WorldWideScience

Sample records for commensal bacteria direct

  1. Modulation of immune homeostasis by commensal bacteria

    Science.gov (United States)

    Ivanov, Ivaylo I.; Littman, Dan R.

    2011-01-01

    Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of “innocuous” resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system. PMID:21215684

  2. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells

    Science.gov (United States)

    Hepworth, Matthew R.; Fung, Thomas C.; Masur, Samuel H.; Kelsen, Judith R.; McConnell, Fiona M.; Dubrot, Juan; Withers, David R.; Hugues, Stephanie; Farrar, Michael A.; Reith, Walter; Eberl, Gerard; Baldassano, Robert N.; Laufer, Terri M.; Elson, Charles O.; Sonnenberg, Gregory F.

    2015-01-01

    Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. While selection of self-specific T cells in the thymus limits responses to tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells, and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on human colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4+ T cells in the intestine, and suggest that this process is dysregulated in human IBD. PMID:25908663

  3. The friendly bacteria within us Commensal bacteria of the intestine ...

    Indian Academy of Sciences (India)

    Balance of bacterial species in the gut · Immunosensory detection of intestinal bacteria · Pathogenic bacteria release interleukin-8 from HT-29 cells · Lactobacillus GG prevents the IL-8 release in response to pathogens · Effect of probiotic bacteria on chemokine response of epithelia to pathogens · PCR array studies in colon ...

  4. Modulation of host responses by oral commensal bacteria

    Directory of Open Access Journals (Sweden)

    Deirdre A. Devine

    2015-02-01

    Full Text Available Immunomodulatory commensal bacteria are proposed to be essential for maintaining healthy tissues, having multiple roles including priming immune responses to ensure rapid and efficient defences against pathogens. The default state of oral tissues, like the gut, is one of inflammation which may be balanced by regulatory mechanisms and the activities of anti-inflammatory resident bacteria that modulate Toll-like receptor (TLR signalling or NF-κB activation, or influence the development and activities of immune cells. However, the widespread ability of normal resident organisms to suppress inflammation could impose an unsustainable burden on the immune system and compromise responses to pathogens. Immunosuppressive resident bacteria have been isolated from the mouth and, for example, may constitute 30% of the resident streptococci in plaque or on the tongue. Their roles in oral health and dysbiosis remain to be determined. A wide range of bacterial components and/or products can mediate immunomodulatory activity, raising the possibility of development of alternative strategies for therapy and health promotion using probiotics, prebiotics, or commensal-derived immunomodulatory molecules.

  5. Commensality

    DEFF Research Database (Denmark)

    Commensality is a fundamental social activity. Research in this book comes from anthropology, archaeology and history, and reaches from the 6th mill BC to modern days, dealing with topics such as feasting, the inaugural dinner of the American president and breast feeding.......Commensality is a fundamental social activity. Research in this book comes from anthropology, archaeology and history, and reaches from the 6th mill BC to modern days, dealing with topics such as feasting, the inaugural dinner of the American president and breast feeding....

  6. Smoking and periodontal disease: discrimination of antibody responses to pathogenic and commensal oral bacteria.

    Science.gov (United States)

    Hayman, L; Steffen, M J; Stevens, J; Badger, E; Tempro, P; Fuller, B; McGuire, A; Al-Sabbagh, Mohanad; Thomas, M V; Ebersole, J L

    2011-04-01

    Smoking is an independent risk factor for the initiation, extent and severity of periodontal disease. This study examined the ability of the host immune system to discriminate commensal oral bacteria from pathogens at mucosal surfaces, i.e. oral cavity. Serum immunoglobulin (Ig)G antibody reactive with three pathogenic and five commensal oral bacteria in 301 current smokers (age range 21-66 years) were examined by enzyme-linked immunosorbent assay. Clinical features of periodontal health were used as measures of periodontitis. Antibody to the pathogens and salivary cotinine levels were related positively to disease severity; however, the antibody levels were best described by the clinical disease unrelated to the amount of smoking. The data showed a greater immune response to pathogens than commensals that was related specifically to disease extent, and most noted in black males. Significant correlations in individual patient responses to the pathogens and commensals were lost with an increasing extent of periodontitis and serum antibody to the pathogens. Antibody to Porphyromonas gingivalis was particularly distinct with respect to the discriminatory nature of the immune responses in recognizing the pathogens. Antibody responses to selected pathogenic and commensal oral microorganisms differed among racial groups and genders. The antibody response to the pathogens was related to disease severity. The level of antibody to the pathogens, and in particular P. gingivalis, was correlated with disease severity in black and male subsets of patients. The amount of smoking did not appear to impact directly serum antibody levels to these oral bacteria. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  7. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1β effect and increase in the transepithelial passage of commensal bacteria

    International Nuclear Information System (INIS)

    Maresca, Marc; Yahi, Nouara; Younes-Sakr, Lama; Boyron, Marilyn; Caporiccio, Bertrand; Fantini, Jacques

    2008-01-01

    Mycotoxins are fungal secondary metabolites responsible of food-mediated intoxication in animals and humans. Deoxynivalenol, ochratoxin A and patulin are the best known enteropathogenic mycotoxins able to alter intestinal functions resulting in malnutrition, diarrhea, vomiting and intestinal inflammation in vivo. Although their effects on intestinal barrier and transport activities have been extensively characterized, the mechanisms responsible for their pro-inflammatory effect are still poorly understood. Here we investigated if mycotoxin-induced intestinal inflammation results from a direct and/or indirect pro-inflammatory activity of these mycotoxins on human intestinal epithelial cells, using differentiated Caco-2 cells as model and interleukin 8 (IL-8) as an indicator of intestinal inflammation. Deoxynivalenol was the only mycotoxin able to directly increase IL-8 secretion (10- to 15-fold increase). We also investigated if these mycotoxins could indirectly stimulate IL-8 secretion through: (i) a modulation of the action of pro-inflammatory molecules such as the interleukin-1beta (IL-1β), and/or (ii) an increase in the transepithelial passage of non-invasive commensal Escherichia coli. We found that deoxynivalenol, ochratoxin A and patulin all potentiated the effect of IL-1β on IL-8 secretion (ranging from 35% to 138% increase) and increased the transepithelial passage of commensal bacteria (ranging from 12- to 1544-fold increase). In addition to potentially exacerbate established intestinal inflammation, these mycotoxins may thus participate in the induction of sepsis and intestinal inflammation in vivo. Taken together, our results suggest that the pro-inflammatory activity of enteropathogenic mycotoxins is mediated by both direct and indirect effects

  8. Commensal Bacteria Aid Mate-selection in the Fruit Fly, Bactrocera dorsalis.

    Science.gov (United States)

    Damodaram, Kamala Jayanthi Pagadala; Ayyasamy, Arthikirubha; Kempraj, Vivek

    2016-10-01

    Commensal bacteria influence many aspects of an organism's behaviour. However, studies on the influence of commensal bacteria in insect mate-selection are scarce. Here, we present empirical evidence that commensal bacteria mediate mate-selection in the Oriental fruit fly, Bactrocera dorsalis. Male flies were attracted to female flies, but this attraction was abolished when female flies were fed with antibiotics, suggesting the role of the fly's microbiota in mediating mate-selection. We show that male flies were attracted to and ejaculated more sperm into females harbouring the microbiota. Using culturing and 16S rDNA sequencing, we isolated and identified different commensal bacteria, with Klebsiella oxytoca being the most abundant bacterial species. This preliminary study will enhance our understanding of the influence of commensal bacteria on mate-selection behaviour of B. dorsalis and may find use in devising control operations against this devastating pest.

  9. The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Liuyang Zhao

    2017-02-01

    Full Text Available Colorectal cancer (CRC is a multistage disease resulting from complex factors, including genetic mutations, epigenetic changes, chronic inflammation, diet, and lifestyle. Recent accumulating evidence suggests that the gut microbiota is a new and important player in the development of CRC. Imbalance of the gut microbiota, especially dysregulated gut bacteria, contributes to colon cancer through mechanisms of inflammation, host defense modulations, oxidative stress, and alterations in bacterial-derived metabolism. Gut commensal bacteria are anatomically defined as four populations: luminal commensal bacteria, mucus-resident bacteria, epithelium-resident bacteria, and lymphoid tissue-resident commensal bacteria. The bacterial flora that are harbored in the gastrointestinal (GI tract vary both longitudinally and cross-sectionally by different anatomical localization. It is notable that the translocation of colonic commensal bacteria is closely related to CRC progression. CRC-associated bacteria can serve as a non-invasive and accurate biomarker for CRC diagnosis. In this review, we summarize recent findings on the oncogenic roles of gut bacteria with different anatomical localization in CRC progression.

  10. Anatomical localization of commensal bacteria in immune cell homeostasis and disease.

    Science.gov (United States)

    Fung, Thomas C; Artis, David; Sonnenberg, Gregory F

    2014-07-01

    The mammalian gastrointestinal (GI) tract is colonized by trillions of beneficial commensal bacteria that are essential for promoting normal intestinal physiology. While the majority of commensal bacteria are found in the intestinal lumen, many species have also adapted to colonize different anatomical locations in the intestine, including the surface of intestinal epithelial cells (IECs) and the interior of gut-associated lymphoid tissues. These distinct tissue localization patterns permit unique interactions with the mammalian immune system and collectively influence intestinal immune cell homeostasis. Conversely, dysregulated localization of commensal bacteria can lead to inappropriate activation of the immune system and is associated with numerous chronic infectious, inflammatory, and metabolic diseases. Therefore, regulatory mechanisms that control proper anatomical containment of commensal bacteria are essential to maintain tissue homeostasis and limit pathology. In this review, we propose that commensal bacteria associated with the mammalian GI tract can be anatomically defined as (i) luminal, (ii) epithelial-associated, or (iii) lymphoid tissue-resident, and we discuss the role and regulation of these microbial populations in health and disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Commensal bacteria and essential amino acids control food choice behavior and reproduction.

    Science.gov (United States)

    Leitão-Gonçalves, Ricardo; Carvalho-Santos, Zita; Francisco, Ana Patrícia; Fioreze, Gabriela Tondolo; Anjos, Margarida; Baltazar, Célia; Elias, Ana Paula; Itskov, Pavel M; Piper, Matthew D W; Ribeiro, Carlos

    2017-04-01

    Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.

  12. Exopolysaccharide Productivity and Biofilm Phenotype on Oral Commensal Bacteria as Pathogenesis of Chronic Periodontitis

    Science.gov (United States)

    2012-01-01

    2 Exopolysaccharide Productivity and Biofilm Phenotype on Oral Commensal Bacteria as Pathogenesis of Chronic Periodontitis Takeshi Yamanaka1...species biofilm in the oral cavity can cause persistent chronic periodontitis along with the importance of dental plaque formation and maturation...independent manner could be pathogenic for periodontal tissues and can cause chronic periodontitis lesions. 2.1 Initial colonizers on the tooth surface

  13. Protease-Mediated Suppression of DRG Neuron Excitability by Commensal Bacteria.

    Science.gov (United States)

    Sessenwein, Jessica L; Baker, Corey C; Pradhananga, Sabindra; Maitland, Megan E; Petrof, Elaine O; Allen-Vercoe, Emma; Noordhof, Curtis; Reed, David E; Vanner, Stephen J; Lomax, Alan E

    2017-11-29

    Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 μm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K + currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain. SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human

  14. Assessment of Antibiotic Resistant Commensal Bacteria in Food

    Science.gov (United States)

    2006-01-01

    mold Penicillium was able to inhibit the growth of some bacteria. (37). In 1928, a Brittish physician Alexander Fleming observed the similar...phenomenon. One of his bacterial plate cultures was contaminated with the blue-green mold Penicillium , and the bacterial colonies in close approximation to...sliced chicken lunchmeat, and the strain was identified as Pseudomonas sp . ART bacteria were isolated sporadically in 32 lunchmeat, which is

  15. Temperature-dependent inhibition of opportunistic Vibrio pathogens by native coral commensal bacteria.

    Science.gov (United States)

    Frydenborg, Beck R; Krediet, Cory J; Teplitski, Max; Ritchie, Kim B

    2014-02-01

    Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria isolated from the mucus layer of a healthy elkhorn coral, Acropora palmata, are capable of inhibition of opportunistic pathogens, Vibrio shiloi AK1 and Vibrio coralliilyticus. These vibrios are known to cause disease in corals and their virulence is temperature dependent. Elevated temperature (30 °C) increased the cell numbers of one commensal and both Vibrio pathogens in monocultures. We further tested the hypothesis that elevated temperature favors pathogenic organisms by simultaneously increasing the fitness of vibrios and decreasing the fitness of commensals by measuring growth of each species within a co-culture over the course of 1 week. In competition experiments between vibrios and commensals, the proportion of Vibrio spp. increased significantly under elevated temperature. We finished by investigating several temperature-dependent mechanisms that could influence co-culture differences via changes in competitive fitness. The ability of Vibrio spp. to utilize glycoproteins found in A. palmata mucus increased or remained stable when exposed to elevated temperature, while commensals' tended to decrease utilization. In both vibrios and commensals, protease activity increased at 30 °C, while chiA expression increased under elevated temperatures for Vibrio spp. These results provide insight into potential mechanisms through which elevated temperature may select for pathogenic bacterial dominance and lead to disease or a decrease in coral fitness.

  16. Impact of Oral Commensal Bacteria on Degradation of Periodontal Connective Tissue in Mice.

    Science.gov (United States)

    Irie, Koichiro; Tomofuji, Takaaki; Ekuni, Daisuke; Morita, Manabu; Shimazaki, Yoshihiro; Darveau, Richard P

    2015-07-01

    Innate and adaptive immunosurveillance mechanisms in response to the normal commensal bacteria can affect periodontal innate defense status. However, it is still unclear how commensal bacteria contribute to the inflammatory responses of junctional epithelium (JE) and periodontal connective tissue (PCT). The aim of the present study is to investigate the contribution of commensal bacteria on inflammatory responses in JE and PCT in mice. The periodontal tissue of germ-free (GF) and specific-pathogen-free (SPF) mice were compared at age 11 to 12 weeks (n = 6 per group). In this study, the number of neutrophils and expression of intercellular adhesion molecule (ICAM)-1, fibroblast growth factor receptor (FGFR)-1, matrix metalloproteinase (MMP)-1, and MMP-8 within the JE and the PCT are evaluated. The collagen density was also determined in PCT stained with picrosirius red (PSR). PSR staining combined with or without polarized light microscopy has been used to assess the organization and maturation of collagen matrix. In the present findings, the area of JE in SPF mice was significantly greater than that in GF mice (P bacteria induced a low-grade inflammatory state in JE and that such conditions may contribute to degradation of collagen in PCT in mice.

  17. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Science.gov (United States)

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  18. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Directory of Open Access Journals (Sweden)

    Kalischuk Lisa D

    2010-11-01

    Full Text Available Abstract Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'. To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase. Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.

  19. Metabolic Interactions between Bacteria and Fungi in Commensal Oral Biofilms

    OpenAIRE

    Lof, Marloes; Janus, Marleen M.; Krom, Bastiaan P.

    2017-01-01

    Oral health is more than just the absence of disease. The key to oral health is a diverse microbiome in an ecological balance. The oral microbiota is one of the most complex and diverse microbial communities in the human body. To maintain oral health, balance between the human host and the intrinsic microorganisms is essential. The healthy oral cavity is represented by a great microbial diversity, including both bacteria and fungi. The bacterial microbiome is very well studied. In contrast, f...

  20. Transepithelial activation of human leukocytes by probiotics and commensal bacteria: role of Enterobacteriaceae-type endotoxin

    DEFF Research Database (Denmark)

    Bäuerlein, A.; Ackermann, S.; Parlesak, Alexandr

    2009-01-01

    The goal of the current study was to clarify whether commercially available probiotics induce greater trans-epithelial activation of human leukocytes than do commensal, food-derived and pathogenic bacteria and to identify the compounds responsible for this activation. Eleven different bacterial...... Escherichia coli K12, probiotic E. coli Nissle, EPEC) induced basolateral production of TNF-alpha, IFN-gamma, IL 6, 8, and 10. Gram-positive probiotics (Lactobacillus spp. and Bifidobacterium spp.) had virtually no effect. In addition, commensals (Enterococcus faecalis, Bacteroides vulgatus) and food...... (polymyxin, colistin) completely abrogated transepithelial activation of leukocytes. Enterobacteriaceae-type endotoxin is a crucial factor in transepithelial stimulation of leukocytes, regardless of whether it is produced by probiotics or other bacteria. Hence, transepithelial stimulation ofleukocytes...

  1. Transepithelial activation of human leukocytes by probiotics and commensal bacteria: Role of Enterobacteriaceae-type endotoxin

    DEFF Research Database (Denmark)

    Baeuerlein, Annette; Ackermann, Stefanie; Parlesak, Alexandr

    2009-01-01

    The goal of the current study was to clarify whether commercially available probiotics induce greater trans-epithelial activation of human leukocytes than do commensal, food-derived and pathogenic bacteria and to identify the compounds responsible for this activation. Eleven different bacterial...... Escherichia coli K12, probiotic E. coli Nissle, EPEC) induced basolateral production of TNF-alpha, IFN-gamma, IL 6, 8, and 10. Gram-positive probiotics (Lactobacillus spp. and Bifidobacterium spp.) had virtually no effect. In addition, commensals (Enterococcus faecalis, Bacteroides vulgatus) and food...... (polymyxin, colistin) completely abrogated transepithelial activation of leukocytes. Enterobacteriaceae-type endotoxin is a crucial factor in transepithelial stimulation of leukocytes, regardless of whether it is produced by probiotics or other bacteria. Hence, transepithelial stimulation of leukocytes...

  2. Role of Natural Killer and Dendritic Cell Crosstalk in Immunomodulation by Commensal Bacteria Probiotics

    Directory of Open Access Journals (Sweden)

    Valeria Rizzello

    2011-01-01

    Full Text Available A cooperative dialogue between natural killer (NK cells and dendritic cells (DCs has been elucidated in the last years. They help each other to acquire their complete functions, both in the periphery and in the secondary lymphoid organs. Thus, NK cells' activation by dendritic cells allows the killing of transformed or infected cells in the periphery but may also be important for the generation of adaptive immunity. Indeed, it has been shown that NK cells may play a key role in polarizing a Th1 response upon interaction with DCs exposed to microbial products. This regulatory role of DC/NK cross-talk is of particular importance at mucosal surfaces such as the intestine, where the immune system exists in intimate association with commensal bacteria such as lactic acid bacteria (LAB. We here review NK/DC interactions in the presence of gut-derived commensal bacteria and their role in bacterial strain-dependent immunomodulatory effects. We particularly aim to highlight the ability of distinct species of commensal bacterial probiotics to differently affect the outcome of DC/NK cross-talk and consequently to differently influence the polarization of the adaptive immune response.

  3. Regulation by commensal bacteria of neurogenesis in the subventricular zone of adult mouse brain.

    Science.gov (United States)

    Sawada, Naoki; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Nishigaito, Yuka; Saito, Yasuyuki; Murata, Yoji; Nibu, Ken-Ichi; Matozaki, Takashi

    2018-04-15

    In the mouse olfactory bulb (OB), interneurons such as granule cells and periglomerular cells are continuously replaced by adult-born neurons, which are generated in the subventricular zone (SVZ) of the brain. We have now investigated the role of commensal bacteria in regulation of such neuronal cell turnover in the adult mouse brain. Administration of mixture of antibiotics to specific pathogen-free (SPF) mice markedly attenuated the incorporation of bromodeoxyuridine (BrdU) into the SVZ cells. The treatment with antibiotics also reduced newly generated BrdU-positive neurons in the mouse OB. In addition, the incorporation of BrdU into the SVZ cells of germ-free (GF) mice was markedly reduced compared to that apparent for SPF mice. In contrast, the reduced incorporation of BrdU into the SVZ cells of GF mice was recovered by their co-housing with SPF mice, suggesting that commensal bacteria promote the incorporation of BrdU into the SVZ cells. Finally, we found that administration of ampicillin markedly attenuated the incorporation of BrdU into the SVZ cells of SPF mice. Our results thus suggest that ampicillin-sensitive commensal bacteria regulate the neurogenesis in the SVZ of adult mouse brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients.

    Science.gov (United States)

    Chhibber-Goel, Jyoti; Singhal, Varsha; Bhowmik, Debaleena; Vivek, Rahul; Parakh, Neeraj; Bhargava, Balram; Sharma, Amit

    2016-01-01

    Coronary artery disease is an inflammatory disorder characterized by narrowing of coronary arteries due to atherosclerotic plaque formation. To date, the accumulated epidemiological evidence supports an association between oral bacterial diseases and coronary artery disease, but has failed to prove a causal link between the two. Due to the recent surge in microbial identification and analyses techniques, a number of bacteria have been independently found in atherosclerotic plaque samples from coronary artery disease patients. In this study, we present meta-analysis from published studies that have independently investigated the presence of bacteria within atherosclerotic plaque samples in coronary artery disease patients. Data were collated from 63 studies covering 1791 patients spread over a decade. Our analysis confirms the presence of 23 oral commensal bacteria, either individually or in co-existence, within atherosclerotic plaques in patients undergoing carotid endarterectomy, catheter-based atherectomy, or similar procedures. Of these 23 bacteria, 5 ( Campylobacter rectus , Porphyromonas gingivalis , Porphyromonas endodontalis , Prevotella intermedia , Prevotella nigrescens ) are unique to coronary plaques, while the other 18 are additionally present in non-cardiac organs, and associate with over 30 non-cardiac disorders. We have cataloged the wide spectrum of proteins secreted by above atherosclerotic plaque-associated bacteria, and discuss their possible roles during microbial migration via the bloodstream. We also highlight the prevalence of specific poly-microbial communities within atherosclerotic plaques. This work provides a resource whose immediate implication is the necessity to systematically catalog landscapes of atherosclerotic plaque-associated oral commensal bacteria in human patient populations.

  5. Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease.

    Science.gov (United States)

    Mangalam, Ashutosh; Shahi, Shailesh K; Luckey, David; Karau, Melissa; Marietta, Eric; Luo, Ningling; Choung, Rok Seon; Ju, Josephine; Sompallae, Ramakrishna; Gibson-Corley, Katherine; Patel, Robin; Rodriguez, Moses; David, Chella; Taneja, Veena; Murray, Joseph

    2017-08-08

    The human gut is colonized by a large number of microorganisms (∼10 13 bacteria) that support various physiologic functions. A perturbation in the healthy gut microbiome might lead to the development of inflammatory diseases, such as multiple sclerosis (MS). Therefore, gut commensals might provide promising therapeutic options for treating MS and other diseases. We report the identification of human gut-derived commensal bacteria, Prevotella histicola, which can suppress experimental autoimmune encephalomyelitis (EAE) in a human leukocyte antigen (HLA) class II transgenic mouse model. P. histicola suppresses disease through the modulation of systemic immune responses. P. histicola challenge led to a decrease in pro-inflammatory Th1 and Th17 cells and an increase in the frequencies of CD4 + FoxP3 + regulatory T cells, tolerogenic dendritic cells, and suppressive macrophages. Our study provides evidence that the administration of gut commensals may regulate a systemic immune response and may, therefore, have a possible role in treatment strategies for MS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis.

    Science.gov (United States)

    Zenobia, Camille; Luo, Xiao Long; Hashim, Ahmed; Abe, Toshiharu; Jin, Lijian; Chang, Yucheng; Jin, Zhi Chao; Sun, Jian Xun; Hajishengallis, George; Curtis, Mike A; Darveau, Richard P

    2013-08-01

    The oral and intestinal host tissues both carry a heavy microbial burden. Although commensal bacteria contribute to healthy intestinal tissue structure and function, their contribution to oral health is poorly understood. A crucial component of periodontal health is the recruitment of neutrophils to periodontal tissue. To elucidate this process, gingival tissues of specific-pathogen-free and germ-free wild-type mice and CXCR2KO and MyD88KO mice were examined for quantitative analysis of neutrophils and CXCR2 chemoattractants (CXCL1, CXCL2). We show that the recruitment of neutrophils to the gingival tissue does not require commensal bacterial colonization but is entirely dependent on CXCR2 expression. Strikingly, however, commensal bacteria selectively upregulate the expression of CXCL2, but not CXCL1, in a MyD88-dependent way that correlates with increased neutrophil recruitment as compared with germ-free conditions. This is the first evidence that the selective use of chemokine receptor ligands contributes to neutrophil homing to healthy periodontal tissue. © 2013 John Wiley & Sons Ltd.

  7. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine.

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2014-12-24

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases.

  8. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  9. Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria.

    Science.gov (United States)

    Lukás, F; Gorenc, G; Kopecný, J

    2008-01-01

    The Vibrio harveyi strain BB170-autoinducer bioassay was used to detect possible quorum sensing autoinducer-2 molecule (AI-2) in culture fluids of commensal intestinal bacteria. Culture fluids of Bacteroides vulgatus, Clostridium proteoclasticum, Escherichia coli, Eubacterium rectale, Lachnospira multipara, Pseudobutyrivibrio ruminis, Roseburia intestinalis, Ruminococcus albus and Ruminococcus flavefaciens contained AI-2-like molecules. The PCR bands from some of the tested strains could be also amplified using primers designed for the luxS gene. These findings suggest that AI-2 is present in the gastrointestinal tract; however, it has not yet been proved whether it is used for bacterial cell-to-cell communication.

  10. The effects of gut commensal bacteria depletion on mice exposed to acute lethal irradiation

    International Nuclear Information System (INIS)

    Hou Bing; Xu Zhiwei; Zhang Chenggang

    2007-01-01

    The prevention and management of bacterial infection are the mainstays of therapies for irradiation victims. However, worries about adverse effects arise from gut commensal flora depletion owing to the broad-spectrum antibiotics treatment. In the present study, we investigated the effects of gut bacteria depletion on the mice receiving total-body irradiation (TBI) at a single dose of 12 Gy. One group of mice was merely exposed to TBI but was free of antibiotic treatment throughout the experiment, while the other two groups of mice were additionally given broad-spectrum antibiotics, either from 2 weeks before or immediately after irradiation. The survival time of each animal in each group was recorded for analysis. Results showed that the mean survival time of mice was longest in the group without antibiotic treatment and shortest in the group treated with broad-spectrum antibiotics from 2 weeks before TBI. In conclusion, our data suggested that depletion of gut commensal bacteria with broad-spectrum antibiotics seemed deleterious for mammals receiving lethal TBI. (author)

  11. Activation of the TREM-1 pathway in human monocytes by periodontal pathogens and oral commensal bacteria.

    Science.gov (United States)

    Varanat, M; Haase, E M; Kay, J G; Scannapieco, F A

    2017-08-01

    Periodontitis is a highly prevalent disease caused in part by an aberrant host response to the oral multi-species biofilm. A balance between the oral bacteria and host immunity is essential for oral health. Imbalances in the oral microbiome lead to an uncontrolled host inflammatory response and subsequent periodontal disease (i.e. gingivitis and periodontitis). TREM-1 is a signaling receptor present on myeloid cells capable of acting synergistically with other pattern recognition receptors leading to amplification of inflammatory responses. The aim of this study was to investigate the activation of the TREM-1 pathway in the human monocyte-like cell line THP-1 exposed to both oral pathogens and commensals. The relative expression of the genes encoding TREM-1 and its adapter protein DAP12 were determined by quantitative real-time polymerase chain reaction. The surface expression of TREM-1 was determined by flow cytometry. Soluble TREM-1 and cytokines were measured by enzyme-linked immunosorbent assay. The results demonstrate that both commensal and pathogenic oral bacteria activate the TREM-1 pathway, resulting in a proinflammatory TREM-1 activity-dependent increase in proinflammatory cytokine production. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Porphyrin metabolisms in human skin commensal Propionibacterium acnes bacteria: potential application to monitor human radiation risk.

    Science.gov (United States)

    Shu, M; Kuo, S; Wang, Y; Jiang, Y; Liu, Y-T; Gallo, R L; Huang, C-M

    2013-01-01

    Propionibacterium acnes (P. acnes), a Gram-positive anaerobic bacterium, is a commensal organism in human skin. Like human cells, the bacteria produce porphyrins, which exhibit fluorescence properties and make bacteria visible with a Wood's lamp. In this review, we compare the porphyrin biosynthesis in humans and P. acnes. Also, since P. acnes living on the surface of skin receive the same radiation exposure as humans, we envision that the changes in porphyrin profiles (the absorption spectra and/or metabolism) of P. acnes by radiation may mirror the response of human cells to radiation. The porphyrin profiles of P. acnes may be a more accurate reflection of radiation risk to the patient than other biodosimeters/biomarkers such as gene up-/down-regulation, which may be non-specific due to patient related factors such as autoimmune diseases. Lastly, we discuss the challenges and possible solutions for using the P. acnes response to predict the radiation risk.

  13. Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect.

    Science.gov (United States)

    Wang, Xingmin; Yang, Yonghong; Huycke, Mark M

    2015-03-01

    Commensal bacteria and innate immunity play a major role in the development of colorectal cancer (CRC). We propose that selected commensals polarise colon macrophages to produce endogenous mutagens that initiate chromosomal instability (CIN), lead to expression of progenitor and tumour stem cell markers, and drive CRC through a bystander effect. Primary murine colon epithelial cells were repetitively exposed to Enterococcus faecalis-infected macrophages, or purified trans-4-hydroxy-2-nonenal (4-HNE)-an endogenous mutagen and spindle poison produced by macrophages. CIN, gene expression, growth as allografts in immunodeficient mice were examined for clones and expression of markers confirmed using interleukin (IL) 10 knockout mice colonised by E. faecalis. Primary colon epithelial cells exposed to polarised macrophages or 4-hydroxy-2-nonenal developed CIN and were transformed after 10 weekly treatments. In immunodeficient mice, 8 of 25 transformed clones grew as poorly differentiated carcinomas with 3 tumours invading skin and/or muscle. All tumours stained for cytokeratins confirming their epithelial cell origin. Gene expression profiling of clones showed alterations in 3 to 7 cancer driver genes per clone. Clones also strongly expressed stem/progenitor cell markers Ly6A and Ly6E. Although not differentially expressed in clones, murine allografts positively stained for the tumour stem cell marker doublecortin-like kinase 1. Doublecortin-like kinase 1 and Ly6A/E were expressed by epithelial cells in colon biopsies for areas of inflamed and dysplastic tissue from E. faecalis-colonised IL-10 knockout mice. These results validate a novel mechanism for CRC that involves endogenous CIN and cellular transformation arising through a microbiome-driven bystander effect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria.

    LENUS (Irish Health Repository)

    Sibartie, Shomik

    2009-01-01

    BACKGROUND: Human intestinal epithelial cells (IECs) secrete the chemokine CCL20 in response to infection by various enteropathogenic bacteria or exposure to bacterial flagellin. CCL20 recruits immature dendritic cells and lymphocytes to target sites. Here we investigated IEC responses to various pathogenic and commensal bacteria as well as the modulatory effects of commensal bacteria on pathogen-induced CCL20 secretion. HT-29 human IECs were incubated with commensal bacteria (Bifidobacterium infantis or Lactobacillus salivarius), or with Salmonella typhimurium, its flagellin, Clostridium difficile, Mycobacterium paratuberculosis, or Mycobacterium smegmatis for varying times. In some studies, HT-29 cells were pre-treated with a commensal strain for 2 hr prior to infection or flagellin stimulation. CCL20 and interleukin (IL)-8 secretion and nuclear factor (NF)-kappaB activation were measured using enzyme-linked immunosorbent assays. RESULTS: Compared to untreated cells, S. typhimurium, C. difficile, M. paratuberculosis, and flagellin activated NF-kappaB and stimulated significant secretion of CCL20 and IL-8 by HT-29 cells. Conversely, B. infantis, L. salivarius or M. smegmatis did not activate NF-kappaB or augment CCL20 or IL-8 production. Treatment with B. infantis, but not L. salivarius, dose-dependently inhibited the baseline secretion of CCL20. In cells pre-treated with B. infantis, C. difficile-, S. typhimurium-, and flagellin-induced CCL20 were significantly attenuated. B. infantis did not limit M. Paratuberculosis-induced CCL20 secretion. CONCLUSION: This study is the first to demonstrate that a commensal strain can attenuate CCL20 secretion in HT-29 IECs. Collectively, the data indicate that M. paratuberculosis may mediate mucosal damage and that B. infantis can exert immunomodulatory effects on IECs that mediate host responses to flagellin and flagellated enteric pathogens.

  15. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis

    Science.gov (United States)

    Nakatsuji, Teruaki; Chen, Tiffany H.; Narala, Saisindhu; Chun, Kimberly A.; Two, Aimee M.; Yun, Tong; Shafiq, Faiza; Kotol, Paul F.; Bouslimani, Amina; Melnik, Alexey V.; Latif, Haythem; Kim, Ji-Nu; Lockhart, Alexandre; Artis, Keli; David, Gloria; Taylor, Patricia; Streib, Joanne; Dorrestein, Pieter C.; Grier, Alex; Gill, Steven R.; Zengler, Karsten; Hata, Tissa R.; Leung, Donald Y. M.; Gallo, Richard L.

    2017-01-01

    The microbiome can promote or disrupt human health by influencing both adaptive and innate immune functions. We tested whether bacteria that normally reside on human skin participate in host defense by killing Staphylococcus aureus, a pathogen commonly found in patients with atopic dermatitis (AD) and an important factor that exacerbates this disease. High-throughput screening for antimicrobial activity against S.aureus was performed on isolates of coagulase-negative Staphylococcus (CoNS) collected from the skin of healthy and AD subjects. CoNS strains with antimicrobial activity were common on the normal population but rare on AD subjects. A low frequency of strains with antimicrobial activity correlated with colonization by S.aureus. The antimicrobial activity was identified as previously unknown antimicrobial peptides (AMPs) produced by CoNS species including Staphylococcus epidermidis and Staphylococcus hominis. These AMPs were strain-specific, highly potent, selectively killed S.aureus, and synergized with the human AMP LL-37. Application of these CoNS strains to mice confirmed their defense function in vivo relative to application of nonactive strains. Strikingly, reintroduction of antimicrobial CoNS strains to human subjects with AD decreased colonization by S.aureus. These findings show how commensal skin bacteria protect against pathogens and demonstrate how dysbiosis of the skin microbiome can lead to disease. PMID:28228596

  16. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie

    2012-01-01

    of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella...... spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria...... provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella...

  17. Utilization of mucus from the coral Acropora palmata by the pathogen Serratia marcescens and by environmental and coral commensal bacteria.

    Science.gov (United States)

    Krediet, Cory J; Ritchie, Kim B; Cohen, Matthew; Lipp, Erin K; Sutherland, Kathryn Patterson; Teplitski, Max

    2009-06-01

    In recent years, diseases of corals caused by opportunistic pathogens have become widespread. How opportunistic pathogens establish on coral surfaces, interact with native microbiota, and cause disease is not yet clear. This study compared the utilization of coral mucus by coral-associated commensal bacteria ("Photobacterium mandapamensis" and Halomonas meridiana) and by opportunistic Serratia marcescens pathogens. S. marcescens PDL100 (a pathogen associated with white pox disease of Acroporid corals) grew to higher population densities on components of mucus from the host coral. In an in vitro coculture on mucus from Acropora palmata, S. marcescens PDL100 isolates outgrew coral isolates. The white pox pathogen did not differ from other bacteria in growth on mucus from a nonhost coral, Montastraea faveolata. The ability of S. marcescens to cause disease in acroporid corals may be due, at least in part, to the ability of strain PDL100 to build to higher population numbers within the mucus surface layer of its acroporid host. During growth on mucus from A. palmata, similar glycosidase activities were present in coral commensal bacteria, in S. marcescens PDL100, and in environmental and human isolates of S. marcescens. The temporal regulation of these activities during growth on mucus, however, was distinct in the isolates. During early stages of growth on mucus, enzymatic activities in S. marcescens PDL100 were most similar to those in coral commensals. After overnight incubation on mucus, enzymatic activities in a white pox pathogen were most similar to those in pathogenic Serratia strains isolated from human mucosal surfaces.

  18. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria.

    Science.gov (United States)

    Stecher, Bärbel; Chaffron, Samuel; Käppeli, Rina; Hapfelmeier, Siegfried; Freedrich, Susanne; Weber, Thomas C; Kirundi, Jorum; Suar, Mrutyunjay; McCoy, Kathy D; von Mering, Christian; Macpherson, Andrew J; Hardt, Wolf-Dietrich

    2010-01-01

    The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCM(con21)). 16S rRNA sequence analysis comparing LCM, LCM(con21) and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri(RR) strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut

  19. Lipopolysaccharides from Commensal and Opportunistic Bacteria: Characterization and Response of the Immune System of the Host Sponge Suberites domuncula

    Science.gov (United States)

    Gardères, Johan; Bedoux, Gilles; Koutsouveli, Vasiliki; Crequer, Sterenn; Desriac, Florie; Le Pennec, Gaël

    2015-01-01

    Marine sponges harbor a rich bacterioflora with which they maintain close relationships. However, the way these animals make the distinction between bacteria which are consumed to meet their metabolic needs and opportunistic and commensal bacteria which are hosted is not elucidated. Among the elements participating in this discrimination, bacterial cell wall components such as lipopolysaccharides (LPS) could play a role. In the present study, we investigated the LPS chemical structure of two bacteria associated with the sponge Suberites domuncula: a commensal Endozoicomonas sp. and an opportunistic Pseudoalteromonas sp. Electrophoretic patterns indicated different LPS structures for these bacteria. The immunomodulatory lipid A was isolated after mild acetic acid hydrolysis. The electrospray ionization ion-trap mass spectra revealed monophosphorylated molecules corresponding to tetra- and pentaacylated structures with common structural features between the two strains. Despite peculiar structural characteristics, none of these two LPS influenced the expression of the macrophage-expressed gene S. domuncula unlike the Escherichia coli ones. Further research will have to include a larger number of genes to understand how this animal can distinguish between LPS with resembling structures and discriminate between bacteria associated with it. PMID:26262625

  20. Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa

    Science.gov (United States)

    Bergstrom, Kirk S. B.; Kissoon-Singh, Vanessa; Gibson, Deanna L.; Ma, Caixia; Montero, Marinieve; Sham, Ho Pan; Ryz, Natasha; Huang, Tina; Velcich, Anna; Finlay, B. Brett; Chadee, Kris; Vallance, Bruce A.

    2010-01-01

    mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium. PMID:20485566

  1. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria.

    Science.gov (United States)

    LeBlanc, Jean Guy; Chain, Florian; Martín, Rebeca; Bermúdez-Humarán, Luis G; Courau, Stéphanie; Langella, Philippe

    2017-05-08

    The aim of this review is to summarize the effect in host energy metabolism of the production of B group vitamins and short chain fatty acids (SCFA) by commensal, food-grade and probiotic bacteria, which are also actors of the mammalian nutrition. The mechanisms of how these microbial end products, produced by these bacterial strains, act on energy metabolism will be discussed. We will show that these vitamins and SCFA producing bacteria could be used as tools to recover energy intakes by either optimizing ATP production from foods or by the fermentation of certain fibers in the gastrointestinal tract (GIT). Original data are also presented in this work where SCFA (acetate, butyrate and propionate) and B group vitamins (riboflavin, folate and thiamine) production was determined for selected probiotic bacteria.

  2. Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1.

    Directory of Open Access Journals (Sweden)

    Thomas Maslanik

    Full Text Available Regular interactions between commensal bacteria and the enteric mucosal immune environment are necessary for normal immunity. Alterations of the commensal bacterial communities or mucosal barrier can disrupt immune function. Chronic stress interferes with bacterial community structure (specifically, α-diversity and the integrity of the intestinal barrier. These interferences can contribute to chronic stress-induced increases in systemic IL-6 and TNF-α. Chronic stress, however, produces many physiological changes that could indirectly influence immune activity. In addition to IL-6 and TNF-α, exposure to acute stressors upregulates a plethora of inflammatory proteins, each having unique synthesis and release mechanisms. We therefore tested the hypothesis that acute stress-induced inflammatory protein responses are dependent on the commensal bacteria, and more specifically, lipopolysaccharide (LPS shed from Gram-negative intestinal commensal bacteria. We present evidence that both reducing commensal bacteria using antibiotics and neutralizing LPS using endotoxin inhibitor (EI attenuates increases in some (inflammasome dependent, IL-1 and IL-18, but not all (inflammasome independent, IL-6, IL-10, and MCP-1 inflammatory proteins in the blood of male F344 rats exposed to an acute tail shock stressor. Acute stress did not impact α- or β- diversity measured using 16S rRNA diversity analyses, but selectively reduced the relative abundance of Prevotella. These findings indicate that commensal bacteria contribute to acute stress-induced inflammatory protein responses, and support the presence of LPS-mediated signaling in stress-evoked cytokine and chemokine production. The selectivity of the commensal bacteria in stress-evoked IL-1β and IL-18 responses may implicate the inflammasome in this response.

  3. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    Science.gov (United States)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  4. Role of Natural Killer and Dendritic Cell Crosstalk in Immunomodulation by Commensal Bacteria Probiotics

    DEFF Research Database (Denmark)

    Rizzello, Valeria; Bonaccorsi, Irene; Dongarra, Maria Luisa

    2011-01-01

    A cooperative dialogue between natural killer (NK) cells and dendritic cells (DCs) has been elucidated in the last years. They help each other to acquire their complete functions, both in the periphery and in the secondary lymphoid organs. Thus, NK cells' activation by dendritic cells allows the ......-dependent immunomodulatory effects. We particularly aim to highlight the ability of distinct species of commensal bacterial probiotics to differently affect the outcome of DC/NK cross-talk and consequently to differently influence the polarization of the adaptive immune response....

  5. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    Science.gov (United States)

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Dendritic Cells from Peyer's Patches and Mesenteric Lymph Nodes Differ from Spleen Dendritic Cells in their Response to Commensal Gut Bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Frøkiær, Hanne

    2008-01-01

    . Expression of CCR7 and CD103 on the surface of MLN DC, necessary for the induction of gut-homing regulatory T cells, increased with stimulation by Gram-positive commensals. Bacteria-dependent cytokine production (IL-6, IL-10 and TNF-alpha) was similar in spleen and MLN DC, and contaminant cells in these DC...

  7. Recurrent Reverse Evolution Maintains Polymorphism after Strong Bottlenecks in Commensal Gut Bacteria.

    Science.gov (United States)

    Sousa, Ana; Ramiro, Ricardo S; Barroso-Batista, João; Güleresi, Daniela; Lourenço, Marta; Gordo, Isabel

    2017-11-01

    The evolution of new strains within the gut ecosystem is poorly understood. We used a natural but controlled system to follow the emergence of intraspecies diversity of commensal Escherichia coli, during three rounds of adaptation to the mouse gut (∼1,300 generations). We previously showed that, in the first round, a strongly beneficial phenotype (loss-of-function for galactitol consumption; gat-negative) spread to >90% frequency in all colonized mice. Here, we show that this loss-of-function is repeatedly reversed when a gat-negative clone colonizes new mice. The regain of function occurs via compensatory mutation and reversion, the latter leaving no trace of past adaptation. We further show that loss-of-function adaptive mutants reevolve, after colonization with an evolved gat-positive clone. Thus, even under strong bottlenecks a regime of strong-mutation-strong-selection dominates adaptation. Coupling experiments and modeling, we establish that reverse evolution recurrently generates two coexisting phenotypes within the microbiota that can or not consume galactitol (gat-positive and gat-negative, respectively). Although the abundance of the dominant strain, the gat-negative, depends on the microbiota composition, gat-positive abundance is independent of the microbiota composition and can be precisely manipulated by supplementing the diet with galactitol. These results show that a specific diet is able to change the abundance of specific strains. Importantly, we find polymorphism for these phenotypes in indigenous Enterobacteria of mice and man. Our results demonstrate that natural selection can greatly overwhelm genetic drift at structuring the strain diversity of gut commensals and that competition for limiting resources may be a key mechanism for maintaining polymorphism in the gut. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Alcaligenes is Commensal Bacteria Habituating in the Gut-Associated Lymphoid Tissue for the Regulation of Intestinal IgA Responses.

    Science.gov (United States)

    Kunisawa, Jun; Kiyono, Hiroshi

    2012-01-01

    Secretory-immunoglobulin A (S-IgA) plays an important role in immunological defense in the intestine. It has been known for a long time that microbial stimulation is required for the development and maintenance of intestinal IgA production. Recent advances in genomic technology have made it possible to detect uncultivable commensal bacteria in the intestine and identify key bacteria in the regulation of innate and acquired mucosal immune responses. In this review, we focus on the immunological function of Peyer's patches (PPs), a major gut-associated lymphoid tissue, in the induction of intestinal IgA responses and the unique immunological interaction of PPs with commensal bacteria, especially Alcaligenes, a unique indigenous bacteria habituating inside PPs.

  9. Essential oils have different effects on human pathogenic and commensal bacteria in mixed faecal fermentations compared with pure cultures.

    Science.gov (United States)

    Thapa, Dinesh; Louis, Petra; Losa, Riccardo; Zweifel, Béatrice; Wallace, R John

    2015-02-01

    A static batch culture system inoculated with human faeces was used to determine the influence of essential oil compounds (EOCs) on mixed faecal microbiota. Bacteria were quantified using quantitative PCR of 16S rRNA genes. Incubation for 24 h of diluted faeces from six individuals caused enrichment of Bifidobacterium spp., but proportions of other major groups were unaffected. Thymol and geraniol at 500 p.p.m. suppressed total bacteria, resulting in minimal fermentation. Thymol at 100 p.p.m. had no effect, nor did eugenol or nerolidol at 100 or 500 p.p.m. except for a slight suppression of Eubacterium hallii. Methyl isoeugenol at 100 or 500 p.p.m. suppressed the growth of total bacteria, accompanied by a large fall in the molar proportion of propionate formed. The relative abundance of Faecalibacterium prausnitzii was unaffected except with thymol at 500 p.p.m. The ability of EOCs to control numbers of the pathogen Clostridium difficile was investigated in a separate experiment, in which the faecal suspensions were amended by the addition of pure culture of C. difficile. Numbers of C. difficile were suppressed by thymol and methyl isoeugenol at 500 p.p.m. and to a lesser extent at 100 p.p.m. Eugenol and geraniol gave rather similar suppression of C. difficile numbers at both 100 and 500 p.p.m. Nerolidol had no significant effect. It was concluded from these and previous pure-culture experiments that thymol and geraniol at around 100 p.p.m. could be effective in suppressing pathogens in the small intestine, with no concern for beneficial commensal colonic bacteria in the distal gut. © 2015 The Authors.

  10. Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance.

    Science.gov (United States)

    Thaller, Maria Cristina; Migliore, Luciana; Marquez, Cruz; Tapia, Washington; Cedeño, Virna; Rossolini, Gian Maria; Gentile, Gabriele

    2010-02-01

    Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i) the abiotic conditions ensure to microbes good survival possibilities in the environment; ii) the animal density and their habits favour microbial circulation between individuals; and iii) there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  11. Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance.

    Directory of Open Access Journals (Sweden)

    Maria Cristina Thaller

    Full Text Available BACKGROUND: Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. METHODOLOGY/PRINCIPAL FINDINGS: Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i the abiotic conditions ensure to microbes good survival possibilities in the environment; ii the animal density and their habits favour microbial circulation between individuals; and iii there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. CONCLUSIONS/SIGNIFICANCE: Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  12. Soft tissue infections from fish spike wounds: normal commensal bacteria are more common than marine pathogens.

    Science.gov (United States)

    Collins, Hannah; Lee, Kin Mun; Cheng, Paul T-Y; Hulme, Sarah

    2018-01-01

    A fish spike injury can be sustained by anyone handling fish; during fishing, meal preparation or in retail. Case reports of fish spikes inoculating victims with virulent marine-specific pathogens and causing systemic illness led us to question whether empirical treatment of these injuries with amoxicillin and clavulanic acid is adequate. This 2-year prospective observational study was conducted at Middlemore Hospital, Auckland, New Zealand. Wound swabs and tissue samples belonging to patients presenting to the Department of Plastic and Reconstructive Surgery with an upper limb fish spike injury were sent to the laboratory (n = 60). A series of stains and cultures were performed to look specifically for marine bacteria not typically isolated in other soft tissue injuries. Patient demographic data and injury details were collected. Of the patients with adequate microbiology samples, 12% (6/50) grew clinically relevant bacteria resistant to amoxicillin and clavulanic acid. These included methicillin-resistant Staphylococcus aureus (8%, 4/50), Enterobacter cloacae (2%, 1/50) and an anaerobic sporing bacillus (2%, 1/50). Only one patient grew a true marine-specific bacteria, Photobacterium damselae, which was susceptible to amoxicillin and clavulanic acid. The authors concluded that amoxicillin and clavulanic acid is an adequate first-line antibiotic for fish spike injuries but that flucloxacillin may be more appropriate given most bacteria were from patients' own skin flora. The authors suggest that clinicians consider the presence of resistant marine-specific bacteria in cases where there is sepsis or inadequate response to initial therapy. © 2017 Royal Australasian College of Surgeons.

  13. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients

    OpenAIRE

    Chhibber-Goel, Jyoti; Singhal, Varsha; Bhowmik, Debaleena; Vivek, Rahul; Parakh, Neeraj; Bhargava, Balram; Sharma, Amit

    2016-01-01

    Coronary artery disease is an inflammatory disorder characterized by narrowing of coronary arteries due to atherosclerotic plaque formation. To date, the accumulated epidemiological evidence supports an association between oral bacterial diseases and coronary artery disease, but has failed to prove a causal link between the two. Due to the recent surge in microbial identification and analyses techniques, a number of bacteria have been independently found in atherosclerotic plaque samples from...

  14. Effect of garlic powder on the growth of commensal bacteria from the gastrointestinal tract.

    Science.gov (United States)

    Filocamo, Angela; Nueno-Palop, Carmen; Bisignano, Carlo; Mandalari, Giuseppina; Narbad, Arjan

    2012-06-15

    Garlic (Allium sativum) is considered one of the best disease-preventive foods. We evaluated in vitro the effect of a commercial garlic powder (GP), at concentrations of 0.1% and 1% (w/v), upon the viability of representative gut bacteria. In pure culture studies, Lactobacillus casei DSMZ 20011 was essentially found to be resistant to GP whereas a rapid killing effect of between 1 and 3 log CFU/ml reduction in cell numbers was observed with Bacteroides ovatus, Bifidobacterium longum DSMZ 20090 and Clostridium nexile A2-232. After 6h incubation, bacterial numbers increased steadily and once the strains became resistant they retained their resistant phenotype upon sub-culturing. A colonic model was also used to evaluate the effect of GP on a mixed bacterial population representing the microbiota of the distal colon. Lactic acid bacteria were found to be more resistant to GP compared to the clostridial members of the gut microbiota. While for most bacteria the antimicrobial effect was transient, the lactobacilli showed a degree of resistance to garlic, indicating that its consumption may favour the growth of these beneficial bacterial species in the gut. Garlic intake has the potential to temporarily modulate the gut microbiota. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability.

    Directory of Open Access Journals (Sweden)

    Kejie Chen

    Full Text Available Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß. Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3 inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis.

  16. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.

    Science.gov (United States)

    Zhang, Meiling; Chekan, Jonathan R; Dodd, Dylan; Hong, Pei-Ying; Radlinski, Lauren; Revindran, Vanessa; Nair, Satish K; Mackie, Roderick I; Cann, Isaac

    2014-09-02

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  17. Commensal oral bacteria antigens prime human dendritic cells to induce Th1, Th2 or Treg differentiation.

    Science.gov (United States)

    Kopitar, A N; Ihan Hren, N; Ihan, A

    2006-02-01

    In various immunopathologic conditions, bacterial flora induce an immune response which results in inflammatory manifestations, e.g. periapical granuloma. Dendritic cells provide the main orchestration of specific immune responses. The aim of our study was to test the capacity of distinct oral bacterial antigens (prepared from Streptococcus mitis, Propionibacterium acnes, and Bacteroides spp.) to prime human dendritic cells for stimulation of the T-lymphocyte response. To assess the T-lymphocyte response, the expression of CD25, CD69, intracellular interferon gamma (cIFN-gamma), and intracellular interleukin 4 (cIL-4) was determined. Dendritic cells were prepared from leukocyte buffy coat from healthy blood donors. Monocytes were stimulated with IL-4 and GM-CSF and dendritic cells activated with bacterial lysates. Cell suspensions contained up to 90% dendritic cells, which represented 2-12% of the initial number of mononuclear cells. Lymphocyte subsets that developed in lymphocyte cultures after 1 week of stimulation were analyzed by flow cytometry. Dendritic cells, primed with antigens of Bacteroides fragilis have shown significantly higher activation and expression of intercellular IFN-gamma by T lymphocytes compared to negative controls. The dendritic cells primed with antigens of P. acnes had no effect on T-lymphocyte activation or cytokine production; instead they induced differentiation of T lymphocytes into CD25bright cells (regulatory T cells) with a potentially inhibitory effect on immune response. Dendritic cells primed with antigens of S. mitis induced increased expression of cIL-4. We conclude that commensal oral bacteria antigens prepared from B. fragilis, S. mitis, and P. acnes prime human dendritic cells to induce Th1, Th2, and T(reg) differentiation, respectively. This may advance our understanding of immunopathologic manifestations in the oral cavity and offer new possibilities for redirecting immune responses in mucosal vaccination.

  18. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes

    KAUST Repository

    Zhang, Meiling

    2014-08-18

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT-04215 and BACOVA-04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xy-lose- configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM fromits homolog in the Prevotella bryantii B 14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. Aminimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  19. Functions of innate immune cells and commensal bacteria in gut homeostasis.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2016-02-01

    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  20. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    Directory of Open Access Journals (Sweden)

    Yanhan Wang

    Full Text Available Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes, a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER of a peptide chain release factor 2 (RF2 were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre

  1. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    Science.gov (United States)

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis

  2. Catabolite regulation of enzymatic activities in a white pox pathogen and commensal bacteria during growth on mucus polymers from the coral Acropora palmata.

    Science.gov (United States)

    Krediet, Cory J; Ritchie, Kim B; Teplitski, Max

    2009-11-16

    Colonization of host mucus surfaces is one of the first steps in the establishment of coral-associated microbial communities. Coral mucus contains a sulfated glycoprotein (in which oligosaccharide decorations are connected to the polypeptide backbone by a mannose residue) and molecules that result from its degradation. Mucus is utilized as a growth substrate by commensal and pathogenic organisms. Two representative coral commensals, Photobacterium mandapamensis and Halomonas meridiana, differed from a white pox pathogen Serratia marcescens PDL100 in the pattern with which they utilized mucus polymers of Acropora palmata. Incubation with the mucus polymer increased mannopyranosidase activity in S. marcescens, suggestive of its ability to cleave off oligosaccharide side chains. With the exception of glucosidase and N-acetyl galactosaminidase, glycosidases in S. marcescens were subject to catabolite regulation by galactose, glucose, arabinose, mannose and N-acetyl-glucosamine. In commensal P. mandapamensis, at least 10 glycosidases were modestly induced during incubation on coral mucus. Galactose, arabinose, mannose, but not glucose or N-acetyl-glucosamine had a repressive effect on glycosidases in P. mandapamensis. Incubation with the mucus polymers upregulated 3 enzymatic activities in H. meridiana; glucose and galactose appear to be the preferred carbon source in this bacterium. Although all these bacteria were capable of producing the same glycosidases, the differences in the preferred carbon sources and patterns of enzymatic activities induced during growth on the mucus polymer in the presence of these carbon sources suggest that to establish themselves within the coral mucus surface layer commensals and pathogens rely on different enzymatic activities.

  3. Hit-and-run, hit-and-stay, and commensal bacteria present different peptide content when viewed from the perspective of the T cell.

    Science.gov (United States)

    He, Lu; De Groot, Anne S; Bailey-Kellogg, Chris

    2015-11-27

    Different types of bacteria face different pressures from the immune system, with those that persist ("hit-and-stay") potentially having to adapt more in order to escape than those prone to short-lived infection ("hit-and-run"), and with commensal bacteria potentially different from both due to additional physical mechanisms for avoiding immune detection. The Janus Immunogenicity Score (JIS) was recently developed to assess the likelihood of T cell recognition of an antigen, using an analysis that considers both binding of a peptide within the antigen by major histocompatability complex (MHC) and recognition of the peptide:MHC complex by cognate T cell receptor (TCR). This score was shown to be predictive of T effector vs. T regulatory or null responses in experimental data, as well as to distinguish viruses representative of the hit-and-stay vs. hit-and-run phenotypes. Here, JIS-based analyses were conducted in order to characterize the extent to which the pressure to avoid T cell recognition is manifested in genomic differences among representative hit-and-run, hit-and-stay, and commensal bacteria. Overall, extracellular proteins were found to have different JIS profiles from cytoplasmic ones. Contrasting the bacterial groups, extracellular proteins were shown to be quite different across the groups, much more so than intracellular proteins. The differences were evident even at the level of corresponding peptides in homologous protein pairs from hit-and-run and hit-and-stay bacteria. The multi-level analysis of patterns of immunogenicity across different groups of bacteria provides a new way to approach questions of bacterial immune camouflage or escape, as well as to approach the selection and optimization of candidates for vaccine design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of the vitamin B12-binding protein haptocorrin present in human milk on a panel of commensal and pathogenic bacteria

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Laursen, Martin Frederik; Lildballe, Dorte L.

    2011-01-01

    commensal and pathogenic bacteria to which infants are likely to be exposed. Well-diffusion assays addressing antibacterial effects were performed with human milk, haptocorrin-free human milk, porcine holo-haptocorrin (saturated with B-12) and human apo-haptocorrin (unsaturated). Human milk inhibited...... properties of this protein may exert a general defense against pathogens and/or affect the composition of the developing microbiota in the gastrointestinal tracts of breastfed infants. Findings: The present work was the first systematic study of the effect of haptocorrin on bacterial growth, and included 34...... the growth of S. thermophilus and the pathogenic strains L. monocytogenes LO28, L. monocytogenes 4446 and L. monocytogenes 7291, but the inhibition could not be ascribed to haptocorrin. Human apo-haptocorrin inhibited the growth of only a single bacterial strain (Bifidobacterium breve), while porcine holo...

  5. IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria.

    Directory of Open Access Journals (Sweden)

    Kwan-Ki Hwang

    Full Text Available B-cell chronic lymphocytic leukemia (B-CLL patients expressing unmutated immunoglobulin heavy variable regions (IGHVs use the IGHV1-69 B cell receptor (BCR in 25% of cases. Since HIV-1 envelope gp41 antibodies also frequently use IGHV1-69 gene segments, we hypothesized that IGHV1-69 B-CLL precursors may contribute to the gp41 B cell response during HIV-1 infection. To test this hypothesis, we rescued 5 IGHV1-69 unmutated antibodies as heterohybridoma IgM paraproteins and as recombinant IgG1 antibodies from B-CLL patients, determined their antigenic specificities and analyzed BCR sequences. IGHV1-69 B-CLL antibodies were enriched for reactivity with HIV-1 envelope gp41, influenza, hepatitis C virus E2 protein and intestinal commensal bacteria. These IGHV1-69 B-CLL antibodies preferentially used IGHD3 and IGHJ6 gene segments and had long heavy chain complementary determining region 3s (HCDR3s (≥21 aa. IGHV1-69 B-CLL BCRs exhibited a phenylalanine at position 54 (F54 of the HCDR2 as do rare HIV-1 gp41 and influenza hemagglutinin stem neutralizing antibodies, while IGHV1-69 gp41 antibodies induced by HIV-1 infection predominantly used leucine (L54 allelic variants. These results demonstrate that the B-CLL cell population is an expansion of members of the innate polyreactive B cell repertoire with reactivity to a number of infectious agent antigens including intestinal commensal bacteria. The B-CLL IGHV1-69 B cell usage of F54 allelic variants strongly suggests that IGHV1-69 B-CLL gp41 antibodies derive from a restricted B cell pool that also produces rare HIV-1 gp41 and influenza hemagglutinin stem antibodies.

  6. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: The missing link between consumption and resistance in veterinary medicine

    DEFF Research Database (Denmark)

    Garcia-Migura, Lourdes; Hendriksen, Rene S.; Fraile, Lorenzo

    2014-01-01

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents...... antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite...

  7. Antimicrobial resistance among commensal Escherichia coli from ...

    African Journals Online (AJOL)

    Commensal bacteria contribute to the distribution and persistence of antimicrobial resistance in the environment. This study monitored antimicrobial resistance in commensal Escherichia coli from the faeces of on-farm and slaughter cattle and beef. A total of 342 (89.5%) E. coli isolates were obtained from 382 samples.

  8. Antimicrobial resistance among commensal Escherichia coli from ...

    African Journals Online (AJOL)

    user1

    2012-07-19

    Jul 19, 2012 ... Commensal bacteria contribute to the distribution and persistence of antimicrobial resistance in the environment. This study monitored antimicrobial resistance in commensal Escherichia coli from the faeces of on-farm and slaughter cattle and beef. A total of 342 (89.5%) E. coli isolates were obtained.

  9. Mucosal-Associated Invariant T Cell Interactions with Commensal and Pathogenic Bacteria: Potential Role in Antimicrobial Immunity in the Child

    Directory of Open Access Journals (Sweden)

    Liana Ghazarian

    2017-12-01

    Full Text Available Mucosal-associated invariant T (MAIT cells are unconventional CD3+CD161high T lymphocytes that recognize vitamin B2 (riboflavin biosynthesis precursor derivatives presented by the MHC-I related protein, MR1. In humans, their T cell receptor is composed of a Vα7.2-Jα33/20/12 chain, combined with a restricted set of Vβ chains. MAIT cells are very abundant in the liver (up to 40% of resident T cells and in mucosal tissues, such as the lung and gut. In adult peripheral blood, they represent up to 10% of circulating T cells, whereas they are very few in cord blood. This large number of MAIT cells in the adult likely results from their gradual expansion with age following repeated encounters with riboflavin-producing microbes. Upon recognition of MR1 ligands, MAIT cells have the capacity to rapidly eliminate bacterially infected cells through the production of inflammatory cytokines (IFNγ, TNFα, and IL-17 and cytotoxic effector molecules (perforin and granzyme B. Thus, MAIT cells may play a crucial role in antimicrobial defense, in particular at mucosal sites. In addition, MAIT cells have been implicated in diseases of non-microbial etiology, including autoimmunity and other inflammatory diseases. Although their participation in various clinical settings has received increased attention in adults, data in children are scarce. Due to their innate-like characteristics, MAIT cells might be particularly important to control microbial infections in the young age, when long-term protective adaptive immunity is not fully developed. Herein, we review the data showing how MAIT cells may control microbial infections and how they discriminate pathogens from commensals, with a focus on models relevant for childhood infections.

  10. Interactions between ammonia and nitrite oxidizing bacteria in co-cultures: Is there evidence for mutualism, commensalism, or competition?

    Energy Technology Data Exchange (ETDEWEB)

    Sayavedra-Soto, Luis [Oregon State Univ., Corvallis, OR (United States); Arp, Daniel [Oregon State Univ., Corvallis, OR (United States)

    2017-08-01

    Nitrification is a two-step environmental microbial process in the nitrogen cycle in which ammonia is oxidized to nitrate. Ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and nitrite is oxidized to nitrate by nitrite-oxidizing bacteria. These microorganisms, which likely act in concert in a microbial community, play critical roles in the movement of inorganic N in soils, sediments and waters and are essential to the balance of the nitrogen cycle. Anthropogenic activity has altered the balance of the nitrogen cycle through agriculture practices and organic waste byproducts. Through their influence on available N for plant growth, nitrifying microorganisms influence plant productivity for food and fiber production and the associated carbon sequestration. N Fertilizer production, primarily as ammonia, requires large inputs of natural gas and hydrogen. In croplands fertilized with ammonia-based fertilizers, nitrifiers contribute to the mobilization of this N by producing nitrate (NO3-), wasting the energy used in the production and application of ammonia-based fertilizer. The resulting nitrate is readily leached from these soils, oxidized to gaseous N oxides (greenhouse gases), and denitrified to N2 (which is no longer available as a plant N source). Still, ammonia oxidizers are beneficial in the treatment of wastewater and they also show potential to contribute to microbial bioremediation strategies for clean up of environments contaminated with chlorinated hydrocarbons. Mitigation of the negative effects and exploitation of the beneficial effects of nitrifiers will be facilitated by a systems-level understanding of the interactions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria with the environment and with each other.

  11. Effect of the vitamin B12-binding protein haptocorrin present in human milk on a panel of commensal and pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Nexø Ebba

    2011-06-01

    Full Text Available Abstract Background Haptocorrin is a vitamin B12-binding protein present in high amounts in different body fluids including human milk. Haptocorrin has previously been shown to inhibit the growth of specific E. coli strains, and the aim of the present study was to elucidate whether the antibacterial properties of this protein may exert a general defense against pathogens and/or affect the composition of the developing microbiota in the gastrointestinal tracts of breastfed infants. Findings The present work was the first systematic study of the effect of haptocorrin on bacterial growth, and included 34 commensal and pathogenic bacteria to which infants are likely to be exposed. Well-diffusion assays addressing antibacterial effects were performed with human milk, haptocorrin-free human milk, porcine holo-haptocorrin (saturated with B-12 and human apo-haptocorrin (unsaturated. Human milk inhibited the growth of S. thermophilus and the pathogenic strains L. monocytogenes LO28, L. monocytogenes 4446 and L. monocytogenes 7291, but the inhibition could not be ascribed to haptocorrin. Human apo-haptocorrin inhibited the growth of only a single bacterial strain (Bifidobacterium breve, while porcine holo-haptocorrin did not show any inhibitory effect. Conclusions Our results suggest that haptocorrin does not have a general antibacterial activity, and thereby contradict the existing hypothesis implicating such an effect. The study contributes to the knowledge on the potential impact of breastfeeding on the establishment of a healthy microbiota in infants.

  12. Effects of Helicobacter pylori, geohelminth infection and selected commensal bacteria on the risk of allergic disease and sensitization in 3-year-old Ethiopian children.

    Science.gov (United States)

    Amberbir, A; Medhin, G; Erku, W; Alem, A; Simms, R; Robinson, K; Fogarty, A; Britton, J; Venn, A; Davey, G

    2011-10-01

    Epidemiological studies have suggested that gastro-intestinal infections including Helicobacter pylori, intestinal microflora (commensal bacteria) and geohelminths may influence the risk of asthma and allergy but data from early life are lacking. We aimed to determine the independent effects of these infections on allergic disease symptoms and sensitization in an Ethiopian birth cohort. In 2008/09, 878 children (87% of the 1006 original singletons in a population-based birth cohort) were followed up at age 3 and interview data obtained on allergic symptoms and potential confounders. Allergen skin tests to Dermatophagoides pteronyssinus and cockroach were performed, levels of Der p 1 and Bla g 1 in the child's bedding measured and stool samples analysed for geohelminths and, in a random subsample, enterococci, lactobacilli, bifidobacteria and H. pylori antigen. The independent effects of each exposure on wheeze, eczema, hayfever and sensitization were determined using multiple logistic regression. Children were commonly infected with H. pylori (41%; 253/616), enterococci (38.1%; 207/544), lactobacilli (31.1%; 169/544) and bifidobacteria (18.9%; 103/544) whereas geohelminths were only found in 8.5% (75/866). H. pylori infection was associated with a borderline significant reduced risk of eczema (adjusted OR 0.49, 95% CI 0.24-1.01, P=0.05) and D. pteronyssinus sensitization (adjusted OR 0.42, 95% CI 0.17-1.08, P=0.07). Geohelminths and intestinal microflora were not significantly associated with any of the outcomes measured. Among young children in a developing country, we found evidence to support the hypothesis of a protective effect of H. pylori infection on the risk of allergic disease. Further investigation of the mechanism of this effect is therefore of potential therapeutic and preventive value. © 2011 Blackwell Publishing Ltd.

  13. Intestinal commensal microbes as immune modulators.

    Science.gov (United States)

    Ivanov, Ivaylo I; Honda, Kenya

    2012-10-18

    Commensal bacteria are necessary for the development and maintenance of a healthy immune system. Harnessing the ability of microbiota to affect host immunity is considered an important therapeutic strategy for many mucosal and nonmucosal immune-related conditions, such as inflammatory bowel diseases (IBDs), celiac disease, metabolic syndrome, diabetes, and microbial infections. In addition to well-established immunostimulatory effects of the microbiota, the presence of individual mutualistic commensal bacteria with immunomodulatory effects has been described. These organisms are permanent members of the commensal microbiota and affect host immune homeostasis in specific ways. Identification of individual examples of such immunomodulatory commensals and understanding their mechanisms of interaction with the host will be invaluable in designing therapeutic strategies to reverse intestinal dysbiosis and recover immunological homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals.

    Science.gov (United States)

    Bach, Jean-François

    2018-02-01

    The incidence of autoimmune diseases has been steadily rising. Concomitantly, the incidence of most infectious diseases has declined. This observation gave rise to the hygiene hypothesis, which postulates that a reduction in the frequency of infections contributes directly to the increase in the frequency of autoimmune and allergic diseases. This hypothesis is supported by robust epidemiological data, but the underlying mechanisms are unclear. Pathogens are known to be important, as autoimmune disease is prevented in various experimental models by infection with different bacteria, viruses and parasites. Gut commensal bacteria also play an important role: dysbiosis of the gut flora is observed in patients with autoimmune diseases, although the causal relationship with the occurrence of autoimmune diseases has not been established. Both pathogens and commensals act by stimulating immunoregulatory pathways. Here, I discuss the importance of innate immune receptors, in particular Toll-like receptors, in mediating the protective effect of pathogens and commensals on autoimmunity.

  15. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging

    Science.gov (United States)

    Radziwill-Bienkowska, Joanna M.; Talbot, Pauline; Kamphuis, Jasper B. J.; Robert, Véronique; Cartier, Christel; Fourquaux, Isabelle; Lentzen, Esther; Audinot, Jean-Nicolas; Jamme, Frédéric; Réfrégiers, Matthieu; Bardowski, Jacek K.; Langella, Philippe; Kowalczyk, Magdalena; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-01-01

    Titanium dioxide (TiO2) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli, Lactobacillus rhamnosus, Lactococcus lactis (subsp. lactis and cremoris), Streptococcus thermophilus, and Lactobacillus sakei. Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO2. However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO2 showed some internalization of TiO2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some physiological

  16. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging.

    Science.gov (United States)

    Radziwill-Bienkowska, Joanna M; Talbot, Pauline; Kamphuis, Jasper B J; Robert, Véronique; Cartier, Christel; Fourquaux, Isabelle; Lentzen, Esther; Audinot, Jean-Nicolas; Jamme, Frédéric; Réfrégiers, Matthieu; Bardowski, Jacek K; Langella, Philippe; Kowalczyk, Magdalena; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-01-01

    Titanium dioxide (TiO 2 ) is commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre) interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli , Lactobacillus rhamnosus , Lactococcus lactis (subsp. lactis and cremoris ), Streptococcus thermophilus , and Lactobacillus sakei . Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nano)imaging methods. The ability of bacteria to trap TiO 2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO 2 . However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO 2 showed some internalization of TiO 2 (7% of cells), observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS) chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some

  17. Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Joanna M. Radziwill-Bienkowska

    2018-04-01

    Full Text Available Titanium dioxide (TiO2 is commonly used as a food additive (E171 in the EU for its whitening and opacifying properties. However, a risk of intestinal barrier disruption, including dysbiosis of the gut microbiota, is increasingly suspected because of the presence of a nano-sized fraction in this additive. We hypothesized that food-grade E171 and Aeroxyde P25 (identical to the NM-105 OECD reference nanomaterial in the European Union Joint Research Centre interact with both commensal intestinal bacteria and transient food-borne bacteria under non-UV-irradiated conditions. Based on differences in their physicochemical properties, we expect a difference in their respective effects. To test these hypotheses, we chose a panel of eight Gram-positive/Gram-negative bacterial strains, isolated from different biotopes and belonging to the species Escherichia coli, Lactobacillus rhamnosus, Lactococcus lactis (subsp. lactis and cremoris, Streptococcus thermophilus, and Lactobacillus sakei. Bacterial cells were exposed to food-grade E171 vs. P25 in vitro and the interactions were explored with innovative (nanoimaging methods. The ability of bacteria to trap TiO2 was demonstrated using synchrotron UV fluorescence imaging with single cell resolution. Subsequent alterations in the growth profiles were shown, notably for the transient food-borne L. lactis and the commensal intestinal E. coli in contact with food-grade TiO2. However, for both species, the reduction in cell cultivability remained moderate, and the morphological and ultrastructural damages, observed with electron microscopy, were restricted to a small number of cells. E. coli exposed to food-grade TiO2 showed some internalization of TiO2 (7% of cells, observed with high-resolution nano-secondary ion mass spectrometry (Nano-SIMS chemical imaging. Taken together, these data show that E171 may be trapped by commensal and transient food-borne bacteria within the gut. In return, it may induce some

  18. Prevalence of Antibiotic Resistance in Commensal Escherichia Coli among the Children in Rural Hill Communities of North East India

    OpenAIRE

    Lepcha, Yangchen; Pradhan, Nilu; Gajamer, Varsha; Singh, Samer; Das, Saurav; Tiwari, Ashish; Singh, Ashish

    2018-01-01

    Commensal bacteria are the representative of the reservoir of antibiotic resistance genes present in a community. Merely a few community-based studies on the prevalence of antibiotic resistance in commensal bacteria have been conducted so far in Southeast Asia and other parts of India. Northeastern India is still untapped regarding the surveillance of antibiotic-resistant genes and prevalence in commensal bacteria. In the present work, the prevalence of antibiotic resistance in commensal Esch...

  19. Commensal communism and the oral cavity.

    Science.gov (United States)

    Henderson, B; Wilson, M

    1998-09-01

    The world we live in contains unimaginable numbers of bacteria, and these and other single-celled creatures represent the major diversity of life on our planet. During the last decade or so, the complexity and intimacy of the interactions which occur between bacteria and host eukaryotic cells during the process of infection have begun to emerge. The study of such interactions is the subject of the new discipline of cellular microbiology. This intimacy of bacteria/host interactions creates a major paradox. The average human being is 90% bacteria in terms of cell numbers. These bacteria constitute the commensal or normal microflora and populate the mucosal surfaces of the oral cavity, gastrointestinal tract, urogenital tract, and the surface of the skin. In bacterial infections, much of the pathology is due to the release of a range of bacterial components (e.g., modulins such as lipopolysaccharide, peptidoglycan, DNA, molecular chaperones), which induce the synthesis of the local hormone-like molecules known as pro-inflammatory cytokines. However, such components must also be constantly released by the vast numbers of bacteria constituting the normal microflora and, as a consequence, our mucosae should constantly be in a state of inflammation. This is patently not the case, and a hypothesis is forwarded to account for this "commensal paradox", namely, that our commensal bacteria and mucosal surfaces exist in a state of bio-communism, forming a unified "tissue" in which interactions between bacteria and epithelia are finely balanced to ensure bacterial survival and prevent the induction of damaging inflammation. Evidence is emerging that bacteria can produce a variety of proteins which can inhibit the synthesis/release of inflammatory cytokines. The authors predict that such proteins are simply one part of an extensive signaling system which occurs between bacteria and epithelial cells at mucosal surfaces such as those found in the oral cavity.

  20. Regulation of innate and adaptive immunity by the commensal microbiota

    OpenAIRE

    Jarchum, Irene; Pamer, Eric G.

    2011-01-01

    The microbial communities that inhabit the intestinal tract are essential for mammalian health. Communication between the microbiota and the host establishes and maintains immune homeostasis, enabling protective immune responses against pathogens while preventing adverse inflammatory responses to harmless commensal microbes. Specific bacteria, such as segmented filamentous bacteria, Clostridium species, and Bacteroides fragilis, are key contributors to immune homeostasis in the gut. The cellu...

  1. Capsular Polysaccharide Expression in Commensal Streptococcus Species

    DEFF Research Database (Denmark)

    Skov Sørensen, Uffe B; Yao, Kaihu; Yang, Yonghong

    2016-01-01

    Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule....... pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S...... of Streptococcus pneumoniae and is the basis for successful vaccines against infections caused by this important pathogen. Contrasting with previous assumptions, this study showed that expression of capsular polysaccharides by the same genetic mechanisms is a general property of closely related species...

  2. Differential susceptibility of C57BL/6NCr and B6.Cg-Ptprca mice to commensal bacteria after whole body irradiation in translational bone marrow transplant studies

    Directory of Open Access Journals (Sweden)

    Toubai Tomomi

    2008-02-01

    Full Text Available Abstract Background The mouse is an important and widely utilized animal model for bone marrow transplant (BMT translational studies. Here, we document the course of an unexpected increase in mortality of congenic mice that underwent BMT. Methods Thirty five BMTs were analyzed for survival differences utilizing the Log Rank test. Affected animals were evaluated by physical examination, necropsy, histopathology, serology for antibodies to infectious disease, and bacterial cultures. Results Severe bacteremia was identified as the main cause of death. Gastrointestinal (GI damage was observed in histopathology. The bacteremia was most likely caused by the translocation of bacteria from the GI tract and immunosuppression caused by the myeloablative irradiation. Variability in groups of animals affected was caused by increased levels of gamma and X-ray radiation and the differing sensitivity of the two nearly genetically identical mouse strains used in the studies. Conclusion Our retrospective analysis of thirty five murine BMTs performed in three different laboratories, identified C57BL/6NCr (Ly5.1 as being more radiation sensitive than B6.Cg-Ptprca/NCr (Ly5.2. This is the first report documenting a measurable difference in radiation sensitivity and its effects between an inbred strain of mice and its congenic counterpart eventually succumbing to sepsis after BMT.

  3. Staphylococcus aureus shifts towards commensalism in response to Corynebacterium species

    Directory of Open Access Journals (Sweden)

    Matthew M Ramsey

    2016-08-01

    Full Text Available Staphylococcus aureus–human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence towards a commensal state when exposed to commensal Corynebacterium species.

  4. Evolution of Streptococcus pneumoniae and its close commensal relatives

    DEFF Research Database (Denmark)

    Kilian, Mogens; Poulsen, Knud; Blomqvist, Trinelise

    2008-01-01

    Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial...... of unique genes and their origin support the model that the entire cluster of S. pneumoniae, S. pseudopneumoniae, and S. mitis lineages evolved from pneumococcus-like bacteria presumably pathogenic to the common immediate ancestor of hominoids. During their adaptation to a commensal life style, most...

  5. The Gut Commensal Microbiome of Drosophila melanogaster Is Modified by the Endosymbiont Wolbachia.

    Science.gov (United States)

    Simhadri, Rama K; Fast, Eva M; Guo, Rong; Schultz, Michaela J; Vaisman, Natalie; Ortiz, Luis; Bybee, Joanna; Slatko, Barton E; Frydman, Horacio M

    2017-01-01

    Endosymbiotic Wolbachia bacteria and the gut microbiome have independently been shown to affect several aspects of insect biology, including reproduction, development, life span, stem cell activity, and resistance to human pathogens, in insect vectors. This work shows that Wolbachia bacteria, which reside mainly in the fly germline, affect the microbial species present in the fly gut in a lab-reared strain. Drosophila melanogaster hosts two main genera of commensal bacteria- Acetobacter and Lactobacillus . Wolbachia -infected flies have significantly reduced titers of Acetobacter . Sampling of the microbiome of axenic flies fed with equal proportions of both bacteria shows that the presence of Wolbachia bacteria is a significant determinant of the composition of the microbiome throughout fly development. However, this effect is host genotype dependent. To investigate the mechanism of microbiome modulation, the effect of Wolbachia bacteria on Imd and reactive oxygen species pathways, the main regulators of immune response in the fly gut, was measured. The presence of Wolbachia bacteria does not induce significant changes in the expression of the genes for the effector molecules in either pathway. Furthermore, microbiome modulation is not due to direct interaction between Wolbachia bacteria and gut microbes. Confocal analysis shows that Wolbachia bacteria are absent from the gut lumen. These results indicate that the mechanistic basis of the modulation of composition of the microbiome by Wolbachia bacteria is more complex than a direct bacterial interaction or the effect of Wolbachia bacteria on fly immunity. The findings reported here highlight the importance of considering the composition of the gut microbiome and host genetic background during Wolbachia -induced phenotypic studies and when formulating microbe-based disease vector control strategies. IMPORTANCE Wolbachia bacteria are intracellular bacteria present in the microbiome of a large fraction of insects

  6. Scoping review to identify potential non-antimicrobial interventions to mitigate antimicrobial resistance in commensal enteric bacteria in North American cattle production systems.

    Science.gov (United States)

    Murphy, C P; Fajt, V R; Scott, H M; Foster, M J; Wickwire, P; McEwen, S A

    2016-01-01

    A scoping review was conducted to identify modifiable non-antimicrobial factors to reduce the occurrence of antimicrobial resistance in cattle populations. Searches were developed to retrieve peer-reviewed published studies in animal, human and in vitro microbial populations. Citations were retained when modifiable non-antimicrobial factors or interventions potentially associated with antimicrobial resistance were described. Studies described resistance in five bacterial genera, species or types, and 40 antimicrobials. Modifiable non-antimicrobial factors or interventions ranged widely in type, and the depth of evidence in animal populations was shallow. Specific associations between a factor or intervention with antimicrobial resistance in a population (e.g. associations between organic systems and tetracycline susceptibility in E. coli from cattle) were reported in a maximum of three studies. The identified non-antimicrobial factors or interventions were classified into 16 themes. Most reported associations between the non-antimicrobial modifiable factors or interventions and antimicrobial resistance were not statistically significant (P > 0·05 and a confidence interval including 1), but when significant, the results were not consistent in direction (increase or decrease in antimicrobial resistance) or magnitude. Research is needed to better understand the impacts of promising modifiable factors or interventions on the occurrence of antimicrobial resistance before any recommendations can be offered or adopted.

  7. Transgenic Killer Commensal Bacteria as Mucosal Protectants

    Directory of Open Access Journals (Sweden)

    Luciano Polonelli

    2001-01-01

    Full Text Available As first line of defense against the majority of infections and primary site for their transmission, mucosal surfaces of the oral cavity and genitourinary, gastrointestinal, and respiratory tracts represent the most suitable sites to deliver protective agents for the prevention of infectious diseases. Mucosal protection is important not only for life threatening diseases but also for opportunistic infections which currently represent a serious burden in terms of morbidity, mortality, and cost of cures. Candida albicans is among the most prevalent causes of mucosal infections not only in immuno- compromised patients, such as HIV-infected subjects who are frequently affected by oral and esophageal candidiasis, but also in otherwise healthy individuals, as in the case of acute vaginitis. Unfortunately, current strategies for mucosal protection against candidiasis are severely limited by the lack of effective vaccines and the relative paucity and toxicity of commercially available antifungal drugs. An additional option has been reported in a recent

  8. Commensal bacteria modulate the tumor microenvironment.

    Science.gov (United States)

    Poutahidis, Theofilos; Erdman, Susan E

    2016-09-28

    It has been recently shown that gut microbes modulate whole host immune and hormonal factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. This raises the possibility that the tumor microenvironment interacts with broader systemic microbial-immune networks. These accumulated findings suggest novel therapeutic opportunities for holobiont engineering in emerging tumor microenvironments. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Evolution of Streptococcus pneumoniae and its close commensal relatives

    DEFF Research Database (Denmark)

    Kilian, Mogens; Poulsen, Knud; Blomqvist, Trinelise

    2008-01-01

    Streptococcus pneumoniae is a member of the Mitis group of streptococci which, according to 16S rRNA-sequence based phylogenetic reconstruction, includes 12 species. While other species of this group are considered prototypes of commensal bacteria, S. pneumoniae is among the most frequent microbial...

  10. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria...... with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when cultured with blood DC......, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the intestinal microbiota...

  11. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Benoît Couvigny

    Full Text Available The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor, we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

  12. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    Science.gov (United States)

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.

  13. Gut commensal flora: tolerance and homeostasis

    OpenAIRE

    Rescigno, Maria

    2009-01-01

    Commensal microorganisms are not ignored by the intestinal immune system. Recent evidence shows that commensals actively participate in maintaining intestinal immune homeostasis by interacting with intestinal epithelial cells and delivering tolerogenic signals that are transmitted to the underlying cells of the immune system.

  14. Lack of direct effects of agrochemicals on zoonotic pathogens and fecal indicator bacteria.

    Science.gov (United States)

    Staley, Zachery R; Senkbeil, Jacob K; Rohr, Jason R; Harwood, Valerie J

    2012-11-01

    Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct effects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica, human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on FIB were indirect.

  15. Commensal-pathogen interactions in the intestinal tract

    Science.gov (United States)

    Reynolds, Lisa A; Smith, Katherine A; Filbey, Kara J; Harcus, Yvonne; Hewitson, James P; Redpath, Stephen A; Valdez, Yanet; Yebra, María J; Finlay, B Brett; Maizels, Rick M

    2016-01-01

    The intestinal microbiota are pivotal in determining the developmental, metabolic and immunological status of the mammalian host. However, the intestinal tract may also accommodate pathogenic organisms, including helminth parasites which are highly prevalent in most tropical countries. Both microbes and helminths must evade or manipulate the host immune system to reside in the intestinal environment, yet whether they influence each other’s persistence in the host remains unknown. We now show that abundance of Lactobacillus bacteria correlates positively with infection with the mouse intestinal nematode, Heligmosomoides polygyrus, as well as with heightened regulatory T cell (Treg) and Th17 responses. Moreover, H. polygyrus raises Lactobacillus species abundance in the duodenum of C57BL/6 mice, which are highly susceptible to H. polygyrus infection, but not in BALB/c mice, which are relatively resistant. Sequencing of samples at the bacterial gyrB locus identified the principal Lactobacillus species as L. taiwanensis, a previously characterized rodent commensal. Experimental administration of L. taiwanensis to BALB/c mice elevates regulatory T cell frequencies and results in greater helminth establishment, demonstrating a causal relationship in which commensal bacteria promote infection with an intestinal parasite and implicating a bacterially-induced expansion of Tregs as a mechanism of greater helminth susceptibility. The discovery of this tripartite interaction between host, bacteria and parasite has important implications for both antibiotic and anthelmintic use in endemic human populations. PMID:25144609

  16. Direct immunofluorescence and enzyme-linked immunosorbent assays for evaluating chlorinated hydrocarbon degrading bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Franck, M.M.; Brey, J.; Fliermans, C.B. [Westinghouse Savannah River, Aiken, SC (United States). Environmental Biotechnology Section; Scott, D.; Lanclos, K. [Medical Coll. of Georgia, Augusta, GA (United States)

    1997-06-01

    Immunological procedures were developed to enumerate chlorinated hydrocarbon degrading bacteria. Polyclonal antibodies (Pabs) were produced by immunizing New Zealand white rabbits against 18 contaminant-degrading bacteria. These included methanotrophic and chlorobenzene (CB) degrading species. An enzyme-linked immunosorbent assay (ELISA) was used to test for specificity and sensitivity of the Pabs. Direct fluorescent antibodies (DFAs) were developed with these Pabs against select methanotrophic bacteria isolated from a trichloroethylene (TCE) contaminated landfill at the Savannah River Site (SRS) and cultures from the American Type Culture Collection (ATCC). Analysis of cross reactivity testing data showed some of the Pabs to be group specific while others were species specific. The threshold of sensitivity for the ELISA is 105 bacteria cells/ml. The DFA can detect as few as one bacterium per ml after concentration. Results from the DFA and ELISA techniques for enumeration of methanotrophic bacteria in groundwater were higher but not significantly different (P < 0.05) compared to indirect microbiological techniques such as MPN. These methods provide useful information on in situ community structure and function for bioremediation applications within 1--4 hours of sampling.

  17. A new rapid method for direct antimicrobial susceptibility testing of bacteria from positive blood cultures.

    Science.gov (United States)

    Barnini, Simona; Brucculeri, Veronica; Morici, Paola; Ghelardi, Emilia; Florio, Walter; Lupetti, Antonella

    2016-08-12

    Rapid identification and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections can lead to prompt appropriate antimicrobial therapy. To shorten species identification, in this study bacteria were recovered from monomicrobial blood cultures by serum separator tubes and spotted onto the target plate for direct MALDI-TOF MS identification. Proper antibiotics were selected for direct AST based on species identification. In order to obtain rapid AST results, bacteria were recovered from positive blood cultures by two different protocols: by serum separator tubes (further referred to as PR1), or after a short-term subculture in liquid medium (further referred to as PR2). The results were compared with those obtained by the method currently used in our laboratory consisting in identification by MALDI-TOF and AST by Vitek 2 or Sensititre on isolated colonies. The direct MALDI-TOF method concordantly identified with the current method 97.5 % of the Gram-negative bacteria and 96.1 % of the Gram-positive cocci contained in monomicrobial blood cultures. The direct AST by PR1 and PR2 for all isolate/antimicrobial agent combinations was concordant/correct with the current method for 87.8 and 90.5 % of Gram-negative bacteria and for 93.1 and 93.8 % of Gram-positive cocci, respectively. In particular, 100 % categorical agreement was found with levofloxacin for Enterobacteriaceae by both PR1 and PR2, and 99.0 and 100 % categorical agreement was observed with linezolid for Gram-positive cocci by PR1 and PR2, respectively. There was no significant difference in accuracy between PR1 and PR2 for Gram-negative bacteria and Gram-positive cocci. This newly described method seems promising for providing accurate AST results. Most importantly, these results would be available in a few hours from blood culture positivity, which would help clinicians to promptly confirm or streamline an effective antibiotic therapy in patients with bloodstream

  18. Commensal microbes provide first line defense against Listeria monocytogenes infection

    Science.gov (United States)

    Littmann, Eric R.; Kim, Sohn G.; Morjaria, Sejal M.; Ling, Lilan; Gyaltshen, Yangtsho; Taur, Ying; Leiner, Ingrid M.

    2017-01-01

    Listeria monocytogenes is a foodborne pathogen that causes septicemia, meningitis and chorioamnionitis and is associated with high mortality. Immunocompetent humans and animals, however, can tolerate high doses of L. monocytogenes without developing systemic disease. The intestinal microbiota provides colonization resistance against many orally acquired pathogens, and antibiotic-mediated depletion of the microbiota reduces host resistance to infection. Here we show that a diverse microbiota markedly reduces Listeria monocytogenes colonization of the gut lumen and prevents systemic dissemination. Antibiotic administration to mice before low dose oral inoculation increases L. monocytogenes growth in the intestine. In immunodeficient or chemotherapy-treated mice, the intestinal microbiota provides nonredundant defense against lethal, disseminated infection. We have assembled a consortium of commensal bacteria belonging to the Clostridiales order, which exerts in vitro antilisterial activity and confers in vivo resistance upon transfer into germ free mice. Thus, we demonstrate a defensive role of the gut microbiota against Listeria monocytogenes infection and identify intestinal commensal species that, by enhancing resistance against this pathogen, represent potential probiotics. PMID:28588016

  19. Inhibition of infection and transmission of HIV-1 and lack of significant impact on the vaginal commensal lactobacilli by carbohydrate-binding agents.

    Science.gov (United States)

    Petrova, Mariya I; Mathys, Leen; Lebeer, Sarah; Noppen, Sam; Van Damme, Els J M; Tanaka, Haruo; Igarashi, Yasuhiro; Vaneechoutte, Mario; Vanderleyden, Jos; Balzarini, Jan

    2013-09-01

    A selection of carbohydrate-binding agents (CBAs) with different glycan specificities were evaluated for their inhibitory effect against HIV infection and transmission, and their interaction with vaginal commensal bacteria. Several assays were used for the antiviral evaluation: (i) cell-free virus infection of human CD4+ T lymphocyte C8166 cells; (ii) syncytium formation in co-cultures of persistently HIV-1-infected HUT-78/HIV-1 and non-infected CD4+ SupT1 cells; (iii) DC-SIGN-directed capture of HIV-1 particles; and (iv) transmission of DC-SIGN-captured HIV-1 particles to uninfected CD4+ C8166 cells. CBAs were also examined for their interaction with vaginal commensal lactobacilli using several viability, proliferation and adhesion assays. The CBAs showed efficient inhibitory activity in the nanomolar to low-micromolar range against four events that play a crucial role in HIV-1 infection and transmission: cell-free virus infection, fusion between HIV-1-infected and non-infected cells, HIV-1 capture by DC-SIGN and transmission of DC-SIGN-captured virus to T cells. As candidate microbicides should not interfere with the normal human microbiota, we examined the effect of CBAs against Lactobacillus strains, including a variety of vaginal strains, a gastrointestinal strain and several non-human isolates. None of the CBAs included in our studies inhibited the growth of these bacteria in several media, affected their viability or had any significant impact on their adhesion to HeLa cell monolayers. The CBAs in this study were inhibitory to HIV-1 in several in vitro infection and transmission models, and may therefore qualify as potential microbicide candidates. The lack of significant impact on commensal vaginal lactobacilli is an important property of these CBAs in view of their potential microbicidal use.

  20. Commensal E. coli as an Important Reservoir of Resistance Encoding Genetic Elements

    Directory of Open Access Journals (Sweden)

    Azam Mahmoudi-Aznaveh

    2013-11-01

    Full Text Available Background: Diarrheagenic E. coli is the most important cause of diarrhea in children and is a public health concern in developing countries. A major public problem is acquisition and transmission of antimicrobial resistance via mobile genetic elements including plasmids, conjugative transposons, and integrons which may occur through horizontal gene transfer. Objectives: The aim of this study was to investigate the distribution of class 1 and 2 integrons among commensal and enteropathogenic E. coli isolates and assess the role of commensal E. coli population as a reservoir in the acquisition and transmission of antimicrobial resistance. Materials and Methods: Swabs were collected directly from stool samples of the children with diarrhea admitted to three hospitals in Tehran, Iran during July 2012 through October 2012. Antimicrobial susceptibility testing and PCR analysis were performed for analysis of the resistance pattern and integron content of isolates. Results: A total of 20 enteropathogenic E.coli (identified as eae+stx1-stx2- and 20 commensal E.coli were selected for analysis. The resistance pattern in commensal and pathogenic E.coli was very similar. In both groups a high rate of resistance was seen to tetracycline, streptomycin, cotrimoxazole, nalidixic acid, and minocycline. Of 20 EPEC strains, 3 strains (15 % and 1 strain (5% had positive results for int and hep genes, respectively. Among 20 commensal, 65% (13 strains and 10% (2 strains had positive results for int and hep genes, respectively. Conclusions: The higher rate of class 1 integron occurrence among commensal population proposes the commensal intestinal organisms as a potential reservoir of mobile resistance gene elements which could transfer the resistance gene cassettes to other pathogenic and/or nonpathogenic organisms in the intestinal lumen at different occasions.

  1. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Muya Shu

    Full Text Available Bacterial interference creates an ecological competition between commensal and pathogenic bacteria. Through fermentation of milk with gut-friendly bacteria, yogurt is an excellent aid to balance the bacteriological ecosystem in the human intestine. Here, we demonstrate that fermentation of glycerol with Propionibacterium acnes (P. acnes, a skin commensal bacterium, can function as a skin probiotic for in vitro and in vivo growth suppression of USA300, the most prevalent community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA. We also promote the notion that inappropriate use of antibiotics may eliminate the skin commensals, making it more difficult to fight pathogen infection. This study warrants further investigation to better understand the role of fermentation of skin commensals in infectious disease and the importance of the human skin microbiome in skin health.

  2. Evaluation of three sample preparation methods for the direct identification of bacteria in positive blood cultures by MALDI-TOF

    OpenAIRE

    Tanner, Hannah; Evans, Jason T.; Gossain, Savita; Hussain, Abid

    2017-01-01

    Background Patient mortality is significantly reduced by rapid identification of bacteria from sterile sites. MALDI-TOF can identify bacteria directly from positive blood cultures and multiple sample preparation methods are available. We evaluated three sample preparation methods and two MALDI-TOF score cut-off values. Positive blood culture bottles with organisms present in Gram stains were prospectively analysed by MALDI-TOF. Three lysis reagents (Saponin, SDS, and SepsiTyper lysis bufer) w...

  3. Test of direct and indirect effects of agrochemicals on the survival of fecal indicator bacteria.

    Science.gov (United States)

    Staley, Zachery R; Rohr, Jason R; Harwood, Valerie J

    2011-12-01

    Water bodies often receive agrochemicals and animal waste carrying fecal indicator bacteria (FIB) and zoonotic pathogens, but we know little about the effects of agrochemicals on these microbes. We assessed the direct effects of the pesticides atrazine, malathion, and chlorothalonil and inorganic fertilizer on Escherichia coli and enterococcal survival in simplified microcosms held in the dark. E. coli strain composition in sediments and water column were positively correlated, but none of the agrochemicals had significant direct effects on E. coli strain composition or on densities of culturable FIBs. In a companion study, microcosms with nondisinfected pond water and sediments were exposed to or shielded from sunlight to examine the potential indirect effects of atrazine and inorganic fertilizer on E. coli. The herbicide atrazine had no effect on E. coli in dark-exposed microcosms containing natural microbial and algal communities. However, in light-exposed microcosms, atrazine significantly lowered E. coli densities in the water column and significantly increased densities in the sediment compared to controls. This effect appears to be mediated by the effects of atrazine on algae, given that atrazine significantly reduced phytoplankton, which was a positive and negative predictor of E. coli densities in the water column and sediment, respectively. These data suggest that atrazine does not directly affect the survival of FIB, rather that it indirectly alters the distribution and abundance of E. coli by altering phytoplankton and periphyton communities. These results improve our understanding of the influence of agricultural practices on FIB densities in water bodies impacted by agricultural runoff.

  4. Specific gut commensal flora locally alters T cell tuning to endogenous ligands.

    Science.gov (United States)

    Chappert, Pascal; Bouladoux, Nicolas; Naik, Shruti; Schwartz, Ronald H

    2013-06-27

    Differences in gut commensal flora can dramatically influence autoimmune responses, but the mechanisms behind this are still unclear. We report, in a Th1-cell-driven murine model of autoimmune arthritis, that specific gut commensals, such as segmented filamentous bacteria, have the ability to modulate the activation threshold of self-reactive T cells. In the local microenvironment of gut-associated lymphoid tissues, inflammatory cytokines elicited by the commensal flora dynamically enhanced the antigen responsiveness of T cells that were otherwise tuned down to a systemic self-antigen. Together with subtle differences in early lineage differentiation, this ultimately led to an enhanced recruitment of pathogenic Th1 cells and the development of a more severe form of autoimmune arthritis. These findings define a key role for the gut commensal flora in sustaining ongoing autoimmune responses through the local fine tuning of T-cell-receptor-proximal activation events in autoreactive T cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Under Pressure: Interactions between Commensal Microbiota and the Teleost Immune System

    Directory of Open Access Journals (Sweden)

    Cecelia Kelly

    2017-05-01

    Full Text Available Commensal microorganisms inhabit every mucosal surface of teleost fish. At these surfaces, microorganisms directly and indirectly shape the teleost immune system. This review provides a comprehensive overview of how the microbiota and microbiota-derived products influence both the mucosal and systemic immune system of fish. The cross talk between the microbiota and the teleost immune system shifts significantly under stress or disease scenarios rendering commensals into opportunists or pathogens. Lessons learnt from germ-free fish models as well as from oral administration of live probiotics to fish highlight the vast impact that microbiota have on immune development, antibody production, mucosal homeostasis, and resistance to stress. Future studies should dissect the specific mechanisms by which different members of the fish microbiota and the metabolites they produce interact with pathogens, with other commensals, and with the teleost immune system.

  6. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection

    Science.gov (United States)

    Fanning, Saranna; Hall, Lindsay J.; Cronin, Michelle; Zomer, Aldert; MacSharry, John; Goulding, David; O'Connell Motherway, Mary; Shanahan, Fergus; Nally, Kenneth; Dougan, Gordon; van Sinderen, Douwe

    2012-01-01

    Bifidobacteria comprise a significant proportion of the human gut microbiota. Several bifidobacterial strains are currently used as therapeutic interventions, claiming various health benefits by acting as probiotics. However, the precise mechanisms by which they maintain habitation within their host and consequently provide these benefits are not fully understood. Here we show that Bifidobacterium breve UCC2003 produces a cell surface-associated exopolysaccharide (EPS), the biosynthesis of which is directed by either half of a bidirectional gene cluster, thus leading to production of one of two possible EPSs. Alternate transcription of the two opposing halves of this cluster appears to be the result of promoter reorientation. Surface EPS provided stress tolerance and promoted in vivo persistence, but not initial colonization. Marked differences were observed in host immune response: strains producing surface EPS (EPS+) failed to elicit a strong immune response compared with EPS-deficient variants. Specifically, EPS production was shown to be linked to the evasion of adaptive B-cell responses. Furthermore, presence of EPS+ B. breve reduced colonization levels of the gut pathogen Citrobacter rodentium. Our data thus assigns a pivotal and beneficial role for EPS in modulating various aspects of bifidobacterial–host interaction, including the ability of commensal bacteria to remain immunologically silent and in turn provide pathogen protection. This finding enforces the probiotic concept and provides mechanistic insights into health-promoting benefits for both animal and human hosts. PMID:22308390

  7. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria.

    Science.gov (United States)

    Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-06-21

    In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.

  8. DIRECT FLOW-CYTOMETRY OF ANAEROBIC-BACTERIA IN HUMAN FECES

    NARCIS (Netherlands)

    VANDERWAAIJ, LA; MESANDER, G; LIMBURG, PC; VANDERWAAIJ, D

    1994-01-01

    We describe a flow cytometry method for analysis of noncultured anaerobic bacteria present in human fecal suspensions. Nonbacterial fecal compounds, bacterial fragments, and large aggregates could be discriminated from bacteria by staining with propidium iodide (PI) and setting a discriminator on PI

  9. [The history of commensalism: a contemporary history of microbiology].

    Science.gov (United States)

    Poreau, Brice

    2014-01-01

    Commensalism is a biological association between two species, with one species, the commensal, getting an advantage, whereas the other one, the host, gets no advantage neither disadvantage. This concept is theorized in the 1860's by Pierre-Joseph Van Beneden. Van Beneden is a physician in the 1850's, nevertheless, he is well known as a zoologist. The concept of commensalism developed by Van Beneden is employed in many scientific fields, not only in zoology, but also, in microbiology. Although the use of a possible play of the commensal bacterial microflora is exposed at the end of the 19th century, it is only during the second part of the 20th century that this way is studied. Commensalism in animal microbiology is studied first and then it is studied in human. The aim of this article is to present the history of commensalism as a main part of the history of microbiology.

  10. Direct immobilization of antibodies on Zn-doped Fe_3O_4 nanoclusters for detection of pathogenic bacteria

    International Nuclear Information System (INIS)

    Pal, Monalisa; Lee, Sanghee; Kwon, Donghoon; Hwang, Jeongin; Lee, Hyeonjeong; Hwang, Seokyung; Jeon, Sangmin

    2017-01-01

    Zinc-doped magnetic nanoclusters (Zn-MNCs) were synthesized and used to detect pathogenic bacteria in milk. Hydrothermally synthesized Zn-MNCs exhibited stronger magnetic properties than pure MNCs, which facilitated the magnetic separation from the sample using a permanent magnet. The presence of accessible Zn sites allows the direct immobilization of half-fragmented antibodies over Zn-MNCs through strong Zn−S bonds and prevents the tedious multiple steps of molecular functionalization or coating with costly noble metals prior to conjugation with an antibody. After the capture and magnetic separation of Salmonella in milk using the antibody-functionalized Zn-MNCs, the concentration of bacteria was determined with a portable ATP luminometer and the detection limit was found to be 10 CFU/mL. - Highlights: • Zn-doped Fe_3O_4 nanoclusters (Zn-MNCs) were synthesized by hydrothermal method. • Antibodies were directly immobilized over Zn-MNCs through strong Zn–S_t_h_i_o_l bonds. • Higher magnetization of Zn-MNCs than pure MNCs facilitates the magnetic separation. • Detection limit of pathogenic bacteria in milk was found to be 10 cfu/mL. • Cost effective, sensitive and selective detection of bacteria.

  11. THE STUDY OF DIRECTED FERMENTATION PROCESS USING STRAINS OF LACTIC ACID BACTERIA FOR OBTAINING VEGETABLE PRODUCTS OF STABLE QUALITY

    Directory of Open Access Journals (Sweden)

    V. V. Kondratenko

    2016-01-01

    Full Text Available The objective of the research was to study the process of directed fermentation of whitehead cabbage variety ‘Slava’, using strains of lactic acid bacteria and their consortium with the degree of their mutual influence. As strains of lactic acid bacteria, we have chosen the following: VCR 536 Lactobacillus casei, Lactobacillus plantarum VKM V-578. To obtain comparable results, all experiments were performed on model mediums. For the first time we studied the dynamics of changes in quality indicators at the process of directed fermentation using strains of lactic acid bacteria (LAB including their consortiums. The mathematical model developed adequately describes the degree of destruction of glucose and fructose in the fermentation process. The raw material was undergone to homogenization and sterilization with the aim to create optimal conditionsfor the development of the target microorganisms and to detect the degree of  restruction of fructose and glucose by different strains of microorganisms. The mathematical model developed adequately described the degree of destruction of fructose and glucose in the treatment process. The use of a consortium of lactic acid bacteria (L. plantarum+L. casei to this culture medium is shown to be impractical. The addition of fructose in quantity 0.5% to weight of the model medium enabled to intensify significantly the process of white cabbage fermentation.

  12. Antibiotic use during pregnancy alters the commensal vaginal microbiota

    DEFF Research Database (Denmark)

    Stokholm, J.; Schjørring, S.; Eskildsen, Carl Emil Aae

    2014-01-01

    Antibiotics may induce alterations in the commensal microbiota of the birth canal in pregnant women. Therefore, we studied the effect of antibiotic administration during pregnancy on commensal vaginal bacterial colonization at gestational week 36. Six hundred and sixty-eight pregnant women from...

  13. In vitro phenotypic differentiation towards commensal and pathogenic oral biofilms

    NARCIS (Netherlands)

    Janus, M.M.; Keijser, B.J.F.; Bikker, F.J.; Exterkate, R.A.M.; Crielaard, W.; Krom, B.P.

    2015-01-01

    Commensal oral biofilms, defined by the absence of pathology-related phenotypes, are ubiquitously present. In contrast to pathological biofilms commensal biofilms are rarely studied. Here, the effect of the initial inoculum and subsequent growth conditions on in vitro oral biofilms was studied.

  14. Staphylococcus warneri, a resident skin commensal of rainbow trout (Oncorhynchus mykiss) with pathobiont characteristics.

    Science.gov (United States)

    Musharrafieh, Rami; Tacchi, Luca; Trujeque, Joshua; LaPatra, Scott; Salinas, Irene

    2014-02-21

    Commensal microorganisms live in association with the mucosal surfaces of all vertebrates. The skin of teleost fish is known to harbor commensals. In this study we report for the first time the presence of an intracellular Gram positive bacteria, Staphylococcus warneri that resides in the skin epidermis of rainbow trout (Oncorhynchus mykiss). S. warneri was isolated from healthy hatchery trout skin epithelial cells. In situ hybridization confirmed the intracellular nature of the bacterium. Skin explants exposed in vitro to S. warneri or the extracellular pathogen Vibrio anguillarum show that S. warneri is able to induce an anti-inflammatory cytokine status via TGF-β1b compared to the pro-inflammatory responses (IL-1β, IL-6 and TNF-∝) elicited by V. anguillarum. In vivo experiments showed that S. warneri is not pathogenic to rainbow trout when injected intraperitoneally at high concentrations. However, S. warneri is able to stimulate V. anguillarum growth and biofilm formation on rainbow trout scales. Our results demonstrate that rainbow trout skin commensals such as S. warneri have the potential to become indirect pathobionts by enhancing growth and biofilm formation of pathogens such as V. anguillarum. These results show that fish farming practices (i.e. handling and other manipulations) can alter the skin microbiota and compromise the skin health of rainbow trout. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Earliest evidence for commensal processes of cat domestication.

    Science.gov (United States)

    Hu, Yaowu; Hu, Songmei; Wang, Weilin; Wu, Xiaohong; Marshall, Fiona B; Chen, Xianglong; Hou, Liangliang; Wang, Changsui

    2014-01-07

    Domestic cats are one of the most popular pets globally, but the process of their domestication is not well understood. Near Eastern wildcats are thought to have been attracted to food sources in early agricultural settlements, following a commensal pathway to domestication. Early evidence for close human-cat relationships comes from a wildcat interred near a human on Cyprus ca. 9,500 y ago, but the earliest domestic cats are known only from Egyptian art dating to 4,000 y ago. Evidence is lacking from the key period of cat domestication 9,500-4,000 y ago. We report on the presence of cats directly dated between 5560-5280 cal B.P. in the early agricultural village of Quanhucun in Shaanxi, China. These cats were outside the wild range of Near Eastern wildcats and biometrically smaller, but within the size-range of domestic cats. The δ(13)C and δ(15)N values of human and animal bone collagen revealed substantial consumption of millet-based foods by humans, rodents, and cats. Ceramic storage containers designed to exclude rodents indicated a threat to stored grain in Yangshao villages. Taken together, isotopic and archaeological data demonstrate that cats were advantageous for ancient farmers. Isotopic data also show that one cat ate less meat and consumed more millet-based foods than expected, indicating that it scavenged among or was fed by people. This study offers fresh perspectives on cat domestication, providing the earliest known evidence for commensal relationships between people and cats.

  16. Direct Quantification of Ice Nucleation Active Bacteria in Aerosols and Precipitation: Their Potential Contribution as Ice Nuclei

    Science.gov (United States)

    Hill, T. C.; DeMott, P. J.; Garcia, E.; Moffett, B. F.; Prenni, A. J.; Kreidenweis, S. M.; Franc, G. D.

    2013-12-01

    Ice nucleation active (INA) bacteria are a potentially prodigious source of highly active (≥-12°C) atmospheric ice nuclei, especially from agricultural land. However, we know little about the conditions that promote their release (eg, daily or seasonal cycles, precipitation, harvesting or post-harvest decay of litter) or their typical contribution to the pool of boundary layer ice nucleating particles (INP). To initiate these investigations we developed a quantitative Polymerase Chain Reaction (qPCR) test of the ina gene, the gene that codes for the ice nucleating protein, to directly count INA bacteria in environmental samples. The qPCR test amplifies most forms of the gene and is highly sensitive, able to detect perhaps a single gene copy (ie, a single bacterium) in DNA extracted from precipitation. Direct measurement of the INA bacteria is essential because environmental populations will be a mixture of living, viable-but-not culturable, moribund and dead cells, all of which may retain ice nucleating proteins. Using the qPCR test on leaf washings of plants from three farms in Wyoming, Colorado and Nebraska we found INA bacteria to be abundant on crops, especially on cereals. Mid-summer populations on wheat and barley were ~108/g fresh weigh of foliage. Broadleaf crops, such as corn, alfalfa, sugar beet and potato supported 105-107/g. Unexpectedly, however, in the absence of a significant physical disturbance, such as harvesting, we were unable to detect the ina gene in aerosols sampled above the crops. Likewise, in fresh snow samples taken over two winters, ina genes from a range of INA bacteria were detected in about half the samples but at abundances that equated to INA bacterial numbers that accounted for only a minor proportion of INP active at -10°C. By contrast, in a hail sample from a summer thunderstorm we found 0.3 INA bacteria per INP at -10°C and ~0.5 per hail stone. Although the role of the INA bacteria as warm-temperature INP in these samples

  17. A Commensal Strain of Staphylococcus epidermidis Overexpresses Membrane Proteins Associated with Pathogenesis When Grown in Biofilms.

    Science.gov (United States)

    Águila-Arcos, S; Ding, S; Aloria, K; Arizmendi, J M; Fearnley, I M; Walker, J E; Goñi, F M; Alkorta, I

    2015-06-01

    Staphylococcus epidermidis has emerged as one of the major nosocomial pathogens associated with infections of implanted medical devices. The most important factor in the pathogenesis of these infections is the formation of bacterial biofilms. Bacteria grown in biofilms are more resistant to antibiotics and to the immune defence system than planktonic bacteria. In these infections, the antimicrobial therapy usually fails and the removal of the biofilm-coated implanted device is the only effective solution. In this study, three proteomic approaches were performed to investigate membrane proteins associated to biofilm formation: (i) sample fractionation by gel electrophoresis, followed by isotopic labelling and LC-MS/MS analysis, (ii) in-solution sample preparation, followed by isotopic labelling and LC-MS/MS analysis and (iii) in-solution sample preparation and label-free LC-MS/MS analysis. We found that the commensal strain S. epidermidis CECT 231 grown in biofilms expressed higher levels of five membrane and membrane-associated proteins involved in pathogenesis: accumulation-associated protein, staphylococcal secretory antigen, signal transduction protein TRAP, ribonuclease Y and phenol soluble modulin beta 1 when compared with bacteria grown under planktonic conditions. These results indicate that a commensal strain can acquire a pathogenic phenotype depending on the mode of growth.

  18. Characterisation of Commensal Escherichia coli Isolated from Apparently Healthy Cattle and Their Attendants in Tanzania.

    Directory of Open Access Journals (Sweden)

    Balichene P Madoshi

    Full Text Available While pathogenic types of Escherichia coli are well characterized, relatively little is known about the commensal E. coli flora. In the current study, antimicrobial resistance in commensal E. coli and distribution of ERIC-PCR genotypes among isolates of such bacteria from cattle and cattle attendants on cattle farms in Tanzania were investigated. Seventeen E. coli genomes representing different ERIC-PCR types of commensal E. coli were sequenced in order to determine their possible importance as a reservoir for both antimicrobial resistance genes and virulence factors. Both human and cattle isolates were highly resistant to tetracycline (40.8% and 33.1%, sulphamethazole-trimethoprim (49.0% and 8.8% and ampicillin (44.9% and 21.3%. However, higher proportion of resistant E. coli and higher frequency of resistance to more than two antimicrobials was found in isolates from cattle attendants than isolates from cattle. Sixteen out of 66 ERIC-PCR genotypes were shared between the two hosts, and among these ones, seven types contained isolates from cattle and cattle attendants from the same farm, suggesting transfer of strains between hosts. Genome-wide analysis showed that the majority of the sequenced cattle isolates were assigned to phylogroups B1, while human isolates represented phylogroups A, C, D and E. In general, in silico resistome and virulence factor identification did not reveal differences between hosts or phylogroups, except for lpfA and iss found to be cattle and B1 phylogroup specific. The most frequent plasmids replicon genes found in strains from both hosts were of IncF type, which are commonly associated with carriage of antimicrobial and virulence genes. Commensal E. coli from cattle and attendants were found to share same genotypes and to carry antimicrobial resistance and virulence genes associated with both intra and extraintestinal E. coli pathotypes.

  19. Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Science.gov (United States)

    Rodrigo-Navarro, Aleixandre; Rico, Patricia; Saadeddin, Anas; Garcia, Andres J.; Salmeron-Sanchez, Manuel

    2014-07-01

    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications.

  20. Direct quantitation of fatty acids present in bacteria and fungi: stability of the cyclopropane ring to chlorotrimethylsilane.

    Science.gov (United States)

    Eras, Jordi; Oró, Robert; Torres, Mercè; Canela, Ramon

    2008-07-09

    The stability of the cyclopropane ring and the fatty acid composition of microbial cells were determined using chlorotrimethylsilane as reagent with three different conditions 80 degrees C for 1 h, 60 degrees C for 1 h, and 60 degrees C for 2 h. Chlorotrimethylsilane permits a simultaneous extraction and derivatization of fatty acids. A basic method was used as reference. The bacteria, Escherichia coli, Burkholderia cepacia, and Lactobacillus brevis, and fungi Aspergillus niger and Gibberella fujikuroi were used. The stability of the cyclopropane ring on acidic conditions was tested using the cyclopropanecarboxylic acid and a commercial mixture of bacteria fatty acid methyl esters (BAME). Fisher's least significant difference test showed significant differences among the methods. The method using chlorotrimethylsilane and 1-pentanol for 1 h at 80 degrees C gave the best results in cyclopropane, hydroxyl, and total fatty acid recoveries. This procedure allows the fast and easy one-step direct extraction derivatization.

  1. Evaluation of three sample preparation methods for the direct identification of bacteria in positive blood cultures by MALDI-TOF.

    Science.gov (United States)

    Tanner, Hannah; Evans, Jason T; Gossain, Savita; Hussain, Abid

    2017-01-18

    Patient mortality is significantly reduced by rapid identification of bacteria from sterile sites. MALDI-TOF can identify bacteria directly from positive blood cultures and multiple sample preparation methods are available. We evaluated three sample preparation methods and two MALDI-TOF score cut-off values. Positive blood culture bottles with organisms present in Gram stains were prospectively analysed by MALDI-TOF. Three lysis reagents (Saponin, SDS, and SepsiTyper lysis bufer) were applied to each positive culture followed by centrifugation, washing and protein extraction steps. Methods were compared using the McNemar test and 16S rDNA sequencing was used to assess discordant results. In 144 monomicrobial cultures, using ≥2.000 as the cut-off value, species level identifications were obtained from 69/144 (48%) samples using Saponin, 86/144 (60%) using SDS, and 91/144 (63%) using SepsiTyper. The difference between SDS and SepsiTyper was not statistically significant (P = 0.228). Differences between Saponin and the other two reagents were significant (P direct MALDI-TOF identification were observed in monomicrobial cultures. In 32 polymicrobial cultures, MALDI-TOF identified one organism in 34-75% of samples depending on the method. This study demonstrates two inexpensive in-house detergent lysis methods are non-inferior to a commercial kit for analysis of positive blood cultures by direct MALDI-TOF in a clinical diagnostic microbiology laboratory.

  2. A short review of fecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions.

    Science.gov (United States)

    Rochelle-Newall, Emma; Nguyen, Thi Mai Huong; Le, Thi Phuong Quynh; Sengtaheuanghoung, Oloth; Ribolzi, Olivier

    2015-01-01

    Given the high numbers of deaths and the debilitating nature of diseases caused by the use of unclean water it is imperative that we have an understanding of the factors that control the dispersion of water borne pathogens and their respective indicators. This is all the more important in developing countries where significant proportions of the population often have little or no access to clean drinking water supplies. Moreover, and notwithstanding the importance of these bacteria in terms of public health, at present little work exists on the persistence, transfer and proliferation of these pathogens and their respective indicator organisms, e.g., fecal indicator bacteria (FIB) such as Escherichia coli and fecal coliforms in humid tropical systems, such as are found in South East Asia or in the tropical regions of Africa. Both FIB and the waterborne pathogens they are supposed to indicate are particularly susceptible to shifts in water flow and quality and the predicted increases in rainfall and floods due to climate change will only exacerbate the problems of contamination. This will be furthermore compounded by the increasing urbanization and agricultural intensification that developing regions are experiencing. Therefore, recognizing and understanding the link between human activities, natural process and microbial functioning and their ultimate impacts on human health are prerequisites for reducing the risks to the exposed populations. Most of the existing work in tropical systems has been based on the application of temperate indicator organisms, models and mechanisms regardless of their applicability or appropriateness for tropical environments. Here, we present a short review on the factors that control FIB dynamics in temperate systems and discuss their applicability to tropical environments. We then highlight some of the knowledge gaps in order to stimulate future research in this field in the tropics.

  3. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, Christel, E-mail: christel.kampman@wur.nl [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Hendrickx, Tim L.G. [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M. [Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A new concept for low-temperature anaerobic sewage treatment is proposed. Black-Right-Pointing-Pointer In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. Black-Right-Pointing-Pointer The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. Black-Right-Pointing-Pointer The volumetric consumption rate has to be increased by an order of magnitude for practical application. Black-Right-Pointing-Pointer Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO{sub 2}{sup -}-N/L d (using synthetic medium) and 37.8 mg NO{sub 2}{sup -}-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass

  4. A short review of fecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions

    Directory of Open Access Journals (Sweden)

    Emma Jane Rochelle-Newall

    2015-04-01

    Full Text Available Given the high numbers of deaths and the debilitating nature of diseases caused by the use of unclean water it is imperative that we have an understanding of the factors that control the dispersion of water borne pathogens and their respective indicators. This is all the more important in developing countries where significant proportions of the population often have little or no access to clean drinking water supplies. Moreover, and notwithstanding the importance of these bacteria in terms of public health, at present little work exists on the persistence, transfer and proliferation of these pathogens and their respective indicator organisms e.g. fecal indicator bacteria (FIB such as Escherichia coli and fecal coliforms in humid tropical systems, such as are found in South East Asia or in the tropical regions of Africa. Both FIB and the waterborne pathogens they are supposed to indicate are particularly susceptible to shifts in water flow and quality and the predicted increases in rainfall and floods due to climate change will only exacerbate the problems of contamination. This will be furthermore compounded by the increasing urbanization and agricultural intensification that developing regions are experiencing. Therefore, recognizing and understanding the link between human activities, natural process and microbial functioning and their ultimate impacts on human health are prerequisites for reducing the risks to the exposed populations. Most of the existing work in tropical systems has been based on the application of temperate indicator organisms, models and mechanisms regardless of their applicability or appropriateness for tropical environments. Here we present a short review on the factors that control FIB dynamics in temperate systems and discuss their applicability to tropical environments. We then highlight some of the knowledge gaps in order to stimulate future research in this field in the tropics.

  5. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    International Nuclear Information System (INIS)

    Kampman, Christel; Hendrickx, Tim L.G.; Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M.; Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy

    2012-01-01

    Highlights: ► A new concept for low-temperature anaerobic sewage treatment is proposed. ► In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. ► The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. ► The volumetric consumption rate has to be increased by an order of magnitude for practical application. ► Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to ‘Candidatus Methylomirabilis oxyfera’ were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO 2 − -N/L d (using synthetic medium) and 37.8 mg NO 2 − -N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention.

  6. Stress Physiology of Lactic Acid Bacteria

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie

    2016-01-01

    SUMMARY Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  7. In silico dissection of Type VII Secretion System components across bacteria: New directions towards functional characterization.

    Science.gov (United States)

    Das, Chandrani; Ghosh, Tarini Shankar; Mande, Sharmila S

    2016-03-01

    Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacterium tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information is required to obtain a global view of diverse characteristics and pathogenicity-related aspects of this machinery. The present study suggests that differences in structural components (of T7SS) between Actinobacteria and Firmicutes, observed earlier in a few organisms, is indeed a global trend. A few hitherto uncharacterized T7SS-like clusters have been identified in the pathogenic bacteria Enterococcus faecalis, Saccharomonospora viridis, Streptococcus equi, Streptococcus gordonii and Streptococcus sanguinis. Experimental verification of these clusters can shed lights on their role in bacterial pathogenesis. Similarly, verification of the identified variants of T7SS clusters consisting additional membrane components may help in unraveling new mechanism of protein translocation through T7SS. A database of various components of T7SS has been developed to facilitate easy access and interpretation of T7SS related data.

  8. An In Vitro Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from Salmonella to Commensal Escherichia coli.

    Science.gov (United States)

    Card, Roderick M; Cawthraw, Shaun A; Nunez-Garcia, Javier; Ellis, Richard J; Kay, Gemma; Pallen, Mark J; Woodward, Martin J; Anjum, Muna F

    2017-07-18

    The chicken gastrointestinal tract is richly populated by commensal bacteria that fulfill various beneficial roles for the host, including helping to resist colonization by pathogens. It can also facilitate the conjugative transfer of multidrug resistance (MDR) plasmids between commensal and pathogenic bacteria which is a significant public and animal health concern as it may affect our ability to treat bacterial infections. We used an in vitro chemostat system to approximate the chicken cecal microbiota, simulate colonization by an MDR Salmonella pathogen, and examine the dynamics of transfer of its MDR plasmid harboring several genes, including the extended-spectrum beta-lactamase bla CTX-M1 We also evaluated the impact of cefotaxime administration on plasmid transfer and microbial diversity. Bacterial community profiles obtained by culture-independent methods showed that Salmonella inoculation resulted in no significant changes to bacterial community alpha diversity and beta diversity, whereas administration of cefotaxime caused significant alterations to both measures of diversity, which largely recovered. MDR plasmid transfer from Salmonella to commensal Escherichia coli was demonstrated by PCR and whole-genome sequencing of isolates purified from agar plates containing cefotaxime. Transfer occurred to seven E. coli sequence types at high rates, even in the absence of cefotaxime, with resistant strains isolated within 3 days. Our chemostat system provides a good representation of bacterial interactions, including antibiotic resistance transfer in vivo It can be used as an ethical and relatively inexpensive approach to model dissemination of antibiotic resistance within the gut of any animal or human and refine interventions that mitigate its spread before employing in vivo studies. IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections

  9. "Salvage microbiology": detection of bacteria directly from clinical specimens following initiation of antimicrobial treatment.

    Directory of Open Access Journals (Sweden)

    John J Farrell

    Full Text Available PCR coupled with electrospray ionization mass spectrometry (ESI-MS is a diagnostic approach that has demonstrated the capacity to detect pathogenic organisms from culture negative clinical samples after antibiotic treatment has been initiated. [1] We describe the application of PCR/ESI-MS for detection of bacteria in original patient specimens that were obtained after administration of antibiotic treatment in an open investigation analysis.We prospectively identified cases of suspected bacterial infection in which cultures were not obtained until after the initiation of antimicrobial treatment. PCR/ESI-MS was performed on 76 clinical specimens that were submitted for conventional microbiology testing from 47 patients receiving antimicrobial treatment.In our series, 72% (55/76 of cultures obtained following initiation of antimicrobial treatment were non-diagnostic (45 negative cultures; and 10 respiratory specimens with normal flora (5, yeast (4, or coagulase-negative staphylococcus (1. PCR/ESR-MS detected organisms in 83% (39/47 of cases and 76% (58/76 of the specimens. Bacterial pathogens were detected by PCR/ESI-MS in 60% (27/45 of the specimens in which cultures were negative. Notably, in two cases of relapse of prosthetic knee infections in patients on chronic suppressive antibiotics, the previous organism was not recovered in tissue cultures taken during extraction of the infected knee prostheses, but was detected by PCR/ESI-MS.Molecular methods that rely on nucleic acid amplification may offer a unique advantage in the detection of pathogens collected after initiation of antimicrobial treatment and may provide an opportunity to target antimicrobial therapy and "salvage" both individual treatment regimens as well as, in select cases, institutional antimicrobial stewardship efforts.

  10. Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms.

    Science.gov (United States)

    Zeng, Lin; Farivar, Tanaz; Burne, Robert A

    2016-06-15

    Biochemical and genetic aspects of the metabolism of the amino sugars N-acetylglucosamine (GlcNAc) and glucosamine (GlcN) by commensal oral streptococci and the effects of these sugars on interspecies competition with the dental caries pathogen Streptococcus mutans were explored. Multiple S. mutans wild-type isolates displayed long lag phases when transferred from glucose-containing medium to medium with GlcNAc as the primary carbohydrate source, but commensal streptococci did not. Competition in liquid coculture or dual-species biofilms between S. mutans and Streptococcus gordonii showed that S. gordonii was particularly dominant when the primary carbohydrate was GlcN or GlcNAc. Transcriptional and enzymatic assays showed that the catabolic pathway for GlcNAc was less highly induced in S. mutans than in S. gordonii Exposure to H2O2, which is produced by S. gordonii and antagonizes the growth of S. mutans, led to reduced mRNA levels of nagA and nagB in S. mutans When the gene for the transcriptional regulatory NagR was deleted in S. gordonii, the strain produced constitutively high levels of nagA (GlcNAc-6-P deacetylase), nagB (GlcN-6-P deaminase), and glmS (GlcN-6-P synthase) mRNA. Similar to NagR of S. mutans (NagRSm), the S. gordonii NagR protein (NagRSg) could bind to consensus binding sites (dre) in the nagA, nagB, and glmS promoter regions of S. gordonii Notably, NagRSg binding was inhibited by GlcN-6-P, but G-6-P had no effect, unlike for NagRSm This study expands the understanding of amino sugar metabolism and NagR-dependent gene regulation in streptococci and highlights the potential for therapeutic applications of amino sugars to prevent dental caries. Amino sugars are abundant in the biosphere, so the relative efficiency of particular bacteria in a given microbiota to metabolize these sources of carbon and nitrogen might have a profound impact on the ecology of the community. Our investigation reveals that several oral commensal bacteria have a much

  11. Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust storm regions

    Science.gov (United States)

    Gonzalez-Martin, Cristina; Teigell-Perez, Nuria; Lyles, Mark; Valladares, Basilio; Griffin, Dale W.

    2013-01-01

    Topsoil from arid regions is the main source of dust clouds that move through the earth's atmosphere, and microbial communities within these soils can survive long-range dispersion. Microbial abundance and chemical composition were analyzed in topsoil from various desert regions. Statistical analyses showed that microbial direct counts were strongly positively correlated with calcium concentrations and negatively correlated with silicon concentrations. While variance between deserts was expected, it was interesting to note differences between sample sites within a given desert region, illustrating the 'patchy' nature of microbial communities in desert environments.

  12. Phenotypic responses to interspecies competition and commensalism in a naturally-derived microbial co-culture

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nymul; Maezato, Yukari; McClure, Ryan S.; Brislawn, Colin J.; Mobberley, Jennifer M.; Isern, Nancy; Chrisler, William B.; Markillie, Lye Meng; Barney, Brett M.; Song, Hyun-Seob; Nelson, William C.; Bernstein, Hans C.

    2018-01-10

    The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized – and confirmed – that co-cultivation under glucose as the sole carbon source would result in a competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.

  13. Model systems to analyze the role of miRNAs and commensal microflora in bovine mucosal immune system development.

    Science.gov (United States)

    Liang, Guanxiang; Malmuthuge, Nilusha; Guan, Le Luo; Griebel, Philip

    2015-07-01

    Information is rapidly accumulating regarding the role of miRNAs as key regulators of immune system development and function. It is also increasingly evident that miRNAs play an important role in host-pathogen interactions through regulation of both innate and acquired immune responses. Little is known, however, about the specific role of miRNAs in regulating normal development of the mucosal immune system, especially during the neonatal period. Furthermore, there is limited knowledge regarding the possible role the commensal microbiome may play in regulating mucosal miRNAs expression, although evidence is emerging that a variety of enteric pathogens influence miRNA expression. The current review focuses on recent information that miRNAs play an important role in regulating early development of the bovine mucosal immune system. A possible role for the commensal microbiome in regulating mucosal development by altering miRNA expression is also discussed. Finally, we explore the potential advantages of using the newborn calf as a model to determine how interactions between developmental programming, maternal factors in colostrum, and colonization of the gastrointestinal tract by commensal bacteria may alter mucosal miRNA expression and immune development. Identifying the key factors that regulate mucosal miRNA expression is critical for understanding how the balance between protective immunity and inflammation is maintained to ensure optimal gastrointestinal tract function and health of the whole organism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Epigenetic Mechanisms Regulate Innate Immunity against Uropathogenic and Commensal-Like Escherichia coli in the Surrogate Insect Model Galleria mellonella.

    Science.gov (United States)

    Heitmueller, Miriam; Billion, André; Dobrindt, Ulrich; Vilcinskas, Andreas; Mukherjee, Krishnendu

    2017-10-01

    Innate-immunity-related genes in humans are activated during urinary tract infections (UTIs) caused by pathogenic strains of Escherichia coli but are suppressed by commensals. Epigenetic mechanisms play a pivotal role in the regulation of gene expression in response to environmental stimuli. To determine whether epigenetic mechanisms can explain the different behaviors of pathogenic and commensal bacteria, we infected larvae of the greater wax moth, Galleria mellonella , a widely used model insect host, with a uropathogenic E. coli (UPEC) strain that causes symptomatic UTIs in humans or a commensal-like strain that causes asymptomatic bacteriuria (ABU). Infection with the UPEC strain (CFT073) was more lethal to larvae than infection with the attenuated ABU strain (83972) due to the recognition of each strain by different Toll-like receptors, ultimately leading to differential DNA/RNA methylation and histone acetylation. We used next-generation sequencing and reverse transcription (RT)-PCR to correlate epigenetic changes with the induction of innate-immunity-related genes. Transcriptomic analysis of G. mellonella larvae infected with E. coli strains CFT073 and 83972 revealed strain-specific variations in the class and expression levels of genes encoding antimicrobial peptides, cytokines, and enzymes controlling DNA methylation and histone acetylation. Our results provide evidence for the differential epigenetic regulation of transcriptional reprogramming by UPEC and ABU strains of E. coli in G. mellonella larvae, which may be relevant to understanding the different behaviors of these bacterial strains in the human urinary tract. Copyright © 2017 American Society for Microbiology.

  15. The role of anaerobic bacteria in the cystic fibrosis airway.

    Science.gov (United States)

    Sherrard, Laura J; Bell, Scott C; Tunney, Michael M

    2016-11-01

    Anaerobic bacteria are not only normal commensals, but are also considered opportunistic pathogens and have been identified as persistent members of the lower airway community in people with cystic fibrosis of all ages and stages of disease. Currently, the role of anaerobic bacteria in cystic fibrosis lower airway disease is not well understood. Therefore, this review describes the recent studies relating to the potential pathophysiological role(s) of anaerobes within the cystic fibrosis lungs. The most frequently identified anaerobic bacteria in the lower airways are common to both cystic fibrosis and healthy lungs. Studies have shown that in cystic fibrosis, the relative abundance of anaerobes fluctuates in the lower airways with reduced lung function and increased inflammation associated with a decreased anaerobic load. However, anaerobes found within the lower airways also produce virulence factors, may cause a host inflammatory response and interact synergistically with recognized pathogens. Anaerobic bacteria are potentially members of the airway microbiota in health but could also contribute to the pathogenesis of lower airway disease in cystic fibrosis via both direct and indirect mechanisms. A personalized treatment strategy that maintains a normal microbial community may be possible in the future.

  16. The C-type lectin receptor SIGNR3 binds to fungi present in commensal microbiota and influences immune regulation in experimental colitis

    Directory of Open Access Journals (Sweden)

    Magdalena eEriksson

    2013-07-01

    Full Text Available Inflammatory bowel disease is a condition of acute and chronic inflammation of the gut. An important factor contributing to pathogenesis is a dysregulated mucosal immunity against commensal bacteria and fungi. Host pattern recognition receptors sense commensals in the gut and are involved in maintaining the balance between controlled responses to pathogens and overwhelming innate immune activation. C-type lectin receptors (CLRs are pattern recognition receptors recognizing glycan structures on pathogens and self-antigens. Here we examined the role of the murine CLR SIGNR3 in the recognition of commensals and its involvement in intestinal immunity. SIGNR3 is the closest murine homologue of the human DC-SIGN receptor recognizing similar carbohydrate ligands such as terminal fucose or high-mannose glycans. We discovered that SIGNR3 recognizes fungi present in the commensal microbiota. To analyze if this interaction impacts the intestinal immunity against microbiota, the dextran sulfate sodium (DSS-induced colitis model was employed. SIGNR3-/- mice exhibited an increased weight loss associated with more severe colitis symptoms compared to wild-type control mice. The increased inflammation in SIGNR3-/- mice was accompanied by a higher level of TNF-α in colon. Our findings demonstrate for the first time that SIGNR3 recognizes intestinal fungi and has an immune regulatory role in colitis.

  17. Isolation and Characterization of Surface and Subsurface Bacteria in Seawater of Mantanani Island, Kota Belud, Sabah by Direct and Enrichment Techniques

    International Nuclear Information System (INIS)

    Benard, L D; Tuah, P M; Suadin, E G; Jamian, N

    2015-01-01

    The distribution of hydrocarbon-utilizing bacterial may vary between surface and subsurface of the seawater. One of the identified contributors is the Total Petroleum Hydrocarbon. The isolation and characterization of bacteria using Direct and Enrichment techniques helps in identifying dominant bacterial populations in seawater of Mantanani Island, Kota Belud, Sabah, potential of further investigation as hydrocarbon degrader. Crude oil (5% v/v) was added as the carbon source for bacteria in Enrichment technique. For surface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 2.60 × 10 7 CFU/mL and 3.84 × 10 6 CFU/mL respectively. Meanwhile, for subsurface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 5.21 × 10 6 CFU/mL and 8.99 × 10 7 CFU/mL respectively. Dominant species in surface seawater were characterized as Marinobacter hydrocarbonoclasticus-RMSF-C1 and RMSF-C2 and Alcanivorax borkumensis-RMSF-C3, RMSF-C4 and RMSF-C5. As for subsurface seawater, dominant species were characterized as Pseudomonas luteola-SSBR-W1, Burkholderia cepacia-SSBR-C1, Rhizobium radiobacter- SSBR-C3 and Leuconostoc-cremois -SSBR-C4. (paper)

  18. Direct regulatory immune activity of lactic acid bacteria on Der p 1-pulsed dendritic cells from allergic patients.

    Science.gov (United States)

    Pochard, Pierre; Hammad, Hamida; Ratajczak, Céline; Charbonnier-Hatzfeld, Anne-Sophie; Just, Nicolas; Tonnel, André-Bernard; Pestel, Joël

    2005-07-01

    Lactic acid bacteria (LAB) are suggested to play a regulatory role in the development of allergic reactions. However, their potential effects on dendritic cells (DCs) directing the immune polarization remain unclear. The immunologic effect of Lactobacillus plantarum NCIMB 8826 (LAB1) on monocyte-derived dendritic cells (MD-DCs) from patients allergic to house dust mite was evaluated. MD-DCs were stimulated for 24 hours with the related allergen Der p 1 in the presence or absence of LAB1. Cell-surface markers were assessed by means of FACS analysis, and the key polarizing cytokines IL-12 and IL-10 were quantified. The subsequent regulatory effect of pulsed MD-DCs on naive or memory T cells was evaluated by determining the T-cell cytokine profile. LAB1 induced the maturation of MD-DCs, even if pulsed with Der p 1. Interestingly, after incubation with LAB1 and Der p 1, MD-DCs produced higher amounts of IL-12 than Der p 1-pulsed DCs. Indeed, the T H 2 cytokine (IL-4 and IL-5) production observed when naive or memory autologous T cells were cocultured with Der p 1-pulsed MD-DCs was highly reduced in the presence of LAB1. Finally, in contrast to naive or memory T cells exposed once to Der p 1-pulsed DCs, T cells stimulated by MD-DCs pulsed with Der p 1 and LAB1 failed to produce T H 2 cytokines in response to a new stimulation with Der p 1-pulsed DCs. Thus in the presence of LAB1, MD-DCs from allergic patients tend to reorientate the T-cell response toward a beneficial T H 1 profile.

  19. Serotonin disturbs colon epithelial tolerance of commensal E. coli by increasing NOX2-derived superoxide.

    Science.gov (United States)

    Banskota, Suhrid; Regmi, Sushil Chandra; Gautam, Jaya; Gurung, Pallavi; Lee, Yu-Jeong; Ku, Sae Kwang; Lee, Jin-Hyung; Lee, Jintae; Chang, Hyeun Wook; Park, Sang Joon; Kim, Jung-Ae

    2017-05-01

    Adherent-invasive E. coli colonization and Toll-like receptor (TLR) expression are increased in the gut of inflammatory bowel disease (IBD) patients. However, the underlying mechanism of such changes has not been determined. In the current study, it was examined whether gut serotonin (5-hydroxytryptamine, 5-HT) can induce adherent-invasive E. coli colonization and increase TLR expression. In a co-culture system, commensal E. coli strain (BW25113, BW) adhered minimally to colon epithelial cells, but this was significantly enhanced by 5-HT to the level of a pathogenic strain (EDL933). Without inducing bacterial virulence, such as, biofilm formation, 5-HT enhanced BW-induced signaling in colon epithelial cells, that is, NADPH oxidase (NOX)-dependent superoxide production, the up-regulations of IL-8, TLR2, TLR4, and ICAM-1, and the down-regulations of E-cadherin and claudin-2. In a manner commensurate with these gene modulations, BW induced an increase in NF-κB and a decrease in GATA reporter signals in colon epithelial cells. However, 5-HT-enhanced BW adhesion and colon epithelial responses were blocked by knock-down of NOX2, TLR2, or TLR4. In normal mice, 5-HT induced the invasion of BW into gut submucosa, and the observed molecular changes were similar to those observed in vitro, except for significant increases in TNFα and IL-1β, and resulted in death. In dextran sulfate sodium-induced colitis mice (an IBD disease model), in which colonic 5-HT levels were markedly elevated, BW administration induced death in along with large amount of BW invasion into colon submucosa, and time to death was negatively related to the amount of BW injected. Taken together, our results demonstrate that 5-HT induces the invasion of commensal E. coli into gut submucosa by amplifying commensal bacteria-induced epithelial signaling (superoxide production and the inductions of NOX2 and TLR2/TLR4). The authors suggest that these changes may constitute the molecular basis for the

  20. Direct immobilization of antibodies on Zn-doped Fe{sub 3}O{sub 4} nanoclusters for detection of pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Monalisa; Lee, Sanghee; Kwon, Donghoon; Hwang, Jeongin; Lee, Hyeonjeong; Hwang, Seokyung; Jeon, Sangmin, E-mail: jeons@postech.ac.kr

    2017-02-01

    Zinc-doped magnetic nanoclusters (Zn-MNCs) were synthesized and used to detect pathogenic bacteria in milk. Hydrothermally synthesized Zn-MNCs exhibited stronger magnetic properties than pure MNCs, which facilitated the magnetic separation from the sample using a permanent magnet. The presence of accessible Zn sites allows the direct immobilization of half-fragmented antibodies over Zn-MNCs through strong Zn−S bonds and prevents the tedious multiple steps of molecular functionalization or coating with costly noble metals prior to conjugation with an antibody. After the capture and magnetic separation of Salmonella in milk using the antibody-functionalized Zn-MNCs, the concentration of bacteria was determined with a portable ATP luminometer and the detection limit was found to be 10 CFU/mL. - Highlights: • Zn-doped Fe{sub 3}O{sub 4} nanoclusters (Zn-MNCs) were synthesized by hydrothermal method. • Antibodies were directly immobilized over Zn-MNCs through strong Zn–S{sub thiol} bonds. • Higher magnetization of Zn-MNCs than pure MNCs facilitates the magnetic separation. • Detection limit of pathogenic bacteria in milk was found to be 10 cfu/mL. • Cost effective, sensitive and selective detection of bacteria.

  1. D-Alanine-Controlled Transient Intestinal Mono-Colonization with Non-Laboratory-Adapted Commensal E. coli Strain HS.

    Science.gov (United States)

    Cuenca, Miguelangel; Pfister, Simona P; Buschor, Stefanie; Bayramova, Firuza; Hernandez, Sara B; Cava, Felipe; Kuru, Erkin; Van Nieuwenhze, Michael S; Brun, Yves V; Coelho, Fernanda M; Hapfelmeier, Siegfried

    2016-01-01

    Soon after birth the mammalian gut microbiota forms a permanent and collectively highly resilient consortium. There is currently no robust method for re-deriving an already microbially colonized individual again-germ-free. We previously developed the in vivo growth-incompetent E. coli K-12 strain HA107 that is auxotrophic for the peptidoglycan components D-alanine (D-Ala) and meso-diaminopimelic acid (Dap) and can be used to transiently associate germ-free animals with live bacteria, without permanent loss of germ-free status. Here we describe the translation of this experimental model from the laboratory-adapted E. coli K-12 prototype to the better gut-adapted commensal strain E. coli HS. In this genetic background it was necessary to complete the D-Ala auxotrophy phenotype by additional knockout of the hypothetical third alanine racemase metC. Cells of the resulting fully auxotrophic strain assembled a peptidoglycan cell wall of normal composition, as long as provided with D-Ala and Dap in the medium, but could not proliferate a single time after D-Ala/Dap removal. Yet, unsupplemented bacteria remained active and were able to complete their cell cycle with fully sustained motility until immediately before autolytic death. Also in vivo, the transiently colonizing bacteria retained their ability to stimulate a live-bacteria-specific intestinal Immunoglobulin (Ig)A response. Full D-Ala auxotrophy enabled rapid recovery to again-germ-free status. E. coli HS has emerged from human studies and genomic analyses as a paradigm of benign intestinal commensal E. coli strains. Its reversibly colonizing derivative may provide a versatile research tool for mucosal bacterial conditioning or compound delivery without permanent colonization.

  2. MALDI-TOF identification of Gram-negative bacteria directly from blood culture bottles containing charcoal: Sepsityper® kits versus centrifugation-filtration method.

    Science.gov (United States)

    Riederer, Kathleen; Cruz, Kristian; Shemes, Stephen; Szpunar, Susan; Fishbain, Joel T

    2015-06-01

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry has dramatically altered the way microbiology laboratories identify clinical isolates. Direct blood culture (BC) detection may be hampered, however, by the presence of charcoal in BC bottles currently in clinical use. This study evaluates an in-house process for extraction and MALDI-TOF identification of Gram-negative bacteria directly from BC bottles containing charcoal. Three hundred BC aliquots were extracted by a centrifugation-filtration method developed in our research laboratory with the first 96 samples processed in parallel using Sepsityper® kits. Controls were colonies from solid media with standard phenotypic and MALDI-TOF identification. The identification of Gram-negative bacteria was successful more often via the in-house method compared to Sepsityper® kits (94.7% versus 78.1%, P≤0.0001). Our in-house centrifugation-filtration method was further validated for isolation and identification of Gram-negative bacteria (95%; n=300) directly from BC bottles containing charcoal. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor

    Science.gov (United States)

    Chai, Yating; Wikle, Howard C.; Wang, Zhenyu; Horikawa, Shin; Best, Steve; Cheng, Zhongyang; Dyer, Dave F.; Chin, Bryan A.

    2013-09-01

    The real-time, in-situ bacteria detection on food surfaces was achieved by using a magnetoelastic biosensor combined with a surface-scanning coil detector. This paper focuses on the coil design for signal optimization. The coil was used to excite the sensor's vibration and detect its resonant frequency signal. The vibrating sensor creates a magnetic flux change around the coil, which then produces a mutual inductance. In order to enhance the signal amplitude, a theory of the sensor's mutual inductance with the measurement coil is proposed. Both theoretical calculations and experimental data showed that the working length of the coil has a significant effect on the signal amplitude. For a 1 mm-long sensor, a coil with a working length of 1.3 mm showed the best signal amplitude. The real-time detection of Salmonella bacteria on a fresh food surface was demonstrated using this new technology.

  4. The common vaginal commensal bacterium Ureaplasma parvum is associated with chorioamnionitis in extreme preterm labor.

    Science.gov (United States)

    Cox, Ciara; Saxena, Nita; Watt, Alison P; Gannon, Caroline; McKenna, James P; Fairley, Derek J; Sweet, David; Shields, Michael D; L Cosby, Sara; Coyle, Peter V

    2016-11-01

    To assess the association of vaginal commensal and low-grade pathogenic bacteria including Ureaplasma parvum, Ureaplasma urealyticum, Mycoplasma hominis, Mycoplasma genitalium, Group B streptococcus (GBS), and Gardnerella vaginalis, in women who delivered preterm at less than 37-week gestation in the presence or absence of inflammation of the chorioamnionitic membranes. A case control study involving women who delivered before 37-week gestation with and without inflammation of chorioamnionitic membranes. A total of 57 placental samples were histologically examined for polymorphonuclear leukocyte infiltration of placental tissue for evidence of chorioamnionitis, and by type-specific nucleic acid amplification for evidence of infection with one or more of the target bacteria. Demographic data were collected for each mother. Among the 57 placental samples, 42.1% had chorioamnionitis and 24.6% delivered in the second trimester of pregnancy; U. parvum, U. urealyticum, G. vaginalis, and GBS were all detected in the study with respective prevalence of 19.3%, 3.5%, 17.5%, and 15.8%; M. genitalium and M. hominis were not detected. U. parvum was significantly associated with chorioamnionitis (p = 0.02; OR 5.0; (95% CI 1.2-21.5) and was more common in women who delivered in the second (35.7%) compared to the third trimester of pregnancy (13.9%). None of the other bacteria were associated with chorioamnionitis or earlier delivery, and all G. vaginalis-positive women delivered in the third trimester of pregnancy (p = 0.04). The detection of U. parvum in placental tissue was significantly associated with acute chorioamnionitis in women presenting in extreme preterm labor.

  5. Characterization of Cefotaxime- and Ciprofloxacin-Resistant Commensal Escherichia coli Originating from Belgian Farm Animals Indicates High Antibiotic Resistance Transfer Rates.

    Science.gov (United States)

    Lambrecht, Ellen; Van Meervenne, Eva; Boon, Nico; Van de Wiele, Tom; Wattiau, Pierre; Herman, Lieve; Heyndrickx, Marc; Van Coillie, Els

    2017-11-17

    Food-producing animals represent one of the sources of antibiotic resistant commensal bacteria. There is an increasing awareness that these bacteria might have the potential to transfer their resistance genes to other (pathogenic) bacteria. In this study, 50 commensal Escherichia coli strains originating from food-producing animals and resistant to the "highest priority, critically important antibiotics" cefotaxime and/or ciprofloxacin, were selected for further characterization. For each strain (i) an antibiogram, (ii) the phylogenetic group, (iii) plasmid replicon type, (iv) presence and identification of integrons, and (v) antibiotic resistance transfer ratios were determined. Forty-five of these strains were resistant to 5 or more antibiotics, and 6 strains were resistant to 10 or more antibiotics. Resistance was most common to ampicillin (100%), sulfamethoxazole, ciprofloxacin (82%), trimethoprim, tetracycline (74%), cefotaxime, (70%) and ceftazidime (62%). Phylogenetic groups A (62%) and B1 (26%) were most common, followed by C (8%) and E (4%). In 43 strains, more than 1 replicon type was detected, with FII (88%), FIB (70%), and I1 (48%) being the most encountered types. Forty strains, positive for integrons, all harbored a class I integron and seven of them contained an additional class II integron. No class III integrons were detected. The antibiotic resistance transfer was assessed by liquid mating experiments. The transfer ratio, expressed as the number of transconjugants per recipient, was between 10 -5 and 10 0 for cefotaxime resistance and between 10 -7 and 10 -1 for ciprofloxacin resistance. The results of the current study prove that commensal E. coli in food-production animals can be a source of multiple resistance genes and that these bacteria can easily spread their ciprofloxacin and cefotaxime resistance.

  6. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  7. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease.

    Science.gov (United States)

    Bloom, Seth M; Bijanki, Vinieth N; Nava, Gerardo M; Sun, Lulu; Malvin, Nicole P; Donermeyer, David L; Dunne, W Michael; Allen, Paul M; Stappenbeck, Thaddeus S

    2011-05-19

    The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here, we fulfilled Koch's postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively reisolated them in culture. The bacteria colonized IBD-susceptible and -nonsusceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease, but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease

    Science.gov (United States)

    Bloom, Seth M.; Bijanki, Vinieth N.; Nava, Gerardo M.; Sun, Lulu; Malvin, Nicole P.; Donermeyer, David L.; Dunne, W. Michael; Allen, Paul M.; Stappenbeck, Thaddeus S.

    2011-01-01

    SUMMARY The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here we fulfilled Koch’s postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively re-isolated them in culture. The bacteria colonized IBD-susceptible and non-susceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. PMID:21575910

  9. Complete Genome Sequence of the Commensal Enterococcus faecalis 62, Isolated from a Healthy Norwegian Infant

    DEFF Research Database (Denmark)

    Brede, Dag Anders; Snipen, Lars Gustav; Ussery, David

    2011-01-01

    The genome of Enterococcus faecalis 62, a commensal isolate from a healthy Norwegian infant, revealed multiple adaptive traits to the gastrointestinal tract (GIT) environment and the milk-containing diet of breast-fed infants. Adaptation to a commensal existence was emphasized by lactose and other...

  10. Direct identification of bacteria in blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new methodological approach.

    Science.gov (United States)

    Kroumova, Vesselina; Gobbato, Elisa; Basso, Elisa; Mucedola, Luca; Giani, Tommaso; Fortina, Giacomo

    2011-08-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has recently been demonstrated to be a powerful tool for the rapid identification of bacteria from growing colonies. In order to speed up the identification of bacteria, several authors have evaluated the usefulness of this MALDI-TOF MS technology for the direct and quick identification bacteria from positive blood cultures. The results obtained so far have been encouraging but have also shown some limitations, mainly related to the bacterial growth and to the presence of interference substances belonging to the blood cultures. In this paper, we present a new methodological approach that we have developed to overcome these limitations, based mainly on an enrichment of the sample into a growing medium before the extraction process, prior to mass spectrometric analysis. The proposed method shows important advantages for the identification of bacterial strains, yielding an increased identification score, which gives higher confidence in the results. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter

    Science.gov (United States)

    Wasyl, Dariusz; Hoszowski, Andrzej; Zając, Magdalena; Szulowski, Krzysztof

    2013-01-01

    Monitoring of antimicrobial resistance in commensal Escherichia coli (N = 3430) isolated from slaughtered broilers, laying hens, turkeys, swine, and cattle in Poland has been run between 2009 and 2012. Based on minimal inhibitory concentration (MIC) microbiological resistance to each of 14 tested antimicrobials was found reaching the highest values for tetracycline (43.3%), ampicillin (42.3%), and ciprofloxacin (39.0%) whereas the lowest for colistin (0.9%), cephalosporins (3.6 ÷ 3.8%), and florfenicol (3.8%). The highest prevalence of resistance was noted in broiler and turkey isolates, whereas it was rare in cattle. That finding along with resistance patterns specific to isolation source might reflect antimicrobial consumption, usage preferences or management practices in specific animals. Regression analysis has identified changes in prevalence of microbiological resistance and shifts of MIC values. Critically important fluoroquinolone resistance was worrisome in poultry isolates, but did not change over the study period. The difference (4.7%) between resistance to ciprofloxacin and nalidixic acid indicated the scale of plasmid-mediated quinolone resistance. Cephalosporin resistance were found in less than 3.8% of the isolates but an increasing trends were observed in poultry and MIC shift in the ones from cattle. Gentamycin resistance was also increasing in E. coli of turkey and cattle origin although prevalence of streptomycin resistance in laying hens decreased considerably. Simultaneously, decreasing MIC for phenicols observed in cattle and layers isolates as well as tetracycline values in E. coli from laying hens prove that antimicrobial resistance is multivariable phenomenon not only directly related to antimicrobial usage. Further studies should elucidate the scope of commensal E. coli as reservoirs of resistance genes, their spread and possible threats for human and animal health. PMID:23935596

  12. Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter

    Directory of Open Access Journals (Sweden)

    Dariusz eWasyl

    2013-08-01

    Full Text Available Monitoring of antimicrobial resistance in commensal Escherichia coli (N = 3430 isolated from slaughtered broilers, laying hens, turkeys, swine, and cattle in Poland has been run between 2009 and 2012. Based on minimal inhibitory concentration (MIC microbiological resistance to each of 14 tested antimicrobials was found reaching the highest values for tetracycline (43.3%, ampicillin (42.3%, and ciprofloxacin (39.0% whereas the lowest for colistin (0.9%, cephalosporins (3.6 ÷ 3.8%, and florfenicol (3.8%. The highest prevalence of resistance was noted in broiler and turkey isolates, whereas it was rare in cattle. That finding along with resistance patterns specific to isolation source might reflect antimicrobial consumption, usage preferences or management practices in specific animals. Regression analysis has identified changes in prevalence of microbiological resistance and shifts of MIC values. Critically important fluoroquinolone resistance was worrisome in poultry isolates, but did not change over the study period. The difference (4.7% between resistance to ciprofloxacin and nalidixic acid indicated the scale of plasmid-mediated quinolone resistance. Cephalosporin resistance were found in less than 3.8% of the isolates but an increasing trends were observed in poultry and MIC shift in the ones from cattle. Gentamycin resistance was also increasing in E. coli of turkey and cattle origin although prevalence of streptomycin resistance in laying hens decreased considerably. Simultaneously, decreasing MIC for phenicols observed in cattle and layers isolates as well as tetracycline values in E. coli from laying hens prove that antimicrobial resistance is multivariable phenomenon not only directly related to antimicrobial usage. Further studies should elucidate the scope of commensal E. coli as reservoirs of resistance genes, their spread and possible threats for human and animal health.

  13. Utilization of Mucus from the Coral Acropora palmata by the Pathogen Serratia marcescens and by Environmental and Coral Commensal Bacteria▿ †

    Science.gov (United States)

    Krediet, Cory J.; Ritchie, Kim B.; Cohen, Matthew; Lipp, Erin K.; Sutherland, Kathryn Patterson; Teplitski, Max

    2009-01-01

    In recent years, diseases of corals caused by opportunistic pathogens have become widespread. How opportunistic pathogens establish on coral surfaces, interact with native microbiota, and cause disease is not yet clear. This study compared the utilization of coral mucus by coral-associated commensal bacteria (“Photobacterium mandapamensis” and Halomonas meridiana) and by opportunistic Serratia marcescens pathogens. S. marcescens PDL100 (a pathogen associated with white pox disease of Acroporid corals) grew to higher population densities on components of mucus from the host coral. In an in vitro coculture on mucus from Acropora palmata, S. marcescens PDL100 isolates outgrew coral isolates. The white pox pathogen did not differ from other bacteria in growth on mucus from a nonhost coral, Montastraea faveolata. The ability of S. marcescens to cause disease in acroporid corals may be due, at least in part, to the ability of strain PDL100 to build to higher population numbers within the mucus surface layer of its acroporid host. During growth on mucus from A. palmata, similar glycosidase activities were present in coral commensal bacteria, in S. marcescens PDL100, and in environmental and human isolates of S. marcescens. The temporal regulation of these activities during growth on mucus, however, was distinct in the isolates. During early stages of growth on mucus, enzymatic activities in S. marcescens PDL100 were most similar to those in coral commensals. After overnight incubation on mucus, enzymatic activities in a white pox pathogen were most similar to those in pathogenic Serratia strains isolated from human mucosal surfaces. PMID:19395569

  14. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases

    Czech Academy of Sciences Publication Activity Database

    Tlaskalová, Helena; Štěpánková, Renata; Hudcovic, Tomáš; Tučková, Ludmila; Cukrowska, B.; Lodinová-Žádníková, R.; Kozáková, Hana; Rossmann, Pavel; Bártová, J.; Sokol, Dan

    2004-01-01

    Roč. 93, - (2004), s. 97-108 ISSN 0165-2478 R&D Projects: GA ČR GA310/01/0933; GA ČR GA310/02/1470; GA AV ČR IAA5020101; GA AV ČR IAA5020205; GA AV ČR IAA5020210; GA AV ČR IBS5020203; GA MZd NK6742; GA MZd NI7525 Institutional research plan: CEZ:AV0Z5020903 Keywords : mucosal microbiota * intestina barrier * germ-free animal Subject RIV: EE - Microbiology, Virology Impact factor: 2.136, year: 2004

  15. Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment | Poster

    Science.gov (United States)

    Noriho Iida, Amiran Dzutsev, C. Andrew Stewart, Loretta Smith, Nicolas Bouladoux, Rebecca A. Weingarten, Daniel A. Molina, Rosalba Salcedo, Timothy Back, Sarah Cramer, Ren-Ming Dai, Hiu Kiu, Marco Cardone, Shruti Naik, Anil K. Patri, Ena Wang, Francesco M. Marincola, Karen M. Frank, Yasmine Belkaid, Giorgio Trinchieri, Romina S. Goldszmid Science 342(6161):967-970, 2013

  16. Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia

    Directory of Open Access Journals (Sweden)

    Céline Pomié

    2016-06-01

    Full Text Available Objective: To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. Methods: We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naïve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. Results: Subcutaneous injection (immunization procedure of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. Conclusions: Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet. Keywords: Gut microbiota and metabolic diseases, Immunity, Insulin resistance

  17. Mites (acari) infesting commensal rats in Suez Canal zone, Egypt.

    Science.gov (United States)

    el Kady, G A; Shoukry, A; Ragheb, D A; el Said, A M; Habib, K S; Morsy, T A

    1995-08-01

    Mites are arthropods distinguished from ticks by usually being microscopical in size and have a hypostome unarmed with tooth-like anchoring processes. They are group in a number of suborders, each with super-families and families including many genera of medical and economic importance. In this paper, commensal rodents (Rattus norvegicus, R. r. alexandrinus and R. r. frugivorous) were surveyed in the Suez Canal Zone for their acari ectoparasites. Four species of mites were recovered. In a descending order of mite indices, they were Eulaelaps stabularis (4.83 on 6 rats), Laelaps nuttalli (3.11 on 27 rats), Ornithonyssus bacoti (1.66 on 9 rats) and Dermanyssus gallinae (0.66 on 24 rats). The overall mite indices in the three governorates were 3.66 in Suez, 2.82 in Ismailia and zero in Port Said. The medical and economic importance of the mites were discussed.

  18. Appraisal of Microbial Evolution to Commensalism and Pathogenicity in Humans

    Directory of Open Access Journals (Sweden)

    Asit Ranjan Ghosh

    2013-01-01

    Full Text Available The human body is host to a number of microbes occurring in various forms of host-microbe associations, such as commensals, mutualists, pathogens and opportunistic symbionts. While this association with microbes in certain cases is beneficial to the host, in many other cases it seems to offer no evident benefit or motive. The emergence and re-emergence of newer varieties of infectious diseases with causative agents being strains that were once living in the human system makes it necessary to study the environment and the dynamics under which this host microbe relationship thrives. The present discussion examines this interaction while tracing the origins of this association, and attempts to hypothesize a possible framework of selective pressures that could have lead microbes to inhabit mammalian host systems.

  19. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria.

    Directory of Open Access Journals (Sweden)

    Kyler B Pallister

    Full Text Available In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis.

  20. Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria

    DEFF Research Database (Denmark)

    Zeuthen, Louise Hjerrild; Christensen, Hanne Risager; Frøkiær, Hanne

    2006-01-01

    The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G+) organisms, are plausible significant players and have received much attention. Gram-negative (G-) commensals, such as members...

  1. The Clinical Impact of Rapid, Direct MALDI-ToF Identification of Bacteria from Positive Blood Cultures.

    Science.gov (United States)

    French, Kathryn; Evans, Jason; Tanner, Hannah; Gossain, Savita; Hussain, Abid

    2016-01-01

    Faster identification of bacterial isolates from blood cultures can enable earlier clinical intervention for patients with sepsis. We evaluated the clinical impact of direct identification of micro-organisms from positive blood cultures using MALDI-ToF. Positive blood cultures with organisms seen on Gram stain were included over a four week period. For each patient case, comparison was made between the clinical advice given on day one with only a Gram stain result, and the follow up advice given on day two with the benefit of organism identification. Culture results were then compared with direct MALDI-ToF identification. For 73 of 115 cases (63.5%), direct organism identification was obtained by MALDI-ToF. Of those 73, 70 (95.5%) had a result concordant with that of the plate culture. In 28 of the 115 cases (24.3%) direct MALDI-ToF identification on day one would have had a clear clinical benefit. In 11 cases it would have helped to identify the potential source of bacteraemia. In 11 cases it would have indicated a different antibiotic regimen on day one, with five patients receiving appropriate antibiotics 24 hours earlier. For 14 cases the blood culture isolate could have been designated as unlikely to be clinically significant. We have demonstrated that organism identification on day one of blood culture positivity can have a direct clinical impact. Faster identification using MALDI-ToF assists the clinician in assessing the significance of a blood culture isolate on day one. It can allow earlier appropriate choice of antimicrobial agent, even in the absence of susceptibility testing, and help narrow down the potential source of infection providing a focus for further investigation in a more timely way than conventional techniques alone.

  2. The Clinical Impact of Rapid, Direct MALDI-ToF Identification of Bacteria from Positive Blood Cultures.

    Directory of Open Access Journals (Sweden)

    Kathryn French

    Full Text Available Faster identification of bacterial isolates from blood cultures can enable earlier clinical intervention for patients with sepsis. We evaluated the clinical impact of direct identification of micro-organisms from positive blood cultures using MALDI-ToF.Positive blood cultures with organisms seen on Gram stain were included over a four week period. For each patient case, comparison was made between the clinical advice given on day one with only a Gram stain result, and the follow up advice given on day two with the benefit of organism identification. Culture results were then compared with direct MALDI-ToF identification.For 73 of 115 cases (63.5%, direct organism identification was obtained by MALDI-ToF. Of those 73, 70 (95.5% had a result concordant with that of the plate culture. In 28 of the 115 cases (24.3% direct MALDI-ToF identification on day one would have had a clear clinical benefit. In 11 cases it would have helped to identify the potential source of bacteraemia. In 11 cases it would have indicated a different antibiotic regimen on day one, with five patients receiving appropriate antibiotics 24 hours earlier. For 14 cases the blood culture isolate could have been designated as unlikely to be clinically significant.We have demonstrated that organism identification on day one of blood culture positivity can have a direct clinical impact. Faster identification using MALDI-ToF assists the clinician in assessing the significance of a blood culture isolate on day one. It can allow earlier appropriate choice of antimicrobial agent, even in the absence of susceptibility testing, and help narrow down the potential source of infection providing a focus for further investigation in a more timely way than conventional techniques alone.

  3. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Bernard La Scola

    Full Text Available BACKGROUND: With long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate. METHODOLOGY/PRINCIPAL FINDINGS: We prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66% were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%. CONCLUSIONS/SIGNIFICANCE: MALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture

  4. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry.

    Science.gov (United States)

    La Scola, Bernard; Raoult, Didier

    2009-11-25

    With long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate. We prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66%) were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%. MALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture broths growing viridans streptococci is obtained in the near future.

  5. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    Science.gov (United States)

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.

  6. Antimicrobial resistance prevalence of pathogenic and commensal Escherichia coli in food-producing animals in Belgium

    OpenAIRE

    Chantziaras, Ilias; Dewulf, Jeroen; Boyen, Filip; Callens, Benedicte; Butaye, Patrick

    2014-01-01

    In this article, detailed studies on antimicrobial resistance to commensal E. coli (in pigs, meat-producing bovines, broiler chickens and veal calves) and pathogenic E. coli (in pigs and bovines) in Belgium are presented for 2011. Broiler chicken and veal calf isolates of commensal E. coli demonstrated higher antimicrobial resistance prevalence than isolates from pigs and bovines. Fifty percent of E. coli isolates from broiler chickens were resistant to at least five antimicrobials, whereas s...

  7. Research Note. Occurrence of gastrointestinal helminths in commensal rodents from Tabasco, Mexico

    OpenAIRE

    Cigarroa-Toledo N.; Santos-Martinez Y. De Los; Zaragoza-Vera C. V.; Garcia-Rodriguez M. M.; Baak-Baak C. M.; Machain-Williams C.; Garcia-Rejon J. E.; Panti-May J. A.; Torres-Chable O. M.

    2017-01-01

    The aim of this study was to determine the prevalence and species composition of helminths in commensal rodents captured inside private residences in the city of Villahermosa in Tabasco, Mexico. Trapping was performed at each house for three consecutive nights from October to December 2015. Fifty commensal rodents were captured: 23 Rattus norvegicus, 16 Mus musculus and 11 Rattus rattus. Rodents were transported alive to the laboratory and held in cages until they defecated. Feces were analyz...

  8. Draft genome sequences of two commensal Enterococcus cecorum strains isolated from chickens in Belgium

    DEFF Research Database (Denmark)

    Dolka, Beata; Boyen, Filip; Butaye, Patrick

    2015-01-01

    Here, we report the draft genome sequences of two commensal Enterococcus cecorum strains (1710s23 and 1711s24), cultivated from the ceca of healthy laying hens originating from different farms in Belgium.......Here, we report the draft genome sequences of two commensal Enterococcus cecorum strains (1710s23 and 1711s24), cultivated from the ceca of healthy laying hens originating from different farms in Belgium....

  9. ALFABURST: a commensal search for fast radio bursts with Arecibo

    Science.gov (United States)

    Foster, Griffin; Karastergiou, Aris; Golpayegani, Golnoosh; Surnis, Mayuresh; Lorimer, Duncan R.; Chennamangalam, Jayanth; McLaughlin, Maura; Armour, Wes; Cobb, Jeff; MacMahon, David H. E.; Pei, Xin; Rajwade, Kaustubh; Siemion, Andrew P. V.; Werthimer, Dan; Williams, Chris J.

    2018-03-01

    ALFABURST has been searching for fast radio bursts (FRBs) commensally with other projects using the Arecibo L-band Feed Array receiver at the Arecibo Observatory since 2015 July. We describe the observing system and report on the non-detection of any FRBs from that time until 2017 August for a total observing time of 518 h. With current FRB rate models, along with measurements of telescope sensitivity and beam size, we estimate that this survey probed redshifts out to about 3.4 with an effective survey volume of around 600 000 Mpc3. Based on this, we would expect, at the 99 per cent confidence level, to see at most two FRBs. We discuss the implications of this non-detection in the context of results from other telescopes and the limitation of our search pipeline. During the survey, single pulses from 17 known pulsars were detected. We also report the discovery of a Galactic radio transient with a pulse width of 3 ms and dispersion measure of 281 pc cm-3, which was detected while the telescope was slewing between fields.

  10. The Performance of the Four Anaerobic Blood Culture Bottles BacT/ALERT-FN, -FN Plus, BACTEC-Plus and -Lytic in Detection of Anaerobic Bacteria and Identification by Direct MALDI-TOF MS.

    Science.gov (United States)

    Almuhayawi, Mohammed; Altun, Osman; Abdulmajeed, Adam Dilshad; Ullberg, Måns; Özenci, Volkan

    2015-01-01

    Detection and identification of anaerobic bacteria in blood cultures (BC) is a well-recognized challenge in clinical microbiology. We studied 100 clinical anaerobic BC isolates to evaluate the performance of BacT/ALERT-FN, -FN Plus (BioMérieux), BACTEC-Plus and -Lytic (Becton Dickinson BioSciences) BC bottles in detection and time to detection (TTD) of anaerobic bacteria. BACTEC Lytic had higher detection rate (94/100, 94%) than BacT/ALERT FN Plus (80/100, 80%) (panaerobic bacteria among the remaining bottle types. The 67 anaerobic bacteria that signalled positive in all four bottle types were analyzed to compare the time to detection (TTD) and isolates were directly identified by MALDI-TOF MS. There was a significant difference in TTD among the four bottle types (panaerobic BC bottles are equally suitable for direct MALDI-TOF MS for rapid and reliable identification of common anaerobic bacteria. Further clinical studies are warranted to investigate the performance of anaerobic BC bottles in detection of anaerobic bacteria and identification by direct MALDI-TOF MS.

  11. Propionibacterium acnes in shoulder surgery: true infection, contamination, or commensal of the deep tissue?

    Science.gov (United States)

    Hudek, Robert; Sommer, Frank; Kerwat, Martina; Abdelkawi, Ayman F; Loos, Franziska; Gohlke, Frank

    2014-12-01

    Propionibacterium acnes has been linked to chronic infections in shoulder surgery. Whether the bacterium is a contaminant or commensal of the deep tissue is unclear. We aimed to assess P. acnes in intraoperative samples of different tissue layers in patients undergoing first-time shoulder surgery. In 118 consecutive patients (mean age, 59.2 years; 75 men, 43 women), intraoperative samples were correlated to preoperative subacromial injection, the type of surgical approach, and gender. One skin, one superficial, one deep tissue, and one test sample were cultured for each patient. The cultures were positive for P. acnes in 36.4% (n = 43) of cases. Subacromial injection was not associated with bacterial growth rates (P = .88 for P. acnes; P = .20 for bacteria other than P. acnes; P = .85 for the anterolateral approach; P = .92 for the deltopectoral approach; P = .56 for men; P = .51 for women). Skin samples were positive for P. acnes in 8.5% (n = 10), superficial samples were positive in 7.6% (n = 9), deep samples were positive in 13.6% (n = 16), and both samples (superficial and deep) were positive in 15.3% (n = 18) of cases (P shoulder surgery. Preoperative subacromial injection was not associated with bacterial growth. P. acnes was observed more frequently in the deep tissues than in the superficial tissues. The relative risk for obtaining a positive P. acnes culture was 2-fold greater for the anterolateral approach than for the deltopectoral approach, and the risk was 2.5-fold greater for men. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp.

    Directory of Open Access Journals (Sweden)

    Kaisa Hiippala

    2016-10-01

    Full Text Available Sutterella species have been frequently associated with human diseases, such as autism, Down syndrome and inflammatory bowel disease (IBD, but the impact of these bacteria on health still remains unclear. Especially the interactions of Sutterella spp. with the host are largely unknown, despite of the species being highly prevalent. In this study, we addressed the interaction of three known species of Sutterella with the intestinal epithelium and examined their adhesion properties, the effect on intestinal barrier function and the pro-inflammatory capacity in vitro. We also studied the relative abundance and prevalence of the genus Sutterella and S. wadsworthensis in intestinal biopsies of healthy individuals and patients with celiac disease (CeD or IBD. Our results show that Sutterella spp. are abundant in the duodenum of healthy adults with a decreasing gradient towards the colon. No difference was detected in the prevalence of Sutterella between the pediatric IBD or CeD patients and the healthy controls. Sutterella parvirubra adhered better than the two other Sutterella spp. to differentiated Caco-2 cells and was capable of decreasing the adherence of S. wadsworthensis, which preferably bound to mucus and human extracellular matrix (ECM proteins. Furthermore, only S. wadsworthensis induced an interleukin-8 (IL-8 production in enterocytes, which could be due to different lipopolysaccharide (LPS structures between the species. However, its pro-inflammatory activity was modest as compared to non-pathogenic Escherichia coli. Sutterella spp. had no effect on the enterocyte monolayer integrity in vitro. Our findings indicate that the members of genus Sutterella are widely prevalent commensals with mild pro-inflammatory capacity in the human gastrointestinal tract and do not contribute significantly to the disrupted epithelial homeostasis associated with microbiota dysbiosis and increase of Proteobacteria. The ability of Sutterella spp. to adhere to

  13. Comparative Proteomics Reveals Differences in Host-Pathogen Interaction between Infectious and Commensal Relationship with Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Juan J. Garrido

    2017-04-01

    Full Text Available Campylobacter jejuni is the leading food-borne poisoning in industrialized countries. While the bacteria causes disease in humans, it merely colonizes the gut in poultry or pigs, where seems to establish a commensal relationship. Until now, few studies have been conducted to elucidate the relationship between C. jejuni and its different hosts. In this work, a comparative proteomics approach was used to identify the underlying mechanisms involved in the divergent outcome following C. jejuni infection in human and porcine host. Human (INT-407 and porcine (IPEC-1 intestinal cell lines were infected by C. jejuni for 3 h (T3h and 24 h (T24h. C. jejuni infection prompted an intense inflammatory response at T3h in human intestinal cells, mainly characterized by expression of proteins involved in cell spreading, cell migration and promotion of reactive oxygen species (ROS. Proteomic analysis evidenced significantly regulated biofunctions in human cells related with engulfment and endocytosis, and supported by canonical pathways associated to infection such as caveolar- and clathrin-mediated endocytosis signaling. In porcine IPEC-1 cells, inflammatory response as well as signaling pathways that control cellular functions such as cell migration, endocytosis and cell cycle progression resulted downregulated. These differences in the host response to infection were supported by the different pattern of adhesion and invasion proteins expressed by C. jejuni in human and porcine cells. No marked differences in expression of virulence factors involved in adaptive response and iron acquisition functions were observed. Therefore, the results of this study suggest that both host and pathogen factors are responsible for commensal or infectious character of C. jejuni in different hosts.

  14. Symbiotic and antibiotic interactions between gut commensal microbiota and host immune system

    Directory of Open Access Journals (Sweden)

    Mantas Kazimieras Malys

    2015-01-01

    Full Text Available The human gut commensal microbiota forms a complex population of microorganisms that survive by maintaining a symbiotic relationship with the host. Amongst the metabolic benefits it brings, formation of adaptive immune system and maintenance of its homeostasis are functions that play an important role. This review discusses the integral elements of commensal microbiota that stimulate responses of different parts of the immune system and lead to health or disease. It aims to establish conditions and factors that contribute to gut commensal microbiota's transformation from symbiotic to antibiotic relationship with human. We suggest that the host-microbiota relationship has been evolved to benefit both parties and any changes that may lead to disease, are not due to unfriendly properties of the gut microbiota but due to host genetics or environmental changes such as diet or infection.

  15. Parasites and commensals of the West Indian manatee from Puerto Rico

    Science.gov (United States)

    Mignucci-Giannoni, A. A.; Beck, C.A.; Montoya-Ospina, R. A.; Williams, E.H.

    1999-01-01

    Metazoan parasites and commensals were collected from dead manatees salvaged in Puerto Rico. Thirty-five manatees were examined between 1980 and 1998. Parasites and commensals were identified in 20 (57%) manatees and included 3 species of helminths, 1 nematode (Heterocheilus tunicatus) and 2 digeneans (Chiorchis fabaceus and Cochleotrema cochleotrema). Two species of commensals were also associated with manatees: a barnacle (Chelonibia manati) and a fish (whitefin remora, Echeneis neucratoides). The 3 species of helminths found in manatees constitute the first records of these parasite-host relationships for the study area. The record of C. manati is the first for the Caribbean, and thus the species is not endemic to the Gulf of Mexico as previously described. The speculation that West Indian manatees closer to the center of their geographic distribution would have a greater diversity of parasites was found not true for these insular specimens but perhaps could be true for continental South American specimens.

  16. The Performance of the Four Anaerobic Blood Culture Bottles BacT/ALERT-FN, -FN Plus, BACTEC-Plus and -Lytic in Detection of Anaerobic Bacteria and Identification by Direct MALDI-TOF MS.

    Directory of Open Access Journals (Sweden)

    Mohammed Almuhayawi

    Full Text Available Detection and identification of anaerobic bacteria in blood cultures (BC is a well-recognized challenge in clinical microbiology. We studied 100 clinical anaerobic BC isolates to evaluate the performance of BacT/ALERT-FN, -FN Plus (BioMérieux, BACTEC-Plus and -Lytic (Becton Dickinson BioSciences BC bottles in detection and time to detection (TTD of anaerobic bacteria. BACTEC Lytic had higher detection rate (94/100, 94% than BacT/ALERT FN Plus (80/100, 80% (p<0.01 in the studied material. There was no significant difference in detection of anaerobic bacteria among the remaining bottle types. The 67 anaerobic bacteria that signalled positive in all four bottle types were analyzed to compare the time to detection (TTD and isolates were directly identified by MALDI-TOF MS. There was a significant difference in TTD among the four bottle types (p<0.0001. The shortest median TTD was 18 h in BACTEC Lytic followed by BacT/ALERT FN (23.5 h, BACTEC Plus (27 h and finally BacT/ALERT FN Plus (38 h bottles. In contrast, MALDI-TOF MS performed similarly in all bottle types with accurate identification in 51/67 (76% BacT/ALERT FN, 51/67 (76% BacT/ALERT FN Plus, 53/67 (79% BACTEC Plus and 50/67 (75% BACTEC Lytic bottles. In conclusion, BACTEC Lytic bottles have significantly better detection rates and shorter TTD compared to the three other bottle types. The anaerobic BC bottles are equally suitable for direct MALDI-TOF MS for rapid and reliable identification of common anaerobic bacteria. Further clinical studies are warranted to investigate the performance of anaerobic BC bottles in detection of anaerobic bacteria and identification by direct MALDI-TOF MS.

  17. Antibiotic Resistance in an Indian Rural Community: A ‘One-Health’ Observational Study on Commensal Coliform from Humans, Animals, and Water

    Science.gov (United States)

    Purohit, Manju Raj; Chandran, Salesh; Shah, Harshada; Diwan, Vishal; Tamhankar, Ashok J.; Stålsby Lundborg, Cecilia

    2017-01-01

    Antibiotic-resistant bacteria are an escalating grim menace to global public health. Our aim is to phenotype and genotype antibiotic-resistant commensal Escherichia coli (E. coli) from humans, animals, and water from the same community with a ‘one-health’ approach. The samples were collected from a village belonging to demographic surveillance site of Ruxmaniben Deepchand (R.D.) Gardi Medical College Ujjain, Central India. Commensal coliforms from stool samples from children aged 1–3 years and their environment (animals, drinking water from children's households, common source- and waste-water) were studied for antibiotic susceptibility and plasmid-encoded resistance genes. E. coli isolates from human (n = 127), animal (n = 21), waste- (n = 12), source- (n = 10), and household drinking water (n = 122) carried 70%, 29%, 41%, 30%, and 30% multi-drug resistance, respectively. Extended spectrum beta-lactamase (ESBL) producers were 57% in human and 23% in environmental isolates. Co-resistance was frequent in penicillin, cephalosporin, and quinolone. Antibiotic-resistance genes blaCTX-M-9 and qnrS were most frequent. Group D-type isolates with resistance genes were mainly from humans and wastewater. Colistin resistance, or the mcr-1 gene, was not detected. The frequency of resistance, co-resistance, and resistant genes are high and similar in coliforms from humans and their environment. This emphasizes the need to mitigate antibiotic resistance with a ‘one-health’ approach. PMID:28383517

  18. Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction

    Directory of Open Access Journals (Sweden)

    Hildegunn eIversen

    2015-02-01

    Full Text Available Enterohemorrhagic E. coli (EHEC is a food-borne pathogen that causes disease ranging from uncomplicated diarrhea to life-threatening hemolytic uremic syndrome (HUS and nervous system complications. Shiga toxin 2 (Stx2 is the major virulence factor of EHEC and is critical for development of HUS. The genes encoding Stx2 are carried by lambdoid bacteriophages and the toxin production is tightly linked to the production of phages during lytic cycle. It has previously been suggested that commensal E. coli could amplify the production of Stx2-phages and contribute to the severity of disease. In this study we examined the susceptibility of commensal E. coli strains to the Stx2-converting phage ϕ734, isolated from a highly virulent EHEC O103:H25 (NIPH-11060424. Among 38 commensal E. coli strains from healthy children below five years, 15 were lysogenized by the ϕ734 phage, whereas lytic infection was not observed. Three of the commensal E. coli ϕ734 lysogens were tested for stability, and appeared stable and retained the phage for at least 10 cultural passages. When induced to enter lytic cycle by H2O2 treatment, 8 out of 13 commensal lysogens produced more ϕ734 phages than NIPH-11060424. Strikingly, five of them even spontaneously (non-induced produced higher levels of phage than the H2O2 induced NIPH-11060424. An especially high frequency of HUS (60% was seen among children infected by NIPH-11060424 during the outbreak in 2006. Based on our findings, a high Stx2 production by commensal E. coli lysogens cannot be ruled out as a contributor to the high frequency of HUS during this outbreak.

  19. Multidrug resistant commensal Escherichia coli in animals and its impact for public health

    Directory of Open Access Journals (Sweden)

    Ama eSzmolka

    2013-09-01

    Full Text Available After the era of plentiful antibiotics we are alarmed by the increasing number of antibiotic resistant strains. The genetic flexibility and adaptability of E. coli to constantly changing environments allows to acquire a great number of antimicrobial resistance mechanisms. Commensal strains of E. coli as versatile residents of the lower intestine are also repeatedly challenged by antimicrobial pressures during the lifetime of their host. As a consequence, commensal strains acquire the respective resistance genes, and/or develop resistant mutants in order to survive and maintain microbial homeostasis in the lower intestinal tract. Thus, commensal E. coli strains are regarded as indicators of antimicrobial load on their hosts. This chapter provides a short historic background of the appearance and presumed origin and transfer of antimicrobial resistance genes in commensal intestinal E. coli of animals with comparative information on their pathogenic counterparts. The dynamics, development and ways of evolution of resistance in the E. coli populations differ according to hosts, resistance mechanisms and antimicrobial classes used. The most frequent tools of E. coli against a variety of antimicrobials are the efflux pumps and mobile resistance mechanisms carried by plasmids and/or other transferable elements. The emergence of hybrid plasmids (both resistance and virulence among E. coli is of further concern. Co-existence and co-transfer of these bad genes in this huge and most versatile in vivo compartment may represent an increased public health risk in the future. Significance of multidrug resistant (MDR commensal E. coli seem to be highest in the food animal industry, acting as reservoir for intra- and interspecific exchange and a source for spread of MDR determinants through contaminated food to humans. Thus, public health potential of MDR commensal E. coli of food animals can be a concern and needs monitoring and more molecular analysis in the

  20. Behavior of 11 Foodborne Bacteria on Whole and Cut Mangoes var. Ataulfo and Kent and Antibacterial Activities of Hibiscus sabdariffa Extracts and Chemical Sanitizers Directly onto Mangoes Contaminated with Foodborne Bacteria.

    Science.gov (United States)

    Rangel-Vargas, Esmeralda; Luna-Rojo, Anais M; Cadena-Ramírez, Arturo; Torres-Vitela, Refugio; Gómez-Aldapa, Carlos A; Villarruel-López, Angélica; Téllez-Jurado, Alejandro; Villagómez-Ibarra, José R; Reynoso-Camacho, Rosalía; Castro-Rosas, Javier

    2018-05-01

    The behavior of foodborne bacteria on whole and cut mangoes and the antibacterial effect of Hibiscus sabdariffa calyx extracts and chemical sanitizers against foodborne bacteria on contaminated mangoes were investigated. Mangoes var. Ataulfo and Kent were used in the study. Mangoes were inoculated with Listeria monocytogenes, Shigella flexneri, Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Escherichia coli strains (O157:H7, non-O157:H7 Shiga toxin-producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative). The antibacterial effect of five roselle calyx extracts (water, ethanol, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria were evaluated on contaminated mangoes. The dry extracts obtained with ethanol, methanol, acetone, and ethyl acetate were analyzed by nuclear magnetic resonance spectroscopy to determine solvent residues. Separately, contaminated whole mangoes were immersed in five hibiscus extracts and in sanitizers for 5 min. All foodborne bacteria attached to mangoes. After 20 days at 25 ± 2°C, all foodborne bacterial strains on whole Ataulfo mangoes had decreased by approximately 2.5 log, and on Kent mangoes by approximately 2 log; at 3 ± 2°C, they had decreased to approximately 1.9 and 1.5 log, respectively, on Ataulfo and Kent. All foodborne bacterial strains grew on cut mangoes at 25 ± 2°C; however, at 3 ± 2°C, bacterial growth was inhibited. Residual solvents were not detected in any of the dry extracts by nuclear magnetic resonance. Acetonic, ethanolic, and methanolic roselle calyx extracts caused a greater reduction in concentration (2 to 2.6 log CFU/g) of all foodborne bacteria on contaminated whole mangoes than the sodium hypochlorite, colloidal silver, and acetic acid. Dry roselle calyx extracts may be a potentially useful addition to disinfection procedures of mangoes.

  1. Mucosal immunity to pathogenic intestinal bacteria.

    Science.gov (United States)

    Perez-Lopez, Araceli; Behnsen, Judith; Nuccio, Sean-Paul; Raffatellu, Manuela

    2016-03-01

    The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.

  2. PARTICLE REMOVAL RATES BY THE MUD SHRIMP UPOGEBIA PUGETTENSIS, ITS BURROW, AND A COMMENSAL CLAM: EFFECTS ON ESTUARINE PHYTOPLANKTON ABUNDANCE

    Science.gov (United States)

    The burrowing shrimp Upogebia pugettensis is an abundant intertidal inhabitant of Pacific Northwest bays and estuaries where it lives commensally with the bivalve Cryptomya californica. Suspension-feeding activities by the shrimp and by its commensal clam, as well as particle se...

  3. Direct identification of bacteria from charcoal-containing blood culture bottles using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    Science.gov (United States)

    Wüppenhorst, N; Consoir, C; Lörch, D; Schneider, C

    2012-10-01

    Several protocols for direct matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) from positive blood cultures are currently used to speed up the diagnostic process of bacteraemia. Identification rates are high and results are accurate for the BACTEC™ system and for charcoal-free bottles. Only a few studies have evaluated protocols for charcoal-containing BacT/ALERT bottles reaching substantially lower identification rates. We established a new protocol for sample preparation from aerobic and anaerobic positive charcoal-containing BacT/ALERT blood culture bottles and measured the protein profiles (n = 167). Then, we integrated this protocol in the routine workflow of our laboratory (n = 212). During the establishment of our protocol, 74.3 % of bacteria were correctly identified to the species level, in 23.4 %, no result and in 2.4 %, a false identification were obtained. Reliable criteria for correct species identification were a score value ≥1.400 and a best match on rank 1-3 of the same species. Identification rates during routine workflow were 77.8 % for correct identification, 20.8 % for not identified samples and 1.4 % for discordant identification. In conclusion, our results indicate that MALDI-TOF MS is possible, even from charcoal-containing blood cultures. Reliable criteria for correct species identification are a score value ≥1.400 and a best match on rank 1-3 of a single species.

  4. Identification of New Factors Modulating Adhesion Abilities of the Pioneer Commensal Bacterium Streptococcus salivarius

    Directory of Open Access Journals (Sweden)

    Benoit Couvigny

    2018-02-01

    Full Text Available Biofilm formation is crucial for bacterial community development and host colonization by Streptococcus salivarius, a pioneer colonizer and commensal bacterium of the human gastrointestinal tract. This ability to form biofilms depends on bacterial adhesion to host surfaces, and on the intercellular aggregation contributing to biofilm cohesiveness. Many S. salivarius isolates auto-aggregate, an adhesion process mediated by cell surface proteins. To gain an insight into the genetic factors of S. salivarius that dictate host adhesion and biofilm formation, we developed a screening method, based on the differential sedimentation of bacteria in semi-liquid conditions according to their auto-aggregation capacity, which allowed us to identify twelve mutations affecting this auto-aggregation phenotype. Mutations targeted genes encoding (i extracellular components, including the CshA surface-exposed protein, the extracellular BglB glucan-binding protein, the GtfE, GtfG and GtfH glycosyltransferases and enzymes responsible for synthesis of cell wall polysaccharides (CwpB, CwpK, (ii proteins responsible for the extracellular localization of proteins, such as structural components of the accessory SecA2Y2 system (Asp1, Asp2, SecA2 and the SrtA sortase, and (iii the LiaR transcriptional response regulator. These mutations also influenced biofilm architecture, revealing that similar cell-to-cell interactions govern assembly of auto-aggregates and biofilm formation. We found that BglB, CshA, GtfH and LiaR were specifically associated with bacterial auto-aggregation, whereas Asp1, Asp2, CwpB, CwpK, GtfE, GtfG, SecA2 and SrtA also contributed to adhesion to host cells and host-derived components, or to interactions with the human pathogen Fusobacterium nucleatum. Our study demonstrates that our screening method could also be used to identify genes implicated in the bacterial interactions of pathogens or probiotics, for which aggregation is either a virulence

  5. From the wound to the bench : exoproteome interplay between wound-colonizing Staphylococcus aureus strains and co-existing bacteria

    NARCIS (Netherlands)

    García-Pérez, Andrea N.; de Jong, Anne; Junker, Sabryna; Becher, Dörte; Chlebowicz, Monika A.; Duipmans, José C.; Jonkman, Marcel F.; van Dijl, Jan Maarten

    2018-01-01

    Wound-colonizing microorganisms can form complex and dynamic polymicrobial communities where pathogens and commensals may co-exist, cooperate or compete with each other. The present study was aimed at identifying possible interactions between different bacteria isolated from the same chronic wound

  6. Outer Membrane Vesicles From Probiotic and Commensal Escherichia coli Activate NOD1-Mediated Immune Responses in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María-Alexandra Cañas

    2018-03-01

    Full Text Available Gut microbiota plays a critical role in maintaining human intestinal homeostasis and host health. Bacterial extracellular vesicles are key players in bacteria–host communication, as they allow delivery of effector molecules into the host cells. Outer membrane vesicles (OMVs released by Gram-negative bacteria carry many ligands of pattern recognition receptors that are key components of innate immunity. NOD1 and NOD2 cytosolic receptors specifically recognize peptidoglycans present within the bacterial cell wall. These intracellular immune receptors are essential in host defense against bacterial infections and in the regulation of inflammatory responses. Recent contributions show that NODs are also fundamental to maintain intestinal homeostasis and microbiota balance. Peptidoglycan from non-invasive pathogens is delivered to cytosolic NODs through OMVs, which are internalized via endocytosis. Whether this pathway could be used by microbiota to activate NOD receptors remains unexplored. Here, we report that OMVs isolated from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 activate NOD1 signaling pathways in intestinal epithelial cells. NOD1 silencing and RIP2 inhibition significantly abolished OMV-mediated activation of NF-κB and subsequent IL-6 and IL-8 expression. Confocal fluorescence microscopy analysis confirmed that endocytosed OMVs colocalize with NOD1, trigger the formation of NOD1 aggregates, and promote NOD1 association with early endosomes. This study shows for the first time the activation of NOD1-signaling pathways by extracellular vesicles released by gut microbiota.

  7. Multiple geographic origins of commensalism and complex dispersal history of Black Rats.

    Science.gov (United States)

    Aplin, Ken P; Suzuki, Hitoshi; Chinen, Alejandro A; Chesser, R Terry; Ten Have, José; Donnellan, Stephen C; Austin, Jeremy; Frost, Angela; Gonzalez, Jean Paul; Herbreteau, Vincent; Catzeflis, Francois; Soubrier, Julien; Fang, Yin-Ping; Robins, Judith; Matisoo-Smith, Elizabeth; Bastos, Amanda D S; Maryanto, Ibnu; Sinaga, Martua H; Denys, Christiane; Van Den Bussche, Ronald A; Conroy, Chris; Rowe, Kevin; Cooper, Alan

    2011-01-01

    The Black Rat (Rattus rattus) spread out of Asia to become one of the world's worst agricultural and urban pests, and a reservoir or vector of numerous zoonotic diseases, including the devastating plague. Despite the global scale and inestimable cost of their impacts on both human livelihoods and natural ecosystems, little is known of the global genetic diversity of Black Rats, the timing and directions of their historical dispersals, and the risks associated with contemporary movements. We surveyed mitochondrial DNA of Black Rats collected across their global range as a first step towards obtaining an historical genetic perspective on this socioeconomically important group of rodents. We found a strong phylogeographic pattern with well-differentiated lineages of Black Rats native to South Asia, the Himalayan region, southern Indochina, and northern Indochina to East Asia, and a diversification that probably commenced in the early Middle Pleistocene. We also identified two other currently recognised species of Rattus as potential derivatives of a paraphyletic R. rattus. Three of the four phylogenetic lineage units within R. rattus show clear genetic signatures of major population expansion in prehistoric times, and the distribution of particular haplogroups mirrors archaeologically and historically documented patterns of human dispersal and trade. Commensalism clearly arose multiple times in R. rattus and in widely separated geographic regions, and this may account for apparent regionalism in their associated pathogens. Our findings represent an important step towards deeper understanding the complex and influential relationship that has developed between Black Rats and humans, and invite a thorough re-examination of host-pathogen associations among Black Rats.

  8. Effects of intramuscularly administered enrofloxacin on the susceptibility of commensal intestinal Escherichia coli in pigs (sus scrofa domestica).

    Science.gov (United States)

    Römer, Antje; Scherz, Gesine; Reupke, Saskia; Meißner, Jessica; Wallmann, Jürgen; Kietzmann, Manfred; Kaspar, Heike

    2017-12-04

    In the European Union, various fluoroquinolones are authorised for the treatment of food producing animals. Each administration poses an increased risk of development and spread of antimicrobial resistance. The aim of this study was to investigate the impact of parenteral administration of enrofloxacin on the prevalence of enrofloxacin and ciprofloxacin susceptibilities in the commensal intestinal E. coli population. E. coli isolates from faeces of twelve healthy pigs were included. Six pigs were administered enrofloxacin on day 1 to 3 and after two weeks for further three days. The other pigs formed the control group. MIC values were determined. Virulence and resistance genes were detected by PCR. Phylogenetic grouping was performed by PCR. Enrofloxacin and ciprofloxacin were analysed in sedimentation samples by HPLC. Susceptibility shifts in commensal E. coli isolates were determined in both groups. Non-wildtype E. coli could be cultivated from two animals of the experimental group for the first time one week after the first administration and from one animal of the control group on day 28. The environmental load with enrofloxacin in sedimentation samples showed the highest amount between days one and five. The repeated parenteral administration of enrofloxacin to pigs resulted in rapidly increased MIC values (day 28: MIC up to 4 mg/L, day 35: MIC ≥ 32mg/L). E. coli populations of the control group in the same stable without direct contact to the experimental group were affected. The parenteral administration of enrofloxacin to piglets considerably reduced the number of the susceptible intestinal E. coli population which was replaced by E. coli strains with increased MIC values against enrofloxacin. Subsequently also pigs of the control were affected suggesting a transferability of strains from the experimental group through the environment to the control group especially as we could isolate the same PFGE strains from both pig groups and the environment.

  9. Perceptions and practices of commensality and solo-eating among Korean and Japanese university students: A cross-cultural analysis.

    Science.gov (United States)

    Cho, Wookyoun; Takeda, Wakako; Oh, Yujin; Aiba, Naomi; Lee, Youngmee

    2015-10-01

    Commensality, eating together with others, is a major representation of human sociality. In recent time, environments around commensality have changed significantly due to rapid social changes, and the decline of commensality is perceived as a serious concern in many modern societies. This study employs a cross-cultural analysis of university students in two East Asian countries, and examines cross-cultural variations of perceptions and actual practices of commensality and solo-eating. The analysis was drawn from a free-list survey and a self-administrative questionnaires of university students in urban Korea and Japan. The free-listing survey was conducted with a small cohort to explore common images and meanings of commensality and solo-eating. The self-administrative questionnaire was developed based on the result of the free-list survey, and conducted with a larger cohort to examine reasons and problems of practices and associated behaviors and food intake. We found that Korean subjects tended to show stronger associations between solo-eating and negative emotions while the Japanese subjects expressed mixed emotions towards the practice of solo-eating. In the questionnaire, more Korean students reported they prefer commensality and tend to eat more quantities when they eat commensally. In contrast, more Japanese reported that they do not have preference on commensality and there is no notable difference in food quantities when they eat commensally and alone. Compared to the general Korean cohort finding, more proportion of overweight and obese groups of Korean subjects reported that they tend to eat more when they are alone than normal and underweight groups. This difference was not found in the overweight Japanese subjects. Our study revealed cross-cultural variations of perceptions and practices of commensality and solo-eating in a non-western setting.

  10. Research Note. Occurrence of gastrointestinal helminths in commensal rodents from Tabasco, Mexico

    Directory of Open Access Journals (Sweden)

    Cigarroa-Toledo N.

    2017-06-01

    Full Text Available The aim of this study was to determine the prevalence and species composition of helminths in commensal rodents captured inside private residences in the city of Villahermosa in Tabasco, Mexico. Trapping was performed at each house for three consecutive nights from October to December 2015. Fifty commensal rodents were captured: 23 Rattus norvegicus, 16 Mus musculus and 11 Rattus rattus. Rodents were transported alive to the laboratory and held in cages until they defecated. Feces were analyzed for helminth eggs using the Sheather’s flotation technique. The overall prevalence of helminths in rodents was 60 %: R. norvegicus was more likely to be parasitized (87.0 % than R. rattus (63.6 % and M. musculus (18.8 %. Eggs from at least 13 species of helminths were identified: Hymenolepis diminuta, Rodentolepis nana, Moniliformis moniliformis, Heligmosomoides polygyrus, Heterakis spumosa, Mastophorus muris, Nippostrongylus brasiliensis, Strongyloides ratti, Syphacia obvelata, Syphacia muris, Toxocara sp., Trichosomoides crassicauda, and Trichuris muris. This is the first study to report the presence of H. polygyrus, S. ratti and T. crassicauda in commensal rodents in Mexico. In conclusion, our results suggest that helminths commonly infect commensal rodents in Villahermosa and therefore rodents present a health risk to inhabitants in this region.

  11. From commensalism to parasitism in Carapidae (Ophidiiformes: heterochronic modes of development?

    Directory of Open Access Journals (Sweden)

    Eric Parmentier

    2016-03-01

    Full Text Available Phenotypic variations allow a lineage to move into new regions of the adaptive landscape. The purpose of this study is to analyse the life history of the pearlfishes (Carapinae in a phylogenetic framework and particularly to highlight the evolution of parasite and commensal ways of life. Furthermore, we investigate the skull anatomy of parasites and commensals and discuss the developmental process that would explain the passage from one form to the other. The genus Carapus forms a paraphyletic grouping in contrast to the genus Encheliophis, which forms a monophyletic cluster. The combination of phylogenetic, morphologic and ontogenetic data clearly indicates that parasitic species derive from commensal species and do not constitute an iterative evolution from free-living forms. Although the head morphology of Carapus species differs completely from Encheliophis, C. homei is the sister group of the parasites. Interestingly, morphological characteristics allowing the establishment of the relation between Carapus homei and Encheliophis spp. concern the sound-producing mechanism, which can explain the diversification of the taxon but not the acquisition of the parasite morphotype. Carapus homei already has the sound-producing mechanism typically found in the parasite form but still has a commensal way of life and the corresponding head structure. Moreover, comparisons between the larval and adult Carapini highlight that the adult morphotype “Encheliophis” is obtained by going beyond the adult stage reached by Carapus. The entrance into the new adaptive landscape could have been realised by at least two processes: paedomorphosis and allometric repatterning.

  12. TLR5 signaling, commensal microbiota and systemic tumor promoting inflammation: the three parcae of malignant progression.

    Science.gov (United States)

    Rutkowski, Melanie R; Conejo-Garcia, Jose R

    2015-08-01

    We have reported that TLR5-mediated recognition of commensal microbiota modulates systemic tumor-promoting inflammation and malignant progression of tumors at distal locations. Approximately 7-10% of the general population harbors a deleterious single nucleotide polymorphism in TLR5, implicating a novel role for genetic variation during the initiation and progression of cancer.

  13. Molecular epidemiology of Enterococcus faecium: from commensal to hospital adapted pathogen

    NARCIS (Netherlands)

    Top, J.

    2007-01-01

    For many years Enterococcus faecium was considered a commensal of the digestive tract, which only sporadically caused opportunistic infections in severely ill patients. Over the last two decades, vancomycin resistant E. faecium (VREF) has emerged worldwide as an important cause of nosocomial

  14. Comparative innate immune interactions of human and bovine secretory IgA with pathogenic and non-pathogenic bacteria.

    Science.gov (United States)

    Hodgkinson, Alison J; Cakebread, Julie; Callaghan, Megan; Harris, Paul; Brunt, Rachel; Anderson, Rachel C; Armstrong, Kelly M; Haigh, Brendan

    2017-03-01

    Secretory IgA (SIgA) from milk contributes to early colonization and maintenance of commensal/symbiotic bacteria in the gut, as well as providing defence against pathogens. SIgA binds bacteria using specific antigenic sites or non-specifically via its glycans attached to α-heavy-chain and secretory component. In our study, we tested the hypothesis that human and bovine SIgA have similar innate-binding activity for bacteria. SIgAs, isolated from human and bovine milk, were incubated with a selection of commensal, pathogenic and probiotic bacteria. Using flow cytometry, we measured numbers of bacteria binding SIgA and their level of SIgA binding. The percentage of bacteria bound by human and bovine SIgA varied from 30 to 90% depending on bacterial species and strains, but was remarkably consistent between human and bovine SIgA. The level of SIgA binding per bacterial cell was lower for those bacteria that had a higher percentage of SIgA-bound bacteria, and higher for those bacteria that had lower percentage of SIgA-bound bacteria. Overall, human and bovine SIgA interacted with bacteria in a comparable way. This contributes to longer term research about the potential benefits of bovine SIgA for human consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria...

  16. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  17. Magnetic Bacteria.

    Science.gov (United States)

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  18. Lipopolysaccharides in diazotrophic bacteria.

    Science.gov (United States)

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  19. Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naïve foetal enterocytes compared to commensal Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nellemann Christine

    2010-01-01

    Full Text Available Abstract Background The first exposure to microorganisms at mucosal surfaces is critical for immune maturation and gut health. Facultative anaerobic bacteria are the first to colonise the infant gut, and the impact of these bacteria on intestinal epithelial cells (IEC may be determinant for how the immune system subsequently tolerates gut bacteria. Results To mirror the influence of the very first bacterial stimuli on infant IEC, we isolated IEC from mouse foetuses at gestational day 19 and from germfree neonates. IEC were stimulated with gut-derived bacteria, Gram-negative Escherichia coli Nissle and Gram-positive Lactobacillus acidophilus NCFM, and expression of genes important for immune regulation was measured together with cytokine production. E. coli Nissle and L. acidophilus NCFM strongly induced chemokines and cytokines, but with different kinetics, and only E. coli Nissle induced down-regulation of Toll-like receptor 4 and up-regulation of Toll-like receptor 2. The sensitivity to stimulation was similar before and after birth in germ-free IEC, although Toll-like receptor 2 expression was higher before birth than immediately after. Conclusions In conclusion, IEC isolated before gut colonisation occurs at birth, are highly responsive to stimulation with gut commensals, with L. acidophilus NCFM inducing a slower, but more sustained response than E. coli Nissle. E. coli may induce intestinal tolerance through very rapid up-regulation of chemokine and cytokine genes and down-regulation of Toll-like receptor 4, while regulating also responsiveness to Gram-positive bacteria.

  20. Direct identification of bacteria from positive BacT/ALERT blood culture bottles using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    Science.gov (United States)

    Mestas, Javier; Felsenstein, Susanna; Bard, Jennifer Dien

    2014-11-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is a fast and robust method for the identification of bacteria. In this study, we evaluate the performance of a laboratory-developed lysis method (LDT) for the rapid identification of bacteria from positive BacT/ALERT blood culture bottles. Of the 168 positive bottles tested, 159 were monomicrobial, the majority of which were Gram-positive organisms (61.0% versus 39.0%). Using a cut-off score of ≥1.7, 80.4% of the organisms were correctly identified to the species level, and the identification rate of Gram-negative organisms (90.3%) was found to be significantly greater than that of Gram-positive organisms (78.4%). The simplicity and cost-effectiveness of the LDT enable it to be fully integrated into the routine workflow of the clinical microbiology laboratory, allowing for rapid identification of Gram-positive and Gram-negative bacteria within an hour of blood culture positivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria

    Science.gov (United States)

    Geva-Zatorsky, Naama; Alvarez, David; Hudak, Jason E.; Reading, Nicola C.; Erturk-Hasdemir, Deniz; Dasgupta, Suryasarathi; von Andrian, Ulrich H.; Kasper, Dennis L.

    2015-01-01

    The intestine is densely populated by anaerobic commensal bacteria. These microorganisms shape immune system development, but our understanding of host–commensal interactions is hampered by a lack of tools for studying the anaerobic intestinal environment. We applied metabolic oligosaccharide engineering and bioorthogonal click-chemistry to label various commensal anaerobes, including Bacteroides fragilis, a common and immunologically important commensal. We studied the dissemination of B. fragilis following acute peritonitis, and characterized the interactions of the intact microbe and its polysaccharide components in myeloid and B cell lineages. The distribution and colonization of labeled B. fragilis along the intestine can be assessed, as well as niche competition following coadministration of multiple species of the microbiota. Nine additional anaerobic commensals (both gram-negative and gram-positive) from three phyla common in the gut—Bacteroidetes, Firmicutes, and Proteobacteria—and five families and one aerobic pathogen (Staphylococcus aureus) were also fluorescently labeled. This strategy permits visualization of the anaerobic microbial niche by various methods, including intravital two-photon microscopy and non-invasive whole-body imaging, and an approach to study microbial colonization and host–microbe interactions in real-time. PMID:26280120

  2. Specific regions of genome plasticity and genetic diversity of the commensal Escherichia coli A0 34/86

    Czech Academy of Sciences Publication Activity Database

    Hejnová, Jana; Pages, Delphine; Rusniok, Ch.; Glaser, P.; Šebo, Peter; Buchrieser, C.

    2006-01-01

    Roč. 296, - (2006), s. 541-546 ISSN 1438-4221 Institutional research plan: CEZ:AV0Z50200510 Keywords : escherichia coli * commensal * genome comparison Subject RIV: EE - Microbiology, Virology Impact factor: 2.760, year: 2006

  3. Eating Together at the Firehouse: How Workplace Commensality Relates to the Performance of Firefighters

    OpenAIRE

    Kniffin, Kevin M.; Wansink, Brian; Devine, Carol M.; Sobal, Jeffery

    2015-01-01

    Cooperative activities among coworkers can provide valuable group-level benefits; however, previous research has often focused on artificial activities that require extraordinary efforts away from the worksite. We investigate organizational benefits that firms might obtain through various supports for coworkers to engage in commensality (i.e., eating together). We conducted field research within firehouses in a large city to explore the role that interacting over food might have for work-grou...

  4. Commensal Homeostasis of Gut Microbiota-Host for the Impact of Obesity

    Directory of Open Access Journals (Sweden)

    Pengyi Zhang

    2018-01-01

    Full Text Available Gut microbiota and their metabolites have been linked to a series of chronic diseases such as obesity and other metabolic dysfunctions. Obesity is an increasingly serious international health issue that may lead to a risk of insulin resistance and other metabolic diseases. The relationship between gut microbiota and the host is both interdependent and relatively independent. In this review, the causality of gut microbiota and its role in the pathogenesis and intervention of obesity is comprehensively presented to include human genotype, enterotypes, interactions of gut microbiota with the host, microbial metabolites, and energy homeostasis all of which may be influenced by dietary nutrition. Diet can enhance, inhibit, or even change the composition and functions of the gut microbiota. The metabolites they produce depend upon the dietary substrates provided, some of which have indispensable functions for the host. Therefore, diet is a key factor that maintains or not a healthy commensal relationship. In addition, the specific genotype of the host may impact the phylogenetic compositions of gut microbiota through the production of host metabolites. The commensal homeostasis of gut microbiota is favored by a balance of microbial composition, metabolites, and energy. Ultimately the desired commensal relationship is one of mutual support. This article analyzes the clues that result in patterns of commensal homeostasis. A deeper understanding of these interactions is beneficial for developing effective prevention, diagnosis, and personalized therapeutic strategies to combat obesity and other metabolic diseases. The idea we discuss is meant to improve human health by shaping or modulating the beneficial gut microbiota.

  5. Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23

    OpenAIRE

    Sims, Ian M; Frese, Steven A; Walter, Jens; Loach, Diane; Wilson, Michelle; Appleyard, Kay; Eason, Jocelyn; Livingston, Megan; Baird, Margaret; Cook, Gregory; Tannock, Gerald W

    2011-01-01

    Lactobacillus reuteri strain 100-23 together with a Lactobacillus-free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical analysis showed that this exopolysaccharide was a levan (β-2, 6-linked fructan). Mutation of the fructosyl transferase (ftf) gene resulted in loss of exopolysaccharide production. The ftf mutant was...

  6. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals.

    Science.gov (United States)

    Sarkar, Amar; Lehto, Soili M; Harty, Siobhán; Dinan, Timothy G; Cryan, John F; Burnet, Philip W J

    2016-11-01

    Psychobiotics were previously defined as live bacteria (probiotics) which, when ingested, confer mental health benefits through interactions with commensal gut bacteria. We expand this definition to encompass prebiotics, which enhance the growth of beneficial gut bacteria. We review probiotic and prebiotic effects on emotional, cognitive, systemic, and neural variables relevant to health and disease. We discuss gut-brain signalling mechanisms enabling psychobiotic effects, such as metabolite production. Overall, knowledge of how the microbiome responds to exogenous influence remains limited. We tabulate several important research questions and issues, exploration of which will generate both mechanistic insights and facilitate future psychobiotic development. We suggest the definition of psychobiotics be expanded beyond probiotics and prebiotics to include other means of influencing the microbiome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Commensal Microbiota Are Required for Systemic Inflammation Triggered by Necrotic Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Jennifer A. Young

    2013-06-01

    Full Text Available The relationship between dendritic cells (DCs and commensal microflora in shaping systemic immune responses is not well understood. Here, we report that mice deficient for the Fas-associated death domain in DCs developed systemic inflammation associated with elevated proinflammatory cytokines and increased myeloid and B cells. These mice exhibited reduced DCs in gut-associated lymphoid tissues due to RIP3-dependent necroptosis, whereas DC functions remained intact. Induction of systemic inflammation required DC necroptosis and commensal microbiota signals that activated MyD88-dependent pathways in other cell types. Systemic inflammation was abrogated with the administration of broad-spectrum antibiotics or complete, but not DC-specific, deletion of MyD88. Thus, we have identified a previously unappreciated role for commensal microbiota in priming immune cells for inflammatory responses against necrotic cells. These studies demonstrate the impact intestinal microflora have on the immune system and their role in eliciting proper immune responses to harmful stimuli.

  8. Assessment of antibiotic resistance genes and integrons in commensal Escherichia coli from the Indian urban waste water: Implications and significance for public health

    Directory of Open Access Journals (Sweden)

    Nambram Somendro Singh

    2017-10-01

    Full Text Available Antibiotics like β-lactams, quinolones/fluoroquinolones, aminoglycosides and tetracycline constitute the major mainstay of treatment against most infectious diseases including Escherichia coli. Indiscriminate use of antibiotics for human and animal well-being has generated an enormous evolutionary pressure on bacteria especially E.coli, which has a highly plastic/evolving genome. Though, antibiotic resistance (AR has been extensively studied in pathogenic E.coli, commensal strains have been studied less owing to lesser clinical significance. However, commensal strains pose a serious threat as reservoirs and transmitters of resistance genes to other bacteria. Therefore, the present study was undertaken to investigate the prevalence of resistance genes and integrons in commensal E.coli isolated from river Yamuna, Delhi, India, which receives plentiful urban waste water. Eighty three well-characterized E.coli strains of phylogroups A and B1 isolated from river Yamuna were investigated. Antimicrobial susceptibilities and minimal inhibitory concentrations (MICs for β-lactams, aminoglycosides, tetracycline and quinolone/fluoroquinolone were determined by disk diffusion and Etest, according to Clinical and Laboratory Standards Institute (CLSI guidelines. Production of Extended spectrum β-lactamases (ESBL and AmpC was investigated. Prevalence of antibiotic-resistance genes for β-lactams (blaTEM,blaSHV, blaCTX-M, blaOXA, blaCMY-42, aminoglycosides (rmtA, rmtB, rmtC, armA, str, aacC2, tetracycline (tetA, tetR, tetM, tetW, and plasmid-mediated quinolone resistance, PMQR (qnrA, qnrB, qnrC, qnrD, qnrS, qep, aac were assessed. Integrons and  gene-cassette arrays were characterized. Commensal E.coli strains showed a higher resistance to ampicillin (95%, less to cefazolin (45% and still lesser to tetracycline (15%. About 19% of these strains showed multidrug resistant (three or more classes of antibiotics, of which 15% also produced ESBLs. None of the

  9. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    Science.gov (United States)

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  10. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    Directory of Open Access Journals (Sweden)

    Dragana Dobrijevic

    Full Text Available The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  11. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories?

    Science.gov (United States)

    Nagy, E; Boyanova, L; Justesen, U S

    2018-02-17

    There has been increased interest in the study of anaerobic bacteria that cause human infection during the past decade. Many new genera and species have been described using 16S rRNA gene sequencing of clinical isolates obtained from different infection sites with commercially available special culture media to support the growth of anaerobes. Several systems, such as anaerobic pouches, boxes, jars and chambers provide suitable anaerobic culture conditions to isolate even strict anaerobic bacteria successfully from clinical specimens. Beside the classical, time-consuming identification methods and automated biochemical tests, the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has revolutionized identification of even unusual and slow-growing anaerobes directly from culture plates, providing the possibility of providing timely information about anaerobic infections. The aim of this review article is to present methods for routine laboratories, which carry out anaerobic diagnostics on different levels. Relevant data from the literature mostly published during the last 7 years are encompassed and discussed. The review involves topics on the anaerobes that are members of the commensal microbiota and their role causing infection, the key requirements for collection and transport of specimens, processing of specimens in the laboratory, incubation techniques, identification and antimicrobial susceptibility testing of anaerobic bacteria. Advantages, drawbacks and specific benefits of the methods are highlighted. The present review aims to update and improve anaerobic microbiology in laboratories with optimal conditions as well as encourage its routine implementation in laboratories with restricted resources. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Ecological adaptations and commensal evolution of the Polynoidae (Polychaeta) in the Southwest Indian Ocean Ridge: A phylogenetic approach

    Science.gov (United States)

    Serpetti, Natalia; Taylor, M. L.; Brennan, D.; Green, D. H.; Rogers, A. D.; Paterson, G. L. J.; Narayanaswamy, B. E.

    2017-03-01

    The polychaete family polynoid is very large and includes a high diversity of behaviours, including numerous examples of commensal species. The comparison between free-living and commensal behaviours and the evolution of the relationships between commensal species and their hosts are valuable case studies of ecological adaptations. Deep-sea species of Polynoidae were sampled at four seamounts in the Southwest Indian Ridge and twenty specimens from seven species were selected to be analysed. Among them, there were free-living species, living within the three-dimensional framework of cold-water coral reefs, on coral rubble and on mobile sediments, and commensal species, associated with octocorals, hydrocorals (stylasterids), antipatharians and echinoderms (holothurian and ophiuroids). We analysed two mitochondrial (COI, 16S) and two nuclear (18S, 28S) ribosomal genetic markers and their combined sequences were compared with other Genbank sequences to assess the taxonomic relationships within the species under study, and the potential role of hosts in speciation processes. Most basal species of the sub-family Polynoinae are obligate symbionts showing specific morphological adaptations. Obligate and facultative commensal species and free-living species have evolved a number of times, although, according to our results, the obligate coral commensal species appear to be monophyletic.

  13. Prevalence of virulence determinants and antimicrobial resistance among commensal Escherichia coli derived from dairy and beef cattle.

    Science.gov (United States)

    Bok, Ewa; Mazurek, Justyna; Stosik, Michał; Wojciech, Magdalena; Baldy-Chudzik, Katarzyna

    2015-01-19

    Cattle is a reservoir of potentially pathogenic E. coli, bacteria that can represent a significant threat to public health, hence it is crucial to monitor the prevalence of the genetic determinants of virulence and antimicrobial resistance among the E. coli population. The aim of this study was the analysis of the phylogenetic structure, distribution of virulence factors (VFs) and prevalence of antimicrobial resistance among E. coli isolated from two groups of healthy cattle: 50 cows housed in the conventional barn (147 isolates) and 42 cows living on the ecological pasture (118 isolates). The phylogenetic analysis, identification of VFs and antimicrobial resistance genes were based on either multiplex or simplex PCR. The antimicrobial susceptibilities of E. coli were examined using the broth microdilution method. Two statistical approaches were used to analyse the results obtained for two groups of cattle. The relations between the dependent (VFs profiles, antibiotics) and the independent variables were described using the two models. The mixed logit model was used to characterise the prevalence of the analysed factors in the sets of isolates. The univariate logistic regression model was used to characterise the prevalence of these factors in particular animals. Given each model, the odds ratio (OR) and the 95% confidence interval for the population were estimated. The phylogroup B1 was predominant among isolates from beef cattle, while the phylogroups A, B1 and D occurred with equal frequency among isolates from dairy cattle. The frequency of VFs-positive isolates was significantly higher among isolates from beef cattle. E. coli from dairy cattle revealed significantly higher resistance to antibiotics. Some of the tested resistance genes were present among isolates from dairy cattle. Our study showed that the habitat and diet may affect the genetic diversity of commensal E. coli in the cattle. The results suggest that the ecological pasture habitat is related to

  14. Bactericidal Effect of Lauric Acid-Loaded PCL-PEG-PCL Nano-Sized Micelles on Skin Commensal Propionibacterium acnes

    Directory of Open Access Journals (Sweden)

    Thi-Quynh-Mai Tran

    2016-08-01

    Full Text Available Acne is the over growth of the commensal bacteria Propionibacterium acnes (P. acnes on human skin. Lauric acid (LA has been investigated as an effective candidate to suppress the activity of P. acnes. Although LA is nearly insoluble in water, dimethyl sulfoxide (DMSO has been reported to effectively solubilize LA. However, the toxicity of DMSO can limit the use of LA on the skin. In this study, LA-loaded poly(ɛ-caprolactone-poly(ethylene glycol-poly(ɛ-caprolactone micelles (PCL-PEG-PCL were developed to improve the bactericidal effect of free LA on P. acnes. The block copolymers mPEG-PCL and PCL-PEG-PCL with different molecular weights were synthesized and characterized using 1H Nuclear Magnetic Resonance spectroscopy (1H NMR, Fourier-transform infrared spectroscopy (FT-IR, Gel Permeation Chromatography (GPC, and Differential Scanning Calorimetry (DSC. In the presence of LA, mPEG-PCL diblock copolymers did not self-assemble into nano-sized micelles. On the contrary, the average particle sizes of the PCL-PEG-PCL micelles ranged from 50–198 nm for blank micelles and 27–89 nm for LA-loaded micelles. The drug loading content increased as the molecular weight of PCL-PEG-PCL polymer increased. Additionally, the minimum inhibitory concentration (MIC and the minimum bactericidal concentration (MBC of free LA were 20 and 80 μg/mL, respectively. The MICs and MBCs of the micelles decreased to 10 and 40 μg/mL, respectively. This study demonstrated that the LA-loaded micelles are a potential treatment for acne.

  15. Oral, intestinal, and skin bacteria in ventral hernia mesh implants

    Directory of Open Access Journals (Sweden)

    Odd Langbach

    2016-07-01

    Full Text Available Background: In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective: The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods: Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results: A great variety of taxa were detected in 20 (66.7% mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion: The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also

  16. Helminth Infection and Commensal Microbiota Drive Early IL-10 Production in the Skin by CD4+ T Cells That Are Functionally Suppressive.

    Directory of Open Access Journals (Sweden)

    David E Sanin

    2015-05-01

    Full Text Available The skin provides an important first line of defence and immunological barrier to invasive pathogens, but immune responses must also be regulated to maintain barrier function and ensure tolerance of skin surface commensal organisms. In schistosomiasis-endemic regions, populations can experience repeated percutaneous exposure to schistosome larvae, however little is known about how repeated exposure to pathogens affects immune regulation in the skin. Here, using a murine model of repeated infection with Schistosoma mansoni larvae, we show that the skin infection site becomes rich in regulatory IL-10, whilst in its absence, inflammation, neutrophil recruitment, and local lymphocyte proliferation is increased. Whilst CD4+ T cells are the primary cellular source of regulatory IL-10, they expressed none of the markers conventionally associated with T regulatory (Treg cells (i.e. FoxP3, Helios, Nrp1, CD223, or CD49b. Nevertheless, these IL-10+ CD4+ T cells in the skin from repeatedly infected mice are functionally suppressive as they reduced proliferation of responsive CD4+ T cells from the skin draining lymph node. Moreover, the skin of infected Rag-/- mice had impaired IL-10 production and increased neutrophil recruitment. Finally, we show that the mechanism behind IL-10 production by CD4+ T cells in the skin is due to a combination of an initial (day 1 response specific to skin commensal bacteria, and then over the following days schistosome-specific CD4+ T cell responses, which together contribute towards limiting inflammation and tissue damage following schistosome infection. We propose CD4+ T cells in the skin that do not express markers of conventional T regulatory cell populations have a significant role in immune regulation after repeated pathogen exposure and speculate that these cells may also help to maintain skin barrier function in the context of repeated percutaneous insult by other skin pathogens.

  17. An anti-HIV microbicide engineered in commensal bacteria: secretion of HIV-1 fusion inhibitors by lactobacilli

    NARCIS (Netherlands)

    Pusch, O.; Kalyanaraman, R.; Tucker, L.D.; Wells, J.; Rmanratnam, B.; Boden, D.

    2006-01-01

    Objectives: To engineer Lactobacillus spp. to secrete HIV-1 fusion inhibitors with potent neutralizing activity against primary HIV-1 isolates. Methods: HIV-1 fusion inhibitors (FI-1, FI-2, and FI-3) were introduced into the previously developed shuttle vector pTSV2 and transformed in L. plantarum

  18. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes

    KAUST Repository

    Zhang, Meiling; Chekan, Jonathan R.; Dodd, Dylan; Hong, Pei-Ying; Radlinsk, Lauren; Revindran, Vanessa; Nair, Satish K.; Mackie, Roderick Ian; Cann, Isaac Ko O

    2014-01-01

    highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT-04215 and BACOVA-04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture

  19. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon

    DEFF Research Database (Denmark)

    Chung, Wing Sun Faith; Meijerink, Marjolein; Zeuner, Birgitte

    2017-01-01

    Dietary plant cell wall carbohydrates are important in modulating the composition and metabolism of the complex gut microbiota, which can impact on health. Pectin is a major component of plant cell walls. Based on studies in model systems and available bacterial isolates and genomes, the capacity...... suggest the potential to explore further the prebiotic potential of pectin and its derivatives to re-balance the microbiota towards an anti-inflammatory profile....

  20. Gastric spiral bacteria in small felids.

    Science.gov (United States)

    Kinsel, M J; Kovarik, P; Murnane, R D

    1998-06-01

    Nine small cats, including one bobcat (Felis rufus), one Pallas cat (F. manul), one Canada lynx (F. lynx canadensis), two fishing cats (F. viverrina), two margays (F. wiedii), and two sand cats (F. margarita), necropsied between June 1995 and March 1997 had large numbers of gastric spiral bacteria, whereas five large cats, including one African lion (Panthera leo), two snow leopards (P. uncia), one Siberian tiger (P. tigris altaica), and one jaguar (P. onca), necropsied during the same period had none. All of the spiral organisms from the nine small cats were histologically and ultrastructurally similar. Histologically, the spiral bacteria were 5-14 microm long with five to nine coils per organism and were located both extracellularly within gastric glands and surface mucus, and intracellularly in parietal cells. Spiral bacteria in gastric mucosal scrapings from the Canada lynx, one fishing cat, and the two sand cats were gram negative and had corkscrewlike to tumbling motility when viewed with phase contrast microscopy. The bacteria were 0.5-0.7 microm wide, with a periodicity of 0.65-1.1 microm in all cats. Bipolar sheathed flagella were occasionally observed, and no periplasmic fibrils were seen. The bacteria were extracellular in parietal cell canaliculi and intracellular within parietal cells. Culture of mucosal scrapings from the Canada lynx and sand cats was unsuccessful. Based on morphology, motility, and cellular tropism, the bacteria were probably Helicobacter-like organisms. Although the two margays had moderate lymphoplasmacytic gastritis, the other cats lacked or had only mild gastric lymphoid infiltrates, suggesting that these organisms are either commensals or opportunistic pathogens.

  1. Communication among Oral Bacteria

    Science.gov (United States)

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  2. Effect of bacterial components of mixed culture supernatants of planktonic and biofilm Pseudomonas aeruginosa with commensal Escherichia coli on the neutrophil response in vitro.

    Science.gov (United States)

    Maslennikova, Irina L; Kuznetsova, Marina V; Nekrasova, Irina V; Shirshev, Sergei V

    2017-11-30

    Pseudomonas aeruginosa (PA) responsible for acute and chronic infections often forms a well-organized bacterial population with different microbial species including commensal strains of Escherichia coli. Bacterial extracellular components of mixed culture can modulate the influence of bacteria on the neutrophil functions. The objective of this study was to compare the effect of pyocyanin, pyoverdine, LPS, exopolysaccharide of single species and mixed culture supernatants of PA strains and E. coli K12 on microbicidal, secretory activity of human neutrophils in vitro. Bacterial components of E. coli K12 in mixed supernatants with 'biofilm' PA strains (PA ATCC, PA BALG) enhanced short-term microbicidal mechanisms and inhibited neutrophil secretion delayed in time. The influence of 'planktonic' PA (PA 9-3) exometabolites in mixed culture is almost mimicked by E. coli K12 effect on functional neutrophil changes. This investigation may help to understand some of the mechanisms of neutrophil response to mixed infections of different PA with other bacteria species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Current strategies for improving food bacteria

    NARCIS (Netherlands)

    Kuipers, O P; Buist, Girbe; Kok, Jan

    2000-01-01

    Novel concepts and methodologies are emerging that hold great promise for the directed improvement of food-related bacteria, specifically lactic acid bacteria. Also, the battle against food spoilage and pathogenic bacteria can now be fought more effectively. Here we describe recent advances in

  4. Direct identification of bacteria from BacT/ALERT anaerobic positive blood cultures by MALDI-TOF MS: MALDI Sepsityper kit versus an in-house saponin method for bacterial extraction.

    Science.gov (United States)

    Meex, Cécile; Neuville, Florence; Descy, Julie; Huynen, Pascale; Hayette, Marie-Pierre; De Mol, Patrick; Melin, Pierrette

    2012-11-01

    In cases of bacteraemia, a rapid species identification of the causal agent directly from positive blood culture broths could assist clinicians in the timely targeting of empirical antimicrobial therapy. For this purpose, we evaluated the direct identification of micro-organisms from BacT/ALERT (bioMérieux) anaerobic positive blood cultures without charcoal using the Microflex matrix-assisted laser desorption/ionization (MALDI) time of flight MS (Bruker), after bacterial extraction by using two different methods: the MALDI Sepsityper kit (Bruker) and an in-house saponin lysis method. Bruker's recommended criteria for identification were expanded in this study, with acceptance of the species identification when the first three results with the best matches with the MALDI Biotyper database were identical, whatever the scores were. In total, 107 monobacterial cultures and six polymicrobial cultures from 77 different patients were included in this study. Among monomicrobial cultures, we identified up to the species level 67 and 66 % of bacteria with the MALDI Sepsityper kit and the saponin method, respectively. There was no significant difference between the two extraction methods. The direct species identification was particularly inconclusive for Gram-positive bacteria, as only 58 and 52 % of them were identified to the species level with the MALDI Sepsityper kit and the saponin method, respectively. Results for Gram-negative bacilli were better, with 82.5 and 90 % of correct identification to the species level with the MALDI Sepsityper kit and the saponin method, respectively. No misidentifications were given by the direct procedures when compared with identifications provided by the conventional method. Concerning the six polymicrobial blood cultures, whatever the extraction method used, a correct direct identification was only provided for one of the isolated bacteria on solid medium in all cases. The analysis of the time-to-result demonstrated a reduction

  5. Secretory IgA is Concentrated in the Outer Layer of Colonic Mucus along with Gut Bacteria

    Directory of Open Access Journals (Sweden)

    Eric W. Rogier

    2014-04-01

    Full Text Available Antibodies of the secretory IgA (SIgA class comprise the first line of antigen-specific immune defense, preventing access of commensal and pathogenic microorganisms and their secreted products into the body proper. In addition to preventing infection, SIgA shapes the composition of the gut microbiome. SIgA is transported across intestinal epithelial cells into gut secretions by the polymeric immunoglobulin receptor (pIgR. The epithelial surface is protected by a thick network of mucus, which is composed of a dense, sterile inner layer and a loose outer layer that is colonized by commensal bacteria. Immunofluorescence microscopy of mouse and human colon tissues demonstrated that the SIgA co-localizes with gut bacteria in the outer mucus layer. Using mice genetically deficient for pIgR and/or mucin-2 (Muc2, the major glycoprotein of intestinal mucus, we found that Muc2 but not SIgA was necessary for excluding gut bacteria from the inner mucus layer in the colon. Our findings support a model whereby SIgA is anchored in the outer layer of colonic mucus through combined interactions with mucin proteins and gut bacteria, thus providing immune protection against pathogens while maintaining a mutually beneficial relationship with commensals.

  6. Rumen bacteria

    International Nuclear Information System (INIS)

    McSweeney, C.S.; Denman, S.E.; Mackie, R.I.

    2005-01-01

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 10 11 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (10 4 -10 6 /g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 10 2 -10 4 /g distributed over 5 genera). The occurrence of bacteriophage is well documented (10 7 -10 9 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  7. Evaluation of two multi-locus sequence typing schemes for commensal Escherichia coli from dairy cattle in Washington State.

    Science.gov (United States)

    Ahmed, Sara; Besser, Thomas E; Call, Douglas R; Weissman, Scott J; Jones, Lisa P; Davis, Margaret A

    2016-05-01

    Multi-locus sequence typing (MLST) is a useful system for phylogenetic and epidemiological studies of multidrug-resistant Escherichiacoli. Most studies utilize a seven-locus MLST, but an alternate two-locus typing method (fumC and fimH; CH typing) has been proposed that may offer a similar degree of discrimination at lower cost. Herein, we compare CH typing to the standard seven-locus method for typing commensal E. coli isolates from dairy cattle. In addition, we evaluated alternative combinations of eight loci to identify combinations that maximize discrimination and congruence with standard seven-locus MLST among commensal E. coli while minimizing the cost. We also compared both methods when used for typing uropathogenic E. coli (UPEC). CH typing was less discriminatory for commensal E. coli than the standard seven-locus method (Simpson's Index of Diversity=0.933 [0.902-0.964] and 0.97 [0.96-0.979], respectively). Combining fimH with housekeeping gene loci improved discriminatory power for commensal E. coli from cattle but resulted in poor congruence with MLST. We found that a four-locus typing method including the housekeeping genes adk, purA, gyrB and recA could be used to minimize cost without sacrificing discriminatory power or congruence with Achtman seven-locus MLST when typing commensal E. coli. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. VLITE-Fast: A Real-time, 350 MHz Commensal VLA Survey for Fast Transients

    Science.gov (United States)

    Kerr, Matthew; Ray, Paul S.; Kassim, Namir E.; Clarke, Tracy; Deneva, Julia; Polisensky, Emil

    2018-01-01

    The VLITE (VLA Low Band Ionosphere and Transient Experiment; http://vlite.nrao.edu) program operates commensally during all Very Large Array observations, collecting data from 320 to 384 MHz. Recently expanded to include 16 antennas, the large field of view and huge time on sky offer good coverage of the transient, low-frequency sky. We describe the VLITE-Fast system, a GPU-based signal processor capable of detecting short (system, techniques for mitigating interference, and initial results from searches for FRBs.

  9. Characterisation of commensal Escherichia coli isolated from apparently healthy cattle and their attendants in Tanzania

    DEFF Research Database (Denmark)

    Madoshi, Balichene; Kudirkiene, Egle; Mtambo, Madundo

    2016-01-01

    attendants on cattle farms in Tanzania were investigated. Seventeen E. coli genomes representing different ERIC-PCR types of commensal E. coli were sequenced in order to determine their possible importance as a reservoir for both antimicrobial resistance genes and virulence factors. Both human and cattle...... isolates were highly resistant to tetracycline (40.8% and 33.1%), sulphamethazole-trimethoprim (49.0% and 8.8%) and ampicillin (44.9% and 21.3%). However, higher proportion of resistant E. coli and higher frequency of resistance to more than two antimicrobials was found in isolates from cattle attendants...

  10. Design and performance testing of a DNA extraction assay for sensitive and reliable quantification of acetic acid bacteria directly in red wine using real time PCR

    Directory of Open Access Journals (Sweden)

    Cédric eLONGIN

    2016-06-01

    Full Text Available Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence there is a real need for a rapid, specific, sensitive and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR. Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP at 1% (v/v during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 mL to 10 mL. Thus the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage.

  11. Direct Identification and Antimicrobial Susceptibility Testing of Bacteria From Positive Blood Culture Bottles by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry and the Vitek 2 System.

    Science.gov (United States)

    Jo, Sung Jin; Park, Kang Gyun; Han, Kyungja; Park, Dong Jin; Park, Yeon-Joon

    2016-03-01

    We evaluated the reliability and accuracy of the combined use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) bacterial identification and Vitek 2 antimicrobial susceptibility testing (AST) for bacteria from positive blood culture bottles. Direct identification and AST were performed in parallel to the standard methods in monomicrobial positive blood culture bottles. In total, 254 isolates grown on aerobic and/or anaerobic bottles were identified with MALDI-TOF Vitek MS (bioMérieux, France), and 1,978 microorganism/antimicrobial agent combinations were assessed. For isolates from anaerobic bottles, an aliquot of the culture broth was centrifuged, washed, and filtered through a nylon mesh. For isolates from aerobic/pediatric bottles, a lysis step using 9.26% ammonium chloride solution and 2% saponin solution was included. The overall correct identification rate was 81.8% (208/254) and that for gram-positive/gram-negative isolates was 73.9%/92.6%, respectively, and it was 81.8%, 87.6%, and 57.9% for isolates from aerobic, anaerobic, and pediatric bottles, respectively. Identification was not possible in 45 cases, and most of these isolates were streptococci (N=14) and coagulase-negative staphylococci (N=11). Misidentification occurred only in one case. Compared with standard methods, direct AST showed 97.9% (1,936/1,978) agreement with very major error of 0.25%, major error of 0.05%, and minor error of 1.8%. This simple and cost-effective sample preparation method gives reliable results for the direct identification and AST of bacteria. For the identification of streptococci and coagulase-negative staphylococci, the method should be further improved.

  12. SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Chennamangalam, Jayanth; Karastergiou, Aris; Williams, Christopher [Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); MacMahon, David; Cobb, Jeff; Siemion, Andrew P. V.; Gajjar, Vishal; Werthimer, Dan [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Rajwade, Kaustubh; Lorimer, Duncan R.; McLaughlin, Maura A. [Department of Physics and Astronomy, West Virginia University, P.O. Box 6315, Morgantown, WV 26506 (United States); Armour, Wes, E-mail: jayanth@astro.ox.ac.uk [Oxford e-Research Centre, University of Oxford, Keble Road, Oxford OX1 3QG (United Kingdom)

    2017-02-01

    Radio astronomy has traditionally depended on observatories allocating time to observers for exclusive use of their telescopes. The disadvantage of this scheme is that the data thus collected is rarely used for other astronomy applications, and in many cases, is unsuitable. For example, properly calibrated pulsar search data can, with some reduction, be used for spectral line surveys. A backend that supports plugging in multiple applications to a telescope to perform commensal data analysis will vastly increase the science throughput of the facility. In this paper, we present “SETIBURST,” a robotic, commensal, realtime multi-science backend for the 305 m Arecibo Telescope. The system uses the 1.4 GHz, seven-beam Arecibo L -band Feed Array (ALFA) receiver whenever it is operated. SETIBURST currently supports two applications: SERENDIP VI, a SETI spectrometer that is conducting a search for signs of technological life, and ALFABURST, a fast transient search system that is conducting a survey of fast radio bursts (FRBs). Based on the FRB event rate and the expected usage of ALFA, we expect 0–5 FRB detections over the coming year. SETIBURST also provides the option of plugging in more applications. We outline the motivation for our instrumentation scheme and the scientific motivation of the two surveys, along with their descriptions and related discussions.

  13. SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope

    Science.gov (United States)

    Chennamangalam, Jayanth; MacMahon, David; Cobb, Jeff; Karastergiou, Aris; Siemion, Andrew P. V.; Rajwade, Kaustubh; Armour, Wes; Gajjar, Vishal; Lorimer, Duncan R.; McLaughlin, Maura A.; Werthimer, Dan; Williams, Christopher

    2017-02-01

    Radio astronomy has traditionally depended on observatories allocating time to observers for exclusive use of their telescopes. The disadvantage of this scheme is that the data thus collected is rarely used for other astronomy applications, and in many cases, is unsuitable. For example, properly calibrated pulsar search data can, with some reduction, be used for spectral line surveys. A backend that supports plugging in multiple applications to a telescope to perform commensal data analysis will vastly increase the science throughput of the facility. In this paper, we present “SETIBURST,” a robotic, commensal, realtime multi-science backend for the 305 m Arecibo Telescope. The system uses the 1.4 GHz, seven-beam Arecibo L-band Feed Array (ALFA) receiver whenever it is operated. SETIBURST currently supports two applications: SERENDIP VI, a SETI spectrometer that is conducting a search for signs of technological life, and ALFABURST, a fast transient search system that is conducting a survey of fast radio bursts (FRBs). Based on the FRB event rate and the expected usage of ALFA, we expect 0-5 FRB detections over the coming year. SETIBURST also provides the option of plugging in more applications. We outline the motivation for our instrumentation scheme and the scientific motivation of the two surveys, along with their descriptions and related discussions.

  14. realfast: Real-time, Commensal Fast Transient Surveys with the Very Large Array

    Science.gov (United States)

    Law, C. J.; Bower, G. C.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Halle, A.; Khudikyan, S.; Lazio, T. J. W.; Pokorny, M.; Robnett, J.; Rupen, M. P.

    2018-05-01

    Radio interferometers have the ability to precisely localize and better characterize the properties of sources. This ability is having a powerful impact on the study of fast radio transients, where a few milliseconds of data is enough to pinpoint a source at cosmological distances. However, recording interferometric data at millisecond cadence produces a terabyte-per-hour data stream that strains networks, computing systems, and archives. This challenge mirrors that of other domains of science, where the science scope is limited by the computational architecture as much as the physical processes at play. Here, we present a solution to this problem in the context of radio transients: realfast, a commensal, fast transient search system at the Jansky Very Large Array. realfast uses a novel architecture to distribute fast-sampled interferometric data to a 32-node, 64-GPU cluster for real-time imaging and transient detection. By detecting transients in situ, we can trigger the recording of data for those rare, brief instants when the event occurs and reduce the recorded data volume by a factor of 1000. This makes it possible to commensally search a data stream that would otherwise be impossible to record. This system will search for millisecond transients in more than 1000 hr of data per year, potentially localizing several Fast Radio Bursts, pulsars, and other sources of impulsive radio emission. We describe the science scope for realfast, the system design, expected outcomes, and ways in which real-time analysis can help in other fields of astrophysics.

  15. SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope

    International Nuclear Information System (INIS)

    Chennamangalam, Jayanth; Karastergiou, Aris; Williams, Christopher; MacMahon, David; Cobb, Jeff; Siemion, Andrew P. V.; Gajjar, Vishal; Werthimer, Dan; Rajwade, Kaustubh; Lorimer, Duncan R.; McLaughlin, Maura A.; Armour, Wes

    2017-01-01

    Radio astronomy has traditionally depended on observatories allocating time to observers for exclusive use of their telescopes. The disadvantage of this scheme is that the data thus collected is rarely used for other astronomy applications, and in many cases, is unsuitable. For example, properly calibrated pulsar search data can, with some reduction, be used for spectral line surveys. A backend that supports plugging in multiple applications to a telescope to perform commensal data analysis will vastly increase the science throughput of the facility. In this paper, we present “SETIBURST,” a robotic, commensal, realtime multi-science backend for the 305 m Arecibo Telescope. The system uses the 1.4 GHz, seven-beam Arecibo L -band Feed Array (ALFA) receiver whenever it is operated. SETIBURST currently supports two applications: SERENDIP VI, a SETI spectrometer that is conducting a search for signs of technological life, and ALFABURST, a fast transient search system that is conducting a survey of fast radio bursts (FRBs). Based on the FRB event rate and the expected usage of ALFA, we expect 0–5 FRB detections over the coming year. SETIBURST also provides the option of plugging in more applications. We outline the motivation for our instrumentation scheme and the scientific motivation of the two surveys, along with their descriptions and related discussions.

  16. Food Commensals as a Potential Major Avenue in Transmitting Antibiotic Resistance Genes

    National Research Council Canada - National Science Library

    Lehman, Mark W; Wang, Hua H; Manuzon, Michele; Wan, Kai; Luo, Hongliang; Wittum, Tom; Yousef, Ahmed; Bakaletz, Lauren O

    2005-01-01

    ...(to the seventh power) CFU per gram of product. The presence of large populations of ART bacteria in these foods, particularly in many ready-to-eat "health" food items, indicates that the ART bacteria are abundant...

  17. Microbiota-Derived Short-Chain Fatty Acids Modulate Expression of Campylobacter jejuni Determinants Required for Commensalism and Virulence.

    Science.gov (United States)

    Luethy, Paul M; Huynh, Steven; Ribardo, Deborah A; Winter, Sebastian E; Parker, Craig T; Hendrixson, David R

    2017-05-09

    Campylobacter jejuni promotes commensalism in the intestinal tracts of avian hosts and diarrheal disease in humans, yet components of intestinal environments recognized as spatial cues specific for different intestinal regions by the bacterium to initiate interactions in either host are mostly unknown. By analyzing a C. jejuni acetogenesis mutant defective in converting acetyl coenzyme A (Ac-CoA) to acetate and commensal colonization of young chicks, we discovered evidence for in vivo microbiota-derived short-chain fatty acids (SCFAs) and organic acids as cues recognized by C. jejuni that modulate expression of determinants required for commensalism. We identified a set of C. jejuni genes encoding catabolic enzymes and transport systems for amino acids required for in vivo growth whose expression was modulated by SCFAs. Transcription of these genes was reduced in the acetogenesis mutant but was restored upon supplementation with physiological concentrations of the SCFAs acetate and butyrate present in the lower intestinal tracts of avian and human hosts. Conversely, the organic acid lactate, which is abundant in the upper intestinal tract where C. jejuni colonizes less efficiently, reduced expression of these genes. We propose that microbiota-generated SCFAs and lactate are cues for C. jejuni to discriminate between different intestinal regions. Spatial gradients of these metabolites likely allow C. jejuni to locate preferred niches in the lower intestinal tract and induce expression of factors required for intestinal growth and commensal colonization. Our findings provide insights into the types of cues C. jejuni monitors in the avian host for commensalism and likely in humans to promote diarrheal disease. IMPORTANCE Campylobacter jejuni is a commensal of the intestinal tracts of avian species and other animals and a leading cause of diarrheal disease in humans. The types of cues sensed by C. jejuni to influence responses to promote commensalism or

  18. Insights into the evolution of sialic acid catabolism among bacteria

    Directory of Open Access Journals (Sweden)

    Almagro-Moreno Salvador

    2009-05-01

    Full Text Available Abstract Background Sialic acids comprise a family of nine-carbon amino sugars that are prevalent in mucus rich environments. Sialic acids from the human host are used by a number of pathogens as an energy source. Here we explore the evolution of the genes involved in the catabolism of sialic acid. Results The cluster of genes encoding the enzymes N-acetylneuraminate lyase (NanA, epimerase (NanE, and kinase (NanK, necessary for the catabolism of sialic acid (the Nan cluster, are confined 46 bacterial species, 42 of which colonize mammals, 33 as pathogens and 9 as gut commensals. We found a putative sialic acid transporter associated with the Nan cluster in most species. We reconstructed the phylogenetic history of the NanA, NanE, and NanK proteins from the 46 species and compared them to the species tree based on 16S rRNA. Within the NanA phylogeny, Gram-negative and Gram-positive bacteria do not form distinct clades. NanA from Yersinia and Vibrio species was most closely related to the NanA clade from eukaryotes. To examine this further, we reconstructed the phylogeny of all NanA homologues in the databases. In this analysis of 83 NanA sequences, Bacteroidetes, a human commensal group formed a distinct clade with Verrucomicrobia, and branched with the Eukaryotes and the Yersinia/Vibrio clades. We speculate that pathogens such as V. cholerae may have acquired NanA from a commensal aiding their colonization of the human gut. Both the NanE and NanK phylogenies more closely represented the species tree but numerous incidences of incongruence are noted. We confirmed the predicted function of the sialic acid catabolism cluster in members the major intestinal pathogens Salmonella enterica, Vibrio cholerae, V. vulnificus, Yersinia enterocolitica and Y. pestis. Conclusion The Nan cluster among bacteria is confined to human pathogens and commensals conferring them the ability to utilize a ubiquitous carbon source in mucus rich surfaces of the human body

  19. Isolation of oxalotrophic bacteria associated with Varroa destructor mites.

    Science.gov (United States)

    Maddaloni, M; Pascual, D W

    2015-11-01

    Bacteria associated with varroa mites were cultivated and genotyped by 16S RNA. Under our experimental conditions, the cultivable bacteria were few in number, and most of them proved to be fastidious to grow. Cultivation with seven different media under O2 /CO2 conditions and selection for colony morphology yielded a panel of species belonging to 13 different genera grouped in two different phyla, proteobacteria and actinobacteria. This study identified one species of actinobacteria that is a known commensal of the honey bee. Some isolates are oxalotrophic, a finding that may carry ramifications into the use of oxalic acid to control the number of phoretic mites in the managed colonies of honey bees. Oxalic acid, legally or brevi manu, is widely used to control phoretic Varroa destructor mites, a major drive of current honey bees' colony losses. Unsubstantiated by sanctioned research are rumours that in certain instances oxalic acid is losing efficacy, forcing beekeepers to increase the frequency of treatments. This investigation fathoms the hypothesis that V. destructor associates with bacteria capable of degrading oxalic acid. The data show that indeed oxalotrophy, a rare trait among bacteria, is common in bacteria that we isolated from V. destructor mites. This finding may have ramifications in the use of oxalic acid as a control agent. © 2015 The Society for Applied Microbiology.

  20. Pontonides sympathes, a new species of commensal shrimp (Crustacea, Decapoda, Pontoniinae) from Antipatharia in the Galapagos Islands

    NARCIS (Netherlands)

    Ridder, de Ch.; Holthuis, L.B.

    1979-01-01

    During a stay at the Galapagos Islands (1975-1976), one of us (Ch. de Ridder) made a study of Gorgonaria and Antipatharia, paying special attention to commensals found with these corals. On Antipathes galapagensis Deichmann, 1941, a species of the pontoniine shrimp genus Pontonides was observed,

  1. Prevalence and resistance of commensal Staphylococcus aureus, including meticillin-resistant Staphylococcus aureus: a European cross-sectional study.

    NARCIS (Netherlands)

    Heijer, C.D.J. den; Bijnen, E.M.E. van; Paget, W.J.; Pringle, M.; Goossen, H.; Bruggeman, C.A.; Schellevis, F.G.; Stobberingh, E.E.

    2014-01-01

    Background: Information on the prevalence of Staphylococcus aureus resistance has mainly been obtained from invasive strains, although the commensal flora is considered an important reservoir of resistance. Within ‘The Appropriateness of prescribing antibiotics in primary health care in Europe with

  2. It's not just lunch: extra-pair commensality can trigger sexual jealousy.

    Directory of Open Access Journals (Sweden)

    Kevin M Kniffin

    Full Text Available Do people believe that sharing food might involve sharing more than just food? To investigate this, participants were asked to rate how jealous they (Study 1--or their best friend (Study 2--would be if their current romantic partner were contacted by an ex-romantic partner and subsequently engaged in an array of food- and drink-based activities. We consistently find--across both men and women--that meals elicit more jealousy than face-to-face interactions that do not involve eating, such as having coffee. These findings suggest that people generally presume that sharing a meal enhances cooperation. In the context of romantic pairs, we find that participants are attuned to relationship risks that extra-pair commensality can present. For romantic partners left out of a meal, we find a common view that lunch, for example, is not "just lunch."

  3. It's not just lunch: extra-pair commensality can trigger sexual jealousy.

    Science.gov (United States)

    Kniffin, Kevin M; Wansink, Brian

    2012-01-01

    Do people believe that sharing food might involve sharing more than just food? To investigate this, participants were asked to rate how jealous they (Study 1)--or their best friend (Study 2)--would be if their current romantic partner were contacted by an ex-romantic partner and subsequently engaged in an array of food- and drink-based activities. We consistently find--across both men and women--that meals elicit more jealousy than face-to-face interactions that do not involve eating, such as having coffee. These findings suggest that people generally presume that sharing a meal enhances cooperation. In the context of romantic pairs, we find that participants are attuned to relationship risks that extra-pair commensality can present. For romantic partners left out of a meal, we find a common view that lunch, for example, is not "just lunch."

  4. It’s Not Just Lunch: Extra-Pair Commensality Can Trigger Sexual Jealousy

    Science.gov (United States)

    Kniffin, Kevin M.; Wansink, Brian

    2012-01-01

    Do people believe that sharing food might involve sharing more than just food? To investigate this, participants were asked to rate how jealous they (Study 1) – or their best friend (Study 2) – would be if their current romantic partner were contacted by an ex-romantic partner and subsequently engaged in an array of food- and drink-based activities. We consistently find – across both men and women – that meals elicit more jealousy than face-to-face interactions that do not involve eating, such as having coffee. These findings suggest that people generally presume that sharing a meal enhances cooperation. In the context of romantic pairs, we find that participants are attuned to relationship risks that extra-pair commensality can present. For romantic partners left out of a meal, we find a common view that lunch, for example, is not “just lunch.” PMID:22792327

  5. Understanding role of genome dynamics in host adaptation of gut commensal, L. reuteri

    Directory of Open Access Journals (Sweden)

    Shikha Sharma

    2017-10-01

    Full Text Available Lactobacillus reuteri is a gram-positive gut commensal and exhibits noteworthy adaptation to its vertebrate hosts. Host adaptation is often driven by inter-strain genome dynamics like expansion of insertion sequences that lead to acquisition and loss of gene(s and creation of large dynamic regions. In this regard we carried in-house genome sequencing of large number of L. reuteri strains origination from human, chicken, pig and rodents. We further next generation sequence data in understanding invasion and expansion of an IS element in shaping genome of strains belonging to human associated lineage. Finally, we share our experience in high-throughput genomic library preparation and generating high quality sequence data of a very low GC bacterium like L. reuteri.

  6. Update on the Commensal VLA Low-band Ionospheric and Transient Experiment (VLITE)

    Science.gov (United States)

    Kassim, Namir E.; Clarke, Tracy E.; Ray, Paul S.; Polisensky, Emil; Peters, Wendy M.; Giacintucci, Simona; Helmboldt, Joseph F.; Hyman, Scott D.; Brisken, Walter; Hicks, Brian; Deneva, Julia S.

    2017-01-01

    The JVLA Low-band Ionospheric and Transient Experiment (VLITE) is a commensal observing system on the NRAO JVLA. The separate optical path of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus GHz feeds provided an opportunity to expand the simultaneous frequency operation of the JVLA through joint observations across both systems. The low-band receivers on 10 JVLA antennas are outfitted with dedicated samplers and use spare fibers to transport the 320-384 MHz band to the VLITE correlator. The initial phase of VLITE uses a custom-designed real-time DiFX software correlator to produce autocorrelations, as well as parallel and cross-hand cross-correlations from the linear dipole feeds. NRL and NRAO have worked together to explore the scientific potential of the commensal low frequency system for ionospheric remote sensing, astrophysics and transients. VLITE operates at nearly 70% wall time with roughly 6200 hours of JVLA time recorded each year.VLITE data are used in real-time for ionospheric research and are transferred daily to NRL for processing in the astrophysics and transient pipelines. These pipelines provide automated radio frequency interference excision, calibration, imaging and self-calibration of data.We will review early scientific results from VLITE across all three science focus areas, including the ionosphere, slow (> 1 sec) transients, and astrophysics. We also discuss the future of the project, that includes its planned expansion to eVLITE including the addition of more antennas, and a parallel capability to search for fast (complement NRAO’s 3 GHz VLA Sky Survey (VLASS). Revised pipelines are under development for operation during the on-the-fly operation mode of the sky survey.

  7. The modular nature of dendritic cell responses to commensal and pathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Lisa Rizzetto

    Full Text Available The type of adaptive immune response following host-fungi interaction is largely determined at the level of the antigen-presenting cells, and in particular by dendritic cells (DCs. The extent to which transcriptional regulatory events determine the decision making process in DCs is still an open question. By applying the highly structured DC-ATLAS pathways to analyze DC responses, we classified the various stimuli by revealing the modular nature of the different transcriptional programs governing the recognition of either pathogenic or commensal fungi. Through comparison of the network parts affected by DC stimulation with fungal cells and purified single agonists, we could determine the contribution of each receptor during the recognition process. We observed that initial recognition of a fungus creates a temporal window during which the simultaneous recruitment of cell surface receptors can intensify, complement and sustain the DC activation process. The breakdown of the response to whole live cells, through the purified components, showed how the response to invading fungi uses a set of specific modules. We find that at the start of fungal recognition, DCs rapidly initiate the activation process. Ligand recognition is further enhanced by over-expression of the receptor genes, with a significant correspondence between gene expression and protein levels and function. Then a marked decrease in the receptor levels follows, suggesting that at this moment the DC commits to a specific fate. Overall our pathway based studies show that the temporal window of the fungal recognition process depends on the availability of ligands and is different for pathogens and commensals. Modular analysis of receptor and signalling-adaptor expression changes, in the early phase of pathogen recognition, is a valuable tool for rapid and efficient dissection of the pathogen derived components that determine the phenotype of the DC and thereby the type of immune response

  8. Fecal bacteria from treatment-naive Crohn's disease patients can skew helper T cell responses.

    Science.gov (United States)

    Ma, Fei; Zhang, Yi; Xing, Junjie; Song, Xiaoling; Huang, Ling; Weng, Hao; Wu, Xiangsong; Walker, Emma; Wang, Zhongchuan

    2017-12-01

    Many studies have demonstrated that the inflamed mucosa of Crohn's disease (CD) patients presented a disturbed gut commensal community, and the shift in microbial composition and species variety is associated with disease severity. To establish a link between changes in the intestinal bacterial composition and the alteration of inflammation, we obtained fecal bacteria from CD patients and non-CD controls. The bacteria were then used to stimulate the peripheral blood mononuclear cells (PBMCs) from one non-CD individual. We found that the frequency of IFN-γ- and IL-17-expressing CD4 T cells was significantly higher after stimulation with CD bacteria than with non-CD bacteria, while the frequency of IL-4- and IL-10-expressing CD4 T cells was significantly decreased after stimulation with CD bacteria. A similar trend was observed in the level of cytokine expression and transcription expression. However, this difference was not clear-cut, as overlapping regions were observed between the two groups. With longer stimulation using CD bacteria, the skewing toward Th1/Th17 responses were further increased. This increase depended on the presence of monocytes/macrophages. Interestingly, we also found that B cells presented an inhibitory effect in CD bacteria-mediated skewing toward Th1/Th17 cells and promoted IL-10 secretion in CD bacteria-stimulated PBMCs. Together, our results demonstrated that CD bacteria could promote Th1/Th17 inflammation in a host factor-independent fashion. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Host Immune Selection of Rumen Bacteria through Salivary Secretory IgA

    Directory of Open Access Journals (Sweden)

    Janelle M. Fouhse

    2017-05-01

    Full Text Available The rumen microbiome is integral to efficient production in cattle and shows strong host specificity, yet little is known about what host factors shape rumen microbial composition. Secretory immunoglobulin A (SIgA is produced in large amounts in the saliva, can coat both commensal and pathogenic microbes within the gut, and presents a plausible mechanism of host specificity. However, the role salivary SIgA plays in commensal bacteria selection in ruminants remains elusive. The main objectives of this study were to develop an immuno-affinity benchtop method to isolate SIgA-tagged microbiota and to determine if salivary SIgA preferentially binds selected bacteria. We hypothesized that SIgA-tagged bacteria would differ from total bacteria, thus supporting a potential host-derived mechanism in commensal bacterial selection. Whole rumen (n = 9 and oral secretion samples (n = 10 were incubated with magnetic beads conjugated with anti-secretory IgA antibodies to enrich SIgA-tagged microbiota. Microbial DNA from the oral secretion, whole rumen, SIgA-tagged oral secretion, and SIgA-tagged rumen was isolated for amplicon sequencing of V1–V3 region of 16S rDNA genes. Whole rumen and oral secretion had distinctive (P < 0.05 bacterial compositions indicated by the non-parametric multidimensional scaling plot using Euclidean distance metrics. The SIgA-tagged microbiota from rumen and oral secretion had similar abundance of Bacteroidetes, Actinobacteria, Fibrobacter, candidate phyla TM7, and Tenericutes and are clustered tightly. Composition of SIgA-tagged oral secretion microbiota was more similar to whole rumen microbiota than whole oral secretion due to enrichment of rumen bacteria (Lachnospiraceae and depletion of oral taxa (Streptococcus, Rothia, Neisseriaceae, and Lactobacillales. In conclusion, SIgA-tagged oral secretion microbiota had an increased resemblance to whole rumen microbiota, suggesting salivary SIgA-coating may be one host

  10. Social network community structure and the contact-mediated sharing of commensal E. coli among captive rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Balasubramaniam, Krishna; Beisner, Brianne; Guan, Jiahui; Vandeleest, Jessica; Fushing, Hsieh; Atwill, Edward; McCowan, Brenda

    2018-01-01

    In group-living animals, heterogeneity in individuals' social connections may mediate the sharing of microbial infectious agents. In this regard, the genetic relatedness of individuals' commensal gut bacterium Escherichia coli may be ideal to assess the potential for pathogen transmission through animal social networks. Here we use microbial phylogenetics and population genetics approaches, as well as host social network reconstruction, to assess evidence for the contact-mediated sharing of E. coli among three groups of captively housed rhesus macaques ( Macaca mulatta ), at multiple organizational scales. For each group, behavioral data on grooming, huddling, and aggressive interactions collected for a six-week period were used to reconstruct social network communities via the Data Cloud Geometry (DCG) clustering algorithm. Further, an E. coli isolate was biochemically confirmed and genotypically fingerprinted from fecal swabs collected from each macaque. Population genetics approaches revealed that Group Membership, in comparison to intrinsic attributes like age, sex, and/or matriline membership of individuals, accounted for the highest proportion of variance in E. coli genotypic similarity. Social network approaches revealed that such sharing was evident at the community-level rather than the dyadic level. Specifically, although we found no links between dyadic E. coli similarity and social contact frequencies, similarity was significantly greater among macaques within the same social network communities compared to those across different communities. Moreover, tests for one of our study-groups confirmed that E. coli isolated from macaque rectal swabs were more genotypically similar to each other than they were to isolates from environmentally deposited feces. In summary, our results suggest that among frequently interacting, spatially constrained macaques with complex social relationships, microbial sharing via fecal-oral, social contact-mediated routes may

  11. Lactic acid bacteria as a cell factory for riboflavin production.

    Science.gov (United States)

    Thakur, Kiran; Tomar, Sudhir Kumar; De, Sachinandan

    2016-07-01

    Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin-enriched functional foods, proper selection and exploitation of riboflavin-producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Molecular players involved in the interaction between beneficial bacteria and the immune system

    Directory of Open Access Journals (Sweden)

    Arancha eHevia

    2015-11-01

    Full Text Available The human gastrointestinal tract is a very complex ecosystem, in which there is a continuous interaction between nutrients, host cells, and microorganisms. The gut microbiota comprises trillions of microbes that have been selected during evolution on the basis of their functionality and capacity to survive in, and adapt to, the intestinal environment. Host bacteria and our immune system constantly sense and react to one another. In this regard, commensal microbes contribute to gut homeostasis, whereas the necessary responses are triggered against enteropathogens. Some representatives of our gut microbiota have beneficial effects on human health. Some of the most important roles of these microbes are to help to maintain the integrity of the mucosal barrier, to provide nutrients such as vitamins, or to protect against pathogens. In addition, the interaction between commensal microbiota and the mucosal immune system is crucial for proper immune function. This process is mainly performed via the pattern recognition receptors of epithelial cells, such as Toll-like or Nod-like receptors, which are able to recognize the molecular effectors that are produced by intestinal microbes. These effectors mediate processes that can ameliorate certain inflammatory gut disorders, discriminate between beneficial and pathogenic bacteria, or increase the number of immune cells or their pattern recognition receptors. This review intends to summarize the molecular players produced by probiotic bacteria, notably Lactobacillus and Bifidobacterium strains, but also other very promising potential probiotics, which affect the human immune system.

  13. Bacteria-Targeting Nanoparticles for Managing Infections

    Science.gov (United States)

    Radovic-Moreno, Aleksandar Filip

    Bacterial infections continue to be a significant concern particularly in healthcare settings and in the developing world. Current challenges include the increasing spread of drug resistant (DR) organisms, the side effects of antibiotic therapy, the negative consequences of clearing the commensal bacterial flora, and difficulties in developing prophylactic vaccines. This thesis was an investigation of the potential of a class of polymeric nanoparticles (NP) to contribute to the management of bacterial infections. More specifically, steps were taken towards using these NPs (1) to achieve greater spatiotemporal control over drug therapy by more targeted antibiotic delivery to bacteria, and (2) to develop a prophylactic vaccine formulation against the common bacterial sexually transmitted disease (STD) caused by Chlamydia trachomatis. In the first part, we synthesized polymeric NPs containing poly(lactic-co-glycolic acid)-block-poly(L-histidine)-block-poly(ethylene glycol) (PLGA-PLH-PEG). We show that these NPs are able to bind to bacteria under model acidic infection conditions and are able to encapsulate and deliver vancomycin to inhibit the growth of Staphylococcus aureus bacteria in vitro. Further work showed that the PLGA-PLH-PEG-based NPs demonstrated the potential for competition for binding bacteria at a site of infection from soluble protein and model phagocytic and tissue-resident cells in a NP composition dependent manner. The NPs demonstrated low toxicity in vitro, were well tolerated by mice in vivo, and circulated in the blood on timescales comparable to control PLGA-PEG NPs. In the second part, we used PLGA-PLH-PEG-based NPs to design a prophylactic vaccine against the obligate intracellular bacterium Chlamydia trachomatis, the most common cause of bacterial STD in the world. Currently, no vaccines against this pathogen are approved for use in humans. We first formulated NPs encapsulating the TLR7 agonist R848 conjugated to poly(lactic acid) (R848-PLA

  14. Metabolic Interactions in the Gastrointestinal Tract (GIT: Host, Commensal, Probiotics, and Bacteriophage Influences

    Directory of Open Access Journals (Sweden)

    Luis Vitetta

    2015-12-01

    Full Text Available Life on this planet has been intricately associated with bacterial activity at all levels of evolution and bacteria represent the earliest form of autonomous existence. Plants such as those from the Leguminosae family that form root nodules while harboring nitrogen-fixing soil bacteria are a primordial example of symbiotic existence. Similarly, cooperative activities between bacteria and animals can also be observed in multiple domains, including the most inhospitable geographical regions of the planet such as Antarctica and the Lower Geyser Basin of Yellowstone National Park. In humans bacteria are often classified as either beneficial or pathogenic and in this regard we posit that this artificial nomenclature is overly simplistic and as such almost misinterprets the complex activities and inter-relationships that bacteria have with the environment as well as the human host and the plethora of biochemical activities that continue to be identified. We further suggest that in humans there are neither pathogenic nor beneficial bacteria, just bacteria embraced by those that tolerate the host and those that do not. The densest and most complex association exists in the human gastrointestinal tract, followed by the oral cavity, respiratory tract, and skin, where bacteria—pre- and post-birth—instruct the human cell in the fundamental language of molecular biology that normally leads to immunological tolerance over a lifetime. The overall effect of this complex output is the elaboration of a beneficial milieu, an environment that is of equal or greater importance than the bacterium in maintaining homeostasis.

  15. Evaluation of reticulated gelatin-hibiscus-propolis against intestinal commensal species commonly associated with urinary tract infections.

    Science.gov (United States)

    Olier, Maïwenn; Sekkal, Soraya; Harkat, Cherryl; Eutamene, Hélène; Theodorou, Vassilia

    2017-05-01

    Reticulated gelatin (RG), hibiscus and propolis (RGHP) is a medical device that can reduce the bacterial adherence to epithelial cultured cells and invasion by enteropathogens, thus gathering relevant properties to decrease the risk of urinary tract infections (UTIs). We aimed at evaluating in Wistar rats the efficacy of RGHP, RG and vehicle against intestinal commensals commonly involved in UTIs. Animals received orally (with supplemental Na 2 CO 3 ): RGHP 1540 mg/day/rat; RG 500 mg/day/rat or vehicle. RGHP significantly reduced fecal Escherichia coli and Enterococcus spp. levels without affecting other targeted Enterobacteriaceae. The antagonistic property of RGHP was confirmed in streptomycin-pretreated rats highly colonized with a human commensal E. coli strain with uropathogenic potential. RGHP may decrease the risk of UTIs by reducing colonization by opportunistic uropathogens.

  16. The genetic diversity of commensal Escherichia coli strains isolated from nonantimicrobial treated pigs varies according to age group

    DEFF Research Database (Denmark)

    Ahmed, Shahana; Olsen, John E.; Herrero-Fresno, Ana

    2017-01-01

    This is the first report on the genetic diversity of commensal E. coli from pigs reared in an antibiotic free production system and belonging to different age groups. The study investigated the genetic diversity and relationship of 900 randomly collected commensal E. coli strains from non......-antimicrobial treated pigs assigned to five different age groups in a Danish farm. Fifty-two unique REP profiles were detected suggesting a high degree of diversity. The number of strains per pig ranged from two to 13. The highest and the lowest degree of diversity were found in the early weaners group (Shannon...... diversity index, H' of 2.22) and piglets (H' of 1.46) respectively. The REP profiles, R1, R7 and R28, were the most frequently observed in all age groups. E. coli strains representing each REP profile and additional strains associated with the dominant profiles were subjected to PFGE and were assigned to 67...

  17. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water.

    Science.gov (United States)

    Franz, Eelco; Schijven, Jack; de Roda Husman, Ana Maria; Blaak, Hetty

    2014-06-17

    The extent to which pathogenic and commensal E. coli (respectively PEC and CEC) can survive, and which factors predominantly determine the rate of decline, are crucial issues from a public health point of view. The goal of this study was to provide a quantitative summary of the variability in E. coli survival in soil and water over a broad range of individual studies and to identify the most important sources of variability. To that end, a meta-regression analysis on available literature data was conducted. The considerable variation in reported decline rates indicated that the persistence of E. coli is not easily predictable. The meta-analysis demonstrated that for soil and water, the type of experiment (laboratory or field), the matrix subtype (type of water and soil), and temperature were the main factors included in the regression analysis. A higher average decline rate in soil of PEC compared with CEC was observed. The regression models explained at best 57% of the variation in decline rate in soil and 41% of the variation in decline rate in water. This indicates that additional factors, not included in the current meta-regression analysis, are of importance but rarely reported. More complete reporting of experimental conditions may allow future inference on the global effects of these variables on the decline rate of E. coli.

  18. Commensal microbiota contributes to chronic endocarditis in TAX1BP1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Satoko Nakano

    Full Text Available Tax1-binding protein 1 (Tax1bp1 negatively regulates NF-κB by editing the ubiquitylation of target molecules by its catalytic partner A20. Genetically engineered TAX1BP1-deficient (KO mice develop age-dependent inflammatory constitutions in multiple organs manifested as valvulitis or dermatitis and succumb to premature death. Laser capture dissection and gene expression microarray analysis on the mitral valves of TAX1BP1-KO mice (8 and 16 week old revealed 588 gene transcription alterations from the wild type. SAA3 (serum amyloid A3, CHI3L1, HP, IL1B and SPP1/OPN were induced 1,180-, 361-, 187-, 122- and 101-fold respectively. WIF1 (Wnt inhibitory factor 1 exhibited 11-fold reduction. Intense Saa3 staining and significant I-κBα reduction were reconfirmed and massive infiltration of inflammatory lymphocytes and edema formation were seen in the area. Antibiotics-induced 'germ free' status or the additional MyD88 deficiency significantly ameliorated TAX1BP1-KO mice's inflammatory lesions. These pathological conditions, as we named 'pseudo-infective endocarditis' were boosted by the commensal microbiota who are usually harmless by their nature. This experimental outcome raises a novel mechanistic linkage between endothelial inflammation caused by the ubiquitin remodeling immune regulators and fatal cardiac dysfunction.

  19. The Acinetobacter baumannii Oxymoron: Commensal Hospital Dweller Turned Pan-Drug-Resistant Menace

    Science.gov (United States)

    Roca, Ignasi; Espinal, Paula; Vila-Farrés, Xavier; Vila, Jordi

    2012-01-01

    During the past few decades Acinetobacter baumannii has evolved from being a commensal dweller of health-care facilities to constitute one of the most annoying pathogens responsible for hospitalary outbreaks and it is currently considered one of the most important nosocomial pathogens. In a prevalence study of infections in intensive care units conducted among 75 countries of the five continents, this microorganism was found to be the fifth most common pathogen. Two main features contribute to the success of A. baumannii: (i) A. baumannii exhibits an outstanding ability to accumulate a great variety of resistance mechanisms acquired by different mechanisms, either mutations or acquisition of genetic elements such as plasmids, integrons, transposons, or resistant islands, making this microorganism multi- or pan-drug-resistant and (ii) The ability to survive in the environment during prolonged periods of time which, combined with its innate resistance to desiccation and disinfectants, makes A. baumannii almost impossible to eradicate from the clinical setting. In addition, its ability to produce biofilm greatly contributes to both persistence and resistance. In this review, the pathogenesis of the infections caused by this microorganism as well as the molecular bases of antibacterial resistance and clinical aspects such as treatment and potential future therapeutic strategies are discussed in depth. PMID:22536199

  20. Systems-level Proteomics of Two Ubiquitous Leaf Commensals Reveals Complementary Adaptive Traits for Phyllosphere Colonization.

    Science.gov (United States)

    Müller, Daniel B; Schubert, Olga T; Röst, Hannes; Aebersold, Ruedi; Vorholt, Julia A

    2016-10-01

    Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Systems-level Proteomics of Two Ubiquitous Leaf Commensals Reveals Complementary Adaptive Traits for Phyllosphere Colonization*

    Science.gov (United States)

    Müller, Daniel B.; Schubert, Olga T.; Röst, Hannes; Aebersold, Ruedi; Vorholt, Julia A.

    2016-01-01

    Plants are colonized by a diverse community of microorganisms, the plant microbiota, exhibiting a defined and conserved taxonomic structure. Niche separation based on spatial segregation and complementary adaptation strategies likely forms the basis for coexistence of the various microorganisms in the plant environment. To gain insights into organism-specific adaptations on a molecular level, we selected two exemplary community members of the core leaf microbiota and profiled their proteomes upon Arabidopsis phyllosphere colonization. The highly quantitative mass spectrometric technique SWATH MS was used and allowed for the analysis of over two thousand proteins spanning more than three orders of magnitude in abundance for each of the model strains. The data suggest that Sphingomonas melonis utilizes amino acids and hydrocarbon compounds during colonization of leaves whereas Methylobacterium extorquens relies on methanol metabolism in addition to oxalate metabolism, aerobic anoxygenic photosynthesis and alkanesulfonate utilization. Comparative genomic analyses indicates that utilization of oxalate and alkanesulfonates is widespread among leaf microbiota members whereas, aerobic anoxygenic photosynthesis is almost exclusively found in Methylobacteria. Despite the apparent niche separation between these two strains we also found a relatively small subset of proteins to be coregulated, indicating common mechanisms, underlying successful leaf colonization. Overall, our results reveal for two ubiquitous phyllosphere commensals species-specific adaptations to the host environment and provide evidence for niche separation within the plant microbiota. PMID:27457762

  2. Helicobacter pylori the Latent Human Pathogen or an Ancestral Commensal Organism

    Directory of Open Access Journals (Sweden)

    Jackie Li

    2018-04-01

    Full Text Available We dedicated this review to discuss Helicobacter pylori as one of the latest identified bacterial pathogens in humans and whether its role is mainly as a pathogen or a commensal. Diseases associated with this bacterium were highly prevalent during the 19th century and gradually have declined. Most diseases associated with H. pylori occurred in individuals older than 40 years of age. However, acquisition of H. pylori occurs mainly in young children inside the family setting. Prevalence and incidence of H. pylori has had a dramatic change in the last part of the 20th century and beginning of the 21th century. In developed countries there is a clear interruption of transmission and the lowest prevalence is observed in children younger than 10 years in these countries. A similar decline is observed but not at the same level in developing countries. Here we discuss the impact of the presence or absence of H. pylori in the health status of humans. We also discuss whether it is necessary or not to establish H. pylori eradication programs on light of the current decline in H. pylori prevalence.

  3. Commensal Lactobacillus Controls Immune Tolerance during Acute Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Nobuhiro Nakamoto

    2017-10-01

    Full Text Available Summary: Gut-derived microbial antigens trigger the innate immune system during acute liver injury. During recovery, regulatory immunity plays a role in suppressing inflammation; however, the precise mechanism underlying this process remains obscure. Here, we find that recruitment of immune-regulatory classical dendritic cells (cDCs is crucial for liver tolerance in concanavalin A-induced acute liver injury. Acute liver injury resulted in enrichment of commensal Lactobacillus in the gut. Notably, Lactobacillus activated IL-22 production by gut innate lymphoid cells and raised systemic IL-22 levels. Gut-derived IL-22 enhanced mucosal barrier function and promoted the recruitment of regulatory cDCs to the liver. These cDCs produced IL-10 and TGF-β through TLR9 activation, preventing further liver inflammation. Collectively, our results indicate that beneficial gut microbes influence tolerogenic immune responses in the liver. Therefore, modulation of the gut microbiota might be a potential option to regulate liver tolerance. : Nakamoto et.al. find that Lactobacillus accumulates in the gut and activates IL-22 production by innate lymphoid cells during acute liver injury. Gut-derived IL-22 contributes to liver tolerance via induction of regulatory DCs. Keywords: immune tolerance, dendritic cell, innate lymphoid cell, acute liver injury, interleukin-10, interleukin-22, microbiota, dysbiosis

  4. Global transcriptional landscape and promoter mapping of the gut commensal Bifidobacterium breve UCC2003.

    Science.gov (United States)

    Bottacini, Francesca; Zomer, Aldert; Milani, Christian; Ferrario, Chiara; Lugli, Gabriele Andrea; Egan, Muireann; Ventura, Marco; van Sinderen, Douwe

    2017-12-28

    Bifidobacterium breve represents a common member of the infant gut microbiota and its presence in the gut has been associated with host well being. For this reason it is relevant to investigate and understand the molecular mechanisms underlying the establishment, persistence and activities of this gut commensal in the host environment. The assessment of vegetative promoters in the bifidobacterial prototype Bifidobacterium breve UCC2003 was performed employing a combination of RNA tiling array analysis and cDNA sequencing. Canonical -10 (TATAAT) and -35 (TTGACA) sequences were identified upstream of transcribed genes or operons, where deviations from this consensus correspond to transcription level variations. A Random Forest analysis assigned the -10 region of B. breve promoters as the element most impacting on the level of transcription, followed by the spacer length and the 5'-UTR length of transcripts. Furthermore, our transcriptome study also identified rho-independent termination as the most common and effective termination signal of highly and moderately transcribed operons in B. breve. The present study allowed us to identify genes and operons that are actively transcribed in this organism during logarithmic growth, and link promoter elements with levels of transcription of essential genes in this organism. As homologs of many of our identified genes are present across the whole genus Bifidobacterium, our dataset constitutes a transcriptomic reference to be used for future investigations of gene expression in members of this genus.

  5. Genotyping and subtyping of Giardia and Cryptosporidium isolates from commensal rodents in China.

    Science.gov (United States)

    Zhao, Z; Wang, R; Zhao, W; Qi, M; Zhao, J; Zhang, L; Li, J; Liu, A

    2015-05-01

    Cryptosporidium and Giardia are two important zoonotic intestinal parasites responsible for diarrhoea in humans and other animals worldwide. Rodents, as reservoirs or carriers of Cryptosporidium and Giardia, are abundant and globally widespread. In the present study, we collected 232 fecal specimens from commensal rodents captured in animal farms and farm neighbourhoods in China. We collected 33 Asian house rats, 168 brown rats and 31 house mice. 6.0% (14/232) and 8.2% (19/232) of these rodents were microscopy-positive for Giardia cysts and Cryptosporidium oocysts, respectively. All 14 Giardia isolates were identified as Giardia duodenalis assemblage G at a minimum of one or maximum of three gene loci (tpi, gdh and bg). By small subunit rRNA (SSU rRNA) gene sequencing, Cryptosporidium parvum (n = 12) and Cryptosporidium muris (n = 7) were identified. The gp60 gene encoding the 60-kDa glycoprotein was successfully amplified and sequenced in nine C. parvum isolates, all of which belonged to the IIdA15G1 subtype. Observation of the same IIdA15G1 subtype in humans (previously) and in rodents (here) suggests that rodents infected with Cryptosporidium have the potential to transmit cryptosporidiosis to humans.

  6. IL-9 and Mast Cells Are Key Players of Candida albicans Commensalism and Pathogenesis in the Gut.

    Science.gov (United States)

    Renga, Giorgia; Moretti, Silvia; Oikonomou, Vasilis; Borghi, Monica; Zelante, Teresa; Paolicelli, Giuseppe; Costantini, Claudio; De Zuani, Marco; Villella, Valeria Rachela; Raia, Valeria; Del Sordo, Rachele; Bartoli, Andrea; Baldoni, Monia; Renauld, Jean-Christophe; Sidoni, Angelo; Garaci, Enrico; Maiuri, Luigi; Pucillo, Carlo; Romani, Luigina

    2018-05-08

    Candida albicans is implicated in intestinal diseases. Identifying host signatures that discriminate between the pathogenic versus commensal nature of this human commensal is clinically relevant. In the present study, we identify IL-9 and mast cells (MCs) as key players of Candida commensalism and pathogenicity. By inducing TGF-β in stromal MCs, IL-9 pivotally contributes to mucosal immune tolerance via the indoleamine 2,3-dioxygenase enzyme. However, Candida-driven IL-9 and mucosal MCs also contribute to barrier function loss, dissemination, and inflammation in experimental leaky gut models and are upregulated in patients with celiac disease. Inflammatory dysbiosis occurs with IL-9 and MC deficiency, indicating that the activity of IL-9 and MCs may go beyond host immunity to include regulation of the microbiota. Thus, the output of the IL-9/MC axis is highly contextual during Candida colonization and reveals how host immunity and the microbiota finely tune Candida behavior in the gut. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Borniopsis mortoni sp. n. (Heterodonta, Galeommatoidea, Galeommatidae sensu lato, a new bivalve commensal with a synaptid sea cucumber from Japan

    Directory of Open Access Journals (Sweden)

    Ryutaro Goto

    2016-09-01

    Full Text Available The Galeommatoidea is a bivalve superfamily that exhibits high species diversity in shallow waters. Many members of this superfamily are associated commensally with burrowing marine invertebrates in benthic sediments. The genus Borniopsis is known only from eastern Asia and exhibits high host diversity (e.g., mantis shrimps, crabs, holothurians, sipunculans and echiurans. A new species, Borniopsis mortoni sp. n., is described from mud flats at the mouth of the Souzu River, southwestern Shikoku Island, Japan. This species has elongate-ovate shells covered by a tan to dark brown periostracum, and lives attached by both its foot and byssal threads to the body surface of the synaptid sea cucumber Patinapta ooplax. Several individuals of B. mortoni are often found on the same host, but sometimes more than 10 individuals can occur together. Borniopsis mortoni is one of the smallest species in this genus. Probably, its small body size is an adaptation to the mode of life in a narrow host burrow. Until now, only two other Borniopsis species were known to have commensal associations with synaptids. Thus, this is the third example of a synaptid-associated species from this genus. In addition, we briefly review the galeommatoideans commensal with apodid sea cucumbers.

  8. A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Brooke LD; Li, Jie; Sanford, James A.; Kim, Young-Mo; Kronewitter, Scott R.; Jones, Marcus B.; Peterson, Christine; Peterson, Scott N.; Frank, Bryan C.; Purvine, Samuel O.; Brown, Joseph N.; Metz, Thomas O.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2013-06-26

    The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.

  9. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  10. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  11. Ugly bugs in healthy guts! Carriage of multidrug-resistant and ESBL-producing commensal Enterobacteriaceae in the intestine of healthy Nepalese adults.

    Science.gov (United States)

    Maharjan, Anjila; Bhetwal, Anjeela; Shakya, Shreena; Satyal, Deepa; Shah, Shashikala; Joshi, Govardhan; Khanal, Puspa Raj; Parajuli, Narayan Prasad

    2018-01-01

    Fecal carriage of multidrug-resistant and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is one of the important risk factors for infection with antibiotic-resistant bacteria. In this report, we examined the prevalence of multidrug-resistant and ESBL-producing common enterobacterial strains colonizing the intestinal tract of apparently healthy adults in Kathmandu, Nepal. During a 6-month period (February-July 2016), a total of 510 stool specimens were obtained from apparently healthy students of Manmohan Memorial Institute of Health Sciences, Kathmandu, Nepal. Stool specimens were cultured, and the most common enterobacterial isolates ( Escherichia coli and Klebsiella species) were subjected to antimicrobial susceptibility tests according to the standard microbiologic guidelines. Multidrug-resistant isolates were selected for ESBL confirmation by combined disk test and E-test methods. Molecular characterization of plasmid-borne ESBL genes was performed by using specific primers of cefotaximase Munich (CTX-M), sulfhydryl variant (SHV), and temoniera (TEM) by polymerase chain reaction. Among 510 bacterial strains, E. coli (432, 84.71%) was the predominant organism followed by Klebsiella oxytoca (48, 9.41%) and K. pneumoniae (30, 5.88%). ESBLs were isolated in 9.8% of the total isolates including K. oxytoca (29.17%), E. coli (7.87%), and K. pneumoniae (6.67%). Among ESBLs, bla -TEM was the predominant type (92%) followed by bla -CTX-M (60%) and bla -SHV (4%). Multidrug-resistant and ESBL-producing enterobacterial commensal strains among healthy individuals are of serious concern. Persistent carriage of ESBL organisms in healthy individuals suggests the possibility of sustained ESBL carriage among the diseased and hospitalized patients. We recommend similar types of epidemiologic surveys in larger communities and in hospital settings to ascertain the extent of ESBL resistance.

  12. Impact of Low and High Doses of Marbofloxacin on the Selection of Resistant Enterobacteriaceae in the Commensal Gut Flora of Young Cattle: Discussion of Data from 2 Study Populations.

    Science.gov (United States)

    Lhermie, Guillaume; Dupouy, Véronique; El Garch, Farid; Ravinet, Nadine; Toutain, Pierre-Louis; Bousquet-Mélou, Alain; Seegers, Henri; Assié, Sébastien

    2017-03-01

    In the context of requested decrease of antimicrobial use in veterinary medicine, our objective was to assess the impact of two doses of marbofloxacin administered on young bulls (YBs) and veal calves (VCs) treated for bovine respiratory disease, on the total population of Enterobacteriaceae in gut flora and on the emergence of resistant Enterobacteriaceae. In two independent experiments, 48 YBs from 6 commercial farms and 33 VCs previously colostrum deprived and exposed to cefquinome were randomly assigned to one of the three groups LOW, HIGH, and Control. In LOW and HIGH groups, animals received a single injection of, respectively, 2 and 10 mg/kg marbofloxacin. Feces were sampled before treatment, and at several times after treatment. Total and resistant Enterobacteriaceae enumerating were performed by plating dilutions of fecal samples on MacConkey agar plates that were supplemented or not with quinolone. In YBs, marbofloxacin treatment was associated with a transient decrease in total Enterobacteriaceae count between day (D)1 and D3 after treatment. Total Enterobacteriaceae count returned to baseline between D5 and D7 in all groups. None of the 48 YBs harbored marbofloxacin-resistant Enterobacteriaceae before treatment. After treatment, 1 out of 20 YBs from the Control group and 1 out of 14 YBs from the HIGH group exhibited marbofloxacin-resistant Enterobacteriaceae. In VCs, the rate of fluoroquinolone-resistant Enterobacteriaceae significantly increased after low and high doses of marbofloxacin treatment. However, the effect was similar for the two doses, which was probably related to the high level of resistant Enterobacteriaceae exhibited before treatment. Our results suggest that a single treatment with 2 or 10 mg/kg marbofloxacin exerts a moderate selective pressure on commensal Enterobacteriaceae in YBs and in VCs. A fivefold decrease of marbofloxacin regimen did not affect the selection of resistances among commensal bacteria.

  13. Biofilms Formed by Gram-Negative Bacteria Undergo Increased Lipid A Palmitoylation, Enhancing In Vivo Survival

    Science.gov (United States)

    Chalabaev, Sabina; Chauhan, Ashwini; Novikov, Alexey; Iyer, Pavithra; Szczesny, Magdalena; Beloin, Christophe; Caroff, Martine

    2014-01-01

    ABSTRACT Bacterial biofilm communities are associated with profound physiological changes that lead to novel properties compared to the properties of individual (planktonic) bacteria. The study of biofilm-associated phenotypes is an essential step toward control of deleterious effects of pathogenic biofilms. Here we investigated lipopolysaccharide (LPS) structural modifications in Escherichia coli biofilm bacteria, and we showed that all tested commensal and pathogenic E. coli biofilm bacteria display LPS modifications corresponding to an increased level of incorporation of palmitate acyl chain (palmitoylation) into lipid A compared to planktonic bacteria. Genetic analysis showed that lipid A palmitoylation in biofilms is mediated by the PagP enzyme, which is regulated by the histone-like protein repressor H-NS and the SlyA regulator. While lipid A palmitoylation does not influence bacterial adhesion, it weakens inflammatory response and enhances resistance to some antimicrobial peptides. Moreover, we showed that lipid A palmitoylation increases in vivo survival of biofilm bacteria in a clinically relevant model of catheter infection, potentially contributing to biofilm tolerance to host immune defenses. The widespread occurrence of increased lipid A palmitoylation in biofilms formed by all tested bacteria suggests that it constitutes a new biofilm-associated phenotype in Gram-negative bacteria. PMID:25139899

  14. Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor.

    Science.gov (United States)

    Hernández-Calderón, Erasto; Aviles-Garcia, Maria Elizabeth; Castulo-Rubio, Diana Yazmín; Macías-Rodríguez, Lourdes; Ramírez, Vicente Montejano; Santoyo, Gustavo; López-Bucio, José; Valencia-Cantero, Eduardo

    2018-02-01

    Our results show that Sorghum bicolor is able to recognize bacteria through its volatile compounds and differentially respond to beneficial or pathogens via eliciting nutritional or defense adaptive traits. Plants establish beneficial, harmful, or neutral relationships with bacteria. Plant growth promoting rhizobacteria (PGPR) emit volatile compounds (VCs), which may act as molecular cues influencing plant development, nutrition, and/or defense. In this study, we compared the effects of VCs produced by bacteria with different lifestyles, including Arthrobacter agilis UMCV2, Bacillus methylotrophicus M4-96, Sinorhizobium meliloti 1021, the plant pathogen Pseudomonas aeruginosa PAO1, and the commensal rhizobacterium Bacillus sp. L2-64, on S. bicolor. We show that VCs from all tested bacteria, except Bacillus sp. L2-64, increased biomass and chlorophyll content, and improved root architecture, but notheworthy A. agilis induced the release of attractant molecules, whereas P. aeruginosa activated the exudation of growth inhibitory compounds by roots. An analysis of the expression of iron-transporters SbIRT1, SbIRT2, SbYS1, and SbYS2 and genes related to plant defense pathways COI1 and PR-1 indicated that beneficial, pathogenic, and commensal bacteria could up-regulate iron transporters, whereas only beneficial and pathogenic species could induce a defense response. These results show how S. bicolor could recognize bacteria through their volatiles profiles and highlight that PGPR or pathogens can elicit nutritional or defensive traits in plants.

  15. Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota

    Science.gov (United States)

    Boutin, Sébastien; Bernatchez, Louis; Audet, Céline; Derôme, Nicolas

    2013-01-01

    Interactions between bacteria and their host represent a full continuum from pathogenicity to mutualism. From an evolutionary perspective, host-bacteria relationships are no longer considered a two-component system but rather a complex network. In this study, we focused on the relationship between brook charr (Salvelinus fontinalis) and bacterial communities developing on skin mucus. We hypothesized that stressful conditions such as those occurring in aquaculture production induce shifts in the bacterial community of healthy fish, thus allowing pathogens to cause infections. The results showed that fish skin mucus microbiota taxonomical structure is highly specific, its diversity being partly influenced by the surrounding water bacterial community. Two types of taxonomic co-variation patterns emerged across 121 contrasted communities’ samples: one encompassing four genera well known for their probiotic properties, the other harboring five genera mostly associated with pathogen species. The homeostasis of fish bacterial community was extensively disturbed by induction of physiological stress in that both: 1) the abundance of probiotic-like bacteria decreased after stress exposure; and 2) pathogenic bacteria increased following stress exposure. This study provides further insights regarding the role of mutualistic bacteria as a primary host protection barrier. PMID:24376845

  16. Network analysis highlights complex interactions between pathogen, host and commensal microbiota.

    Directory of Open Access Journals (Sweden)

    Sébastien Boutin

    Full Text Available Interactions between bacteria and their host represent a full continuum from pathogenicity to mutualism. From an evolutionary perspective, host-bacteria relationships are no longer considered a two-component system but rather a complex network. In this study, we focused on the relationship between brook charr (Salvelinus fontinalis and bacterial communities developing on skin mucus. We hypothesized that stressful conditions such as those occurring in aquaculture production induce shifts in the bacterial community of healthy fish, thus allowing pathogens to cause infections. The results showed that fish skin mucus microbiota taxonomical structure is highly specific, its diversity being partly influenced by the surrounding water bacterial community. Two types of taxonomic co-variation patterns emerged across 121 contrasted communities' samples: one encompassing four genera well known for their probiotic properties, the other harboring five genera mostly associated with pathogen species. The homeostasis of fish bacterial community was extensively disturbed by induction of physiological stress in that both: 1 the abundance of probiotic-like bacteria decreased after stress exposure; and 2 pathogenic bacteria increased following stress exposure. This study provides further insights regarding the role of mutualistic bacteria as a primary host protection barrier.

  17. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates.

    Science.gov (United States)

    Paixão, A C; Ferreira, A C; Fontes, M; Themudo, P; Albuquerque, T; Soares, M C; Fevereiro, M; Martins, L; Corrêa de Sá, M I

    2016-07-01

    Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival. © 2016 Poultry Science Association Inc.

  18. Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23.

    Science.gov (United States)

    Sims, Ian M; Frese, Steven A; Walter, Jens; Loach, Diane; Wilson, Michelle; Appleyard, Kay; Eason, Jocelyn; Livingston, Megan; Baird, Margaret; Cook, Gregory; Tannock, Gerald W

    2011-07-01

    Lactobacillus reuteri strain 100-23 together with a Lactobacillus-free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical analysis showed that this exopolysaccharide was a levan (β-2, 6-linked fructan). Mutation of the fructosyl transferase (ftf) gene resulted in loss of exopolysaccharide production. The ftf mutant was able to colonise the murine gastrointestinal tract in the absence of competition, but colonisation was impaired in competition with the wild type. Biofilm formation by the mutant on the forestomach epithelial surface was not impaired and the matrix between cells was indistinguishable from that of the wild type in electron micrographs. Colonisation of the mouse gut by the wild-type strain led to increased proportions of regulatory T cells (Foxp3+) in the spleen, whereas colonisation by the ftf mutant did not. Survival of the mutant in sucrose-containing medium was markedly reduced relative to the wild type. Comparison of the genomic ftf loci of strain 100-23 with other L. reuteri strains suggested that the ftf gene was acquired by lateral gene transfer early in the evolution of the species and subsequently diversified at accelerated rates. Levan production by L. reuteri 100-23 may represent a function acquired by the bacterial species for life in moderate to high-sucrose extra-gastrointestinal environments that has subsequently been diverted to novel uses, including immunomodulation, that aid in colonisation of the murine gut.

  19. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix

    Science.gov (United States)

    Kong, Eric F.; Tsui, Christina; Kucharíková, Sona; Andes, David

    2016-01-01

    ABSTRACT Biofilm-associated polymicrobial infections, particularly those involving fungi and bacteria, are responsible for significant morbidity and mortality and tend to be challenging to treat. Candida albicans and Staphylococcus aureus specifically are considered leading opportunistic fungal and bacterial pathogens, respectively, mainly due to their ability to form biofilms on catheters and indwelling medical devices. However, the impact of mixed-species biofilm growth on therapy remains largely understudied. In this study, we investigated the influence of C. albicans secreted cell wall polysaccharides on the response of S. aureus to antibacterial agents in biofilm. Results demonstrated significantly enhanced tolerance for S. aureus to drugs in the presence of C. albicans or its secreted cell wall polysaccharide material. Fluorescence confocal time-lapse microscopy revealed impairment of drug diffusion through the mixed biofilm matrix. Using C. albicans mutant strains with modulated cell wall polysaccharide expression, exogenous supplementation, and enzymatic degradation, the C. albicans-secreted β-1,3-glucan cell wall component was identified as the key matrix constituent providing the bacteria with enhanced drug tolerance. Further, antibody labeling demonstrated rapid coating of the bacteria by the C. albicans matrix material. Importantly, via its effect on the fungal biofilm matrix, the antifungal caspofungin sensitized the bacteria to the drugs. Understanding such symbiotic interactions with clinical relevance between microbial species in biofilms will greatly aid in overcoming the limitations of current therapies and in defining potential new targets for treating polymicrobial infections. PMID:27729510

  20. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  1. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation.

    Directory of Open Access Journals (Sweden)

    Caitlin O'Mahony

    Full Text Available Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-kappaB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-kappaB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-kappaB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis-fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-kappaB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-kappaB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS.

  2. High prevalence of fluoroquinolone resistance amongst commensal flora of antibiotic naïve neonates: a study from India.

    Science.gov (United States)

    Saksena, Rushika; Gaind, Rajni; Sinha, Anju; Kothari, Charu; Chellani, Harish; Deb, Manorama

    2018-04-01

    The emergence of resistance amongst commensal flora is a serious threat to the community. However, there is paucity of data regarding antibiotic resistance in commensals in the absence of antibiotic pressure. Altogether, 100 vaginally delivered antibiotic naïve exclusively breastfed neonates were selected. Stool samples collected on day (D)1, D21 and D60 of birth were cultured. Enterobacteriaceae isolates were screened for nalidixic acid (NA) and ciprofloxacin susceptibility as per CLSI guidelines. In 28 randomly selected neonates, isolates (n=92) resistant to NA and ciprofloxacin were characterized for the presence of plasmid-mediated quinolone resistance (PMQR) genes (qnrA, qnrB and qnrS, qepAand aac(6')-Ib-cr) and mutations in the quinolone resistance determining region (QRDR) of gyrA and parC genes by specific primers and confirmed by sequencing. A total of 343 Enterobacteriaceae were isolated from 100 neonates. On D1, 58 % of neonates were colonized with at least one Enterobacteriaceae predominantly E. coli. Overall resistance to NA was 60 % but ciprofloxacin resistance increased significantly from 15 % (14/96) on D1 to 38 % (50/132) on D60 (P-value flora of antibiotic naïve and exclusively breastfed neonates suggests a rampant rise of resistance in the community. The source of resistance genes on D1 is probably maternal flora acquired at birth. High load of PMQR genes in commensal flora are a potential source of spread to pathogenic organisms.

  3. Power and prestige in argar culture societies. The commensal consumption of bovids and ovicaprids during funerary rituals

    Directory of Open Access Journals (Sweden)

    Aranda Jiménez, Gonzalo

    2007-12-01

    Full Text Available The regular appearance of meat offerings in Argaric pmbs enables us to point out that the slaughter and consumption of cattle and sheep or goat took place as a part of rituals of commensality. A portion of meat of theses animals, always belonging to a leg, was introduced as grave goods involving the symbolic performance of the death in the ritual itself. The type of meat consumed in these rituals was linked to the social status of Argaric people. Cattle would be slaughtered during the commensal practices associated with the highest social groups in contrast to the performance developed in the lowest social levels that include goat or sheep but never cattle. The ritual of commensality in Argaric societies would contribute to maintaining the social solidarity at the same time that it legitimated and naturalised a clear situation of social asymmetry. Cohesion and social distance play an important role in the commensal practices of Argaric funerary rituals.

    La fuerte normalización de los ajuares cárnicos en las sepulturas argáricas permite plantear que, como parte de ritual funerario, se procedió al sacrificio de bóvidos y ovicápridos que serían consumidos en rituales de comensalidad. Un trozo de carne de estas especies animales, siempre correspondiente a una de las extremidades, formaría parte del ajuar funerario, lo que supondría la participación simbólica del muerto en el propio ritual. La adscripción social de los individuos determinaría el tipo de carne consumida. Los bóvidos serían sacrificados sólo como parte de la ceremonia de comensalidad de los sectores sociales más elevados, frente a aquellos individuos de un nivel social inferior y con menor capacidad de amortización cuyo ritual incluirían el sacrificio y consumo de ovicápridos. En las sociedades argáricas el ritual de comensalidad contribuiría a la creación de un sentido de comunidad al tiempo que legitima y naturaliza una situación de clara asimetr

  4. Rituals of commensality and the politics of state formation in the "princely" societies of early Iron Age Europe

    OpenAIRE

    Dietler, Michael

    2015-01-01

    Introduction My task in this essay is to address the question «what can an examination of rituals of commensality add to our understanding of political structure and process in the so-called "princely" societies of Early Iron Age Europe ? ». The short answer is, I believe, a great deal. This is both because rituals are potentially recoverable as distinct events in the archaeological record and because, as will be shown, they are a fundamental instrument and theater of political relations. The...

  5. How honey kills bacteria

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria

  6. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner.

    Science.gov (United States)

    Doerflinger, Sylvie Y; Throop, Andrea L; Herbst-Kralovetz, Melissa M

    2014-06-15

    Bacterial vaginosis increases the susceptibility to sexually transmitted infections and negatively affects women's reproductive health. To investigate host-vaginal microbiota interactions and the impact on immune barrier function, we colonized 3-dimensional (3-D) human vaginal epithelial cells with 2 predominant species of vaginal microbiota (Lactobacillus iners and Lactobacillus crispatus) or 2 prevalent bacteria associated with bacterial vaginosis (Atopobium vaginae and Prevotella bivia). Colonization of 3-D vaginal epithelial cell aggregates with vaginal microbiota was observed with direct attachment to host cell surface with no cytotoxicity. A. vaginae infection yielded increased expression membrane-associated mucins and evoked a robust proinflammatory, immune response in 3-D vaginal epithelial cells (ie, expression of CCL20, hBD-2, interleukin 1β, interleukin 6, interleukin 8, and tumor necrosis factor α) that can negatively affect barrier function. However, P. bivia and L. crispatus did not significantly upregulate pattern-recognition receptor-signaling, mucin expression, antimicrobial peptides/defensins, or proinflammatory cytokines in 3-D vaginal epithelial cell aggregates. Notably, L. iners induced pattern-recognition receptor-signaling activity, but no change was observed in mucin expression or secretion of interleukin 6 and interleukin 8. We identified unique species-specific immune signatures from vaginal epithelial cells elicited by colonization with commensal and bacterial vaginosis-associated bacteria. A. vaginae elicited a signature that is consistent with significant disruption of immune barrier properties, potentially resulting in enhanced susceptibility to sexually transmitted infections during bacterial vaginosis. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Commensal coagulase-negative Staphylococcus from the udder of healthy cows inhibits biofilm formation of mastitis-related pathogens.

    Science.gov (United States)

    Isaac, Paula; Bohl, Luciana Paola; Breser, María Laura; Orellano, María Soledad; Conesa, Agustín; Ferrero, Marcela Alejandra; Porporatto, Carina

    2017-08-01

    Bovine mastitis, considered the most important cause of economic losses in the dairy industry, is a major concern in veterinary medicine. Staphylococcus aureus and coagulase-negative staphylococci (CNS) are the main pathogens associated with intramammary infections, and bacterial biofilms are suspected to be responsible for the persistence of this disease. CNS from the udder are not necessarily associated with intramammary infections. In fact, some commensal CNS have been shown to have biological activities. This issue led us to screen exoproducts from commensal Staphylococcus chromogenes for anti-biofilm activity against different mastitis pathogens. The cell-free supernatant from S. chromogenes LN1 (LN1-CFS) was confirmed to display a non-biocidal inhibition of pathogenic biofilms. The supernatant was subjected to various treatments to estimate the nature of the biofilm-inhibiting compounds. The results showed that the bioactive compound >5KDa in mass is sensitive to thermal treatment and proteinase K digestion, suggesting its protein properties. LN1-CFS was able to significantly inhibit S. aureus and CNS biofilm formation in a dose-independent manner and without affecting the viability of bovine cells. These findings reveal a new activity of the udder microflora of healthy animals. Studies are underway to purify and identify the anti-biofilm biocompound and to evaluate its biological activity in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The occurrence of antimicrobial resistance and class 1 integrons among commensal Escherichia coli isolates from infants and elderly persons

    Directory of Open Access Journals (Sweden)

    Kõljalg Siiri

    2009-12-01

    Full Text Available Abstract Background The aim of our study was to compare the presence of the intI1 gene and its associations with the antibiotic resistance of commensal Escherichia coli strains in children with/without previous antibiotic treatments and elderly hospitalized/healthy individuals. Methods One-hundred-and-fifteen intestinal E. coli strains were analyzed: 30 strains from 10 antibiotic-naive infants; 27 from 9 antibiotic-treated outpatient infants; 30 from 9 healthy elderly volunteers; and 28 from 9 hospitalized elderly patients. The MIC values of ampicillin, cefuroxime, cefotaxime, gentamicin, ciprofloxacin, and sulfamethoxazole were measured by E-test and IntI1 was detected by PCR. Results Out of the 115 strains, 56 (49% carried class 1 integron genes. Comparing persons without medical interventions, we found in antibiotic-naive children a significantly higher frequency of integron-bearing strains and MIC values than in healthy elderly persons (53% versus 17%; p Conclusion The prevalence of integrons in commensal E. coli strains in persons without previous medical intervention depended on age. The resistance of integron-carrying and non-carrying strains is more dependent on influencing factors (hospitalization and antibiotic administration in particular groups than merely the presence or absence of integrons.

  9. Genetic relatedness of commensal Escherichia coli from nursery pigs in intensive pig production in Denmark and molecular characterization of genetically different strains

    DEFF Research Database (Denmark)

    Herrero Fresno, Ana; Larsen, Inge; Olsen, John Elmerdahl

    2015-01-01

    AIMS: To determine the genetic relatedness and the presence of virulence and antibiotic resistance genes in commensal Escherichia coli from nursery pigs in Danish intensive production. METHODS AND RESULTS: The genetic diversity of 1000 E. coli strains randomly picked (N = 50 isolates) from cultured...... in depth the genetic variability of commensal E. coli from pigs in Danish intensive pig production. A tendency for higher diversity was observed with in nursery pigs that were treated with zinc oxide only, in absence of other antimicrobials. Strains with potential to disseminate virulence and antibiotic...

  10. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Musavian, Hanieh Sadat; Butt, Tariq Mahmood

    2015-01-01

    B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H.influenzae induced severe Toll...... response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae...

  11. Ugly bugs in healthy guts! Carriage of multidrug-resistant and ESBL-producing commensal Enterobacteriaceae in the intestine of healthy Nepalese adults

    Directory of Open Access Journals (Sweden)

    Maharjan A

    2018-04-01

    Full Text Available Anjila Maharjan,1 Anjeela Bhetwal,1 Shreena Shakya,1 Deepa Satyal,1 Shashikala Shah,1 Govardhan Joshi,1,2 Puspa Raj Khanal,1 Narayan Prasad Parajuli1,3 1Department of Laboratory Medicine, Manmohan Memorial Institute of Health Sciences, Kathmandu, Nepal; 2Kathmandu Center for Genomics and Research Laboratory (KCGRL, Kathmandu, Nepal; 3Department of Clinical Laboratory Services, Manmohan Memorial Medical College and Teaching Hospital, Kathmandu, Nepal Background: Fecal carriage of multidrug-resistant and extended-spectrum β-lactamase (ESBL-producing Enterobacteriaceae is one of the important risk factors for infection with antibiotic-resistant bacteria. In this report, we examined the prevalence of multidrug-resistant and ESBL-producing common enterobacterial strains colonizing the intestinal tract of apparently healthy adults in Kathmandu, Nepal.Methods: During a 6-month period (February–July 2016, a total of 510 stool specimens were obtained from apparently healthy students of Manmohan Memorial Institute of Health Sciences, Kathmandu, Nepal. Stool specimens were cultured, and the most common enterobacterial isolates (Escherichia coli and Klebsiella species were subjected to antimicrobial susceptibility tests according to the standard microbiologic guidelines. Multidrug-resistant isolates were selected for ESBL confirmation by combined disk test and E-test methods. Molecular characterization of plasmid-borne ESBL genes was performed by using specific primers of cefotaximase Munich (CTX-M, sulfhydryl variant (SHV, and temoniera (TEM by polymerase chain reaction.Results: Among 510 bacterial strains, E. coli (432, 84.71% was the predominant organism followed by Klebsiella oxytoca (48, 9.41% and K. pneumoniae (30, 5.88%. ESBLs were isolated in 9.8% of the total isolates including K. oxytoca (29.17%, E. coli (7.87%, and K. pneumoniae (6.67%. Among ESBLs, bla-TEM was the predominant type (92% followed by bla-CTX-M (60% and bla-SHV (4%.Conclusion

  12. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  13. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    NARCIS (Netherlands)

    Larsen, J.M.; Steen-Jensen, D.B.; Laursen, J.M.; Sondergaard, J.N.; Musavian, H.S.; Butt, T.M.; Brix, S.

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties

  14. Commensal Gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development

    NARCIS (Netherlands)

    Smits, Hermelijn H.; van Beelen, Astrid J.; Hessle, Christina; Westland, Robert; de Jong, Esther; Soeteman, Eelco; Wold, Agnes; Wierenga, Eddy A.; Kapsenberg, Martien L.

    2004-01-01

    Dendritic cells (DC) are the main orchestrators of specific immune responses. Depending on microbial information they encounter in peripheral tissues, they promote the development of Th1, Th2 or unpolarized Th cell responses. In this study we have investigated the immunomodulatory effect of

  15. Use of Colistin and Other Critical Antimicrobials on Pig and Chicken Farms in Southern Vietnam and Its Association with Resistance in Commensal Escherichia coli Bacteria

    NARCIS (Netherlands)

    Nguyen, Nhung T.; Nguyen, Hoa M.; Nguyen, Cuong V.; Nguyen, Trung V.; Nguyen, Men T.; Thai, Hieu Q.; Ho, Mai H.; Thwaites, Guy; Ngo, Hoa T.; Baker, Stephen; Carrique-Mas, Juan

    2016-01-01

    Antimicrobial resistance (AMR) is a global health problem, and emerging semi-intensive farming systems in Southeast Asia are major contributors to the AMR burden. We accessed 12 pig and chicken farms at key stages of production in Tien Giang Province, Vietnam, to measure antimicrobial usage and to

  16. Use of Colistin and Other Critical Antimicrobials on Pig and Chicken Farms in Southern Vietnam and Its Association with Resistance in Commensal Escherichia coli Bacteria.

    Science.gov (United States)

    Nguyen, Nhung T; Nguyen, Hoa M; Nguyen, Cuong V; Nguyen, Trung V; Nguyen, Men T; Thai, Hieu Q; Ho, Mai H; Thwaites, Guy; Ngo, Hoa T; Baker, Stephen; Carrique-Mas, Juan

    2016-07-01

    Antimicrobial resistance (AMR) is a global health problem, and emerging semi-intensive farming systems in Southeast Asia are major contributors to the AMR burden. We accessed 12 pig and chicken farms at key stages of production in Tien Giang Province, Vietnam, to measure antimicrobial usage and to investigate the prevalence of AMR to five critical antimicrobials (β-lactams, third-generation cephalosporins, quinolones, aminoglycosides, and polymyxins) and their corresponding molecular mechanisms among 180 Escherichia coli isolates. Overall, 94.7 mg (interquartile range [IQR], 65.3 to 151.1) and 563.6 mg (IQR, 398.9 to 943.6) of antimicrobials was used to produce 1 kg (live weight) of chicken and pig, respectively. A median of 3 (out of 8) critical antimicrobials were used on pig farms. E. coli isolates exhibited a high prevalence of resistance to ampicillin (97.8% and 94.4% for chickens and pigs, respectively), ciprofloxacin (73.3% and 21.1%), gentamicin (42.2% and 35.6%), and colistin (22.2% and 24.4%). The prevalence of a recently discovered colistin resistance gene, mcr-1, was 19 to 22% and had strong agreement with phenotypic colistin resistance. We conducted plasmid conjugation experiments with 37 mcr-1 gene-positive E. coli isolates and successfully observed transfer of the gene in 54.0% of isolates through a plasmid of approximately 63 kb, consistent with one recently identified in China. We found no significant correlation between total use of antimicrobials at the farm level and AMR. These data provide additional insight into the role of mcr-1 in colistin resistance on farms and outline the dynamics of phenotypic and genotypic AMR in semi-intensive farming systems in Vietnam. Our study provides accurate baseline information on levels of antimicrobial use, as well as on the dynamics of phenotypic and genotypic resistance for antimicrobials of critical importance among E. coli over the different stages of production in emerging pig and poultry production systems in Vietnam. E. coli isolates showed a high prevalence of resistance (>20%) to critically important antimicrobials, such as colistin, ciprofloxacin, and gentamicin. The underlying genetic mechanisms identified for colistin (the mcr-1 gene) and quinolone (gyrA gene mutations) are likely to play a major role in AMR to those compounds. Conjugation experiments led to the identification of a 63-kb plasmid, similar to one recently identified in China, as the potential carrier of the mcr-1 gene. These results should encourage greater restrictions of such antimicrobials in Southeast Asian farming systems. Copyright © 2016 Nguyen et al.

  17. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  18. Do Bacteria Age?

    Indian Academy of Sciences (India)

    Bacteria are thought to be examples of organisms that do not age. They divide by .... carry genetic material to the next generation through the process of reproduction; they are also .... molecules, and modified proteins. This report revealed that ...

  19. Social Behaviour in Bacteria

    Indian Academy of Sciences (India)

    Administrator

    the recipient. • Social behaviours can be categorized according to the fitness ... is actually the flagella of symbiotic spirochete bacteria that helps it to swim around .... Normal population. Responsive switching. (Environmental stress). Stochastic.

  20. [Darwin and bacteria].

    Science.gov (United States)

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  1. Lipopolysaccharides in diazotrophic bacteria

    OpenAIRE

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are...

  2. Primary care treatment guidelines for skin infections in Europe: congruence with antimicrobial resistance found in commensal Staphylococcus aureus in the community

    NARCIS (Netherlands)

    van Bijnen, E.M.E.; Paget, W.J.; den Heijer, C.D.J.; Stobberingh, E.E.; Bruggeman, C.A.; Schellevis, F.G.

    2014-01-01

    Background: Over 90% of antibiotics for human use in Europe are prescribed in primary care. We assessed the congruence between primary care treatment guidelines for skin infections and commensal Staphylococcus aureus (S. aureus) antimicrobial resistance levels in community-dwelling persons. Methods:

  3. Primary care treatment guidelines for skin infections in Europe: congruence with antimicrobial resistance found in commensal Staphylococcus aureus in the community.

    NARCIS (Netherlands)

    Bijnen, E.M.E. van; Paget, W.J.; Heijer, C.D.J. den; Stobberingh, E.E.; Bruggeman, C.A.; Schellevis, F.G.

    2014-01-01

    Background: Over 90% of antibiotics for human use in Europe are prescribed in primary care. We assessed the congruence between primary care treatment guidelines for skin infections and commensal Staphylococcus aureus (S. aureus) antimicrobial resistance levels in community-dwelling persons. Methods:

  4. Prevalence and resistance of commensal Staphylococcus aureus, including meticillin-resistant S aureus, in nine European countries: a cross-sectional study.

    NARCIS (Netherlands)

    Heijer, C.D.J. den; Bijnen, E.M.E. van; Paget, W.J.; Pringle, M.; Goossen, H.; Bruggeman, C.A.; Schellevis, F.G.; Stobberingh, E.E.

    2013-01-01

    Background: Information about the prevalence of Staphylococcus aureus resistance to antimicrobial drugs has mainly been obtained from invasive strains, although the commensal microbiota is thought to be an important reservoir of resistance. We aimed to compare the prevalence of nasal S aureus

  5. Resistance to non-quinolone antimicrobials in commensal Escherichia coli isolates from chickens treated orally with enrofloxacin.

    Science.gov (United States)

    Jurado, Sonia; Medina, Alberto; de la Fuente, Ricardo; Ruiz-Santa-Quiteria, José A; Orden, José A

    2015-11-01

    The aim of the present study was evaluate how oral administration of enrofloxacin affected the frequency of resistance to different antimicrobials in commensal Escherichia coli isolates from healthy chickens. A further objective of this study was to characterize the mechanisms of resistance in these isolates. A trend towards increased resistance to enrofloxacin, doxycycline and amoxicillin of E. coli isolates from chickens after enrofloxacin administration was observed. The increase in the resistance to doxycycline and amoxicillin was probably due to a co-selection of tetracycline and β-lactam resistance genes by the administration of enrofloxacin. The detection of tetM was much higher than expected (50%), which indicates that this gene may play an important role in tetracycline resistance in E. coli from chickens.

  6. The fecal bacteria

    Science.gov (United States)

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  7. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice.

    Directory of Open Access Journals (Sweden)

    Lea-Maxie Haag

    Full Text Available BACKGROUND: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. METHODOLOGY/PRINCIPAL FINDINGS: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. CONCLUSION/SIGNIFICANCE: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiota composition towards elevated E. coli loads during intestinal inflammation as well as in infant mice. Intestinal inflammation and microbiota shifts thus represent potential risk factors for C. jejuni infection. Corresponding interplays between C. jejuni and microbiota might

  8. The effect of a commercial competitive exclusion product on the selection of enrofloxacin resistance in commensal E. coli in broilers.

    Science.gov (United States)

    Chantziaras, Ilias; Smet, Annemieke; Filippitzi, Maria Eleni; Damiaans, Bert; Haesebrouck, Freddy; Boyen, Filip; Dewulf, Jeroen

    2018-06-07

    The effect of a competitive exclusion product (Aviguard ® ) on the selection of fluoroquinolone resistance in poultry was assessed in vivo in the absence or presence of fluoroquinolone treatment. Two experiments using a controlled seeder-sentinel animal model (2seeders:4sentinels per group) with one-day-old chicks were used. For both experiments,as soon as the chicks were hatched, the animals of two groups were administered Aviguard ® and two groups were left untreated. Three days later, all groups were inoculated with an enrofloxacin-susceptible commensal E. coli strain. Five days after hatching, two animals per group were inoculated either with a bacteriologically-fit or a bacteriologically non-fit enrofloxacin-resistant commensal E. coli strain. In experiment 2, all groups were orally treated for three consecutive days (Day 8-10) with enrofloxacin. Throughout the experiments, faecal excretion of all inoculated E. coli strains was determined on days 2-5-8-11-18-23 by selective plating (via spiral plater). Linear mixed models were used to assess the effect of Aviguard ® on the selection of fluoroquinolone resistance. The use of Aviguard® (penrofloxacin-resistant E. coli when no enrofloxacin treatment was administered. However, this beneficial effect disappeared (p=0.37) when the animals were treated with enrofloxacin. Similarly, bacterial fitness of the enrofloxacin-resistant E. coli strain used for inoculation had an effect (penrofloxacin resistance when no treatment was administered, whereas this effect was no longer present when enrofloxacin was administered (p =0.70). Thus, enrofloxacin treatment cancelled the beneficial effects from administrating Aviguard ® in one-day-old broiler chicks and resulted in a enrofloxacin-resistant flora.

  9. The carriage of antibiotic resistance by enteric bacteria from imported tokay geckos (Gekko gecko) destined for the pet trade

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Christine L. [Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Hernandez, Sonia M., E-mail: shernz@uga.edu [Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602 (United States); Yabsley, Michael J. [Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602 (United States); Smith, Katherine F. [Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 (United States); Sanchez, Susan [The Athens Veterinary Diagnostic Laboratory, Athens, GA 30602 (United States); The Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States)

    2015-02-01

    The emergence of antibiotic-resistant bacteria is a growing public health concern and has serious implications for both human and veterinary medicine. The nature of the global economy encourages the movement of humans, livestock, produce, and wildlife, as well as their potentially antibiotic-resistant bacteria, across international borders. Humans and livestock can be reservoirs for antibiotic-resistant bacteria; however, little is known about the prevalence of antibiotic-resistant bacteria harbored by wildlife and, to our knowledge, limited data has been reported for wild-caught reptiles that were specifically collected for the pet trade. In the current study, we examined the antibiotic resistance of lactose-positive Enterobacteriaceae isolates from wild-caught Tokay geckos (Gekko gecko) imported from Indonesia for use in the pet trade. In addition, we proposed that the conditions under which wild animals are captured, transported, and handled might affect the shedding or fecal prevalence of antibiotic resistance. In particular we were interested in the effects of density; to address this, we experimentally modified densities of geckos after import and documented changes in antibiotic resistance patterns. The commensal enteric bacteria from Tokay geckos (G. gecko) imported for the pet trade displayed resistance against some antibiotics including: ampicillin, amoxicillin/clavulanic acid, cefoxitin, chloramphenicol, kanamycin and tetracycline. There was no significant difference in the prevalence of antibiotic-resistant bacteria after experimentally mimicking potentially stressful transportation conditions reptiles experience prior to purchase. There were, however, some interesting trends observed when comparing Tokay geckos housed individually and those housed in groups. Understanding the prevalence of antibiotic resistant commensal enteric flora from common pet reptiles is paramount because of the potential for humans exposed to these animals to acquire antibiotic

  10. The carriage of antibiotic resistance by enteric bacteria from imported tokay geckos (Gekko gecko) destined for the pet trade

    International Nuclear Information System (INIS)

    Casey, Christine L.; Hernandez, Sonia M.; Yabsley, Michael J.; Smith, Katherine F.; Sanchez, Susan

    2015-01-01

    The emergence of antibiotic-resistant bacteria is a growing public health concern and has serious implications for both human and veterinary medicine. The nature of the global economy encourages the movement of humans, livestock, produce, and wildlife, as well as their potentially antibiotic-resistant bacteria, across international borders. Humans and livestock can be reservoirs for antibiotic-resistant bacteria; however, little is known about the prevalence of antibiotic-resistant bacteria harbored by wildlife and, to our knowledge, limited data has been reported for wild-caught reptiles that were specifically collected for the pet trade. In the current study, we examined the antibiotic resistance of lactose-positive Enterobacteriaceae isolates from wild-caught Tokay geckos (Gekko gecko) imported from Indonesia for use in the pet trade. In addition, we proposed that the conditions under which wild animals are captured, transported, and handled might affect the shedding or fecal prevalence of antibiotic resistance. In particular we were interested in the effects of density; to address this, we experimentally modified densities of geckos after import and documented changes in antibiotic resistance patterns. The commensal enteric bacteria from Tokay geckos (G. gecko) imported for the pet trade displayed resistance against some antibiotics including: ampicillin, amoxicillin/clavulanic acid, cefoxitin, chloramphenicol, kanamycin and tetracycline. There was no significant difference in the prevalence of antibiotic-resistant bacteria after experimentally mimicking potentially stressful transportation conditions reptiles experience prior to purchase. There were, however, some interesting trends observed when comparing Tokay geckos housed individually and those housed in groups. Understanding the prevalence of antibiotic resistant commensal enteric flora from common pet reptiles is paramount because of the potential for humans exposed to these animals to acquire antibiotic

  11. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae.

    Directory of Open Access Journals (Sweden)

    Xiaoshu Tang

    Full Text Available BACKGROUND: The gut of most insects harbours nonpathogenic microorganisms. Recent work suggests that gut microbiota not only provide nutrients, but also involve in the development and maintenance of the host immune system. However, the complexity, dynamics and types of interactions between the insect hosts and their gut microbiota are far from being well understood. METHODS/PRINCIPAL FINDINGS: To determine the composition of the gut microbiota of two lepidopteran pests, Spodoptera littoralis and Helicoverpa armigera, we applied cultivation-independent techniques based on 16S rRNA gene sequencing and microarray. The two insect species were very similar regarding high abundant bacterial families. Different bacteria colonize different niches within the gut. A core community, consisting of Enterococci, Lactobacilli, Clostridia, etc. was revealed in the insect larvae. These bacteria are constantly present in the digestion tract at relatively high frequency despite that developmental stage and diet had a great impact on shaping the bacterial communities. Some low-abundant species might become dominant upon loading external disturbances; the core community, however, did not change significantly. Clearly the insect gut selects for particular bacterial phylotypes. CONCLUSIONS: Because of their importance as agricultural pests, phytophagous Lepidopterans are widely used as experimental models in ecological and physiological studies. Our results demonstrated that a core microbial community exists in the insect gut, which may contribute to the host physiology. Host physiology and food, nevertheless, significantly influence some fringe bacterial species in the gut. The gut microbiota might also serve as a reservoir of microorganisms for ever-changing environments. Understanding these interactions might pave the way for developing novel pest control strategies.

  12. Analysis of the LIV system of Campylobacter jejuni reveals alternative roles for LivJ and LivK in commensalism beyond branched-chain amino acid transport.

    Science.gov (United States)

    Ribardo, Deborah A; Hendrixson, David R

    2011-11-01

    Campylobacter jejuni is a leading cause of diarrheal disease in humans and an intestinal commensal in poultry and other agriculturally important animals. These zoonotic infections result in significant amounts of C. jejuni present in the food supply to contribute to disease in humans. We previously found that a transposon insertion in Cjj81176_1038, encoding a homolog of the Escherichia coli LivJ periplasmic binding protein of the leucine, isoleucine, and valine (LIV) branched-chain amino acid transport system, reduced the commensal colonization capacity of C. jejuni 81-176 in chicks. Cjj81176_1038 is the first gene of a six-gene locus that encodes homologous components of the E. coli LIV system. By analyzing mutants with in-frame deletions of individual genes or pairs of genes, we found that this system constitutes a LIV transport system in C. jejuni responsible for a high level of leucine acquisition and, to a lesser extent, isoleucine and valine acquisition. Despite each LIV protein being required for branched-chain amino acid transport, only the LivJ and LivK periplasmic binding proteins were required for wild-type levels of commensal colonization of chicks. All LIV permease and ATPase components were dispensable for in vivo growth. These results suggest that the biological functions of LivJ and LivK for colonization are more complex than previously hypothesized and extend beyond a role for binding and acquiring branched-chain amino acids during commensalism. In contrast to other studies indicating a requirement and utilization of other specific amino acids for colonization, acquisition of branched-chain amino acids does not appear to be a determinant for C. jejuni during commensalism.

  13. Mycorrhiza helper bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Labbe, Jessy [ORNL

    2016-10-01

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help us to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.

  14. Air sampling to assess potential generation of aerosolized viable bacteria during flow cytometric analysis of unfixed bacterial suspensions

    Science.gov (United States)

    Carson, Christine F; Inglis, Timothy JJ

    2018-01-01

    This study investigated aerosolized viable bacteria in a university research laboratory during operation of an acoustic-assisted flow cytometer for antimicrobial susceptibility testing by sampling room air before, during and after flow cytometer use. The aim was to assess the risk associated with use of an acoustic-assisted flow cytometer analyzing unfixed bacterial suspensions. Air sampling in a nearby clinical laboratory was conducted during the same period to provide context for the existing background of microorganisms that would be detected in the air. The three species of bacteria undergoing analysis by flow cytometer in the research laboratory were Klebsiella pneumoniae, Burkholderia thailandensis and Streptococcus pneumoniae. None of these was detected from multiple 1000 L air samples acquired in the research laboratory environment. The main cultured bacteria in both locations were skin commensal and environmental bacteria, presumed to have been disturbed or dispersed in laboratory air by personnel movements during routine laboratory activities. The concentrations of bacteria detected in research laboratory air samples were reduced after interventional cleaning measures were introduced and were lower than those in the diagnostic clinical microbiology laboratory. We conclude that our flow cytometric analyses of unfixed suspensions of K. pneumoniae, B. thailandensis and S. pneumoniae do not pose a risk to cytometer operators or other personnel in the laboratory but caution against extrapolation of our results to other bacteria and/or different flow cytometric experimental procedures. PMID:29608197

  15. Melanotic pathology and vertical transmission of the gut commensal Elizabethkingia meningoseptica in the major malaria vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Idir G Akhouayri

    Full Text Available The resident gut flora is known to have significant impacts on the life history of the host organism. Endosymbiotic bacterial species in the Anopheles mosquito gut are potent modulators of sexual development of the malaria parasite, Plasmodium, and thus proposed as potential control agents of malaria transmission.Here we report a melanotic pathology in the major African malaria vector Anopheles gambiae, caused by the dominant mosquito endosymbiont Elizabethkingiameningoseptica. Transfer of melanised tissues into the haemolymph of healthy adult mosquitoes or direct haemolymph inoculation with isolated E. meningoseptica bacteria were the only means for transmission and de novo formation of melanotic lesions, specifically in the fat body tissues of recipient individuals. We show that E. meningoseptica can be vertically transmitted from eggs to larvae and that E. meningoseptica-mono-associated mosquitoes display significant mortality, which is further enhanced upon Plasmodium infection, suggesting a synergistic impact of E. meningoseptica and Plasmodium on mosquito survival.The high pathogenicity and permanent association of E. meningoseptica with An. Gambiae through vertical transmission constitute attractive characteristics towards the potential design of novel mosquito/malaria biocontrol strategies.

  16. The commensal microbiota and the development of human disease - an introduction.

    Science.gov (United States)

    Marsh, Philip D

    2015-01-01

    Humans have co-evolved with microorganisms, and both exist in a symbiotic or mutualistic relationship. We are colonised by a diverse, resident microbiota, which develop into structurally and functionally organised biofilms. The resident microorganisms gain a secure, warm, nutritious habitat from the host and, in return, contribute to the development of many important host functions. The resident microbiota of each habitat is natural and provides important benefits for the host including immunological priming, down-regulation of excessive pro-inflammatory responses, regulation of gastrointestinal and cardiovascular systems, and prevention of colonisation by exogenous microbes. The biological properties of each habitat determine which microorganisms can colonise and grow, and dictate which will be major or minor components of the resident microbiota of a site. This results in different surfaces having distinct but characteristic microbiotas. This relationship between the resident microbiota and the host is dynamic and, on occasions, this symbiotic relationship breaks down due to, for example, changes in lifestyle, immune status or following broad spectrum antibiotic therapy. This 'dysbiosis' can result in previously minor components of the microbiota out-competing the normally dominant and beneficial bacteria, thereby increasing the risk of disease. Such perturbations have been associated with a number of clinical disorders such as obesity, allergy, and a variety of inflammatory diseases, including periodontal diseases. A better understanding of the delicate balance between the host and its resident microbiota could lead to novel approaches to the promotion of health and the prevention of dysbiosis.

  17. The commensal microbiota and the development of human disease – an introduction

    Directory of Open Access Journals (Sweden)

    Philip D. Marsh

    2015-09-01

    Full Text Available Humans have co-evolved with microorganisms, and both exist in a symbiotic or mutualistic relationship. We are colonised by a diverse, resident microbiota, which develop into structurally and functionally organised biofilms. The resident microorganisms gain a secure, warm, nutritious habitat from the host and, in return, contribute to the development of many important host functions. The resident microbiota of each habitat is natural and provides important benefits for the host including immunological priming, down-regulation of excessive pro-inflammatory responses, regulation of gastrointestinal and cardiovascular systems, and prevention of colonisation by exogenous microbes. The biological properties of each habitat determine which microorganisms can colonise and grow, and dictate which will be major or minor components of the resident microbiota of a site. This results in different surfaces having distinct but characteristic microbiotas. This relationship between the resident microbiota and the host is dynamic and, on occasions, this symbiotic relationship breaks down due to, for example, changes in lifestyle, immune status or following broad spectrum antibiotic therapy. This ‘dysbiosis’ can result in previously minor components of the microbiota out-competing the normally dominant and beneficial bacteria, thereby increasing the risk of disease. Such perturbations have been associated with a number of clinical disorders such as obesity, allergy, and a variety of inflammatory diseases, including periodontal diseases. A better understanding of the delicate balance between the host and its resident microbiota could lead to novel approaches to the promotion of health and the prevention of dysbiosis.

  18. Effect of experimental influenza A virus infection on isolation of Streptococcus pneumoniae and other aerobic bacteria from the oropharynges of allergic and nonallergic adult subjects.

    Science.gov (United States)

    Wadowsky, R M; Mietzner, S M; Skoner, D P; Doyle, W J; Fireman, P

    1995-04-01

    Intranasal challenge with both influenza A virus and Streptococcus pneumoniae promotes otitis media with S. pneumoniae in chinchillas. We investigated whether influenza A virus infection promotes oropharyngeal colonization with S. pneumoniae and other middle ear pathogens by selectively inhibiting commensal bacteria. On study day 0, 12 allergic and 15 nonallergic adult subjects were intranasally inoculated with influenza A/Kawasaki (H1N1) virus. Every subject was infected with the virus as demonstrated by nasal shedding or seroconversion. Average upper respiratory symptom scores and nasal secretion weights from the entire subject group were elevated between days 2 and 6 (acute phase) and were not significantly different between allergic and nonallergic subjects. S. pneumoniae was not isolated from any subject prior to the virus challenge but was isolated in heavy density from 4 (15%) subjects on day 6 (P = 0.055). Staphylococcus aureus was isolated more frequently from the nonallergic subjects than from the allergic subjects on days 2 (80 versus 25%, respectively) 4, (67 versus 17%, respectively), and 6 (73 versus 25%, respectively) (P < 0.05). The isolation rates of other middle ear pathogens were not significantly different before virus challenge and during the acute and resolution phases (days 27 to 30) of the experimental infection for the entire subject group or either the allergic or nonallergic subgroup. Densities and isolation rates of commensal bacteria from the entire subject group were similar throughout the observational period. These results suggest that the virus infection promoted S. pneumoniae colonization of the oropharynx and that nonallergic persons may be more vulnerable to colonization with S. aureus than allergic persons. The altered colonization rates were not attributed to inhibition of commensal bacteria.

  19. PATHOGENICITY OF BIOFILM BACTERIA

    Science.gov (United States)

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  20. Bacteria-surface interactions.

    Science.gov (United States)

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  1. Antifreeze Proteins of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Antifreeze Proteins of Bacteria. M K Chattopadhyay. General Article Volume 12 Issue 12 December 2007 pp 25-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/012/12/0025-0030 ...

  2. Differential scanning calorimetry of bacteria.

    Science.gov (United States)

    Miles, C A; Mackey, B M; Parsons, S E

    1986-04-01

    Thermograms obtained by differential scanning calorimetry of a range of bacteria of different heat resistances were compared. Equations were derived to calculate the rate at which the numbers of viable organisms in a calorimeter decline as the temperature is raised at a constant rate. Vegetative bacteria scanned at 10 degrees C min-1 showed multi-peaked thermograms with four major peaks (denoted m, n, p and q) occurring in the regions 68-73, 77-84, 89-99 and 105-110 degrees C respectively. Exceptions were that peak m (the largest peak) occurred at 79-82 degrees C in Bacillus stearothermophilus and an additional peak, r, was detected in Escherichia coli at 119 degrees C. At temperatures below the main peak m there were major differences in thermograms between species. There was a direct relationship between the onset of thermal denaturation and the thermoresistance of different organisms. Heat-sensitive organisms displayed thermogram features which were absent in the more heat-resistant types. When samples were cooled to 5 degrees C and re-heated, a small endothermic peak, pr, was observed at the same temperature as p. Peaks p and pr were identified as the melting endotherms of DNA. In all vegetative organisms examined, maximum death rates, computed from published D and z values, occurred at temperatures above the onset of thermal denaturation, i.e. cell death and irreversible denaturation of cell components occurred within the same temperature range.

  3. Phylogenomics and comparative genomics of Lactobacillus salivarius, a mammalian gut commensal.

    Science.gov (United States)

    Harris, Hugh M B; Bourin, Maxence J B; Claesson, Marcus J; O'Toole, Paul W

    2017-08-01

    The genus Lactobacillus is a diverse group with a combined species count of over 200. They are the largest group within the lactic acid bacteria and one of the most important bacterial groups involved in food microbiology and human nutrition because of their fermentative and probiotic properties. Lactobacillus salivarius , a species commonly isolated from the gastrointestinal tract of humans and animals, has been described as having potential probiotic properties and results of previous studies have revealed considerable functional diversity existing on both the chromosomes and plasmids. Our study consists of comparative genomic analyses of the functional and phylogenomic diversity of 42 genomes of strains of L . salivarius using bioinformatic techniques. The main aim of the study was to describe intra-species diversity and to determine how this diversity is spread across the replicons. We found that multiple phylogenomic and non-phylogenomic methods used for reconstructing trees all converge on similar tree topologies, showing that different metrics largely agree on the evolutionary history of the species. The greatest genomic variation lies on the small plasmids, followed by the repA -type circular megaplasmid, with the chromosome varying least of all. Additionally, the presence of extra linear and circular megaplasmids is noted in several strains, while small plasmids are not always present. Glycosyl hydrolases, bacteriocins and proteases vary considerably on all replicons while two exopolysaccharide clusters and several clustered regularly interspaced short palindromic repeats-associated systems show a lot of variation on the chromosome. Overall, despite its reputation as a mammalian gastrointestinal tract specialist, the intra-specific variation of L. salivarius reveals potential strain-dependant effects on human health.

  4. [Spectrum and susceptibility of preoperative conjunctival bacteria].

    Science.gov (United States)

    Fernández-Rubio, M E; Cuesta-Rodríguez, T; Urcelay-Segura, J L; Cortés-Valdés, C

    2013-12-01

    To describe the conjunctival bacterial spectrum of our patients undergoing intraocular surgery and their antibiotic sensitivity during the study period. A retrospective study of preoperative conjunctival culture of patients consecutively scheduled for intraocular surgery from 21 February 2011 to 1 April 2013. Specimens were directly seeded onto blood-agar and MacConkey-agar (aerobiosis incubation, 2 days), and on chocolate-agar (6% CO2 incubation, 7 days). The identified bacteria were divided into 3 groups according to their origin; the bacteria susceptibility tests were performed on those more pathogenic and on some of the less pathogenic when more than 5 colonies were isolated. The sensitivity of the exigent growing bacteria was obtained with disk diffusion technique, and for of the non-exigent bacteria by determining their minimum inhibitory concentration. The Epidat 3.1 program was used for statistical calculations. A total of 13,203 bacteria were identified in 6,051 cultures, with 88.7% being typical colonizers of conjunctiva (group 1), 8.8% typical of airways (group 2), and the remaining 2.5% of undetermined origin (group 3). 530 cultures (8.8%) were sterile. The sensitivity of group 1 was: 99% vancomycin, 95% rifampicin, 87% chloramphenicol, 76% tetracycline. Levels of co-trimoxazole, aminoglycosides, quinolones, β-lactams and macrolides decreased since 2007. The group 2 was very sensitive to chloramphenicol, cefuroxime, rifampicin, ciprofloxacin and amoxicillin/clavulanate. In group 3, to levofloxacin 93%, ciprofloxacin 89%, tobramycin 76%, but ceftazidime 53% and cefuroxime 29% decreased. None of the tested antibiotics could eradicate all possible conjunctival bacteria. Bacteria living permanently on the conjunctiva (group 1) have achieved higher resistance than the eventual colonizers. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  5. In Vitro Antimicrobial Activity of Plant-Derived Diterpenes against Bovine Mastitis Bacteria

    Directory of Open Access Journals (Sweden)

    Rodrigo C. S. Veneziani

    2013-07-01

    Full Text Available We evaluated the antibacterial activity of three diterpenes isolated from natural sources against a panel of microorganisms responsible for bovine mastitis. ent-Copalic acid (CA was the most active metabolite, with promising MIC values (from 1.56 to 6.25 µg mL−1 against Staphylococcus aureus (ATCC and clinical isolate, Staphylococcus epidermidis, Streptococcus agalactiae, and Streptococcus dysgalactiae. We conducted time-kill assays of CA against S. aureus, a commensal organism considered to be a ubiquitous etiological agent of bovine mastitis in dairy farms worldwide. In the first 12 h, CA only inhibited the growth of the inoculums (bacteriostatic effect, but its bactericidal effect was clearly noted thereafter (between 12 and 24 h. In conclusion, CA should be considered for the control of several Gram-positive bacteria related to bovine mastitis.

  6. Exploring Anopheles gut bacteria for Plasmodium blocking activity

    Science.gov (United States)

    Bahia, Ana C; Dong, Yuemei; Blumberg, Benjamin J; Mlambo, Godfree; Tripathi, Abhai; BenMarzouk-Hidalgo, Omar J; Chandra, Ramesh; Dimopoulos, George

    2014-01-01

    SUMMARY Malaria parasite transmission requires the successful development of Plasmodium gametocytes into flagellated microgametes upon mosquito blood ingestion, and the subsequent fertilization of microgametes and macrogametes for the development of motile zygotes, called ookinetes, which invade and transverse the Anopheles vector mosquito midgut at around 18-36 h after blood ingestion. Within the mosquito midgut, the malaria parasite has to withstand the mosquito's innate immune response and the detrimental effect of its commensal bacterial flora. We have assessed the midgut colonization capacity of 5 gut bacterial isolates from field-derived, and 2 from laboratory colony, mosquitoes and their effect on Plasmodium development in vivo and in vitro, along with their impact on mosquito survival. Some bacterial isolates activated the mosquito's immune system, affected the mosquito's life span, and were capable of blocking Plasmodium development. We have also shown that the ability of these bacteria to inhibit the parasites is likely to involve different mechanisms and factors. A Serratia marcescens isolate was particularly efficient in colonizing the mosquitoes’ gut, compromising mosquito survival, and inhibiting both sexual- and asexual-stage Plasmodium through secreted factors, thereby rendering it a potential candidate for the development of a malaria transmission intervention strategy. PMID:24428613

  7. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  8. Eating at the table, on the couch and in bed: An exploration of different locus of commensality in the discourses of Brazilian working mothers.

    Science.gov (United States)

    Scagliusi, Fernanda Baeza; da Rocha Pereira, Patrícia; Unsain, Ramiro Fernandez; de Morais Sato, Priscila

    2016-08-01

    Commensality is a remarkable human act, and tends to be more present among families. Nevertheless, it is possible that eating at the table is being taking for granted when one refers to family meals. Thus, this paper aims to analyze working mothers' discourses about family meals eaten at the table, on the couch and in the bed/bedroom. The participants were thirty mothers working in public universities of the Brazilian region called Baixada Santista. A qualitative study was conducted, using semi-structured interviews. In the transcripts the words "table", "couch", "bed", "bedroom" were located and the excerpts containing them were extracted and analyzed according to a classical and exploratory content analysis. The table is a significant component of meals that unite the family. While for some the meal at the table is an enjoyable moment, it is a stiff moment for others. Indeed, manners and the notion of hierarchy appeared only for the table. Regarding the couch, it seems that the family chose to eat there, because it is a more casual and relaxed setting. Eating in the bed was related to precarity, intimacy and casualness. In the three settings, watching television was a common practice, replacing or being added to talking. Commensality is such an important practice that appears in different settings and even in precarity contexts. The table emerged as the maximal cornerstone of commensality. However, when it was not present, new arrangements were made. Especially the couch seems to be a new commensal space, less formal and rigid, but able to allow some collective conviviality. Eating in the bed was a less common practice. Finally, the significant role that television assumed in meals is highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Validating activity indices from camera traps for commensal rodents and other wildlife in and around farm buildings.

    Science.gov (United States)

    Lambert, Mark; Bellamy, Fiona; Budgey, Richard; Callaby, Rebecca; Coats, Julia; Talling, Janet

    2018-01-01

    Indices of rodent activity are used as indicators of population change during field evaluation of rodenticides. We investigated the potential for using camera traps to determine activity indices for commensal rodents living in and around farm buildings, and sought to compare these indices against previously calibrated survey methods. We recorded 41 263 images of 23 species, including Norway rats (Rattus norvegicus Berk.) and house mice (Mus musculus L.). We found a positive correlation between activity indices from camera traps and activity indices from a method (footprint tracking) previously shown to have a linear relationship with population size for Norway rats. Filtering the camera trap data to simulate a 30-s delay between camera trigger events removed 59.9% of data and did not adversely affect the correlation between activity indices from camera traps and footprint tracking. The relationship between activity indices from footprint tracking and Norway rat population size is known from a previous study; from this, we determined the relationship between activity indices from camera traps and population size for Norway rats living in and around farm buildings. Systematic use of camera traps was used to determine activity indices for Norway rats living in and around farm buildings; the activity indices were positively correlated with those derived from a method previously calibrated against known population size for this species in this context. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.

  10. Regulation of adrenomedullin and nitric oxide production by periodontal bacteria.

    Science.gov (United States)

    Hussain, Q A; McKay, I J; Gonzales-Marin, C; Allaker, R P

    2015-10-01

    In periodontitis the host response to bacterial challenge includes activity of the multifunctional molecules adrenomedullin (AM) and nitric oxide (NO). The aim of this study was to investigate the role of periodontal bacteria in regulating the production of these molecules from cultured cells. Regulation of AM and NO production from oral keratinocytes when challenged with culture supernatants from Aggregatibacter actinomycetemcomitans, Campylobacter rectus, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Veillonella atypica, Streptococcus salivarius and Candida albicans was examined. AM and NO were measured in cell culture supernatants using an enzyme-linked immunosorbent assay and the nitrate/nitrite (NO metabolites) Griess assay respectively. Cellular production of AM and inducible NO synthase was also analysed in target cells by immunofluorescence and Western blot analysis. The inter-relationship of AM and NO production were further investigated with macrophages. A. actinomycetemcomitans and C. rectus induced maximal levels of both AM and NO after 6 and 48 h respectively from oral keratinocytes. AM production in macrophages was upregulated in response to the NO donor S-nitrosoglutathione and partially blocked by the inducible NO synthase inhibitor, N(ω) -Nitro-l-arginine methyl ester hydrochloride. Likewise, NO production was increased upon exposure to AM, while the AM receptor antagonist AM 22-52 reduced the release of NO. Pathogens associated with aggressive periodontitis, A. actinomycetemcomitans and C. rectus, were more effective than those associated with chronic periodontitis, P. gingivalis and Prev. intermedia, and commensals, S. salivarius and V. atypica, as regards the upregulation of AM and NO production from oral keratinocytes. Interaction between these molecules was also demonstrated with macrophages. Understanding the coordinated regulation of AM and NO production in response to periodontal bacteria may identify

  11. A new commensal ostracod Asterositus ohtsukai n. g., n. sp. (Paradoxostomatidae) on the sea star Sclerasterias euplecta (Fisher) (Asteriidae) and its feeding habits.

    Science.gov (United States)

    Tanaka, Hayato; Arai, Mikihito

    2017-02-01

    A new commensal ostracod Asterositus ohtsukai n. g., n. sp. (Podocopida: Cytheroidea: Paradoxostomatidae) is described. This new taxon occurs on the ambulacral grooves and wreath of pedicellariae around superomarginal spines of the sea star Sclerasterias euplecta (Fisher) (Asteroidea: Forcipulatida: Asteriidae). Although the family Paradoxostomatidae Brady & Norman, 1889 contains four ectoparasitic or commensal genera, the association with asteroideans has never hitherto been reported. Morphological observations suggested that A. ohtsukai n. g., n. sp. is closely associated with the host sea star as it typically has distal hooks on the antenna and fifth to seventh limbs, and specialised mandibula and maxillula structures that are considered adaptations to a commensal life-style. In addition, this study discussed the feeding habits of A. ohtsukai n. g., n. sp. based on comparison with previous works. The extremely reduced palp and endites of maxillula of A. ohtsukai n. g., n. sp. imply that they have unique feeding habits that are not based on the feeding function of maxillula. From morphological comparisons with siphonostomatoid copepods, we suggest that A. ohtsukai n. g., n. sp. may feed on the body of host sea star by injuring them with styliform needle-like mandibular coxa and sucking the tissues, body fluid, or mucus with the suctorial disc on the oral cone.

  12. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  13. Oral bacteria influenced by the functional status of the elderly people and the type and quality of facilities for the bedridden.

    Science.gov (United States)

    Tada, A; Watanabe, T; Yokoe, H; Hanada, N; Tanzawa, H

    2002-01-01

    To analyse the relationship between oral bacteria and the health and functional status of the elderly. The bacteria species in the oral cavity of the elderly were examined. It was found that the bedridden subjects staying at two hospitals for long-term (HOBR) showed significantly lower detection rates of commensal bacteria species and significantly higher detection rates of Pseudomonas aeruginosa, of methicillin-resistant Staphylococcus aureus (MRSA) and of coagulase(-) Staph. aureus than those living independently (the independent). In addition, the detection rate of Haemophilus parainfluenzae in NUBR was discovered to be higher than that found in the independent. In HOBR, the detection rate of Ps. aeruginosa was significantly higher among in-patients who required continual care than those in need of partial care, while the detection rate of MRSA was significantly higher among in-patients with low serum albumin than those with normal serum albumin. Oral bacteria examination analysis proved that the risks of infection of some pathogenic bacteria species were correlated with functional status, physical function and nutritional state. Our study suggests that the oral bacteria, especially pathogenic bacteria were influenced by the functional status of the elderly and the type and quality of the facilities for the bedridden, physical function and nutritional state.

  14. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  15. Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method.

    Science.gov (United States)

    Ferreira, L; Sánchez-Juanes, F; Muñoz-Bellido, J L; González-Buitrago, J M

    2011-07-01

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a fast and reliable technology for the identification of microorganisms with proteomics approaches. Here, we compare an intact cell method and a protein extraction method before application on the MALDI plate for the direct identification of microorganisms in both urine and blood culture samples from clinical microbiology laboratories. The results show that the intact cell method provides excellent results for urine and is a good initial method for blood cultures. The extraction method complements the intact cell method, improving microorganism identification from blood culture. Thus, we consider that MALDI-TOF MS performed directly on urine and blood culture samples, with the protocols that we propose, is a suitable technique for microorganism identification, as compared with the routine methods used in the clinical microbiology laboratory. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  16. Ancient bacteria show evidence of DNA repair

    DEFF Research Database (Denmark)

    Johnson, Sarah Stewart; Hebsgaard, Martin B; Christensen, Torben R

    2007-01-01

    -term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence...... geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple PCR and enzymatic treatment of DNA with direct respiration measurements to investigate long...... that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability....

  17. [Antibiotic resistance--an ambivalence of attitudes. As of now, the bacteria are in advantage].

    Science.gov (United States)

    Sköld, O

    1995-09-13

    The value of the precious medical asset that antibiotics constitute is contimualby being eroded by the spread of resistance. For some time that bacterial world has been adapting itself to contend with the toxic assault of man-made poisons, antibiotics, by developing resistance in a very rapid process of evolutionary changes occurring before our very eyes. This evolutionary adaptation is an example of natural genetic engineering entailing an interchange between bacteria of genes conferring antibiotic resistance. Trimethoprim resistance is an example where numerous genes of unknown origin (some closely interrelated), expressing drug-resistant dihydrofolate reductases, move among human commensals and pathogens. They have been shown to move as gene cassettes in and out of the recently characterised integron structure occurring in many pathogens. They are also carried by various transposons such as Tn7, or Tn5393 originally observed in a plant pathogen, Erwinia amylovora. Betalactam resistance is another example of natural genetic engineering, where new betalactamases are continually emerging, and individual enzyme substrate specificity is modified by point mutation. At present, betalactamase mutants resistant to all commercially available betalactams, including clavulanic acid used in combination with betalactam antibiotics, are to be found in clinical isolates. Thus, currently bacteria seem to be triumphing in the running battle between the pharmaceutical industry and the bacterial world, the former introducing one new antibiotic variant after another, to which bacteria promptly develop resistance by manipulating their own genomes.

  18. The Path from VLITE to ngLOBO: A Roadmap for Evolving a Low Frequency Commensal System from the JVLA to the ngVLA

    Science.gov (United States)

    Kassim, Namir E.; Clarke, Tracy; Giacintucci, Simona; Helmboldt, Joseph; Ray, Paul S.; Peters, Wendy; Polisensky, Emil; hicks, Brian C.; Brisken, Walter; hyman, Scott D.; Deneva, Julia; Kerr, Matthew T.; Taylor, Gregory; Dowell, Jayce; Schinzel, Frank K.

    2018-01-01

    The VLA Low-band Ionosphere and Transient Experiment (VLITE, ) is a commensal observing system on the NRAO Karl G. Jansky Very Large Array (VLA). The separate optical path of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus GHz feeds provided an opportunity to expand the simultaneous frequency operation of the VLA through joint observations across both systems. 16 VLA antennas are outfitted with dedicated samplers and use spare fibers to transport the 320-384 MHz band to the VLITE CPU-based correlator. Initial goals included exploring the scientific potential of a commensal low frequency system for ionospheric remote sensing, astrophysics and transients. VLITE operates at nearly 70% wall time with roughly 6200 hours of VLA time recorded each year.Several papers at this meeting review VLITE science and early results. Here we consider how the project could evolve in the future. Over the next 10 years, a straightforward evolutionary path calls for an expansion of VLITE to all 27 VLA antennas and to the maximum available low band receiver bandwidth (224-480 MHz). The GPU-based correlator for this LOw Band Observatory (LOBO) would also incorporate lower frequency signals from the new VLA 74 MHz system, including from VLA dishes (60-80 MHz) and standalone Long Wavelength Array (LWA) aperture array stations (20-80 MHz).In the longer term, we look towards leveraging the vast infrastructure of the ngVLA to include a commensal low frequency capability, called ngLOBO. As described in our community white paper (Taylor et al. 2018; arXiv:1708.00090), ngLOBO has three primary scientific missions: (1) Radio Large Synoptic Survey Telescope (Radio-LSST): one naturally wide beam, commensal with ngVLA, will conduct a continuous synoptic survey of large swaths of the sky for both slow and fast transients; (2) This same commensal beam will provide complementary low frequency images of all ngVLA targets when such data enhances their value. (3) Independent beams from the ng

  19. Day-to-Day Dynamics of Commensal Escherichia coli in Zimbabwean Cows Evidence Temporal Fluctuations within a Host-Specific Population Structure.

    Science.gov (United States)

    Massot, Méril; Couffignal, Camille; Clermont, Olivier; D'Humières, Camille; Chatel, Jérémie; Plault, Nicolas; Andremont, Antoine; Caron, Alexandre; Mentré, France; Denamur, Erick

    2017-07-01

    To get insights into the temporal pattern of commensal Escherichia coli populations, we sampled the feces of four healthy cows from the same herd in the Hwange District of Zimbabwe daily over 25 days. The cows had not received antibiotic treatment during the previous 3 months. We performed viable E. coli counts and characterized the 326 isolates originating from the 98 stool samples at a clonal level, screened them for stx and eae genes, and tested them for their antibiotic susceptibilities. We observed that E. coli counts and dominant clones were different among cows, and very few clones were shared. No clone was shared by three or four cows. Clone richness and evenness were not different between cows. Within each host, the variability in the E. coli count was evidenced between days, and no clone was found to be dominant during the entire sampling period, suggesting the existence of clonal interference. Dominant clones tended to persist longer than subdominant ones and were mainly from phylogenetic groups A and B1. Five E. coli clones were found to contain both the stx 1 and stx 2 genes, representing 6.3% of the studied isolates. All cows harbored at least one Shiga toxin-producing E. coli (STEC) strain. Resistance to tetracycline, penicillins, trimethoprim, and sulfonamides was rare and observed in three clones that were shed at low levels in two cows. This study highlights the fact that the commensal E. coli population, including the STEC population, is host specific, is highly dynamic over a short time frame, and rarely carries antibiotic resistance determinants in the absence of antibiotic treatment. IMPORTANCE The literature about the dynamics of commensal Escherichia coli populations is very scarce. Over 25 days, we followed the total E. coli counts daily and characterized the sampled clones in the feces of four cows from the same herd living in the Hwange District of Zimbabwe. This study deals with the day-to-day dynamics of both quantitative and

  20. Comparative cytotoxicity of periodontal bacteria

    International Nuclear Information System (INIS)

    Stevens, R.H.; Hammond, B.F.

    1988-01-01

    The direct cytotoxicity of sonic extracts (SE) from nine periodontal bacteria for human gingival fibroblasts (HGF) was compared. Equivalent dosages (in terms of protein concentration) of SE were used to challenge HGF cultures. The cytotoxic potential of each SE was assessed by its ability to (1) inhibit HGF proliferation, as measured by direct cell counts; (2) inhibit 3H-thymidine incorporation in HGF cultures; or (3) cause morphological alterations of the cells in challenged cultures. The highest concentration (500 micrograms SE protein/ml) of any of the SEs used to challenge the cells was found to be markedly inhibitory to the HGFs by all three of the criteria of cytotoxicity. At the lowest dosage tested (50 micrograms SE protein/ml); only SE from Actinobacillus actinomycetemcomitans, Bacteroides gingivalis, and Fusobacterium nucleatum caused a significant effect (greater than 90% inhibition or overt morphological abnormalities) in the HGFs as determined by any of the criteria employed. SE from Capnocytophaga sputigena, Eikenella corrodens, or Wolinella recta also inhibited cell proliferation and thymidine incorporation at this dosage; however, the degree of inhibition (5-50%) was consistently, clearly less than that of the first group of three organisms named above. The SE of the three other organisms tested (Actinomyces odontolyticus, Bacteroides intermedius, and Streptococcus sanguis) had little or no effect (0-10% inhibition) at this concentration. The data suggest that the outcome of the interaction between bacterial components and normal resident cells of the periodontium is, at least in part, a function of the bacterial species

  1. Functional amyloids in bacteria.

    Science.gov (United States)

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  2. The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Fox, Amy C; McConnell, Kevin W; Yoseph, Benyam P; Breed, Elise; Liang, Zhe; Clark, Andrew T; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-11-01

    The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ-free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within 2 days, whereas 44% of conventional mice survived for 7 days (P = 0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. Germ-free mice had significantly lower levels of tumor necrosis factor and interleukin 1β in bronchoalveolar lavage fluid compared with conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, because sepsis induces a greater increase in gut apoptosis in Rag-1 mice than in wild-type mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1 mice and septic GF wild-type mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local proinflammatory response. In addition, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria.

  3. Commensal ecology, urban landscapes, and their influence on the genetic characteristics of city-dwelling Norway rats (Rattus norvegicus).

    Science.gov (United States)

    Gardner-Santana, L C; Norris, D E; Fornadel, C M; Hinson, E R; Klein, S L; Glass, G E

    2009-07-01

    Movement of individuals promotes colonization of new areas, gene flow among local populations, and has implications for the spread of infectious agents and the control of pest species. Wild Norway rats (Rattus norvegicus) are common in highly urbanized areas but surprisingly little is known of their population structure. We sampled individuals from 11 locations within Baltimore, Maryland, to characterize the genetic structure and extent of gene flow between areas within the city. Clustering methods and a neighbour-joining tree based on pairwise genetic distances supported an east-west division in the inner city, and a third cluster comprised of historically more recent sites. Most individuals (approximately 95%) were assigned to their area of capture, indicating strong site fidelity. Moreover, the axial dispersal distance of rats (62 m) fell within typical alley length. Several rats were assigned to areas 2-11.5 km away, indicating some, albeit infrequent, long-distance movement within the city. Although individual movement appears to be limited (30-150 m), locations up to 1.7 km are comprised of relatives. Moderate F(ST), differentiation between identified clusters, and high allelic diversity indicate that regular gene flow, either via recruitment or migration, has prevented isolation. Therefore, ecology of commensal rodents in urban areas and life-history characteristics of Norway rats likely counteract many expected effects of isolation or founder events. An understanding of levels of connectivity of rat populations inhabiting urban areas provides information about the spatial scale at which populations of rats may spread disease, invade new areas, or be eradicated from an existing area without reinvasion.

  4. Quantitative analysis of commensal Escherichia coli populations reveals host-specific enterotypes at the intra-species level.

    Science.gov (United States)

    Smati, Mounira; Clermont, Olivier; Bleibtreu, Alexandre; Fourreau, Frédéric; David, Anthony; Daubié, Anne-Sophie; Hignard, Cécile; Loison, Odile; Picard, Bertrand; Denamur, Erick

    2015-08-01

    The primary habitat of the Escherichia coli species is the gut of warm-blooded vertebrates. The E. coli species is structured into four main phylogenetic groups A, B1, B2, and D. We estimated the relative proportions of these phylogroups in the feces of 137 wild and domesticated animals with various diets living in the Ile de France (Paris) region by real-time PCR. We distinguished three main clusters characterized by a particular abundance of two or more phylogroups within the E. coli animal commensal populations, which we called "enterocolitypes" by analogy with the enterotypes defined in the human gut microbiota at the genus level. These enterocolitypes were characterized by a dominant (>50%) B2, B1, or A phylogroup and were associated with different host species, diets, and habitats: wild and herbivorous species (wild rabbits and deer), domesticated herbivorous species (domesticated rabbits, horses, sheep, and cows), and omnivorous species (boar, pigs, and chickens), respectively. By analyzing retrospectively the data obtained using the same approach from 98 healthy humans living in Ile de France (Smati et al. 2013, Appl. Environ. Microbiol. 79, 5005-5012), we identified a specific human enterocolitype characterized by the dominant and/or exclusive (>90%) presence of phylogroup B2. We then compared B2 strains isolated from animals and humans, and revealed that human and animal strains differ regarding O-type and B2 subgroup. Moreover, two genes, sfa/foc and clbQ, were associated with the exclusive character of strains, observed only in humans. In conclusion, a complex network of interactions exists at several levels (genus and intra-species) within the intestinal microbiota. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...

  6. The reciprocal iso-inhibition volume concept: A procedure for the evaluation in effect-directed analysis with thin-layer chromatography - using the thin-layer chromatography-luminescent bacteria assay as an example.

    Science.gov (United States)

    Schulz, Wolfgang; Weiss, Stefan C; Weber, Walter H; Winzenbacher, Rudi

    2017-10-13

    In effect-directed analysis (EDA) with high-performance thin-layer chromatography (HPTLC), the effect is often detected using images. Thus, an approach to create inhibition chromatograms from these images was developed using the example of the HPTLC- bioluminescence inhibition test. A comparison between the cuvette test and the HPTLC test shows that the test on the plate is significantly more sensitive. To describe the strength of the effect, the EC 50 value is determined from the dose-response relationship. However, the inhibiting compounds are generally unknown and thus their concentrations are also unknown. Therefore, instead of the concentration, the known application volumes are used. This enables the calculation of the application volume necessary to achieve 50% inhibition. Since the volume is inversely proportional to the concentration, the reciprocal value of the calculated volume is indicated and is referred to as the reciprocal iso-inhibition volume (RIV). Using this RIV-concept, it is now possible to compare inhibition bands within and between plates. The entire evaluation is described by the means of two samples from a contaminated site using the bioluminescence inhibition. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Radiation-resistant asporogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K [Tokyo Univ. (Japan). Faculty of Agriculture

    1975-09-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned.

  8. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    Yano, Keiji

    1975-01-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  9. Association of Levels of Antibodies from Patients with Inflammatory Bowel Disease with Extracellular Proteins of Food and Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Arancha Hevia

    2014-01-01

    Full Text Available Inflammatory bowel disease (IBD is an autoimmune disease characterized by a chronic inflammation of the gastrointestinal tract mucosa and is related to an abnormal immune response to commensal bacteria. Our aim of the present work has been to explore the levels of antibodies (IgG and IgA raised against extracellular proteins produced by LAB and its association with IBD. We analyzed, by Western-blot and ELISA, the presence of serum antibodies (IgA and IgG developed against extracellular protein fractions produced by different food bacteria from the genera Bifidobacterium and Lactobacillus. We used a sera collection consisting of healthy individuals (HC, n=50, Crohn's disease patients (CD, n=37, and ulcerative colitis patients (UC, n=15. Levels of IgA antibodies developed against a cell-wall hydrolase from Lactobacillus casei subsp. rhamnosus GG (CWH were significantly higher in the IBD group (P<0.002; n=52. The specificity of our measurements was confirmed by measuring IgA antibodies developed against the CWH peptide 365-VNTSNQTAAVSAS-377. IBD patients appeared to have different immune response to food bacteria. This paper sets the basis for developing systems for early detection of IBD, based on the association of high levels of antibodies developed against extracellular proteins from food and probiotic bacteria.

  10. Acoustofluidic bacteria separation

    International Nuclear Information System (INIS)

    Li, Sixing; Huang, Tony Jun; Ma, Fen; Zeng, Xiangqun; Bachman, Hunter; Cameron, Craig E

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device. (paper)

  11. Acoustofluidic bacteria separation

    Science.gov (United States)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  12. Bacteria, phages and septicemia.

    Directory of Open Access Journals (Sweden)

    Ausra Gaidelyte

    Full Text Available The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial invasion.

  13. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact.

    Science.gov (United States)

    Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam

    2017-02-28

    Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Fish skin bacteria: Colonial and cellular hydrophobicity.

    Science.gov (United States)

    Sar, N; Rosenberg, E

    1987-05-01

    Bacteria were desorbed from the skin of healthy, fast-swimming fish by several procedures, including brief exposure to sonic oscillation and treatment with nontoxic surface active agents. The surface properties of these bacteria were studied by measuring their adhesion to hexadecane, as well as by a newly developed, simple method for studying the hydrophobicity of bacterial lawns. This method, referred to as the "Direction of Spreading" (DOS) method, consists of recording the direction to which a water drop spreads when introduced at the border between bacterial lawns and other surfaces. Of the 13 fish skin isolates examined, two strains were as hydrophobic as polystyrene by the DOS method. Suspended cells of one of these strains adhered strongly to hexadecane (84%), whereas cells of the other strain adhered poorly (13%). Another strain which was almost as hydrophobic as polystyrene by the DOS method did not adhere to hexadecane at all. Similarly, lawns of three other strains were more hydrophobic than glass by the DOS method, but cell suspensions prepared from these colonies showed little or no adhesion to hexadecane. The high colonial but relatively low cellular hydrophobicity could be due to a hydrophobic slime that is removed during the suspension and washing procedures. The possibility that specific bacteria assist in fish locomotion by changing the surface properties of the fish skin and by producing drag-reducing polymers is discussed.

  15. The interaction of bacteria and metal surfaces

    International Nuclear Information System (INIS)

    Mansfeld, Florian

    2007-01-01

    This review discusses different examples for the interaction of bacteria and metal surfaces based on work reported previously by various authors and work performed by the author with colleagues at other institutions and with his graduate students at CEEL. Traditionally it has been assumed that the interaction of bacteria with metal surfaces always causes increased corrosion rates ('microbiologically influenced corrosion' (MIC)). However, more recently it has been observed that many bacteria can reduce corrosion rates of different metals and alloys in many corrosive environments. For example, it has been found that certain strains of Shewanella can prevent pitting of Al 2024 in artificial seawater, tarnishing of brass and rusting of mild steel. It has been observed that corrosion started again when the biofilm was killed by adding antibiotics. The mechanism of corrosion protection seems to be different for different bacteria since it has been found that the corrosion potential E corr became more negative in the presence of Shewanella ana and algae, but more positive in the presence of Bacillus subtilis. These findings have been used in an initial study of the bacterial battery in which Shewanella oneidensis MR-1 was added to a cell containing Al 2024 and Cu in a growth medium. It was found that the power output of this cell continuously increased with time. In the microbial fuel cell (MFC) bacteria oxidize the fuel and transfer electrons directly to the anode. In initial studies EIS has been used to characterize the anode, cathode and membrane properties for different operating conditions of a MFC that contained Shewanella oneidensis MR-1. Cell voltage (V)-current density (i) curves were obtained using potentiodynamic sweeps. The current output of a MFC has been monitored for different experimental conditions

  16. The interaction of bacteria and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mansfeld, Florian [Corrosion and Environmental Effects Laboratory (CEEL), The Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States)

    2007-10-10

    This review discusses different examples for the interaction of bacteria and metal surfaces based on work reported previously by various authors and work performed by the author with colleagues at other institutions and with his graduate students at CEEL. Traditionally it has been assumed that the interaction of bacteria with metal surfaces always causes increased corrosion rates ('microbiologically influenced corrosion' (MIC)). However, more recently it has been observed that many bacteria can reduce corrosion rates of different metals and alloys in many corrosive environments. For example, it has been found that certain strains of Shewanella can prevent pitting of Al 2024 in artificial seawater, tarnishing of brass and rusting of mild steel. It has been observed that corrosion started again when the biofilm was killed by adding antibiotics. The mechanism of corrosion protection seems to be different for different bacteria since it has been found that the corrosion potential E{sub corr} became more negative in the presence of Shewanella ana and algae, but more positive in the presence of Bacillus subtilis. These findings have been used in an initial study of the bacterial battery in which Shewanella oneidensis MR-1 was added to a cell containing Al 2024 and Cu in a growth medium. It was found that the power output of this cell continuously increased with time. In the microbial fuel cell (MFC) bacteria oxidize the fuel and transfer electrons directly to the anode. In initial studies EIS has been used to characterize the anode, cathode and membrane properties for different operating conditions of a MFC that contained Shewanella oneidensis MR-1. Cell voltage (V) - current density (i) curves were obtained using potentiodynamic sweeps. The current output of a MFC has been monitored for different experimental conditions. (author)

  17. Produção Científica sobre Comensalidade no Brasil: Estudo Documental de Teses e Dissertações (1997- 2011 / Scientific Production on Commensality in Brazil: Documentary Study of Thesis and Dissertations (1997-2011

    Directory of Open Access Journals (Sweden)

    Frederico Cid Soares

    2015-07-01

    Full Text Available O objetivo do presente artigo é o de traçar um panorama dos estudos sobre comensalidade no Brasil, tendo como fonte o Banco de Teses e Dissertações da Capes. A metodologia empregada foi a análise temática de conteúdo de 32 teses e dissertações sobre o tema, escolhidas através de análise de resumos dos trabalhos na Capes, dentro de quatro categorias temáticas: comensalidade e etnias, comensalidade e religião, comensalidade e nutrição, espaços e lugares de comensalidade. Os resultados mostraram que a comensalidade pode ser vista em diversas formas, abordando situações específicas, em diferentes grupos étnicos, em várias situações religiosas, abordando também o tema da nutrição e em outras situações de encontros de familiares, amigos ou mesmo desconhecidos. O estudo mostrou que a comensalidade está presente entre as pessoas em diversas situações, mas tem decaído substantivamente nos últimos tempos devido às mudanças de comportamento das pessoas.Palavras-Chave: Hospitalidade. Comensalidade. Produção Científica. BrasilScientific Production on Commensality in Brazil: Documentary Study of Thesis and Dissertations (1997-2011 - The objective of this study is an overview of studies about commensality in Brazil, having as source the Bank of Theses and Dissertations from CAPES. The methodology used was the thematic content analysis of thirty-two theses and dissertations on the subject chosen through the work records analyzing the CAPES in four thematic categories: commensality and ethnicities, commensality and religion, commensality and nutrition, commensality spaces and places. The results showed that commensality can be seen in various forms, addressing specific situations, in different ethnic groups in various religious situations, also addressing the topic of nutrition and other situations of family gatherings, friends or even strangers. The study showed that commensality is present among people in different

  18. Ecophysiology of the Anammox Bacteria

    NARCIS (Netherlands)

    Kartal, M.B.

    2008-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium to dinitrogen gas with nitrite as the electron acceptor. These bacteria are the key players in the global nitrogen cycle, responsible for the most of nitrogen production in natural ecosystems. The anammox process is also a

  19. Money and transmission of bacteria.

    NARCIS (Netherlands)

    Gedik, H.; Voss, T.A.; Voss, A.

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria

  20. Gene silencing in non-model insects: Overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference: Sustained RNA interference in insects mediated by symbiotic bacteria: Applications as a genetic tool and as a biocide.

    Science.gov (United States)

    Whitten, Miranda; Dyson, Paul

    2017-03-01

    Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance to ensure sustained delivery with minimal experimental intervention or trauma to the insect is to exploit commensal bacteria for symbiont-mediated RNA interference. This technology not only offers an efficient means for RNA interference in insects in laboratory conditions, but also has potential for use in the control of human disease vectors, agricultural pests and pathogens of beneficial insects. © 2017 WILEY Periodicals, Inc.

  1. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  2. Commensality between the Young

    DEFF Research Database (Denmark)

    Andersen, Boris

    2015-01-01

    The interplay of food, people and meals has in the past ten years attracted special political attention, in view of what has been called the obesity epidemic. This latter notion refers to the fact that we in the Western world are experiencing a dramatic increase in the number of people with life......-threatening obesity, including a variety of health-threatening complications as a result. Interest in food and meals thus becomes not only a question of being able to understand and describe, but also a question of being able to provide effective actions that encourage a change in our behavior in dealing with food...

  3. Always one step ahead: How pathogenic bacteria use the type III secretion system to manipulate the intestinal mucosal immune system

    Directory of Open Access Journals (Sweden)

    Marchès Olivier

    2011-05-01

    Full Text Available Abstract The intestinal immune system and the epithelium are the first line of defense in the gut. Constantly exposed to microorganisms from the environment, the gut has complex defense mechanisms to prevent infections, as well as regulatory pathways to tolerate commensal bacteria and food antigens. Intestinal pathogens have developed strategies to regulate intestinal immunity and inflammation in order to establish or prolong infection. The organisms that employ a type III secretion system use a molecular syringe to deliver effector proteins into the cytoplasm of host cells. These effectors target the host cell cytoskeleton, cell organelles and signaling pathways. This review addresses the multiple mechanisms by which the type III secretion system targets the intestinal immune response, with a special focus on pathogenic E. coli.

  4. Development of Human Breast Milk Microbiota-Associated Mice as a Method to Identify Breast Milk Bacteria Capable of Colonizing Gut.

    Science.gov (United States)

    Wang, Xiaoxin; Lu, Huifang; Feng, Zhou; Cao, Jie; Fang, Chao; Xu, Xianming; Zhao, Liping; Shen, Jian

    2017-01-01

    Human breast milk is recognized as one of multiple important sources of commensal bacteria for infant gut. Previous studies searched for the bacterial strains shared between breast milk and infant feces by isolating bacteria and performing strain-level bacterial genotyping, but only limited number of milk bacteria were identified to colonize infant gut, including bacteria from Bifidobacterium , Staphylococcus , Lactobacillus , and Escherichia / Shigella . Here, to identify the breast milk bacteria capable of colonizing gut without the interference of bacteria of origins other than the milk or the necessity to analyze infant feces, normal chow-fed germ-free mice were orally inoculated with the breast milk collected from a mother 2 days after vaginal delivery. According to 16S rRNA gene-based denaturant gradient gel electrophoresis and Illumina sequencing, bacteria at >1% abundance in the milk inoculum were only Streptococcus (56.0%) and Staphylococcus (37.4%), but in the feces of recipient mice were Streptococcus (80.3 ± 2.3%), Corynebacterium (10.0 ± 2.6 %), Staphylococcus (7.6 ± 1.6%), and Propionibacterium (2.1 ± 0.5%) that were previously shown as dominant bacterial genera in the meconium of C-section-delivered human babies; the abundance of anaerobic gut-associated bacteria, Faecalibacterium , Prevotella , Roseburia , Ruminococcus , and Bacteroides , was 0.01-1% in the milk inoculum and 0.003-0.01% in mouse feces; the abundance of Bifidobacterium spp. was below the detection limit of Illumina sequencing in the milk but at 0.003-0.01% in mouse feces. The human breast milk microbiota-associated mouse model may be used to identify additional breast milk bacteria that potentially colonize infant gut.

  5. METHODS FOR DETECTING BACTERIA USING POLYMER MATERIALS

    NARCIS (Netherlands)

    Van Grinsven Bart Robert, Nicolaas; Cleij, Thomas

    2017-01-01

    A method for characterizing bacteria includes passing a liquid containing an analyte comprising a first bacteria and a second bacteria over and in contact with a polymer material on a substrate. The polymer material is formulated to bind to the first bacteria, and the first bacteria binds to the

  6. Combinatorial effects of arginine and fluoride on oral bacteria.

    Science.gov (United States)

    Zheng, X; Cheng, X; Wang, L; Qiu, W; Wang, S; Zhou, Y; Li, M; Li, Y; Cheng, L; Li, J; Zhou, X; Xu, X

    2015-02-01

    Dental caries is closely associated with the microbial disequilibrium between acidogenic/aciduric pathogens and alkali-generating commensal residents within the dental plaque. Fluoride is a widely used anticaries agent, which promotes tooth hard-tissue remineralization and suppresses bacterial activities. Recent clinical trials have shown that oral hygiene products containing both fluoride and arginine possess a greater anticaries effect compared with those containing fluoride alone, indicating synergy between fluoride and arginine in caries management. Here, we hypothesize that arginine may augment the ecological benefit of fluoride by enriching alkali-generating bacteria in the plaque biofilm and thus synergizes with fluoride in controlling dental caries. Specifically, we assessed the combinatory effects of NaF/arginine on planktonic and biofilm cultures of Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis with checkerboard microdilution assays. The optimal NaF/arginine combinations were selected, and their combinatory effects on microbial composition were further examined in single-, dual-, and 3-species biofilm using bacterial species-specific fluorescence in situ hybridization and quantitative polymerase chain reaction. We found that arginine synergized with fluoride in suppressing acidogenic S. mutans in both planktonic and biofilm cultures. In addition, the NaF/arginine combination synergistically reduced S. mutans but enriched S. sanguinis within the multispecies biofilms. More importantly, the optimal combination of NaF/arginine maintained a "streptococcal pressure" against the potential growth of oral anaerobe P. gingivalis within the alkalized biofilm. Taken together, we conclude that the combinatory application of fluoride and arginine has a potential synergistic effect in maintaining a healthy oral microbial equilibrium and thus represents a promising ecological approach to caries management. © International & American

  7. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    Science.gov (United States)

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. In Silico Analysis of Putrefaction Pathways in Bacteria and Its Implication in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Harrisham Kaur

    2017-11-01

    Full Text Available Fermentation of undigested proteins in human gastrointestinal tract (gut by the resident microbiota, a process called bacterial putrefaction, can sometimes disrupt the gut homeostasis. In this process, essential amino acids (e.g., histidine, tryptophan, etc. that are required by the host may be utilized by the gut microbes. In addition, some of the products of putrefaction, like ammonia, putrescine, cresol, indole, phenol, etc., have been implicated in the disease pathogenesis of colorectal cancer (CRC. We have investigated bacterial putrefaction pathways that are known to be associated with such metabolites. Results of the comprehensive in silico analysis of the selected putrefaction pathways across bacterial genomes revealed presence of these pathways in limited bacterial groups. Majority of these bacteria are commonly found in human gut. These include Bacillus, Clostridium, Enterobacter, Escherichia, Fusobacterium, Salmonella, etc. Interestingly, while pathogens utilize almost all the analyzed pathways, commensals prefer putrescine and H2S production pathways for metabolizing the undigested proteins. Further, comparison of the putrefaction pathways in the gut microbiomes of healthy, carcinoma and adenoma datasets indicate higher abundances of putrefying bacteria in the carcinoma stage of CRC. The insights obtained from the present study indicate utilization of possible microbiome-based therapies to minimize the adverse effects of gut microbiome in enteric diseases.

  9. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding.

    Science.gov (United States)

    Jost, Ted; Lacroix, Christophe; Braegger, Christian P; Rochat, Florence; Chassard, Christophe

    2014-09-01

    Breast milk has recently been recognized as source of commensal and potential probiotic bacteria. The present study investigated whether viable strains of gut-associated obligate anaerobes are shared between the maternal and neonatal gut ecosystem via breastfeeding. Maternal faeces, breast milk and corresponding neonatal faeces collected from seven mothers-neonate pairs at three neonatal sampling points were analyzed by culture-independent (pyrosequencing) and culture-dependent methods (16S rRNA gene sequencing, pulsed field gel electrophoresis, random amplified polymorphic DNA and repetitive extragenic palindromic polymerase chain reaction. Pyrosequencing allowed identifying gut-associated obligate anaerobic genera, like Bifidobacterium, Bacteroides, Parabacteroides and members of the Clostridia (Blautia, Clostridium, Collinsella and Veillonella) shared between maternal faeces, breast milk and neonatal faeces. Using culture, a viable strain of Bifidobacterium breve was shown to be shared between all three ecosystems within one mother-neonate pair. Furthermore, pyrosequencing revealed that several butyrate-producing members of the Clostridia (Coprococcus, Faecalibacterium, Roseburia and Subdoligranulum) were shared between maternal faeces and breast milk. This study shows that (viable) obligate gut-associated anaerobes may be vertically transferred from mother to neonate via breastfeeding. Thus, our data support the recently suggested hypothesis of a novel way of mother-neonate communication, in which maternal gut bacteria reach breast milk via an entero-mammary pathway to influence neonatal gut colonization and maturation of the immune system. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Dependence on epiphytic bacteria for freezing protection in an Antarctic moss, Bryum argenteum.

    Science.gov (United States)

    Raymond, James A

    2016-02-01

    Mosses are the dominant flora of Antarctica, but their mechanisms of survival in the face of extreme low temperatures are poorly understood. A variety of Bryum argenteum from 77° S was previously shown to have strong ice-pitting activity, a sign of the presence of ice-binding proteins (IBPs) that mitigate freezing damage. Here, using samples that had been stored at -25(o) C for 10 years, it is shown that much if not all of the activity is due to bacterial ice-binding proteins secreted on the leaves of the moss. Sequencing of the leaf metagenome revealed the presence of hundreds of genes from a variety of bacteria (mostly Actinobacteria and Bacteroidetes) that encode a domain (DUF3494) that is associated with ice binding. The frequency of occurrence of this domain is one to two orders of magnitude higher than it is in representative mesophilic bacterial metagenomes. Genes encoding 42 bacterial IBPs with N-terminal secretion signals were assembled. There appears to be a commensal relationship in which the moss provides sustenance to the bacteria in return for freezing protection. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.

    Science.gov (United States)

    Hoppe, Björn; Kahl, Tiemo; Karasch, Peter; Wubet, Tesfaye; Bauhus, Jürgen; Buscot, François; Krüger, Dirk

    2014-01-01

    Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase) genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa.

  12. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.

    Directory of Open Access Journals (Sweden)

    Björn Hoppe

    Full Text Available Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa.

  13. Motility of magnetotactic bacteria/MTB to Geomagnetic fields

    Science.gov (United States)

    Hidajatullah-Maksoed, Fatahillah

    2016-03-01

    Bacteria with motility directed by a local geomagnetic fields have been observed in marine sediments'' discussed by R. Blakemore, 1975. Magnetotactic bacteria/MTB discovered in 1963 by Salvatore Bellini. For ``off-axis electron holography in the transmission electron microscope was used to correlates the physical & magnetic microstructure of magnetite nanocrystals in magnetotactic bacteria'' sought ``single-domain magnetite in hemopelagic sediments'' from JF Stolz. Otherwise, for potential source of bioproducts- product meant from result to multiplier -of magnetotactic bacteria[ACV Araujo, et.al, 2014 ] of marine drugs retrieved the `measurement of cellular chemotaxis with ECIS/Taxis, from KM Pietrosimone, 2012, whereas after ``earth magnetic field role on small living models'' are other interpretation of ``taxis'' as a movement of a cell instead usual ``tax'' for yew's taxus cuspidate, hired car & taxes in financial realms. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  14. Applications of Magnetosomes Synthesized by Magnetotactic Bacteria in Medicine

    International Nuclear Information System (INIS)

    Alphandéry, Edouard

    2014-01-01

    Magnetotactic bacteria belong to a group of bacteria that synthesize iron oxide nanoparticles covered by biological material that are called magnetosomes. These bacteria use the magnetosomes as a compass to navigate in the direction of the earth’s magnetic field. This compass helps the bacteria to find the optimum conditions for their growth and survival. Here, we review several medical applications of magnetosomes, such as those in magnetic resonance imaging (MRI), magnetic hyperthermia, and drug delivery. Different methods that can be used to prepare the magnetosomes for these applications are described. The toxicity and biodistribution results that have been published are summarized. They show that the magnetosomes can safely be used provided that they are prepared in specific conditions. The advantageous properties of the magnetosomes compared with those of chemically synthesized nanoparticles of similar composition are also highlighted.

  15. Review on SERS of Bacteria

    Directory of Open Access Journals (Sweden)

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  16. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  17. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic

  18. Polymorphic transformation of helical flagella of bacteria

    Science.gov (United States)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration

    2016-11-01

    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  19. Bacteria-Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular...... bacterial lipases are particularly abundant at sites of infection. Herein it is shown how active or proactive compounds attached to polymeric surfaces using lipase‐sensitive linkages, such as fatty acid esters or anhydrides, may be released in response to infection. Proof‐of‐concept of the responsive...

  20. Gut Bacteria Affect Immunotherapy Response

    Science.gov (United States)

    Three new studies have identified intestinal bacteria that appear to influence the response to checkpoint inhibitors. This Cancer Currents blog post explains how the researchers think their findings could be used to improve patients’ responses to these immunotherapy drugs.

  1. hydroxyalkanoate (PHAs) producing bacteria isolated

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... ium (MSM), having inhibitors for Gram positive bacteria and fungi and a mixed ... Two techniques were used for detecting the presence of polymer: staining ... was saline solution at 600 nm wavelength on VARIAN DSM 100.

  2. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  3. Anaerobic bacteria that dechlorinate perchloroethene.

    Science.gov (United States)

    Fathepure, B Z; Nengu, J P; Boyd, S A

    1987-01-01

    In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium. PMID:3426224

  4. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production

    Directory of Open Access Journals (Sweden)

    Kevin Stemmler

    2016-03-01

    Full Text Available Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To address this problem, our study focused on isolating and characterizing microalgal strains from three municipal wastewater treatment systems (two activated sludge and one aerated-stabilization basin systems for their potential use in biofuel feedstock production. Most of the 19 isolates from wastewater grew faster than two culture collection strains under mixotrophic conditions, particularly with glucose. The fastest growing wastewater strains included the genera Chlorella and Dictyochloris. The fastest growing microalgal strains were not necessarily the best lipid producers. Under photoautotrophic and mixotrophic growth conditions, single strains of Chlorella and Scenedesmus each produced the highest lipid yields, including those most relevant to biodiesel production. A comparison of axenic and non-axenic versions of wastewater strains showed a notable effect of commensal bacteria on fatty acid composition. Strains grown with bacteria tended to produce relatively equal proportions of saturated and unsaturated fatty acids, which is an ideal lipid blend for biodiesel production. These results not only show the potential for using microalgae isolated from wastewater for growth in wastewater-fed feedstock systems, but also the important role that commensal bacteria may have in impacting the fatty acid profiles of microalgal feedstock.

  5. The effect of urban and rural habitats and resource type on activity budgets of commensal rhesus macaques (Macaca mulatta) in Bangladesh.

    Science.gov (United States)

    Jaman, M Firoj; Huffman, Michael A

    2013-01-01

    Macaques are characterized by their wide distribution and ability to adapt to a variety of habitats. Activity budgets are affected by habitat type, season, and food availability in relation to differing age-sex class and individual requirements. We conducted a comparative study on two commensal rhesus groups, one living in a rural village and the other in the center of urban Dhaka, Bangladesh. The study was conducted in three different seasons between 2007 and 2009 in order to evaluate how habitat type and season affects their behavioral activities. Differences in food type and its availability between these two habitats were mainly responsible for the variations in activity budgets between groups. Feeding time in the rural group was significantly longer than that in the urban group. In contrast, grooming and object manipulation/play were significantly greater in the urban than the rural group. Seasonal variations in all major behaviors were significantly affected by group, with more time spent feeding in summer than in winter/dry season, and more time spent grooming and moving in winter/dry season than summer in the rural group. In contrast, time spent resting was greater in the monsoon and summer seasons than the winter/dry season in the urban group. Grooming time was greater in the winter/dry season than the monsoon and summer seasons. In both groups, immature of both sexes spent significantly more time on feeding and object manipulation/playing and less time resting than adults. Adult females spent more time grooming than males and immatures, of both sexes, in both groups. Moreover, the rural group spent most of their time feeding on garden/crop produce and wild plant food resources, while the urban group spent more time feeding on provisioned foods. These results showed that differences in the activity budgets of rural and urban dwelling macaques were due largely to the differences in available food resources. Commensal rhesus macaques show a high degree of

  6. Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli.

    Science.gov (United States)

    Ju, Tingting; Shoblak, Yasmeen; Gao, Yanhua; Yang, Kaiyuan; Fouhse, Janelle; Finlay, B Brett; So, Yee Wing; Stothard, Paul; Willing, Benjamin P

    2017-09-01

    Antibiotics are important for treating bacterial infection; however, efficacies and side effects of antibiotics vary in medicine and experimental models. A few studies have correlated microbiota composition variations with health outcomes in response to antibiotics; however, no study has demonstrated causality. We had noted variation in colonic expression of C-type lectins, regenerating islet-derived protein 3β (Reg3β) and Reg3γ, after metronidazole treatment in a mouse model. To investigate the effects of specific variations in the preexisting microbiome on host response to antibiotics, mice harboring a normal microbiota were allocated to 4 treatments in a 2-by-2 factorial arrangement with or without commensal Escherichia coli and with or without metronidazole in drinking water. E. coli colonized readily without causing a notable shift in the microbiota or host response. Metronidazole administration reduced microbiota biodiversity, indicated by decreased Chao1 and Shannon index values, and altered microbiota composition. However, the presence of E. coli strongly affected metronidazole-induced microbiota shifts. Remarkably, this single commensal bacterium in the context of a complex population led to variations in host responses to metronidazole treatment, including increased expression of antimicrobial peptides Reg3β and Reg3γ and intestinal inflammation indicated by tumor necrosis factor alpha levels. Similar results were obtained from 2-week antibiotic exposure and with additional E. coli isolates. The results of this proof-of-concept study indicate that even minor variations in initial commensal microbiota can drive shifts in microbial composition and host response after antibiotic administration. As well as providing an explanation for variability in animal models using antibiotics, the findings encourage the development of personalized medication in antibiotic therapies. IMPORTANCE This work provides an understanding of variability in studies where

  7. Detection of periodontal bacteria in thrombi of patients with acute myocardial infarction by polymerase chain reaction.

    Science.gov (United States)

    Ohki, Takahiro; Itabashi, Yuji; Kohno, Takashi; Yoshizawa, Akihiro; Nishikubo, Shuichi; Watanabe, Shinya; Yamane, Genyuki; Ishihara, Kazuyuki

    2012-02-01

    Numerous reports have demonstrated that periodontal bacteria are present in plaques from atherosclerotic arteries. Although periodontitis has recently been recognized as a risk factor for coronary artery disease, the direct relationship between periodontal bacteria and coronary artery disease has not yet been clarified. It has been suggested that these bacteria might contribute to inflammation and plaque instability. We assumed that if periodontal bacteria induce inflammation of plaque, the bacteria would be released into the bloodstream when vulnerable plaque ruptures. To determine whether periodontal bacteria are present in thrombi at the site of acute myocardial infarction, we tried to detect periodontal bacteria in thrombi of patients with acute myocardial infarction by polymerase chain reaction (PCR). We studied 81 consecutive adults with ST-segment elevation acute myocardial infarction who underwent primary percutaneous coronary intervention (PCI). All patients underwent removal of thrombus with aspiration catheters at the beginning of percutaneous coronary intervention, and a small sample of thrombus was obtained for PCR. The detection rates of periodontal bacteria by PCR were 19.7% for Aggregatibacter actinomycetemcomitans, 3.4% for Porphyromonas gingivalis, and 2.3% for Treponema denticola. Three species of periodontal bacteria were detected in the thrombi of patients with acute myocardial infarction. This raises the possibility that such bacteria are latently present in plaque and also suggests that these bacteria might have a role in plaque inflammation and instability. Copyright © 2012 Mosby, Inc. All rights reserved.

  8. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis

    Directory of Open Access Journals (Sweden)

    Zahra Armingohar

    2014-05-01

    Full Text Available Background: Several studies have reported an association between chronic periodontitis (CP and cardiovascular diseases. Detection of periodontopathogens, including red complex bacteria (RCB, in vascular lesions has suggested these bacteria to be involved in the pathogenesis of atherosclerosis and abdominal aortic aneurysms. Objective: In this study, we investigate bacteria and their DNA in vascular biopsies from patients with vascular diseases (VD; i.e. abdominal aortic aneurysms, atherosclerotic carotid, and common femoral arteries, with and without CP. Methods: DNA was extracted from vascular biopsies selected from 40 VD patients: 30 with CP and 10 without CP. The V3-V5 region of the 16S rDNA (V3-V5 was polymerase chain reaction (PCR-amplified, and the amplicons were cloned into Escherichia coli, sequenced, and classified (GenBank and the Human Oral Microbiome database. Species-specific primers were used for the detection of Porphyromonas gingivalis. In addition, 10 randomly selected vascular biopsies from the CP group were subjected to scanning electron microscopy (SEM for visualization of bacteria. Checkerboard DNA–DNA hybridization was performed to assess the presence of RCB in 10 randomly selected subgingival plaque samples from CP patients. Results: A higher load and mean diversity of bacteria were detected in vascular biopsies from VD patients with CP compared to those without CP. Enterobacteriaceae were frequently detected in vascular biopsies together with cultivable, commensal oral, and not-yet-cultured bacterial species. While 70% of the subgingival plaque samples from CP patients showed presence of RCB, only P. gingivalis was detected in one vascular biopsy. Bacterial cells were seen in all 10 vascular biopsies examined by SEM. Conclusions: A higher bacterial load and more diverse colonization were detected in VD lesions of CP patients as compared to patients without CP. This indicated that a multitude of bacterial species both

  9. Lactic acid bacteria in a changing legislative environment

    NARCIS (Netherlands)

    Feord, J.

    2002-01-01

    The benefits of using lactic acid bacteria in the food chain, both through direct consumption and production of ingredients, are increasingly recognised by the food industry and consumers alike. The regulatory environment surrounding these products is diverse, covering foods and food ingredients,

  10. assessment of fecal bacteria contamination in sewage and non ...

    African Journals Online (AJOL)

    Mgina

    chemical parameters (temperature, pH, salinity and nutrients) were measured. ... Kijichi than Rasi Dege). No significant variation was noted on the values of temperature, pH and salinity. A significant correlation between the levels of fecal bacteria indicators and nutrient ... ocean e.g. sewage is discharged directly into.

  11. Human body may produce bacteria.

    Science.gov (United States)

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Horizontal gene transfer between bacteria.

    Science.gov (United States)

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  13. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  14. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  15. Analysis of the LIV System of Campylobacter jejuni Reveals Alternative Roles for LivJ and LivK in Commensalism beyond Branched-Chain Amino Acid Transport ▿

    Science.gov (United States)

    Ribardo, Deborah A.; Hendrixson, David R.

    2011-01-01

    Campylobacter jejuni is a leading cause of diarrheal disease in humans and an intestinal commensal in poultry and other agriculturally important animals. These zoonotic infections result in significant amounts of C. jejuni present in the food supply to contribute to disease in humans. We previously found that a transposon insertion in Cjj81176_1038, encoding a homolog of the Escherichia coli LivJ periplasmic binding protein of the leucine, isoleucine, and valine (LIV) branched-chain amino acid transport system, reduced the commensal colonization capacity of C. jejuni 81-176 in chicks. Cjj81176_1038 is the first gene of a six-gene locus that encodes homologous components of the E. coli LIV system. By analyzing mutants with in-frame deletions of individual genes or pairs of genes, we found that this system constitutes a LIV transport system in C. jejuni responsible for a high level of leucine acquisition and, to a lesser extent, isoleucine and valine acquisition. Despite each LIV protein being required for branched-chain amino acid transport, only the LivJ and LivK periplasmic binding proteins were required for wild-type levels of commensal colonization of chicks. All LIV permease and ATPase components were dispensable for in vivo growth. These results suggest that the biological functions of LivJ and LivK for colonization are more complex than previously hypothesized and extend beyond a role for binding and acquiring branched-chain amino acids during commensalism. In contrast to other studies indicating a requirement and utilization of other specific amino acids for colonization, acquisition of branched-chain amino acids does not appear to be a determinant for C. jejuni during commensalism. PMID:21949065

  16. Probiotics in the Treatment and Prevention of Allergies in Children

    OpenAIRE

    SAVILAHTI, Erkki

    2011-01-01

    Several studies on the pathogenesis of allergy both in man and experimental animals continue to show the importance of commensal bacteria in the gastrointestinal tract in stimulating and directing the immune system. The interest in modulating commensal bacteria flora with pre- and probiotics to prevent and treat food allergy has multiplied in recent years. We recently studied 230 infants with atopic dermatitis and suspected cow’s milk allergy. The infants were randomly allocated to groups whi...

  17. Introduce of Viable But Nonculturable Bacteria

    Directory of Open Access Journals (Sweden)

    Mehdi Hassanshahian

    2008-03-01

    Full Text Available Viable-But-Nonculturable-State (VBNC is the condition in which bacteria fail to grow on their routine bacteriological media where they would normally grow and develop into colonies, but are still alive and capable of renewed metabolic activity. VBNC state is useful for evaluating public health and for ascertaining the sterility of drinking water, pharmaceuticals, and foodstuff. A number of bacteria, mostly pathogenic to humans, have been proved to enter into this state in response to natural stresses such as starvation, incubation out of optimum growth temperature, increased osmotic pressure, etc. Once in the VBNC state, they undergo various physiological, structural, and genetic alterations. These alterations result in reduced cell size, conversion from bacilli to coccid, thickened cell walls, and peptidoglycan gaining many cross links. Metabolic changes also occur that include reductions in growth, nutrient transport, and respiratory rate; biosynthesis of new protein, and ATP remaining at a constant level. It has been shown that in the VBNC state, some pathogens conserve their virulence properties. Gene expression continues in the VBNC cell. Nucleic acids remain intact in the early VBNC phase but they gradually undergo degradation with prolonged VBNC. Cytological methods such as direct viable count and reduction of tetrazolium salts, and molecular methods such as reverse transcription polymerase chain reaction and green fluorescent protein have been used for the study of VBNC. Resuscitation from VBNC state starts when the inducing factor(s is/are lifted. Factors that help the resuscitation of VBNC bacteria include addition of certain nutrients and chemicals, introduction of a few culturable cells into the VBNC cell population, and passage through the animal host. As virulence properties are sustained during the VBNC phase, special care must be paid when evaluating sterility of drinking water.

  18. Selective isolation and characterization of agriculturally beneficial endopytic bacteria from wild hemp using canola

    International Nuclear Information System (INIS)

    Afzal, I.; Iqrar, I.

    2015-01-01

    Endophytic bacteria can provide a useful alternative to synthetic fertilizers to improve plant growth. Wild plants are little investigated as a source of growth promoting endophytic bacteria for commercial application to crops. In present study, endophytic bacteria were isolated from Cannabis sativa L. (hemp) using two different methods to examine their ability to promote canola growth. Besides direct isolation from the roots, endophytic bacteria were also selectively isolated from the rhizosphere of C. sativa using canola. Under gnotobiotic conditions, six bacteria from the selective isolation significantly improved canola root growth, as compared to the two bacteria isolated from direct method. Overall, three isolates performed distinctly well, namely, Pantoea vagans MOSEL-t13, Pseudomonas geniculata MOSEL-tnc1, and Serratia marcescens MOSEL-w2. These bacteria tolerated high salt concentrations and promoted canola growth under salt stress. Further, the isolated bacteria possessed plant growth promoting traits like IAA production, phosphate solubilization, and siderophore production. Most isolates produced plant cell-wall degrading enzymes, cellulase and pectinase. Some isolates were also effective in hindering the growth of two phytopathogenic fungi in dual culture assay, and displayed chitinase and protease activity. Paenibacillus sp. MOSEL-w13 displayed the greatest antifungal activity among all the isolates. Present findings conclude that wild plants can be a good source for isolating beneficial microbes, and validates the employed selective isolation for improved isolation of plant-beneficial endophytic bacteria. (author)

  19. ENDOSPORES OF THERMOPHILIC FERMENTATIVE BACTERIA

    DEFF Research Database (Denmark)

    Volpi, Marta

    2016-01-01

    solely based on endospores of sulphate-reducing bacteria (SRB), which presumably constitute only a small fraction of the total thermophilic endospore community reaching cold environments. My PhD project developed an experimental framework for using thermophilic fermentative endospores (TFEs) to trace...

  20. Alternative sources of Legionella bacteria

    NARCIS (Netherlands)

    van Heijnsbergen, H.H.L.

    2017-01-01

    Legionella bacteria can cause Legionnaires’ disease (LD) in humans. Symptoms of LD can range from mild disease to severe pneumonia with sometimes fatal outcome. In the Netherlands, the most important infective agent is Legionella pneumophila. L. pneumophila infection is associated with aquatic

  1. Programmed survival of soil bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Molin, Søren; Sternberg, Claus

    Biological containment systems have been developed for Pseudomonas putida and related soil bacteria. The systems are based on combinations of lethal genes and regulated gene expression. Two types of killing function have been employed: 1) A membrane protein interfering with the membrane potential...

  2. Automated radiometric detection of bacteria

    International Nuclear Information System (INIS)

    Waters, J.R.

    1974-01-01

    A new radiometric method called BACTEC, used for the detection of bacteria in cultures or in supposedly sterile samples, was discussed from the standpoint of methodology, both automated and semi-automated. Some of the results obtained so far were reported and some future applications and development possibilities were described. In this new method, the test sample is incubated in a sealed vial with a liquid culture medium containing a 14 C-labeled substrate. If bacteria are present, they break down the substrate, producing 14 CO 2 which is periodically extracted from the vial as a gas and is tested for radioactivity. If this gaseous radioactivity exceeds a threshold level, it is evidence of bacterial presence and growth in the test vial. The first application was for the detection of bacteria in the blood cultures of hospital patients. Data were presented showing typical results. Also discussed were future applications, such as rapid screening for bacteria in urine industrial sterility testing and the disposal of used 14 C substrates. (Mukohata, S.)

  3. Synthetic Biology in Streptomyces Bacteria

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Actinomycete bacteria of the genus Streptomyces are major producers of bioactive compounds for the biotechnology industry. They are the source of most clinically used antibiotics, as well as of several widely used drugs against common diseases, including cancer . Genome sequencing has revealed that

  4. Deodorant bacteria; Des bacteries desodorisantes

    Energy Technology Data Exchange (ETDEWEB)

    Fanlo, J.L. [Ecole Nationale Superieure des Mines, 30 - Ales (France)

    1998-02-01

    Purifying bacteria: if this concept is not new, its application to gases cleansing has only been developed recently. This method allows to eliminate the volatile organic compounds and the gaseous effluents odors which come from industrial sites. Three bioreactors types exist at the present time. Their principles are explained. (O.M.) 6 refs.

  5. Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle

    Science.gov (United States)

    Huh, Keon; Oh, Darong; Son, Seok Young; Yoo, Hyung Jung; Song, Byeonghwa; Cho, Dong-il Dan; Seo, Jong-Mo; Kim, Sung Jae

    2016-12-01

    The concepts of microrobots has been drawn significant attentions recently since its unprecedented applicability in nanotechnology and biomedical field. Bacteria attached microparticles presented in this work are one of pioneering microrobot technology for self-propulsion or producing kinetic energy from ambient for their motions. Microfluidic device, especially utilizing laminar flow characteristics, were employed for anisotropic attachment of Salmonella typhimurium flagellated chemotactic bacteria to 30 um × 30 um and 50 um × 50 um microparticles that made of biodegradable polymer. Any toxic chemicals or harmful treatments were excluded during the attachment process and it finished within 100 s for the anisotropic attachment. The attachments were directly confirmed by fluorescent intensity changes and SEM visualization. Chemotaxis motions were tracked using aspartate and the maximum velocity of the bacteria-attached microrobot was measured to be 5 um/s which is comparable to prior state of art technologies. This reusable and scalable method could play a key role in chemotaxis delivery of functional microparticles such as drug delivery system.

  6. Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive

    Energy Technology Data Exchange (ETDEWEB)

    Cournet, Amandine [Universite de Toulouse, UPS, LU49, Adhesion Bacterienne et Formation de Biofilms, 35 chemin des Maraichers, 31 062 Toulouse cedex 09 (France); Laboratoire de Genie Chimique CNRS, Universite de Toulouse, 4 allee Emile Monso, BP 84234, 31432 Toulouse cedex 04 (France); Delia, Marie-Line; Bergel, Alain [Laboratoire de Genie Chimique CNRS, Universite de Toulouse, 4 allee Emile Monso, BP 84234, 31432 Toulouse cedex 04 (France); Roques, Christine; Berge, Mathieu [Universite de Toulouse, UPS, LU49, Adhesion Bacterienne et Formation de Biofilms, 35 chemin des Maraichers, 31 062 Toulouse cedex 09 (France)

    2010-04-15

    Most bacteria known to be electrochemically active have been harvested in the anodic compartments of microbial fuel cells (MFCs) and are able to use electrodes as electron acceptors. The reverse phenomenon, i.e. using solid electrodes as electron donors, is not so widely studied. To our knowledge, most of the electrochemically active bacteria are Gram-negative. The present study implements a transitory electrochemical technique (cyclic voltammetry) to study the microbial catalysis of the electrochemical reduction of oxygen. It is demonstrated that a wide range of aerobic and facultative anaerobic bacteria are able to catalyze oxygen reduction. Among these electroactive bacteria, several were Gram-positive. The transfer of electrons was direct since no activity was obtained with the filtrate. These findings, showing a widespread property among bacteria including Gram-positive ones, open new and interesting routes in the field of electroactive bacteria research. (author)

  7. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  8. Isolation and characterization of pigmented algicidal bacteria from seawater

    Science.gov (United States)

    Shaima, A.; Gires, U.; Asmat, A.

    2014-09-01

    Some dinoflagellate species are toxic and widely distributed in Malaysian marines ecosystems. They can cause many problems to aquatic life due to the production of various potential and natural toxins that accumulate in filter feeding shellfish and cause food poisoning to human. In recent decades, bacteria have been widely used as a biological control against these harmful algae. In the present study, pigmented bacteria isolated from marine water of Port Dickson beach was studied for their anti-algal activity towards toxic dinoflagellate Alexandrium minutum. Four isolates were studied and only one was capable of inhibiting algal growth when treated with bacterial culture. The algilytic effect on dinoflagellate was evaluated based on direct cell count under the microscope. Results showed that only isolate Sdpd-310 with orange colour has an inhibitory effect on A. minutum growth. This study demonstrated the rapid algicidal activity of a marine pigmented bacteria against the toxic dinoflagellate A. minutum.

  9. Platelets and infections—complex interactions with bacteria

    Directory of Open Access Journals (Sweden)

    Hind eHAMZEH-COGNASSE

    2015-02-01

    Full Text Available Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-Like Receptors but also integrins conventionally described in the hemostatic response, such as GPIIb-IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of Neutrophil Extracellular Traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet-bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the

  10. Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naive foetal enterocytes compared to commensal Escherichia coli

    DEFF Research Database (Denmark)

    Zeuthen, Louise; Fink, Lisbeth Nielsen; Metzdorff, Stine B

    2010-01-01

    The first exposure to microorganisms at mucosal surfaces is critical for immune maturation and gut health. Facultative anaerobic bacteria are the first to colonise the infant gut, and the impact of these bacteria on intestinal epithelial cells (IEC) may be determinant for how the immune system su...

  11. Transport of Chemotactic Bacteria in Porous Media with Structured Heterogeneity

    Science.gov (United States)

    Ford, R. M.; Wang, M.; Liu, J.; Long, T.

    2008-12-01

    Chemical contaminants that become trapped in low permeability zones (e.g. clay lenses) are difficult to remediate using conventional pump-and-treat approaches. Chemotactic bacteria that are transported by groundwater through more permeable regions may migrate toward these less permeable zones in response to chemical gradients created by contaminant diffusion from the low permeability source, thereby enhancing the remediation process by directing bacteria to the contaminants they degrade. What effect does the heterogeneity associated with coarse- and fine-grained layers that are characteristic of natural groundwater environments have on the transport of microorganisms and their chemotactic response? To address this question experiments were conducted over a range of scales from a single capillary tube to a laboratory- scale column in both static and flowing systems with and without chemoattractant gradients. In static capillary assays, motile bacteria accumulated at the interface between an aqueous solution and a suspension of agarose particulates. In microfluidic devices with an array of staggered cylinders, chemotactic bacteria migrated transverse to flow in response to a chemoattractant gradient. In sand columns packed with a coarse-grained core and surrounded by a fine-grained annulus, chemotactic bacteria migrated preferentially toward a chemoattractant source along the centerline. Mathematical models and computer simulations were developed to analyze the experimental observations in terms of transport parameters from the advection- disperson-sorption equation.

  12. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Abier Sofrata

    Full Text Available Plants produce a number of antimicrobial substances and the roots of the shrub Salvadora persica have been demonstrated to possess antimicrobial activity. Sticks from the roots of S. persica, Miswak sticks, have been used for centuries as a traditional method of cleaning teeth. Diverging reports on the chemical nature and antimicrobial repertoire of the chewing sticks from S. persica led us to explore its antibacterial properties against a panel of pathogenic or commensal bacteria and to identify the antibacterial component/s by methodical chemical characterization. S. persica root essential oil was prepared by steam distillation and solid-phase microextraction was used to sample volatiles released from fresh root. The active compound was identified by gas chromatography-mass spectrometry and antibacterial assays. The antibacterial compound was isolated using medium-pressure liquid chromatography. Transmission electron microscopy was used to visualize the effect on bacterial cells. The main antibacterial component of both S. persica root extracts and volatiles was benzyl isothiocyanate. Root extracts as well as commercial synthetic benzyl isothiocyanate exhibited rapid and strong bactericidal effect against oral pathogens involved in periodontal disease as well as against other Gram-negative bacteria, while Gram-positive bacteria mainly displayed growth inhibition or remained unaffected. The short exposure needed to obtain bactericidal effect implies that the chewing sticks and the essential oil may have a specific role in treatment of periodontal disease in reducing Gram-negative periodontal pathogens. Our results indicate the need for further investigation into the mechanism of the specific killing of Gram-negative bacteria by S. persica root stick extracts and its active component benzyl isothiocyanate.

  13. Phylogenomic reconstruction of lactic acid bacteria: an update

    Directory of Open Access Journals (Sweden)

    Yu Li

    2011-01-01

    Full Text Available Abstract Background Lactic acid bacteria (LAB are important in the food industry for the production of fermented food products and in human health as commensals in the gut. However, the phylogenetic relationships among LAB species remain under intensive debate owing to disagreements among different data sets. Results We performed a phylogenetic analysis of LAB species based on 232 genes from 28 LAB genome sequences. Regardless of the tree-building methods used, combined analyses yielded an identical, well-resolved tree topology with strong supports for all nodes. The LAB species examined were divided into two groups. Group 1 included families Enterococcaceae and Streptococcaceae. Group 2 included families Lactobacillaceae and Leuconostocaceae. Within Group 2, the LAB species were divided into two clades. One clade comprised of the acidophilus complex of genus Lactobacillus and two other species, Lb. sakei and Lb. casei. In the acidophilus complex, Lb. delbrueckii separated first, while Lb. acidophilus/Lb. helveticus and Lb. gasseri/Lb. johnsonii were clustered into a sister group. The other clade within Group 2 consisted of the salivarius subgroup, including five species, Lb. salivarius, Lb. plantarum, Lb. brevis, Lb. reuteri, Lb. fermentum, and the genera Pediococcus, Oenococcus, and Leuconostoc. In this clade, Lb. salivarius was positioned most basally, followed by two clusters, one corresponding to Lb. plantarum/Lb. brevis pair and Pediococcus, and the other including Oenococcus/Leuconostoc pair and Lb. reuteri/Lb. fermentum pair. In addition, phylogenetic utility of the 232 genes was analyzed to identify those that may be more useful than others. The genes identified as useful were related to translation and ribosomal structure and biogenesis (TRSB, and a three-gene set comprising genes encoding ultra-violet resistance protein B (uvrB, DNA polymerase III (polC and penicillin binding protein 2B (pbpB. Conclusions Our phylogenomic analyses

  14. Genetics of Lactic Acid Bacteria

    Science.gov (United States)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  15. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  16. Oligotrophic bacteria isolated from clinical materials.

    OpenAIRE

    Tada, Y; Ihmori, M; Yamaguchi, J

    1995-01-01

    Oligotrophic bacteria (oligotrophs) are microorganisms that grow in extremely nutritionally deficient conditions in which the concentrations of organic substances are low. Many oligotrophic bacteria were isolated from clinical materials including urine, sputum, swabbings of the throat, vaginal discharges, and others. Seventy-seven strains of oligotrophic bacteria from 871 samples of clinical material were isolated. A relatively higher frequency of isolation of oligotrophic bacteria was shown ...

  17. Geobiology of Marine Magnetotactic Bacteria

    Science.gov (United States)

    2006-06-01

    prokaryotic cells of diverse phylogeny when grown in media containing 45 1mM iron, suggesting some kind of detoxification function . The inclusions were...salt marsh productivity. FISH also showed that aggregates consist of genetically identical cells. QPCR data indicated that populations are finely...my advisor Katrina Edwards for taking a chance on someone who initially knew nothing about magnetotactic bacteria, microbial ecology , or microbiology

  18. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in

  19. Laser-Based Identification of Pathogenic Bacteria

    Science.gov (United States)

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  20. Ecology of mycophagous collimonas bacteria in soil

    NARCIS (Netherlands)

    Höppener-Ogawa, Sachie

    2008-01-01

    Bacteria belonging to the genus Collimonas consist of soil bacteria that can grow at expense of living fungal hyphae i.e. they are mycophagous. This PhD studies deals with the ecology of mycophagous bacteria in soil using collimonads as model organisms. Collimonads were found to be widely

  1. AIDS: "it's the bacteria, stupid!".

    Science.gov (United States)

    Broxmeyer, Lawrence; Cantwell, Alan

    2008-11-01

    Acid-fast tuberculous mycobacterial infections are common in AIDS and are regarded as secondary "opportunistic infections." According to the National Institute of Allergy and Infectious Diseases, TB is the major attributable cause of death in AIDS patients. Could such bacteria play a primary or causative role in AIDS? Certainly, In screening tests for HIV, there is frequent, up to 70%, cross-reactivity, between the gag and pol proteins of HIV and patients with mycobacterial infections such as tuberculosis. By 1972, five years before gays started dying in the U.S., Rolland wrote Genital Tuberculosis, a Forgotten Disease? And ironically, in 1979, on the eve of AIDS recognition, Gondzik and Jasiewicz showed that even in the laboratory, genitally infected tubercular male guinea pigs could infect healthy females through their semen by an HIV-compatible ratio of 1 in 6 or 17%, prompting him to warn his patients that not only was tuberculosis a sexually transmitted disease, but also the necessity of the application of suitable contraceptives, such as condoms, to avoid it. Gondzik's solution and date of publication are chilling; his findings significant. Since 1982 Cantwell et al found acid-fast bacteria closely related to tuberculosis (TB) and atypical tuberculosis in AIDS tissue. On the other hand molecular biologist and virologist Duesberg, who originally defined retroviral ultrastructure, has made it clear that HIV is not the cause of AIDS and that the so-called AIDS retrovirus has never been isolated in its pure state. Dr. Etienne de Harven, first to examine retroviruses under the electron, agrees. In 1993 HIV co-discoverer Luc Montagnier reported on cell-wall-deficient (CWD) bacteria which he called "mycoplasma" in AIDS tissue. He suspected these as a necessary "co-factor" for AIDS. Remarkably, Montagnier remained silent on Cantwell's reports of acid-fast bacteria which could simulate "mycoplasma" in AIDS tissue. Mattman makes clear that the differentiation between

  2. Analysis of the LIV System of Campylobacter jejuni Reveals Alternative Roles for LivJ and LivK in Commensalism beyond Branched-Chain Amino Acid Transport ▿

    OpenAIRE

    Ribardo, Deborah A.; Hendrixson, David R.

    2011-01-01

    Campylobacter jejuni is a leading cause of diarrheal disease in humans and an intestinal commensal in poultry and other agriculturally important animals. These zoonotic infections result in significant amounts of C. jejuni present in the food supply to contribute to disease in humans. We previously found that a transposon insertion in Cjj81176_1038, encoding a homolog of the Escherichia coli LivJ periplasmic binding protein of the leucine, isoleucine, and valine (LIV) branched-chain amino aci...

  3. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    OpenAIRE

    Denoncourt, Alix M.; Paquet, Valérie E.; Charette, Steve J.

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging...

  4. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases

    Czech Academy of Sciences Publication Activity Database

    Tlaskalová-Hogenová, Helena; Štěpánková, Renata; Kozáková, Hana; Hudcovic, Tomáš; Vannucci, Luca; Tučková, Ludmila; Rossmann, Pavel; Hrnčíř, Tomáš; Kverka, Miloslav; Zákostelská, Zuzana; Klimešová, Klára; Přibylová, Jaroslava; Bártová, J.; Sánchez, Daniel; Fundová, P.; Borovská, Dana; Šrůtková, Dagmar; Zídek, Zdeněk; Schwarzer, Martin; Drastich, P.; Funda, David P.

    2011-01-01

    Roč. 8, č. 2 (2011), s. 110-120 ISSN 1672-7681 R&D Projects: GA ČR GA303/08/0367; GA ČR GA303/09/0449; GA ČR GA310/07/0414; GA ČR GA305/08/0535; GA ČR GA310/09/1640; GA ČR GD310/08/H077; GA AV ČR IAA500200710; GA AV ČR KJB500200904; GA AV ČR IAA500200917; GA AV ČR IAA500200709; GA MŠk 2B06053; GA MŠk 2B06155; GA MZd NS9775; GA MZd NS10054; GA MZd(CZ) NS10340; GA MŠk 7E09091 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50390512 Keywords : allergy * hygiene hypothesis * intestinal permeability Subject RIV: EC - Immunology Impact factor: 2.992, year: 2011

  5. Endocarditis caused by anaerobic bacteria.

    Science.gov (United States)

    Kestler, M; Muñoz, P; Marín, M; Goenaga, M A; Idígoras Viedma, P; de Alarcón, A; Lepe, J A; Sousa Regueiro, D; Bravo-Ferrer, J M; Pajarón, M; Costas, C; García-López, M V; Hidalgo-Tenorio, C; Moreno, M; Bouza, E

    2017-10-01

    Infective endocarditis (IE) caused by anaerobic bacteria is a rare and poorly characterized disease. Most data reported in the literature are from case reports [1-3]. Therefore, we assessed the situation of anaerobic IE (AIE) in Spain using the database of the Spanish Collaboration on Endocarditis (GAMES). We performed a prospective study from 2008 to 2016 in 26 Spanish centers. We included 2491 consecutive cases of definite IE (Duke criteria). Anaerobic bacteria caused 22 cases (0.9%) of definite IE. Median age was 66 years (IQR, 56-73), and 19 (86.4%) patients were men. Most patients (14 [63.6%]) had prosthetic valve IE and all episodes were left-sided: aortic valves, 12 (54.5%); and mitral valves, 8 (36.4%). The most common pathogens were Propionibacterium acnes (14 [63.6%]), Lactobacillus spp (3 [13.63%]), and Clostridium spp. (2 [9.0%]), and the infection was mainly odontogenic. Fifteen of the 22 patients (68.2%) underwent cardiac surgery. Mortality was 18.2% during admission and 5.5% after 1 year of follow-up. When patients with AIE were compared with the rest of the cohort, we found that although those with AIE had a similar age and Charlson comorbidity index, they were more likely to have community-acquired IE (86.4% vs. 60.9%, p = 0.01), have undergone cardiac surgery (68.2% vs 48.7% p = 0.06), and have had lower mortality rates during admission (18.2% vs. 27.3%). IE due to anaerobic bacteria is an uncommon disease that affects mainly prosthetic valves and frequently requires surgery. Otherwise, there are no major differences between AIE and IE caused by other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bacteria and vampirism in cinema.

    Science.gov (United States)

    Castel, O; Bourry, A; Thévenot, S; Burucoa, C

    2013-09-01

    A vampire is a non-dead and non-alive chimerical creature, which, according to various folklores and popular superstitions, feeds on blood of the living to draw vital force. Vampires do not reproduce by copulation, but by bite. Vampirism is thus similar to a contagious disease contracted by intravascular inoculation with a suspected microbial origin. In several vampire films, two real bacteria were staged, better integrated than others in popular imagination: Yersinia pestis and Treponema pallidum. Bacillus vampiris was created for science-fiction. These films are attempts to better define humans through one of their greatest fears: infectious disease. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Enumeration of petroleum hydrocarbon utilizing bacteria

    International Nuclear Information System (INIS)

    Mukherjee, S.; Barot, M.; Levine, A.D.

    1996-01-01

    In-situ biological treatment is one among a number of emerging technologies that may be applied to the remediation of contaminated soils and groundwater. In 1985, a surface spill of 1,500 gallons of dielectric transformer oil at the Sandia National Laboratories (HERMES II facility) resulted in contamination of soil up to depths of 160 feet. The extent of contamination and site characteristics favored the application of in-situ bioremediation as a potential remedial technology. The purpose of this research was to enumerate indigenous microbial populations capable of degrading petroleum hydrocarbons. Microbial enumeration and characterization methods suitably adapted for hydrocarbon utilizing bacteria were used as an indicator of the presence of viable microbial consortia in excavated oil samples with hydrocarbon (TPH) concentrations ranging from 300 to 26,850 ppm. Microbial activity was quantified by direct and streak plating soil samples on silica gel media. Effects of toxicity and temperature were studied using batch cultures of hydrocarbon utilizing bacteria (selectively isolated in an enrichment medium), at temperatures of 20 and 35 C. It was concluded from this study that it is possible to isolate native microorganisms from contaminated soils from depths of 60 to 160 feet, and with oil concentration ranging from 300 to 26,850 ppm. About 62% of the microorganisms isolated form the contaminated soil were capable of using contaminant oil as a substrate for growth and metabolism under aerobic conditions. Growth rates were observed to be 50% higher for the highest contaminant concentration at 20 C. Resistance to toxicity to contaminant oil was also observed to be greater at 20 C than at 35 C

  8. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinically Important Bacteria and Yeasts.

    Science.gov (United States)

    Wilson, Deborah A; Young, Stephen; Timm, Karen; Novak-Weekley, Susan; Marlowe, Elizabeth M; Madisen, Neil; Lillie, Jennifer L; Ledeboer, Nathan A; Smith, Rebecca; Hyke, Josh; Griego-Fullbright, Christen; Jim, Patricia; Granato, Paul A; Faron, Matthew L; Cumpio, Joven; Buchan, Blake W; Procop, Gary W

    2017-06-01

    A report on the multicenter evaluation of the Bruker MALDI Biotyper CA System (MBT-CA; Bruker Daltonics, Billerica, MA) for the identification of clinically important bacteria and yeasts. In total, 4,399 isolates of medically important bacteria and yeasts were assessed in the MBT-CA. These included 2,262 aerobic gram-positive (AGP) bacteria, 792 aerobic gram-negative (AGN) bacteria 530 anaerobic (AnA) bacteria, and 815 yeasts (YSTs). Three processing methods were assesed. Overall, 98.4% (4,329/4,399) of all bacterial and yeast isolates were correctly identified to the genus and species/species complex level, and 95.7% of isolates were identified with a high degree of confidence. The percentage correctly identified and the percentage identified correctly with a high level of confidence, respectively, were as follows: AGP bacteria (98.6%/96.5%), AGN bacteria (98.5%/96.8%), AnA bacteria (98.5%/97.4%), and YSTs (97.8%/87.6%). The extended direct transfer method was only minimally superior to the direct transfer method for bacteria (89.9% vs 86.8%, respectively) but significantly superior for yeast isolates (74.0% vs 48.9%, respectively). The Bruker MALDI Biotyper CA System accurately identifies most clinically important bacteria and yeasts and has optional processing methods to improve isolate characterization. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  9. Cell wall as a target for bacteria inactivation by pulsed electric fields

    Science.gov (United States)

    Pillet, Flavien; Formosa-Dague, Cécile; Baaziz, Houda; Dague, Etienne; Rols, Marie-Pierre

    2016-01-01

    The integrity and morphology of bacteria is sustained by the cell wall, the target of the main microbial inactivation processes. One promising approach to inactivation is based on the use of pulsed electric fields (PEF). The current dogma is that irreversible cell membrane electro-permeabilisation causes the death of the bacteria. However, the actual effect on the cell-wall architecture has been poorly explored. Here we combine atomic force microscopy and electron microscopy to study the cell-wall organization of living Bacillus pumilus bacteria at the nanoscale. For vegetative bacteria, exposure to PEF led to structural disorganization correlated with morphological and mechanical alterations of the cell wall. For spores, PEF exposure led to the partial destruction of coat protein nanostructures, associated with internal alterations of cortex and core. Our findings reveal for the first time that the cell wall and coat architecture are directly involved in the electro-eradication of bacteria. PMID:26830154

  10. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate.

    Science.gov (United States)

    Barnini, Simona; Ghelardi, Emilia; Brucculeri, Veronica; Morici, Paola; Lupetti, Antonella

    2015-06-18

    Rapid identification of the causative agent(s) of bloodstream infections using the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) methodology can lead to increased empirical antimicrobial therapy appropriateness. Herein, we aimed at establishing an easier and simpler method, further referred to as the direct method, using bacteria harvested by serum separator tubes from positive blood cultures and placed onto the polished steel target plate for rapid identification by MALDI-TOF. The results by the direct method were compared with those obtained by MALDI-TOF on bacteria isolated on solid media. Identification of Gram-negative bacilli was 100 % concordant using the direct method or MALDI-TOF on isolated bacteria (96 % with score > 2.0). These two methods were 90 % concordant on Gram-positive cocci (32 % with score > 2.0). Identification by the SepsiTyper method of Gram-positive cocci gave concordant results with MALDI-TOF on isolated bacteria in 87 % of cases (37 % with score > 2.0). The direct method herein developed allows rapid identification (within 30 min) of Gram-negative bacteria and Gram-positive cocci from positive blood cultures and can be used to rapidly report reliable and accurate results, without requiring skilled personnel or the use of expensive kits.

  11. Pathogenic mechanisms of intracellular bacteria.

    Science.gov (United States)

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  12. Money and transmission of bacteria.

    Science.gov (United States)

    Gedik, Habip; Voss, Timothy A; Voss, Andreas

    2013-08-28

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria to people who come in contact with the banknotes. The survival rate was highest for the Romanian Leu yielding all three microorganisms used after both three and six hours of drying. Furthermore, the Leu was the only banknote to yield VRE after one day of drying. Other currencies either enabled the survival of Extended-Spectrum Beta-Lactamases (ESBL) and VRE (e.g. Euro), but not of MRSA, or the other way round (e.g. US Dollar). While a variety of factors such as community hygiene levels, people's behaviour, and antimicrobial resistance rates at community level obviously have influence on the transmission of resistant microorganisms, the type of banknote-paper may be an additional variable to consider.

  13. Resistance of Bacteria to Biocides.

    Science.gov (United States)

    Maillard, Jean-Yves

    2018-04-01

    Biocides and formulated biocides are used worldwide for an increasing number of applications despite tightening regulations in Europe and in the United States. One concern is that such intense usage of biocides could lead to increased bacterial resistance to a product and cross-resistance to unrelated antimicrobials including chemotherapeutic antibiotics. Evidence to justify such a concern comes mostly from the use of health care-relevant bacterial isolates, although the number of studies of the resistance characteristics of veterinary isolates to biocides have increased the past few years. One problem remains the definition of "resistance" and how to measure resistance to a biocide. This has yet to be addressed globally, although the measurement of resistance is becoming more pressing, with regulators both in Europe and in the United States demanding that manufacturers provide evidence that their biocidal products will not impact on bacterial resistance. Alongside in vitro evidence of potential antimicrobial cross-resistance following biocide exposure, our understanding of the mechanisms of bacterial resistance and, more recently, our understanding of the effect of biocides to induce a mechanism(s) of resistance in bacteria has improved. This article aims to provide an understanding of the development of antimicrobial resistance in bacteria following a biocide exposure. The sections provide evidence of the occurrence of bacterial resistance and its mechanisms of action and debate how to measure bacterial resistance to biocides. Examples pertinent to the veterinary field are used where appropriate.

  14. Identification of lead-resistant endophytic bacteria isolated from rice

    International Nuclear Information System (INIS)

    Perez-Cordero, Alexander; Barraza-Roman, Zafiro; Martinez-Pacheco, Dalila

    2015-01-01

    Resistance of endophytic bacteria in vitro was evaluated at different lead concentrations. The tissue samples of commercial rice varieties at tillering stage were collected during the first half of 2013, in Monteria, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria were isolated in agar R_2A medium. The population density (CFU/g tissue) was determined from each tissue by direct counting of R_2A medium surface. Morphotypes were classified by shape, color, size and appearance. A total of 168 morphotypes were isolated from root, tillers and leaf of different commercial varieties of rice. The lead resistance test is performed in vitro, The lead resistance test was performed in vitro, by the suspensions of endophytic bacteria in log phase and inoculation in minimal medium with five concentrations of lead as Pb (NO_3)_2. The experiment was incubated at 32 degrees celsius and agitated at 150 rpm for five days. The measure of turbidimetry at 600 nm was conduced every hour afterstarting the test. Endophytic bacteria showed the ability to grow at concentrations of 100% of Pb as Pb (NO_3) _2. The presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to differents lead concentration was confirmed as result of the identification with kit API20E. (author) [es

  15. Identification of lead- resistant endophytic bacteria isolated from rice.

    Directory of Open Access Journals (Sweden)

    Alexander Pérez-Cordero

    2015-06-01

    Full Text Available   The objective of this study was to evaluate in vitro the endophytic bacteria resistance to different lead concentrations. The sampling was undertaken in the first half of 2013, when tissue samples of commercial varieties of rice at tillering stage were collected in Montería, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria in agar R2A medium were isolated. Population density (CFU/g tissue was determined from each tissue, by direct counting of R2A medium surface. morphotypes were classified by shape, color, size, and appearance. A total of 168 morphotypes were isolated from root, tillers, and leaf of different commercial varieties of rice. The lead resistance test was performed in vitro, to do that, suspensions of endophytic bacteria in log phase were prepared and inoculated in minimal medium with five concentrations of lead as Pb(NO32. The experiment was incubated at 32 °C and agitated at 150 rpm, for five days. Every hour afterstarting the test, turbidimetry measuring at 600 nm was conducted. Results showed the ability of endophytic bacteria to grow at concentrations of 100% of Pb as Pb(NO32. The results of the identification with kit API20E confirmed the presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to different lead concentrations.

  16. Commensality identity, a challenge for public health policies. The case of culinary exchanges: from mulli to wedding roasts in the Great Chichimeca La comensalidad identitaria un reto para las políticas públicas de salud. El caso del mulli al asado de boda en la Gran Chichimeca

    Directory of Open Access Journals (Sweden)

    Maricruz Romero Ugalde

    2013-09-01

    Full Text Available The "Great Chichimeca" is considered as a region of constant cultural exchanges between sedentary and nomadic groups. It is located in San Juan del Río, México, southwest of the United States. In this research the relationship between the meals that were used in com­memorative rituals and traditional festivities associated with life cycles in populations in the area comprised between Querétaro and Zacatecas are shown. The objective is to demonstrate the possibility of accounting for certain cultural exchanges in the region based on food and specific forms of preparation, identifying transformations and continuities that promote iden­tity regarding ritual commensality. Some of the questions guiding this research are: Is it pos­sible to identify certain constants in the use of corn and chili? How did culinary changes occur from the introduction of turkey to the introduction of pork? Why are there certain dishes with names that have a direct reference to indigenous cultures? In which way is commensality related to international policies such as the right to food or the recognition of certain cuisines as part of cultural heritage of humanity?La Gran Chichimeca se concibe como una zona de intercambio cultural constante entre grupos sedentarios y nómadas que se ubica de San Juan del Río al suroeste de Estados Unidos. En el presente trabajo se muestran relaciones entre algunas poblaciones de los actuales estados de Querétaro a Zacatecas a partir de las comidas empleadas en los rituales conmemorativos del ciclo vital y festivo para demostrar cómo a través de los alimentos y sus formas de preparación es posible dar cuenta de los intercambios culturales en la zona, ubicando las transformacio­nes y continuidades que promueven factores identitarios a partir de la comensalidad ritual. Algunas de las preguntas que guían la exposición son: ¿Es posible identificar continuidades en el uso del maíz y el chile? ¿Cómo se modifica la incorporaci

  17. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  18. Direct Democracy

    DEFF Research Database (Denmark)

    Beramendi, Virginia; Ellis, Andrew; Kaufman, Bruno

    While many books on direct democracy have a regional or national approach, or simply focus on one of the many mechanisms associated with direct democracy, this Handbook delves into a global comparison of direct democracy mechanisms, including referendums, citizens' initiatives, agenda initiatives...... learned. In addition, the uniquely comprehensive world survey outlines direct democracy provisions in 214 countries and territories and indicates which, if any, of these provisions are used by each country or territory at both the national and sub-national levels. Furthermore, the world survey includes...

  19. Anaerobic bacteria in the gut of terrestrial isopod Crustacean Porcellio scaber.

    Science.gov (United States)

    Kostanjsek, R; Lapanje, A; Rupnik, M; Strus, J; Drobne, D; Avgustin, G

    2004-01-01

    Anaerobic bacteria from Porcellio scaber hindgut were identified and, subsequently, isolated using molecular approach. Phylogenetic affiliation of bacteria associated with the hindgut wall was determined by analysis of bacterial 16S rRNA gene sequences which were retrieved directly from washed hindguts of P. scaber. Sequences from bacteria related to obligate anaerobic bacteria from genera Bacteroides and Enterococcus were retrieved, as well as sequences from 'A1 subcluster' of the wall-less mollicutes. Bacteria from the genus Desulfotomaculum were isolated from gut wall and cultivated under anaerobic conditions. In contrast to previous reports which suggested the absence of anaerobic bacteria in the isopod digestive system due to short retention time of the food in the tube-like hindgut, frequent renewal of the gut cuticle during the moulting process, and unsuccessful attempts to isolate anaerobic bacteria from this environment our results indicate the presence of resident anaerobic bacteria in the gut of P. scaber, in spite of apparently unsuitable, i.e. predominantly oxic, conditions.

  20. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  1. Differential staining of bacteria: acid fast stain.

    Science.gov (United States)

    Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P

    2009-11-01

    Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. (c) 2009 by John Wiley & Sons, Inc.

  2. Transformation of gram positive bacteria by sonoporation

    Science.gov (United States)

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  3. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Frankel, R.B.; Blakemore, R.P.; Araujo, F.F.T. de; Esquivel, D.M.S.; Danon, J.

    1981-01-01

    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author) [pt

  4. The Impact of Media, Phylogenetic Classification, and E. coli Pathotypes on Biofilm Formation in Extraintestinal and Commensal E. coli From Humans and Animals.

    Science.gov (United States)

    Nielsen, Daniel W; Klimavicz, James S; Cavender, Tia; Wannemuehler, Yvonne; Barbieri, Nicolle L; Nolan, Lisa K; Logue, Catherine M

    2018-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) include avian pathogenic E. coli (APEC), neonatal meningitis E. coli (NMEC), and uropathogenic E. coli (UPEC) and are responsible for significant animal and human morbidity and mortality. This study sought to investigate if biofilm formation by ExPEC likely contributes to these losses since biofilms are associated with recurrent urinary tract infections, antibiotic resistance, and bacterial exchange of genetic material. Therefore, the goal of this study was to examine differences in biofilm formation among a collection of ExPEC and to ascertain if there is a relationship between their ability to produce biofilms and their assignment to phylogenetic groups in three media types - M63, diluted TSB, and BHI. Our results suggest that ExPEC produce relatively different levels of biofilm formation in the media tested as APEC (70.4%, p = 0.0064) and NMEC (84.4%, p = 0.0093) isolates were poor biofilm formers in minimal medium M63 while UPEC isolates produced significantly higher ODs under nutrient-limited conditions with 25% of strains producing strong biofilms in diluted TSB ( p = 0.0204). Additionally, E. coli phylogenetic assignment using Clermont's original and revised typing scheme demonstrated significant differences among the phylogenetic groups in the different media. When the original phylogenetic group isolates previously typed as group D were phylogenetically typed under the revised scheme and examined, they showed substantial variation in their ability to form biofilms, which may explain the significant values of revised phylogenetic groups E and F in M63 ( p = 0.0291, p = 0.0024). Our data indicates that biofilm formation is correlated with phylogenetic classification and subpathotype or commensal grouping of E. coli strains.

  5. The Impact of Media, Phylogenetic Classification, and E. coli Pathotypes on Biofilm Formation in Extraintestinal and Commensal E. coli From Humans and Animals

    Directory of Open Access Journals (Sweden)

    Daniel W. Nielsen

    2018-05-01

    Full Text Available Extraintestinal pathogenic Escherichia coli (ExPEC include avian pathogenic E. coli (APEC, neonatal meningitis E. coli (NMEC, and uropathogenic E. coli (UPEC and are responsible for significant animal and human morbidity and mortality. This study sought to investigate if biofilm formation by ExPEC likely contributes to these losses since biofilms are associated with recurrent urinary tract infections, antibiotic resistance, and bacterial exchange of genetic material. Therefore, the goal of this study was to examine differences in biofilm formation among a collection of ExPEC and to ascertain if there is a relationship between their ability to produce biofilms and their assignment to phylogenetic groups in three media types – M63, diluted TSB, and BHI. Our results suggest that ExPEC produce relatively different levels of biofilm formation in the media tested as APEC (70.4%, p = 0.0064 and NMEC (84.4%, p = 0.0093 isolates were poor biofilm formers in minimal medium M63 while UPEC isolates produced significantly higher ODs under nutrient-limited conditions with 25% of strains producing strong biofilms in diluted TSB (p = 0.0204. Additionally, E. coli phylogenetic assignment using Clermont’s original and revised typing scheme demonstrated significant differences among the phylogenetic groups in the different media. When the original phylogenetic group isolates previously typed as group D were phylogenetically typed under the revised scheme and examined, they showed substantial variation in their ability to form biofilms, which may explain the significant values of revised phylogenetic groups E and F in M63 (p = 0.0291, p = 0.0024. Our data indicates that biofilm formation is correlated with phylogenetic classification and subpathotype or commensal grouping of E. coli strains.

  6. Studying the effect of administration route and treatment dose on the selection of enrofloxacin resistance in commensal Escherichia coli in broilers.

    Science.gov (United States)

    Chantziaras, Ilias; Smet, Annemieke; Haesebrouck, Freddy; Boyen, Filip; Dewulf, Jeroen

    2017-07-01

    Factors potentially contributing to fluoroquinolone resistance selection in commensal Escherichia coli strains in poultry were studied through a series of in vivo experiments. The effect of the initial prevalence of enrofloxacin resistance in the E. coli gut microbiota, effect of the bacterial fitness of the enrofloxacin-resistant strain and effect of treatment with enrofloxacin (effect of dose and effect of route of administration) were assessed. Four in vivo studies with broiler chickens were performed. Right after hatching, the chicks were inoculated with either a bacteriologically fit or a bacteriologically non-fit fluoroquinolone-resistant strain as either a minority or the majority of the total E. coli population. Six days later, the chicks were treated for three consecutive days either orally or parenterally and using three different doses (under-, correct- and over-dose) of enrofloxacin. The faecal shedding of E. coli strains was quantified by plating on agar plates either supplemented or not supplemented with enrofloxacin. Linear mixed models were used to assess the effect of the aforementioned variables on the selection of enrofloxacin resistance. The factors that significantly contributed were treatment ( P  <   0.001), bacterial fitness of the resistant donor strain ( P  <   0.001), administration route ( P  =   0.052) and interactions between bacterial fitness and administration route ( P  <   0.001). In the currently used models, fluoroquinolone resistance selection was influenced by treatment, bacterial fitness of the inoculation strain and administration route. The use of oral treatment seems to select more for fluoroquinolone resistance, particularly in the model where a non-fit strain was used for inoculation. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. The Low Band Observatory (LOBO): Expanding the VLA Low Frequency Commensal System for Continuous, Broad-band, sub-GHz Observations

    Science.gov (United States)

    Kassim, Namir E.; Clarke, Tracy E.; Helmboldt, Joseph F.; Peters, Wendy M.; Brisken, Walter; Hyman, Scott D.; Polisensky, Emil; Hicks, Brian

    2015-01-01

    The Naval Research Laboratory (NRL) and the National Radio Astronomy Observatory (NRAO) are currently commissioning the VLA Low Frequency Ionosphere and Transient Experiment (VLITE) on a subset of JVLA antennas at modest bandwidth. Its bounded scientific goals are to leverage thousands of JVLA on-sky hours per year for ionospheric and transient studies, and to demonstrate the practicality of a prime-focus commensal system on the JVLA. Here we explore the natural expansion of VLITE to a full-antenna, full-bandwidth Low Band Observatory (LOBO) that would follow naturally from a successful VLITE experience. The new Low Band JVLA receivers, coupled with the existing primary focus feeds, can access two frequency bands: 4 band (54 - 86 MHz) and P band (236-492 MHz). The 4 band feeds are newly designed and now undergoing testing. If they prove successful then they can be permanently mounted at the primary focus, unlike their narrow band predecessors. The combination of Low Band receivers and fixed, primary-focus feeds could provide continuous, broad-band data over two complimentary low-frequency bands. The system would also leverage the relatively large fields-of-view of ~10 degrees at 4 band, and ~2.5 degrees at P band, coupling an excellent survey capability with a natural advantage for serendipitous discoveries. We discuss the compelling science case that flows from LOBO's robust imaging and time domain capabilities coupled with thousands of hours of wide-field, JVLA observing time each year. We also touch on the possibility to incorporate Long Wavelength Array (LWA) stations as additional 'dishes' through the LOBO backend, to improve calibration and sensitivity in LOBO's 4 band.

  8. Bioenergetics of photoheterotrophic bacteria in the oceans.

    Science.gov (United States)

    Kirchman, David L; Hanson, Thomas E

    2013-04-01

    Photoheterotrophic microbes, such as proteorhodopsin (PR)-based phototrophic (PRP) and aerobic anoxygenic phototrophic (AAP) bacteria, are well known to be abundant in the oceans, potentially playing unique roles in biogeochemical cycles. However, the contribution of phototrophy to the energy requirements of these bacteria has not been quantitatively examined to date. To better understand the implications of photoheterophy in the oceans, we calculated energy benefits and costs of phototrophy and compared net benefits with maintenance costs. Benefits depend on the number of photosynthetic units (PSUs), absorption cross-section area of each PSU as function of wavelength, the in situ light quality, and the energy yield per absorbed photon. For costs we considered the energy required for the synthesis of pigments, amino acids and proteins in each PSU. Our calculations indicate that AAP bacteria harvest more light energy than do PRP bacteria, but the costs of phototrophy are much higher for AAP bacteria. Still, the net energy gained by AAP bacteria is often sufficient to meet maintenance costs, while that is not the case for PRP bacteria except with high light intensities and large numbers of proteorhodopsin molecules per cell. The low costs and simplicity of PR-based phototrophy explain the high abundance of proteorhodopsin genes in the oceans. However, even for AAP bacteria, the net energy yield of phototrophy is apparently too low to influence the distribution of photoheterotrophic bacteria among various marine systems. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...

  10. Isolation and characterization of methanogenic bacteria from ...

    African Journals Online (AJOL)

    Isolation and characterization of methanogenic bacteria from brewery wastewater in Kenya. Sylvia Injete Murunga, Duncan Onyango Mbuge, Ayub Njoroge Gitau, Urbanus Ndungwa Mutwiwa, Ingrid Namae Wekesa ...

  11. Deathly drool: evolutionary and ecological basis of septic bacteria in Komodo dragon mouths.

    OpenAIRE

    J J Bull; Tim S Jessop; Marvin Whiteley

    2010-01-01

    Komodo dragons, the world's largest lizard, dispatch their large ungulate prey by biting and tearing flesh. If a prey escapes, oral bacteria inoculated into the wound reputedly induce a sepsis that augments later prey capture by the same or other lizards. However, the ecological and evolutionary basis of sepsis in Komodo prey acquisition is controversial. Two models have been proposed. The ?bacteria as venom? model postulates that the oral flora directly benefits the lizard in prey capture ir...

  12. Fewer bacteria in warm water

    International Nuclear Information System (INIS)

    Bagh, Lene

    1999-01-01

    There has been many suggestions to how the ideal warm water system should be. Particularly whether warm water containers or heat exchangers in larger houses are the best solutions in order to maintain a water quality with low levels of bacteria. In an investigation made by Statens Byggeforskningsinstitutt (Denmark) regarding ''Bacterial growth in warm water installations with heat exchangers'' there were used several heat exchangers made by Gjelsted and Lund of three of which had HWAT heating cables. The bacterial content was low from these exchangers compared to exchangers with circulation. The article presents promising results from a study where the method was investigated over a longer period in two new larger warm water systems. Some energy conservation aspects are discussed

  13. Modeling Political Populations with Bacteria

    Science.gov (United States)

    Cleveland, Chris; Liao, David

    2011-03-01

    Results from lattice-based simulations of micro-environments with heterogeneous nutrient resources reveal that competition between wild-type and GASP rpoS819 strains of E. Coli offers mutual benefit, particularly in nutrient deprived regions. Our computational model spatially maps bacteria populations and energy sources onto a set of 3D lattices that collectively resemble the topology of North America. By implementing Wright-Fishcer re- production into a probabilistic leap-frog scheme, we observe populations of wild-type and GASP rpoS819 cells compete for resources and, yet, aid each other's long term survival. The connection to how spatial political ideologies map in a similar way is discussed.

  14. Cell Size Regulation in Bacteria

    Science.gov (United States)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  15. Antioxidant Properties of Probiotic Bacteria.

    Science.gov (United States)

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-05-19

    Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  16. Directing 101.

    Science.gov (United States)

    Pintoff, Ernest

    Providing an introduction to anyone considering directing as a field of study or career, this book takes a broad look at the process of directing and encourages students and professionals alike to look outside of the movie industry for inspiration. Chapters in the book discuss selecting and acquiring material; budgeting and financing; casting and…

  17. Sterol Synthesis in Diverse Bacteria.

    Science.gov (United States)

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  18. Graphene-based wireless bacteria detection on tooth enamel

    Science.gov (United States)

    Mannoor, Manu S.; Tao, Hu; Clayton, Jefferson D.; Sengupta, Amartya; Kaplan, David L.; Naik, Rajesh R.; Verma, Naveen; Omenetto, Fiorenzo G.; McAlpine, Michael C.

    2012-03-01

    Direct interfacing of nanosensors onto biomaterials could impact health quality monitoring and adaptive threat detection. Graphene is capable of highly sensitive analyte detection due to its nanoscale nature. Here we show that graphene can be printed onto water-soluble silk. This in turn permits intimate biotransfer of graphene nanosensors onto biomaterials, including tooth enamel. The result is a fully biointerfaced sensing platform, which can be tuned to detect target analytes. For example, via self-assembly of antimicrobial peptides onto graphene, we show bioselective detection of bacteria at single-cell levels. Incorporation of a resonant coil eliminates the need for onboard power and external connections. Combining these elements yields two-tiered interfacing of peptide-graphene nanosensors with biomaterials. In particular, we demonstrate integration onto a tooth for remote monitoring of respiration and bacteria detection in saliva. Overall, this strategy of interfacing graphene nanosensors with biomaterials represents a versatile approach for ubiquitous detection of biochemical targets.

  19. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Larissa D Cunha

    2013-11-01

    Full Text Available Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.

  20. Aerobic methanotrophic bacteria of cold ecosystems.

    Science.gov (United States)

    Trotsenko, Yuri A; Khmelenina, Valentina N

    2005-06-01

    This review summarizes the recent advances in understanding the ecophysiological role and structure-function features of methanotrophic bacteria living in various cold ecosystems. The occurrence of methanotrophs in a majority of psychrosphere sites was verified by direct measurement of their methane-utilizing activity, by electron microscopy and immunofluorescent observations, and analyses of specific signatures in cellular phospholipids and total DNAs extracted from environmental samples. Surprisingly, the phenotypic and genotypic markers of virtually all extant methanotrophs were detected in various cold habitats, such as underground waters, Northern taiga and tundra soils, polar lakes and permafrost sediments. Also, recent findings indicated that even after long-term storage in permafrost, some methanotrophs can oxidize and assimilate methane not only at positive but also at subzero temperatures. Pure cultures of psychrophilic and psychrotolerant methanotrophs were isolated and characterized as new genera and species: Methylobacter psychrophilus, Methylosphaera hansonii, Methylocella palustris, Methylocella silvestris, Methylocella tundrae, Methylocapsa acidiphila and Methylomonas scandinavica. However, our knowledge about their adaptive mechanisms and survival in cold ecosystems remains limited and needs to be established using both traditional and molecular microbiological methods.

  1. Otitis media: viruses, bacteria, biofilms and vaccines.

    Science.gov (United States)

    Massa, Helen M; Cripps, Allan W; Lehmann, Deborah

    2009-11-02

    Otitis media typically presents as either acute otitis media (AOM), with symptoms including fever, otalgia, otorrhoea or irritability and short duration; or as otitis media with effusion (OME), which is often asymptomatic and characterised by accumulation of fluid in the middle ear. Diagnostic certainty of otitis media is challenging, given the young age of patients and variability of symptoms. Otitis media predominantly occurs as coincident to viral upper respiratory tract infections and/or bacterial infections. Common viruses that cause upper respiratory tract infection are frequently associated with AOM and new-onset OME. These include respiratory syncytial virus, rhinovirus, adenovirus, parainfluenza and coronavirus. Predominant bacteria that cause otitis media are Streptococcus pneumoniae, Moraxella catarrhalis, and non-typeable Haemophilus influenzae. Antibiotic therapy does not significantly benefit most patients with AOM, but long-term prophylactic antibiotic therapy can reduce the risk of otitis media recurrence among children at high risk. In Australia, 84% of AOM is treated with antibiotic therapy, which contributes to development of antibiotic resistance. Vaccine development is a key future direction for reducing the world burden of otitis media, but requires polymicrobial formulation and ongoing monitoring and modification to ensure sustained reduction in disease burden.

  2. Intracellular chemical gradients: morphing principle in bacteria

    Directory of Open Access Journals (Sweden)

    Endres Robert G

    2012-09-01

    Full Text Available Abstract Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients can be maintained in bacteria – an open question at the resolution limit of fluorescence microscopy. While it was previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012 postulate that such gradients can provide an internal chemical compass, directing protein localization, cell division and cell development. More specifically, they describe biochemical and physical constraints on the formation of such gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.

  3. Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere,

    Science.gov (United States)

    2016-01-01

    Two hundred and fifty bacterial strains were isolated from pinyon rhizosphere and screened for biosurfactants production. Among them, six bacterial strains were selected for their potential to produce biosurfactants using two low cost wastes, crude glycerol and lactoserum, as raw material. Both wastes were useful for producing biosurfactants because of their high content in fat and carbohydrates. The six strains were identified by 16S rDNA with an identity percentage higher than 95%, three strains belonged to Enterobacter sp., Pseudomonas aeruginosa, Bacillus pumilus and Rhizobium sp. All strains assayed were able to grow and showed halos around the colonies as evidence of biosurfactants production on Cetyl Trimethyl Ammonium Bromide agar with crude glycerol and lactoserum as substrate. In a mineral salt liquid medium enriched with both wastes, the biosurfactants were produced and collected from free cell medium after 72 h incubation. The biosurfactants produced reduced the surface tension from 69 to 30 mN/m with an emulsification index of diesel at approximately 60%. The results suggest that biosurfactants produced by rhizosphere bacteria from pinyon have promising environmental applications.

  4. Directing Creativity

    DEFF Research Database (Denmark)

    Darsø, Lotte; Ibbotson, Piers

    2008-01-01

    In this article we argue that leaders facing complex challenges can learn from the arts, specifically that leaders can learn by examining how theatre directors direct creativity through creative constraints. We suggest that perceiving creativity as a boundary phenomenon is helpful for directing it....... Like leaders, who are caught in paradoxical situations where they have to manage production and logistics simultaneously with making space for creativity and innovation, theatre directors need to find the delicate balance between on one hand renewal of perceptions, acting and interaction...... and on the other hand getting ready for the opening night. We conclude that the art of directing creativity is linked to developing competencies of conscious presence, attention and vigilance, whereas the craft of directing creativity concerns communication, framing and choice....

  5. Effect of alternating and direct currents on Pseudomonas ...

    African Journals Online (AJOL)

    ONOS

    2010-09-20

    Sep 20, 2010 ... Based on the effect of natural selection, these bacteria become resistant to ..... Effect of electrical stimulation on chronic leg ulcer size and appearance. Phys. ... stimulation directly induces pre-angiogenic responses in vascular.

  6. Characterization of (per)chlorate-reducing bacteria

    NARCIS (Netherlands)

    Wolterink, A.F.W.M.

    2004-01-01

    Some bacteria can use (per)chlorateas terminal electron acceptor for growth. These bacteria convert perchlorate via chlorate and chlorite into chloride and molecular oxygen. Oxygen formation in microbial respiration is unique. In this study two chlorate-reducing strains

  7. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  8. Rock-degrading endophytic bacteria in cacti

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  9. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C; Tümmler, B

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole...... weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment....

  10. Analyzing Arthropods for the Presence of Bacteria

    OpenAIRE

    Andrews, Elizabeth S.

    2013-01-01

    Bacteria within arthropods can be identified using culture-independent methods. This unit describes protocols for surface sterilization of arthropods, DNA extraction of whole bodies and tissues, touchdown PCR amplification using 16S rDNA general bacteria primers and profiling the bacterial community using denaturing gradient gel electrophoresis.

  11. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B T; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  12. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  13. Increased production of outer membrane vesicles by cultured freshwater bacteria in response to ultraviolet radiation.

    Science.gov (United States)

    Gamalier, Juliana P; Silva, Thiago P; Zarantonello, Victor; Dias, Felipe F; Melo, Rossana C N

    2017-01-01

    Secretion of membrane vesicles is an important biological process of both eukaryotic and prokaryotic cells. This process has been characterized in pathogenic bacteria, but is less clear in non-pathogenic bacteria from aquatic ecosystems. Here, we investigated, for the first time, the process of formation of outer membranes vesicles (OMVs), nanoscale vesicles extruded from the outer membrane (OM) of gram-negative bacteria, in cultures of freshwater bacteria after exposure or not to ultraviolet radiation (UVR) as an environmental stressor. Non-axenic cultures of freshwater bacteria isolated from a Brazilian aquatic ecosystem (Funil reservoir) were exposed or not to UVR (UVA+UVB) over a 3h period, during which cell density, viability and ultrastructure were analyzed. First, we showed that UVR induce bacterial death. UVR triggered significant negative effect on cell density after 3h of UVR treatment. This decrease was directly associated with cell death as revealed by a cell viability fluorescent probe that enables the distinction of live/dead bacteria. Transmission electron microscopy (TEM) revealed changes indicative of cell death after 3h of UVR exposure, with significant increase of damaged cells compared to the control group. Second, we demonstrated that gram-negative bacteria release OMVs during normal growth and after UVR exposure. OMVs were clearly identified as round, membrane-bound vesicles budding off from the bacterial OM as isolated or clustered vesicles or free in the extracellular medium. Remarkably, quantitative TEM analyses showed that bacteria respond to UVR with increased formation of OMVs. Moreover, while OMVs numbers per intact or damaged cell did not differ in the untreated group, UVR led to a higher vesiculation by bacteria in process of death. This means that degenerating bacteria release OMVs before lysis and that this secretion might be an adaptive/protective response to rapid changes in environmental conditions such as UV radiation. Copyright

  14. Catabolism of lysine by mixed rumen bacteria

    International Nuclear Information System (INIS)

    Onodera, Ryoji; Kandatsu, Makoto.

    1975-01-01

    Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ml of lysine was decomposed to give ether-soluble substances and CO 2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. delta-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did. (auth.)

  15. Biodiversity of Bacteria Isolated from Different Soils

    Directory of Open Access Journals (Sweden)

    Fatma YAMAN

    2017-01-01

    Full Text Available The aim of this study was to determine the biodiversity of PHB producing bacteria isolated from soils where fruit and vegetable are cultivated (onion, grape, olive, mulberry and plum in Aydın providence. Morphological, cultural, biochemical, and molecular methods were used for bacteria identification. These isolated bacteria were identified by 16S rRNA sequencing and using BLAST. The following bacteria Bacillus thuringiensis (6, Bacillus cereus (8, Bacillus anthrachis (1, Bacillus circulans (1, Bacillus weihenstephanensis (1, Pseudomonas putida (1, Azotobacter chroococcum (1, Brevibacterium frigoritolerans (1, Burkholderia sp. (1, Staphylococcus epidermidis (1, Streptomyces exfoliatus (1, Variovorax paradoxus (1 were found. The Maximum Likelihood method was used to produce a molecular phylogenetic analysis and a phylogenetic tree was constructed. These bacteria can produce polyhydroxybutyrate (PHB which is an organic polymer with commercial potential as a biodegradable thermoplastic. PHB can be used instead of petrol derivated non-degradable plastics. For this reason, PHB producing microorganisms are substantial in industry.

  16. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  17. Coryneform bacteria associated with canine otitis externa

    DEFF Research Database (Denmark)

    Aalbæk, Bent; Bemis, David A.; Schjærff, Mette

    2010-01-01

    This study aims to investigate the occurrence of coryneform bacteria in canine otitis externa. A combined case series and case-control study was carried out to improve the current knowledge on frequency and clinical significance of coryneform bacteria in samples from canine otitis externa. A total...... of 16 cases of otitis externa with involvement of coryneform bacteria were recorded at two referral veterinary hospitals in Denmark and the US, respectively. Coryneform bacteria were identified by partial 16S rRNA gene sequencing. Corynebacterium auriscanis was the most common coryneform species (10...... cases). Small colony variants of this species were also observed. Other coryneform isolates were identified as Corynebacterium amycolatum (3 cases), Corynebacterium freneyi (2 cases) and an Arcanobacterium-like species (1 case). The coryneform bacteria were in all cases isolated together with other...

  18. Hyphae colonizing bacteria associated with Penicillium bilaii

    DEFF Research Database (Denmark)

    Ghodsalavi, Behnoushsadat

    shown that mycorrhizal helper bacteria presenting in mycorrhizal fungi could stimulate fungal growth, promote establishment of root-fungus symbiosis and enhance plant production. But it is unknown if the comparable relationship exist between the non-mycorrhizal fungus P. bilaii and its hyphae associated...... bacteria. In the current PhD thesis, we assumed that hyphae-associated microbiome of P. bilaii might harbor helper bacteria with ability to improve fungal growth and P solubilization performance. Therefore, we aimed to isolate bacteria associated with the P. bilaii hyphae and identify the fungal growth...... stimulating bacteria with the perspective of promoting efficiency of Jumpstart in soil – plant system. For this purpose, most of the work within the current project was carried out by development of suitable model systems by mimicking the natural soil habitat to reach to the reliable performance in soil...

  19. Glyphosate has limited short-term effects on commensal bacterial community composition in the gut environment due to sufficient aromatic amino acid levels

    DEFF Research Database (Denmark)

    Nielsen, Lene Nørby; Roager, Henrik Munch; Casas, Mònica Escolà

    2017-01-01

    in acetic acid produced by the gut bacteria. We conclude that sufficient intestinal levels of aromatic amino acids provided by the diet alleviates the need for bacterial synthesis of aromatic amino acids and thus prevents an antimicrobial effect of glyphosate in vivo. It is however possible...

  20. [Unique properties of highly radioresistant bacteria].

    Science.gov (United States)

    Romanovskaia, V A; Rokitko, P V; Malashenko, Iu R

    2000-01-01

    In connection with the Chernobyl Nuclear Power Plant (ChNPP) accident and the negative ecological after-effects for biota in this zone the interest has arisen to radioresistant bacteria, as to the most dynamic model of the given ecosystem, and to mechanisms which provide resistance of bacteria to ionizing radiation. The analysis of published data has shown that the radioresistant bacteria are not interrelated taxonomically and phylogenetically. The extreme radioresistant bacteria are represented by the Deinococcus species, which form a group phylogenetically close to the line Thermus-Meiothermus. Other radioresistant bacteria are the representatives of the genera Rubrobacter, Methylobacterium, Kocuria, Bacillus and some archebacteria. Data on natural habitats, of radioresistant bacteria are not numerous. In a number of cases it is difficult to distinguish their natural habitats, as they were isolated from the samples which were previously exposed to X-ray or gamma-irradiation, or from the ecosystems with the naturally raised radioactivity. To understand the strategy of survival of radioresistant bacteria, we briefly reviewed the mechanism of action of various species of radiation on cells and macromolecules; physiological signs of the cell damage caused by radiation; mechanisms eliminating (repairing) these damages. More details on mechanisms of the DNA repair in D. radiodurans are described. The extreme resistance of D. radiodurans to the DNA damaging factors is defined by 1) repair mechanisms which fundamentally differ from those in other procaryotes; 2) ability to increase the efficiency of a standard set of the DNA repairing proteins. Literary and own data on the effect of radiation on survival of various groups of bacteria in natural ecosystems are summarized. The ecological consequences of the ChNPP accident for soil bacteria in this region were estimated. The reduction of the number of soil bacteria and recession of microbial diversity under the effect of

  1. Directed polymers versus directed percolation

    Science.gov (United States)

    Halpin-Healy, Timothy

    1998-10-01

    Universality plays a central role within the rubric of modern statistical mechanics, wherein an insightful continuum formulation rises above irrelevant microscopic details, capturing essential scaling behaviors. Nevertheless, occasions do arise where the lattice or another discrete aspect can constitute a formidable legacy. Directed polymers in random media, along with its close sibling, directed percolation, provide an intriguing case in point. Indeed, the deep blood relation between these two models may have sabotaged past efforts to fully characterize the Kardar-Parisi-Zhang universality class, to which the directed polymer belongs.

  2. Tape Cassette Bacteria Detection System

    Science.gov (United States)

    1973-01-01

    The design, fabrication, and testing of an automatic bacteria detection system with a zero-g capability and based on the filter-capsule approach is described. This system is intended for monitoring the sterility of regenerated water in a spacecraft. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins (i.e., catalase, cytochromes, etc.) on a luminol-hydrogen peroxide mixture. Since viable as well as nonviable organisms initiate this luminescence, viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. Higher signals for the former indicate the presence of viable organisms. System features include disposable sealed sterile capsules, each containing a filter membrane, for processing discrete water samples and a tape transport for moving these capsules through a processing sequence which involves sample concentration, nutrient addition, incubation, a 4 Molar Urea wash and reaction with luminol-hydrogen peroxide in front of a photomultiplier tube. Liquids are introduced by means of a syringe needle which pierces a rubber septum contained in the wall of the capsule. Detection thresholds obtained with this unit towards E. coli and S. marcescens assuming a 400 ml water sample are indicated.

  3. Antioxidant Properties of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-05-01

    Full Text Available Oxidative stress defines a condition in which the prooxidant–antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells’ viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  4. Noncontact Cohesive Swimming of Bacteria in Two-Dimensional Liquid Films.

    Science.gov (United States)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel B; Wu, Yilin

    2017-07-07

    Bacterial swimming in confined two-dimensional environments is ubiquitous in nature and in clinical settings. Characterizing individual interactions between swimming bacteria in 2D confinement will help to understand diverse microbial processes, such as bacterial swarming and biofilm formation. Here we report a novel motion pattern displayed by flagellated bacteria in 2D confinement: When two nearby cells align their moving directions, they tend to engage in cohesive swimming without direct cell body contact, as a result of hydrodynamic interaction but not flagellar intertwining. We further found that cells in cohesive swimming move with higher directional persistence, which can increase the effective diffusivity of cells by ∼3 times as predicted by computational modeling. As a conserved behavior for peritrichously flagellated bacteria, cohesive swimming in 2D confinement may be key to collective motion and self-organization in bacterial swarms; it may also promote bacterial dispersal in unsaturated soils and in interstitial space during infections.

  5. Impact of lactic Acid bacteria on dendritic cells from allergic patients in an experimental model of intestinal epithelium.

    Science.gov (United States)

    Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël

    2007-01-01

    Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4(+) T cells to produce more interferon-gamma than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  6. Impact of Lactic Acid Bacteria on Dendritic Cells from Allergic Patients in an Experimental Model of Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Céline Ratajczak

    2007-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393 on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase and increased their interleukin (IL-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4+ T cells to produce more interferon-γ than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  7. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Alix M Denoncourt

    2014-05-01

    Full Text Available Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

  8. Combinatorial Effects of Arginine and Fluoride on Oral Bacteria

    OpenAIRE

    Zheng, X.; Cheng, X.; Wang, L.; Qiu, W.; Wang, S.; Zhou, Y.; Li, M.; Li, Y.; Cheng, L.; Li, J.; Zhou, X.; Xu, X.

    2015-01-01

    Dental caries is closely associated with the microbial disequilibrium between acidogenic/aciduric pathogens and alkali-generating commensal residents within the dental plaque. Fluoride is a widely used anticaries agent, which promotes tooth hard-tissue remineralization and suppresses bacterial activities. Recent clinical trials have shown that oral hygiene products containing both fluoride and arginine possess a greater anticaries effect compared with those containing fluoride alone, indicati...

  9. Has the use of molecular methods for the characterization of the human oral microbiome changed our understanding of the role of bacteria in the pathogenesis of periodontal disease?

    Science.gov (United States)

    Wade, William Geoffrey

    2011-03-01

    Only around half of oral bacteria can be grown in the laboratory using conventional culture methods. Molecular methods based on 16S rRNA gene sequence are now available and are being used to characterize the periodontal microbiota in its entirety. This review describes the cultural characterization of the oral and periodontal microbiotas and explores the influence of the additional data now available from culture-independent molecular analyses on current thinking on the role of bacteria in periodontitis. Culture-independent molecular analysis of the periodontal microbiota has shown it to be far more diverse than previously thought. A number of species including some that have yet to be cultured are as strongly associated with disease as those organisms traditionally regarded as periodontal pathogens. Sequencing of bacterial genomes has revealed a high degree of intra-specific genetic diversity. The use of molecular methods for the characterization of the periodontal microbiome has greatly expanded the range of bacterial species known to colonize this habitat. Understanding the interactions between the human host and its commensal bacterial community at the functional level is a priority. © 2011 John Wiley & Sons A/S.

  10. Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy

    International Nuclear Information System (INIS)

    Borsheim, K.Y.; Bratbak, G.; Heldal, M.

    1990-01-01

    Bacteria and virus particles were harvested from water samples by ultracentrifugation directly onto Formvar-coated electron microscopy grids and counted in a transmission electron microscope. With this technique, we have counted and sized bacteria and viruses in marine water samples and during laboratory incubations. By X-ray microanalysis, we could determine the elemental composition and dry-matter content of individual bacteria. The dry weight/volume ratio for the bacteria was 600 fg of dry weight microns-3. The potassium content of the bacteria was normal compared with previous estimates from other bacterial assemblages; thus, this harvesting procedure did not disrupt the bacterial cells. Virus particles were, by an order of magnitude, more abundant than bacteria in marine coastal waters. During the first 5 to 7 days of incubation, the total number of viruses increased exponentially at a rate of 0.4 day-1 and thereafter declined. The high proliferation rate suggests that viral parasitism may affect mortality of bacteria in aquatic environments

  11. Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate.

    Science.gov (United States)

    Teixeira, César R V; Lana, Rogério de Paula; Tao, Junyi; Hackmann, Timothy J

    2017-06-01

    When given excess carbohydrate, certain microbial species respond by storing energy (synthesizing reserve carbohydrate), but other species respond by dissipating the energy as heat (spilling energy). To determine the importance of these responses in the rumen microbial community, this study quantified the responses of mixed ciliate protozoa vs bacteria to glucose. We hypothesized that ciliates would direct more glucose to synthesis of reserve carbohydrate (and less to energy spilling) than would bacteria. Ciliates and bacteria were isolated from rumen fluid using filtration and centrifugation, resuspended in nitrogen-free buffer to limit growth, and dosed with 5 mM glucose. Compared with bacteria, ciliates consumed glucose >3-fold faster and synthesized reserve carbohydrate 4-fold faster. They incorporated 53% of glucose carbon into reserve carbohydrate-nearly double the value (27%) for bacteria. Energy spilling was not detected for ciliates, as all heat production (104%) was accounted by synthesis of reserve carbohydrate and endogenous metabolism. For bacteria, reserve carbohydrate and endogenous metabolism accounted for only 68% of heat production, and spilling was detected within 11 min of dosing glucose. These results suggest that ciliates alter the course of ruminal carbohydrate metabolism by outcompeting bacteria for excess carbohydrate, maximizing reserve carbohydrate synthesis, and minimizing energy spilling. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Photoresponses of the purple nonsulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides.

    OpenAIRE

    Sackett, M J; Armitage, J P; Sherwood, E E; Pitta, T P

    1997-01-01

    We have measured the photoresponse of two purple nonsulfur bacteria, Rhodobacter sphaeroides and Rhodospirillum centenum, under defined conditions in a light beam propagating at 90 degrees to the optical axis of the microscope. This beam presented cells with a steep gradient of intensity perpendicular to the direction of propagation and a shallow gradient in the direction of light propagation. R. centenum, a species that reverses to change direction, accumulated in the light beam, as expected...

  13. The determination and arrangement of a combination of enzyme lactate dehydrogenase of bacteria Acinetobacter sp. as a device the identity important bacteria agent composts

    Science.gov (United States)

    Sukmawati, D.; Puspitaningrum, R.; Muzajjanah

    2017-07-01

    The number of garbage generated by the industry or society is a usual problem encountered by almost all urban centers, especially large cities such as Jakarta. Waste prevention strategy required quickly and accurately. One strategy for tackling the Junk was getting lactic acid-producing bacteria. It has been shown that lactic acid can increase the acceleration of organic matter such as an overhaul of lignin and cellulose as well as out causing toxic compounds arising from decay. This research will be conducted on the determination and characterization of the enzyme-p