenger cabins steadily decreased from approximately 265 μg/m(3) in 1955 and 1960 to 93 μg/m(3) by 1989, and airborne nicotine exposure among flight attendants also decreased from 11.1 μg/m(3) in 1955 to 6.5 μg/m(3) in 1989. Using duration of employment as an indicator of flight attendants' cumulative occupational exposure to SHS in epidemiological studies would inaccurately assess their lifetime exposures and thus bias the relationship between the exposure and health effects. This historical trend should be considered in future epidemiological studies.

  10. The Effect of Reducing Cruise Altitude on the Topology and Emissions of a Commercial Transport Aircraft

    OpenAIRE

    2010-01-01

    In recent years, research has been conducted for alternative commercial transonic aircraft design configurations, such as the strut- braced wing and the truss-braced wing aircraft designs, in order to improve aircraft performance and reduce the impact of aircraft emissions as compared to a typical cantilever wing design. Research performed by Virginia Tech in conjunction with NASA Langley Research Center shows that these alternative configurations result in 20% or more reduction in fuel...

  11. Aircraft Structural Analysis, Design Optimization, and Manufacturing Tool Integration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative research is proposed in integrating fundamental aircraft design processes with an emphasis on composite structures. Efficient, lightweight composite...

  12. Contract Issues in the Sale of Commercial Aircraft.

    Science.gov (United States)

    1983-09-01

    two industry segments , transportation equip- ment, and missiles and space. rriasportation aquipment operations are concerned with the development...estimated that ten percent of the wide body fle -t is for sale in the used aircraft markt . The price for used narrow body aircraft has fallen also [Ref

  13. Challenge to Aviation: Hatching a Leaner Pterosauer. [Improving Commercial Aircraft Design for Greater Fuel Efficiency

    Science.gov (United States)

    Moss, F. E.

    1975-01-01

    Modifications in commercial aircraft design, particularly the development of lighter aircraft, are discussed as effective means of reducing aviation fuel consumption. The modifications outlined include: (1) use of the supercritical wing; (2) generation of the winglet; (3) production and flight testing of composite materials; and, (4) implementation of fly-by-wire control systems. Attention is also given to engineering laminar air flow control, improving cargo payloads, and adapting hydrogen fuels for aircraft use.

  14. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    Science.gov (United States)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  15. Integrating the Unmanned Aircraft System into the National Airspace System

    Science.gov (United States)

    2011-06-18

    and the ground control system. The ground control system is comprised of several integrated components to include: avionics , fuel, navigation...accessed January 15, 2011). U.S. Army Unmanned Aircraft Systems Roadmap 2010-2035: Eyes of the Army. Fort Rucker, Ala .: U.S. Army Unmanned Aircraft

  16. Sources of capabilities, integration and technology commercialization

    DEFF Research Database (Denmark)

    Zahra, Shaker A.; Nielsen, Anders

    2002-01-01

    of internal and external sources on multiple dimensions of successful technology commercialization (TC). The study also explores the moderating role of formal vs. informal integration mechanisms on these relationships. Applying a longitudinal design and data from 119 companies, the results show that internal...... human and technology-based manufacturing sources are positively associated with successful TC. Formal and informal integration mechanisms also significantly moderate the relationships observed between capability sources and TC. Copyright (C) 2002 John Wiley Sons, Ltd.......In recent years, companies have increased their use of internal and external sources in pursuit of a competitive advantage through the effective and timely commercialization of new technology. Grounded in the resource-based view of the firm, this study examines the effect of a company's use...

  17. Analysis of impact of large commercial aircraft on a prestressed containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoungsoo, E-mail: kylee@pvamu.edu [Center for Energy and Environmental Sustainability, Prairie View A and M University, Prairie view, TX, 77446 (United States); Han, Sang Eul, E-mail: hsang@inha.ac.kr [Department of Architectural Engineering, School of Architecture, Inha University, 253 Yonghyundong Nam-gu, Incheon, 402-751 (Korea, Republic of); Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr [Department of Civil and Environmental Engineering, KAIST, 373-1 Guseon-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2013-12-15

    Highlights: • Aircraft impact analyses are performed using the missile–target interaction method. • A large commercial B747 aircraft is considered with erosion effect. • The rigid wall impact test shows the validity of the developed aircraft model. • The parametric studies on the fictitious containment building are performed. • The plastic failure of the target is governed by the impulse of aircraft at the first momentum peak. - Abstract: In this paper, the results of nonlinear dynamic analyses of a concrete containment building under extreme loads are presented. The impact of a large commercial B747 airliner is investigated as the extreme load, and a rigid wall impact test is performed using commercial nonlinear finite element codes. The impact forces exerted by the aircraft are verified compared with the time-dependent impact force provided by OECD/NEA (2002), which was calculated based on the so-called Riera method. The rigid wall impact analysis shows that the finite element model of a B747 is appropriate for the purpose of the aircraft crash analysis exposed to the external hazard of “Beyond Design-Basis Events” defined by U.S. Nuclear Regulatory Commission. Finally, the applicability of this methodology is further studied and verified by conducting parametric studies on the critical infrastructures of nuclear power plant containment structures.

  18. Commercial Aircraft Maintenance Experience Relating to Engine External Hardware

    Science.gov (United States)

    Soditus, Sharon M.

    2006-01-01

    Airlines are extremely sensitive to the amount of dollars spent on maintaining the external engine hardware in the field. Analysis reveals that many problems revolve around a central issue, reliability. Fuel and oil leakage due to seal failure and electrical fault messages due to wire harness failures play a major role in aircraft delays and cancellations (D&C's) and scheduled maintenance. Correcting these items on the line requires a large investment of engineering resources and manpower after the fact. The smartest and most cost effective philosophy is to build the best hardware the first time. The only way to do that is to completely understand and model the operating environment, study the field experience of similar designs and to perform extensive testing.

  19. Integrating commercial and legacy systems with EPICS

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J.O. [Los Alamos National Lab., NM (United States); Kasemir, K.U. [Univ. Osnabrueck (Germany). Fachbereich Physik; Kowalkowski, J.B. [Argonne National Lab., IL (United States)

    1997-09-01

    The Experimental Physics and Industrial Control System (EPICS) is a software toolkit, developed by a worldwide collaboration, which significantly reduces the level of effort required to implement a new control system. Recent developments now also significantly reduce the level of effort required to integrate commercial, legacy and/or site-authored control systems with EPICS. This paper will illustrate with an example both the level and type of effort required to use EPICS with other control system components as well as the benefits that may arise.

  20. 27 CFR 44.207 - To commercial vessels and aircraft for consumption as supplies.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false To commercial vessels and aircraft for consumption as supplies. 44.207 Section 44.207 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION...

  1. 27 CFR 44.263 - To commercial vessels and aircraft for consumption as supplies.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false To commercial vessels and aircraft for consumption as supplies. 44.263 Section 44.263 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION...

  2. 27 CFR 44.196 - To district director of customs for consumption as supplies on commercial vessels and aircraft.

    Science.gov (United States)

    2010-04-01

    ... for consumption as supplies on commercial vessels and aircraft. Where tobacco products, or cigarette... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false To district director of customs for consumption as supplies on commercial vessels and aircraft. 44.196 Section 44.196...

  3. Radiation Safety Issues in High Altitude Commercial Aircraft

    Science.gov (United States)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1995-01-01

    The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.

  4. An Overview of Aircraft Integrated Control Technology

    Science.gov (United States)

    1994-09-01

    and stability augmentation, high hf’ system, steering and brak - ing 22 ’ . An F-15B research aircraft, modified with all-moving canard control...0.2 0.4 0.6 0.8 1.0 1.2 1.4 MACH NUMBER The IFPC system responds to pilot inputs with an automatic blend of aerodynamic control surfaces and thrust...decoupling airframe translation and rotation movements). In general, it was found that a blended combination of direct force and conventional control

  5. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    Science.gov (United States)

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  6. Structural Integrity Assessment of Reactor Containment Subjected to Aircraft Crash

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junyong; Chang, Yoonsuk [Department of Nuclear Engineering/Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-05-15

    When an accident occurs at the NPP, containment building which acts as the last barrier should be assessed and analyzed structural integrity by internal loading or external loading. On many occasions that can occur in the containment internal such as LOCA(Loss Of Coolant Accident) are already reflected to design. Likewise, there are several kinds of accidents that may occur from the outside of containment such as earthquakes, hurricanes and strong wind. However, aircraft crash that at outside of containment is not reflected yet in domestic because NPP sites have been selected based on the probabilistic method. After intentional aircraft crash such as World Trade Center and Pentagon accident in US, social awareness for safety of infrastructure like NPP was raised world widely and it is time for assessment of aircraft crash in domestic. The object of this paper is assessment of reactor containment subjected to aircraft crash by FEM(Finite Element Method). In this paper, assessment of structural integrity of containment building subjected to certain aircraft crash was carried out. Verification of structure integrity of containment by intentional severe accident. Maximum stress 61.21MPa of horizontal shell crash does not penetrate containment. Research for more realistic results needed by steel reinforced concrete model.

  7. A Commercial Aircraft Fuel Burn and Emissions Inventory for 2005–2011

    Directory of Open Access Journals (Sweden)

    Donata K. Wasiuk

    2016-06-01

    Full Text Available The commercial aircraft fuel burn and emission estimates of CO2, CO, H2O, hydrocarbons, NOx and SOx for 2005–2011 are given as the 4-D Aircraft Fuel Burn and Emissions Inventory. On average, the annual fuel burn and emissions of CO2, H2O, NOx, and SOx increased by 2%–3% for 2005–2011, however, annual CO and HC emissions decreased by 1.6% and 8.7%, respectively because of improving combustion efficiency in recent aircraft. Approximately 90% of the global annual aircraft NOx emissions were emitted in the NH between 2005 and 2011. Air traffic within the three main industrialised regions of the NH (Asia, Europe, and North America alone accounted for 80% of the global number of departures, resulting in 50% and 45% of the global aircraft CO2 and NOx emissions, respectively, during 2005–2011. The current Asian fleet appears to impact our climate strongly (in terms of CO2 and NOx when compared with the European and North American fleet. The changes in the geographical distribution and a gradual shift of the global aircraft NOx emissions as well as a subtle but steady change in regional emissions trends are shown in particular comparatively rising growth rates between 0 and 30°N and decreasing levels between 30 and 60°N.

  8. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    Science.gov (United States)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  9. Commercial aircraft as a source of automated meteorological data for GATE and DST

    Science.gov (United States)

    Julian, P. R.; Steinberg, R.

    1975-01-01

    Specially-equipped wide-body commercial aircraft which are flying tropical and Southern Hemispheric routes are providing a new and unique source of meteorological data with a 100 km spatial resolution. Data have been gathered for the GATE, and the planning for a similar effort for the DST is in progress. These aircraft not only provide synoptic data in critical areas devoid of conventional data, but are, in effect, meteorological research platforms that can provide valuable information on mesoscale phenomena. By 1976 it is anticipated that there will be over 80 such aircraft flying global routes. These specially-equipped jets could also be effectively used for EGGE by providing the nucleus of a supplementary observing system for gathering world-wide meteorological data.

  10. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    Science.gov (United States)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  11. Commercial aircraft engine emissions characterization of in-use aircraft at Hartsfield-Jackson Atlanta International Airport.

    Science.gov (United States)

    Herndon, Scott C; Jayne, John T; Lobo, Prem; Onasch, Timothy B; Fleming, Gregg; Hagen, Donald E; Whitefield, Philip D; Miake-Lye, Richard C

    2008-03-15

    The emissions from in-use commercial aircraft engines have been analyzed for selected gas-phase species and particulate characteristics using continuous extractive sampling 1-2 min downwind from operational taxi- and runways at Hartsfield-Jackson Atlanta International Airport. Using the aircraft tail numbers, 376 plumes were associated with specific engine models. In general, for takeoff plumes, the measured NOx emission index is lower (approximately 18%) than that predicted by engine certification data corrected for ambient conditions. These results are an in-service observation of the practice of "reduced thrust takeoff". The CO emission index observed in ground idle plumes was greater (up to 100%) than predicted by engine certification data for the 7% thrust condition. Significant differences are observed in the emissions of black carbon and particle number among different engine models/technologies. The presence of a mode at approximately 65 nm (mobility diameter) associated with takeoff plumes and a smaller mode at approximately 25 nm associated with idle plumes has been observed. An anticorrelation between particle mass loading and particle number concentration is observed.

  12. Integration of Predictive Display and Aircraft Flight Control System

    Directory of Open Access Journals (Sweden)

    Efremov A.V.

    2017-01-01

    Full Text Available The synthesis of predictive display information and direct lift control system are considered for the path control tracking tasks (in particular landing task. The both solutions are based on pilot-vehicle system analysis and requirements to provide the highest accuracy and lowest pilot workload. The investigation was carried out for cases with and without time delay in aircraft dynamics. The efficiency of the both ways for the flying qualities improvement and their integration is tested by ground based simulation.

  13. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    Science.gov (United States)

    Dippold, Vance F. III; Friedlander, David

    2017-01-01

    Reynolds-Averaged Navier-Stokes (RANS) simulations were performed for a commercial supersonic transport aircraft concept and experimental hardware models designed to represent the installed propulsion system of the conceptual aircraft in an upcoming test campaign. The purpose of the experiment is to determine the effects of jet-surface interactions from supersonic aircraft on airport community noise. RANS simulations of the commercial supersonic transport aircraft concept were performed to relate the representative experimental hardware to the actual aircraft. RANS screening simulations were performed on the proposed test hardware to verify that it would be free from potential rig noise and to predict the aerodynamic forces on the model hardware to assist with structural design. The simulations showed a large region of separated flow formed in a junction region of one of the experimental configurations. This was dissimilar with simulations of the aircraft and could invalidate the noise measurements. This configuration was modified and a subsequent RANS simulation showed that the size of the flow separation was greatly reduced. The aerodynamic forces found on the experimental models were found to be relatively small when compared to the expected loads from the model’s own weight.Reynolds-Averaged Navier-Stokes (RANS) simulations were completed for two configurations of a three-stream inverted velocity profile (IVP) nozzle and a baseline single-stream round nozzle (mixed-flow equivalent conditions). For the Sideline and Cutback flow conditions, while the IVP nozzles did not reduce the peak turbulent kinetic energy on the lower side of the jet plume, the IVP nozzles did significantly reduce the size of the region of peak turbulent kinetic energy when compared to the jet plume of the baseline nozzle cases. The IVP nozzle at Sideline conditions did suffer a region of separated flow from the inner stream nozzle splitter that did produce an intense, but small, region of

  14. Insecticide Exposures on Commercial Aircraft: A Literature Review and Screening Level Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy I.; McKone, Thomas E.

    2008-10-01

    The objective of this project was to provide initial estimates of the relationship between insecticide use on passenger aircraft and exposure levels present in the cabin environment. The work was initially divided into three tasks including 1) a review of insecticide application practices in commercial aircraft, 2) exploratory measurements of insecticide concentrations in treated aircraft and 3) screening level exposure modeling. Task 1 gathered information that is needed to assess the time-concentration history of insecticides in the airline cabin. The literature review focused on application practices, information about the cabin environment and existing measurements of exposure concentrations following treatment. Information from the airlines was not available for estimating insecticide application rates in the U.S. domestic fleet or for understanding how frequently equipment rotate into domestic routes following insecticide treatment. However, the World Health Organization (WHO) recommends several methods for treating aircraft with insecticide. Although there is evidence that these WHO guidelines may not always be followed, and that practices vary by airline, destination, and/or applicator company, the guidelines in combination with information related to other indoor environments provides a plausible basis for estimating insecticide loading rates on aircraft. The review also found that while measurements of exposure concentrations following simulated aerosol applications are available, measurements following residual treatment of aircraft or applications in domestic aircraft are lacking. Task 2 focused on developing an approach to monitor exposure concentrations in aircraft using a combination of active and passive sampling methods. An existing active sampling approach was intended to provide data immediately following treatment while a passive sampler was developed to provide wider coverage of the fleet over longer sampling periods. The passive sampler, based

  15. Production-teaching-research of a Commercial Aircraft Corporation in the Chinese Industry Chain

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin; WANG Shuang-yuan; WEI Lin-wan

    2012-01-01

    For the future development of a commercial aircraft corporation, this paper focused on the research and technological innovation model in an industrial chain and explored how to promote the sustainable development of technological innovation on the basis of the Chinese aviation industry. It puts forward several ways to reinforce cooperation, such as strengthening policies and regulations, government's support for research cooperations, accelerating construction of the production-teaching-research oriented public technology platform and service system, and firming the industry awareness of universities and research institutes, and so on.

  16. Detection and Analysis of High Ice Concentration Events and Supercooled Drizzle from IAGOS Commercial Aircraft

    Science.gov (United States)

    Gallagher, Martin; Baumgardner, Darrel; Lloyd, Gary; Beswick, Karl; Freer, Matt; Durant, Adam

    2016-04-01

    Hazardous encounters with high ice concentrations that lead to temperature and airspeed sensor measurement errors, as well as engine rollback and flameout, continue to pose serious problems for flight operations of commercial air carriers. Supercooled liquid droplets (SLD) are an additional hazard, especially for smaller commuter aircraft that do not have sufficient power to fly out of heavy icing conditions or heat to remove the ice. New regulations issued by the United States and European regulatory agencies are being implemented that will require aircraft below a certain weight class to carry sensors that will detect and warn of these types of icing conditions. Commercial aircraft do not currently carry standard sensors to detect the presence of ice crystals in high concentrations because they are typical found in sizes that are below the detection range of aircraft weather radar. Likewise, the sensors that are currently used to detect supercooled water do not respond well to drizzle-sized drops. Hence, there is a need for a sensor that can fill this measurement void. In addition, the forecast models that are used to predict regions of icing rely on pilot observations as the only means to validate the model products and currently there are no forecasts for the prevalence of high altitude ice crystals. Backscatter Cloud Probes (BCP) have been flying since 2011 under the IAGOS project on six Airbus commercial airliners operated by Lufthansa, Air France, China Air, Iberia and Cathay Pacific, and measure cloud droplets, ice crystals and aerosol particles larger than 5 μm. The BCP can detect these particles and measures an optical equivalent diameter (OED) but is not able to distinguish the type of particle, i.e. whether they are droplets, ice crystals, dust or ash. However, some qualification can be done based on measured temperature to discriminate between liquid water and ice. The next generation BCP (BCPD, Backscatter Cloud Probe with polarization detection) is

  17. INTEGRATING UNMANNED AIRCRAFT VEHICLES IN THE ROMANIAN NATIONAL AIRSPACE

    Directory of Open Access Journals (Sweden)

    Sorana Alina Catinca POP

    2015-07-01

    Full Text Available The use of unmanned aerial vehicles in the Romanian civil airspace brings us back to the 1920's, when the first aircraft started to fly over the Romanian sky. Little did the legislators at that time know how to create the proper legal framework for the use of such machines so that all aspects related to their use be covered, as well as identify all potential risks and effects. Nowadays, UAVs are the new aircraft and it is a challenge for the legislators to properly identify the legal framework so that the safety and security of civil aviation are not affected. The paper will address the challenges the regulator faces in the integration of the UAVs in the Romanian civil airspace, developments and issues raised by the current regulation, as well as aspects related to the national regulations expected to enter into force at the end of 2015, beginning of 2016.

  18. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    Science.gov (United States)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  19. Is Model-Based Development a Favorable Approach for Complex and Safety-Critical Computer Systems on Commercial Aircraft?

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2014-01-01

    A system is safety-critical if its failure can endanger human life or cause significant damage to property or the environment. State-of-the-art computer systems on commercial aircraft are highly complex, software-intensive, functionally integrated, and network-centric systems of systems. Ensuring that such systems are safe and comply with existing safety regulations is costly and time-consuming as the level of rigor in the development process, especially the validation and verification activities, is determined by considerations of system complexity and safety criticality. A significant degree of care and deep insight into the operational principles of these systems is required to ensure adequate coverage of all design implications relevant to system safety. Model-based development methodologies, methods, tools, and techniques facilitate collaboration and enable the use of common design artifacts among groups dealing with different aspects of the development of a system. This paper examines the application of model-based development to complex and safety-critical aircraft computer systems. Benefits and detriments are identified and an overall assessment of the approach is given.

  20. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    Science.gov (United States)

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  1. Aircraft Integration and Flight Testing of 4STAR

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, CJ; Kassianov, E; Russell, P; Redemann, J; Dunagan, S; Holben, B

    2012-10-12

    Under funding from the U.S. Dept. of Energy, in conjunction with a funded NASA 2008 ROSES proposal, with internal support from Battelle Pacific Northwest Division (PNWD), and in collaboration with NASA Ames Research Center, we successfully integrated the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR-Air) instrument for flight operation aboard Battelle’s G-1 aircraft and conducted a series of airborne and ground-based intensive measurement campaigns (hereafter referred to as “intensives”) for the purpose of maturing the initial 4STAR-Ground prototype to a flight-ready science-ready configuration.

  2. Integrating Cloud-Computing-Specific Model into Aircraft Design

    Science.gov (United States)

    Zhimin, Tian; Qi, Lin; Guangwen, Yang

    Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.

  3. Integrated Enhanced and Synthetic Vision System for Transport Aircraft

    Directory of Open Access Journals (Sweden)

    N. Shantha Kumar

    2013-03-01

    Full Text Available A new avionics concept called integrated enhanced and synthetic vision system (IESVS is being developed to enable flight operations during adverse weather/visibility conditions even in non precision airfields. This paper presents the latest trends in IESVS, design concept of the system and the work being carried out at National Aerospace Laboratories, Bangalore towards indigenous development of the same for transport aircraft.Defence Science Journal, 2013, 63(2, pp.157-163, DOI:http://dx.doi.org/10.14429/dsj.63.4258

  4. Methodology to estimate particulate matter emissions from certified commercial aircraft engines.

    Science.gov (United States)

    Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph

    2009-01-01

    Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil

  5. Aircraft Scheduled Airframe Maintenance and Downtime Integrated Cost Model

    Directory of Open Access Journals (Sweden)

    Remzi Saltoğlu

    2016-01-01

    Full Text Available Aviation industry has grown rapidly since the first scheduled commercial aviation started one hundred years ago. There is a fast growth in the number of passengers, routes, and frequencies, with high revenues and low margins, which make this industry one of the most challenging businesses in the world. Every operator aims to undertake the minimum operating cost and gain profit as much as possible. One of the significant elements of operator’s operating cost is the maintenance cost. During maintenance scheduling, operator calculates the maintenance cost that it needs to budget. Previous works show that this calculation includes only costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. Some of previous works also discuss the existence of another cost throughout aircraft downtime, which is defined as cost of revenue loss. Nevertheless, there is not any standard model that shows how to define and calculate downtime cost. For that reason, the purpose of this paper is to introduce a new model and analysis technique that can be used to calculate aircraft downtime cost due to maintenance.

  6. Brazilian Air Force aircraft structural integrity program: An overview

    Directory of Open Access Journals (Sweden)

    Alberto W. S. Mello Junior

    2009-01-01

    Full Text Available This paper presents an overview of the activities developed by the Structural Integrity Group at the Institute of Aeronautics and Space - IAE, Brazil, as well as the status of ongoing work related to the life extension program for aircraft operated by the Brazilian Air Force BAF. The first BAF-operated airplane to undergo a DTA-based life extension was the F-5 fighter, in the mid 1990s. From 1998 to 2001, BAF worked on a life extension project for the BAF AT- 26 Xavante trainer. All analysis and tests were performed at IAE. The fatigue critical locations (FCLs were presumed based upon structural design and maintenance data and also from exchange of technical information with other users of the airplane around the world. Following that work, BAF started in 2002 the extension of the operational life of the BAF T-25 “Universal”. The T-25 is the basic training airplane used by AFA - The Brazilian Air Force Academy. This airplane was also designed under the “safe-life” concept. As the T-25 fleet approached its service life limit, the Brazilian Air Force was questioning whether it could be kept in flight safely. The answer came through an extensive Damage Tolerance Analysis (DTA program, briefly described in this paper. The current work on aircraft structural integrity is being performed for the BAF F-5 E/F that underwent an avionics and weapons system upgrade. Along with the increase in weight, new configurations and mission profiles were established. Again, a DTA program was proposed to be carried out in order to establish the reliability of the upgraded F-5 fleet. As a result of all the work described, the BAF has not reported any accident due to structural failure on aircraft submitted to Damage Tolerance Analysis.

  7. An integrated approach to the design of an aircraft gain scheduled controller

    OpenAIRE

    Berglund, Erik

    1995-01-01

    This thesis addresses the problem of integrated design of the aircraft plant parameters and of the corresponding feedback controller. The plant parameters are typically the sizes of the control surfaces or other aerodynamical surfaces of the aircraft. The approach is to rewrite the aircraft dynamic requirements as linear matrix inequalities (LMI's) and to optimize a linear cost function associated with aircraft plant parameters, while meeting the LMI constraints. An algorithm using Matlab and...

  8. Slicing Recognition of Aircraft Integral Panel Generalized Pocket

    Institute of Scientific and Technical Information of China (English)

    Yu Fangfang; Du Baorui; Ren Wenjie; Zheng Guolei; Chu Hongzhen

    2008-01-01

    To automatically obtain a machining area in numerical control (NC) programming, a data model of generalized pocket is estab-lished by analyzing aireraft integral panel characteristics, and a feature recognition approach is proposed. First, by reference to the prao- tieal slice-machining process of an aircraft integral panel, both the part and the blank are sliced in the Z-axis direction; hence a feature profile is created acceding to the slicing planes and the contours are formed by the intersection of the slicing planes with the part and its blanK. Second, the auxiliary features of the generalized pocket are also determined based on the face type and the position, to correct the profile of the pocket. Finally, the generalized pocket feature relationship tree is constructed by matching the vertical relationships among the features. Machining feature information produced by using this method can be directly used to calculate the cutter path. The validity and practicability of the method is verified by NC programming for aircraft panels.

  9. Integrated urban water management in commercial buildings.

    Science.gov (United States)

    Trowsdale, S; Gabe, J; Vale, R

    2011-01-01

    Monitoring results are presented as an annual water balance from the pioneering Landcare Research green building containing commercial laboratory and office space. The building makes use of harvested roof runoff to flush toilets and urinals and irrigate glasshouse experiments, reducing the demand for city-supplied water and stormwater runoff. Stormwater treatment devices also manage the runoff from the carpark, helping curb stream degradation. Composting toilets and low-flow tap fittings further reduce the water demand. Despite research activities requiring the use of large volumes of water, the demand for city-supplied water is less than has been measured in many other green buildings. In line with the principles of sustainability, the composting toilets produce a useable product from wastes and internalise the wastewater treatment process.

  10. Analysis of the consequences of aircraft manufacturers’ system integration model

    Directory of Open Access Journals (Sweden)

    João Henrique Lopes Guerra

    2013-11-01

    Full Text Available This is a theoretical-conceptual, which aimed to identify some likely consequences of the integration model systems that have been adopted in the aerospace industry by major aircraft manufacturers in the world. In the model of system integration, these manufacturers maintain internally the activities associated with their basic skills and transfer their skills to peripheral suppliers. We identified the following consequences: the growth of strategic alliances in the airline industry, the internationalization of aeronautical chains, with the strengthening of productive activities in some geographic regions; challenges related to the domestic supplier base and the consolidation of national chains, the greatest power suppliers of the first layer, the contribution to the dissemination of knowledge among supply chains, and the potential emergence of new competitors.

  11. Commercial integration and partnering at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Steele, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Babione, R.A.; Shikashio, L.A.; Wacaster, A.J.; Paterson, A.D. [SCIENTECH, Inc., Idaho Falls, ID (United States)

    1994-06-01

    Savannah River Site (SRS), particularly the Savannah River Technology Center (SRTC) with the experience from the first successful Integrated Technology Demonstration, can provide an excellent foundation for meeting DOE-EM`s objectives with the new DOE-EM five focus area approach. With this in mind, SRTC established an activity to pursue full commercialization of environmental technologies. This report is an assessment of the status of commercialization at SRS and provides recommendations for enhancement as well as some tools critical to implementation. A review was made of the current situation at SRS with regards to taking technology development to commercial fruition. This was done from the perspective of comparing it to known commercialization models and processes. It was found that SRTC already works through many of the steps in these processes. With integration and action-oriented efforts of the inclusion of business and market factors, SRTC could become an aggressive, successful developer of commercialized technologies. Commercial success criteria tools were developed with regards to integrating them with SRTC selection criteria to ensure that all critical factors are covered in technology commercialization project evaluations. Private investors are very clear that their interest lies in funding commercial enterprises, not merely technologies. Mobilizing private capital is critical to real job growth and long-term economic development. Also, potential industry partners were identified that are willing to be involved with SRS` technology applications and regional development efforts. As another important component to success, regional support organizations were reviewed and evaluated.

  12. Development and validation of nondestructive inspection techniques for composite doubler repairs on commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1998-05-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single boron-epoxy composite doubler to the damaged structure. In order for the use of composite doublers to achieve widespread use in the civil aviation industry, it is imperative that methods be developed which can quickly and reliably assess the integrity of the doubler. In this study, a specific composite application was chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Primary among inspection requirements for these doublers is the identification of disbonds, between the composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the doubler is also a concern. No single nondestructive inspection (NDI) method can inspect for every flaw type, therefore it is important to be aware of available NDI techniques and to properly address their capabilities and limitations. A series of NDI tests were conducted on laboratory test structures and on full-scale aircraft fuselage sections. Specific challenges, unique to bonded composite doubler applications, were highlighted. An array of conventional and advanced NDI techniques were evaluated. Flaw detection sensitivity studies were conducted on applicable eddy current, ultrasonic, X-ray and thermography based devices. The application of these NDI techniques to composite doublers and the results from test specimens, which were loaded to provide a changing flaw profile, are presented in this report. It was found that a team of these techniques can identify flaws in composite doubler installations well before they reach critical size.

  13. An integrated systems engineering approach to aircraft design

    Science.gov (United States)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  14. Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins.

    Science.gov (United States)

    Cui, W; Wu, T; Ouyang, Q; Zhu, Y

    2017-01-01

    Passengers' behavioral adjustments warrant greater attention in thermal comfort research in aircraft cabins. Thus, a field investigation on 10 commercial aircrafts was conducted. Environment measurements were made and a questionnaire survey was performed. In the questionnaire, passengers were asked to evaluate their thermal comfort and record their adjustments regarding the usage of blankets and ventilation nozzles. The results indicate that behavioral adjustments in the cabin and the use of blankets or nozzle adjustments were employed by 2/3 of the passengers. However, the thermal comfort evaluations by these passengers were not as good as the evaluations by passengers who did not perform any adjustments. Possible causes such as differences in metabolic rate, clothing insulation and radiation asymmetry are discussed. The individual difference seems to be the most probable contributor, suggesting possibly that passengers who made adjustments had a narrower acceptance threshold or a higher expectancy regarding the cabin environment. Local thermal comfort was closely related to the adjustments and significantly influenced overall thermal comfort. Frequent flying was associated with lower ratings for the cabin environment.

  15. Experimental studies of thermal environment and contaminant transport in a commercial aircraft cabin with gaspers on.

    Science.gov (United States)

    Li, B; Duan, R; Li, J; Huang, Y; Yin, H; Lin, C-H; Wei, D; Shen, X; Liu, J; Chen, Q

    2016-10-01

    Gaspers installed in commercial airliner cabins are used to improve passengers' thermal comfort. To understand the impact of gasper airflow on the air quality in a cabin, this investigation measured the distributions of air velocity, air temperature, and gaseous contaminant concentration in five rows of the economy-class section of an MD-82 commercial aircraft. The gaseous contaminant was simulated using SF6 as a tracer gas with the source located at the mouth of a seated manikin close to the aisle. Two-fifths of the gaspers next to the aisle were turned on in the cabin, and each of them supplied air at a flow rate of 0.66 l/s. The airflow rate in the economy-class cabin was controlled at 10 l/s per passenger. Data obtained in a previous study of the cabin with all gaspers turned off were used for comparison. The results show that the jets from the gaspers had a substantial impact on the air velocity and contaminant transport in the cabin. The air velocity in the cabin was higher, and the air temperature slightly more uniform, when the gaspers were on than when they were off, but turning on the gaspers may not have improved the air quality.

  16. 78 FR 61388 - TA-W-82,705, the Boeing Company Boeing Commercial Aircraft, (BCA) Including On-Site Leased...

    Science.gov (United States)

    2013-10-03

    ... Employment and Training Administration TA-W-82,705, the Boeing Company Boeing Commercial Aircraft, (BCA..., Washington; TA-W-82,705A, the Boeing Company Boeing Commercial Aircraft, (BCA) Including On-Site Leased... International, Volt Services and Yoh Services Everett, Washington; TA-W-82,705B, The Boeing Company...

  17. 19 CFR 122.49c - Master crew member list and master non-crew member list requirement for commercial aircraft...

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master crew member list and master non-crew member... Commercial Aircraft Arriving In, Continuing Within, and Overflying the United States § 122.49c Master crew member list and master non-crew member list requirement for commercial aircraft arriving in,...

  18. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling.

    Science.gov (United States)

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L

    2008-03-15

    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.

  19. Safety assessment of A92 reactor building for large commercial aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, M., E-mail: marin.kostov@riskeng.bg [Risk Engineering Ltd., Sofia (Bulgaria); Henkel, F.O. [Woelfel Beratende Ingenieure, Hoechberg (Germany); Andonov, A. [Risk Engineering Ltd., Sofia (Bulgaria)

    2014-04-01

    The current paper presents key elements of the comprehensive analyses of the effects due to a large aircraft collision with the reactor building of Belene NPP in Bulgaria. The reactor building is a VVER A92; it belongs to the third+ generation and includes structural measures for protection against an aircraft impact as standard design. The A92 reactor building implements a double shell concept and is composed of thick RC external walls and an external shell which surrounds an internal pre-stressed containment and the internal walls of the auxiliary building. The malevolent large aircraft impact is considered as a beyond design base accident (Design Extended Conditions, DEC). The main issues under consideration are the structural integrity, the equipment safety due to the induced vibrations, and the fire safety of the entire installation. Many impact scenarios are analyzed varying both impact locations and loading intensity. A large number of non-linear dynamic analyses are used for assessment of the structural response and capacity, including different type of structural models, different finite element codes, and different material laws. The corresponding impact loadings are represented by load time functions calculated according to three different approaches, i.e. loading determined by Riera's method (Riera, 1968), load time function calculated by finite element analysis (Henkel and Klein, 2007), and coupled dynamic analysis with dynamic interaction between target and projectile. Based on the numerical results and engineering assessments the capacity of the A92 reactor building to resist a malevolent impact of a large aircraft is evaluated. Significant efforts are spent on safety assessment of equipment by using an evaluation procedure based on damage indicating parameters. As a result of these analyses several design modifications of structure elements are performed. There are changes of the layout of reinforcement, special arrangements and spatial

  20. Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations

    Directory of Open Access Journals (Sweden)

    Karl Beswick

    2015-10-01

    Full Text Available Measurements of cloud ice crystal size distributions have been made by a backscatter cloud probe (BCP mounted on five commercial airliners flying international routes that cross five continents. Bulk cloud parameters were also derived from the size distributions. As of 31 December 2014, a total of 4399 flights had accumulated data from 665 hours in more than 19 000 cirrus clouds larger than 5 km in length. The BCP measures the equivalent optical diameter (EOD of individual crystals in the 5–90 µm range from which size distributions are derived and recorded every 4 seconds. The cirrus cloud property database, an ongoing development stemming from these measurements, registers the total crystal number and mass concentration, effective and median volume diameters and extinction coefficients derived from the size distribution. This information is accompanied by the environmental temperature, pressure, aircraft position, date and time of each sample. The seasonal variations of the cirrus cloud properties measured from 2012 to 2014 are determined for six geographic regions in the tropics and extratropics. Number concentrations range from a few per litre for thin cirrus to several hundreds of thousands for heavy cirrus. Temperatures range from 205 to 250 K and effective radii from 12 to 20 µm. A comparison of the regional and seasonal number and mass size distributions, and the bulk microphysical properties derived from them, demonstrates that cirrus properties cannot be easily parameterised by temperature or by latitude. The seasonal changes in the size distributions from the extratropical Atlantic and Eurasian air routes are distinctly different, showing shifts from mono-modal to bi-modal spectra out of phase with one another. This phase difference may be linked to the timing of deep convection and cold fronts that lead to the cirrus formation. Likewise, the size spectra of cirrus over the tropical Atlantic and Eastern Brazil differ from each

  1. High-Fidelity Aerostructural Optimization of Nonplanar Wings for Commercial Transport Aircraft

    Science.gov (United States)

    Khosravi, Shahriar

    Although the aerospace sector is currently responsible for a relatively small portion of global anthropogenic greenhouse gas emissions, the growth of the airline industry raises serious concerns about the future of commercial aviation. As a result, the development of new aircraft design concepts with the potential to improve fuel efficiency remains an important priority. Numerical optimization based on high-fidelity physics has become an increasingly attractive tool over the past fifteen years in the search for environmentally friendly aircraft designs that reduce fuel consumption. This approach is able to discover novel design concepts and features that may never be considered without optimization. This can help reduce the economic costs and risks associated with developing new aircraft concepts by providing a more realistic assessment early in the design process. This thesis provides an assessment of the potential efficiency improvements obtained from nonplanar wings through the application of fully coupled high-fidelity aerostructural optimization. In this work, we conduct aerostructural optimization using the Euler equations to model the flow along with a viscous drag estimate based on the surface area. A major focus of the thesis is on finding the optimal shape and performance benefits of nonplanar wingtip devices. Two winglet configurations are considered: winglet-up and winglet-down. These are compared to optimized planar wings of the same projected span in order to quantify the possible drag reductions offered by winglets. In addition, the drooped wing is studied in the context of exploratory optimization. The main results show that the winglet-down configuration is the most efficient winglet shape, reducing the drag by approximately 2% at the same weight in comparison to a planar wing. There are two reasons for the superior performance of this design. First, this configuration moves the tip vortex further away from the wing. Second, the winglet

  2. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics.

  3. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    Science.gov (United States)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  4. Aircraft

    Science.gov (United States)

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  5. Aircraft

    Science.gov (United States)

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  6. Predictive Solar-Integrated Commercial Building Load Control

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, Nathan [EdgePower Inc., Aspen, CO (United States)

    2017-01-31

    This report is the final technical report for the Department of Energy SunShot award number EE0007180 to EdgePower Inc., for the project entitled “Predictive Solar-Integrated Commercial Building Load Control.” The goal of this project was to successfully prove that the integration of solar forecasting and building load control can reduce demand charge costs for commercial building owners with solar PV. This proof of concept Tier 0 project demonstrated its value through a pilot project at a commercial building. This final report contains a summary of the work completed through he duration of the project. Clean Power Research was a sub-recipient on the award.

  7. Noise data for a twin-engine commercial jet aircraft flying conventional, steep, and two-segment approaches

    Science.gov (United States)

    Hastings, E. C., Jr.; Mueller, A. W.; Hamilton, J. R.

    1977-01-01

    Center-line noise measurements of a twin-engine commercial jet aircraft were made during steep landing approach profiles, and during two-segment approach profiles for comparison with similar measurements made during conventional approaches. The steep and two-segment approaches showed significant noise reductions when compared with the -3 deg base line. The measured noise data were also used to develop a method for estimating the noise under the test aircraft at thrust and altitude conditions typical of current landing procedures and of landing procedures under development for the Advanced Air Traffic Control System.

  8. Integrated Network of Optimizations for Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft design is a complex process requiring interactions and exchange of information among multiple disciplines such as aerodynamics, strength, fatigue, controls,...

  9. A maintenance model for k-out-of-n subsystems aboard a fleet of advanced commercial aircraft

    Science.gov (United States)

    Miller, D. R.

    1978-01-01

    Proposed highly reliable fault-tolerant reconfigurable digital control systems for a future generation of commercial aircraft consist of several k-out-of-n subsystems. Each of these flight-critical subsystems will consist of n identical components, k of which must be functioning properly in order for the aircraft to be dispatched. Failed components are recoverable; they are repaired in a shop. Spares are inventoried at a main base where they may be substituted for failed components on planes during layovers. Penalties are assessed when failure of a k-out-of-n subsystem causes a dispatch cancellation or delay. A maintenance model for a fleet of aircraft with such control systems is presented. The goals are to demonstrate economic feasibility and to optimize.

  10. PM emissions measurements of in-service commercial aircraft engines during the Delta-Atlanta Hartsfield Study

    Science.gov (United States)

    Lobo, Prem; Hagen, Donald E.; Whitefield, Philip D.; Raper, David

    2015-03-01

    This paper describes the results of the physical characterization of aircraft engine PM emission measurements conducted during the Delta-Atlanta Hartsfield Study at the Hartsfield-Jackson Atlanta International Airport. Engine exit plane PM emissions were sampled from on-wing engines on several in-service commercial transport aircraft from the fleet of Delta Airlines. The size distributions were lognormal in nature with a single mode. The geometric mean diameter was found to increase with increasing engine thrust, ranging from 15 nm at idle to 40 nm at takeoff. PM number- and mass-based emission indices were observed to be higher at the idle conditions (4% and 7%), lowest at 15%-30% thrust, and then increase with increasing thrust. Emissions measurements were also conducted during an advected plume study where over 300 exhaust plumes generated by a broad mix of commercial transports were sampled 100-350 m downwind from aircraft operational runways during normal airport operations. The range of values measured at take-off for the different engine types in terms of PM number-based emission index was between 7 × 1015-9 × 1017 particles/kg fuel burned, and that for PM mass-based emission index was 0.1-0.6 g/kg fuel burned. PM characteristics of aircraft engine specific exhaust were found to evolve over time as the exhaust plume expands, dilutes with ambient air, and cools. The data from these measurements will enhance the emissions inventory development for a subset of engines operating in the commercial fleet and improve/validate current environmental impact predictive tools with real world aircraft engine specific PM emissions inputs.

  11. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft.

    Science.gov (United States)

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C

    2012-09-04

    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.

  12. 民机结构设计中的系统工程问题%Systems Engineering for Commercial Aircraft Structural Design

    Institute of Scientific and Technical Information of China (English)

    张绪

    2015-01-01

    Systems engineering has been widely applied into highly-integrated complex commercial aircraft development.As an important component,the aircraft structural design will receive innovation with systems engineering introduced.Systems engineering processes in commercial aircraft structural design include function analysis,requirements analysis,structural synthesis, structure production,structural integration,structural tests and so on.Structural requirements are built based on structural design levels and shall be validated and verified.Other systems engineering process include interface management,configuration management and technical risk management.%系统工程在高度集成的复杂民机产品的研制中已得到广泛应用。作为民机设计的重要组成部分,民机结构设计中如能引入系统工程过程和方法,必能有效促进民机结构设计工作的革新。民机结构设计的系统工程过程包括功能分析、需求分析、结构设计、零部件生产、部段和全机结构集成及试验试飞等过程。民机结构需求体系须按照结构设计层级进行制定,并依次进行需求确认和需求验证。民机结构设计相关的系统工程问题还包括接口管理、构型管理、技术风险管理等。

  13. A Risk Management Architecture for Emergency Integrated Aircraft Control

    Science.gov (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  14. Damage tolerance assessment of bonded composite doubler repairs for commercial aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.

    1998-08-01

    The Federal Aviation Administration has sponsored a project at its Airworthiness Assurance NDI Validation Center (AANC) to validate the use of bonded composite doublers on commercial aircraft. A specific application was chosen in order to provide a proof-of-concept driving force behind this test and analysis project. However, the data stemming from this study serves as a comprehensive evaluation of bonded composite doublers for general use. The associated documentation package provides guidance regarding the design, analysis, installation, damage tolerance, and nondestructive inspection of these doublers. This report describes a series of fatigue and strength tests which were conducted to study the damage tolerance of Boron-Epoxy composite doublers. Tension-tension fatigue and ultimate strength tests attempted to grow engineered flaws in coupons with composite doublers bonded to aluminum skin. An array of design parameters, including various flaw scenarios, the effects of surface impact, and other off-design conditions, were studied. The structural tests were used to: (1) assess the potential for interply delaminations and disbonds between the aluminum and the laminate, and (2) determine the load transfer and crack mitigation capabilities of composite doublers in the presence of severe defects. A series of specimens were subjected to ultimate tension tests in order to determine strength values and failure modes. It was demonstrated that even in the presence of extensive damage in the original structure (cracks, material loss) and in spite of non-optimum installations (adhesive disbonds), the composite doubler allowed the structure to survive more than 144,000 cycles of fatigue loading. Installation flaws in the composite laminate did not propagate over 216,000 fatigue cycles. Furthermore, the added impediments of impact--severe enough to deform the parent aluminum skin--and hot-wet exposure did not effect the doubler`s performance. Since the tests were conducting

  15. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Bruijn, de Erik J.; Heerkens, Hans

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics. Base

  16. Unmanned Aircraft Systems Integration in the National Airspace System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is an increasing need to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) to perform missions of vital importance to national security...

  17. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    Science.gov (United States)

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft.

  18. UWB EMI To Aircraft Radios: Field Evaluation on Operational Commercial Transport Airplanes. Volume 1

    Science.gov (United States)

    Oria, A. J. (Editor); Ely, Jay J.; Martin, Warren L.; Shaver, Timothy W.; Fuller, Gerald L.; Zimmerman, John; Fuschino, Robert L.; Larsen, William E.

    2005-01-01

    Ultrawideband (UWB) transmitters may soon be integrated into a wide variety of portable electronic devices (PEDs) that passengers routinely carry on board commercial airplanes. Airlines and the FAA will have difficulty controlling passenger use of UWB transmitters during flights with current airline policies and existing wireless product standards. The aeronautical community is concerned as to whether evolving FCC UWB rules are adequate to protect legacy and emerging aeronautical radio systems from electromagnetic interference (EMI) from emerging UWB products. To address these concerns, the NASA Office of Space Communications and Chief Spectrum Managers assembled a multidisciplinary team from NASA LaRC, NASA JPL, NASA ARC, FAA, United Airlines, Sky West Airlines, and Eagles Wings Inc. to carry out a comprehensive series of tests aimed at determining the nature and extent of any EMI to aeronautical communication and navigation systems from UWB devices meeting FCCapproved and proposed levels for unlicensed handheld transmitters.

  19. Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1977-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  20. Integrated fleet assignment and aircraft routing based on delay propagation

    Indian Academy of Sciences (India)

    WAN-MING LIU; XING-HUI ZHU; YAN-LONG QI

    2016-07-01

    Airlines’ expensive resources, especially aircraft, are to be optimally scheduled to cover flights of timetables. However, the irregular flight, due to bad weather, mechanical fault and so on, is inevitable.Moreover, flight delays become more severe with the rapid development of the air transport industry in China and have huge irregular flight cost. In order to alleviate flight delays impact on the flight plan, we present a double objective multi-commodity network flow model of flight delay propagation-based aircraft scheduling and minimize the total delay propagation and airline operation cost as the optimization objective. Branch-and-price solution and column generation algorithm are used to solve the problem. Computational results obtained by using data from a major domestic airline show that our approach can reduce delay propagation significantly, thus improving on-time performance and robustness of aircraft scheduling, and decreasing the total cost simultaneously.

  1. Integrated numerical methods for hypersonic aircraft cooling systems analysis

    Science.gov (United States)

    Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.

    1992-01-01

    Numerical methods have been developed for the analysis of hypersonic aircraft cooling systems. A general purpose finite difference thermal analysis code is used to determine areas which must be cooled. Complex cooling networks of series and parallel flow can be analyzed using a finite difference computer program. Both internal fluid flow and heat transfer are analyzed, because increased heat flow causes a decrease in the flow of the coolant. The steady state solution is a successive point iterative method. The transient analysis uses implicit forward-backward differencing. Several examples of the use of the program in studies of hypersonic aircraft and rockets are provided.

  2. Integrated Control with Structural Feedback to Enable Lightweight Aircraft

    Science.gov (United States)

    Taylor, Brian R.

    2011-01-01

    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  3. Retrieving clear-air turbulence information from regular commercial aircraft using Mode-S and ADS-B broadcast

    Directory of Open Access Journals (Sweden)

    J. M. Kopeć

    2015-11-01

    Full Text Available Navigational information broadcast by commercial aircraft in the form of Mode-S and ADS-B messages can be considered a new and valid source of upper air turbulence measurements. A set of three processing methods is proposed and analysed using a quality record of turbulence encounters made by a research aircraft. The proposed methods are based on processing the vertical acceleration or the background wind into the eddy dissipation rate. All the necessary parameters are conveyed in the Mode-S/ADS-B messages. The comparison of the results of application of the processing against a reference eddy dissipation rate obtained using on-board accelerometer indicate a significant potential of those methods. The advantages and limitation of the presented approaches are discussed.

  4. Integrating the Base of Aircraft Data (BADA) in CTAS Trajectory Synthesizer

    Science.gov (United States)

    Abramson, Michael; Ali, Kareem

    2012-01-01

    The Center-Terminal Radar Approach Control (TRACON) Automation System (CTAS), developed at NASA Ames Research Center for assisting controllers in the management and control of air traffic in the extended terminal area, supports the modeling of more than four hundred aircraft types. However, 90% of them are supported indirectly by mapping them to one of a relatively few aircraft types for which CTAS has detailed drag and engine thrust models. On the other hand, the Base of Aircraft Data (BADA), developed and maintained by Eurocontrol, supports more than 300 aircraft types, about one third of which are directly supported, i.e. they have validated performance data. All these data were made available for CTAS by integrating BADA version 3.8 into CTAS Trajectory Synthesizer (TS). Several validation tools were developed and used to validate the integrated code and to evaluate the accuracy of trajectory predictions generated using CTAS "native" and BADA Aircraft Performance Models (APM) comparing them with radar track data. Results of these comparisons indicate that the two models have different strengths and weaknesses. The BADA APM can improve the accuracy of CTAS predictions at least for some aircraft types, especially small aircraft, and for some flight phases, especially climb.

  5. An integrated approach for modelling of aircraft maintenance processes

    Directory of Open Access Journals (Sweden)

    D. Yu. Kiselev

    2015-01-01

    Full Text Available The paper deals with modeling of the processes of maintenance and repair of aircraft. The role of information in im-proving the effectiveness of maintenance systems is described. The methodology for functional modelling of maintenance processes is given. A simulation model is used for modelling possible changes.

  6. Integrated envelope and lighting systems for commercial buildings: a retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor S.; Selkowitz, Stephen E.

    1998-06-01

    Daylighting systems in use world-wide rarely capture the energy-savings predicted by simulation tools and that we believe are achievable in real buildings. One of the primary reasons for this is that window and lighting systems are not designed and operated as an integrated system. Our efforts over the last five years have been targeted toward (1) development and testing of new prototype systems that involve a higher degree of systems integration than has been typical in the past, and (2) addressing current design and technological barriers that are often missed with component-oriented research. We summarize the results from this body of cross-disciplinary research and discuss its effects on the existing and future practice of daylighting in commercial buildings.

  7. Integrated Flight Mechanic and Aeroelastic Modelling and Control of a Flexible Aircraft Considering Multidimensional Gust Input

    Science.gov (United States)

    2000-05-01

    INTEGRATED FLIGHT MECHANIC AND AEROELASTIC MODELLING AND CONTROL OF A FLEXIBLE AIRCRAFT CONSIDERING MULTIDIMENSIONAL GUST INPUT Patrick Teufel, Martin Hanel...the lateral separation distance have been developed by ’ = matrix of two dimensional spectrum function Eichenbaum 4 and are described by Bessel...Journal of Aircraft, Vol. 30, No. 5, Sept.-Oct. 1993 Relations to Risk Sensitivity, System & Control Letters 11, [4] Eichenbaum F.D., Evaluation of 3D

  8. Analytical and experimental evaluations of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines

    Science.gov (United States)

    Smith, A. L.

    1980-01-01

    Analytical and experimental studies were conducted in three contract activities funded by the National Aeronautics and Space Administration, Lewis Research Center, to assess the impacts of broad property fuels on the design, performance, durability, emissions and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Trade-offs between fuel properties, exhaust emissions and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability and somewhat lesser impacts on starting characteristics, lightoff, emissions and smoke.

  9. TCV software test and validation tools and technique. [Terminal Configured Vehicle program for commercial transport aircraft operation

    Science.gov (United States)

    Straeter, T. A.; Williams, J. R.

    1976-01-01

    The paper describes techniques for testing and validating software for the TCV (Terminal Configured Vehicle) program which is intended to solve problems associated with operating a commercial transport aircraft in the terminal area. The TCV research test bed is a Boeing 737 specially configured with digital computer systems to carry out automatic navigation, guidance, flight controls, and electronic displays research. The techniques developed for time and cost reduction include automatic documentation aids, an automatic software configuration, and an all software generation and validation system.

  10. Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Allen, Joseph G.; Weschler, Charles J.

    2015-01-01

    Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking...... was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were...

  11. Analysis of Complexity Evolution Management and Human Performance Issues in Commercial Aircraft Automation Systems

    Science.gov (United States)

    Vakil, Sanjay S.; Hansman, R. John

    2000-01-01

    Autoflight systems in the current generation of aircraft have been implicated in several recent incidents and accidents. A contributory aspect to these incidents may be the manner in which aircraft transition between differing behaviours or 'modes.' The current state of aircraft automation was investigated and the incremental development of the autoflight system was tracked through a set of aircraft to gain insight into how these systems developed. This process appears to have resulted in a system without a consistent global representation. In order to evaluate and examine autoflight systems, a 'Hybrid Automation Representation' (HAR) was developed. This representation was used to examine several specific problems known to exist in aircraft systems. Cyclomatic complexity is an analysis tool from computer science which counts the number of linearly independent paths through a program graph. This approach was extended to examine autoflight mode transitions modelled with the HAR. A survey was conducted of pilots to identify those autoflight mode transitions which airline pilots find difficult. The transitions identified in this survey were analyzed using cyclomatic complexity to gain insight into the apparent complexity of the autoflight system from the perspective of the pilot. Mode transitions which had been identified as complex by pilots were found to have a high cyclomatic complexity. Further examination was made into a set of specific problems identified in aircraft: the lack of a consistent representation of automation, concern regarding appropriate feedback from the automation, and the implications of physical limitations on the autoflight systems. Mode transitions involved in changing to and leveling at a new altitude were identified across multiple aircraft by numerous pilots. Where possible, evaluation and verification of the behaviour of these autoflight mode transitions was investigated via aircraft-specific high fidelity simulators. Three solution

  12. Integrated Research/Education University Aircraft Design Program Development

    Science.gov (United States)

    2017-04-06

    long- range supersonic aircraft without tail surfaces. No tail surfaces or reduced size tail surfaces may lead to less drag, less weight, lower...Nelson, C.P., and Livne, E., "Low-Speed Stability and Control of a Reduced Scale Long- Range Supersonic Configuration with Reduced- Size or No Vertical Tail...location and size The front right access panel is over the power board. The two symmetric access panels give access to the battery and the pneumatics

  13. Hearing status among aircraft maintenance personnel in a commercial airline company

    Directory of Open Access Journals (Sweden)

    Greta Smedje

    2011-01-01

    Full Text Available The aim was to study subjective and objective hearing loss in a population of aircraft maintenance workers and identify predictors. A total of 327 aircraft maintenance personnel answered a self-administered work environment questionnaire (response rate 76% and underwent audiometric test. The mean values for the hearing threshold at 3, 4, and 6 kHz for the ear with the most hearing loss were compared with a Swedish population database of persons not occupationally exposed to noise. Equivalent noise exposure during a working day was measured. Relationships between subjective and objective hearing loss and possible predictors (age, years of employment, self-reported exposure to solvents, blood pressure, and psycho-social factors were analyzed by multiple logistic regression. At younger ages (<40 years, aircraft maintenance workers had higher hearing thresholds (1-3 dB compared to the reference group, but such a difference was not found in older employees. Relationships were found between age and objective hearing loss, and between exposure to solvents and reported subjective hearing loss. Equivalent noise exposure during working days were 70-91 dB(A with a maximal noise level of 119 dB(A. Aircraft maintenance workers are exposed to equivalent noise levels above the Swedish occupational standard, including some very high peak exposures. Younger employees have a higher age-matched hearing threshold level compared with a reference group. Thus, there is a need for further preventive measures.

  14. Hearing status among aircraft maintenance personnel in a commercial airline company.

    Science.gov (United States)

    Smedje, Greta; Lunden, Maria; Gärtner, Lotta; Lundgren, Håkan; Lindgren, Torsten

    2011-01-01

    The aim was to study subjective and objective hearing loss in a population of aircraft maintenance workers and identify predictors. A total of 327 aircraft maintenance personnel answered a self-administered work environment questionnaire (response rate 76%) and underwent audiometric test. The mean values for the hearing threshold at 3, 4, and 6 kHz for the ear with the most hearing loss were compared with a Swedish population database of persons not occupationally exposed to noise. Equivalent noise exposure during a working day was measured. Relationships between subjective and objective hearing loss and possible predictors (age, years of employment, self-reported exposure to solvents, blood pressure, and psycho-social factors) were analyzed by multiple logistic regression. At younger ages (aircraft maintenance workers had higher hearing thresholds (1-3 dB) compared to the reference group, but such a difference was not found in older employees. Relationships were found between age and objective hearing loss, and between exposure to solvents and reported subjective hearing loss. Equivalent noise exposure during working days were 70-91 dB(A) with a maximal noise level of 119 dB(A). Aircraft maintenance workers are exposed to equivalent noise levels above the Swedish occupational standard, including some very high peak exposures. Younger employees have a higher age-matched hearing threshold level compared with a reference group. Thus, there is a need for further preventive measures.

  15. Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.; Walkington, P.

    1999-02-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that

  16. Human Systems Integration: Unmanned Aircraft Control Station Certification Plan Guidance

    Science.gov (United States)

    2005-01-01

    This document provides guidance to the FAA on important human factors considerations that can be used to support the certification of a UAS Aircraft Control Station (ACS). This document provides a synopsis of the human factors analysis, design and test activities to be performed to provide a basis for FAA certification. The data from these analyses, design activities, and tests, along with data from certification/qualification tests of other key components should be used to establish the ACS certification basis. It is expected that this information will be useful to manufacturers in developing the ACS Certification Plan,, and in supporting the design of their ACS.

  17. The Automated Aircraft Rework System (AARS): A system integration approach

    Science.gov (United States)

    Benoit, Michael J.

    1994-01-01

    The Mercer Engineering Research Center (MERC), under contract to the United States Air Force (USAF) since 1989, has been actively involved in providing the Warner Robins Air Logistics Center (WR-ALC) with a robotic workcell designed to perform rework automated defastening and hole location/transfer operations on F-15 wings. This paper describes the activities required to develop and implement this workcell, known as the Automated Aircraft Rework System (AARS). AARS is scheduled to be completely installed and in operation at WR-ALC by September 1994.

  18. Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment.

    Science.gov (United States)

    Lee, Ben H; Santoni, Gregory W; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Zahniser, Mark S; Wofsy, Steven C; Munger, J William

    2011-09-15

    The Alternative Aviation Fuel Experiment (AAFEX), conducted in January of 2009 in Palmdale, California, quantified aerosol and gaseous emissions from a DC-8 aircraft equipped with CFM56-2C1 engines using both traditional and synthetic fuels. This study examines the emissions of nitrous acid (HONO) and nitrogen oxides (NO(x) = NO + NO(2)) measured 145 m behind the grounded aircraft. The fuel-based emission index (EI) for HONO increases approximately 6-fold from idle to takeoff conditions but plateaus between 65 and 100% of maximum rated engine thrust, while the EI for NO(x) increases continuously. At high engine power, NO(x) EI is greater when combusting traditional (JP-8) rather than Fischer-Tropsch fuels, while HONO exhibits the opposite trend. Additionally, hydrogen peroxide (H(2)O(2)) was identified in exhaust plumes emitted only during engine idle. Chemical reactions responsible for emissions and comparison to previous measurement studies are discussed.

  19. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1983-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  20. An improved infrared carbon monoxide analyser for routine measurements aboard commercial airbus aircraft: Technical validation and first scientific results of the MOZAIC III programme

    Directory of Open Access Journals (Sweden)

    P. Nedelec

    2003-07-01

    Full Text Available The European-funded MOZAIC programme (Measurements of ozone and water vapour by Airbus in-service aircraft has been operational since 1994 aboard 5 commercial Airbus A340. It has gathered ozone and water vapour data between the ground and an altitude of 12 km from more than 20 000 long-range flights. A new infrared carbon monoxide analyser has been developed for installation on the MOZAIC equipped aircraft. Improvements in the basic characteristics of a commercial CO analysers have achieved performance suitable for routine aircraft measurements : ±5 ppbv, ±5% precision for a 30 s response time. The first year of operation on board 4 aircraft with more than 900 flights has proven the reliability and the usefulness of this CO analyser. The first scientific results are presented here, including UTLS exchange events and pollution within the boundary layer.

  1. Resilient Propulsion Control Research for the NASA Integrated Resilient Aircraft Control (IRAC) Project

    Science.gov (United States)

    Guo, Ten-Huei; Litt, Jonathan S.

    2007-01-01

    Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.

  2. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project KDP-C Review

    Science.gov (United States)

    Grindle, Laurie; Sakahara, Robert; Hackenberg, Davis; Johnson, William

    2017-01-01

    The topics discussed are the UAS-NAS project life-cycle and ARMD thrust flow down, as well as the UAS environments and how we operate in those environments. NASA's Armstrong Flight Research Center at Edwards, CA, is leading a project designed to help integrate unmanned air vehicles into the world around us. The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS in the NAS, will contribute capabilities designed to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The project falls under the Integrated Systems Research Program office managed at NASA Headquarters by the agency's Aeronautics Research Mission Directorate. NASA's four aeronautics research centers - Armstrong, Ames Research Center, Langley Research Center, and Glenn Research Center - are part of the technology development project. With the use and diversity of unmanned aircraft growing rapidly, new uses for these vehicles are constantly being considered. Unmanned aircraft promise new ways of increasing efficiency, reducing costs, enhancing safety and saving lives 460265main_ED10-0132-16_full.jpg Unmanned aircraft systems such as NASA's Global Hawks (above) and Predator B named Ikhana (below), along with numerous other unmanned aircraft systems large and small, are the prime focus of the UAS in the NAS effort to integrate them into the national airspace. Credits: NASA Photos 710580main_ED07-0243-37_full.jpg The UAS in the NAS project envisions performance-based routine access to all segments of the national airspace for all unmanned aircraft system classes, once all safety-related and technical barriers are overcome. The project will provide critical data to such key stakeholders and customers as the Federal Aviation Administration and RTCA Special Committee 203 (formerly the Radio Technical Commission for Aeronautics) by conducting integrated, relevant system-level tests to adequately address

  3. Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft

    Science.gov (United States)

    Stone, R. H.

    1984-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  4. Emissions of greenhouse gases and air pollutants from commercial aircraft at international airports in Korea

    Science.gov (United States)

    Song, Sang-Keun; Shon, Zang-Ho

    2012-12-01

    The emissions of greenhouse gases (GHGs) and air pollutants from aircraft in the boundary layer at four major international airports in Korea over a two-year period (2009-2010) were estimated using the Emissions and Dispersion Modeling System (EDMS) (i.e. activity-based (Landing/Take-Off (LTO) cycle) methodology). Both domestic and international LTOs and ground support equipment at the airports were considered. The average annual emissions of GHGs (CO2, N2O, CH4 and H2O) at all four airports during the study period were 1.11 × 103, 1.76 × 10-2, -1.85 × 10-3 and 3.84 × 108 kt yr-1, respectively. The emissions of air pollutants (NOx, CO, VOCs and particulate matter) were 5.20, 4.12, 7.46 × 10-1 and 3.37 × 10-2 kt yr-1, respectively. The negative CH4 emission indicates the consumption of atmospheric CH4 in the engine. The monthly and daily emissions of GHGs and air pollutants showed no significant variations at all airports examined. The emissions of GHGs and air pollutants for each aircraft operational mode differed considerably, with the largest emission observed in taxi-out mode.

  5. NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff.

    Science.gov (United States)

    Herndon, Scott C; Shorter, Joanne H; Zahniser, Mark S; Nelson, David D; Jayne, John; Brown, Robert C; Miake-Lye, Richard C; Waitz, Ian; Silva, Phillip; Lanni, Thomas; Demerjian, Ken; Kolb, Charles E

    2004-11-15

    In August 2001, the Aerodyne Mobile Laboratory simultaneously measured NO, NO2, and CO2 within 350 m of a taxiway and 550 m of a runway at John F. Kennedy Airport. The meteorological conditions were such that taxi and takeoff plumes from individual aircraft were clearly resolved against background levels. NO and NO2 concentrations were measured with 1 s time resolution using a dual tunable infrared laser differential absorption spectroscopy instrument, utilizing an astigmatic multipass Herriott cell. The CO2 measurements were also obtained at 1 s time resolution using a commercial non-dispersive infrared absorption instrument. Plumes were measured from over 30 individual planes, ranging from turbo props to jumbo jets. NOx emission indices were determined by examining the correlation between NOx (NO + NO2) and CO2 during the plume measurements. Several aircraft tail numbers were unambiguously identified, allowing those specific airframe/engine combinations to be determined. The resulting NOx emission indices from positively identified in-service operating airplanes are compared with the published International Civil Aviation Organization engine certification test database collected on new engines in certification test cells.

  6. Comparison of Military and Commercial Design-to-Cost Aircraft Procurement and Operational Support Practices

    Science.gov (United States)

    1975-07-01

    oAft"uAt S 3. PA 7- 2 Figure 18. Typical Commercial Test Plan 52 The military Category I flight test program accomplishes essentially the same tesi ...Bur~-s cide . - perating Procedures, etc._ - as they relate to AVACS. i910 SPECIFIC (continued) 10. The nearly unanimous comment, that there is

  7. Travel health: a survey of life jacket designs currently in use on commercial aircraft.

    Science.gov (United States)

    Bauer, Irmgard L

    2002-01-01

    Although any travel harbors potential health problems, travel across water poses the additional risk of involuntary contact with water in the event of an emergency. Studies suggest that fatal boat-related accidents have occurred due to the passengers' inability to don their life jackets. With the dramatic increase of long-haul flights, it was decided to investigate if potential safety hazards can be identified leading to similar problems in relation to the life jackets provided onboard aircraft. It was assumed that the variety of designs combined with a possible lack of attention paid to safety instructions could represent such a problem. Safety instruction cards in passengers' seat pockets usually depict the life jacket model used on a particular aircraft. Ninety-eight such safety cards from 53 airlines were analyzed and categorized to identify the range and variety of designs currently in use. Twelve different categories of life jacket models could be distinguished with some airlines using more than one model. It was also found that not all cards show a clear depiction of the models used, the cards of two airlines show two different designs on the same cards, and two other companies chose to change the model halfway through the pictured donning procedure. There is a wide variety of life jacket designs in use with the safety cards not always giving accurate instructions. This variety also has implications for the safety demonstration at the beginning of a flight. Further research is recommended into a range of topics, one being the quality and content of these instructions, and also into other personal floating devices provided for the safety of travelers in the event of an emergency over water.

  8. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    Science.gov (United States)

    Barrett, Ronald M.; Barrett, Cassandra M.

    2014-07-01

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad-1. Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  9. INTEGRITY OF GLASS/EPOXY AIRCRAFT COMPOSITE PART REPAIRED USING FIVE DIFFERENT METHODS

    Directory of Open Access Journals (Sweden)

    IEA AGHACHI

    2013-01-01

    Full Text Available Aircraft repairs are considered permanent repairs. This type of permanent repair is time- consuming and needs to be accomplished in a well-guided specification and precise accuracy. The critical demand for aircraft repaired part is to meet the integrity of the original parent body while in-service, which does not give room for trial anderror. Similarly, the cost of discarding parts that have minor to medium surface damage is very high. In this work, an experimental work was carried out to find other viable repair method that could be applied to surface repair of an aircraft. It was found that the pre-preg method is still the most preferred. The infusion process, ifperformed under well-controlled environment, can be good substitute for wet layup.

  10. Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations

    Science.gov (United States)

    Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray

    2013-01-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  11. Aircrew-aircraft integration issues in future US Army helicopters

    Science.gov (United States)

    Hartzell, E. J.; Aiken, E. W.; Voorhees, J. W.

    1984-01-01

    Some human factors research issues, the resolution of which will be vital to the successful operation of future military helicopters are reviewed. Understanding and reducing the helicopter pilot's workload is examined by a diverse program directed at answering some of the more fundamental questions relating to the transfer displays and interactions between pilot and automated systems. The results of three experimental studies which address the issues of display control compatibility, characteristics of integrated controllers, and voice systems are presented.

  12. Remotely Piloted Aircraft: An Integrated Domestic Disaster Relief Plan

    Science.gov (United States)

    2014-12-01

    Defense (DOD) should coordinate with the Federal Aviation Administration (FAA) and Federal Emergency Management Agency (FEMA) to integrate its RPAs... emergency response. The Department of Defense (DOD) should coordinate with the Federal Aviation Administration (FAA) and Federal Emergency Management...such as localized emergencies requiring search and rescue assets, especially if they do not detract from the DOD’s mission. One example would be a

  13. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    Science.gov (United States)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  14. CFD Study of NOx Emissions in a Model Commercial Aircraft Engine Combustor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Man; FU Zhenbo; LIN Yuzhen; LI Jibao

    2012-01-01

    Air worthiness requirements of the aircraft engine emission bring new challenges to the combustor research and design.With the motivation to design high performance and clean combustor,computational fluid dynamics (CFD) is utilized as the powerful design approach.In this paper,Reynolds averaged Navier-Stokes (RANS) equations of reactive two-phase flow in an experimental low emission combustor is performed.The numerical approach uses an implicit compressible gas solver together with a Lagrangian liquid-phase tracking method and the extended coherent flamelet model for turbulence-combustion interaction.The NOx formation is modeled by the concept of post-processing,which resolves the NOx transport equation with the assumption of frozen temperature distribution.Both turbulence-combustion interaction model and NOx formation model are firstly evaluated by the comparison of experimental data published in open literature of a lean direct injection (LDI) combustor.The test rig studied in this paper is called low emission stirred swirl (LESS) combustor,which is a two-stage model combustor,fueled with liquid kerosene (RP-3) and designed by Beihang University (BUAA).The main stage of LESS combustor employs the principle of lean prevaporized and premixed (LPP) concept to reduce pollutant,and the pilot stage depends on a diffusion flame for flame stabilization.Detailed numerical results including species distribution,turbulence performance and burning performance are qualitatively and quantitatively evaluated.Numerical prediction of NOx emission shows a good agreement with test data at both idle condition and full power condition of LESS combustor.Preliminary results of the flame structure are shown in this paper.The flame stabilization mechanism and NOx reduction effort are also discussed with in-depth analysis.

  15. Aircrew-aircraft integration: A summary of US Army research programs and plans

    Science.gov (United States)

    Key, D. L.; Aiken, E. W.

    1984-01-01

    A review of selected programs which illustrate the research efforts of the U.S. Army Aeromechanics Laboratory in the area of aircrew-aircraft integration is presented. Plans for research programs to support the development of future military rotorcraft are also described. The crew of a combat helicopter must, in general, perform two major functions during the conduct of a particular mission: flightpath control and mission management. Accordingly, the research programs described are being conducted in the same two major categories: (1) flightpath control, which encompasses the areas of handling qualities, stability and control, and displays for the pilot's control of the rotorcraft's flightpath, and (2) mission management, which includes human factors and cockpit integration research topics related to performance of navigation, communication, and aircraft systems management tasks.

  16. Aircrew-aircraft integration - A summary of U.S. Army research programs and plans

    Science.gov (United States)

    Key, D. L.; Aiken, E. W.

    1984-01-01

    A review of selected programs which illustrate the research efforts of the U.S. Army Aeromechanics Laboratory in the area of aircrew-aircraft integration is presented. Plans for research programs to support the development of future military rotorcraft are also described. The crew of a combat helicopter must, in general, perform two major functions during the conduct of a particular mission: flightpath control and mission management. Accordingly, the research programs described are being conducted in the same two major categories: (1) flightpath control, which encompasses the areas of handling qualities, stability and control, and displays for the pilot's control of the rotorcraft's flightpath, and (2) mission management, which includes human factors and cockpit integration research topics related to performance of navigation, communication, and aircraft systems management tasks.

  17. Vehicle Scheduling Schemes for Commercial and Emergency Logistics Integration

    OpenAIRE

    Xiaohui Li; Qingmei Tan

    2013-01-01

    In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively ...

  18. An analytical sensitivity method for use in integrated aeroservoelastic aircraft design

    Science.gov (United States)

    Gilbert, Michael G.

    1989-01-01

    Interdisciplinary analysis capabilities have been developed for aeroservoelastic aircraft and large flexible spacecraft, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Gaussian (LQG) optimal control laws, enabling the use of LQG techniques in the hierarchal design methodology. The LQG sensitivity analysis method calculates the change in the optimal control law and resulting controlled system responses due to changes in fixed design integration parameters using analytical sensitivity equations. Numerical results of a LQG design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimal control law and aircraft response for various parameters such as wing bending natural frequency is determined. The sensitivity results computed from the analytical expressions are used to estimate changes in response resulting from changes in the parameters. Comparisons of the estimates with exact calculated responses show they are reasonably accurate for + or - 15 percent changes in the parameters. Evaluation of the analytical expressions is computationally faster than equivalent finite difference calculations.

  19. Aging Evaluation Programs for Jet Transport Aircraft Structural Integrity

    Directory of Open Access Journals (Sweden)

    Borivoj Galović

    2012-10-01

    Full Text Available The paper deals with criteria and procedures in evaluationof timely preventive maintenance recommendations that willsupport continued safe operation of aging jet transports untiltheir retirement from service. The active service life of commercialaircraft has increased in recent years as a result of low fuelcost, and increasing costs and delivery times for fleet replacements.Air transport industry consensus is that older jet transportswill continue in service despite anticipated substantial increasesin required maintenance. Design concepts, supportedby testing, have worked well due to the system that is used to ensureflying safety. Continuing structural integrity by inspectionand overhaul recommendation above the level contained inmaintenance and service bulletins is additional requirement, insuch cases. Airplane structural safety depends on the performanceof all participants in the system and the responsibility forsafety cannot be delegated to a single participant. This systemhas three major participants: the manufacturers who design,build and support airplanes in service, the airlines who operate,inspect and mantain airplanes and the airworthiness authoritieswho establish rules and regulations, approve the design andpromote airline maintenance performance.

  20. Influence of environmental factors on corrosion damage of aircraft structure

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Corrosion is one of the important structural integrity concerns of aging aircraft, and it is estimated that a significant portion of airframe maintenance budgets is directed towards corrosion-related problems for both military and commercial aircraft. In order to better understand how environmental factors influence the corrosion damage initiation and propagation on aircraft structure and to predict pre-corrosion test pieces of fatigue life and structural integrity of an effective approach, this paper uses ...

  1. A High-Fidelity Simulation of a Generic Commercial Aircraft Engine and Controller

    Science.gov (United States)

    May, Ryan D.; Csank, Jeffrey; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2010-01-01

    A new high-fidelity simulation of a generic 40,000 lb thrust class commercial turbofan engine with a representative controller, known as CMAPSS40k, has been developed. Based on dynamic flight test data of a highly instrumented engine and previous engine simulations developed at NASA Glenn Research Center, this non-proprietary simulation was created especially for use in the development of new engine control strategies. C-MAPSS40k is a highly detailed, component-level engine model written in MATLAB/Simulink (The MathWorks, Inc.). Because the model is built in Simulink, users have the ability to use any of the MATLAB tools for analysis and control system design. The engine components are modeled in C-code, which is then compiled to allow faster-than-real-time execution. The engine controller is based on common industry architecture and techniques to produce realistic closed-loop transient responses while ensuring that no safety or operability limits are violated. A significant feature not found in other non-proprietary models is the inclusion of transient stall margin debits. These debits provide an accurate accounting of the compressor surge margin, which is critical in the design of an engine controller. This paper discusses the development, characteristics, and capabilities of the C-MAPSS40k simulation

  2. Commercial multicopter unmanned aircraft system as a tool for early stage forest survey after wind damage

    Science.gov (United States)

    Mokros, Martin; Vybostok, Jozef; Merganic, Jan; Tomastik, Julian; Cernava, Juraj

    2017-04-01

    In recent years unmanned aircraft systems (UAS) are objects of research in many areas. This trend can be seen also in forest research where researchers are focusing on height, diameter and tree crown measurements, monitoring of forest fire, forest gaps and health condition. Our research is focusing on the use of UAS for detecting areas disturbed by wind and deriving the volume of fallen trees for management purposes. This information is crucial after the wind damage happened. We used DJI Phantom 2 Vision+ and acquired the imagery of one forest stand (5.7 ha). The UAS is a quadcopter "all in one" solution. It has a built-in camera with gimbal and a remote controller. The camera is controlled through the application (android/ios). The built-in camera has an image resolution of 4384×3288 (14 megapixels). We have placed five crosses within the plot to be able to georeference the point cloud from UAS. Their positions were measured by Topcon Hiper GGD survey-grade GNSS receiver. We measured the border of damaged area by four different GNSS devices - GeoExplorer 6000, Trimble Nomad, Garmin GPSMAP 60 CSx and by smartphone Sony Xperia X. To process images from UAS we used Agisoft Photoscan Professional, while ArcGIS 10.2 was used to calculate and compare the areas . From the UAS point cloud we calculated DTM and DSM and deducted them. The areas where the difference was close to zero (-0.2 to 0.2) were signed as potentially wind damage areas. Then we filtered the areas that were not signed correctly (for example routes). The calculated area from UAS was 2.66 ha, GeoExplorer 6000 was 2.20 ha, Nomad was 2.06 ha, Garmin was 2.21 ha and from Xperia was the area 2.24 ha. The differences between UAS and GPS devices vary from 0.42 ha to 0.6 ha. The differences were mostly caused by inability to detect small spots of fallen trees on UAS data. These small spots are difficult to measure by GPS devices because the signal is very poor under tree crowns and also it is difficult to find

  3. Optimal turning climb-out and descent of commercial jet aircraft

    Science.gov (United States)

    Neuman, F.; Kreindler, E.

    1982-01-01

    Optimal turning climb-out and descent flight-paths from and to runway headings are derived to provide the missing elements of a complete flight-path optimization for minimum fuel consumption. The paths are derived by generating a field of extremals, using the necessary conditions of optimal control. Results show that the speed profiles for straight and turning flight are essentially identical, except for the final horizontal accelerating or decelerating turn. The optimal turns, which require no abrupt maneuvers, could easily be integrated with present climb-cruise-descent fuel-optimization algorithms.

  4. Fiber-channel audio video standard for military and commercial aircraft product lines

    Science.gov (United States)

    Keller, Jack E.

    2002-08-01

    Fibre channel is an emerging high-speed digital network technology that combines to make inroads into the avionics arena. The suitability of fibre channel for such applications is largely due to its flexibility in these key areas: Network topologies can be configured in point-to-point, arbitrated loop or switched fabric connections. The physical layer supports either copper or fiber optic implementations with a Bit Error Rate of less than 10-12. Multiple Classes of Service are available. Multiple Upper Level Protocols are supported. Multiple high speed data rates offer open ended growth paths providing speed negotiation within a single network. Current speeds supported by commercially available hardware are 1 and 2 Gbps providing effective data rates of 100 and 200 MBps respectively. Such networks lend themselves well to the transport of digital video and audio data. This paper summarizes an ANSI standard currently in the final approval cycle of the InterNational Committee for Information Technology Standardization (INCITS). This standard defines a flexible mechanism whereby digital video, audio and ancillary data are systematically packaged for transport over a fibre channel network. The basic mechanism, called a container, houses audio and video content functionally grouped as elements of the container called objects. Featured in this paper is a specific container mapping called Simple Parametric Digital Video (SPDV) developed particularly to address digital video in avionics systems. SPDV provides pixel-based video with associated ancillary data typically sourced by various sensors to be processed and/or distributed in the cockpit for presentation via high-resolution displays. Also highlighted in this paper is a streamlined Upper Level Protocol (ULP) called Frame Header Control Procedure (FHCP) targeted for avionics systems where the functionality of a more complex ULP is not required.

  5. N plus 3 Advanced Concept Studies for Supersonic Commercial Transport Aircraft Entering Service in the 2030-2035 Period

    Science.gov (United States)

    Welge, H. Robert; Bonet, John; Magee, Todd; Tompkins, Daniel; Britt, Terry R.; Nelson, Chet; Miller, Gregory; Stenson, Douglas; Staubach, J. Brent; Bala, Naushir; hide

    2011-01-01

    Boeing, with Pratt & Whitney, General Electric, Rolls-Royce, M4 Engineering, Wyle Laboratories and Georgia Institute of Technology, conducted a study of supersonic commercial aircraft concepts and enabling technologies for the year 2030-2035 timeframe. The work defined the market and environmental/regulatory conditions that could evolve by the 2030/35 time period, from which vehicle performance goals were derived. Relevant vehicle concepts and technologies are identified that are anticipated to meet these performance and environmental goals. A series of multidisciplinary analyses trade studies considering vehicle sizing, mission performance and environmental conformity determined the appropriate concepts. Combinations of enabling technologies and the required technology performance levels needed to meet the desired goals were identified. Several high priority technologies are described in detail, including roadmaps with risk assessments that outline objectives, key technology challenges, detailed tasks and schedules and demonstrations that need to be performed. A representative configuration is provided for reference purposes, along with associated performance estimates based on these key technologies.

  6. Vehicle scheduling schemes for commercial and emergency logistics integration.

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    Full Text Available In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models.

  7. Vehicle scheduling schemes for commercial and emergency logistics integration.

    Science.gov (United States)

    Li, Xiaohui; Tan, Qingmei

    2013-01-01

    In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models.

  8. Integrated Mode Choice, Small Aircraft Demand, and Airport Operations Model User's Guide

    Science.gov (United States)

    Yackovetsky, Robert E. (Technical Monitor); Dollyhigh, Samuel M.

    2004-01-01

    A mode choice model that generates on-demand air travel forecasts at a set of GA airports based on changes in economic characteristics, vehicle performance characteristics such as speed and cost, and demographic trends has been integrated with a model to generate itinerate aircraft operations by airplane category at a set of 3227 airports. Numerous intermediate outputs can be generated, such as the number of additional trips diverted from automobiles and schedule air by the improved performance and cost of on-demand air vehicles. The total number of transported passenger miles that are diverted is also available. From these results the number of new aircraft to service the increased demand can be calculated. Output from the models discussed is in the format to generate the origin and destination traffic flow between the 3227 airports based on solutions to a gravity model.

  9. Application of supersonic particle deposition to enhance the structural integrity of aircraft structures

    Science.gov (United States)

    Matthews, N.; Jones, R.; Sih, G. C.

    2014-01-01

    Aircraft metal components and structures are susceptible to environmental degradation throughout their original design life and in many cases their extended lives. This paper summarizes the results of an experimental program to evaluate the ability of Supersonic Particle Deposition (SPD), also known as cold spray, to extend the limit of validity (LOV) of aircraft structural components and to restore the structural integrity of corroded panels. In this study [LU1]the potential for the SPD to seal the mechanically fastened joints and for this seal to remain intact even in the presence of multi-site damage (MSD) has been evaluated. By sealing the joint the onset of corrosion damage in the joint can be significantly retarded, possibly even eliminated, thereby dramatically extending the LOV of mechanically fastened joints. The study also shows that SPD can dramatically increase the damage tolerance of badly corroded wing skins.

  10. Research Ethics and Commercial Drug Development: When Integrity Threatens Profitability

    Directory of Open Access Journals (Sweden)

    Bélisle Pipon, Jean-Christophe

    2016-05-01

    Full Text Available This case, based on personal experiences and on those found in the literature, highlights the delicate tension faced by drug development companies having to balance research integrity and their profitability.

  11. Integration and In-Field Gains Selection of Flight and Navigation Controller for Remotely Piloted Aircraft System

    Directory of Open Access Journals (Sweden)

    Słowik Maciej

    2017-03-01

    Full Text Available In the paper the implementation process of commercial flight and navigational controller in own aircraft is shown. The process of autopilot integration were performed for the fixed-wing type of unmanned aerial vehicle designed in high-wing and pull configuration of the drive. The above equipment were integrated and proper software control algorithms were chosen. The correctness of chosen hardware and software solution were verified in ground tests and experimental flights. The PID controllers for longitude and latitude controller channels were selected. The proper deflections of control surfaces and stabilization of roll, pitch and yaw angles were tested. In the next stage operation of telecommunication link and flight stabilization were verified. In the last part of investigations the preliminary control gains and configuration parameters for roll angle control loop were chosen. This enable better behavior of UAV during turns. Also it affected other modes of flight such as loiter (circle around designated point and auto mode where the plane executed a pre-programmed mission.

  12. Instrumentation on commercial aircraft for monitoring the atmospheric composition on a global scale: the IAGOS system, technical overview of ozone and carbon monoxide measurements

    Directory of Open Access Journals (Sweden)

    Phillipe Nédélec

    2015-06-01

    Full Text Available This article presents the In-service Aircraft of a Global Observing System (IAGOS developed for operations on commercial long-range Airbus aircraft (A330/A340 for monitoring the atmospheric composition. IAGOS is the continuation of the former Measurement of OZone and water vapour on Airbus In-service airCraft (MOZAIC programme (1994–2014 with five aircraft operated by European airlines over 20 yr. MOZAIC has provided unique scientific database used worldwide by the scientific community. In continuation of MOZAIC, IAGOS aims to equip a fleet up to 20 aircraft around the world and for operations over decades. IAGOS started in July 2011 with the first instruments installed aboard a Lufthansa A340-300, and a total of six aircraft are already in operation. We present the technical aircraft system concept, with basic instruments for O3, CO, water vapour and clouds; and optional instruments for measuring either NOy, NOx, aerosols or CO2/CH4. In this article, we focus on the O3 and CO instrumentation while other measurements are or will be described in specific papers. O3 and CO are measured by optimised but well-known methods such as UV absorption and IR correlation, respectively. We describe the data processing/validation and the data quality control for O3 and CO. Using the first two overlapping years of MOZAIC/IAGOS, we conclude that IAGOS can be considered as the continuation of MOZAIC with the same data quality of O3 and CO measurements.

  13. Research on the Cockpit Design Characteristics for Commercial Aircraft%商用飞机驾驶舱造型设计特征研究

    Institute of Scientific and Technical Information of China (English)

    刘岗; 刘春荣

    2015-01-01

    This paper introduces the history and current situation of cockpit modeling design from Commercial Air-craft Corporation of China and other nations. First of all,a wide research was taken including an investigation of 5 different aircrafts and a collection of different types of aircraft cockpit pictures. Based on these, the design logic of different aircraft manufacturers was concluded. Sixty six cockpits from 12 aircraft companies are used as the cus-tomer research and cluster analysis and 10 typical cockpits are chosen from them. After that, the cockpit design characteristics and differences from main aircraft manufacturers are analyzed. The research provides a good refer-ence for new aircraft cockpit design.%介绍了国内外商用飞机驾驶舱设计的历史及现状,在分析多类飞机驾驶舱造型设计图片资料的基础上,探讨主要飞机制造商驾驶舱造型设计的特征。依据驾驶舱造型的相似性,对国际上12家商用飞机制造商的66款机型的驾驶舱进行聚类分析和多维尺度分析,挑选出10款有代表性的驾驶舱。在提取代表性驾驶舱造型特征线后,分析主要飞机制造商的驾驶舱造型设计特点及差异,为新型飞机驾驶舱造型设计提供参考。

  14. Aircraft energy efficiency laminar flow control wing design study

    Science.gov (United States)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.

    1977-01-01

    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  15. An Integrated Knowledge Based Engineering Mechatronics Modeling Approach to Support the Design of Unstable and Unmanned Aircraft

    NARCIS (Netherlands)

    Tian, F.N.

    2015-01-01

    The commercial transport aircraft industry is currently developing new “more electric aircraft” (MEA) designs in which various conventional mechanical, hydraulic and pneumatic power systems are replaced with electrically-based power systems. Their objective is to improve the overall flight

  16. An Integrated Knowledge Based Engineering Mechatronics Modeling Approach to Support the Design of Unstable and Unmanned Aircraft

    NARCIS (Netherlands)

    Tian, F.N.

    2015-01-01

    The commercial transport aircraft industry is currently developing new “more electric aircraft” (MEA) designs in which various conventional mechanical, hydraulic and pneumatic power systems are replaced with electrically-based power systems. Their objective is to improve the overall flight performan

  17. The Retail Romanian Market and the Functional Integrated Commercial Centers

    Directory of Open Access Journals (Sweden)

    Ionica SOARE

    2007-01-01

    Full Text Available The Romanian trade is passing through a transforming process, both for what the nature of the involved economic agents are concerned and the methods, techniques, knowledge etc. necessary for the activities within this economic field. Many of the favourable changes have been produced both under the influence of the large foreign retail groups (especially the European ones, present at themoment on the Romanian market too, and the impact of certain legislativeregulations applicable in this field. Right from the beginning of the “postDecember” period, there was an imperative need as far as the trade developmentwas concerned, as well as the creation of an urban framework that should offeroptimal conditions to carry out trading activities. The implementation of the foreignretail groups (including the large commercial centers has brought to our countrythe practices and commercial policies encountered in the civilized world, imposing at the same time the practice of the real competition, accompanied by a series of more or less favourable consequences, both at the local and national level. By the mid of March 2008, the hypermarket and supermarket type of market chains, discount and cash & carry markets (over 40 is going through an extension process, a fact which is to be observed in the huge number of markets in Romania, the Romanian market being open for the foreign investments.

  18. Multi-Objective Climb Path Optimization for Aircraft/Engine Integration Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Aristeidis Antonakis

    2017-04-01

    Full Text Available In this article, a new multi-objective approach to the aircraft climb path optimization problem, based on the Particle Swarm Optimization algorithm, is introduced to be used for aircraft–engine integration studies. This considers a combination of a simulation with a traditional Energy approach, which incorporates, among others, the use of a proposed path-tracking scheme for guidance in the Altitude–Mach plane. The adoption of population-based solver serves to simplify case setup, allowing for direct interfaces between the optimizer and aircraft/engine performance codes. A two-level optimization scheme is employed and is shown to improve search performance compared to the basic PSO algorithm. The effectiveness of the proposed methodology is demonstrated in a hypothetic engine upgrade scenario for the F-4 aircraft considering the replacement of the aircraft’s J79 engine with the EJ200; a clear advantage of the EJ200-equipped configuration is unveiled, resulting, on average, in 15% faster climbs with 20% less fuel.

  19. Advanced aerodynamic design for commercial aircraft%民机空气动力设计先进技术

    Institute of Scientific and Technical Information of China (English)

    朱自强

    2016-01-01

    文章简要地介绍了两种民机空气动力先进设计技术的概念及其研究进展。一为层流流动主动控制技术。其核心措施是减弱流动的不稳定性,推迟转捩的发生,从而增大层流流动区域。目前混合层流流动控制方法发展比较充分,有望应用于未来民机的设计中。另一为新型非常规布局,包括翼身融合体、支撑机翼、吞吸机身边界层等新型气动布局,这些均有望大大提高未来民机的性能。%The concepts and the research on two kinds of advanced aerodynamic technolo-gy are briefly reviewed. One is laminar flow active control, which focuses on increasing the lami-nar flow region through decreasing flow instability and delaying the transition. A hybrid laminar flow control method has now been developed and probably will be used in future design. The other is a new type of aerodynamic shape, which can greatly increase the performance of commercial transport aircraft. Three new types of configuration——the blended wing body, strut-braced wing, and body boundary layer ingestion will be briefly described.

  20. SOLUTION MANAGMET’S TASK INTEGRATED SYSTEM OF UNMANNED AIRCRAFT IN CONDITIONS OF UNCERTAINITY

    Directory of Open Access Journals (Sweden)

    Anvar Hazarkhanov

    2011-03-01

    Full Text Available Abstract. In this article the methods of increase the efficiency of the compensation of indignations of theonboard integrated control systems of Unmanned Aircrafts are considered. On the basis of generalizationthe disadvantages of inertial and satellite navigation systems it was revealed, that as a result of theinsufficient compensation of indignations these systems lose a stable condition. They are exposed to barriersand there is unlimited growth of mistakes in time. For the solution of this actual problem of the onboardintegrated control systems a method of increase the efficiency of the compensation of indignations of nonstationarylinear systems in the conditions of uncertainty with the observer and with the correction bymistake of recovery was suggested. For this purpose the conditions of uncertainty were mathematicallystated, the equations of the onboard integrated control systems were completed, as non-stationary object ofmanagement, the observer with correction by mistake of recovery and a matrix of factor of strengthening ofthe observer are made. As a result the system is asymptotically stable to low-frequency indignations and theaccumulation of an error in time at high-frequency indignations is eliminated.Keywords: a condition of uncertainty, a matrix of factor of strengthening of the observer, iasymptoticalstability, low-frequency and high-frequency indignations, nertial and satellite navigation systems, nonstationarylinear systems, onboard integrated control systems, the observer with a correction by mistake ofrecovery, unmanned aircrafts.

  1. Two pricing methods for solving an integrated commercial fishery ...

    African Journals Online (AJOL)

    ... Millar HH & Newbold SM, 1991, A model for planning harvesting and marketing ... ing a large-scale MILP model for an integrated fishery, Journal of Applied ... market-clearing prices in markets with non-convexities, European Journal of ...

  2. Packaging commercial CMOS chips for lab on a chip integration.

    Science.gov (United States)

    Datta-Chaudhuri, Timir; Abshire, Pamela; Smela, Elisabeth

    2014-05-21

    Combining integrated circuitry with microfluidics enables lab-on-a-chip (LOC) devices to perform sensing, freeing them from benchtop equipment. However, this integration is challenging with small chips, as is briefly reviewed with reference to key metrics for package comparison. In this paper we present a simple packaging method for including mm-sized, foundry-fabricated dies containing complementary metal oxide semiconductor (CMOS) circuits within LOCs. The chip is embedded in an epoxy handle wafer to yield a level, large-area surface, allowing subsequent photolithographic post-processing and microfluidic integration. Electrical connection off-chip is provided by thin film metal traces passivated with parylene-C. The parylene is patterned to selectively expose the active sensing area of the chip, allowing direct interaction with a fluidic environment. The method accommodates any die size and automatically levels the die and handle wafer surfaces. Functionality was demonstrated by packaging two different types of CMOS sensor ICs, a bioamplifier chip with an array of surface electrodes connected to internal amplifiers for recording extracellular electrical signals and a capacitance sensor chip for monitoring cell adhesion and viability. Cells were cultured on the surface of both types of chips, and data were acquired using a PC. Long term culture (weeks) showed the packaging materials to be biocompatible. Package lifetime was demonstrated by exposure to fluids over a longer duration (months), and the package was robust enough to allow repeated sterilization and re-use. The ease of fabrication and good performance of this packaging method should allow wide adoption, thereby spurring advances in miniaturized sensing systems.

  3. Hydrogen aircraft technology

    Science.gov (United States)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  4. Analyses of integrated aircraft cabin contaminant monitoring network based on Kalman consensus filter.

    Science.gov (United States)

    Wang, Rui; Li, Yanxiao; Sun, Hui; Chen, Zengqiang

    2017-07-11

    The modern civil aircrafts use air ventilation pressurized cabins subject to the limited space. In order to monitor multiple contaminants and overcome the hypersensitivity of the single sensor, the paper constructs an output correction integrated sensor configuration using sensors with different measurement theories after comparing to other two different configurations. This proposed configuration works as a node in the contaminant distributed wireless sensor monitoring network. The corresponding measurement error models of integrated sensors are also proposed by using the Kalman consensus filter to estimate states and conduct data fusion in order to regulate the single sensor measurement results. The paper develops the sufficient proof of the Kalman consensus filter stability when considering the system and the observation noises and compares the mean estimation and the mean consensus errors between Kalman consensus filter and local Kalman filter. The numerical example analyses show the effectiveness of the algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Relative receiver autonomous integrity monitoring for future GNSS-based aircraft navigation

    Science.gov (United States)

    Gratton, Livio Rafael

    The Global Positioning System (GPS) has enabled reliable, safe, and practical aircraft positioning for en-route and non-precision phases of flight for more than a decade. Intense research is currently devoted to extending the use of Global Navigation Satellite Systems (GNSS), including GPS, to precision approach and landing operations. In this context, this work is focused on the development, analysis, and verification of the concept of Relative Receiver Autonomous Integrity Monitoring (RRAIM) and its potential applications to precision approach navigation. RRAIM fault detection algorithms are developed, and associated mathematical bounds on position error are derived. These are investigated as possible solutions to some current key challenges in precision approach navigation, discussed below. Augmentation systems serving continent-size areas (like the Wide Area Augmentation System or WAAS) allow certain precision approach operations within the covered region. More and better satellites, with dual frequency capabilities, are expected to be in orbit in the mid-term future, which will potentially allow WAAS-like capabilities worldwide with a sparse ground station network. Two main challenges in achieving this goal are (1) ensuring that navigation fault detection functions are fast enough to alert worldwide users of hazardously misleading information, and (2) minimizing situations in which navigation is unavailable because the user's local satellite geometry is insufficient for safe position estimation. Local augmentation systems (implemented at individual airports, like the Local Area Augmentation System or LAAS) have the potential to allow precision approach and landing operations by providing precise corrections to user-satellite range measurements. An exception to these capabilities arises during ionospheric storms (caused by solar activity), when hazardous situations can exist with residual range errors several orders of magnitudes higher than nominal. Until dual

  6. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    Science.gov (United States)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  7. Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems

    Science.gov (United States)

    Axisa, Duncan; DeFelice, Tom P.

    2016-09-01

    Present-day weather modification technologies are scientifically based and have made controlled technological advances since the late 1990s, early 2000s. The technological advances directly related to weather modification have primarily been in the decision support and evaluation based software and modeling areas. However, there have been some technological advances in other fields that might now be advanced enough to start considering their usefulness for improving weather modification operational efficiency and evaluation accuracy. We consider the programmatic aspects underlying the development of new technologies for use in weather modification activities, identifying their potential benefits and limitations. We provide context and initial guidance for operators that might integrate unmanned aircraft systems technology in future weather modification operations.

  8. Methods of saving energy and materials in the manufacture of integrated aircraft structure components

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, J.C.; Welschof, K.; Janssen, W.; Mahlke, M.; Sprangers, W.; Binding, J.

    1987-11-01

    In the framework of a special research unit, methods for saving energy and raw materials are investigated for selected production processes. Integral construction components of the aircraft industry which today are mostly produced by metal-cutting processes, are the basis of the joint research work of six of the total of nineteen participating projects. Research is carried out on the possibilities for reducing the expenditure of material and energy by the application of alternative production processes in the field of primary shaping, deforming and joining as well as by structural optimization. By means of a computer-aided evaluation of the possible production methods, the alternatives can be compared with regard to their energy and raw material requirements.

  9. Proportional Plus Integral Control of Aircraft for Automated Maneuvering Formation Flight

    Science.gov (United States)

    1991-12-01

    3-11 3.6 Formation Kinematic Equations Development 3-12 3.7 Aircraft Longitudinal (X) Channel Maneuvering 3-17 3.8 Aircraft Lateral (Y...response of the respective aircraft . Longitudinal position along the flight path vector is a direct function of forward velocity. Velocity is determined by...equation is not needed. 3-16 3.7 Aircraft Longitudinal (X) Channel Maneuvering The longitudinal channel involves the longitudinal separation distance

  10. 19 CFR 122.49a - Electronic manifest requirement for passengers onboard commercial aircraft arriving in the United...

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Electronic manifest requirement for passengers.... CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew...

  11. Quality assessment of Automatic Dependent Surveillance Contract (ADS-C wind and temperature observation from commercial aircraft

    Directory of Open Access Journals (Sweden)

    S. de Haan

    2013-02-01

    Full Text Available Aircraft observations of wind and temperature are very important for upper air meteorology. In this article, the quality of the meteorological information of an Automatic Dependent Surveillance-Contract (ADS-C message is assessed. The ADS-C messages broadcast by the aircraft are received at air traffic control centres for surveillance and airline control centres for general aircraft and dispatch management. A comparison is performed against a global numerical prediction (NWP model and wind and temperature observations derived from Enhanced Surveillance (EHS air-traffic control radar which interrogates all aircraft in selective mode (Mode-S EHS. Almost 16 000 ADS-C reports with meteorological information were compiled from the Royal Dutch Airlines (KLM database. The length of the data set is 76 consecutive days and started on 1 January 2011. The wind and temperature observations are of good quality when compared to the global NWP forecast fields from the European Centre for Medium-Range Weather Forecasts (ECMWF. Comparison of ADS-C wind and temperature observations against Mode-S EHS derived observations in the vicinity of Amsterdam Airport Schiphol shows that the wind observations are of similar quality and the temperature observations of ADS-C are of better quality than those from Mode-S EHS. However, the current ADS-C data set has a lower vertical resolution than Mode-S EHS. High vertical resolution can be achieved by requesting more ADS-C when aircraft are ascending or descending, but could result in increased data communication costs.

  12. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    Science.gov (United States)

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft.

  13. Integrated Aerodynamic/Structural/Dynamic Analyses of Aircraft with Large Shape Changes

    Science.gov (United States)

    Samareh, Jamshid A.; Chwalowski, Pawel; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2007-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium-to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a

  14. Comparison of Aircraft Models and Integration Schemes for Interval Management in the TRACON

    Science.gov (United States)

    Neogi, Natasha; Hagen, George E.; Herencia-Zapana, Heber

    2012-01-01

    Reusable models of common elements for communication, computation, decision and control in air traffic management are necessary in order to enable simulation, analysis and assurance of emergent properties, such as safety and stability, for a given operational concept. Uncertainties due to faults, such as dropped messages, along with non-linearities and sensor noise are an integral part of these models, and impact emergent system behavior. Flight control algorithms designed using a linearized version of the flight mechanics will exhibit error due to model uncertainty, and may not be stable outside a neighborhood of the given point of linearization. Moreover, the communication mechanism by which the sensed state of an aircraft is fed back to a flight control system (such as an ADS-B message) impacts the overall system behavior; both due to sensor noise as well as dropped messages (vacant samples). Additionally simulation of the flight controller system can exhibit further numerical instability, due to selection of the integration scheme and approximations made in the flight dynamics. We examine the theoretical and numerical stability of a speed controller under the Euler and Runge-Kutta schemes of integration, for the Maintain phase for a Mid-Term (2035-2045) Interval Management (IM) Operational Concept for descent and landing operations. We model uncertainties in communication due to missed ADS-B messages by vacant samples in the integration schemes, and compare the emergent behavior of the system, in terms of stability, via the boundedness of the final system state. Any bound on the errors incurred by these uncertainties will play an essential part in a composable assurance argument required for real-time, flight-deck guidance and control systems,. Thus, we believe that the creation of reusable models, which possess property guarantees, such as safety and stability, is an innovative and essential requirement to assessing the emergent properties of novel airspace

  15. Quality assessment of Automatic Dependent Surveillance Contract (ADS-C wind and temperature observation from commercial aircraft

    Directory of Open Access Journals (Sweden)

    S. de Haan

    2012-08-01

    Full Text Available Aircraft observations of wind and temperature are very important for upper air meteorology. In this article, the quality of the meteorological information of an Automatic Dependent Surveillance-Contract (ADS-C message is assessed. The ADS-C messages are received at air traffic control centres for surveillance and airline control centres for general aircraft and dispatch management. Comparison against a global numerical prediction (NWP model and Mode-S Enhanced Surveillance (EHS derived wind and temperature observations is performed. Almost 16 thousand ADS-C reports with meteorological information were compiled from the Royal Dutch Airlines (KLM database. The length of the data set is 76 days. The wind and temperature observations are of good quality when compared to the global NWP forecast fields from the European Centre for Medium-Range Weather Forecasts (ECMWF. Comparison of ADS-C wind and temperature observations against Mode-S EHS derived observations in the vicinity of Amsterdam Airport Schiphol shows that the wind observations are of similar quality and the temperature observations of ADS-C are of better quality than those from Mode-S EHS. However, the current ADS-C data set has a lower vertical resolution than Mode-S EHS. High vertical resolution can be achieved by requesting more ADS-C when aircraft are ascending or descending, but could result in increased data communication costs.

  16. Ultrastructural Assessment of the Integrity of the enteric Mucosa of Commercial Turkeys Vaccinated against Coccidiosis

    Directory of Open Access Journals (Sweden)

    Martins MRFB

    Full Text Available ABSTRACT The objective of this study was evaluated the villus integrity of commercial turkeys submitted to coccidiosis prevention methods and challenged with Eimeria field oocysts, using scanning electron microscopy. Sixty BUT 9 female commercial turkeys were distributed in a completely randomized block design split with two treatments: T1- control diet without vaccinations against coccidiosis and anticoccidial drug, and T2- vaccinated against coccidiosis (commercial vaccine. On d 21 of life, all birds of all treatments were challenged with a mixed-species containing E. meleagrimitis and E. galopavonis, via crop intubation with 1 mL of ~20,000 sporulated oocysts/bird. The size of the inoculum was determined in previous experiments. At 27 and 70 days of age, five birds per treatment were randomly removed to evaluate the intestinal integrity. Duodenum, jejunum and ileum segments were collected and processed according to routine scanning electron microscope. The enteric mucosa integrity of the commercial turkeys subjected to coccidiosis vaccination was reduced when compared to the birds of the control treatment. There was no difference in the performance results, therefore these results cannot be attributed to the vaccination as well as to the ineffectiveness against the challenge that was administered.

  17. Cargo Commercial Orbital Transportation Services Environmental Control and Life Support Integration

    Science.gov (United States)

    Duchesne, Stephanie; Thacker, Karen; Williams, Dave

    2012-01-01

    The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, retired in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.

  18. Integrated electronic warfare framework for infrared self-protection of transport aircraft

    CSIR Research Space (South Africa)

    Annamalai, L

    2007-09-01

    Full Text Available Warfare Framework for Infrared Self-protection of Transport Aircraft L. Annamalai Council for Scientific and Industrial Research (CSIR) Abstract - In the African scenario, slow-moving airborne platforms such as transport aircraft have in recent... predetermined baseline were considered the best method of optimising aircraft operating procedures against threats. L. Annamalai, Defence Peace, Safety and Security (DPSS), Council for Scientific and Industrial Research (CSIR), PO Box 395, 0001...

  19. Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents

    Science.gov (United States)

    Belcastro, Christine M.; Jacobson, Steven r.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.

  20. A methodology for the efficient integration of transient constraints in the design of aircraft dynamic systems

    Science.gov (United States)

    Phan, Leon L.

    The motivation behind this thesis mainly stems from previous work performed at Hispano-Suiza (Safran Group) in the context of the European research project "Power Optimised Aircraft". Extensive testing on the COPPER Bird RTM, a test rig designed to characterize aircraft electrical networks, demonstrated the relevance of transient regimes in the design and development of dynamic systems. Transient regimes experienced by dynamic systems may have severe impacts on the operation of the aircraft. For example, the switching on of a high electrical load might cause a network voltage drop inducing a loss of power available to critical aircraft systems. These transient behaviors are thus often regulated by dynamic constraints, requiring the dynamic signals to remain within bounds whose values vary with time. The verification of these peculiar types of constraints, which generally requires high-fidelity time-domain simulation, intervenes late in the system development process, thus potentially causing costly design iterations. The research objective of this thesis is to develop a methodology that integrates the verification of dynamic constraints in the early specification of dynamic systems. In order to circumvent the inefficiencies of time-domain simulation, multivariate dynamic surrogate models of the original time-domain simulation models are generated, building on a nonlinear system identification technique using wavelet neural networks (or wavenets), which allow the multiscale nature of transient signals to be captured. However, training multivariate wavenets can become computationally prohibitive as the number of design variables increases. Therefore, an alternate approach is formulated, in which dynamic surrogate models using sigmoid-based neural networks are used to emulate the transient behavior of the envelopes of the time-domain response. Thus, in order to train the neural network, the envelopes are extracted by first separating the scales of the dynamic response

  1. Integration of an Advanced Cryogenic Electric Propulsion System (ACEPS) to Aerodynamically Efficient Subsonic Transport Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal defines innovative aerodynamic concepts and technology goals aimed at vehicle efficiency for future subsonic aircraft in the 2020 ? 2030 timeframe....

  2. Using Lithography to Integrate Optoelectronic and Optofluidic Nanodevices into Systems - and Commercial Products

    Science.gov (United States)

    Scherer, Axel

    2010-03-01

    Lithography has fueled the trend towards ever-smaller and denser electronic integration over the past 50 years. Gordon Moore observed in the 1960s the trend towards increased electronic complexity and functionality within an area of a silicon chip, resulting from a relatively constant real-estate price and the cost of moving information from one chip to another The opportunity of highly accurate definition of microdevices and their precise alignment on top of each other by lithography also holds tremendous promise for increasing the complexity and functionality of optical, fluidic, and magnetic systems. Data communications has recently adopted the intimate integration of optics and electronics within silicon photonics chips. Useful medical diagnosis tools can be constructed through integration of electronics, optics and fluidics. Indeed, biomedical devices today can be constructed using two- and three-dimensional soft and hard lithography approaches, in which pico-Liter volumes can be manipulated and analyzed on optofluidic chips. In the near future, we can expect the emergence of lithographically integration of optics, fluidics and electronics for many other commercial applications. Here, a very subjective and biased view of the evolution of optofluidics and silicon photonics from concepts in the laboratory to commercial products will be presented. This talk will also emphasize future technological opportunities as well as pitfalls in the journey from laboratory devices to commercial systems.

  3. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  4. An Integrated Approach to Aircraft Modelling and Flight Control Law Design

    NARCIS (Netherlands)

    Looye, G.H.N.

    2008-01-01

    The design of flight control laws (FCLs) for automatic and manual (augmented) control of aircraft is a complicated task. FCLs have to fulfil large amounts of performance criteria and must work reliably in all flight conditions, for all aircraft configurations, and in adverse weather conditions.

  5. An Integrated Approach to Aircraft Modelling and Flight Control Law Design

    NARCIS (Netherlands)

    Looye, G.H.N.

    2008-01-01

    The design of flight control laws (FCLs) for automatic and manual (augmented) control of aircraft is a complicated task. FCLs have to fulfil large amounts of performance criteria and must work reliably in all flight conditions, for all aircraft configurations, and in adverse weather conditions. Cons

  6. A Systems Engineering Approach to Integrated Structural Health Monitoring for Aging Aircraft

    Science.gov (United States)

    2006-03-23

    2.1. A-37 Deliveries to MAPA Countries . . . . . . . . . . . . . . . 38 3.1. Architecture Products . . . . . . . . . . . . . . . . . . . . . . . 68 4.1...36 MAPA Mature & Proven Aircraft Directorate . . . . . . . . . . . 39 SwRI Southwest Research Institute...43 CI Configuration Item . . . . . . . . . . . . . . . . . . . . . . 44 MAPA Mature and Proven Aircraft . . . . . . . . . . . . . . . . . 52 UML

  7. Flight service evaluation of kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft: Flight service report

    Science.gov (United States)

    Stone, R. H.

    1981-01-01

    Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

  8. Adaptive Neural Control Based on High Order Integral Chained Differentiator for Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Zhonghua Wu

    2015-01-01

    Full Text Available This paper presents an adaptive neural control for the longitudinal dynamics of a morphing aircraft. Based on the functional decomposition, it is reasonable to decompose the longitudinal dynamics into velocity and altitude subsystems. As for the velocity subsystem, the adaptive control is proposed via dynamic inversion method using neural network. To deal with input constraints, the additional compensation system is employed to help engine recover from input saturation rapidly. The highlight is that high order integral chained differentiator is used to estimate the newly defined variables and an adaptive neural controller is designed for the altitude subsystem where only one neural network is employed to approximate the lumped uncertain nonlinearity. The altitude subsystem controller is considerably simpler than the ones based on backstepping. It is proved using Lyapunov stability theory that the proposed control law can ensure that all the tracking error converges to an arbitrarily small neighborhood around zero. Numerical simulation study demonstrates the effectiveness of the proposed strategy, during the morphing process, in spite of some uncertain system nonlinearity.

  9. Causal Factors and Adverse Conditions of Aviation Accidents and Incidents Related to Integrated Resilient Aircraft Control

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Sandifer, Carl E.; Jones, Sharon Monica

    2010-01-01

    The causal factors of accidents from the National Transportation Safety Board (NTSB) database and incidents from the Federal Aviation Administration (FAA) database associated with loss of control (LOC) were examined for four types of operations (i.e., Federal Aviation Regulation Part 121, Part 135 Scheduled, Part 135 Nonscheduled, and Part 91) for the years 1988 to 2004. In-flight LOC is a serious aviation problem. Well over half of the LOC accidents included at least one fatality (80 percent in Part 121), and roughly half of all aviation fatalities in the studied time period occurred in conjunction with LOC. An adverse events table was updated to provide focus to the technology validation strategy of the Integrated Resilient Aircraft Control (IRAC) Project. The table contains three types of adverse conditions: failure, damage, and upset. Thirteen different adverse condition subtypes were gleaned from the Aviation Safety Reporting System (ASRS), the FAA Accident and Incident database, and the NTSB database. The severity and frequency of the damage conditions, initial test conditions, and milestones references are also provided.

  10. Increased use of solar energy in commercial buildings by integrating energy storage.

    OpenAIRE

    Nilsson, Nina

    2016-01-01

    From a comparison of available thermal energy storage (TES) technologies it can be concluded that the most mature and suitable storage methods for modern commercial buildings in Sweden are storage tanks, either for heat or cold energy, and underground storage solutions such as borehole thermal energy storage (BTES), aquifer storage and energy piles. In this study an integrated solar energy storage system for heating purpose has been designed with BTES, hot water storage tank(s) and solar ther...

  11. 19 CFR 122.49b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Science.gov (United States)

    2010-04-01

    ... system approved by CBP and must set forth the information specified in paragraph (b)(3) of this section...; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial... “non-crew member” is limited to all-cargo flights. (On a passenger or dual flight (passengers and cargo...

  12. Integration of noise control into the product design process : a case study : the Silent Aircraft Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Faszer, A. [Noise Solutions Inc., Calgary, AB (Canada)

    2007-07-01

    The Silent Aircraft Initiative (SAI) is a study being conducted by the Cambridge-MIT Institute to discover ways to significantly reduce aircraft noise. Part of the study focuses on developing aircraft and engine designs that meet the SAI objectives. This presentation included several illustrations of the favoured configuration of a blended wing design, with 4 engines located on the upper surface of a shallow wing which shields engine noise. This presentation described various engine parts such as the low specific thrust turbofan, the variable area nozzle and the acoustic treatment in the intake and exhaust turbomachinery that minimizes noise. The requirements for market viability of the aircraft were discussed as well as the technical challenges in terms of its propulsion systems; structural analysis; mechanical design; low speed aerodynamic performance; cabin layout; and maintenance considerations. It was concluded that the SAI has achieved a credible conceptual aircraft design given the high risk of the technologies used. The project has met objectives of a functionally silent and fuel efficient aircraft. The new conceptual aircraft has potential for fuel burn of 149 pax-miles per imperial gallon and noise of 63 dBA near the perimeter of airports. 1 tab., 48 figs.

  13. Decision Integration and Support Engine (DISE) for dynamic aircraft and ISR asset tasking/retasking decision support for the AOC

    Science.gov (United States)

    VonPlinsky, Michael J.; Crowder, Ed

    2002-07-01

    The Decision Integration and Support Environment (DISE) is a Bayesian network (BN) based modeling and simulation of the target nomination and aircraft tasking decision processes. DISE operates in event driven interactions with FTI's AOC model, being triggered from within the Time Critical Target (TCT) Operations cell. As new target detections are received by the AOC from off-board ISR sources and processed by the Automatic Target Recognition (ATR) module in the AOC, DISE is called to determine if the target should be prosecuted, and if so, which of the available aircraft should be tasked to attack it. A range of decision criteria, with priorities established off-line and input into the tool, are associated with this process. DISE, when running in its constructive mode, automatically selects the best-suited aircraft and assigns the new target. In virtual mode, with a human operator, DISE presents the user with a suitability ranked list of the available aircraft for assignment. Recent DISE enhancements are applying this concept to the prioritization and scheduling of ISR support requests from Users to support both latent and dynamic tasking and scheduling of both space-based and airborne ISR assets.

  14. A Thin Film Transistor Based Ultrasonic Sensor for Aircraft Integrity Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation, Incorporated (IAI) and its subcontractor, Penn State U., propose a novel system to detect damage in aircraft structures. The system combines...

  15. Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft

    Science.gov (United States)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.

  16. Integrating small mammal community variables into aircraft-wildlife collision management plans at Namibian airports.

    Science.gov (United States)

    Hauptfleisch, Morgan L; Avenant, Nico L

    2015-11-01

    Understanding ecosystems within and around airports can help to determine the causes and possible mitigation measures for collisions between aircraft and wildlife. Small mammal communities are an important component of the semi-arid savanna ecosystems of Namibia, its productivity and its ecosystem integrity. They are also a major direct attractant for raptors at airports. The present study compared the abundance and diversity of small mammals between Namibia's 2 main airport properties (Hosea Kutako International Airport and Eros Airport), and among areas of land used for various purposes surrounding the airports. A total of 2150 small mammals (3 orders, 11 species) were captured over 4 trapping seasons. Small mammal abundance was significantly higher at the end of the growing season than during the non-growing season. The grass mowing regimen in current management plans at the airports resulted in a significant reduction of small mammal abundance at Hosea Kutako during the non-growing season only, thus indicating that annual mowing is effective but insufficient to reduce the overall abundance of mammal prey species for raptors. Small mammal numbers were significantly higher at Hosea Kutako Airport compared to the cattle and game farming land surrounding the airport, while no differences in small mammal densities or diversity were found for areas with different land uses at and surrounding Eros. The study suggests that the fence around Hosea Kutako provides a refuge for small mammals, resulting in higher densities. It also indicates that different surrounding land use practices result in altered ecosystem function and productivity, an important consideration when identifying wildlife attractants at airports. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  17. Capability Description for NASA's F/A-18 TN 853 as a Testbed for the Integrated Resilient Aircraft Control Project

    Science.gov (United States)

    Hanson, Curt

    2009-01-01

    The NASA F/A-18 tail number (TN) 853 full-scale Integrated Resilient Aircraft Control (IRAC) testbed has been designed with a full array of capabilities in support of the Aviation Safety Program. Highlights of the system's capabilities include: 1) a quad-redundant research flight control system for safely interfacing controls experiments to the aircraft's control surfaces; 2) a dual-redundant airborne research test system for hosting multi-disciplinary state-of-the-art adaptive control experiments; 3) a robust reversionary configuration for recovery from unusual attitudes and configurations; 4) significant research instrumentation, particularly in the area of static loads; 5) extensive facilities for experiment simulation, data logging, real-time monitoring and post-flight analysis capabilities; and 6) significant growth capability in terms of interfaces and processing power.

  18. Integrating a commercial industrial control system to the accelerator control system: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Momal, F. (CERN, Geneva (Switzerland)); Brahy, J. (CERN, Geneva (Switzerland)); Saban, R. (CERN, Geneva (Switzerland)); Sollander, P. (CERN, Geneva (Switzerland))

    1994-12-15

    At CERN a large number of systems providing services (cooling and ventilation, cryogenics, electricity distribution, personnel and building safety, etc.) are controlled by industrial PLCs. A commercial supervision package is used as a gateway to the accelerator control system. The integration of such a system in the CERN accelerator control environment addresses issues such as the connection to control-rooms and desktop computers, alarm logging and remote or alien man-machine interfaces. The paper describes the components of the system and reports the first operational experience. ((orig.))

  19. Integrating a commercial industrial control system to the accelerator control system: a case study

    Science.gov (United States)

    Momal, F.; Brahy, J.; Saban, R.; Sollander, P.

    1994-12-01

    At CERN a large number of systems providing services (cooling and ventilation, cryogenics, electricity distribution, personnel and building safety, etc.) are controlled by industrial PLCs. A commercial supervision package is used as a gateway to the accelerator control system. The integration of such a system in the CERN accelerator control environment addresses issues such as the connection to control-rooms and desktop computers, alarm logging and remote or alien man-machine interfaces. The paper describes the components of the system and reports the first operational experience.

  20. A development and integration analysis of commercial and in-house control subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Dalesio, L.R. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The acquisition and integration of commercial automation and control subsystems in physics research is becoming more common. It is presumed these systems present lower risk and less cost. This paper studies four subsystems used in the Accelerator Production of Tritium (APT) Low Energy Demonstration Accelerator (LEDA) at the Los Alamos National Laboratory (LANL). The radio frequency quadrupole (RFQ) resonance-control cooling subsystem (RCCS), the high-power RF subsystem and the RFQ vacuum subsystem were outsourced; the low-level RF (LLRF) subsystem was developed in-house. Based on the authors experience a careful evaluation of the costs and risks in acquisition, implementation, integration, and maintenance associated with these approaches is given.

  1. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xuemei [Cellana LLC; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  2. Electromagnetic Compatibility (EMC) for Integration and Use of Near Field Communication (NFC) in Aircraft

    Science.gov (United States)

    Nalbantoglu, Cemal; Kiehl, Thorsten; God, Ralf; Stadtler, Thiemo; Kebel, Robert; Bienert, Renke

    2016-05-01

    For portable electronic devices (PEDs), e.g. smartphones or tablets, near field communication (NFC) enables easy and convenient man-machine interaction by simply tapping a PED to a tangible NFC user interface. Usage of NFC technology in the air transport system is supposed to facilitate travel processes and self-services for passengers and to support digital interaction with other participating stakeholders. One of the potential obstacles to benefit from NFC technology in the aircraft cabin is the lack of an explicit qualification guideline for electromagnetic compatibility (EMC) testing. In this paper, we propose a methodology for EMC testing and for characterizing NFC devices and their emissions according to aircraft industry standards (RTCA DO-160, DO-294, DO-307 and EUROCAE ED- 130). A potential back-door coupling scenario of radiated NFC emissions and possible effects to nearby aircraft wiring are discussed. A potential front-door- coupling effect on NAV/COM equipment is not investigated in this paper.

  3. Building-to-Grid Integration through Commercial Building Portfolios Participating in Energy and Frequency Regulation Markets

    Science.gov (United States)

    Pavlak, Gregory S.

    Building energy use is a significant contributing factor to growing worldwide energy demands. In pursuit of a sustainable energy future, commercial building operations must be intelligently integrated with the electric system to increase efficiency and enable renewable generation. Toward this end, a model-based methodology was developed to estimate the capability of commercial buildings to participate in frequency regulation ancillary service markets. This methodology was integrated into a supervisory model predictive controller to optimize building operation in consideration of energy prices, demand charges, and ancillary service revenue. The supervisory control problem was extended to building portfolios to evaluate opportunities for synergistic effect among multiple, centrally-optimized buildings. Simulation studies performed showed that the multi-market optimization was able to determine appropriate opportunities for buildings to provide frequency regulation. Total savings were increased by up to thirteen percentage points, depending on the simulation case. Furthermore, optimizing buildings as a portfolio achieved up to seven additional percentage points of savings, depending on the case. Enhanced energy and cost savings opportunities were observed by taking the novel perspective of optimizing building portfolios in multiple grid markets, motivating future pursuits of advanced control paradigms that enable a more intelligent electric grid.

  4. Thermoelectric Generators for the Integration into Automotive Exhaust Systems for Passenger Cars and Commercial Vehicles

    Science.gov (United States)

    Frobenius, Fabian; Gaiser, Gerd; Rusche, Ulrich; Weller, Bernd

    2016-03-01

    A special thermoelectric generator system design and the setup of a thermoelectric generator for the integration into the exhaust line of combustion engine-driven vehicles are described. A prototype setup for passenger cars and the effects on the measured power output are shown. Measurement results using this setup show the potential and the limitations of a setup based on thermoelectric modules commercially available today. In a second step, a short outline of the detailed mathematical modeling of the thermoelectric generator and simulation studies based on this model are presented. By this means, it can be shown by which measures an improvement of the system power output can be achieved—even if today's modules are used. Furthermore, simulation studies show how the exhaust gas conditions of diesel- and Otto-engines significantly affect the requirements on thermoelectric materials as well as the potential and the design of the thermoelectric generator. In a further step, the design and the setup of a thermoelectric generator for an application in a commercial vehicle are presented. This thermoelectric generator is designed to be integrated into the exhaust aftertreatment box of the vehicle. Experimental results with this setup are performed and presented. The results show that thermoelectric generators can become an interesting technology for exhaust waste heat recovery due to the fact that they comprise non-moving parts. However, the efficiency of the modules commercially available today is still far from what is required. Hence, modules made of new materials known from laboratory samples are urgently required. With regard to future CO2 regulations, a large market opportunity for modules with a high efficiency can be expected.

  5. H-infinity based integrated flight/propulsion control design for a STOVL aircraft in transition flight

    Science.gov (United States)

    Garg, Sanjay; Mattern, Duane L.; Bright, Michelle; Ouzts, Peter

    1990-01-01

    This paper presents results from an application of H(infinity) control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic STOVL fighter aircraft in transition flight. The overall design methodology consists of a centralized IFPC design with controller partitioning. Design and evaluation vehicle models are summarized, and insight is provided into formulating the H(infinity) control problem such that it reflects the IFPC design objective. The H(infinity) controller is shown to provide decoupled command tracking for the design model. The controller order could be significantly reduced by modal residualization of the fast controller modes without any deterioration in performance.

  6. Integrated autopilot/autothrottle for the NASA TSRV B-737 aircraft: Design and verification by nonlinear simulation

    Science.gov (United States)

    Bruce, Kevin R.

    1989-01-01

    An integrated autopilot/autothrottle was designed for flight test on the NASA TSRV B-737 aircraft. The system was designed using a total energy concept and is attended to achieve the following: (1) fuel efficiency by minimizing throttle activity; (2) low development and implementation costs by designing the control modes around a fixed inner loop design; and (3) maximum safety by preventing stall and engine overboost. The control law was designed initially using linear analysis; the system was developed using nonlinear simulations. All primary design requirements were satisfied.

  7. Criteria for design of integrated flight/propulsion control systems for STOVL fighter aircraft

    Science.gov (United States)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the U.S./U.K. STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on the Vertical Motion Simulator (VMS) at Ames Research Center. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot-gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying-qualities design criteria applied to STOVL aircraft.

  8. Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture

    Science.gov (United States)

    Pollock, James; Coffman, Jon; Ho, Sa V.

    2017-01-01

    This paper presents a systems approach to evaluating the potential of integrated continuous bioprocessing for monoclonal antibody (mAb) manufacture across a product's lifecycle from preclinical to commercial manufacture. The economic, operational, and environmental feasibility of alternative continuous manufacturing strategies were evaluated holistically using a prototype UCL decisional tool that integrated process economics, discrete‐event simulation, environmental impact analysis, operational risk analysis, and multiattribute decision‐making. The case study focused on comparing whole bioprocesses that used either batch, continuous or a hybrid combination of batch and continuous technologies for cell culture, capture chromatography, and polishing chromatography steps. The cost of goods per gram (COG/g), E‐factor, and operational risk scores of each strategy were established across a matrix of scenarios with differing combinations of clinical development phase and company portfolio size. The tool outputs predict that the optimal strategy for early phase production and small/medium‐sized companies is the integrated continuous strategy (alternating tangential flow filtration (ATF) perfusion, continuous capture, continuous polishing). However, the top ranking strategy changes for commercial production and companies with large portfolios to the hybrid strategy with fed‐batch culture, continuous capture and batch polishing from a COG/g perspective. The multiattribute decision‐making analysis highlighted that if the operational feasibility was considered more important than the economic benefits, the hybrid strategy would be preferred for all company scales. Further considerations outside the scope of this work include the process development costs required to adopt continuous processing. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:854–866, 2017

  9. Integrated continuous bioprocessing: Economic, operational, and environmental feasibility for clinical and commercial antibody manufacture.

    Science.gov (United States)

    Pollock, James; Coffman, Jon; Ho, Sa V; Farid, Suzanne S

    2017-07-01

    This paper presents a systems approach to evaluating the potential of integrated continuous bioprocessing for monoclonal antibody (mAb) manufacture across a product's lifecycle from preclinical to commercial manufacture. The economic, operational, and environmental feasibility of alternative continuous manufacturing strategies were evaluated holistically using a prototype UCL decisional tool that integrated process economics, discrete-event simulation, environmental impact analysis, operational risk analysis, and multiattribute decision-making. The case study focused on comparing whole bioprocesses that used either batch, continuous or a hybrid combination of batch and continuous technologies for cell culture, capture chromatography, and polishing chromatography steps. The cost of goods per gram (COG/g), E-factor, and operational risk scores of each strategy were established across a matrix of scenarios with differing combinations of clinical development phase and company portfolio size. The tool outputs predict that the optimal strategy for early phase production and small/medium-sized companies is the integrated continuous strategy (alternating tangential flow filtration (ATF) perfusion, continuous capture, continuous polishing). However, the top ranking strategy changes for commercial production and companies with large portfolios to the hybrid strategy with fed-batch culture, continuous capture and batch polishing from a COG/g perspective. The multiattribute decision-making analysis highlighted that if the operational feasibility was considered more important than the economic benefits, the hybrid strategy would be preferred for all company scales. Further considerations outside the scope of this work include the process development costs required to adopt continuous processing. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:854-866, 2017. © 2017 The

  10. Using Commercial Digital Cameras and Structure-for-Motion Software to Map Snow Cover Depth from Small Aircraft

    Science.gov (United States)

    Sturm, M.; Nolan, M.; Larsen, C. F.

    2014-12-01

    A long-standing goal in snow hydrology has been to map snow cover in detail, either mapping snow depth or snow water equivalent (SWE) with sub-meter resolution. Airborne LiDAR and air photogrammetry have been used successfully for this purpose, but both require significant investments in equipment and substantial processing effort. Here we detail a relatively inexpensive and simple airborne photogrammetric technique that can be used to measure snow depth. The main airborne hardware consists of a consumer-grade digital camera attached to a survey-quality, dual-frequency GPS. Photogrammetric processing is done using commercially available Structure from Motion (SfM) software that does not require ground control points. Digital elevation models (DEMs) are made from snow-free acquisitions in the summer and snow-covered acquisitions in winter, and the maps are then differenced to arrive at snow thickness. We tested the accuracy and precision of snow depths measured using this system through 1) a comparison with airborne scanning LiDAR, 2) a comparison of results from two independent and slightly different photogrameteric systems, and 3) comparison to extensive on-the-ground measured snow depths. Vertical accuracy and precision are on the order of +/-30 cm and +/- 8 cm, respectively. The accuracy can be made to approach that of the precision if suitable snow-free ground control points exists and are used to co-register summer to winter DEM maps. Final snow depth accuracy from our series of tests was on the order of ±15 cm. This photogrammetric method substantially lowers the economic and expertise barriers to entry for mapping snow.

  11. Adaptive control in an aircraft propulsion system and system integration with flight control; Kokukiyo enigne - tekio seigyo gijutsu oyobi hiko seigyo tono togo

    Energy Technology Data Exchange (ETDEWEB)

    Nagatome, S.; Seo, N.; Negoro, T.; Kaneda, S.; Matsushita, T.; Kono, Y.; Kanbe, K.; Fujiwara, K. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    2000-04-01

    Aircraft engine controllers incorporating computer technology have enabled the highly automated control of the entire engine system, and consequently have been put to practical use as Full-Authority Digital Electronic Control (FADEC). In future such FADEC technology will be evolved and combined into an Integrated Flight and Propulsion Control (IFPC) system which will automatically optimize the whole aircraft propulsion system. In this paper the application of the adaptive control, part of the IFPC technology, is described. (author)

  12. Systems Integration, Analysis and Modeling Support to the HEDS Technology/Commercialization Initiative (HTCI)

    Science.gov (United States)

    Feingold, Harvey; ONeil, Dan (Technical Monitor)

    2002-01-01

    In response to a recommendation from OMB, NASA's Fiscal Year 2001 budget included a new program within the HEDS (Human Exploration and Development of Space) Enterprise called HEDS Technology/ Commercialization Initiative (HTCI). HTCI had three overarching goals: to support REDS analysis and planning for safe, affordable and effective future programs and projects that advance human exploration, scientific discovery, and the commercial development of space; to pursue research, development, and validation of breakthrough technologies and highly innovative systems concepts; and to advance die creation of strong partnerships within NASA, with U.S. industry and universities, and internationally. As part of its contracted effort, SAIC was to write a report contribution, describing die results of its task activities, to a final HTCI report prepared by MSFC. Unfortunately, government cancellation of the HTCI program in the summer of 2001 curtailed all efforts on the program including die Final HTCI report. In the absence of that report, SAIC has issued this final report in an attempt to document some of the technical material it produced. The report contains SAIC presentations for both HTCI workshops; a set of roadmap charts for the Systems Analysis, Integration and Modeling; and charts showing the evolution of the current TITAN modeling architecture.

  13. Systems Integration, Analysis and Modeling Support to the HEDS Technology/Commercialization Initiative (HTCI)

    Science.gov (United States)

    Feingold, Harvey; ONeil, Dan (Technical Monitor)

    2002-01-01

    In response to a recommendation from OMB, NASA's Fiscal Year 2001 budget included a new program within the HEDS (Human Exploration and Development of Space) Enterprise called HEDS Technology/ Commercialization Initiative (HTCI). HTCI had three overarching goals: to support REDS analysis and planning for safe, affordable and effective future programs and projects that advance human exploration, scientific discovery, and the commercial development of space; to pursue research, development, and validation of breakthrough technologies and highly innovative systems concepts; and to advance die creation of strong partnerships within NASA, with U.S. industry and universities, and internationally. As part of its contracted effort, SAIC was to write a report contribution, describing die results of its task activities, to a final HTCI report prepared by MSFC. Unfortunately, government cancellation of the HTCI program in the summer of 2001 curtailed all efforts on the program including die Final HTCI report. In the absence of that report, SAIC has issued this final report in an attempt to document some of the technical material it produced. The report contains SAIC presentations for both HTCI workshops; a set of roadmap charts for the Systems Analysis, Integration and Modeling; and charts showing the evolution of the current TITAN modeling architecture.

  14. FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Heiba, Ahmad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, food service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.

  15. An Integrated Architecture for Aircraft Engine Performance Monitoring and Fault Diagnostics: Engine Test Results

    Science.gov (United States)

    Rinehart, Aidan W.; Simon, Donald L.

    2015-01-01

    This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.

  16. Development of an Integrated Digital Elevation Model for Safe Takeoff and Landing of the Aircraft

    Science.gov (United States)

    Ciećko, Adam; Jarmołowski, Wojciech

    2013-12-01

    The article describes preliminary results of the augmentation of Global Navigation Satellite System/Inertial Navigation System positioning (GNSS/INS) by Digital Elevation Model (DEM) based on the data from the Shuttle Radar Topography Mission (SRTM) and data from field survey. The prototype software is developed to refer the position of the aircraft to DEM and informs the user about the current relevant flight parameters. The number of the parameters may be arbitrarily increased, however, currently we investigate the altitude above the terrain and the aircraft position relative to the descent path and airfield. The study provides some information on the local SRTM accuracy in relation to the field survey of the airfield "Dajtki" - Aeroclub of Warmia and Mazury in Olsztyn.

  17. Depreciation of aircraft

    Science.gov (United States)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  18. Integration of Colombians Forest Commercial Crops in Thermochemical Biorefinery Concepts: A Review

    Directory of Open Access Journals (Sweden)

    Juan Fernando Pérez Bayer

    2015-07-01

    Full Text Available The technical, energy, social and environmental benefits of the integration of commercial forest crops in Colombia under biorefinery concepts are evaluated. This concept is part of various programs and government policies that consider the energy use of biomass as an alternative source to the silvicultural potential of the country. In this paper we review some specific processes that can be evaluated as integration strategies with high potential to use the wood planted in Colombia under biorefinery concepts. The processes considered are low-middle power gasification, industrial scale gasification to high quality biofuel production, wood pretreatment to improve the solid biofuel and alternative methods for biochar production. Finally, we also review the value-added wood products market. To conclude we highlight the potential of Colombian forest in this industry, Through strategic alliances between universities, research centers and the forestry sector, more efficient and innovative development of new value-added products should be sought, taking advantage of the unexplored market opportunities in Colombia for bioenergy and bioproducts. This review aims to advance knowledge on the features and possible uses of forest species to produce bioenergy, biofuels, and bioproducts sustainably.

  19. An integral solar power and propulsion system concept for commercial space applications

    Energy Technology Data Exchange (ETDEWEB)

    Choong, P.T.S. [California International Power Associates, Los Altos Hills, CA (United States)

    1995-12-31

    An integral space power concept deriving both the electrical and propulsion power from a common high-temperature heat source module offers superior performance capabilities over conventional chemical upper-stage propulsion with separate solar photovoltaic power systems. This hybrid system concept is based on a high efficiency solar concentrator-heated propulsion and a high temperature thermionic technology derived from the proven Solar Energy Thermionics (SET) or the advanced Hydrogen Thermo-ElectroChemical Conversion (HYTEC) for electrical power generation. The thermal hydrogen propulsion technology is derived from the NERVA rocket program. The integral system is capable of long-life power operation at an efficiency of at least twice the conventional photovoltaic approach. Because of anticipated high conversion efficiency of the HYTEC, the electrical power output can be increased several folds using the similarly sized solar concentrator. The propulsion module is capable of high specific impulse during the orbital transfer thrusting. The same module is also usable for long-term orbit management applications. The resulting savings in propellant and power generator equipment enable the use of new generation of low-cost launchers for many commercial satellite applications.

  20. The Benefits and Its Implementation of Concurrent Engineering in Commercial Aircraft Development Program%并行工程在商用飞机研发项目中的益处及其实施方法

    Institute of Scientific and Technical Information of China (English)

    于海燕

    2015-01-01

    使用较少经费和较短时间研发出质量优越的商用飞机是各飞机研发团队的共同目标. 阐述了通过使用科学的方法和管理技术,例如并行工程,是商用飞机研发项目达成上述目标的途径之一,介绍了一种具备可操作性的实施并行工程的方法.%It is the ultimate goal for commercial aircraft design team to develop a commercial aircraft with out-standing quality while spending less and completing in a shorter time. This paper describes how to achieve such goals via scientific methods and management techniques like concurrent engineering in commercial aircraft develop-ment programs. In the end, a feasible approach to implement concurrent engineering is also briefly introduced.

  1. Study of Users’ Kansei on Commercial Aircraft Cockpit Interior Design%民机驾驶舱内饰设计感性评价研究

    Institute of Scientific and Technical Information of China (English)

    王黎静; 曹琪琰; 莫兴智; 俞金海; 李宝峰

    2014-01-01

    基于感性工学方法,研究民用飞机驾驶舱内饰设计的设计要素和用户感性评价之间的关系。通过分析感性工学方法的一般流程,结合驾驶舱内饰设计的特点,通过驾驶舱样本图片筛选、感性意向认知研究、设计要素体系构建,最终建立驾驶舱内饰设计要素和用户感性评价之间的关联模型。在方法实施过程中,使用语义差分法获取被试对样本图片的感性评价;运用形态分析法进行设计要素分解;采用反向传播(Back propagation, BP)神经网络法构建设计要素与感性评价之间的关联模型,确定设计要素和感性评价值之间的关系,实现感性评价值的预测。以驾驶舱T形区内饰为示例进行方法说明与验证,关联模型可以实现对样本感性评价值的预测,且预测值与实际主观评价值保持一致。结果表明,建立的关联模型是可用于驾驶舱内饰感性评价值的预测,感性工学方法可以应用于驾驶舱的内饰设计的感性评价。%Kansei engineering(KE) is applied to study the relationship between commercial aircraft cockpit interior design and users’ kansei. Through studying the procedure of KE and the characteristics of cockpit interior design, the process of KE in the field of commercial aircraft cockpit interior is introduced, which contains four steps: selection of picture samples, study of users’ kansei, construction of design element index and construction of the association model. Semantic differential method is used to obtain users’ kansei values. Morphological analysis is used to study the design elements. The relationship model between users’ feelings and design elements is found based onback propagation artificial neural. The example of cockpit T-shape area shows the result of the predicted kansei values and the users’ subjective kansei values agreed. This proves the relationship model can be used to predict the kansei

  2. Aerodynamic Design of Integrated Propulsion-Airframe Configuration of the Hybrid Wing-Body Aircraft

    Science.gov (United States)

    Liou, May-Fun; Kim, Hyoungjin; Lee, B. J.; Liou, Meng-Sing

    2017-01-01

    Hybrid Wing Body (HWB) aircraft is characterized by a flattened and airfoil-shaped body, which produces a substantial portion of the total lift. The body form is composed of distinct and separate wing structures, though the wings are smoothly blended into the body. This concept has been studied widely and results suggest remarkable performance improvements over the conventional tube and wing transport1,2. HWB incorporates design features from both a futuristic fuselage and flying wing design, which houses most of the crew, payload and equipment inside the main centerbody structure.

  3. Aircraft landing using GPS

    Science.gov (United States)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  4. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  5. System-on-chip integration of a new electromechanical impedance calculation method for aircraft structure health monitoring.

    Science.gov (United States)

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-10-11

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.

  6. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    Science.gov (United States)

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-01-01

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline. PMID:23202013

  7. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    Directory of Open Access Journals (Sweden)

    Daniel Medale

    2012-10-01

    Full Text Available The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.

  8. Computational Aerodynamic Prediction for Integration of an Advanced Reconnaissance Pod on a 5th Generation Fighter Type Aircraft

    Directory of Open Access Journals (Sweden)

    De Paolis P

    2015-06-01

    Full Text Available In this paper a computational aerodynamic prediction to support the aeromechanical integration of an advanced reconnaissance pod on a 5th generation fighter type aircraft is presented. The aim of the activity was to compare the aerodynamic characteristics of the new pod to a previous one already cleared on the same aircraft fleet, given verified inertial and structural similarity. Verifying the aforementioned aerodynamic similarity without involving extensive flight test activity was a must, to save time and to reduce costs. A two steps approach was required by the Certification Authority to verify, initially, the performance data compatibility in terms of aerodynamic coefficients of the old pod with the new one, in order to allow performance flight manual data interchangeability (a quantitative comparison was required; afterwards, a qualitative assessment was conducted to verify the absence of unsteadiness induced by the introduction in the external structure of the new pod of an auxiliary antenna case. Computational results are presented both for Straight and Level Un-accelerated Flight and SteadySideslip flight conditions at different Angles of Attack.

  9. Aerosol-Cloud Interactions Over the North Pacific Ocean: an Integrated Assessment Using Aircraft, Satellites and a Global Model

    Science.gov (United States)

    Wilcox, E. M.; Mauger, G.; Lariviere, O.; Roberts, G.; Ramanathan, V.; Ming, Y.

    2004-12-01

    Interactions between aerosols and the cloud systems of the North Pacific Ocean were observed by aircraft during the Cloud Indirect Forcing Experiment (CIFEX) in April 2004. The CIFEX project seeks to determine the impact of aerosol indirect effects on the radiative forcing of highly reflective North Pacific clouds under the influence of aerosols traveling across the ocean basin from Asia. Toward this end, CIFEX aircraft observations from the Northeast Pacific of aerosol and cloud microphysics are blended with coincident satellite observations of cloud properties from MODIS and cloud radiative forcing from CERES. The satellite observations are then compared with global model simulations of aerosol indirect forcing over the entire North Pacific basin. During April 2004 the U. Wyoming King Air research aircraft sampled aerosol and cloud microphysical parameters including aerosol and cloud particle sizes and concentrations, cloud liquid water amounts, and cloud structure using the Wyoming Cloud Radar. A range of clean and polluted conditions were observed by the aircraft during the period, in addition to two major Asian dust storm events. CN concentrations below stratus clouds varied from 25 to 300 cm-3. A variety of cloud systems were sampled as well, ranging from shallow stratus and stratocumulus clouds to mixed-phase precipitating cumulus. Under pristine conditions, many shallow clouds were observed to be drizzling, suggesting that Northern Pacific Ocean cloud systems may be highly susceptible to the influence of aerosols. Clouds in this region are responsible for a large cooling of the ocean surface. The magnitude of shortwave cloud radiative cooling exceeded -80 W m-2 over much of the North Pacific during the experiment. Stratus cloud drop concentrations varied from 25 to 150 cm-3 and are correlated with the concentration of accumulation mode aerosols below cloud base. Mean cloud albedos vary from 0.3 to 0.5 for these same clouds, and MODIS observations of cloud

  10. 48 CFR 246.408-71 - Aircraft.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Aircraft. 246.408-71... Aircraft. (a) The Federal Aviation Administration (FAA) has certain responsibilities and prerogatives in connection with some commercial aircraft and of aircraft equipment and accessories (Pub. L. 85-726 (72 Stat...

  11. An Examination of Commercial Aviation Accidents and Incidents Related to Integrated Vehicle Health Management

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Thomas, Megan A.; Evans, Joni K.; Jones, Sharon M.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project is one of the four projects within the National Aeronautics and Space Administration's (NASA) Aviation Safety Program (AvSafe). The IVHM Project conducts research to develop validated tools and technologies for automated detection, diagnosis, and prognosis that enable mitigation of adverse events during flight. Adverse events include those that arise from system, subsystem, or component failure, faults, and malfunctions due to damage, degradation, or environmental hazards that occur during flight. Determining the causal factors and adverse events related to IVHM technologies will help in the formulation of research requirements and establish a list of example adverse conditions against which IVHM technologies can be evaluated. This paper documents the results of an examination of the most recent statistical/prognostic accident and incident data that is available from the Aviation Safety Information Analysis and Sharing (ASIAS) System to determine the causal factors of system/component failures and/or malfunctions in U.S. commercial aviation accidents and incidents.

  12. An integrative assessment of the commercial air transportation system via adaptive agents

    Science.gov (United States)

    Lim, Choon Giap

    The overarching research objective is to address the tightly-coupled interactions between the demand-side and supply-side components of the United States Commercial Air Transportation System (CATS) in a time-variant environment. A system-of-system perspective is adopted, where the scope is extended beyond the National Airspace System (NAS) level to the National Transportation System (NTS) level to capture the intermodal and multimodal relationships between the NTS stakeholders. The Agent-Based Modeling and Simulation technique is employed where the NTS/NAS is treated as an integrated Multi-Agent System comprising of consumer and service provider agents, representing the demand-side and supply-side components respectively. Successful calibration and validation of both model components against the observable real world data resulted in a CATS simulation tool where the aviation demand is estimated from socioeconomic and demographic properties of the population instead of merely based on enplanement growth multipliers. This valuable achievement enabled a 20-year outlook simulation study to investigate the implications of a global fuel price hike on the airline industry and the U.S. CATS at large. Simulation outcomes revealed insights into the airline competitive behaviors and the subsequent responses from transportation consumers.

  13. Integrating Prognostics in Automated Contingency Management Strategies for Advanced Aircraft Controls Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies, in collaboration with Georgia Institute of Technology, proposes to develop and demonstrate innovative technologies to integrate prognostics into...

  14. Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3

    Science.gov (United States)

    Banda, Carolyn; Chiu, Alex; Helms, Gretchen; Hsieh, Tehming; Lui, Andrew; Murray, Jerry; Shankar, Renuka

    1990-01-01

    The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test.

  15. Command, Control and Integration of Weaponized Unmanned Aircraft into the Air-to-Ground System

    Science.gov (United States)

    2007-02-23

    also have access to the Standard Integrated Air Picture ( SIAP ), will be able to maximize the effects of armed UAs teamed with other assets in real...Operating Zone RSTA Reconnaissance, Surveillance and Target Acquisition SAR Synthetic Aperture Radar SIAP Standard Integrated Air Picture SDB

  16. Microphysical properties and high ice water content in continental and oceanic Mescoscale Convective Systems and potential implications for commercial aircraft at flight altitude

    Science.gov (United States)

    Gayet, J.-F.; Shcherbakov, V.; Bugliaro, L.; Protat, A.; Delanoë, J.; Pelon, J.; Garnier, A.

    2013-08-01

    Two complementary case studies are conducted to analyse convective system properties in the region where strong cloud-top lidar backscatter anomalies are observed as reported by Platt et al. (2011). These anomalies were reported for the first time using in-situ microphysical measurements in an isolated continental convective cloud over Germany during the CIRCLE2 experiment (Gayet et al., 2012). In this case, quasi collocated in situ observations with CALIPSO, CloudSat and Meteosat-9/SEVIRI observations confirm that regions of backscatter anomalies represent the most active and dense convective cloud parts with likely the strongest core updrafts and unusual high values of the particle concentration, extinction and ice water content (IWC), with the occurrence of small ice crystal sizes. Similar spaceborne observations are then analyzed in a maritime mesoscale cloud system (MCS) on 20 June 2008 located off the Brazil coast between 0° and 3° N latitude. Near cloud-top backscatter anomalies are evidenced in a region which corresponds to the coldest temperatures with maximum cloud top altitudes derived from collocated CALIPSO/IIR and Meteosat-9/SEVIRI infrared brightness temperatures. The interpretation of CALIOP data highlights significant differences of microphysical properties from those observed in the continental isolated convective cloud. Indeed, SEVIRI retrievals in the visible confirm much smaller ice particles near-top of the isolated continental convective cloud, i.e. effective radius (Reff) ~15 μm against 22-27 μm in the whole MCS area. 94 GHz Cloud Profiling Radar observations from CloudSat are then used to describe the properties of the most active cloud regions at and below cloud top. The cloud ice water content and effective radius retrieved with the CloudSat 2B-IWC and DARDAR inversion techniques, show that at usual cruise altitudes of commercial aircraft (FL 350 or ~10 700 m level), high IWC (i.e. up to 2 to 4 g m-3) could be identified according to

  17. Integrating Prognostics in Automated Contingency Management Strategies for Advanced Aircraft Controls Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Automated Contingency Management (ACM) is an emerging and game-changing area of engineering and scientific research that integrates prognostics and health management...

  18. 经典机型的机翼整体油箱布置分析%Wing Integral Fuel Tank Layout Analysis of Typical Aircraft

    Institute of Scientific and Technical Information of China (English)

    张明星

    2011-01-01

    随着飞机设计技术的发展,机翼整体油箱已经成为改善飞机性能、减轻飞机质量的一项重要措施。针对波音B737、A320等几个经典机型的机翼整体油箱结构布局、油泵布置和用油顺序进行了分析,以期对整体油箱设计起一定的参考和借鉴作用。%With the development of aircraft design technique, integral fuel tank technique is already employed to improve the aircraft performance and reduce aircraft weight. Integral fuel tank layout, pump layout and using sequence on B737, A320 and other typical aircraft, are discussed in this article with the aim of providing the reference for future wing integral fuel tank design.

  19. Small Unmanned Aircraft Systems Integration into the National Airspace System Visual-Line-of-Sight Human-in-the-Loop Experiment

    Science.gov (United States)

    Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui

    2015-01-01

    As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.

  20. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft

    Science.gov (United States)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  1. Impact Response Study on Covering Cap of Aircraft Big-Size Integral Fuel Tank

    Science.gov (United States)

    Wang, Fusheng; Jia, Senqing; Wang, Yi; Yue, Zhufeng

    2016-10-01

    In order to assess various design concepts and choose a kind of covering cap design scheme which can meet the requirements of airworthiness standard and ensure the safety of fuel tank. Using finite element software ANSYS/LS- DYNA, the impact process of covering cap of aircraft fuel tank by projectile were simulated, in which dynamical characteristics of simple single covering cap and gland double-layer covering cap impacted by titanium alloy projectile and rubber projectile were studied, as well as factor effects on simple single covering cap and gland double-layer covering cap under impact region, impact angle and impact energy were also studied. Though the comparison of critical damage velocity and element deleted number of the covering caps, it shows that the external covering cap has a good protection effect on internal covering cap. The regions close to boundary are vulnerable to appear impact damage with titanium alloy projectile while the regions close to center is vulnerable to occur damage with rubber projectile. Equivalent strain in covering cap is very little when impact angle is less than 15°. Element deleted number in covering cap reaches the maximum when impact angle is between 60°and 65°by titanium alloy projectile. While the bigger the impact angle and the more serious damage of the covering cap will be when rubber projectile impact composite covering cap. The energy needed for occurring damage on external covering cap and internal covering cap is less than and higher than that when single covering cap occur damage, respectively. The energy needed for complete breakdown of double-layer covering cap is much higher than that of single covering cap.

  2. Integrating Satellite, Aircraft, and Ground-Based Observations to Improve a GHG Inventory Network

    Science.gov (United States)

    Midzik, M.; Abbate, J.; Raheja, G.

    2016-12-01

    Methane (CH4) is the second-most effective greenhouse gas, with a global warming potential up to 70 times that of carbon dioxide (CO2) over the span of 25 years. With a majority of these emissions attributed to livestock, landfill, and wastewater treatment, CH4 emissions are a concern for both urban and rural landscapes. Though Earth-observing satellites can effectively monitor mid-to-upper tropospheric CH4 on a global scale, current instrumentation is limited in its capacity to accurately measure near-surface CH4 on a local scale. The Bay Area Air Quality Management District (BAAQMD) regulates stationary sources of air pollution in the nine counties surrounding San Francisco Bay. BAAQMD traditionally estimates emissions using a bottom-up approach, combining emissions factor and activity data to estimate source emissions per sector. However, recent literature suggests that these bottom-up approaches are underestimating CH4 emissions by nearly 50% in many regions of California. In efforts to address the discrepancy, this project compares BAAQMD's current CH4 spatial emissions inventory with top-down sub-Planetary Boundary Layer aircraft measurements from the NASA Alpha Jet Atmospheric eXperiment (AJAX). Together, these different approaches were used to identify CH4 hot-spots in the San Francisco Bay Area. In addition, sources of high-CH4 anomalies were identified using USGS high resolution aerial imagery and trajectory analysis. Furthermore, this project used NASA Landsat 8 imagery and USGS orthoimagery to classify the types of indicated emissions and infer other points of interest not included in the current BAAQMD inventory. These findings help pinpoint specific sites for BAAQMD's upcoming Mobile GHG Measurement Network; furthermore, results from this project suggest future sites for coincident data collection between advancing bottom-up and top-down instruments.

  3. Unmanned Aircraft System / Remotely Piloted Aircraft (UAS/RPA) Human Factors and Human Systems Integration Research Workshop Held in Dayton, Ohio on November 8-9, 2011

    Science.gov (United States)

    2012-05-25

    WWII, while it may take only 10 minutes today. At the same time there has been a vast reduction in the number of aircraft and aircrew needed to...with functions that are not common to their platform. Another UAS project conducted at NAWC-TSD was a heuristic -based usability analysis of Open...hours outside the box. The brief by Lt Col Tvaryanas continued by discussing current UAS shiftwork heuristics and compared the effects of rapid vs

  4. Unmanned Aircraft Systems Detect and Avoid System: End-to-End Verification and Validation Simulation Study of Minimum Operations Performance Standards for Integrating Unmanned Aircraft into the National Airspace System

    Science.gov (United States)

    Ghatas, Rania W.; Jack, Devin P.; Tsakpinis, Dimitrios; Sturdy, James L.; Vincent, Michael J.; Hoffler, Keith D.; Myer, Robert R.; DeHaven, Anna M.

    2017-01-01

    As Unmanned Aircraft Systems (UAS) make their way to mainstream aviation operations within the National Airspace System (NAS), research efforts are underway to develop a safe and effective environment for their integration into the NAS. Detect and Avoid (DAA) systems are required to account for the lack of "eyes in the sky" due to having no human on-board the aircraft. The technique, results, and lessons learned from a detailed End-to-End Verification and Validation (E2-V2) simulation study of a DAA system representative of RTCA SC-228's proposed Phase I DAA Minimum Operational Performance Standards (MOPS), based on specific test vectors and encounter cases, will be presented in this paper.

  5. Effect of Thermal Radiation on the Integrity of Pressurized Aircraft Evacuation Slides and Slide Materials

    Science.gov (United States)

    1981-03-01

    Pres sureI 19. Security Classif. (of this reort) 20. Security Classif. (of this pegs ) 21. No. of Pagos J~ ’E tce UnlsiidUnclassified :179 Ffig DOT F... deta from the new integrity of pressurized evacuation laboratory test method. slide materials exposed to thermal radiation; (2) develop a practical

  6. D/B/F 98: Final Report Of the AIAA Student Aircraft Design, Build & Fly Competition

    Science.gov (United States)

    2007-11-02

    December with the intention of molding a composite center section and attaching various wing panels, such as wings with winglets or anhedral, to solve...integrity needed to fulfill the mission. Initially, the use of composite materials was investigated for use in the fabrication of the aircraft, but...material currently being removed from many commercial aircraft. (Newer airline floorboards use a Kevlar/Nomex composite sandwich, with a much higher

  7. Design and adaptation of miniaturized electrochemical devices integrating carbon nanotube-based sensors to commercial CE equipment.

    Science.gov (United States)

    Arribas, Alberto Sánchez; Moreno, Mónica; Bermejo, Esperanza; Angeles Lorenzo, M; Zapardiel, Antonio; Chicharro, Manuel

    2009-10-01

    The design of new electrochemical devices integrating carbon nanotube sensors and their adaptation to commercial CE equipments are described. One of these designs was made for using commercial screen-printed electrodes, whereas the second was projected for coupling commercial glassy carbon electrodes. The electrochemical characterization of these devices revealed that their hydrodynamic behaviour is strongly influenced by the electrode modification with multi-wall carbon nanotubes that provided faster and/or more sensitive signals. The analytical applicability of these devices was illustrated for the CZE separation of chlorinated phenols and the MEKC separation of endocrine disruptors, where the use of carbon nanotube sensors has proved to be advantageous when compared with unmodified ones, with good electrocatalytic properties combined with acceptable background currents and a remarkable resistance to passivation.

  8. Corrosion Sensor Development for Condition-Based Maintenance of Aircraft

    Directory of Open Access Journals (Sweden)

    Gino Rinaldi

    2012-01-01

    Full Text Available Aircraft routinely operate in atmospheric environments that, over time, will impact their structural integrity. Material protection and selection schemes notwithstanding, recurrent exposure to chlorides, pollution, temperature gradients, and moisture provide the necessary electrochemical conditions for the development and profusion of corrosion in aircraft structures. For aircraft operators, this becomes an important safety matter as corrosion found in a given aircraft must be assumed to be present in all of that type of aircraft. This safety protocol and its associated unscheduled maintenance requirement drive up the operational costs of the fleet and limit the availability of the aircraft. Hence, there is an opportunity at present for developing novel sensing technologies and schemes to aid in shifting time-based maintenance schedules towards condition-based maintenance procedures. In this work, part of the ongoing development of a multiparameter integrated corrosion sensor is presented. It consists of carbon nanotube/polyaniline polymer sensors and commercial-off-the-shelf sensors. It is being developed primarily for monitoring environmental and material factors for the purpose of providing a means to more accurately assess the structural integrity of aerospace aluminium alloys through fusion of multiparameter sensor data. Preliminary experimental test results are presented for chloride ion concentration, hydrogen gas evolution, humidity variations, and material degradation.

  9. Microphysical properties and high ice water content in continental and oceanic mesoscale convective systems and potential implications for commercial aircraft at flight altitude

    Science.gov (United States)

    Gayet, J.-F.; Shcherbakov, V.; Bugliaro, L.; Protat, A.; Delanoë, J.; Pelon, J.; Garnier, A.

    2014-01-01

    -IWC and DARDAR (raDAR/liDAR) inversion techniques, show that at usual cruise altitudes of commercial aircraft (FL 350 or ~ 10 700 m level), high IWC (i.e. up to 2 to 4 g m-3) could be identified according to specific IWC-Z (Z being the reflectivity factor) relationships. These values correspond to a maximum reflectivity factor of +18 dBZ (at 94 GHz). Near-top cloud properties also indicate signatures of microphysical characteristics according to the cloud-stage evolution as revealed by SEVIRI images to identify the development of new cells within the MCS cluster. It is argued that the availability of real-time information (on the kilometre-scale) about cloud top IR brightness temperature decreases with respect to the cloud environment would help identify MCS cloud areas with potentially high ice water content and small particle sizes against which onboard meteorological radars may not be able to provide timely warning.

  10. Modern and prospective technologies for weather modification activities: Developing a framework for integrating autonomous unmanned aircraft systems

    Science.gov (United States)

    DeFelice, T. P.; Axisa, Duncan

    2017-09-01

    This paper builds upon the processes and framework already established for identifying, integrating and testing an unmanned aircraft system (UAS) with sensing technology for use in rainfall enhancement cloud seeding programs to carry out operational activities or to monitor and evaluate seeding operations. We describe the development and assessment methodologies of an autonomous and adaptive UAS platform that utilizes in-situ real time data to sense, target and implement seeding. The development of a UAS platform that utilizes remote and in-situ real-time data to sense, target and implement seeding deployed with a companion UAS ensures optimal, safe, secure, cost-effective seeding operations, and the dataset to quantify the results of seeding. It also sets the path for an innovative, paradigm shifting approach for enhancing precipitation independent of seeding mode. UAS technology is improving and their application in weather modification must be explored to lay the foundation for future implementation. The broader significance lies in evolving improved technology and automating cloud seeding operations that lowers the cloud seeding operational footprint and optimizes their effectiveness and efficiency, while providing the temporal and spatial sensitivities to overcome the predictability or sparseness of environmental parameters needed to identify conditions suitable for seeding, and how such might be implemented. The dataset from the featured approach will contain data from concurrent Eulerian and Lagrangian perspectives over sub-cloud scales that will facilitate the development of cloud seeding decision support tools.

  11. H-infinity based integrated flight-propulsion control design for a STOVL aircraft in transition flight

    Science.gov (United States)

    Garg, Sanjay; Mattern, Duane L.; Bright, Michelle M.; Ouzts, Peter J.

    1990-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic Short Take-Off and Vertical Landing (STOVL) fighter aircraft in transition flight. The overall design methodology consists of a centralized IFPC controller design with controller partitioning. Only the feedback controller design portion of the methodology is addressed. Design and evaluation vehicle models are summarized, and insight is provided into formulating the H-infinity control problem such that it reflects the IFPC design objectives. The H-infinity controller is shown to provide decoupled command tracking for the design model. The controller order could be significantly reduced by modal residualization of the fast controller modes without any deterioration in performance. A discussion is presented of the areas in which the controller performance needs to be improved, and ways in which these improvements can be achieved within the framework of an H-infinity based linear control design.

  12. Research on Commercial Aircraft Manufacturer’s Service Management--The Servitization of manufacturing%飞机制造商客户服务管理研究--以制造业服务化为视角

    Institute of Scientific and Technical Information of China (English)

    陈竞; 魏法杰

    2016-01-01

    我国支线飞机ARJ21目前正从投入商业运营到批量化生产,为确保飞行安全和商业成功,飞机制造商必须通过高效的客户服务为航空公司的运营提供帮助。制造业服务化是高端制造业的重要特征,因此商用飞机的客户服务不止是依附于航空器的增值服务,更是商用飞机市场竞争的核心竞争力的重要组成部分,同时也是高端制造业重要的利润来源。从广义虚拟经济视角,本文提出了服务导向的商用飞机制造商客户服务的服务质量评价方法。%With China' s ifrst domestically developed jet, ARJ21 launching its ifrst commercial services, and moving forward to its mass production, to secure the aviation safety and business success, It is imperative for aircraft manufacturer to provide superior customer service to its airline customers to help them optimize the use of their aircraft. The servitization of manufacturing is highly essential in the high-end industry, aircraft manufacturer’s customer service serves not only as a core competency in the market, but also a major source of profit. From the perspective of generalized virtual economy, a service-driven service quality measurement methodology is introduced in this paper for the aircraft manufacturer’s customer service quality evaluation.

  13. Contribution of different scales to integral moisture transport based on aircraft observations over the Sea of Japan

    Science.gov (United States)

    Mezrin, M. Yu.; Starokoltsev, E. V.; Fujiyoshi, Y.; Yoshizaki, M.

    2003-10-01

    Based on the Joint Research Agreement between the Central Aerological Observatory of the Russian Federal Service for Hydrometeorology and Environmental Monitoring (CAO), and the Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), a Russian research aircraft, IL-18, was employed to carry out investigations of the structure and formation/development mechanisms of mesoscale convective systems over the Sea of Japan area in January-February 2001. Vertical moisture transport was one of the subjects of the experiment. To study it, the instruments installed on board the aircraft measured the oscillations of the vertical wind component w' and absolute air humidity ρ'. The vertical moisture transport was analyzed by an eddy correlation method using the formula Q= overlinew'ρ'. The technique was modified to determine the transport in a wider scale range, from 10 m to 50 km (0.1-500 s). In the course of the experiment, an inflow of cold dry air from the continent (the Siberian area) was observed. As the air mass was moving towards Japan, it was getting warmer and more humidified due to heat and moisture exchange with the open surface of the Sea of Japan. The cloud streets formed testify to the presence of roll circulation. The mean integral moisture transport has proved to be about 0.07 g/m 2 s. Spectral analysis has revealed the following three scales by their input to moisture transport: 10-1000 m (turbulence), 1000-3000 m (convective cell), 3-10 km (convective body). Larger scales do not make any considerable input. At a 100-m altitude, the contributions of all the three scales under consideration are equal, while at 500 m, the role of the largest one becomes more prominent. The share of turbulent flux is 1/3 and 1/6 at 100 and 500 m, respectively. In the space structure of moisture transport obtained for altitudes of 100 and 500 m, 25-km features were detected, which were associated with the position of cloud

  14. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    Science.gov (United States)

    Baumbick, Robert

    1991-01-01

    The current Fiber Optic Control System Integration (FOCSI) program is reviewed and the potential role of IOCs in FOCSI applications is described. The program is intended for building, environmentally testing, and demonstrating operation in piggyback flight tests (no active control with optical sensors) of a representative sensor system for propulsion and flight control. The optical sensor systems are to be designed to fit alongside the bill-of-materials sensors for comparison. The sensors are to be connected to electrooptic architecture cards which will contain the optical sources and detectors to recover and process the modulated optical signals. The FOCSI program is to collect data on the behavior of passive optical sensor systems in a flight environment and provide valuable information on installation amd maintenance problems for this technology, as well as component survivability (light sources, connectors, optical fibers, etc.).

  15. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    Science.gov (United States)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  16. Integration of paper-based microfluidic devices with commercial electrochemical readers

    OpenAIRE

    Whitesides, George M.; Nie, Zhihong; Deiss, Frédérique; Liu, Xinyu; Akbulut, Ozge

    2010-01-01

    The combination of simple Electrochemical Micro-Paper-based Analytical Devices (E\\(\\mu\\)PADs) with commercially available glucometers allows rapid, quantitative electrochemical analysis of a number of compounds relevant to human health (e.g., glucose, cholesterol, lactate, and alcohol) in blood or urine.

  17. Legal protectionism of the commercial agency in Colombia versus economic integration treaties

    Directory of Open Access Journals (Sweden)

    Isabel C. García Velasco

    2011-12-01

    Full Text Available The business world tends to establish a set of uniform norms for international trade. It works on forms of contracting that produce local and international benefits for commercialization (products, goods, and services; this has been understood by commerce and the law. Nonetheless, there are many obstacles (fiscal, taxes, legal protection of some contractual practices, and limiting clauses, among others and it is sought for these to disappear, especially those that imply exaggerated protection of national commerce. The States seek mechanisms that help them regulate their relations among the different players and treaties are the main source from which emerge mandates that affect national and world economies, facilitating the creation of companies to explore new market places. It is thus that in the trade treaties or agreements, the objective is for trade to flow freely and for the nations to benefit from commercial exchange. In the private laws of the different nations, there are legal institutions that due to their national protection hinder their application at the international level, as is the case of the commercial agency, a controversial contract since its beginnings, recognizing that it has been an alternative for doing business in Colombia. This article critically analyzes the legal framework of the contract of commercial agency versus the integrationist objectives in free trade agreement (FTA negotiations that tend to seek flexibility in this contractual form, according to the conditions imposed by the United States of modifying some contract benefits in the Colombian legislation. The aforementioned leads to ponder if with the modifications the Colombian State agreed to, within the framework of the Free Trade Agreement negotiations, the figure of this contract will continue being attractive, as a way of creating commercial representation companies in Colombia

  18. Review of evolving trends in blended wing body aircraft design

    Science.gov (United States)

    Okonkwo, Paul; Smith, Howard

    2016-04-01

    The desire to produce environmentally friendly aircraft that is aerodynamically efficient and capable of conveying large number of passengers over long ranges at reduced direct operating cost led aircraft designers to develop the Blended Wing Body (BWB) aircraft concept. The BWB aircraft represents a paradigm shift in the design of aircraft. The design provides aerodynamics and environmental benefits and is suitable for the integration of advanced systems and concepts like laminar flow technology, jet flaps and distributed propulsion. However, despite these benefits, the BWB is yet to be developed for commercial air transport due to several challenges. This paper reviews emerging trends in BWB aircraft design highlighting design challenges that have hindered the development of a BWB passenger transport aircraft. The study finds that in order to harness the advantages and reduce the deficiencies of a tightly coupled configuration like the BWB, a multidisciplinary design synthesis optimisation should be conducted with good handling and ride quality as objective functions within acceptable direct operating cost and noise bounds.

  19. Labor Union Effects on Innovation and Commercialization Productivity: An Integrated Propensity Score Matching and Two-Stage Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Dongphil Chun

    2015-04-01

    Full Text Available Research and development (R&D is a critical factor in sustaining a firm’s competitive advantage. Accurate measurement of R&D productivity and investigation of its influencing factors are of value for R&D productivity improvements. This study is divided into two sections. The first section outlines the innovation and commercialization stages of firm-level R&D activities. This section analyzes the productivity of each stage using a propensity score matching (PSM and two-stage data envelopment analysis (DEA integrated model to solve the selection bias problem. Second, this study conducts a comparative analysis among subgroups categorized as labor unionized or non-labor unionized on productivity at each stage. We used Korea Innovation Survey (KIS data for analysis using a sample of 400 Korean manufacturers. The key findings of this study include: (1 firm innovation and commercialization productivity are balanced and show relatively low innovation productivity; and (2 labor unions have a positive effect on commercialization productivity. Moreover, labor unions are an influential factor in determining manufacturing firms’ commercialization productivity.

  20. Army-NASA aircrew/aircraft integration program. Phase 5: A3I Man-Machine Integration Design and Analysis System (MIDAS) software concept document

    Science.gov (United States)

    Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Neukom, Christian; Nishimura, Sayuri; Prevost, Michael; Shankar, Renuka; Staveland, Lowell; Smith, Greg

    1992-01-01

    This is the Software Concept Document for the Man-machine Integration Design and Analysis System (MIDAS) being developed as part of Phase V of the Army-NASA Aircrew/Aircraft Integration (A3I) Progam. The approach taken in this program since its inception in 1984 is that of incremental development with clearly defined phases. Phase 1 began in 1984 and subsequent phases have progressed at approximately 10-16 month intervals. Each phase of development consists of planning, setting requirements, preliminary design, detailed design, implementation, testing, demonstration and documentation. Phase 5 began with an off-site planning meeting in November, 1990. It is expected that Phase 5 development will be complete and ready for demonstration to invited visitors from industry, government and academia in May, 1992. This document, produced during the preliminary design period of Phase 5, is intended to record the top level design concept for MIDAS as it is currently conceived. This document has two main objectives: (1) to inform interested readers of the goals of the MIDAS Phase 5 development period, and (2) to serve as the initial version of the MIDAS design document which will be continuously updated as the design evolves. Since this document is written fairly early in the design period, many design issues still remain unresolved. Some of the unresolved issues are mentioned later in this document in the sections on specific components. Readers are cautioned that this is not a final design document and that, as the design of MIDAS matures, some of the design ideas recorded in this document will change. The final design will be documented in a detailed design document published after the demonstrations.

  1. Models for the use of commercial TCAD in the analysis of silicon-based integrated biosensors

    Science.gov (United States)

    Pittino, F.; Palestri, P.; Scarbolo, P.; Esseni, D.; Selmi, L.

    2014-08-01

    We present a simple approach to describe electrolytes in TCAD simulators for the modeling of nano-biosensors. The method exploits the similarity between the transport equations for electrons and holes in semiconductors and the ones for charged ions in a solution. We describe a few workarounds to improve the model accuracy in spite of the limitations of commercial TCAD. Applications to the simulations of silicon nanowire and nano-electrode biosensors are reported as relevant examples.

  2. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  3. Advances in utilization of structurally integrated sensor networks for health monitoring in commercial applications

    Science.gov (United States)

    Lin, Mark; Kumar, Amrita; Qing, Xinlin; Beard, Shawn J.

    2002-07-01

    Structural health monitoring is a new technology that has been increasingly evaluated by the industry as a potential approach to improve the cost and ease of structural inspection. By improving structural inspection, structures can be made safer and more reliable, thus reducing the cost of structure ownership. Acellent Technologies is developing tools for structural health monitoring. The tools Acellent is offering are the SMART Layer and the SMART Suitcase. The SMART Layer is a flexible layer with a distributed array of piezoelectric transducers made using the printed circuit process that allows easy installation onto structures for in-situ sensing. The SMART Suitcase is an instrument that can interact with the SMART Layer and process the information collected from the structures. Acellent has been providing the system to researchers and companies to try out this new technique. Currently, this system is being evaluated by aircraft manufacturers for monitoring fatigue cracks from rivet holes, by an automotive company for inspecting flaws in composite/foam components, and by aerospace companies for detecting damages in composite/honeycomb sandwich structures. Other recent developments include the addition of fiber-optic sensors onto the SMART Layer and proving the SMART Layer for composite RTM process.

  4. A comprehensive approach to integrated envelope and lighting systems for new commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.S.; Selkowitz, S.E.; Rubinstein, F.M.; Klems, J.H.; Beltran, L.O.; DiBartolomeo, D.L. [Lawrence Berkeley Lab., CA (United States). Building Technologies Program

    1994-05-01

    The authors define a comprehensive approach to integrated envelope and lighting systems design as one that balances energy efficiency with an equal regard to the resultant environmental quality. By integrating envelope components (glazing, shading, and daylighting), lighting components (fixtures and controls) and building HVAC/energy management control systems, they create building systems that have the potential to achieve significant decreases in electricity consumption and peak demand while satisfying occupant physiological and psychological concerns. This paper presents results on the development, implementation, and demonstration of two specific integrated envelope and lighting systems: (1) a system emphasizing dynamic envelope components and responsive electric lighting systems, that offer the potential to achieve energy efficiency goals and a near optimum comfort environment throughout the year by adapting to meteorological conditions and occupant preferences in real time, and (2) perimeter daylighting systems that increase the depth of daylight penetration from sidelight windows and improves visual comfort with the use of a small inlet aperture. The energy performance of the systems was estimated using the DOE-2 building energy simulation program. Field tests with reduced scale models were conducted to determine daylighting and thermal performance in real time under actual weather conditions. Demonstrations of these integrated systems are being planned or are in progress in collaboration with utility programs to resolve real-world implementation issues under complex site, building, and cost constraints. Results indicate that integrated systems offer solutions that not only achieve significant peak demand reductions but also realize consistent energy savings with added occupant comfort and satisfaction.

  5. Unmanned aircraft systems as wingmen

    Science.gov (United States)

    Garcia, Richard; Barnes, Laura; Fields, MaryAnne

    2010-04-01

    This paper introduces a concept towards integrating manned and Unmanned Aircraft Systems (UASs) into a highly functional team though the design and implementation of 3-D distributed formation/flight control algorithms with the goal to act as wingmen for a manned aircraft. This method is designed to minimize user input for team control, dynamically modify formations as required, utilize standard operating formations to reduce pilot resistance to integration, and support splinter groups for surveillance and/or as safeguards between potential threats and manned vehicles. The proposed work coordinates UAS members by utilizing artificial potential functions whose values are based on the state of the unmanned and manned assets including the desired formation, obstacles, task assignments, and perceived intentions. The overall unmanned team geometry is controlled using weighted potential fields. Individual UAS utilize fuzzy logic controllers for stability and navigation as well as a fuzzy reasoning engine for flight path intention prediction. Approaches are demonstrated in simulation using the commercial simulator X-Plane and controllers designed in Matlab/Simulink. Experiments include trail and right echelon formations as well as splinter group surveillance.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 62: The Influence of Knowledge Diffusion on Aeronautics Innovation: The Research, Development, and Production of Large Commercial Aircraft in France, Germany, and the United Kingdom

    Science.gov (United States)

    Golich, Vicki L.; Pinelli, Thomas E.

    1997-01-01

    This paper focuses on how European public policies-individually and collectively - influence the diffusion of knowledge and technology. It begins with an overview of the roles played historically and currently by European governments in the Research, Development and Production (RD&P) of Large Commercial Aircraft (LCA). The analytical framework brings together literature from global political economy, comparative politics, business management, and science and technology policy studies. It distinguishes between the production of knowledge, on the one hand, and the dissemination of knowledge, on the other. France, Germany, and the United Kingdom serve as the analytical cases. The paper concludes with a call for additional research in this area, some tentative lessons learned, and a discussion of the consequences of national strategies and policies for the diffusion of knowledge and technology in an era of globalizaton.

  7. Multidisciplinary aircraft conceptual design optimization considering fidelity uncertainties

    Science.gov (United States)

    Neufeld, Daniel

    Aircraft conceptual design traditionally utilizes simplified analysis methods and empirical equations to establish the basic layout of new aircraft. Applying optimization methods to aircraft conceptual design may yield solutions that are found to violate constraints when more sophisticated analysis methods are introduced. The designer's confidence that proposed conceptual designs will meet their performance targets is limited when conventional optimization approaches are utilized. Therefore, there is a need for an optimization approach that takes into account the uncertainties that arise when traditional analysis methods are used in aircraft conceptual design optimization. This research introduces a new aircraft conceptual design optimization approach that utilizes the concept of Reliability Based Design Optimization (RBDO). RyeMDO, a framework for multi-objective, multidisciplinary RBDO was developed for this purpose. The performance and effectiveness of the RBDO-MDO approaches implemented in RyeMDO were evaluated to identify the most promising approaches for aircraft conceptual design optimization. Additionally, an approach for quantifying the errors introduced by approximate analysis methods was developed. The approach leverages available historical data to quantify the uncertainties introduced by approximate analysis methods in two engineering case studies: the conceptual design optimization of an aircraft wing box structure and the conceptual design optimization of a commercial aircraft. The case studies were solved with several of the most promising RBDO-MDO integrated approaches. The proposed approach yields more conservative solutions and estimates the risk associated with each solution, enabling designers to reduce the likelihood that conceptual aircraft designs will fail to meet objectives later in the design process.

  8. 民机非包容性转子失效危害防护设计研究%Research on hazard protection design of uncontained rotor failure on commercial aircraft

    Institute of Scientific and Technical Information of China (English)

    鲍海滨; 付仁合; 王伟

    2011-01-01

    民用飞机的发动机转子非包容性失效给飞机的安全运行带来巨大的风险,为了将这种转子非包容性失效可能带来的危害降至最小,需要合理的评估碎片的危害水平,以及采取合理的安全预防措施.尽管在FAA (Federal Aviation Administration)用于评估碎片危害水平的UEDDAM(Uncontained Engine Debris Damage Analysis Model)软件工具中采用了加强防护设计以减少碎片危害,但是没有对具体的分析流程和碎片能量衰减的计算模型进行说明.为此,在现有的碎片危害分析方法的基础上,考虑到碎片在侵彻过程中会有能量衰减,分析了降低碎片危害的三种安全预防措施,通过对比确定了加强防护设计对于降低碎片危害的重要意义及其分析的流程.通过对飞机结构中关键区域定义的理解,明确了在飞机的不同部位需要采取不同的加强防护设计,并详细介绍了整体加强防护设计和局部加强防护设计的流程.%The uncontained rotor failure of commercial aircraft turbines causes enormous risk to aircraft safe operation. In order to minimize the harm of uncontained rotor failure, it is necessary to evaluate fragments harm level rationally and adopt reasonable safety precaution. Even though the software tools of UEDDAM ( Uncontained Engine Debris Damage Analysis Model), which FAA (Federal Aviation Administration) has applied for the evaluation of uncontained rotor fragments harm level, adopt consolidation design of shielding to reduce the harm of fragments, it does not have the explanation of definite flow analysis and energy dissipation model. For this reason, on the basis of analysis methods of fragments hazard, considering the energy dissipation of the debris during the penetration, three measures on how to reduce the harm of commercial aircraft turbine rotor fragments were analyzed. By comparing a-bove measures, the important significance of strengthen safe precautionary design for

  9. Defense Logistics Agency Did Not Obtain Fair and Reasonable Prices From Meggitt Aircraft Braking Systems for Sole-Source Commercial Spare Parts (REDACTED)

    Science.gov (United States)

    2015-05-08

    Mission Our mission is to provide independent, relevant, and timely oversight of the Department of Defense that supports the warfighter; promotes ...oversight organization in the Federal Government by leading change, speaking truth, and promoting excellence—a diverse organization, working...determine the 2013 contract prices; • did not sufficiently analyze the “commercial of a type” parts1 to determine whether the sales of comparable parts

  10. Integrative Management of Commercialized Wild Mushroom: A Case Study of Thelephora ganbajun in Yunnan, Southwest China

    Science.gov (United States)

    He, Jun; Zhou, Zhimei; Yang, Huixian; Xu, Jianchu

    2011-07-01

    The management of wild mushroom is interdisciplinary in nature, whereby the biophysical considerations have to be incorporated into the context of a wide range of social, economic and political concerns. However, to date, little documentation exists illustrating an interdisciplinary approach to management of wild mushrooms. Moreover, the empirical case studies necessary for developing applicable and practical methods are even more rare. This paper adopted an interdisciplinary approach combining participatory methods to improve the habitat management of Thelephora ganbajun, an endemic and one of the most economically valuable mushroom species in Southwest China. The paper documents an empirical case of how an interdisciplinary approach facilitated the development of a scientific basis for policy and management practice, and built the local capacity to create, adopt and sustain the new rules and techniques of mushroom management. With this integrative perspective, a sustainable management strategy was developed, which was found not only technically feasible for farmers, but also acceptable to the government from an ecological and policy-related perspective. More importantly, this approach has greatly contributed to raising the income of farmers. The paper highlights how the integration of biophysical and socioeconomic factors and different knowledge systems provided a holistic perspective to problem diagnosis and resolution, which helped to cope with conventional scientific dilemmas. Finally, it concludes that the success of this interdisciplinary approach is significant in the context of policy decentralization and reform for incorporating indigenous knowledge and local participation in forest management.

  11. ENHANCING REGIONAL INTEGRATION THROUGH COMMERCIAL TIES IN THE EASTERN NEIGHBOURHOOD OF THE EU

    Directory of Open Access Journals (Sweden)

    Teodor Lucian Moga

    2012-03-01

    Full Text Available Economic unification across Europe has been the main impetus for the European integration process and this rationale stood also behind the European Union (EU approach towards its neighbourhood. Since the launch of the European Neighbourhood Policy (2004, the economic incentives have been the most effective instruments for generating structural change in the neighbourhood, taking into account the fact that EU membership has not been yet considered. Our research will aim at investigating the potential of the European Union to promote economic cooperation in its Eastern vicinity by seeking to include the Eastern Partnership states into a network that shares the same economic principles and values. Among these values, we argue that deep economic engagement through bilateral and multilateral frameworks of trade relations has played a major in enhancing the economic development of the six-Post Soviet states: Ukraine, Moldova, Belarus, Azerbaijan, Georgia and Armenia.

  12. Improving oceanographic data delivery through pipeline processing in a Commercial Cloud Services environment: the Australian Integrated Marine Observing System

    Science.gov (United States)

    Besnard, Laurent; Blain, Peter; Mancini, Sebastien; Proctor, Roger

    2017-04-01

    The Integrated Marine Observing System (IMOS) is a national project funded by the Australian government established to deliver ocean observations to the marine and climate science community. Now in its 10th year its mission is to undertake systematic and sustained observations and to turn them into data, products and analyses that can be freely used and reused for broad societal benefits. As IMOS has matured as an observing system expectation on the system's availability and reliability has also increased and IMOS is now seen as delivering 'operational' information. In responding to this expectation, IMOS has relocated its services to the commercial cloud service Amazon Web Services. This has enabled IMOS to improve the system architecture, utilizing more advanced features like object storage (S3 - Simple Storage Service) and autoscaling features, and introducing new checking procedures in a pipeline approach. This has improved data availability and resilience while protecting against human errors in data handling and providing a more efficient ingestion process.

  13. Distributed Data Mining for Aircraft Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA, DoD, and commercial aircraft operators need to transform vast amounts of aircraft data accumulated in distributed databases into actionable knowledge. We...

  14. On Integrating Unmanned Aircraft Systems into the National Airspace System Issues, Challenges, Operational Restrictions, Certification, and Recommendations

    CERN Document Server

    Dalamagkidis, Konstantinos; Piegl, Les A

    2012-01-01

    This book presents, in a comprehensive way, current unmanned aviation regulation, airworthiness certification, special aircraft categories, pilot certification, federal aviation requirements, operation rules, airspace classes and regulation development models. It discusses unmanned aircraft systems levels of safety derived mathematically based on the corresponding levels for manned aviation. It provides an overview of the history and current status of UAS airworthiness and operational regulation worldwide. Existing regulations have been developed considering the need for a complete regulatory framework for UAS. It focuses on UAS safety assessment and functional requirements, achieved in terms of defining an “Equivalent Level of Safety”, or ELOS, with that of manned aviation, specifying what the ELOS requirement entails for UAS regulations. To accomplish this, the safety performance of manned aviation is first evaluated, followed by a novel model to derive reliability requirements for achieving target lev...

  15. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    OpenAIRE

    Daniel Medale; Sebastien Rolet; Jean Yves Fourniols; Sabeha Zedek; Christophe Escriba; Hamza Boukabache

    2012-01-01

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M...

  16. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    There are many indications that China is actively researching the design of an aircraft carrier. It is unknown whether China will initiate the actual acquisition of a carrier, but the indications that are available of their research into aircraft carriers and carrier-capable aircraft, as well...... as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority...... of its foreign trade, as well as its oil imports, upon which the country is totally dependent. China therefore has good reasons for acquiring an aircraft carrier to enable it to protect its national interests. An aircraft carrier would also be a prominent symbol of China’s future status as a great power...

  17. Auralization of novel aircraft configurations

    NARCIS (Netherlands)

    Arntzen, M.; Bertsch, E.L.; Simons, D.G.

    2015-01-01

    A joint initiative of NLR, DLR, and TU Delft has been initiated to streamline the process of generating audible impressions of novel aircraft configurations. The integrated approach adds to the value of the individual tools and allows predicting the sound of future aircraft before they actually fly.

  18. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  19. IDENTIFICATION OF AIRCRAFT HAZARDS

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Ashley

    2005-03-23

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7).

  20. Aircraft Design

    Science.gov (United States)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  1. RTO Meeting Proceedings 16, Aircraft Weapon System Compatibility and Integration held in Chester, United Kingdom, 28-30 September, 1998

    Science.gov (United States)

    1999-04-01

    Instituto Superior Tecnico The BOEING Company Torre-6o Pais P.O. Box 3999 1096 Lisboa Codex Mail Stop 85-93 Portugal Seattle, WA 98124-2499 United States...all the 2-3 weightings. However for these situations criteria specified by the user. That point data manual matching can be equally problematic. is then...between the The Aircraft/Stores Interface Manual was used to exhaust nozzles was also distorted and projected to the position the pylons and the tank

  2. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales

    Science.gov (United States)

    Tonkin, T. N.; Midgley, N. G.; Graham, D. J.; Labadz, J. C.

    2014-12-01

    Novel topographic survey methods that integrate both structure-from-motion (SfM) photogrammetry and small unmanned aircraft systems (sUAS) are a rapidly evolving investigative technique. Due to the diverse range of survey configurations available and the infancy of these new methods, further research is required. Here, the accuracy, precision and potential applications of this approach are investigated. A total of 543 images of the Cwm Idwal moraine-mound complex were captured from a light (< 5 kg) semi-autonomous multi-rotor unmanned aircraft system using a consumer-grade 18 MP compact digital camera. The images were used to produce a DSM (digital surface model) of the moraines. The DSM is in good agreement with 7761 total station survey points providing a total vertical RMSE value of 0.517 m and vertical RMSE values as low as 0.200 m for less densely vegetated areas of the DSM. High-precision topographic data can be acquired rapidly using this technique with the resulting DSMs and orthorectified aerial imagery at sub-decimetre resolutions. Positional errors on the total station dataset, vegetation and steep terrain are identified as the causes of vertical disagreement. Whilst this aerial survey approach is advocated for use in a range of geomorphological settings, care must be taken to ensure that adequate ground control is applied to give a high degree of accuracy.

  3. Integrated Flight/Structural Mode Control for Very Flexible Aircraft Using L1 Adaptive Output Feedback Controller

    Science.gov (United States)

    Che, Jiaxing; Cao, Chengyu; Gregory, Irene M.

    2012-01-01

    This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure.

  4. A Collection of Nonlinear Aircraft Simulations in MATLAB

    Science.gov (United States)

    Garza, Frederico R.; Morelli, Eugene A.

    2003-01-01

    Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.

  5. Integrating risk minimization planning throughout the clinical development and commercialization lifecycle: an opinion on how drug development could be improved

    Directory of Open Access Journals (Sweden)

    Morrato EH

    2015-02-01

    Full Text Available Elaine H Morrato,1 Meredith Y Smith2 1Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO, 2EMD Serono, Inc, Rockland, MA, USA Abstract: Pharmaceutical risk minimization programs are now an established requirement in the regulatory landscape. However, pharmaceutical companies have been slow to recognize and embrace the significant potential these programs offer in terms of enhancing trust with health care professionals and patients, and for providing a mechanism for bringing products to the market that might not otherwise have been approved. Pitfalls of the current drug development process include risk minimization programs that are not data driven; missed opportunities to incorporate pragmatic methods and market-based insights, outmoded tools and data sources, lack of rapid evaluative learning to support timely adaption, lack of systematic approaches for patient engagement, and questions on staffing and organizational infrastructure. We propose better integration of risk minimization with clinical drug development and commercialization work streams throughout the product lifecycle. We articulate a vision and propose broad adoption of organizational models for incorporating risk minimization expertise into the drug development process. Three organizational models are discussed and compared: outsource/external vendor, embedded risk management specialist model, and Center of Excellence. Keywords: pharmaceuticals, drug development, risk management, organizational design

  6. Design of an integrated forward and reverse logistics network optimi-zation model for commercial goods management

    Directory of Open Access Journals (Sweden)

    Eva Ponce-Cueto

    2015-01-01

    Full Text Available In this study, an optimization model is formulated for designing an integrated forward and reverse logistics network in the consumer goods industry. The resultant model is a mixed-integer linear programming model (MILP. Its purpose is to minimize the total costs of the closed-loop supply chain network. It is important to note that the design of the logistics network may involve a trade-off between the total costs and the optimality in commercial goods management. The model comprises a discrete set as potential locations of unlimited capacity warehouses and fixed locations of customers’ zones. It provides decisions related to the facility location and customers’ requirements satisfaction, all of this related with the inventory and shipment decisions of the supply chain. Finally, an application of this model is illustrated by a real-life case in the food and drinks industry. We can conclude that this model can significantly help companies to make decisions about problems associated with logistics network design.

  7. Integrating risk minimization planning throughout the clinical development and commercialization lifecycle: an opinion on how drug development could be improved.

    Science.gov (United States)

    Morrato, Elaine H; Smith, Meredith Y

    2015-01-01

    Pharmaceutical risk minimization programs are now an established requirement in the regulatory landscape. However, pharmaceutical companies have been slow to recognize and embrace the significant potential these programs offer in terms of enhancing trust with health care professionals and patients, and for providing a mechanism for bringing products to the market that might not otherwise have been approved. Pitfalls of the current drug development process include risk minimization programs that are not data driven; missed opportunities to incorporate pragmatic methods and market-based insights, outmoded tools and data sources, lack of rapid evaluative learning to support timely adaption, lack of systematic approaches for patient engagement, and questions on staffing and organizational infrastructure. We propose better integration of risk minimization with clinical drug development and commercialization work streams throughout the product lifecycle. We articulate a vision and propose broad adoption of organizational models for incorporating risk minimization expertise into the drug development process. Three organizational models are discussed and compared: outsource/external vendor, embedded risk management specialist model, and Center of Excellence.

  8. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  9. Robustness Analysis of Integrated LPV-FDI Filters and LTI-FTC System for a Transport Aircraft

    Science.gov (United States)

    Khong, Thuan H.; Shin, Jong-Yeob

    2007-01-01

    This paper proposes an analysis framework for robustness analysis of a nonlinear dynamics system that can be represented by a polynomial linear parameter varying (PLPV) system with constant bounded uncertainty. The proposed analysis framework contains three key tools: 1) a function substitution method which can convert a nonlinear system in polynomial form into a PLPV system, 2) a matrix-based linear fractional transformation (LFT) modeling approach, which can convert a PLPV system into an LFT system with the delta block that includes key uncertainty and scheduling parameters, 3) micro-analysis, which is a well known robust analysis tool for linear systems. The proposed analysis framework is applied to evaluating the performance of the LPV-fault detection and isolation (FDI) filters of the closed-loop system of a transport aircraft in the presence of unmodeled actuator dynamics and sensor gain uncertainty. The robustness analysis results are compared with nonlinear time simulations.

  10. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  11. Costs and Operating Dynamics of Integrating Distributed Energy Resources in Commercial and Industrial Buildings with Electric Vehicle Charging

    Science.gov (United States)

    Flores, Robert Joseph

    Growing concerns over greenhouse gas and pollutant emissions have increased the pressure to shift energy conversion paradigms from current forms to more sustainable methods, such as through the use of distributed energy resources (DER) at industrial and commercial buildings. This dissertation is concerned with the optimal design and dispatch of a DER system installed at an industrial or commercial building. An optimization model that accurately captures typical utility costs and the physical constraints of a combined cooling, heating, and power (CCHP) system is designed to size and operate a DER system at a building. The optimization model is then used with cooperative game theory to evaluate the financial performance of a CCHP investment. The CCHP model is then modified to include energy storage, solar powered generators, alternative fuel sources, carbon emission limits, and building interactions with public and fleet PEVs. Then, a separate plugin electric vehicle (PEV) refueling model is developed to determine the cost to operate a public Level 3 fast charging station. The CCHP design and dispatch results show the size of the building load and consistency of the thermal loads are critical to positive financial performance. While using the CCHP system to produce cooling can provide savings, heat production drives positive financial performance. When designing the DER system to reduce carbon emissions, the use of renewable fuels can allow for a gas turbine system with heat recovery to reduce carbon emissions for a large university by 67%. Further reductions require large photovoltaic installations coupled with energy storage or the ability to export electricity back to the grid if costs are to remain relatively low. When considering Level 3 fast charging equipment, demand charges at low PEV travel levels are sufficiently high to discourage adoption. Integration of the equipment can reduce demand charge costs only if the building maximum demand does not coincide

  12. GRO/EGRET data analysis software: An integrated system of custom and commercial software using standard interfaces

    Science.gov (United States)

    Laubenthal, N. A.; Bertsch, D.; Lal, N.; Etienne, A.; Mcdonald, L.; Mattox, J.; Sreekumar, P.; Nolan, P.; Fierro, J.

    1992-01-01

    The Energetic Gamma Ray Telescope Experiment (EGRET) on the Compton Gamma Ray Observatory has been in orbit for more than a year and is being used to map the full sky for gamma rays in a wide energy range from 30 to 20,000 MeV. Already these measurements have resulted in a wide range of exciting new information on quasars, pulsars, galactic sources, and diffuse gamma ray emission. The central part of the analysis is done with sky maps that typically cover an 80 x 80 degree section of the sky for an exposure time of several days. Specific software developed for this program generates the counts, exposure, and intensity maps. The analysis is done on a network of UNIX based workstations and takes full advantage of a custom-built user interface called X-dialog. The maps that are generated are stored in the FITS format for a collection of energies. These, along with similar diffuse emission background maps generated from a model calculation, serve as input to a maximum likelihood program that produces maps of likelihood with optional contours that are used to evaluate regions for sources. Likelihood also evaluates the background corrected intensity at each location for each energy interval from which spectra can be generated. Being in a standard FITS format permits all of the maps to be easily accessed by the full complement of tools available in several commercial astronomical analysis systems. In the EGRET case, IDL is used to produce graphics plots in two and three dimensions and to quickly implement any special evaluation that might be desired. Other custom-built software, such as the spectral and pulsar analyses, take advantage of the XView toolkit for display and Postscript output for the color hard copy. This poster paper outlines the data flow and provides examples of the user interfaces and output products. It stresses the advantages that are derived from the integration of the specific instrument-unique software and powerful commercial tools for graphics and

  13. An artificial intelligence-based structural health monitoring system for aging aircraft

    Science.gov (United States)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  14. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and disadvantages...

  15. Aircraft Disinsection

    Science.gov (United States)

    Some countries may require aircraft coming from countries where certain insects or insect-borne diseases are present, such as malaria and Zika virus, to be treated with insecticide. Find out about regulation of pesticides for this treatment.

  16. Robots for Aircraft Maintenance

    Science.gov (United States)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  17. Relevance of traditional integrated pest management (IPM) strategies for commercial corn producers in a transgenic agroecosystem: a bygone era?

    Science.gov (United States)

    Gray, Michael E

    2011-06-08

    The use of transgenic Bt maize hybrids continues to increase significantly across the Corn Belt of the United States. In 2009, 59% of all maize planted in Illinois was characterized as a "stacked" gene variety. This is a 40% increase since 2006. Stacked hybrids typically express one Cry protein for corn rootworm control and one Cry protein for control of several lepidopteran pests; they also feature herbicide tolerance (to either glyphosate or glufosinate). Slightly more than 50 years has passed since Vernon Stern and his University of California entomology colleagues published (1959) their seminal paper on the integrated control concept, laying the foundation for modern pest management (IPM) programs. To assess the relevance of traditional IPM concepts within a transgenic agroecosystem, commercial maize producers were surveyed at a series of meetings in 2009 and 2010 regarding their perceptions on their use of Bt hybrids and resistance management. Special attention was devoted to two insect pests of corn, the European corn borer and the western corn rootworm. A high percentage of producers who participated in these meetings planted Bt hybrids in 2008 and 2009, 97 and 96.7%, respectively. Refuge compliance in 2008 and 2009, as mandated by the U.S. Environmental Protection Agency (EPA), was 82 and 75.7%, respectively, for those producers surveyed. A large majority of producers (79 and 73.3% in 2009 and 2010, respectively) revealed that they would, or had, used a Bt hybrid for corn rootworm (Diabrotica virgifera virgifera LeConte) or European corn borer (Ostrinia nubilalis Hübner) control even when anticipated densities were low. Currently, the EPA is evaluating the long-term use of seed blends (Bt and non-Bt) as a resistance management strategy. In 2010, a large percentage of producers, 80.4%, indicated they would be willing to use this approach. The current lack of integration of management tactics for insect pests of maize in the U.S. Corn Belt, due primarily to

  18. ASDAR (aircraft to satellite data relay) flight test report

    Science.gov (United States)

    Domino, E. J.; Lovell, R. R.; Conroy, M. J.; Culp, D. H.

    1977-01-01

    The aircraft to Satellite Data Relay (ASDAR), an airborne data collection system that gathers meteorological data from existing aircraft instrumentation and relays it to ground user via a geo-synchronous meteorological satellite, is described and the results of the first test flight on a commercial Boeing 747 aircraft are presented. The flight test was successful and verified system performance in the anticipated environment.

  19. Effect of Wire Material on Productivity and Surface Integrity of WEDM-Processed Inconel 706 for Aircraft Application

    Science.gov (United States)

    Sharma, Priyaranjan; Chakradhar, D.; Narendranath, S.

    2016-09-01

    Inconel 706 is a recently developed superalloy for aircraft application, particularly in turbine disk which is among the most critical components in the gas turbine engines. Recently, wire electrical discharge machining (WEDM) attained success in machining of gas turbine components which require complex shape profiles with high precision. To achieve the feasibility in machining of these components, the research work has been conducted on Inconel 706 superalloy using WEDM process. And, the effect of different wire materials (i.e., hard brass wire, diffused wire, and zinc-coated wire) on WEDM performance characteristics such as cutting speed, surface topography, surface roughness, recast layer formation, residual stresses, and microstructural and metallurgical alterations have been investigated. Even though, zinc-coated wire exhibits improved productivity, hard brass wire was found to be beneficial in terms of improved surface quality of the machined parts. Additionally, lower tensile residual stresses were obtained with hard brass wire. However, diffused wire has a moderate effect on productivity and surface quality. Under high discharge energy, higher elemental changes were observed and also the white layer was detected.

  20. Integrated maintenance support scheduling method of multi-carrier aircrafts%舰载机多机一体化机务保障调度方法

    Institute of Scientific and Technical Information of China (English)

    韩维; 苏析超; 陈俊锋

    2015-01-01

    为了有效提升舰载机多机机务保障的效率和保障人员的利用率,根据单机机务保障流程约束特性,建立了基于多计划评审技术网络的多目标多机一体化机务保障调度模型。针对问题的求解,提出了一种自适应混合差分进化算法。首先根据调度的网络化排队过程,设计了基于事件调度策略的解码方法。其次为了协调算法“探索”与“开发”的能力,引入了自适应的变异操作和交叉、变异参数控制。再次,针对工序块的平行组合排列特征,提出了4种邻域结构,进而在算法框架中嵌入了一种自适应多邻域局部搜索策略。最后通过仿真实验验证了模型和算法的可行性和有效性。%In order to improve the maintenance support efficiency and support personnel availability of multi-carrier aircrafts effectively,according to the constraint characteristics of maintenance support process for single-carrier aircraft,a multi-objective integrated maintenance support scheduling model of multi-carrier air-crafts based on multiple program evaluation and review technique networks is established.To solve the pro-blem,a self-adaptive hybrid differential evolution algorithm is presented.First,a decoding method based on event scheduling is designed according to networked queuing process of scheduling.Second,for coordinating the exploration and exploitation in algorithm,a self-adaptive mutation operation,an adaptive control strategy of crossover and mutation parameters are introduced.Third,in view of the characteristics of parallel-arrangement of process blocks,four kinds of neighborhood structure are defined,and then a novel local search based on the newly defined neighborhoods is presented and imbedded in the SaHDE algorithm.The simulation results show the feasibility of the model and the effectiveness of the algorithm.

  1. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  2. Advanced aircraft electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Segrest, J.D.

    1981-01-01

    The role of electric energy in both military and commercial aircraft increases in importance with every advancement in airframe performance and avionic technology. Microcircuits and volatile memories impact power continuity and quality, digital flight control and stability augmentation require high reliability. This paper presents the system concept, hardware development and status of the Navy program.

  3. Flight Recorders - Alternative Concept for Commercial Aircraft

    Directory of Open Access Journals (Sweden)

    Marek Turiak

    2015-10-01

    Full Text Available This paper deals with the issue of deployable flight data recorders. It gives an insight into pros and cons of this solution based on experience gained in military application. Advantages of such solution are at least worth considering as they may help reduce the number of accidents and save lives in the first place. And should the accident happen the location and extraction of evidence is much easier.

  4. Improvements in Aircraft Gas Turbine Engines for the 90s

    Directory of Open Access Journals (Sweden)

    Arun Prasad

    1993-10-01

    Full Text Available The gas turbine propulsion system has been playing the most significant role in the evolution and development of present-day aircraft, and has become the limiting technology for developing most new aircraft. However, the jet engine still remains the preferred propulsion choice. Aircraft gas turbines in one form or the other, viz. turbojet, turbofan, turboprop or turboshaft, have been used in commercial passenger aircraft, high performance military aircraft and in rotary wing aircraft (helicopters. The emphasis in engine development programmes world over seems to be in reducing fuel consumption, increasing thrust and in reducing weight.

  5. Cosmic Rays Induced Background Radiation on Board of Commercial Flights

    CERN Document Server

    Pinilla, S; Núñez, L A

    2015-01-01

    The aim of this work is to determine the total integrated flux of cosmic radiation which a commercial aircraft is exposed to along specific flight trajectories. To study the radiation background during a flight and its modulation by effects such as altitude, latitude, exposure time and transient magnetospheric events, we perform simulations based on Magnetocosmics and CORSIKA codes, the former designed to calculate the geomagnetic effects on cosmic rays propagation and the latter allows us to simulate the development of extended air showers in the atmosphere. In this first work, by considering the total flux of cosmic rays from 5 GeV to 1 PeV, we obtained the expected integrated flux of secondary particles on board of a commercial airplane during the Bogot\\'a-Buenos Aires trip by point-to-point numerical integration.

  6. "Watts per person" paradigm to design net zero energy buildings: Examining technology interventions and integrating occupant feedback to reduce plug loads in a commercial building

    Science.gov (United States)

    Yagi Kim, Mika

    As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.

  7. Optics in aircraft engines

    Science.gov (United States)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  8. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project - Gen-4 and Gen-5 Radio Plans

    Science.gov (United States)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current plans for the prototype radio development.

  9. Design Methods and Optimization for Morphing Aircraft

    Science.gov (United States)

    Crossley, William A.

    2005-01-01

    This report provides a summary of accomplishments made during this research effort. The major accomplishments are in three areas. The first is the use of a multiobjective optimization strategy to help identify potential morphing features that uses an existing aircraft sizing code to predict the weight, size and performance of several fixed-geometry aircraft that are Pareto-optimal based upon on two competing aircraft performance objectives. The second area has been titled morphing as an independent variable and formulates the sizing of a morphing aircraft as an optimization problem in which the amount of geometric morphing for various aircraft parameters are included as design variables. This second effort consumed most of the overall effort on the project. The third area involved a more detailed sizing study of a commercial transport aircraft that would incorporate a morphing wing to possibly enable transatlantic point-to-point passenger service.

  10. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  11. Economics Analysis Method for Commercial Aircraft Based on market demand%基于市场需求的商用飞机经济性分析方法

    Institute of Scientific and Technical Information of China (English)

    任启鸿; 王如华

    2015-01-01

    Aircraft economics is is one of essential factors in aircraft competition, and it is also a critical measure-ment in aircraft development and purchasing. This paper establishes an Aircraft economics assessment model based operating cost and market demand.%商用飞机的经济性是影响航空市场竞争的关键因素之一,也是航空公司进行飞机选型和制造商开展型号研制的重要指标之一。基于商用飞机运营成本以及市场需求,建立了经济性评估模型。并进行案例分析,比较不同座级飞机在不同市场的经济适应性以及竞争力。

  12. Integrating Elemental Analysis and Chromatography Techniques by Analyzing Metal Oxide and Organic UV Absorbers in Commercial Sunscreens

    Science.gov (United States)

    Quin~ones, Rosalynn; Bayline, Jennifer Logan; Polvani, Deborah A.; Neff, David; Westfall, Tamara D.; Hijazi, Abdullah

    2016-01-01

    A series of undergraduate laboratory experiments that utilize reversed-phase HPLC separation, inductively coupled plasma spectroscopy (ICP), and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) are described for the analysis of commercial sunscreens. The active ingredients of many sunscreen brands include zinc or titanium…

  13. Army-NASA aircrew/aircraft integration program: Phase 4 A(3)I Man-Machine Integration Design and Analysis System (MIDAS) software detailed design document

    Science.gov (United States)

    Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Constantine, Betsy; Murray, Jerry; Neukom, Christian; Prevost, Michael; Shankar, Renuka; Staveland, Lowell

    1991-01-01

    The Man-Machine Integration Design and Analysis System (MIDAS) is an integrated suite of software components that constitutes a prototype workstation to aid designers in applying human factors principles to the design of complex human-machine systems. MIDAS is intended to be used at the very early stages of conceptual design to provide an environment wherein designers can use computational representations of the crew station and operator, instead of hardware simulators and man-in-the-loop studies, to discover problems and ask 'what if' questions regarding the projected mission, equipment, and environment. This document is the Software Product Specification for MIDAS. Introductory descriptions of the processing requirements, hardware/software environment, structure, I/O, and control are given in the main body of the document for the overall MIDAS system, with detailed discussion of the individual modules included in Annexes A-J.

  14. Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s

    Science.gov (United States)

    Chambers, Joseph R.

    2003-01-01

    This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a

  15. Causes of aircraft electrical failures

    Science.gov (United States)

    Galler, Donald; Slenski, George

    1991-08-01

    The results of a survey of data on failures of aircraft electronic and electrical components that was conducted to identify problematic components are reported. The motivation for the work was to determine priorities for future work on the development of accident investigation techniques for aircraft electrical components. The primary source of data was the Airforce Mishap Database, which is maintained by the Directorate of Aerospace Safety at Norton Air Force Base. Published data from the Air Force Avionics Integrity Program (AVIP) and Hughes Aircraft were also reviewed. Statistical data from these three sources are presented. Two major conclusions are that problems with interconnections are major contributors to aircraft electrical equipment failures, and that environmental factors, especially corrosion, are significant contributors to connector problems.

  16. An integrated approach utilising chemometrics and GC/MS for classification of chamomile flowers, essential oils and commercial products.

    Science.gov (United States)

    Wang, Mei; Avula, Bharathi; Wang, Yan-Hong; Zhao, Jianping; Avonto, Cristina; Parcher, Jon F; Raman, Vijayasankar; Zweigenbaum, Jerry A; Wylie, Philip L; Khan, Ikhlas A

    2014-01-01

    As part of an ongoing research program on authentication, safety and biological evaluation of phytochemicals and dietary supplements, an in-depth chemical investigation of different types of chamomile was performed. A collection of chamomile samples including authenticated plants, commercial products and essential oils was analysed by GC/MS. Twenty-seven authenticated plant samples representing three types of chamomile, viz. German chamomile, Roman chamomile and Juhua were analysed. This set of data was employed to construct a sample class prediction (SCP) model based on stepwise reduction of data dimensionality followed by principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). The model was cross-validated with samples including authenticated plants and commercial products. The model demonstrated 100.0% accuracy for both recognition and prediction abilities. In addition, 35 commercial products and 11 essential oils purported to contain chamomile were subsequently predicted by the validated PLS-DA model. Furthermore, tentative identification of the marker compounds correlated with different types of chamomile was explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Aerodynamic Design and Research for Wing-mounted-engine Integration of Civil Aircraft%民用飞机发动机一体化气动设计相关技术初探

    Institute of Scientific and Technical Information of China (English)

    于哲慧

    2015-01-01

    Aerodynamic design of aircraft-engine integration is an important part for wing-mounted-engine air-craft design. In order to solve the design problems between aircraft and engine, many solutions were made attempts from different perspectives during the design process, and classic technology patents and valuable experience were formed. Some of the technology solutions are to be discussed as follows to reveal the map and tendency of related integrated design technology.%飞机发动机一体化气动设计是翼吊布局飞机设计的重要组成部分. 为解决飞机与发动机之间的一体化设计问题,人们在设计过程中从不同角度尝试众多解决方案,形成很多典型技术专利,积累了宝贵经验. 通过分析较为典型的方案,以展现一体化气动设计技术发展的脉络和趋势.

  18. From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector

    Energy Technology Data Exchange (ETDEWEB)

    Busch, J.F. Jr.

    1990-08-01

    Thailand serves as a case study of the potential to conserve electricity in the fast-growing commercial sectors of the tropical developing world. We performed a field study of over 1100 Thai office workers in which a questionnaire survey and simultaneous physical measurements were taken. Both air-conditioned and non-air-conditioned buildings were included. We analyzed Thai subjective responses on the ASHRAE, McIntyre and other rating scales, relating them to Effective Temperature, demographics, and to rational indices of warmth such as PMV and TSENS. These results suggest that without sacrificing comfort, significant energy conservation opportunities exist through the relaxation of upper space temperature limits. To investigate the potential for conserving energy in a cost-effective manner, we performed a series of parametric simulations using the DOE-2.1D computer program on three commercial building prototypes based on actual buildings in Bangkok; an office, a hotel, and a shopping center. We investigated a wide range of energy conservation measures appropriate for each building type, from architectural measures to HVAC equipment and control solutions. The best measures applied in combination into high efficiency cases can generate energy savings in excess of 50%. Economic analyses performed for the high efficiency cases, resulted in costs of conserved energy of less than and internal rates of return in excess of 40%. Thermal cool storage, cogeneration, and gas cooling technology showed promise as cost-effective electric load management strategies.

  19. Multifunctional commercially pure titanium for the improvement of bone integration: Multiscale topography, wettability, corrosion resistance and biological functionalization.

    Science.gov (United States)

    Ferraris, Sara; Vitale, Alessandra; Bertone, Elisa; Guastella, Salvatore; Cassinelli, Clara; Pan, Jinshan; Spriano, Silvia

    2016-03-01

    The objects of this research are commercially pure titanium surfaces, with multifunctional behavior, obtained through a chemical treatment and biological functionalization. The explored surfaces are of interest for dental implants, in contact with bone, where several simultaneous and synergistic actions are needed, in order to get a fast and effective osseointegration. The here described modified surfaces present a layer of titanium oxide, thicker than the native one, with a multi-scale surface topography (a surface roughness on the nano scale, which can be overlapped to a micro or macro roughness of the substrate) and a high density of OH groups, that increase surface wettability, induce a bioactive behavior (hydroxyapatite precipitation in simulated body fluid) and make possible the grafting of biomolecules (alkaline phosphatase, ALP, in the present research). The surface oxide is an efficient barrier against corrosion, with passive behavior both with and without application of an external voltage. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Aircraft propeller control

    Science.gov (United States)

    Day, Stanley G. (Inventor)

    1990-01-01

    In the invention, the speeds of both propellers in a counterrotating aircraft propeller pair are measured. Each speed is compared, using a feedback loop, with a demanded speed and, if actual speed does not equal demanded speed for either propeller, pitch of the proper propeller is changed in order to attain the demanded speed. A proportional/integral controller is used in the feedback loop. Further, phase of the propellers is measured and, if the phase does not equal a demanded phase, the speed of one propeller is changed, by changing pitch, until the proper phase is attained.

  1. An intercomparative study of the effects of aircraft emissions on surface air quality

    Science.gov (United States)

    Cameron, M. A.; Jacobson, M. Z.; Barrett, S. R. H.; Bian, H.; Chen, C. C.; Eastham, S. D.; Gettelman, A.; Khodayari, A.; Liang, Q.; Selkirk, H. B.; Unger, N.; Wuebbles, D. J.; Yue, X.

    2017-08-01

    This study intercompares, among five global models, the potential impacts of all commercial aircraft emissions worldwide on surface ozone and particulate matter (PM2.5). The models include climate-response models (CRMs) with interactive meteorology, chemical-transport models (CTMs) with prescribed meteorology, and models that integrate aspects of both. Model inputs are harmonized in an effort to achieve a consensus about the state of understanding of impacts of 2006 commercial aviation emissions. Models find that aircraft increase near-surface ozone (0.3 to 1.9% globally), with qualitatively similar spatial distributions, highest in the Northern Hemisphere. Annual changes in surface-level PM2.5 in the CTMs (0.14 to 0.4%) and CRMs (-1.9 to 1.2%) depend on differences in nonaircraft baseline aerosol fields among models and the inclusion of feedbacks between aircraft emissions and changes in meteorology. The CTMs tend to result in an increase in surface PM2.5 primarily over high-traffic regions in the North American midlatitudes. The CRMs, on the other hand, demonstrate the effects of aviation emissions on changing meteorological fields that result in large perturbations over regions where natural emissions (e.g., soil dust and sea spray) occur. The changes in ozone and PM2.5 found here may be used to contextualize previous estimates of impacts of aircraft emissions on human health.

  2. Model Updating in Online Aircraft Prognosis Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Diagnostic and prognostic algorithms for many aircraft subsystems are steadily maturing. Unfortunately there is little experience integrating these technologies into...

  3. Reengineering Aircraft Structural Life Prediction Using a Digital Twin

    National Research Council Canada - National Science Library

    Tuegel, Eric J; Ingraffea, Anthony R; Eason, Thomas G; Spottswood, S. Michael

    2011-01-01

    .... The proposed process utilizes an ultrahigh fidelity model of individual aircraft by tail number, a Digital Twin, to integrate computation of structural deflections and temperatures in response...

  4. Static Aeroelastic Effects on High Performance Aircraft

    Science.gov (United States)

    1987-06-01

    store/aircraft integration is also discussed. Finally, the correction of high-speed wind-tunnel model results for aeroelastic distortion is addressed...sideslip, inertia, The variation of rigid non-dimensional lift distribution with aircraft incidence, Integrated , represents C and C_ and hence C/C , which...et de manoeuvre prennent dans la base de donnLe atrodynamique la table correspondante, A 1 incidence et au bra- quage calculO (Processus it~ratif

  5. Integrating novel data streams to support biosurveillance in commercial livestock production systems in developed countries: challenges and opportunities.

    Science.gov (United States)

    Gates, M Carolyn; Holmstrom, Lindsey K; Biggers, Keith E; Beckham, Tammy R

    2015-01-01

    Reducing the burden of emerging and endemic infectious diseases on commercial livestock production systems will require the development of innovative technology platforms that enable information from diverse animal health resources to be collected, analyzed, and communicated in near real-time. In this paper, we review recent initiatives to leverage data routinely observed by farmers, production managers, veterinary practitioners, diagnostic laboratories, regulatory officials, and slaughterhouse inspectors for disease surveillance purposes. The most commonly identified challenges were (1) the lack of standardized systems for recording essential data elements within and between surveillance data streams, (2) the additional time required to collect data elements that are not routinely recorded by participants, (3) the concern over the sharing and use of business sensitive information with regulatory authorities and other data analysts, (4) the difficulty in developing sustainable incentives to maintain long-term program participation, and (5) the limitations in current methods for analyzing and reporting animal health information in a manner that facilitates actionable response. With the significant recent advances in information science, there are many opportunities to develop more sophisticated systems that meet national disease surveillance objectives, while still providing participants with valuable tools and feedback to manage routine animal health concerns.

  6. Integrating novel data streams to support biosurveillance in commercial livestock production systems in developed countries: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    M Carolyn eGates

    2015-04-01

    Full Text Available Reducing the burden of emerging and endemic infectious diseases on commercial livestock production systems will require the development of innovative technology platforms that enable information from diverse animal health resources to be collected, analyzed, and communicated in near real-time. In this paper, we review recent initiatives to leverage data routinely observed by farmers, production managers, veterinary practitioners, diagnostic laboratories, regulatory officials, and slaughterhouse inspectors for disease surveillance purposes. The most commonly identified challenges were (1 the lack of standardized systems for recording essential data elements within and between surveillance data streams, (2 the additional time required to collect data elements that are not routinely recorded by participants, (3 the concern over the sharing and use of business sensitive information with regulatory authorities and other data analysts, (4 the difficulty in developing sustainable incentives to maintain long-term program participation, and (5 the limitations in current methods for analyzing and reporting animal health information in a manner that facilitates actionable response. With the significant recent advances in information science, there are many opportunities to develop more sophisticated systems that meet national disease surveillance objectives, while still providing participants with valuable tools and feedback to manage routine animal health concerns.

  7. Soft sensor development and optimization of the commercial petrochemical plant integrating support vector regression and genetic algorithm

    Directory of Open Access Journals (Sweden)

    S.K. Lahiri

    2009-09-01

    Full Text Available Soft sensors have been widely used in the industrial process control to improve the quality of the product and assure safety in the production. The core of a soft sensor is to construct a soft sensing model. This paper introduces support vector regression (SVR, a new powerful machine learning methodbased on a statistical learning theory (SLT into soft sensor modeling and proposes a new soft sensing modeling method based on SVR. This paper presents an artificial intelligence based hybrid soft sensormodeling and optimization strategies, namely support vector regression – genetic algorithm (SVR-GA for modeling and optimization of mono ethylene glycol (MEG quality variable in a commercial glycol plant. In the SVR-GA approach, a support vector regression model is constructed for correlating the process data comprising values of operating and performance variables. Next, model inputs describing the process operating variables are optimized using genetic algorithm with a view to maximize the process performance. The SVR-GA is a new strategy for soft sensor modeling and optimization. The major advantage of the strategies is that modeling and optimization can be conducted exclusively from the historic process data wherein the detailed knowledge of process phenomenology (reaction mechanism, kinetics etc. is not required. Using SVR-GA strategy, a number of sets of optimized operating conditions were found. The optimized solutions, when verified in an actual plant, resulted in a significant improvement in the quality.

  8. Analysis of Advanced Integration Procedure for Systems Onboard Civil Aircrafts%先进的民用飞机机载系统集成流程分析

    Institute of Scientific and Technical Information of China (English)

    徐科华; 陈谋; 吴庆宪

    2012-01-01

    为解决现有民用飞机机载系统设计流程难以在设计前期发现顶层设计偏差的问题,对现有的瀑布式设计流程、V形设计流程及螺旋形设计流程进行了详细分析及对比,总结了各自在系统设计中的优势和局限性,提出采用螺旋形流程对V形流程进行改造的设计方法.该方法强调在设计前期采用模型对设计结果进行充分仿真验证,发现前期设计偏差,进行反复迭代,完善设计;在后期系统综合各阶段进行充分的综合测试验证,并根据结果对系统设计进行修正,确保系统满足前期各项需求.经详细分析表明,该流程集中了传统设计方法的优点,能在设计初期发现各种问题,具有很好的可行性.%It is difficult to discover the top-level design deviation for the complicated system of civil aircraft ahead of schedule based on traditional design procedure. To solve the problem, we analyzed the cascade design procedure, V-shaped procedure and spiral procedure in detail,summarized their advantages and limits, and proposed a method using the spiral procedure to optimize the V-shaped procedure. During early design stage, this method focuses on simulation and verification to the system scheme based on model, thus can discover the early designing error. Iterations are made to make the scheme complete. In latter system integration, test and validation are carried out, and the design is modified based on the test result,thus to make the system satisfy all the requirements. Detailed analysis shows that this is a method which has all the advantages of the traditional procedure, it is a feasible method that can discover the design error ahead of schedule.

  9. N+3 Aircraft Concept Designs and Trade Studies. Volume 1

    Science.gov (United States)

    Greitzer, E. M.; Bonnefoy, P. A.; DelaRosaBlanco, E.; Dorbian, C. S.; Drela, M.; Hall, D. K.; Hansman, R. J.; Hileman, J. I.; Liebeck, R. H.; Levegren, J.; Mody, P.; Pertuze, J. A.; Sato, S.; Spakovszky, Z. S.; Tan, C. S.; Hollman, J. S.; Duda, J. E.; Fitzgerald, N.; Houghton, J.; Kerrebrock, J. L.; Kiwada, G. F.; Kordonowy, D.; Parrish, J. C.; Tylko, J.; Wen, E. A.

    2010-01-01

    MIT, Aerodyne Research, Aurora Flight Sciences, and Pratt & Whitney have collaborated to address NASA s desire to pursue revolutionary conceptual designs for a subsonic commercial transport that could enter service in the 2035 timeframe. The MIT team brings together multidisciplinary expertise and cutting-edge technologies to determine, in a rigorous and objective manner, the potential for improvements in noise, emissions, and performance for subsonic fixed wing transport aircraft. The collaboration incorporates assessment of the trade space in aerodynamics, propulsion, operations, and structures to ensure that the full spectrum of improvements is identified. Although the analysis focuses on these key areas, the team has taken a system-level approach to find the integrated solutions that offer the best balance in performance enhancements. Based on the trade space analyses and system-level assessment, two aircraft have been identified and carried through conceptual design to show both the in-depth engineering that underpins the benefits envisioned and also the technology paths that need to be followed to enable, within the next 25 years, the development of aircraft three generations ahead in capabilities from those flying today.

  10. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  11. Aircraft Electric Secondary Power

    Science.gov (United States)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  12. A Study on External Fire Damage of Structures subjected to Aircraft Impact

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Shup [Hanyang University, Seoul (Korea, Republic of); Hahm, Daegi; Kim, Min Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A large commercial aircraft consists of various components as fuselage, wings, fuel tank, engine etc. During a collision of the aircraft, the fuel tank with a large amount of jet fuel have a significant effect on the total load of the aircraft as well as causing explosive fire and smoke which affect the safety of the structure and equipment. US Sandia National Laboratories and Finland VTT etc. performed the test and simulation studies to evaluate the dispersion range of the fluid after the crash of liquid filled cylinder missiles. The test condition and results have been referred in this paper. The fluid modeling approach using SPH is applied to evaluate the dispersing range of the fluid, and is compared with the Brown's results. The jet fuel is idealized as particles contained in an aluminum cylinder missile, where those particles can be dispersed to the surrounding area after the missile crashes into a rigid target. The fluid model using the SPH method is briefly verified through comparison with test results, and then the modelling method is applied to a jet fuel model in an aircraft model. The dispersion analysis of jet fuel caused by aircraft impact is performed using an aircraft model for the determination of fire duration and fire affected zone in a nuclear power plant. Finally, the structural integrity of the roof of the structure during a jet fuel fire is evaluated. In this study, the filled jet fuel was modeled by using smooth particle hydrodynamics technique; jet fuel spread area following an aircraft crash was analyzed.

  13. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  14. Plasma Fairings for Quieting Aircraft Landing Gear Noise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A major component of airframe noise for commercial transport aircraft is the deployed landing gear. The noise from the gear originates due to complex, unsteady bluff...

  15. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective

    Science.gov (United States)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.

    2015-01-01

    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  16. Short communication. Evaluation of a commercial kit based on acridine orange/propidium iodide to assess the plasma membrane integrity of ram sperm

    Directory of Open Access Journals (Sweden)

    J. L. Yániz

    2013-03-01

    Full Text Available This study was designed to develop a semiautomatic computer assisted methodology to evaluate the membrane integrity of ram spermatozoa using a commercial kit based on acridine orange/propidium iodide (AO/PI labelling and ImageJ software. The study was divided into two experiments. In the first trial, the new computer-assisted method was validated by mixing fresh semen samples with different volumes of freeze killed spermatozoa to determine proportions of damaged spermatozoa in the final samples. The proportion of damaged spermatozoa in each sample determined by the automated procedure where highly correlated (R2=0.97, p<0.001 with the predicted theoretical values. In the second trial, the new method was compared with a previously validated method of membrane integrity assessment based on phase-contrast/propidium iodide (PH/PI methodology. Measurements by AO/PI were, on average, 4.0% larger than measurements by PH/PI (SD=7.02% and 1.79% smaller than measurements of sperm motility determined by CASA (SD=4.83. The AO/PI method was also more repeatable than the PH/PI. The double staining methodology coupled with the routine for image analysis allowing automatic determination of sperm membrane integrity means a reduction in processing time of 75% compared to the previously developed method using a single fluorochrome (3 vs 12 min on average if the incubation period was included. This facilitates its use when a large number of samples are analysed. Our results validate the new computer assisted method for assessing sperm membrane integrity in sheep. The new method developed, in addition to being a free tool, allows quick automatic determination of sperm viability, which facilitates its use in routine semen analysis.

  17. Integrated effect of gamma radiation and biocontrol agent on quality parameters of apple fruit: An innovative commercial preservation method

    Science.gov (United States)

    Ahari Mostafavi, Hossein; Mahyar Mirmajlessi, Seyed; Fathollahi, Hadi; Shahbazi, Samira; Mohammad Mirjalili, Seyed

    2013-10-01

    Effects of gamma irradiation and biocontrol agent (Pseudomonas fluorescens) on the physico-chemical parameters (including moisture, total soluble solids, antioxidant activity, phenolic content and firmness) of cv. Golden Delicious apples were investigated for their ability to avoid the post-harvest blue mold caused by Penicillium expansum during cold storage. Freshly harvested apples were inoculated with P. expansum. Treated fruits were irradiated at doses of 0, 200, 400, 600 and 800 Gy and then inoculated with P. fluorescens suspension. Samples were evaluated at 3 month intervals. The results demonstrated a clear link between antioxidant activity and phenolic content, so that dose range of 200-400 Gy significantly increased phenolic content and antioxidant activity. Effect of P. fluorescens was similar to irradiation at 200 and 400 Gy that could prevent lesion diameter in pathogen-treated apples. As dose and storage time increased firmness decreased but, combination of P. fluorescens as well as irradiation (at 200-400 Gy) could decrease softening apple fruits during storage. In all parameters, P. fluorescens (as biocontrol agent) inhibited P. expansum similar to irradiation at 200-400 Gy. So, integrated treatment of irradiation and biocontrol agent explored the potential dual benefit of low doses (200 and 400 Gy) as a suitable method to sustain physico-chemical quality and conclusively reduce apple fruits losses during post-harvest preservation.

  18. Commercial combustion research aboard the International Space Station

    Science.gov (United States)

    Schowengerdt, F. D.

    1999-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is planning a number of combustion experiments to be done on the International Space Station (ISS). These experiments will be conducted in two ISS facilities, the SpaceDRUMS™ Acoustic Levitation Furnace (ALF) and the Combustion Integrated Rack (CIR) portion of the Fluids and Combustion Facility (FCF). The experiments are part of ongoing commercial projects involving flame synthesis of ceramic powders, catalytic combustion, water mist fire suppression, glass-ceramics for fiber and other applications and porous ceramics for bone replacements, filters and catalyst supports. Ground- and parabolic aircraft-based experiments are currently underway to verify the scientific bases and to test prototype flight hardware. The projects have strong external support.

  19. A historical perspective of aircrew systems effects on aircraft design

    OpenAIRE

    Bauer, David O.

    1996-01-01

    Approved for public release; distribution in unlimited. The design of the aircrew workstation often has not been an orderly part of the overall aircraft design process but rather of much lower priority than the integration of the airframe and powerplant. However, the true test of the aircraft is how well the aircrew can use the aircraft for mission performance. NAVAIR has been seeking the establishment of an Aircrew Centered System Design discipline, to be addressed as an integral part of ...

  20. Design, construction and integration of hybrid drive components in commercial vehicles. The MAN hybrid drive truck TGL 12.220; Auslegung, Aufbau und Integration von Hybrid-Antriebskomponenten im Nutzfahrzeug. Der MAN Hybrid-Verteiler-Lkw TGL 12.220

    Energy Technology Data Exchange (ETDEWEB)

    Kerschl, Stefan; Hipp, Eberhand; Doebereiner, Rolf [MAN Nutzfahrzeuge AG, Muenchen (Germany)

    2009-07-01

    In contrast to the passenger car the drive train of commercial vehicles is designed basically in view of a maximum efficiency, because the fuel consumption has a determining portion in the vehicle operating expenses of the operators. The pay load of the vehicle also has a high value, in particular in the small and middle segment from 8 t of total weight. In view of pollutant issues the environmental zones which may be also driven by commercial vehicles only from a certain pollutant class were already furnished by many local authority districts. Additional demands for a purely, emission free electric short distance operation can result from suitable emission editions in bigger towns in future. MAN Nutzfahrzeuge AG meet these topical challenges with the development of a hybriddelivery truck of the 12 t - class. At this the aim is to meet to the demands after low CO{sub 2} issue and purely electric operation by a powerful battery system and the recuperation of brake energy. For the integration of the hybrid components in the vehicle it was respected to preserve the pay load of the vehicle without limiting the functionality. The dimensioning of the hybrid drive train for a delivery truck vehicle, the vehicle integration and the effects on the lifecycle economics are lighted up in the following. (orig.)

  1. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-07-01

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of the containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)

  2. Emerging nondestructive inspection methods for aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, A; Dahlke, L; Gieske, J [and others

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  3. Electrochromic windows - Applications for aircraft

    Science.gov (United States)

    Harris, Caroline S.; Greenberg, Charles B.

    1989-04-01

    A transparent, solid-state, electrochromic device is described. It demonstrates deep switching in the near infrared and visible spectral regions and good room temperature cycling stability. The response appears reasonably uniform over a 14 cm x 28 cm area, which gives hope for achieving large parts for cockpit and cabin windows. The reversible darkening of the transparency, controlled by an applied voltage or current, has potential application in aircraft to reduce glare and solar heat load to pilots and passengers. The active material in the device is a thin tungsten oxide film which is incorporated into a complex, multilayered structure, essentially that of a transparent battery. The performance of the window is discussed in terms of its configuration, its similarities with commercial batteries and issues critical to aircraft.

  4. Simulation Packages Expand Aircraft Design Options

    Science.gov (United States)

    2013-01-01

    In 2001, NASA released a new approach to computational fluid dynamics that allows users to perform automated analysis on complex vehicle designs. In 2010, Palo Alto, California-based Desktop Aeronautics acquired a license from Ames Research Center to sell the technology. Today, the product assists organizations in the design of subsonic aircraft, space planes, spacecraft, and high speed commercial jets.

  5. Safety Assessment of a Metal Cask under Aircraft Engine Crash

    Directory of Open Access Journals (Sweden)

    Sanghoon Lee

    2016-04-01

    Full Text Available The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact load–time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

  6. Safety assessment of a metal cask under aircraft engine crash

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon [Dept. of Mechanical and Automotive Engineering, Keimyung University, Daegu (Korea, Republic of); Choi, Woo Seok; Seo, Ki Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD) was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is free standing on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact load-time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

  7. Bioturbosina: Producción de cultivos energéticos para la aviación comercial Jet Biofuel: Production of energy-related crops for commercial aircraft

    Directory of Open Access Journals (Sweden)

    Ibis Sepúlveda González

    2012-06-01

    Full Text Available Las más grandes compañías de fabricación de aviones, entre ellas Boeing y Airbus y la asociación internacional de líneas aéreas International Air Transport Association (IATA, decidieron jugar un doble papel: contribuir en la disminución de emisiones de gases efecto invernadero y asegurar la disponibilidad de combustible barato. Para ello se ha hecho un plan para agregar a la turbosina una fracción creciente de bioturbosina. En México esto se trabajó en el "plan de vuelo para los biocombustibles sustentables", convocado por ASA entre junio de 2010 y marzo de 2011. La bioturbosina debe reducir la emisión de GEI en más 50% en su ciclo de vida, con respecto a la turbosina. También se espera que, gracias a la tecnología, en el tiempo baje el costo de la bioturbosina mientras, por escasez, suba el del petróleo (Herrera y Morgan, 2010; García, 2010. De esta manera, a nivel mundial estas compañías han establecido que para 2015 se debe adicionar 1% de bioturbosina a la turbosina, para 2017; 10%, para 2020; 15% y así sucesivamente hasta cambiar al menos 50% del origen del combustible aéreo para 2050. En México se vende 2% del combustible aéreo del mundo. Esto significa una demanda inicial de 40 millones de litros de bioturbosina para 2015 y de unos 700 millones de litros para 2020. El grupo encargado de la promoción del biocombustible aéreo a nivel mundial (Roundtable on Sustainable Biofuels- RSB, con sede en la École Politechnique Federale de Lausanne estableció 12 principios que deben cumplirse para ser aceptados como proveedores de aceites para bioturbosina. Estos tienen que ver con sustentabilidad ecológica y equidad social. En la ponencia se analizan las condiciones de México para responder a esta primera demanda real de biocombustibles, así como sus probables efectos.The largest aircraft making companies, among them Boeing and Airbus, and International Air Transport Association (IATA, decided to take double role: to

  8. Aircraft tooling and the automated equipment; internship at Electroimpact, Seattle USA

    NARCIS (Netherlands)

    Van der Sman, E.

    2013-01-01

    If we consider the enormous amount of parts that are necessary to build a commercial aircraft, it becomes clear that assembling all parts with great accuracy is a challenge. The development of new tooling solutions and automated equipment for the manufacturing of commercial and military aircraft is

  9. AIRCRAFT MAINTENANCE HANGAR

    National Research Council Canada - National Science Library

    GEAMBASU Gabriel George

    2017-01-01

    .... The first part of research describes the aircraft maintenance process that has to be done after an updated maintenance manual according with aircraft type, followed by a short introduction about maintenance hangar...

  10. Patient Transport via Commercial Airlines

    Science.gov (United States)

    Macnab, Andrew John

    1992-01-01

    Because the frequency of patient transport from one hospital to another is increasing and the popularity of air travel continues to rise, physicians should be aware of the procedures for patient transport by commercial airlines. Major airlines in Canada have experienced personnel and established procedures that facilitate the transportation of patients with special medical needs. By working with the airline medical health officers and using up-to-date equipment, physicians can achieve safe, cost-effective transport of appropriate patients via commercial aircraft. PMID:21221401

  11. Static Aeroelasticity in Combat Aircraft.

    Science.gov (United States)

    1986-01-01

    Simulation Maneuverability Performance System Integration Design Load Spectren FIG. 1 HIGH PERFORMANCE AIRCRAFT DESIGN Simulation has a great potential...Aeroelasticity has also a great effect on the flight control system design. If the basic control powers are reduced by increasing dynamic pressure...Components Flight Envelope Structure Concept a Total Aircraf Analysis FIG, 2 BASIC DATAS FOR AEROELASTIC DESIGN STUDIES Aeroelastic activities are now devided

  12. The Aerothermodynamics of Aircraft Gas Turbine Engines

    Science.gov (United States)

    1978-07-01

    exists in the open literature. For example, Hebbel (Ref. (18.5» and Kiock (Ref. (18.6» have carried out classical experiments which demonstrate the...Propulsion System Structural 18.20 18.5 18.6 18.7 18.8 18.9 Integration and Engine Integrity, Journal of Aircraft, Vol. 12, No.4, Apr. 1975. Hebbel

  13. Unmanned aircraft systems

    Science.gov (United States)

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  14. Integration of a code for aeroelastic design of conventional and composite wings into ACSYNT, an aircraft synthesis program. [wing aeroelastic design (WADES)

    Science.gov (United States)

    Mullen, J., Jr.

    1976-01-01

    A comparison of program estimates of wing weight, material distribution. structural loads and elastic deformations with actual Northrop F-5A/B data is presented. Correlation coefficients obtained using data from a number of existing aircraft were computed for use in vehicle synthesis to estimate wing weights. The modifications necessary to adapt the WADES code for use in the ACSYNT program are described. Basic program flow and overlay structure is outlined. An example of the convergence of the procedure in estimating wing weights during the synthesis of a vehicle to satisfy F-5 mission requirements is given. A description of inputs required for use of the WADES program is included.

  15. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  16. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data

    Science.gov (United States)

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney

    2012-01-01

    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  17. Future aircraft networks and schedules

    Science.gov (United States)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  18. Contrasting patterns of population connectivity between regions in a commercially important mollusc Haliotis rubra: integrating population genetics, genomics and marine LiDAR data.

    Science.gov (United States)

    Miller, A D; van Rooyen, A; Rašić, G; Ierodiaconou, D A; Gorfine, H K; Day, R; Wong, C; Hoffmann, A A; Weeks, A R

    2016-08-01

    Estimating contemporary genetic structure and population connectivity in marine species is challenging, often compromised by genetic markers that lack adequate sensitivity, and unstructured sampling regimes. We show how these limitations can be overcome via the integration of modern genotyping methods and sampling designs guided by LiDAR and SONAR data sets. Here we explore patterns of gene flow and local genetic structure in a commercially harvested abalone species (Haliotis rubra) from southeastern Australia, where the viability of fishing stocks is believed to be dictated by recruitment from local sources. Using a panel of microsatellite and genomewide SNP markers, we compare allele frequencies across a replicated hierarchical sampling area guided by bathymetric LiDAR imagery. Results indicate high levels of gene flow and no significant genetic structure within or between benthic reef habitats across 1400 km of coastline. These findings differ to those reported for other regions of the fishery indicating that larval supply is likely to be spatially variable, with implications for management and long-term recovery from stock depletion. The study highlights the utility of suitably designed genetic markers and spatially informed sampling strategies for gaining insights into recruitment patterns in benthic marine species, assisting in conservation planning and sustainable management of fisheries.

  19. 我国上市商业银行整合风险度量研究%Study on Integrated Risk Measurement of Listed Commercial Banks

    Institute of Scientific and Technical Information of China (English)

    欧阳资生; 刘远

    2015-01-01

    At present,the financial institutions have to face the integrated risks such as the credit risk, market risk and operational risk. In this paper, the author takes 12 Chinese listed commercial banks as the research object. Firstly, the distribution of return rate of each risk is determined, and then the dependence structure is constructed by using Copula. Then the VaR and CVaR of different risk combination is calculate by using the Monte Carlo simulation method; finally the results calculated by Monte Carlo is proven efficient by back tests.%金融机构面临信用风险、市场风险和操作风险等诸多风险组成的整合风险。本文利用Copula方法对整合风险度量进行研究。以12家中国上市商业银行为研究对象,首先确定其信用风险、市场风险这两种风险收益率的分布,然后利用Copula构建相依结构模型,最后用蒙特卡罗模拟算法计算不同风险组合的VaR和CVaR,并利用返回测试检验模型的有效性。

  20. Space Commercialization

    Science.gov (United States)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  1. Commercial Intratheater Airlift: Cost-Effectiveness Analysis of Use in U.S. Central Command

    Science.gov (United States)

    2013-01-01

    mobility for both inter - and intratheater operations. However, while AFDD 2-6 provides explicit guidance for the inclusion of Civil Reserve Air Fleet...other types of commercial aircraft made ITA deliveries, including rotary-wing aircraft and very small fixed- wing aircraft, such as the CASA C-212

  2. Commercial development of Trichoderma species for control of soil-borne vegetable diseases and their integration into standard crop management practices

    Institute of Scientific and Technical Information of China (English)

    Kirstin L McLean; John S Hunt; Alison Stewart

    2004-01-01

    @@ A 10 year research programme at Lincoln University, investigating the use of Trichoderma species for biological control of soil-borne diseases of vegetable crops, has resulted in the development of two commercial products. TrichodryTM 6S and TrichoflowTM 6S based upon Trichoderma hamatum isolate 6SR4, are used to control Sclerotinia lettuce drop disease. The Trichodry 6S product is formulated as a dry flake, which is incorporated into nursery seedling mix and the Trichoflow 6S is a wettable powder which is used as a top-up drench before planting. The treatment stimulates seedling establishment and vigour and protects the developing seedling from Sclerotinia minor infection after transplanting in the field. The second commercial product is TrichopelTM Ali 52. Based upon Trichoderma atroviride isolate C52, which is used to control Sclerotium cepivorum, the causal agent of Allium white rot disease. The product is formulated as a granule and applied into the furrow at planting time. The fungus proliferates in the rhizosphere region and protects the growing seedling from pathogen attack by a combination of nutrient competition, antibiosis and mycoparasitism. The use of Trichopel Ali 52 under low to medium disease pressure in Pukekohe, the main vegetable growing region of New Zealand, gave a three fold cost benefit through yield increases in the 2003-2004 season. Current field development work involves the use of a wettable powder formulation of T. Atroviride distributed via a T-tape irrigation system to target mid-season applications of the product to the onion roots. Both products perform well under low to moderate disease pressure but, when there is high disease pressure, an integrated programme is required to give satisfactory control. Current research is focused on gaining a greater understanding of the biotic and abiotic factors, which influence biocontrol activity under field conditions as a means to enhance integrated control approaches. For example, T

  3. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  4. Study on Green Integrated Agricultural,Industrial and Commercial Enterprise Logistics System%农工贸一体化企业绿色物流体系研究

    Institute of Scientific and Technical Information of China (English)

    吉鸿荣

    2011-01-01

    Starting from the characteristics of logistics management of integrated agricultural, industrial and commercial (AIC) enterprises and the development status quo of green logistics, the paper establishes a green integrated agricultural, industrial and commercial enterprise logistics system in the case of a certain Beijing agricultural enterprise and proposes development strategies including resource integration, green packaging, storage, transportation and information management, etc.%从农工贸一体化企业物流管理特点和绿色物流发展现状人手,结合北京某农企的案例,构建农工贸一体化企业绿色物流体系,提出确立绿色物流战略、集约资源、绿色包装、绿色储运以及绿色信息管理等农工贸一体化企业绿色物流发展策略.

  5. Application and Development of Carbon Brake Disc Materials for Commercial Aircraft%大型商用飞机炭刹车盘材料的应用进展

    Institute of Scientific and Technical Information of China (English)

    季光明

    2011-01-01

    From the 70 years of the 20th century(1970s), the research and application of carbon brake disc composite has experienced five generations. C/C composite material has become the first choice of carbon brake disc for corrmlercial aircraft and has been widely used in Airbus and Boeing because of its excellent features of light weight, good friction characteristics, long life and high heat-absorbing capacity. The domestic carbon brake material has made considerable development after several years of development, and has been used as PMA in B757 and A320. However, the further improvement of density uniformity, quality consistency of domestic carbon brake material, anti-oxidation coating reliabilit, and low cost technology is necessary.%炭刹车盘材料具有质量轻、摩擦特性好、使用寿命长、吸热能力高等一系列优良特性。从20世纪70年代问世以来,炭刹车盘复合材料的研制和应用总共经历了五代发展历程,已经成为商用飞机炭刹车副的首选材料,被广泛应用于空客和波音系列飞机。经过几十年的发展,国内炭刹车材料取得了长足的发展,已经作为PMA件应用于B757和A320机型,但仍需进一步提高国产炭刹车材料的密度均匀性、质量一致性、抗氧化涂层的可靠性及降低生产成本。

  6. Subsonic Ultra Green Aircraft Research

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  7. Enabling Airspace Integration for High-Density On-Demand Mobility Operations

    Science.gov (United States)

    Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  8. Detection of respiratory viruses on air filters from aircraft.

    Science.gov (United States)

    Korves, T M; Johnson, D; Jones, B W; Watson, J; Wolk, D M; Hwang, G M

    2011-09-01

    To evaluate the feasibility of identifying viruses from aircraft cabin air, we evaluated whether respiratory viruses trapped by commercial aircraft air filters can be extracted and detected using a multiplex PCR, bead-based assay. The ResPlex II assay was first tested for its ability to detect inactivated viruses applied to new filter material; all 18 applications of virus at a high concentration were detected. The ResPlex II assay was then used to test for 18 respiratory viruses on 48 used air filter samples from commercial aircraft. Three samples tested positive for viruses, and three viruses were detected: rhinovirus, influenza A and influenza B. For 33 of 48 samples, internal PCR controls performed suboptimally, suggesting sample matrix effect. In some cases, influenza and rhinovirus RNA can be detected on aircraft air filters, even more than 10 days after the filters were removed from aircraft. With protocol modifications to overcome PCR inhibition, air filter sampling and the ResPlex II assay could be used to characterize viruses in aircraft cabin air. Information about viruses in aircraft could support public health measures to reduce disease transmission within aircraft and between cities. © The MITRE corporation. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  9. Innovations in Aircraft Design

    Science.gov (United States)

    1997-01-01

    The Boeing 777 carries with it basic and applied research, technology, and aerodynamic knowledge honed at several NASA field centers. Several Langley Research Center innovations instrumental to the development of the aircraft include knowledge of how to reduce engine and other noise for passengers and terminal residents, increased use of lightweight aerospace composite structures for increased fuel efficiency and range, and wind tunnel tests confirming the structural integrity of 777 wing-airframe integration. Test results from Marshall Space Flight Center aimed at improving the performance of the Space Shuttle engines led to improvements in the airplane's new, more efficient jet engines. Finally, fostered by Ames Research Center, the Boeing 777 blankets that protect areas of the plane from high temperatures and fire have a lineage to Advanced Flexible Reusable Surface Insulation used on certain areas of the Space Shuttle. According to Boeing Company estimates, the 777 has captured three-quarters of new orders for airplanes in its class since the program was launched.

  10. Quality evaluation of Terpinen-4-ol type Australian Tea Tree oils and commercial products: An integrated approach using conventional and chiral GC/MS combined with chemometrics

    Science.gov (United States)

    Conventional GC/MS, chiral GC/MS and chemometric techniques were used to evaluate a large set of tea tree oils (TTO) and commercial products purported to contain tea tree oils. Fifty-seven known provenance pure Australian tea tree oils and forty-seven commercial TTO products were investigated. Twent...

  11. 75 FR 22439 - Advance Notice of Proposed Rulemaking on Lead Emissions From Piston-Engine Aircraft Using Leaded...

    Science.gov (United States)

    2010-04-28

    ... fuel that is used in commercial aircraft, most military aircraft, or other turbine-engine powered... largely converted to jet turbine-engine propelled aircraft. However, the use of avgas containing 4 grams... certain high performance engines such as race cars. \\33\\ See http://www.epa.gov/airtrends/lead.html...

  12. Bibliography on aircraft fire hazards and safety. Volume 2: Safety. Part 1: Key numbers 1 to 524

    Science.gov (United States)

    Pelouch, J. J., Jr. (Compiler); Hacker, P. T. (Compiler)

    1974-01-01

    Bibliographic citations are presented to describe and define aircraft safety methods, equipment, and criteria. Some of the subjects discussed are: (1) fire and explosion suppression using whiffle balls, (2) ultraviolet flame detecting sensors, (3) evaluation of flame arrestor materials for aircraft fuel systems, (4) crash fire prevention system for supersonic commercial aircraft, and (5) fire suppression for aerospace vehicles.

  13. Survival analysis of aging aircraft

    Science.gov (United States)

    Benavides, Samuel

    work demonstrates the development of a probabilistic corrosion failure model using survival analysis methods and techniques. Using a parsimonious approach, the coefficients of a Cox proportional hazards model were derived from a set of environmental, geographical and operational predictor variables. To determine if the variables satisfied the proportional hazard assumption, numerous statistical tests were performed---such as the equivalence tests of the log rank, Wilcoxon, Peto-Peto and Fleming-Harrington---and graphical plots generated such as observed-versus-expected plots and log(-log) survival curves. Finally, in a paradigm enhancement to current design methodologies, this dissertation place sets survival analysis modeling in the context of an emerging holistic structural integrity philosophy. While traditional aircraft design and life prediction methodologies consider only the cyclic fatigue domain without consideration to the environmental or unique operating spectrum that aircraft may fly in, a holistic approach considers the cradle-to-grave driving forces in the life of a component, such as corrosion assisted crack nucleation in a material. This dissertation, which uses real-world failure data obtained from structural aircraft components, is poised to narrow the cradle-to-grave loop and provide holistic feedback in the understanding of aircraft structural system failures.

  14. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  15. Aircraft Noise Prediction

    OpenAIRE

    2014-01-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper add...

  16. Aircraft bi-level life cycle cost estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curan, R.

    2015-01-01

    n an integrated aircraft design and analysis practice, Life Cycle Cost (LCC) is essential for decision making. The LCC of an aircraft is ordinarily partially estimated by emphasizing a specific cost type. However, an overview of the LCC including design and development cost, production cost, operati

  17. Aircraft bi-level life cycle cost estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curan, R.

    2015-01-01

    n an integrated aircraft design and analysis practice, Life Cycle Cost (LCC) is essential for decision making. The LCC of an aircraft is ordinarily partially estimated by emphasizing a specific cost type. However, an overview of the LCC including design and development cost, production cost,

  18. Sources, seasonality, and trends of Southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    Directory of Open Access Journals (Sweden)

    P. S. Kim

    2015-07-01

    Full Text Available We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET, aircraft (SEAC4RS, and satellite (MODIS, MISR observations over the Southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM and aerosol optical depth (AOD. The GEOS-Chem global chemical transport model (CTM with 25 km × 25 km resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter and AOD over the Southeast US. GEOS-Chem simulation of sulfate requires a missing oxidant, taken here to be stabilized Criegee intermediates, but which could alternatively reflect an unaccounted for heterogeneous process. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 20 % in the cloud convective layer at 1.5–3 km, and 20 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42−] + [NO3−] is only 0.5–0.7 mol mol−1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by organic aerosol. This would explain the long-term decline of ammonium aerosol in the Southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the Southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the Southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 21 %. The large AOD decline observed from summer to winter is driven by sharp declines in both

  19. Design of a digital ride quality augmentation system for commuter aircraft

    Science.gov (United States)

    Hammond, T. A.; Amin, S. P.; Paduano, J. D.; Downing, D. R.

    1984-01-01

    Commuter aircraft typically have low wing loadings, and fly at low altitudes, and so they are susceptible to undesirable accelerations caused by random atmospheric turbulence. Larger commercial aircraft typically have higher wing loadings and fly at altitudes where the turbulence level is lower, and so they provide smoother rides. This project was initiated based on the goal of making the ride of the commuter aircraft as smooth as the ride experienced on the major commercial airliners. The objectives of this project were to design a digital, longitudinal mode ride quality augmentation system (RQAS) for a commuter aircraft, and to investigate the effect of selected parameters on those designs.

  20. Promoting Development of Regional Commercial Logistics:An Urban-rural Integration Perspective%基于城乡一体化视野推进区域商业物流发展研究

    Institute of Scientific and Technical Information of China (English)

    易海峰

    2013-01-01

    In this paper, we introduced the connotation of commercial logistics and urban-rural integration as well as the relationship between the two, described the current status of the regional commercial logistics in China and at the end proposed several measures to promote its development from the perspective of urban-rural integration.%阐述了商业物流和城乡一体化的内涵及二者的关系,指出了我国区域商业物流的发展现状,最后基于城乡一体化视野提出了推进区域商业物流发展的几点举措。

  1. Control strategies for aircraft airframe noise reduction

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xunnian; Zhang Dejiu

    2013-01-01

    With the development of low-noise aircraft engine,airframe noise now represents a major noise source during the commercial aircraft's approach to landing phase.Noise control efforts have therefore been extensively focused on the airframe noise problems in order to further reduce aircraft overall noise.In this review,various control methods explored in the last decades for noise reduction on airframe components including high-lift devices and landing gears are summarized.We introduce recent major achievements in airframe noise reduction with passive control methods such as fairings,deceleration plates,splitter plates,acoustic liners,slat cove cover and side-edge replacements,and then discuss the potential and control mechanism of some promising active flow control strategies for airframe noise reduction,such as plasma technique and air blowing/suction devices.Based on the knowledge gained throughout the extensively noise control testing,a few design concepts on the landing gear,high-lift devices and whole aircraft are provided for advanced aircraft low-noise design.Finally,discussions and suggestions are given for future research on airframe noise reduction.

  2. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  3. Cable Tensiometer for Aircraft

    Science.gov (United States)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  4. Investigation and design of a C-Wing passenger aircraft

    OpenAIRE

    Karan BIKKANNAVAR; Scholz, Dieter

    2016-01-01

    A novel nonplanar wing concept called C-Wing is studied and implemented on a commercial aircraft to reduce induced drag which has a significant effect on fuel consumption. A preliminary sizing method which employs an optimization algorithm is utilized. The Airbus A320 aircraft is used as a reference aircraft to evaluate design parameters and to investigate the C-Wing design potential beyond current wing tip designs. An increase in aspect ratio due to wing area reduction at 36m span results in...

  5. Propulsion controlled aircraft research

    Science.gov (United States)

    Fullerton, C. Gordon

    1993-01-01

    The NASA Dryden Flight Research Facility has been conducting flight, ground simulator, and analytical studies to investigate the use of thrust modulation on multi-engine aircraft for emergency flight control. Two general methods of engine only control have been studied; manual manipulation of the throttles by the pilot, and augmented control where a computer commands thrust levels in response to pilot attitude inputs and aircraft motion feedbacks. This latter method is referred to as the Propulsion Controlled Aircraft (PCA) System. A wide variety of aircraft have been investigated. Simulation studies have included the B720, F-15, B727, B747 and MD-11. A look at manual control has been done in actual flight on the F15, T-38, B747, Lear 25, T-39, MD-11 and PA-30 Aircraft. The only inflight trial of the augmented (PCA) concept has been on an F15, the results of which will be presented below.

  6. Perspectives of civil aircraft avionics development

    Directory of Open Access Journals (Sweden)

    А. В. Наумов

    1999-05-01

    Full Text Available Considered are main directions for civil avionics development. General requirements for airborne equipment functions. Analysis of airborne avionics selection per architecture and economical effectiveness in made. Proposed is the necessity of new approach to integrated avionics complex design, first of all, on basis of mathematical method for aircraft equipment and technical characteristics definition

  7. Small Autonomous Aircraft Servo Health Monitoring

    Science.gov (United States)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  8. Quality evaluation of terpinen-4-ol-type Australian tea tree oils and commercial products: an integrated approach using conventional and chiral GC/MS combined with chemometrics.

    Science.gov (United States)

    Wang, Mei; Zhao, Jianping; Avula, Bharathi; Wang, Yan-Hong; Chittiboyina, Amar G; Parcher, Jon F; Khan, Ikhlas A

    2015-03-18

    GC/MS, chiral GC/MS, and chemometric techniques were used to evaluate a large set (n=104) of tea tree oils (TTO) and commercial products purported to contain TTO. Twenty terpenoids were determined in each sample and compared with the standards specified by ISO-4730-2004. Several of the oil samples that were ISO compliant when distilled did not meet the ISO standards in this study primarily due to the presence of excessive p-cymene and/or depletion of terpinenes. Forty-nine percent of the commercial products did not meet the ISO specifications. Four terpenes, viz., α-pinene, limonene, terpinen-4-ol, and α-terpineol, present in TTOs with the (+)-isomer predominant were measured by chiral GC/MS. The results clearly indicated that 28 commercial products contained excessive (+)-isomer or contained the (+)-isomer in concentrations below the norm. Of the 28 outliers, 7 met the ISO standards. There was a substantial subset of commercial products that met ISO standards but displayed unusual enantiomeric+/-ratios. A class predictive model based on the oils that met ISO standards was constructed. The outliers identified by the class predictive model coincided with the samples that displayed an abnormal chiral ratio. Thus, chiral and chemometric analyses could be used to confirm the identification of abnormal commercial products including those that met all of the ISO standards.

  9. ANALYSIS OF THE SCATTERING OF RIVET ON AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    Guo Jingli; Ji Yicai; Liu Qizhong

    2002-01-01

    This letter investigates the scattering characteristic of the rivets on aircraft. The Electric Field Integral Equation (EFIE) is used with the moment method to calculate the current distribution on the surface of the rivet. With the application of Gaussian integral corresponding triangular cell, the time to fill the Z matrix is greatly reduced. Finally, the RCS of a type of rivet on aircraft is analyzed.

  10. ANALYSIS OF THE SCATTERING OF RIVET ON AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This letter investigates the scattering characteristic of the rivets on aircraft.The electric Field Integral Equation (EFIE)is used with the moment to calculate the current distribution on the surface of the rivet.With the application of Gaussian integral corresponding triangular cell,the time to fill the Z matrix is greatly reduced.Finally,the RCS of a type of rivet on aircraft is analyzed.

  11. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  12. 翼梢小翼高度影响综合研究%STUDY ON THE AIRCRAFT INTEGRATED CHARACTERS WITH DIFFERENT HEIGHT WINGLETS

    Institute of Scientific and Technical Information of China (English)

    张建军; 钱光平; 杨士普; 司江涛

    2012-01-01

    This paper considers the wingbody shape with two different types of winglets (the blended winglet and shark winglet) by discretized Reynolds average Navier-Stokes equation and the aero-structure coupled equation. The impact of the different heights of the winglet on the lift-drag ratio, the displacement of the wing pressure center, the weight and the flutter character is studied. The results show that the weight increase of the aircraft structure is smaller than the weight increase of effective loads and that the flutter velocity decrease is adjustable within the safety range. Therefore, it is suggested that the selection of the winglet height should have a priority over the lift-drag ratio character during the trade off between aero and weight & flutter in order to have a good drag reduction.%利用有限体积法离散求解雷诺平均Navier—Stokes方程以及气动和结构耦合计算了带2种不同类型翼梢小翼(融合式和鲨鳍式小翼)的翼身组合体构型.重点研究了小翼不同高度对飞机升阻比、机翼压力中心移动量、重量以及颤振特性的影响规律.研究结果表明,因小翼高度增加而带来的结构重量远远低于其有效载重的增量;因小翼高度增加而带来的颤振临界速度的降低在安全余量的范围内是可以调整的.因此,在设计小翼时与结构、重量和颤振的权衡中,建议高度的选择尽量优先满足纵向的升阻特性,以发挥其减阻潜力.

  13. High Altitude Long Endurance Remotely Operated Aircraft - National Airspace System Integration - Simulation IPT: Detailed Airspace Operations Simulation Plan. Version 1.0

    Science.gov (United States)

    2004-01-01

    The primary goal of Access 5 is to allow safe, reliable and routine operations of High Altitude-Long Endurance Remotely Operated Aircraft (HALE ROAs) within the National Airspace System (NAS). Step 1 of Access 5 addresses the policies, procedures, technologies and implementation issues of introducing such operations into the NAS above pressure altitude 40,000 ft (Flight Level 400 or FL400). Routine HALE ROA activity within the NAS represents a potentially significant change to the tasks and concerns of NAS users, service providers and other stakeholders. Due to the complexity of the NAS, and the importance of maintaining current high levels of safety in the NAS, any significant changes must be thoroughly evaluated prior to implementation. The Access 5 community has been tasked with performing this detailed evaluation of routine HALE-ROA activities in the NAS, and providing to key NAS stakeholders a set of recommended policies and procedures to achieve this goal. Extensive simulation, in concert with a directed flight demonstration program are intended to provide the required supporting evidence that these recommendations are based on sound methods and offer a clear roadmap to achieving safe, reliable and routine HALE ROA operations in the NAS. Through coordination with NAS service providers and policy makers, and with significant input from HALE-ROA manufacturers, operators and pilots, this document presents the detailed simulation plan for Step 1 of Access 5. A brief background of the Access 5 project will be presented with focus on Steps 1 and 2, concerning HALE-ROA operations above FL400 and FL180 respectively. An overview of project management structure follows with particular emphasis on the role of the Simulation IPT and its relationships to other project entities. This discussion will include a description of work packages assigned to the Simulation IPT, and present the specific goals to be achieved for each simulation work package, along with the associated

  14. Magnetic field exposure of commercial airline pilots.

    Science.gov (United States)

    Hood; Nicholas; Butler; Lackland; Hoel; Mohr

    2000-10-01

    PURPOSE: Airline pilots are exposed to magnetic fields generated by the aircraft's electrical and electronic systems. The purpose of this study was to directly measure the flight deck magnetic fields to which commercial airline pilots are exposed when flying on different aircraft types over a 75-hour flight-duty month.METHODS: Magentic field measurements were taken using personal dosimeters capable of measuring magnetic fields in the 40-800 Hz frequency range. Dosimeters were carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. The data were analyzed by aircraft type, with statistics based on block hours. Block hours begin when the aircraft departs the gate prior to take off and end when the aircraft returns to the gate after landing.RESULTS: Approximately 1008 block hours were recorded at a sampling rate of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200.CONCLUSIONS: Measured flight deck magnetic field levels were substantially above the 0.8 to 1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure.

  15. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Detect and Avoid Display Evaluations in Support of SC-228 Minimum Operational Performance Standards Development

    Science.gov (United States)

    Fern, Lisa Carolynn

    2017-01-01

    The primary activity for the UAS-NAS Human Systems Integration (HSI) sub-project in Phase 1 was support of RTCA Special Committee 228 Minimum Operational Performance Standards (MOPS). We provide data on the effect of various Detect and Avoid (DAA) display features with respect to pilot performance of the remain well clear function in order to determine the minimum requirements for DAA displays.

  16. Reengineering Aircraft Structural Life Prediction Using a Digital Twin

    Directory of Open Access Journals (Sweden)

    Eric J. Tuegel

    2011-01-01

    Full Text Available Reengineering of the aircraft structural life prediction process to fully exploit advances in very high performance digital computing is proposed. The proposed process utilizes an ultrahigh fidelity model of individual aircraft by tail number, a Digital Twin, to integrate computation of structural deflections and temperatures in response to flight conditions, with resulting local damage and material state evolution. A conceptual model of how the Digital Twin can be used for predicting the life of aircraft structure and assuring its structural integrity is presented. The technical challenges to developing and deploying a Digital Twin are discussed in detail.

  17. Predicting Visibility of Aircraft

    Science.gov (United States)

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  18. Evaluating and operationalizing unmanned aircraft for wildland fire use

    Science.gov (United States)

    Watts, A.

    2015-12-01

    Many potential uses of unmanned aircraft systems (UAS) related to wildland fire research and operations have been demonstrated, but the vast majority of these have been proof-of-concept or one-time flights. Scientists, practitioners, and firefighting agencies look forward to the widespread adoption of this powerful technology and its regular use. Similarly, the UAS industry awaits opportunities for commercialization. Our collaboration brings together UAS industry, research and management agencies, and universities in the USA and Canada to investigate the perceived effectiveness of UAS for wildland fire use, and the factors affecting their commercial-scale employment. Our current and future activities include market research, training and technology transfer, and deployment of UAS over fires to promote development of sensors as well as their safe integration into fire operations. We will present initial results, and as a part of our presentation we also invite participation of the AGU community for planned future project phases. We anticipate that the outcomes of our work will be useful to potential users who are unfamiliar with UAS, and to researchers and practitioners with experience or an interest in their use in fire and related natural-resource disciplines.

  19. Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction

    Science.gov (United States)

    Olson, Erik D.; Mavris, Dimitri N.

    2006-01-01

    An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.

  20. Improving transient analysis technology for aircraft structures

    Science.gov (United States)

    Melosh, R. J.; Chargin, Mladen

    1989-01-01

    Aircraft dynamic analyses are demanding of computer simulation capabilities. The modeling complexities of semi-monocoque construction, irregular geometry, high-performance materials, and high-accuracy analysis are present. At issue are the safety of the passengers and the integrity of the structure for a wide variety of flight-operating and emergency conditions. The technology which supports engineering of aircraft structures using computer simulation is examined. Available computer support is briefly described and improvement of accuracy and efficiency are recommended. Improved accuracy of simulation will lead to a more economical structure. Improved efficiency will result in lowering development time and expense.

  1. Ageing aircraft research in the Netherlands

    Science.gov (United States)

    Dejonge, J. B.; Bartelds, G.

    1992-01-01

    The problems of aging aircraft are worldwide. Hence, international cooperative actions to overcome or prevent problems should be taken. The Federal Aviation Administration (FAA) and the Netherlands Civil Aviation Department (RLD) signed a Memorandum of Cooperation in the area of structural integrity, with specific reference to research on problems in the area of aging aircraft. Here, an overview is given of aging research that is going on in the Netherlands. The work described is done largely at the National Aerospace Laboratory; much of the research is part of the forementioned cooperative agreement.

  2. High-Speed Propeller for Aircraft

    Science.gov (United States)

    Sagerser, D. A.; Gatzen, B. S.

    1986-01-01

    Engine efficiency increased. Propeller blades required to be quite thin and highly swept to minimize compressibility losses and propeller noise during high-speed cruise. Use of 8 or 10 blades with highpropeller-power loading allows overall propeller diameter to be kept relatively small. Area-ruled spinner and integrated nacelle shape reduce compressibility losses in propeller hub region. Finally, large modern turboshaft engine and gearbox provide power to advanced propeller. Fuel savings of 30 to 50 percent over present systems anticipated. Propfan system adaptable to number of applications, such as highspeed (subsonic) business and general-aviation aircraft, and military aircraft including V/STOL.

  3. Tropospheric sampling with aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Daum, P.H.; Springston, S.R.

    1991-03-01

    Aircraft constitute a unique environment which places stringent requirements on the instruments used to measure the concentrations of atmospheric trace gases and aerosols. Some of these requirements such as minimization of size, weight, and power consumption are general; others are specific to individual techniques. This review presents the basic principles and considerations governing the deployment of trace gas and aerosol instrumentation on an aircraft. An overview of common instruments illustrates these points and provides guidelines for designing and using instruments on aircraft-based measurement programs.

  4. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  5. Lightning hazards to aircraft

    Science.gov (United States)

    Corn, P. B.

    1978-01-01

    Lightning hazards and, more generally, aircraft static electricity are discussed by a representative for the Air Force Flight Dynamics Laboratory. An overview of these atmospheric electricity hazards to aircraft and their systems is presented with emphasis on electrical and electronic subsystems. The discussion includes reviewing some of the characteristics of lightning and static electrification, trends in weather and lightning-related mishaps, some specific threat mechanisms and susceptible aircraft subsystems and some of the present technology gaps. A roadmap (flow chart) is presented to show the direction needed to address these problems.

  6. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  7. Automation tools for flexible aircraft maintenance.

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, William J.; Drotning, William D.; Watterberg, Peter A.; Loucks, Clifford S.; Kozlowski, David M.

    2003-11-01

    This report summarizes the accomplishments of the Laboratory Directed Research and Development (LDRD) project 26546 at Sandia, during the period FY01 through FY03. The project team visited four DoD depots that support extensive aircraft maintenance in order to understand critical needs for automation, and to identify maintenance processes for potential automation or integration opportunities. From the visits, the team identified technology needs and application issues, as well as non-technical drivers that influence the application of automation in depot maintenance of aircraft. Software tools for automation facility design analysis were developed, improved, extended, and integrated to encompass greater breadth for eventual application as a generalized design tool. The design tools for automated path planning and path generation have been enhanced to incorporate those complex robot systems with redundant joint configurations, which are likely candidate designs for a complex aircraft maintenance facility. A prototype force-controlled actively compliant end-effector was designed and developed based on a parallel kinematic mechanism design. This device was developed for demonstration of surface finishing, one of many in-contact operations performed during aircraft maintenance. This end-effector tool was positioned along the workpiece by a robot manipulator, programmed for operation by the automated planning tools integrated for this project. Together, the hardware and software tools demonstrate many of the technologies required for flexible automation in a maintenance facility.

  8. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Advanced Collision Avoidance System for UAS (ACAS Xu) Interoperability White Paper Presentation

    Science.gov (United States)

    Fern, Lisa

    2017-01-01

    The Phase 1 DAA Minimum Operational Performance Standards (MOPS) provided requirements for two classes of DAA equipment: equipment Class 1 contains the basic DAA equipment required to assist a pilot in remaining well clear, while equipment Class 2 integrates the Traffic Alert and Collision Avoidance (TCAS) II system. Thus, the Class 1 system provides RWC functionality only, while the Class 2 system is intended to provide both RWC and Collision Avoidance (CA) functionality, in compliance with the Minimum Aviation System Performance (MASPS) for the Interoperability of Airborne Collision Avoidance Systems. The FAAs TCAS Program Office is currently developing Airborne Collision Avoidance System X (ACAS X) to support the objectives of the Federal Aviation Administrations (FAA) Next Generation Air Transportation System Program (NextGen). ACAS X has a suite of variants with a common underlying design that are intended to be optimized for their intended airframes and operations. ACAS Xu being is designed for UAS and allows for new surveillance technologies and tailored logic for platforms with different performance characteristics. In addition to Collision Avoidance (CA) alerting and guidance, ACAS Xu is being tuned to provide RWC alerting and guidance in compliance with the SC 228 DAA MOPS. With a single logic performing both RWC and CA functions, ACAS Xu will provide industry with an integrated DAA solution that addresses many of the interoperability shortcomings of Phase I systems. While the MOPS for ACAS Xu will specify an integrated DAA system, it will need to show compliance with the RWC alerting thresholds and alerting requirements defined in the DAA Phase 2 MOPS. Further, some functional components of the ACAS Xu system such as the remote pilots displayed guidance might be mostly references to the corresponding requirements in the DAA MOPS. To provide a seamless, integrated, RWC-CA system to assist the pilot in remaining well clear and avoiding collisions, several

  9. UAS Integration in the NAS Project: Integrated Test and Evaluation (IT&E) Flight Test 3. Revision E

    Science.gov (United States)

    Marston, Michael

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  10. Static aeroelastic analysis for generic configuration aircraft

    Science.gov (United States)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.

    1987-01-01

    A static aeroelastic analysis capability that can calculate flexible air loads for generic configuration aircraft was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used and the aerodynamic influence coefficient matrix is computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible airloads of an oblique wing aircraft can be calculated reliably by this code both in subsonic and supersonic speeds. Preliminary results indicating importance of flexibility in calculating air loads for this type of aircraft are presented.

  11. Essentials of aircraft armaments

    CERN Document Server

    Kaushik, Mrinal

    2017-01-01

    This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations. .

  12. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems. The facility allows for the simulation of a...

  13. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems.The facility allows for the simulation of a...

  14. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. Aircraft electromagnetic compatibility

    Science.gov (United States)

    Clarke, Clifton A.; Larsen, William E.

    1987-06-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  16. Aircraft Based Imaging Probe for the Study of Icing Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing environments are of great concern in commercial and military aviation. An aircraft-based, imaging probe is being proposed for the reliable and accurate...

  17. The Reasons and the Path of the Integration Development between Commercial Banks and E-commerce%商业银行与电子商务融合发展的原因及路径研究

    Institute of Scientific and Technical Information of China (English)

    杨雨晴

    2015-01-01

    This paper deeply analyses the reason of the integration development between commercial Banks and e -commerce,then u-sing the K-S model of cooperative game , found the collaborative development of commercial banks and E -commerce is the optimal choice.At last,the paper gives advice from four aspects including the payment and settlement , data mining, online mall, industrial chain financial path .%本文在分析商业银行与电子商务融合发展原因的基础上,运用K-S模型论证了商业银行与电商合作发展是最优选择,并从支付结算、数据挖掘、网上商城、产业链金融四方面提出建议.

  18. Automatic aircraft recognition

    Science.gov (United States)

    Hmam, Hatem; Kim, Jijoong

    2002-08-01

    Automatic aircraft recognition is very complex because of clutter, shadows, clouds, self-occlusion and degraded imaging conditions. This paper presents an aircraft recognition system, which assumes from the start that the image is possibly degraded, and implements a number of strategies to overcome edge fragmentation and distortion. The current vision system employs a bottom up approach, where recognition begins by locating image primitives (e.g., lines and corners), which are then combined in an incremental fashion into larger sets of line groupings using knowledge about aircraft, as viewed from a generic viewpoint. Knowledge about aircraft is represented in the form of whole/part shape description and the connectedness property, and is embedded in production rules, which primarily aim at finding instances of the aircraft parts in the image and checking the connectedness property between the parts. Once a match is found, a confidence score is assigned and as evidence in support of an aircraft interpretation is accumulated, the score is increased proportionally. Finally a selection of the resulting image interpretations with the highest scores, is subjected to competition tests, and only non-ambiguous interpretations are allowed to survive. Experimental results demonstrating the effectiveness of the current recognition system are given.

  19. Stratospheric aircraft: Impact on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  20. Stratospheric aircraft: Impact on the stratosphere?

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  1. A guideline for integrating dynamic areas of interests in existing set-up for capturing eye movement: Looking at moving aircraft.

    Science.gov (United States)

    Friedrich, Maik; Rußwinkel, Nele; Möhlenbrink, Christoph

    2016-06-10

    Today, capturing the behavior of a human eye is considered a standard method for measuring the information-gathering process and thereby gaining insights into cognitive processes. Due to the dynamic character of most task environments there is still a lack of a structured and automated approach for analyzing eye movement in combination with moving objects. In this article, we present a guideline for advanced gaze analysis, called IGDAI (Integration Guideline for Dynamic Areas of Interest). The application of IGDAI allows gathering dynamic areas of interest and simplifies its combination with eye movement. The first step of IGDAI defines the basic requirements for the experimental setup including the embedding of an eye tracker. The second step covers the issue of storing the information of task environments for the dynamic AOI analysis. Implementation examples in XML are presented fulfilling the requirements for most dynamic task environments. The last step includes algorithms to combine the captured eye movement and the dynamic areas of interest. A verification study was conducted, presenting an air traffic controller environment to participants. The participants had to distinguish between different types of dynamic objects. The results show that in comparison to static areas of interest, IGDAI allows a faster and more detailed view on the distribution of eye movement.

  2. A Knowledge-based and Extensible Aircraft Conceptual Design Environment

    Institute of Scientific and Technical Information of China (English)

    FENG Haocheng; LUO Mingqiang; LIU Hu; WU Zhe

    2011-01-01

    Design knowledge and experience are the bases to carry out aircraft conceptual design tasks due to the high complexity and integration of the tasks during this phase.When carrying out the same task,different designers may need individual strategies to fulfill their own demands.A knowledge-based and extensible method in building aircraft conceptual design systems is studied considering the above requirements.Based on the theory,a knowledge-based aircraft conceptual design environment,called knowledge-based and extensible aircraft conceptual design environment (KEACDE) with open architecture,is built as to enable designers to wrap add-on extensions and make their own aircraft conceptual design systems.The architecture,characteristics and other design and development aspects of KEACDE are discussed.A civil airplane conceptual design system (CACDS) is achieved using KEACDE.Finally,a civil airplane design case is presented to demonstrate the usability and effectiveness of this environment.

  3. Situational awareness in the commercial aircraft cockpit - A cognitive perspective

    Science.gov (United States)

    Adams, Marilyn J.; Pew, Richard W.

    1990-01-01

    A cognitive theory is presented that has relevance for the definition and assessment of situational awareness in the cockpit. The theory asserts that maintenance of situation awareness is a constructive process that demands mental resources in competition with ongoing task performance. Implications of this perspective for assessing and improving situational awareness are discussed. It is concluded that the goal of inserting advanced technology into any system is that it results in an increase in the effectiveness, timeliness, and safety with which the system's activities can be accomplished. The inherent difficulties of the multitask situation are very often compounded by the introduction of automation. To maximize situational awareness, the dynamics and capabilities of such technologies must be designed with thorough respect for the dynamics and capabilities of human information-processing.

  4. Commercial Aircraft Airframe Fuel Systems Survey and Analysis.

    Science.gov (United States)

    1982-07-01

    VALVE M~l’ ® FE(L FE06Cu~i 5u~jt~~ vat~FUEIL I.AL r(E PUE L FUEL f PUt GE VALVI AADTIV FWWV STAUIFBY Boa 7 HILL~E CAV 38 GAL U JILL ZAM StOOP VCA’r...to FAA. 3. Fiorentino, A., De Saro, R., and Franz , T., An Assessment of the Use Of Antimisting Fuel in Turbofan Engines, United Technologies

  5. Cabin Air Quality in Commercial Aircraft : Exposure, Symptoms and Signs

    OpenAIRE

    Lindgren, Torsten

    2003-01-01

    The objective of the dissertation was to study the cabin environment, and identify personal and environmental risk factors, associated with symptoms, and perception of cabin air quality. Another objective was to study if ban of smoking, and increased relative air humidity on intercontinental flights, could have a beneficial health effect. The studies were performed among Scandinavian cabin crew in one Airline Company. Office workers from the same company served as controls. Exposure differed ...

  6. On the unification of aircraft ultrafine particle emission data

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Busen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Turco, R.P.; Yu Fangqun [California Univ., Los Angeles, CA (United States). Dept. of Atmospheric Sciences; Danilin, M.Y.; Weisenstein, D.K. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Miake-Lye, R.C. [Aerodyne Research, Inc., Billerica, MA (United States)

    2000-03-01

    To predict the environmental impacts of future commercial aviation, intensive studies have been launched to measure the properties and effects of aircraft emissions. These observations have revealed an extremely wide variance with respect to the number and sizes of the particles produced in the exhaust plumes. Aircraft aerosol ultimately contributes to the population of cloud-forming nuclei, and may lead to significant global radiative and chemical perturbations. In this paper, recent discoveries are coordinated and unified in the form of a physically consistent plume aerosol model that explains most of the observational variance. Using this new approach, it is now practical to carry out reliable global atmospheric simulations of aircraft effects, as demonstrated by a novel assessment of the perturbation of the stratospheric aerosol layer by a supersonic aircraft fleet. (orig.)

  7. Mission Planning for Unmanned Aircraft with Genetic Algorithms

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær

    Unmanned aircraft invokes different feelings in people. Some see ruthless killing machines, other see a potential for fast and cheap distribution of goods, yet other see flexible and convenient emergency rescue drones. Regardless, advances and miniaturization in motors, sensors, and computer...... processing power have taken the unmanned aircraft from being a military application to the commercial sector and even into the hands of hobbyists. Still, the enthusiastic interest in the new technology and its prospective advantages overshadows the fact that it mainly sees application where the aircraft...... are mostly under human command, just like remote controlled planes have been for years. Actually the revolution of the drones is not so much a revolution of the unmanned aircraft as it is a digital control revolution. Only a few years ago, hopeful remote-control pilots had to invest countless hours...

  8. On the unification of aircraft ultrafine particle emission data

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Busen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Turco, R.P.; Yu Fangqun [California Univ., Los Angeles, CA (United States). Dept. of Atmospheric Sciences; Danilin, M.Y.; Weisenstein, D.K. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Miake-Lye, R.C. [Aerodyne Research, Inc., Billerica, MA (United States)

    2000-03-01

    To predict the environmental impacts of future commercial aviation, intensive studies have been launched to measure the properties and effects of aircraft emissions. These observations have revealed an extremely wide variance with respect to the number and sizes of the particles produced in the exhaust plumes. Aircraft aerosol ultimately contributes to the population of cloud-forming nuclei, and may lead to significant global radiative and chemical perturbations. In this paper, recent discoveries are coordinated and unified in the form of a physically consistent plume aerosol model that explains most of the observational variance. Using this new approach, it is now practical to carry out reliable global atmospheric simulations of aircraft effects, as demonstrated by a novel assessment of the perturbation of the stratospheric aerosol layer by a supersonic aircraft fleet. (orig.)

  9. The Impacts of Rising Temperatures on Aircraft Takeoff Performance

    Science.gov (United States)

    Coffel, Ethan; Thompson, Terence R.; Horton, Radley M.

    2017-01-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10 - 30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high temperatures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  10. Sensor Technology and Futuristic Of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Emmanuel Rugambage Ndayishimiye

    2016-08-01

    Full Text Available The Next Generation fighter Aircraft seeks a fighter with higher abilities in areas such as reach, persistence, survivability, net-centricity, situation awareness, human system integration and weapons effects. The future system will have to counter foe armed with next generation advanced electronic attack, sophisticated integrated air defense systems, directed energy weapons, passive detection, integrated self-protection and cyber-attack capabilities. It must be capable to operate in the anti-access area-denial (A2/AD environment that will exist in the next coming years.

  11. Aerial imaging with manned aircraft for precision agriculture

    Science.gov (United States)

    Over the last two decades, numerous commercial and custom-built airborne imaging systems have been developed and deployed for diverse remote sensing applications, including precision agriculture. More recently, unmanned aircraft systems (UAS) have emerged as a versatile and cost-effective platform f...

  12. Investigation of Practical Flight Control Systems for Small Aircraft

    NARCIS (Netherlands)

    Falkena, W.

    2012-01-01

    Personal air transportation utilizing small aircraft is a market that is expected to grow significantly in the near future. However, seventy times more accidents occur in this segment as compared with the commercial aviation sector. The majority of these accidents is related to handling and control

  13. On INM's Use of Corrected Net Thrust for the Prediction of Jet Aircraft Noise

    Science.gov (United States)

    McAninch, Gerry L.; Shepherd, Kevin P.

    2011-01-01

    The Federal Aviation Administration s (FAA) Integrated Noise Model (INM) employs a prediction methodology that relies on corrected net thrust as the sole correlating parameter between aircraft and engine operating states and aircraft noise. Thus aircraft noise measured for one set of atmospheric and aircraft operating conditions is assumed to be applicable to all other conditions as long as the corrected net thrust remains constant. This hypothesis is investigated under two primary assumptions: (1) the sound field generated by the aircraft is dominated by jet noise, and (2) the sound field generated by the jet flow is adequately described by Lighthill s theory of noise generated by turbulence.

  14. Aircraft Operations Classification System

    Science.gov (United States)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  15. Integration of Commercial Group Culture and Art Communication%商帮文化与文艺传播的视界融合

    Institute of Scientific and Technical Information of China (English)

    丁红

    2013-01-01

    Commercial group culture has deep root in China, which not only made many businessman achieve their success, but also spread the customs, human geography of their hometown when they reached the summit of their life. Since ancient times, China had an old saying“A place will not be called as a town if there isn’t person from Hui”. Businessman of Hui is regarded as a bright pearl in the business group culture, which plays a significant role in the communication of commercial culture.%商帮文化在我国有着深厚的根基,它不仅成就了无数的商人,同时也在商人们最辉煌的时候将他们家乡的风俗习惯、人文地理传播到了全国各地。中国自古就有“无徽不成镇”的说法,徽商作为商帮中璀璨的明珠,在商帮文化的文艺传播过程中占据了重要位置。

  16. 从概念整合理论看英语商业广告标语的汉译%The Translation of the Slogan of English Commercial Advertisements:From the Aspect of Conceptual Integration Theory

    Institute of Scientific and Technical Information of China (English)

    白琳

    2014-01-01

    The slogan of commercial advertisements is the embodiment of knowing this commodity. In recent years, the study of the slogan of commercial advertisements usually focuses on the perspective of pragmatics, aesthetics and the structural equiva-lence. This thesis will study the slogan of English commercial advertisements based on the conceptual integration theory put for-ward by Fauconnier and Tumer, and provide the translation methods.%广告标语是认识商品的载体。近年来,对广告标语的研究通常集中于其语用、审美、结构对等角度。该文以Faucon-nier和Tumer等人提出的概念整合理论为基础,试图对英语广告标语进行分析,并为英语商业广告标语的汉译提出相关的翻译策略。

  17. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    Science.gov (United States)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  18. 76 FR 45011 - Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test...

    Science.gov (United States)

    2011-07-27

    ...-7742. DOI: 10.1021/es101325r. The formation of fine particulate matter, i.e., PM 2.5 , from emission of... to the Chicago Convention).\\10\\ \\10\\ ICAO, ``Aircraft Engine Emissions,'' International Standards and... docket EPA- HQ-OAR-2010-0687, May 10, 2011. Table 1--Current National NOX Emissions From Commercial...

  19. Validation and Verification of Future Integrated Safety-Critical Systems Operating under Off-Nominal Conditions

    Science.gov (United States)

    Belcastro, Christine M.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents and reducing them will require a holistic integrated intervention capability. Future onboard integrated system technologies developed for preventing loss of vehicle control accidents must be able to assure safe operation under the associated off-nominal conditions. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V and V) and ultimate certification. The V and V of complex integrated systems poses major nontrivial technical challenges particularly for safety-critical operation under highly off-nominal conditions associated with aircraft loss-of-control events. This paper summarizes the V and V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft loss-of-control accidents. A summary of recent research accomplishments in this effort is also provided.

  20. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  1. Effect of commercial long-term extenders on metabolic activity and membrane integrity of boar spermatozoa stored at 17 degrees C.

    Science.gov (United States)

    Dziekońska, A; Fraser, L; Majewska, A; Lecewicz, M; Zasiadczyk, Ł; Kordan, W

    2013-01-01

    This study was aimed to analyze the metabolic activity and membrane integrity of boar spermatozoa following storage in long-term semen extenders. Boar semen was diluted with Androhep EnduraGuard (AeG), DILU-Cell (DC), SafeCell Plus (SCP) and Vitasem LD (VLD) extenders and stored for 10 days at 17 degrees C. Parameters of the analyzed sperm metabolic activity included total motility (TMOT), progressive motility (PMOT), high mitochondrial membrane potential (MMP) and ATP content, whereas those of the membrane integrity included plasma membrane integrity (PMI) and normal apical ridge (NAR) acrosome. Extender type was a significant (P sperm parameters, except for ATP content. Furthermore, the storage time had a significant effect (P sperm metabolic activity and membrane integrity during semen storage. In all extenders the metabolic activity and membrane integrity of the stored spermatozoa decreased continuously over time. Among the four analyzed extenders, AeG and SCP showed the best performance in terms of TMOT and PMI on Days 5, 7 and 10 of storage. Marked differences in the proportions of spermatozoa with high MMP were observed between the extenders, particularly on Day 10 of storage. There were not any marked differences in sperm ATP content between the extenders, regardless of the storage time. Furthermore, the percentage of spermatozoa with NAR acrosomes decreased during prolonged storage, being markedly lower in DC-diluted semen compared with semen diluted with either AeG or SCP extender. The results of this study indicated that components of the long-term extenders have different effects on the sperm functionality and prolonged semen longevity by delaying the processes associated with sperm ageing during liquid storage.

  2. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  3. AIRCRAFT MAINTENANCE HANGAR

    Directory of Open Access Journals (Sweden)

    GEAMBASU Gabriel George

    2017-05-01

    Full Text Available The paper presents the maintenance process that is done on an airplane, at a certain period of time, or after a number of flight hours or cycles and describes the checks performed behind each inspection. The first part of research describes the aircraft maintenance process that has to be done after an updated maintenance manual according with aircraft type, followed by a short introduction about maintenance hangar. The second part of the paper presents a hangar design with a foldable roof and walls, which can be folded or extended, over an airplane when a maintenance process is done, or depending on weather condition.

  4. Reengineering Aircraft Structural Life Prediction Using a Digital Twin

    OpenAIRE

    Eric J. Tuegel; Anthony R. Ingraffea; Eason, Thomas G.; S. Michael Spottswood

    2011-01-01

    Reengineering of the aircraft structural life prediction process to fully exploit advances in very high performance digital computing is proposed. The proposed process utilizes an ultrahigh fidelity model of individual aircraft by tail number, a Digital Twin, to integrate computation of structural deflections and temperatures in response to flight conditions, with resulting local damage and material state evolution. A conceptual model of how the Digital Twin can be used for predicting the lif...

  5. Building A Flight Control System For A Modelled Aircraft

    OpenAIRE

    Garratt, Paul William; Rushton, Andrew; Yilmaz, Esat

    2004-01-01

    Abstract. We modelled an aircraft based on the Airbus A320 and constructed a synthesisable flight control system. The novel feature was the use of C and VHDL, Very High Speed Inte-grated Circuit Design Language, to allow the flight control system to reside in a Field Pro-grammable Gate Array in a model aircraft or an Uninhabited Aerial Vehicle. The simulator models axial, normal, transverse, pitch, roll and yaw movements. The flight control system has automatic manoeuvre envelope protection a...

  6. Improving the lateral resolution of quartz tuning fork-based sensors in liquid by integrating commercial AFM tips into the fiber end.

    Science.gov (United States)

    Gonzalez, Laura; Martínez-Martín, David; Otero, Jorge; de Pablo, Pedro José; Puig-Vidal, Manel; Gómez-Herrero, Julio

    2015-01-14

    The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own.

  7. Propeller aircraft interior noise model

    Science.gov (United States)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  8. A Study of Vehicle Structural Layouts in Post-WWII Aircraft

    Science.gov (United States)

    Sensmeier, Mark D.; Samareh, Jamshid A.

    2004-01-01

    In this paper, results of a study of structural layouts of post-WWII aircraft are presented. This study was undertaken to provide the background information necessary to determine typical layouts, design practices, and industry trends in aircraft structural design. Design decisions are often predicated not on performance-related criteria, but rather on such factors as manufacturability, maintenance access, and of course cost. For this reason, a thorough understanding of current best practices in the industry is required as an input for the design optimization process. To determine these best practices and industry trends, a large number of aircraft structural cutaway illustrations were analyzed for five different aircraft categories (commercial transport jets, business jets, combat jet aircraft, single engine propeller aircraft, and twin-engine propeller aircraft). Several aspects of wing design and fuselage design characteristics are presented here for the commercial transport and combat aircraft categories. A great deal of commonality was observed for transport structure designs over a range of eras and manufacturers. A much higher degree of variability in structural designs was observed for the combat aircraft, though some discernable trends were observed as well.

  9. Aircraft Fuel Systems Career Ladder.

    Science.gov (United States)

    1985-09-01

    type fittings remove and install fuel cells clean work areas inspect aircraft for safety pin installation purge tanks or cells using blow purge method...INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 84 H254 PURGE TANKS OR CELLS USING BLOW PURGE METHOD 83 H227 CHECK AIRCRAFT FOR LIQUID OXYGEN (LOX...H243 INSPECT AIRCRAFT FOR SAFETY PIN INSTALLATION 52 M483 MIX SEALANTS BY HAND 48 K372 CONNECT OR DISCONNECT WIGGINS TYPE FITTINGS 48 H236 DISCONNECT

  10. NASA Unmanned Aircraft (UA) Control and Non-Payload Communication (CNPC) System Waveform Trade Studies

    Science.gov (United States)

    Chavez, Carlos; Hammel, Bruce; Hammel, Allan; Moore, John R.

    2014-01-01

    Unmanned Aircraft Systems (UAS) represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the National Airspace System (NAS). To address this deficiency, NASA has established a project called UAS Integration in the NAS (UAS in the NAS), under the Integrated Systems Research Program (ISRP) of the Aeronautics Research Mission Directorate (ARMD). This project provides an opportunity to transition concepts, technology, algorithms, and knowledge to the Federal Aviation Administration (FAA) and other stakeholders to help them define the requirements, regulations, and issues for routine UAS access to the NAS. The safe, routine, and efficient integration of UAS into the NAS requires new radio frequency (RF) spectrum allocations and a new data communications system which is both secure and scalable with increasing UAS traffic without adversely impacting the Air Traffic Control (ATC) communication system. These data communications, referred to as Control and Non-Payload Communications (CNPC), whose purpose is to exchange information between the unmanned aircraft and the ground control station to ensure safe, reliable, and effective unmanned aircraft flight operation. A Communications Subproject within the UAS in the NAS Project has been established to address issues related to CNPC development, certification and fielding. The focus of the Communications Subproject is on validating and allocating new RF spectrum and data link communications to enable civil UAS integration into the NAS. The goal is to validate secure, robust data links within the allocated frequency spectrum for UAS. A vision, architectural concepts, and seed requirements for the future commercial UAS CNPC system have been developed by RTCA Special Committee 203 (SC-203) in the process

  11. Aircraft Emissions Characterization

    Science.gov (United States)

    1988-03-01

    sample from each trap through a heated (1500C) six-port valve ’ Carle Instruments Model 5621) and onto the analytical column. The coLoponents in each...Environmental Protection, Vol. II. Aircraft Engine Emissions, Int. Civil Aviation Organ., 1981. 7. Nebel , G. J., "Benzene in Auto Exhaust," J. Air Poll

  12. Aircraft noise prediction

    Science.gov (United States)

    Filippone, Antonio

    2014-07-01

    This contribution addresses the state-of-the-art in the field of aircraft noise prediction, simulation and minimisation. The point of view taken in this context is that of comprehensive models that couple the various aircraft systems with the acoustic sources, the propagation and the flight trajectories. After an exhaustive review of the present predictive technologies in the relevant fields (airframe, propulsion, propagation, aircraft operations, trajectory optimisation), the paper addresses items for further research and development. Examples are shown for several airplanes, including the Airbus A319-100 (CFM engines), the Bombardier Dash8-Q400 (PW150 engines, Dowty R408 propellers) and the Boeing B737-800 (CFM engines). Predictions are done with the flight mechanics code FLIGHT. The transfer function between flight mechanics and the noise prediction is discussed in some details, along with the numerical procedures for validation and verification. Some code-to-code comparisons are shown. It is contended that the field of aircraft noise prediction has not yet reached a sufficient level of maturity. In particular, some parametric effects cannot be investigated, issues of accuracy are not currently addressed, and validation standards are still lacking.

  13. Aircraft Oxygen Generation

    Science.gov (United States)

    2012-02-01

    aircraft use some form of on-board oxygen generation provided by one of two corporations that dominate this market . A review of safety incident data...manufacture of synthetic resins (e.g., Bakelite), and for 161 making dyestuffs, flavorings, perfumes , and other chemicals. Some are used as

  14. Commercial Jet Transport Crashworthiness

    Science.gov (United States)

    1982-04-01

    simplification, obstructions are separated into three types; columna representing trees, poles, and towers that resist m..ion in the x and y direction and...aircraft type demonstrated that irious vertebral injuries were lower for light fixed-wing aircraft and cargo helicopters than the others. The rationale

  15. 基于模糊-比例积分偏差修正的多旋翼飞行器姿态测算系统%Multi-rotor aircraft attitude detection system based on fuzzy-proportion integration deviation correction

    Institute of Scientific and Technical Information of China (English)

    廖懿华; 张铁民; 廖贻泳

    2014-01-01

    Multi-rotor is an aircraft that can vertically takeoff, land and freely hover. It can be used as a platform to monitor field information near ground with remote sensing technology. It is a beneficial supplement to satellite remote sensing monitoring. Flight control is the core of the whole flight system and attitude detection is an important part of flight control. Therefore, real-time acquire accurate attitude information is the basis for its flight controlling. In this paper, taking multi-rotor as object, a multi-sensor attitude detection system was established. The system included STM32F103 as microprocessor, MPU6050 as three-axis gyroscope and accelerometer, HMC5883 as electronic compass. However, when vehicle accelerated horizontally, deviations among sensors would be produced because attitude angular could be measured by gyroscope timely, but accelerometer and electronic compass would lag due to the averaging. Moreover, accelerometer cannot distinguish any horizontal acceleration from gravity. In order to eliminate the measure deviations among above sensors, multi-sensor information fusion method with fuzzy-proportion integration (fuzzy-PI) deviation correction based on quaternion and its coordinate conversion was proposed. Fuzzy-proportion integration (fuzzy-PI) deviation correction method integrated precise performance of PI regulator and fast feature of fuzzy regulator. According to the vehicle at low or high speed motion, the deviations would be bigger or smaller. When the deviations and its integrations were less than the predetermined threshold value, it switched to PI regulator to obtain accurate measure. When they were greater than the predetermined threshold value, the algorithm switched to fuzzy regulator to correct the deviation as soon as possible. Attitude angle detected by fuzzy-PI deviation correction method, complementary filter algorithm and DMP program were validated by SGT320E multi-functional three-axis rotary platform. The measurement

  16. A Survey of Aircraft Integrated Control Technology.

    Science.gov (United States)

    1987-09-01

    Airlines, Library Qantas Airways Limited Ansett Airlines of Australia, Library Hawker de Havilland Aust Pty Ltd, Victoria, Library Hawker de Havilland Aust...research has led to developments which enable multiloop synthesis and analysis to be performed with much the same ease and reliability as the classical...has solved the design and analysis problem for finite dimensional linear systems only in the single-input single-output case. For the much more

  17. A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies

    Science.gov (United States)

    Becker, Keith Frederick

    Commercial aviation has become an integral part of modern society and enables unprecedented global connectivity by increasing rapid business, cultural, and personal connectivity. In the decades following World War II, passenger travel through commercial aviation quickly grew at a rate of roughly 8% per year globally. The FAA's most recent Terminal Area Forecast predicts growth to continue at a rate of 2.5% domestically, and the market outlooks produced by Airbus and Boeing generally predict growth to continue at a rate of 5% per year globally over the next several decades, which translates into a need for up to 30,000 new aircraft produced by 2025. With such large numbers of new aircraft potentially entering service, any negative consequences of commercial aviation must undergo examination and mitigation by governing bodies so that growth may still be achieved. Options to simultaneously grow while reducing environmental impact include evolution of the commercial fleet through changes in operations, aircraft mix, and technology adoption. Methods to rapidly evaluate fleet environmental metrics are needed to enable decision makers to quickly compare the impact of different scenarios and weigh the impact of multiple policy options. As the fleet evolves, interdependencies may emerge in the form of tradeoffs between improvements in different environmental metrics as new technologies are brought into service. In order to include the impacts of these interdependencies on fleet evolution, physics-based modeling is required at the appropriate level of fidelity. Evaluation of environmental metrics in a physics-based manner can be done at the individual aircraft level, but will then not capture aggregate fleet metrics. Contrastingly, evaluation of environmental metrics at the fleet level is already being done for aircraft in the commercial fleet, but current tools and approaches require enhancement because they currently capture technology implementation through post

  18. Braking performance of aircraft tires

    Science.gov (United States)

    Agrawal, Satish K.

    This paper brings under one cover the subject of aircraft braking performance and a variety of related phenomena that lead to aircraft hydroplaning, overruns, and loss of directional control. Complex processes involving tire deformation, tire slipping, and fluid pressures in the tire-runway contact area develop the friction forces for retarding the aircraft; this paper describes the physics of these processes. The paper reviews the past and present research efforts and concludes that the most effective way to combat the hazards associated with aircraft landings and takeoffs on contaminated runways is by measuring and displaying in realtime the braking performance parameters in the aircraft cockpit.

  19. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    After a long history dominated by out-migration, Denmark, Norway and Sweden have, in the past 50 years, become immigration societies. This article compares how these Scandinavian welfare societies have sought to incorporate immigrants and refugees into their national communities. It suggests that......, while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  20. Aircraft-Assisted Pilot Suicides: Lessons to be Learned.

    Science.gov (United States)

    Vuorio, Alpo; Laukkala, Tanja; Navathe, Pooshan; Budowle, Bruce; Eyre, Anne; Sajantila, Antti

    2014-08-01

    Aircraft assisted suicides were studied in the United States, United Kingdom, Germany, and Finland during 1956-2012 by means of literature search and accident case analysis. According to our study the frequency varied slightly between the studies. Overall, the new estimate of aircraft assisted suicides in the United States in a 20-yr period (1993-2012) is 0.33% (95% CI 0.21-0.49) (24/7244). In the detailed accident case analysis, it was found that in five out of the eight cases from the United States, someone knew of prior suicidal ideation before the aircraft assisted fatality. The caveats of standard medico-legal autopsy and accident investigation methods in investigation of suspected aircraft assisted suicides are discussed. It is suggested that a psychological autopsy should be performed in all such cases. Also the social context and possibilities of the prevention of aviation-related suicides were analyzed. In addition, some recent aircraft assisted suicides carried out using commercial aircraft during scheduled services and causing many casualties are discussed.

  1. Bayesian Software Health Management for Aircraft Guidance, Navigation, and Control

    Science.gov (United States)

    Schumann, Johann; Mbaya, Timmy; Menghoel, Ole

    2011-01-01

    Modern aircraft, both piloted fly-by-wire commercial aircraft as well as UAVs, more and more depend on highly complex safety critical software systems with many sensors and computer-controlled actuators. Despite careful design and V&V of the software, severe incidents have happened due to malfunctioning software. In this paper, we discuss the use of Bayesian networks (BNs) to monitor the health of the on-board software and sensor system, and to perform advanced on-board diagnostic reasoning. We will focus on the approach to develop reliable and robust health models for the combined software and sensor systems.

  2. SMACK - SMOOTHING FOR AIRCRAFT KINEMATICS

    Science.gov (United States)

    Bach, R.

    1994-01-01

    The computer program SMACK (SMoothing for AirCraft Kinematics) is designed to provide flightpath reconstruction of aircraft forces and motions from measurements that are noisy or incomplete. Additionally, SMACK provides a check on instrument accuracy and data consistency. The program can be used to analyze data from flight-test experiments prior to their use in performance, stability and control, or aerodynamic modeling calculations. It can also be used in the analysis of aircraft accidents, where the actual forces and motions may have to be determined from a very limited data set. Application of a state-estimation method for flightpath reconstruction is possible because aircraft forces and motions are related by well-known equations of motion. The task of postflight state estimation is known as a nonlinear, fixed-interval smoothing problem. SMACK utilizes a backward-filter, forward-smoother algorithm to solve the problem. The equations of motion are used to produce estimates that are compared with their corresponding measurement time histories. The procedure is iterative, providing improved state estimates until a minimum squared-error measure is achieved. In the SMACK program, the state and measurement models together represent a finite-difference approximation for the six-degree-of-freedom dynamics of a rigid body. The models are used to generate time histories which are likely to be found in a flight-test measurement set. These include onboard variables such as Euler angles, angular rates, and linear accelerations as well as tracking variables such as slant range, bearing, and elevation. Any bias or scale-factor errors associated with the state or measurement models are appended to the state vector and treated as constant but unknown parameters. The SMACK documentation covers the derivation of the solution algorithm, describes the state and measurement models, and presents several application examples that should help the analyst recognize the potential

  3. Integration of the commercial and operational systems for the supply of services related to the transportation of natural gas; Integracao entre sistema comercial e operacional para prestacao de servicos de transporte de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Frisoli, Caetano [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil); Faria, Jose Aurelio Carvalho de; Silva, Mauricio dos Santos [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil); Varon, Rene [Energy Solutions International Inc., Houston, TX (United States)

    2003-07-01

    Transportadora Brasileira Gasoduto Bolivia-Brazil S.A. - TBG, In order to perform with efficiency and quality, has always been committed to providing its customers with the best services and support. This commitment has been materialized with the recent implementation of a state-of-the-art technology that allows TBG to automatically manage all of its requests for services and to guarantee the delivery of gas to its customers is done in a safe way, optimizing pipeline capacity. To offer these levels of service, it was necessary to acquire a field proven solution capable of managing all commercial procedures as well as providing the right tools to operation to evaluate the capacity to move gas throughout the pipeline. Therefore the solution also was required to be easily integrated with existing operational and commercial tools such as the SCADA system and SAP R3 software. Reductions of fuel consumption and mitigation of risks against contractual penalties are some of the benefits reached. (author)

  4. Smart aircraft composite structures with embedded small-diameter optical fiber sensors

    Science.gov (United States)

    Takeda, Nobuo; Minakuchi, Shu

    2012-02-01

    This talk describes the embedded optical fiber sensor systems for smart aircraft composite structures. First, a summary of the current Japanese national project on structural integrity diagnosis of aircraft composite structures is described with special emphasis on the use of embedded small-diameter optical fiber sensors including FBG sensors. Then, some examples of life-cycle monitoring of aircraft composite structures are presented using embedded small-diameter optical fiber sensors for low-cost and reliable manufacturing merits.

  5. Global Commercial Aviation Emissions Inventory for 2004

    Science.gov (United States)

    Wilkerson, J.; Balasubramanian, S.; Malwitz, A.; Wayson, R.; Fleming, G.; Jacobson, M. Z.; Naiman, A.; Lele, S.

    2008-12-01

    In 2004, the global commercial aircraft fleet included more than 13,000 aircraft flying over 30 billion km, burning more than 100 million tons of fuel. All this activity incurs substantial amounts of fossil-fuel combustion products at the cruise altitude within the upper troposphere and lower stratosphere that could potentially affect the atmospheric composition and climate. These emissions; such as CO, CO2, PM, NOx, SOx, are not distributed uniformly over the earth, so understanding the temporal and spatial distributions is an important component for modeling aviation climate impacts. Previous studies for specific years have shown that nearly all activity occurs in the northern hemisphere, and most is within mid-latitudes. Simply scaling older data by the annual global industry growth of 3-5 percent may provide emission trends which are not representative of geographically varying growth in aviation sector that has been noted over the past years. India, for example, increased its domestic aviation activity recently by 46 percent in one year. Therefore, it is important that aircraft emissions are best characterized and represented in the atmospheric models for impacts analysis. Data containing all global commercial flights for 2004 was computed using the Federal Aviation Administration's Aviation Environmental Design Tool (AEDT) and provided by the Volpe National Transportation Systems Center. The following is a summary of this data which illustrates the global aviation footprint for 2004, and provides temporal and three-dimensional spatial distribution statistics of several emissions constituents.

  6. Computational analysis of aircraft pressure relief doors

    Science.gov (United States)

    Schott, Tyler

    Modern trends in commercial aircraft design have sought to improve fuel efficiency while reducing emissions by operating at higher pressures and temperatures than ever before. Consequently, greater demands are placed on the auxiliary bleed air systems used for a multitude of aircraft operations. The increased role of bleed air systems poses significant challenges for the pressure relief system to ensure the safe and reliable operation of the aircraft. The core compartment pressure relief door (PRD) is an essential component of the pressure relief system which functions to relieve internal pressure in the core casing of a high-bypass turbofan engine during a burst duct over-pressurization event. The successful modeling and analysis of a burst duct event are imperative to the design and development of PRD's to ensure that they will meet the increased demands placed on the pressure relief system. Leveraging high-performance computing coupled with advances in computational analysis, this thesis focuses on a comprehensive computational fluid dynamics (CFD) study to characterize turbulent flow dynamics and quantify the performance of a core compartment PRD across a range of operating conditions and geometric configurations. The CFD analysis was based on a compressible, steady-state, three-dimensional, Reynolds-averaged Navier-Stokes approach. Simulations were analyzed, and results show that variations in freestream conditions, plenum environment, and geometric configurations have a non-linear impact on the discharge, moment, thrust, and surface temperature characteristics. The CFD study revealed that the underlying physics for this behavior is explained by the interaction of vortices, jets, and shockwaves. This thesis research is innovative and provides a comprehensive and detailed analysis of existing and novel PRD geometries over a range of realistic operating conditions representative of a burst duct over-pressurization event. Further, the study provides aircraft

  7. Pilot production & commercialization of LAPPD™

    Energy Technology Data Exchange (ETDEWEB)

    Minot, Michael J.; Bennis, Daniel C.; Bond, Justin L.; Craven, C A; O' Mahony, Aileen O; Renaud, Joseph M.; Stochaj, Michael E.; Elam, Jeffrey W.; Mane, Anil U.; Demarteau, Marcellinus W.; Wagner, Robert G.; McPhate, J; Siegmund, O; Elagin, Andrey L.; Frisch, H.; Northrop, R; Wetstein, Matthew J.

    2015-07-01

    We present a progress update on plans to establish pilot production and commercialization of Large Area (400 cm2) Picosecond Photodetector (LAPPD™). Steps being taken to commercialize this MCP and LAPPD™ technology and begin tile pilot production are presented including (1) the manufacture of 203 mm×203 mm borosilicate glass capillary arrays (GCAs), (2) optimization of MCP performance and creation of an ALD coating facility to manufacture MCPs and (3) design, construction and commissioning of UHV tile integration and sealing facility to produce LAPPDs. Taken together these plans provide a “pathway toward commercialization”.

  8. The research of optical windows used in aircraft sensor systems

    Institute of Scientific and Technical Information of China (English)

    Zhou Feng; Li Yan; Tang Tian-Jin

    2012-01-01

    The optical windows used in aircrafts protect their imaging sensors from environmental effects.Considering the imaging performance,flat surfaces are traditionally used in the design of optical windows.For aircrafts operating at high speeds,the optical windows should be relatively aerodynamic,but a flat optical window may introduce unacceptably high drag to the airframes.The linear scanning infrared sensors used in aircrafts with,respectively,a fiat window,a spherical window and a toric window in front of the aircraft sensors are designed and compared.Simulation results show that the optical design using a toric surface has the integrated advantages of field of regard,aerodynamic drag,narcissus effect,and imaging performance,so the optical window with a toric surface is demonstrated to be suited for this application.

  9. Aircraft Data Acquisition

    OpenAIRE

    Elena BALMUS

    2016-01-01

    The introduction of digital systems instead of analog ones has created a major separation in the aviation technology. Although the digital equipment made possible that the increasingly faster controllers take over, we should say that the real world remains essentially analogue [4]. Fly-by-wire designers attempting to control and measure the real feedback of an aircraft were forced to find a way to connect the analogue environment to their digital equipment. In order to manage the implications...

  10. Airline and Aircraft Reliability

    OpenAIRE

    Hauka, Maris; Paramonovs, Jurijs

    2014-01-01

    Development of the inspection programme of fatigue-prone aircraft construction under limitation of airline fatigue failure rate. The highest economical effectiveness of airline under limitation of fatigue failure rate and failure probability is discussed. For computing is used exponential regression, Monte Carlo method, Log Normal distribution, Markov chains and semi-Markov process theory. The minimax approach is offered for processing the results of full-scale fatigue approval test of an air...

  11. Slotted Aircraft Wing

    Science.gov (United States)

    McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  12. Aircraft family design using enhanced collaborative optimization

    Science.gov (United States)

    Roth, Brian Douglas

    Significant progress has been made toward the development of multidisciplinary design optimization (MDO) methods that are well-suited to practical large-scale design problems. However, opportunities exist for further progress. This thesis describes the development of enhanced collaborative optimization (ECO), a new decomposition-based MDO method. To support the development effort, the thesis offers a detailed comparison of two existing MDO methods: collaborative optimization (CO) and analytical target cascading (ATC). This aids in clarifying their function and capabilities, and it provides inspiration for the development of ECO. The ECO method offers several significant contributions. First, it enhances communication between disciplinary design teams while retaining the low-order coupling between them. Second, it provides disciplinary design teams with more authority over the design process. Third, it resolves several troubling computational inefficiencies that are associated with CO. As a result, ECO provides significant computational savings (relative to CO) for the test cases and practical design problems described in this thesis. New aircraft development projects seldom focus on a single set of mission requirements. Rather, a family of aircraft is designed, with each family member tailored to a different set of requirements. This thesis illustrates the application of decomposition-based MDO methods to aircraft family design. This represents a new application area, since MDO methods have traditionally been applied to multidisciplinary problems. ECO offers aircraft family design the same benefits that it affords to multidisciplinary design problems. Namely, it simplifies analysis integration, it provides a means to manage problem complexity, and it enables concurrent design of all family members. In support of aircraft family design, this thesis introduces a new wing structural model with sufficient fidelity to capture the tradeoffs associated with component

  13. Interaction of Aircraft Wakes From Laterally Spaced Aircraft

    Science.gov (United States)

    Proctor, Fred H.

    2009-01-01

    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  14. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  15. Information note about the protection of nuclear facilities against aircraft crashes; Note d'information sur la protection des installations nucleaires contre les chutes d'avions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The protection of nuclear facilities against external risks (earthquakes, floods, fires etc..) is an aspect of safety taken into consideration by the French authority of nuclear safety (ASN). Concerning the aircraft crashes, the fundamental safety rules make three categories of aircraft: the small civil aircraft (weight < 5.7 t), the military aircraft, and the commercial aircraft (w > 5.7 t). Nuclear facilities are designed to resist against crashes of aircraft from the first category only, because the probability of the accidental crash of a big aircraft are extremely low. This document comprises an information note about the protection of nuclear facilities against aircraft crashes, a dossier about the safety of nuclear facilities with respect to external risks in general (natural disasters and aircraft crashes), and an article about the protection of nuclear power plants against aircraft crashes (design, safety measures, regulation, surveillance, experience feedback). (J.S.)

  16. Flight dynamics and control modelling of damaged asymmetric aircraft

    Science.gov (United States)

    Ogunwa, T. T.; Abdullah, E. J.

    2016-10-01

    This research investigates the use of a Linear Quadratic Regulator (LQR) controller to assist commercial Boeing 747-200 aircraft regains its stability in the event of damage. Damages cause an aircraft to become asymmetric and in the case of damage to a fraction (33%) of its left wing or complete loss of its vertical stabilizer, the loss of stability may lead to a fatal crash. In this study, aircraft models for the two damage scenarios previously mentioned are constructed using stability derivatives. LQR controller is used as a direct adaptive control design technique for the observable and controllable system. Dynamic stability analysis is conducted in the time domain for all systems in this study.

  17. An efficient navigation-control system for small unmanned aircraft

    Science.gov (United States)

    Girwar-Nath, Jonathan Alejandro

    Unmanned Aerial Vehicles have been research in the past decade for a broad range of tasks and application domains such as search and rescue, reconnaissance, traffic control, pipe line inspections, surveillance, border patrol, and communication bridging. This work describes the design and implementation of a lightweight Commercial-Off-The-Shelf (COTS) semi-autonomous Fixed-Wing Unmanned Aerial Vehicle (UAV). Presented here is a methodology for System Identification utilizing the Box-Jenkins model estimator on recorded flight data to characterize the system and develop a mathematical model of the aircraft. Additionally, a novel microprocessor, the XMOS, is utilized to navigate and maneuver the aircraft utilizing a PD control system. In this thesis is a description of the aircraft and the sensor suite utilized, as well as the flight data and supporting videos for the benefit of the UAV research community.

  18. Commercialization and Pasisir Culture

    OpenAIRE

    Suryo, Djoko

    2013-01-01

    Commercialization process and the establishment of coastal culture in Javawas one united history process where one cannot be separated from the other. The commercialization process and the establishment of the coastal culture cannot be separated from the commercialization process and the establishment of Malay World in South East Asia. In other words, we can say that basically, commercialization process and the establishment of the coastal culture had been part of commercialization process an...

  19. 19 CFR 122.64 - Other aircraft.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Other aircraft. 122.64 Section 122.64 Customs... AIR COMMERCE REGULATIONS Clearance of Aircraft and Permission To Depart § 122.64 Other aircraft. Clearance or permission to depart shall be requested by the aircraft commander or agent for aircraft covered...

  20. Guidance Systems of Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    K.N. Rajanikanth

    2005-07-01

    Full Text Available Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing such a system are described.

  1. Guidance Systems of Fighter Aircraft

    OpenAIRE

    K.N. Rajanikanth; Rao, R S; P. S. Subramanyam; Ajai Vohra

    2005-01-01

    Mission performance of a fighter aircraft is crucial for survival and strike capabilities in todays' aerial warfare scenario. The guidance functions of such an aircraft play a vital role inmeeting the requirements and accomplishing the mission success. This paper presents the requirements of precision guidance for various missions of a fighter aircraft. The concept ofguidance system as a pilot-in-loop system is pivotal in understanding and designing such a system. Methodologies of designing s...

  2. Scheduling of an aircraft fleet

    Science.gov (United States)

    Paltrinieri, Massimo; Momigliano, Alberto; Torquati, Franco

    1992-01-01

    Scheduling is the task of assigning resources to operations. When the resources are mobile vehicles, they describe routes through the served stations. To emphasize such aspect, this problem is usually referred to as the routing problem. In particular, if vehicles are aircraft and stations are airports, the problem is known as aircraft routing. This paper describes the solution to such a problem developed in OMAR (Operative Management of Aircraft Routing), a system implemented by Bull HN for Alitalia. In our approach, aircraft routing is viewed as a Constraint Satisfaction Problem. The solving strategy combines network consistency and tree search techniques.

  3. Commercial Buildings Characteristics, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  4. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    Science.gov (United States)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  5. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    Science.gov (United States)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  6. The impact of technology on fighter aircraft requirements

    Science.gov (United States)

    Dollyhigh, S. M.; Foss, W. E., Jr.

    1985-01-01

    Technology integration studies were made to examine the impact of emerging technologies on fighter aircraft. The technologies examined included advances in aerodynamics, controls, structures, propulsion, and systems and were those which appeared capable of being ready for application by the turn of the century. A primary impetus behind large increases in figher capability will be the rapid increase in fighter engine thrust-to-weight ratio. High thrust-weight engines, integrated with other advanced and emerging technologies, can result in small extremely maneuverable fighter aircraft that have thrust-weight ratios of 1.4+ and weight one-half as much as today's fighters. Future fighter aircraft requirements are likely to include a turn capability in excess of 7g's throughout much of the maneuver envelope, post-stall maneuverability, STOVL or VTOL, and a single engine for low cost.

  7. Titanium Alloys and Processing for High Speed Aircraft

    Science.gov (United States)

    Brewer, William D.; Bird, R. Keith; Wallace, Terryl A.

    1996-01-01

    Commercially available titanium alloys as well as emerging titanium alloys with limited or no production experience are being considered for a variety of applications to high speed commercial aircraft structures. A number of government and industry programs are underway to improve the performance of promising alloys by chemistry and/or processing modifications and to identify appropriate alloys and processes for specific aircraft structural applications. This paper discusses some of the results on the effects of heat treatment, service temperatures from - 54 C to +177 C, and selected processing on the mechanical properties of several candidate beta and alpha-beta titanium alloys. Included are beta alloys Timetal 21S, LCB, Beta C, Beta CEZ, and Ti-10-2-3 and alpha-beta alloys Ti-62222, Ti-6242S, Timetal 550, Ti-62S, SP-700, and Corona-X. The emphasis is on properties of rolled sheet product form and on the superplastic properties and processing of the materials.

  8. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  9. Research on Teaching Model of the Integration of "Teaching, Learning and Doing" in Commercial Courses%商科类课程“教、学、做”一体化

    Institute of Scientific and Technical Information of China (English)

    闫玉梅; 杨晓华

    2012-01-01

    As state economic structures are further adjusted, the development of service trades becomes a strategic emphasis of pushing the optimization of industrial structures. There is a big demand of qualified personnel for service trades. Employers have a high requirement for employee' s knowledge and operating capacity. There are mismatches between supply and demand of qualified personnel. Therefore, to strengthen the quality of students for commercial courses and to reform teaching model becomes necessary. This paper gives a research on teaching model of the integration of teaching, learning and doing of commercial courses for how to train more qualified personal and to satisfy the needs of markets.%随着国家经济结构的进一步调整,服务业发展成为推动产业结构优化升级的战略重点,服务业人才需求量不断增加,用人单位对劳动者知识水平、动手能力的要求越来越高,人才市场供需不匹配的矛盾越来越突出,为此,提高商科类专业学生的素质,加大商科类课程一体化教学改革就显得越来越迫切。本文着重阐述了商科类课程怎样进行“教、学、做”一体化教学,以培养更多满足市场经济需求的人才。

  10. Aircraft vulnerability analysis by modelling and simulation

    CSIR Research Space (South Africa)

    Willers, CJ

    2014-09-01

    Full Text Available attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft...

  11. Attitude and Heading Reference System for Small Unmanned Aircraft Collision Avoidance Maneuvers

    Science.gov (United States)

    Murrant, Kevin

    This thesis describes the development of an Attitude and Heading Reference System (AHRS) to sense three-dimensional orientation for collision avoidance control in small unmanned aircraft. Unmanned aircraft are currently restricted to flight in designated airspace due to safety concerns of collision with manned aircraft. Therefore, collision avoidance is necessary to ensure the safety of both aircraft. Technical challenges, mainly in sensor limitations, restrict AHRS performance in attitude estimation during high-g maneuvers. Using sensor filtering techniques and a robust attitude representation, an AHRS suitable for collision avoidance is developed. Acceleration disturbances are reduced using estimates of non-gravitational accelerations including centripetal acceleration and model-based acceleration to improve gravity vector measurement during aircraft maneuvers. Simulation results with a variety of maneuvers deemed challenging for most AHRS are given showing accurate attitude estimates. Flight data from an existing commercial autopilot is compared with the results of the AHRS to demonstrate the validity of the solution with real flight data.

  12. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    Science.gov (United States)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  13. Investigation and design of a C-Wing passenger aircraft

    Directory of Open Access Journals (Sweden)

    Karan BIKKANNAVAR

    2016-06-01

    Full Text Available A novel nonplanar wing concept called C-Wing is studied and implemented on a commercial aircraft to reduce induced drag which has a significant effect on fuel consumption. A preliminary sizing method which employs an optimization algorithm is utilized. The Airbus A320 aircraft is used as a reference aircraft to evaluate design parameters and to investigate the C-Wing design potential beyond current wing tip designs. An increase in aspect ratio due to wing area reduction at 36m span results in a reduction of required fuel mass by 16%. Also take-off mass savings were obtained for the aircraft with C-Wing configuration. The effect of a variations of height to span ratio (h/b of C-Wings on induced drag factor k, is formulated from a vortex lattice method and literature based equations. Finally the DOC costing methods used by the Association of European Airlines (AEA was applied to the existing A320 aircraft and to the C-Wing configuration obtaining a reduction of 6% in Direct Operating Costs (DOC for the novel concept resulted. From overall outcomes, the C-Wing concept suggests interesting aerodynamic efficiency and stability benefits.

  14. Capacity assessment of concrete containment vessels subjected to aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Andonov, Anton, E-mail: anton.andonov@mottmac.com; Kostov, Marin; Iliev, Alexander

    2015-12-15

    Highlights: • An approach to assess the containment capacity to aircraft impact via fragility curves is proposed. • Momentum over Area was defined as most suitable reference parameter to describe the aircraft load. • The effect of the impact induced damages on the containment pressure capacity has been studied. • The studied containment shows no reduction of the pressure capacity for the investigated scenarios. • The effectiveness of innovative protective structure against aircraft impact has been evaluated. - Abstract: The paper describes the procedure and the results from the assessment of the vulnerability of a generic pre-stressed containment structure subjected to a large commercial aircraft impact. Impacts of Boeing 737, Boeing 767 and Boeing 747 have been considered. The containment vulnerability is expressed by fragility curves based on the results of a number of nonlinear dynamic analyses. Three reference parameters have been considered as impact intensity measure in the fragility curve definition: peak impact force (PIF), peak impact pressure (PIP) and Momentum over Area (MoA). Conclusions on the most suitable reference parameter as well on the vulnerability of such containment vessels are drawn. The influence of the aircraft impact induced damages on the containment ultimate pressure capacity is also assessed and some preliminary conclusions on this are drawn. The paper also addresses a conceptual design of a protective structure able to decrease the containment vulnerability and provide a preliminary assessment of the applicability of such concept.

  15. Two-Stage Heuristic Algorithm for Aircraft Recovery Problem

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    2017-01-01

    Full Text Available This study focuses on the aircraft recovery problem (ARP. In real-life operations, disruptions always cause schedule failures and make airlines suffer from great loss. Therefore, the main objective of the aircraft recovery problem is to minimize the total recovery cost and solve the problem within reasonable runtimes. An aircraft recovery model (ARM is proposed herein to formulate the ARP and use feasible line of flights as the basic variables in the model. We define the feasible line of flights (LOFs as a sequence of flights flown by an aircraft within one day. The number of LOFs exponentially grows with the number of flights. Hence, a two-stage heuristic is proposed to reduce the problem scale. The algorithm integrates a heuristic scoring procedure with an aggregated aircraft recovery model (AARM to preselect LOFs. The approach is tested on five real-life test scenarios. The computational results show that the proposed model provides a good formulation of the problem and can be solved within reasonable runtimes with the proposed methodology. The two-stage heuristic significantly reduces the number of LOFs after each stage and finally reduces the number of variables and constraints in the aircraft recovery model.

  16. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    Science.gov (United States)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  17. Dynamics of ultralight aircraft: Motion in vertical gusts

    Science.gov (United States)

    Jones, R. T.

    1977-01-01

    Gust load calculations are extended to the range of conditions encountered by ultralight aircraft such as hang gliders. Having wing loadings of the order of 5 kg/sq m, these gliders acquire a substantial fraction of the motion of a gust within a distance of 1 or 2 m. Comparative loads and displacements for a small powered airplane having a wing loading of 50 kg sq m and for a commercial jet with 500 kg sq m are shown.

  18. WRF simulation of the atmospheric conditions in some aircraft accidents

    OpenAIRE

    Lozano Sánchez, Miguel

    2013-01-01

    Aviation, probably more than any other mode of transportation, is greatly affected by weather. Commercial aviation must deal with storms, fogs, windshears, ash from the volcanoes, intense rain, turbulences and other weather phenomena regularly. In this document are exposed in detail the effects of these phenomena on the aircraft's performance and on the airport facilities. Additionally, it is performed too, a study of the impact that these weather phenomena have had in aviation in the period ...

  19. Emergency Control Aircraft System Using Thrust Modulation

    Science.gov (United States)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)

    2000-01-01

    A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.

  20. Frequency Analysis of Aircraft hazards for License Application

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-10-24

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.