WorldWideScience

Sample records for comme electrode negative

  1. Vanadium based amorphous mixed oxides used as negative electrodes of lithium batteries; Oxydes mixtes amorphes a base de vanadium comme electrodes negatives de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, D.; Leroux, F.; Sigala, C.; Le Gal La Salle, A.; Piffard, Y. [Institut des Materiaux de Nantes, 44 (France). Laboratoire de Chimie des Solides

    1996-12-31

    This paper presents recent results concerning the chemical and electrochemical synthesis, the electrochemical properties and the characterization of two new families of amorphous oxides of formula Li{sub x}MVO{sub 4} (1negative electrodes in high performance lithium-ion batteries. (J.S.) 19 refs.

  2. Vanadium based amorphous mixed oxides used as negative electrodes of lithium batteries; Oxydes mixtes amorphes a base de vanadium comme electrodes negatives de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, D; Leroux, F; Sigala, C; Le Gal La Salle, A.; Piffard, Y [Institut des Materiaux de Nantes, 44 (France). Laboratoire de Chimie des Solides

    1997-12-31

    This paper presents recent results concerning the chemical and electrochemical synthesis, the electrochemical properties and the characterization of two new families of amorphous oxides of formula Li{sub x}MVO{sub 4} (1negative electrodes in high performance lithium-ion batteries. (J.S.) 19 refs.

  3. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  4. Electrochemical cell and negative electrode therefor

    Science.gov (United States)

    Kaun, Thomas D.

    1982-01-01

    A secondary electrochemical cell with the positive and negative electrodes separated by a molten salt electrolyte with the negative electrode comprising a particulate mixture of lithium-aluminum alloy and electrolyte and an additive selected from graphitized carbon, Raney iron or mixtures thereof. The lithium-aluminum alloy is present in the range of from about 45 to about 80 percent by volume of the negative electrode, and the electrolyte is present in an amount not less than about 10 percent by volume of the negative electrode. The additive of graphitized carbon is present in the range of from about 1 to about 10 percent by volume of the negative electrode, and the Raney iron additive is present in the range of from about 3 to about 10 percent by volume of the negative electrode.

  5. Negative electrodes for Na-ion batteries.

    Science.gov (United States)

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  6. Graphite as negative electrode in Li-ion batteries; Le graphite comme electrode negative dans les accumulateurs Li-ion

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F.; Monnier, A. [Timcal SA (France)

    1996-12-31

    The last developments in lithium batteries design have demonstrated the advantages of graphite: competitive cost, flat output curve, high capacity thanks to the obtention of a final compound close to LiC{sub 6}, good behaviour during cycling and a high mass energy. However, these advantages are slightly tarnished by parasite secondary reactions during the evolution of the element. Two different cases are encountered: the formation of a passivation layer (loss of Li ions and formation of irreversible bounds) and the formation of a passivation layer with a reaction between graphite and the solvent (partial destruction of the graphite crystal lattice). In the first case, the theoretical graphite insertion capacity remains at 372 mAh/g while in the second case the insertion capacity is greatly reduced. Abstract only. (J.S.)

  7. Graphite as negative electrode in Li-ion batteries; Le graphite comme electrode negative dans les accumulateurs Li-ion

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F; Monnier, A [Timcal SA (France)

    1997-12-31

    The last developments in lithium batteries design have demonstrated the advantages of graphite: competitive cost, flat output curve, high capacity thanks to the obtention of a final compound close to LiC{sub 6}, good behaviour during cycling and a high mass energy. However, these advantages are slightly tarnished by parasite secondary reactions during the evolution of the element. Two different cases are encountered: the formation of a passivation layer (loss of Li ions and formation of irreversible bounds) and the formation of a passivation layer with a reaction between graphite and the solvent (partial destruction of the graphite crystal lattice). In the first case, the theoretical graphite insertion capacity remains at 372 mAh/g while in the second case the insertion capacity is greatly reduced. Abstract only. (J.S.)

  8. Low-bias negative differential conductance controlled by electrode separation

    Science.gov (United States)

    Yi, Xiao-Hua; Liu, Ran; Bi, Jun-Jie; Jiao, Yang; Wang, Chuan-Kui; Li, Zong-Liang

    2016-12-01

    The electronic transport properties of a single thiolated arylethynylene molecule with 9,10-dihydroanthracene core, denoted as TADHA, is studied by using non-equilibrium Green’s function formalism combined with ab initio calculations. The numerical results show that the TADHA molecule exhibits excellent negative differential conductance (NDC) behavior at lower bias regime as probed experimentally. The NDC behavior of TADHA molecule originates from the Stark effect of the applied bias voltage, by which the highest occupied molecular orbital (HOMO) and the HOMO-1 are pulled apart and become localized. The NDC behavior of TADHA molecular system is tunable by changing the electrode distance. Shortening the electrode separation can enhance the NDC effect which is attributed to the possible increase of coupling between the two branches of TADHA molecule. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374195 and 11405098) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FM006).

  9. Low-bias negative differential conductance controlled by electrode separation

    International Nuclear Information System (INIS)

    Yi Xiao-Hua; Liu Ran; Bi Jun-Jie; Jiao Yang; Wang Chuan-Kui; Li Zong-Liang

    2016-01-01

    The electronic transport properties of a single thiolated arylethynylene molecule with 9,10-dihydroanthracene core, denoted as TADHA, is studied by using non-equilibrium Green’s function formalism combined with ab initio calculations. The numerical results show that the TADHA molecule exhibits excellent negative differential conductance (NDC) behavior at lower bias regime as probed experimentally. The NDC behavior of TADHA molecule originates from the Stark effect of the applied bias voltage, by which the highest occupied molecular orbital (HOMO) and the HOMO-1 are pulled apart and become localized. The NDC behavior of TADHA molecular system is tunable by changing the electrode distance. Shortening the electrode separation can enhance the NDC effect which is attributed to the possible increase of coupling between the two branches of TADHA molecule. (paper)

  10. New process to discharge negative cadmium electrodes for Ni/Cd batteries

    International Nuclear Information System (INIS)

    Stiker, B.; Vignaud, R.

    1984-01-01

    The new process relates to the chemical oxidation (whether partial or total) of cadmium metal negative electrodes, as used in alkaline nickel-cadmium or silver-cadmium batteries. This process concerns all cadmium electrodes but more particularly the electrodeposited cadmium electrode developed by the company LES PILES WONDER and described in this publication

  11. Effects of carbon additives on the performance of negative electrode of lead-carbon battery

    International Nuclear Information System (INIS)

    Zou, Xianping; Kang, Zongxuan; Shu, Dong; Liao, Yuqing; Gong, Yibin; He, Chun; Hao, Junnan; Zhong, Yayun

    2015-01-01

    Highlights: • The negative electrode sheets are prepared by simulating manufacture condition of negative plates. • The effect of carbon additives on negative electrode sheets is studied by electrochemical method. • Carbon additives in NAM enhance electrochemical properties of the negative sheets. • The negative sheets with 0.5 wt% carbon additive exhibit better electrochemical performance. • The charge-discharge mechanism is discussed in detail according to the experimental results. - Abstract: In this study, carbon additives such as activated carbon (AC) and carbon black (CB) are introduced to the negative electrode to improve its electrochemical performance, the negative electrode sheets are prepared by simulating the negative plate manufacturing process of lead-acid battery, the types and contents of carbon additives in the negative electrode sheets are investigated in detail for the application of lead-carbon battery. The electrochemical performance of negative electrode sheets are measured by chronopotentiometry, galvanostatic charge-discharge and electrochemical impedance spectroscopy, the crystal structure and morphology are characterized by X-ray diffraction and scanning electron microscopy, respectively. The experimental results indicate that the appropriate addition of AC or CB can enhance the discharge capacity and prolong the cycle life of negative electrode sheets under high-rate partial-state-of-charge conditions, AC additive exerts more obvious effect than CB additive, the optimum contents for the best electrochemical performance of the negative electrode sheets are determined as 0.5wt% for both AC and CB. The reaction mechanism of the electrochemical process is also discussed in this paper, the appropriate addition of AC or CB in negative electrode can promote the conversion of PbSO 4 to Pb, suppress the sulfation of negative electrode sheets and reduce the electrochemical reaction resistance

  12. High performance lithium insertion negative electrode materials for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Channu, V.S. Reddy, E-mail: chinares02@gmail.com [SMC Corporation, College Station, TX 77845 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Kumari, Kusum [Department of Physics, National Institute of Technology, Warangal (India); Kalluru, Rajmohan R. [The University of Southern Mississippi, College of Science and Technology, 730 E Beach Blvd, Long Beach, MS 39560 (United States); Holze, Rudolf [Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-11-30

    Highlights: • LiCrTiO{sub 4} nanostructures were synthesized for electrochemical applications by soft chemical synthesis followed by annealing. • The presence of Cr and Ti elements are confirmed from the EDS spectrum. • Oxalic acid assisted LiCrTiO{sub 4} electrode shows higher specific capacity (mAh/g). - Abstract: Spinel LiCrTiO{sub 4} oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50–10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO{sub 4} electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO{sub 4} shows higher specific capacity.This LiCrTiO{sub 4} is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm{sup 2}. The specific capacity decreases with increasing current densities.

  13. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    Science.gov (United States)

    Tomczuk, Zygmunt; Olszanski, Theodore W.; Battles, James E.

    1977-03-08

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such as solid lithium-aluminum filled within a substrate of metal foam are provided.

  14. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.

    Science.gov (United States)

    Wang, Fengmei; Zhan, Xueying; Cheng, Zhongzhou; Wang, Zhenxing; Wang, Qisheng; Xu, Kai; Safdar, Muhammad; He, Jun

    2015-02-11

    Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy-based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high-performance electrochemical supercapacitors are designed with tungsten oxide@PPy (WO3 @PPy) core-shell nanowire arrays and Co(OH)2 nanowires grown on carbon fibers. The WO3 @PPy core-shell nanowire electrode exhibits a high capacitance (253 mF/cm2) in negative potentials (-1.0-0.0 V). The ASCs packaged with CF-Co(OH)2 as a positive electrode and CF-WO3 @PPy as a negative electrode display a high volumetric capacitance up to 2.865 F/cm3 based on volume of the device, an energy density of 1.02 mWh/cm3 , and very good stability performance. These findings promote the application of PPy-based nanostructures as advanced negative electrodes for ASCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    Science.gov (United States)

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  16. The Silver Oxide-Zinc Alkaline Primary Cell. Part 2. Effects of Various Types of Negative Electrodes on Cell Characteristics

    National Research Council Canada - National Science Library

    Shepherd, C. M

    1951-01-01

    ... (generally a potassium hydroxide solution). During discharge, the silver peroxide in the positive electrode is reduced to metallic silver and the metallic zinc in the negative electrode is oxidized either to zinc oxide or to a complex zincate ion...

  17. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  18. Electrochemical Investigation of Carbon as Additive to the Negative Electrode of Lead-Acid Battery

    Directory of Open Access Journals (Sweden)

    Fernandez Matthew M.

    2015-01-01

    Full Text Available The increasing demand of cycle life performance of Pb-acid batteries requires the improvement of the negative Pb electrode’s charge capacity. Electrochemical investigations were performed on Pb electrode and Pb+Carbon (Carbon black and Graphite electrodes to evaluate the ability of the additives to enhance the electrochemical faradaic reactions that occur during the cycle of Pb-acid battery negative electrode. The electrodes were characterized through Cyclic Voltammetry (CV, Potentiodynamic Polarization (PP, and Electrochemical Impedance Spectroscopy (EIS. CV revealed that the addition of carbon on the Pb electrode increased anodic and cathodicreactions by tenfold. The kinetics of PbSO4 passivation measured through PPrevealed that the addition of Carbon on the Pb electrode accelerated the oxide formation by tenfold magnitude. The Nyquist plot measured through EIS suggest that the electrochemical mechanism and reaction kinetics is under charge-transfer. From the equivalent circuit and physical model, Pb+CB1 electrode has the lowest EIS parameters while Pb+G has the highest which is attributed to faster faradaic reaction.The Nyquist plot of the passivated Pb+CB1 electrode showed double semicircular shape. The first layer represents to the bulk passive PbSO4 layer and the second layer represents the Carbon+PbSO4 layer. The enhancements upon addition of carbon on the Pb electrode were attributed to the additive’s electrical conductivity and total surface area. The electrochemical active sites for the PbSO4 to nucleate and spread increases upon addition of electrical conductive and high surface area carbon additives.

  19. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  20. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    International Nuclear Information System (INIS)

    Zhuang, Y; Chen, G; Rotaru, M

    2011-01-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  1. WO3 Nanowires on Graphene Sheets as Negative Electrode for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2017-01-01

    Full Text Available WO3 nanowires directly grown on graphene sheets have been fabricated by using a seed-mediated hydrothermal method. The morphologies and electrochemical performance of WO3 films prepared by different process were studied. The results show that the precoated nanoseeds and graphene sheets on graphite electrode provide more reactive centers for the nucleation and formation of uniform WO3 nanowires. The WO3 nanowires electrode exhibits a high area specific capacitance of 800 mF cm−2 over negative potential range from −1.0 V to 0 V versus SCE in 1 M Li2SO4 solution. A high performance electrochemical supercapacitor assembled with WO3 nanowires as negative electrode and PANI/MnO2 as positive electrodes over voltage range of 1.6 V displays a high volumetric capacitance of 2.5 F cm−3, which indicate great potential applications of WO3 nanowires on graphene sheets as negative electrode for energy storage devices.

  2. Numerical simulation research of 300 kV, 5 electrodes negative ion beam system

    International Nuclear Information System (INIS)

    Wang Huisan; Jian Guangde

    2001-01-01

    According to the characteristic of high current negative ion beam extraction and acceleration system for negative ion-based neutral beam injector, a numerical simulation model and a calculation code of the negative ion beam system are established in order to assist the design of the system. The movement behavior of the negative ion beam and accompanying electron beam in joint effect of the electric and magnetic field of the system is calculated. The effect of relative parameters on the negative ion beam optics characteristic is investigated, such as beam density, negative ion initial temperature and stripping losses, final electrode aperture displacement. The electromagnetic configuration in the system is optimized. The initial optimized results for the 300 kV, 5 electrodes negative ion beam system show that the magnetic field of this system can deflect the electron beam to the extraction electrode as electron acceptor at lower energy and that assuming 20% stripping losses of the H - ion in extraction region and 21 mA ·cm -2 extracted H - beam density, the r.m.s. divergence angle of all output beam lets and divergence angle of 85% output beam lets are 0.327 deg. and 0.460 deg., respectively

  3. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    Science.gov (United States)

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  4. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    Science.gov (United States)

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Studies of doped negative valve-regulated lead-acid battery electrodes

    Czech Academy of Sciences Publication Activity Database

    Micka, Karel; Calábek, M.; Bača, P.; Křivák, P.; Lábus, R.; Bilko, R.

    2009-01-01

    Roč. 191, č. 1 (2009), s. 154-158 ISSN 0378-7753 Institutional research plan: CEZ:AV0Z40400503 Keywords : lead-acid * negative electrode * sulfation suppression Subject RIV: CG - Electrochemistry Impact factor: 3.792, year: 2009

  6. Review on α-Fe2O3 based negative electrode for high performance supercapacitors

    Science.gov (United States)

    Nithya, V. D.; Arul, N. Sabari

    2016-09-01

    Supercapacitor is an electrochemical energy storage device which has drawn attention of the researchers in recent years due to its high power density and long cycle life. Recently, an enormous effort has been imposed to improve the energy density of supercapacitor and might be attained through asymmetric cell configuration that offer wider potential window. Until now, a significant advancement has been achieved in the fabrication of positive electrodes for asymmetric cell. Nevertheless, the electrochemical performance of negative electrode materials is less explored, especially Hematite (α-Fe2O3). The α-Fe2O3 has been proved to be a promising negative electrode in supercapacitor application due to its wide operating potential, high redox activity, low cost, abundant availability and eco-friendliness. In this review, we have chosen α-Fe2O3 as the negative electrode and discussed its latest research progress with emphasis on various surface engineering synthesis strategies such as, carbon, polymer, metal-metal oxide, and ternary based α-Fe2O3 composites for supercapacitor. Besides, the importance of their synergistic effects over the supercapacitive performance in terms of specific capacitance, energy density, power density, cycling life and rate capability are highlighted. Also, an extensive analysis of the literature about its symmetric/asymmetric cell performance is explored.

  7. Studies of doped negative valve-regulated lead-acid battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Micka, K. [J. Heyrovsky Institute of Physical Chemistry, ASCR, 182 23 Prague 8 (Czech Republic); Calabek, M.; Baca, P.; Krivak, P.; Labus, R.; Bilko, R. [Department of Electrotechnology, University of Technology, 602 00 Brno (Czech Republic)

    2009-06-01

    Accelerated cycling in the partial state of charge regime showed conclusively that the improvement in cycle life of negative lead accumulator electrodes can be brought about not only by the addition of various sorts of powdered carbon into the active mass but also by the addition of other powdered inert materials like glass fibers, alumina, or titanium dioxide. Steric hindrance of the crystallization of lead sulfate in the electrode pores evidenced by ESEM microphotographs is considered as the main reason for this effect. The added powdered substances were practically without influence on the hydrogen overpotential; and their effect on the active material resistance was also negligible. (author)

  8. Effect of electrode materials on a negative ion production in a cesium seeded negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi; Morishita, Takutoshi; Kashiwagi, Mieko; Hanada, Masaya; Iga, Takashi; Inoue, Takashi; Watanabe, Kazuhiro; Imai, Tsuyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Wada, Motoi [Doshisha Univ., Kyoto (Japan)

    2003-03-01

    Effects of plasma grid materials on the negative ion production efficiency in a cesium seeded ion source have been experimentally studied. Grid materials of Au, Ag, Cu, Ni, and Mo were examined. A 2.45 GHz microwave ion source was utilized in the experiment to avoid contamination of tungsten from filament cathode. Relations between the negative ion currents and work functions of the grid were measured for these materials. Influence of the contamination by tungsten on the grid was also investigated. If was clarified that the negative ion production efficiency was determined only by the work function of the grid. The efficiency did not depend on the material itself. The lowest work function of 1.42 eV was obtained for Au grid with Cs, and a high H{sup -} production efficiency of 20.7 mA/kW was measured. This efficiency is about 1.3 times larger than that of Cs/Mo and Cs/Cu. Further improvement of the production efficiency was observed by covering the plasma grid with tungsten and cesium simultaneously. Such co-deposition of W and Cs on the plasma grid produced the negative ion production efficiency of 1.7 times higher than that from the tungsten grid simply covered with Cs. (author)

  9. Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions

    International Nuclear Information System (INIS)

    Ostrikov, K.N.; Kumar, S.; Sugai, H.

    2001-01-01

    Charging and trapping of macroparticles in the near-electrode region of fluorocarbon etching plasmas with negative ions is considered. The equilibrium charge and forces on particles are computed as a function of the local position in the plasma presheath and sheath. The ionic composition of the plasma corresponds to the etching experiments in 2.45 GHz surface-wave sustained and 13.56 MHz inductively coupled C 4 F 8 +Ar plasmas. It is shown that despite negligible negative ion currents collected by the particles, the negative fluorine ions affect the charging and trapping of particulates through modification of the sheath/presheath structure

  10. High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

    Science.gov (United States)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2018-06-01

    The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

  11. The negative electrode development for a Ni-MH battery prototype

    International Nuclear Information System (INIS)

    Cuscueta, D.J.; Ghilarducci, A.A.; Salva, H.R.; Milocco, R.H.; Castro, E.B.

    2009-01-01

    The negative electrode development for a nickel-metal hydride battery (Ni-MH) prototype was performed with the following procedure: (1) the Lm 0.95 Ni 3.8 Co 0.3 Mn 0.3 Al 0.4 (Lm=lanthanum rich mischmetal) intermetallic alloy was elaborated by melting the pure elements in an induction furnace inside a boron nitride crucible under an inert atmosphere, (2) the obtained alloy was crushed and sieved between 44 and 74 μm and mixed with teflonized carbon; (3) the compound was assembled together with a current collector and pressed in a cylindrical matrix. The obtained electrode presented a disc shape, with 11 mm diameter and approximately 1 mm thickness. The crystalline structure of the hydrogen storage alloy was examined using X-ray diffractometry. The measured hcp lattice volume was 1.78% larger than the precursor LaNi 5 intermetallic alloy, increasing the available space for hydrogen movement. Energy dispersive spectroscopy (EDS) and scanning electronic microscopy (SEM) measurements were used before and after hydriding in order to verify the alloy sample homogeneity. The negative electrode was electrochemically tested by using a laboratory cell. It activates almost totally in its first cycle, which is an excellent characteristic from the commercial point of view. The maximum discharge capacity reached was 314.2 mA h/g in the 10th cycle.

  12. Molybdate Based Ceramic Negative-Electrode Materials for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Reddy Sudireddy, Bhaskar; Mogensen, Mogens Bjerg

    2010-01-01

    Novel molybdate materials with varying Mo valence were synthesized as possible negative-electrode materials for solid oxide cells. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O and CO2 reduction and H2 and CO oxidation...... enhanced the electrocatalytic activity and electronic conductivity. The polarization resistances of the best molybdates were two orders of magnitude lower than that of donor-doped strontium titanates. Many of the molybdate materials were significantly activated by cathodic polarization, and they exhibited...... higher performance for cathodic (electrolysis) polarization than for anodic (fuel cell) polarization, which makes them especially interesting for use in electrolysis electrodes. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  13. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors

    Science.gov (United States)

    Li, Lu; Zhang, Mingyi; Zhang, Xitian; Zhang, Zhiguo

    2017-10-01

    Novel 3D Ti3C2 aerogel has been first synthesized by a simple EDA-assisted self-assembly process. Its inside are channels and pores structure. The interconnected aerogel structure could efficiently restrain restacking of Ti3C2 flakes. Thus, it exhibits a large specific surface area as high as 176.3 m2 g-1. The electrochemical performances have been measured. The Ti3C2 aerogel achieves a quite high areal capacitance of 1012.5 mF cm-2 for the mass loading of 15 mg at a scan rate of 2 mV s-1 in 1 M KOH electrolyte. An asymmetric supercapacitor (ASC) has been assembled by using the Ti3C2 aerogel electrode as the negative electrode and electrospinning carbon nanofiber film as the positive electrode. The device can deliver a high energy density of 120.0 μWh cm-2 and a maximum power density of 26123 μW cm-2. A lamp panel with nineteen red light-emitting diodes has been powered by two ASCs in series.

  14. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors.

    Science.gov (United States)

    Lu, Xihong; Zeng, Yinxiang; Yu, Minghao; Zhai, Teng; Liang, Chaolun; Xie, Shilei; Balogun, Muhammad-Sadeeq; Tong, Yexiang

    2014-05-21

    Oxygen-deficient α-Fe2 O3 nanorods with outstanding capacitive performance are developed and demonstrated as novel negative electrodes for flexible asymmetric supercapacitors. The asymmetric-supercapacitor device based on the oxygen-deficient α-Fe2 O3 nanorod negative electrode and a MnO2 positive electrode achieves a maximum energy density of 0.41 mW·h/cm(3) ; it is also capable of charging a mobile phone and powering a light-emitting diode indicator. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes.

    Science.gov (United States)

    Dubal, Deepak P; Chodankar, Nilesh R; Vinu, Ajayan; Kim, Do-Heyoung; Gomez-Romero, Pedro

    2017-07-10

    Nanofabrication using a "bottom-up" approach of hybrid electrode materials into a well-defined architecture is essential for next-generation miniaturized energy storage devices. This paper describes the design and fabrication of reduced graphene oxide (rGO)/polyoxometalate (POM)-based hybrid electrode materials and their successful exploitation for asymmetric supercapacitors. First, redox active nanoclusters of POMs [phosphomolybdic acid (PMo 12 ) and phosphotungstic acid (PW 12 )] were uniformly decorated on the surface of rGO nanosheets to take full advantage of both charge-storing mechanisms (faradaic from POMs and electric double layer from rGO). The as-synthesized rGO-PMo 12 and rGO-PW 12 hybrid electrodes exhibited impressive electrochemical performances with specific capacitances of 299 (269 mF cm -2 ) and 370 F g -1 (369 mF cm -2 ) in 1 m H 2 SO 4 as electrolyte at 5 mA cm -2 . An asymmetric supercapacitor was then fabricated using rGO-PMo 12 as the positive and rGO-PW 12 as the negative electrode. This rGO-PMo 12 ∥rGO-PW 12 asymmetric cell could be successfully cycled in a wide voltage window up to 1.6 V and hence exhibited an excellent energy density of 39 Wh kg -1 (1.3 mWh cm -3 ) at a power density of 658 W kg -1 (23 mW cm -3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries

    International Nuclear Information System (INIS)

    Ogihara, Nobuhiro; Igarashi, Yoshiyuki; Kamakura, Ayumu; Naoi, Katsuhiko; Kusachi, Yuki; Utsugi, Koji

    2006-01-01

    In order to understand the properties of high-rate capability and cycleability for a disordered carbon negative electrode in LiPF 6 /PC based electrolyte solution, the cell performance tests with various rates and depth of discharges (DODs) has been studied by spectroscopic and electrochemical analyses. From the charge-discharge measurements, a surface carbon-edge redox reaction occurring between a carbonyl (C edge =O) and a lithium alkoxide (C edge -OLi) that delivers a large capacity was found fast and high cycleability at only shallow DOD (2.0-0.4 V). The limited or shallow charge-discharge cycling utilizing such facile and reversible action of the C edge =O/C edge -OLi of the disordered carbon is suited to an application for an negative electrode of asymmetric hybrid capacitors. A deep DOD discharge (2.0-0.0 V) revealed the existence of some complex processes involving a lithium cluster deposition at pores or microvoids as well as a lithium ion intercalation at graphene layers. The cluster deposition at pores was found to be relatively fast and reproducible. The lithium ion intercalation at graphenes and the subsequent cluster deposition at microvoids were found to be slow and degrade the cycleability after 100 cycles because of the accumulation of a thick and low-ion-conductive solid electrolyte interface (SEI) film on surface

  17. Interaction of Melittin with Negatively Charged Lipid Bilayers Supported on Gold Electrodes

    International Nuclear Information System (INIS)

    Juhaniewicz, Joanna; Sek, Slawomir

    2016-01-01

    ABSTRACT: The interactions of melittin, a cationic antimicrobial peptide, with model lipid membranes consisting of negatively charged phospholipids: 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) or 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS) were investigated using electrochemical techniques and atomic force microscopy. Lipid bilayers were deposited on gold electrodes using a combination of Langmuir-Blodgett and Langmuir-Schaefer methods and the resulting membranes established a barrier for electron transfer between the electrode and the redox probe in the solution. After exposure to melittin, the blocking properties of the membranes were monitored using cyclic voltammetry and electrochemical impedance spectroscopy. It was observed that after treatment with peptide, the charge transfer through lipid bilayer is initially strongly inhibited. However, after longer exposure to melittin, the structure of the lipid film becomes less compact and the electrode reactions are facilitated due to the presence of numerous defect sites exposing bare substrate. We have assumed that such behavior reflects initial adsorption of melittin on top of the membrane and its further insertion which leads to formation of the pores or partial micellization of the lipid film. AFM imaging revealed that the exposure to 10 μM melittin solution induces significant structural changes in DMPG and DMPS membranes. However, melittin seems to affect their organization in a different manner. DMPG film appears to be more susceptible to peptide action compared with DMPS bilayer. In the latter case, long-time exposure to melittin does not result in the rupture of the membrane but rather leads to formation of pore-like defects. This observation is explained in terms of different nanomechanical properties of DMPG and DMPS films and different barrier for the reorientation and insertion of the peptide molecules into the membranes.

  18. Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries

    Science.gov (United States)

    Sun, Che-Nan; Delnick, Frank M.; Baggetto, Loïc; Veith, Gabriel M.; Zawodzinski, Thomas A.

    2014-02-01

    This work demonstrates a quantitative method to determine the hydrogen evolution rate occurring at the negative carbon electrode of the all vanadium redox flow battery (VRFB). Two carbon papers examined by buoyancy measurements yield distinct hydrogen formation rates (0.170 and 0.005 μmol min-1 g-1). The carbon papers have been characterized using electron microscopy, nitrogen gas adsorption, capacitance measurement by electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). We find that the specific electrochemical surface area (ECSA) of the carbon material has a strong influence on the hydrogen generation rate. This is discussed in light of the use of high surface area material to obtain high reaction rates in the VRFB.

  19. Rapid hydrogen charging on metal hydride negative electrode of Fuel Cell/Battery (FCB) systems

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bokkyu; Lee, Sunmook; Kawai, Hiroyuki; Fushimi, Chihiro; Tsutsumi, Atsushi [Collaborative Research Center for Energy Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2009-02-15

    The characteristics of rapid gaseous H{sub 2} charging/electrochemical discharging of the metal hydride negative electrode were investigated for the application in Fuel Cell/Battery (FCB) systems. They were evaluated with the H{sub 2} gas absorption, followed by the subsequent electrochemical discharging in the electrolyte solution (6M KOH). Then, the cyclability of charge-discharge was also examined. It was observed that more than 70% of the theoretical capacity was charged within 10 min with 0.3 MPa and 0.5 MPa of the initial H{sub 2} pressures. The electrochemical discharge curve showed that more than 86% of the absorbed H{sub 2} was discharged. Furthermore, the cycled charge-discharge process indicated that the H{sub 2} gas charge and electrochemical discharge process is an effective way to rapidly charge and activate the metal hydride without degeneration. (author)

  20. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors

    International Nuclear Information System (INIS)

    Zhang, Jin; Liu, Xifeng; Wang, Jing; Shi, Jingli; Shi, Zhiqiang

    2016-01-01

    Highlights: • Two types of HC materials with different properties as negative electrode. • Lithium ion intercalation plateau of HC affects electrochemical performance of LIC. • The electrochemical performance of LIC is operated at different potential ranges. • The selection of HC and appropriate potential range of LIC have been proposed. - ABSTRACT: Lithium-ion capacitors (LICs) are assembled with activated carbon (AC) cathode and pre-lithiated hard carbon (HC) anode. Two kinds of HC materials with different physical and electrochemical behaviors have been investigated as the negative electrodes for LIC. Compared with spherical HC, the irregular HC shows a distinct lithium ion intercalation plateau in the charge–discharge process. The existence of lithium ion intercalation plateau for irregular HC greatly affects the electrochemical behavior of HC negative electrode and AC positive electrode. The effect of working potential range on the electrochemical performance of LIC-SH and LIC-IH is investigated by the galvanostatic charging–discharging, electrochemical impedance tests and cycle performance testing. The charge–discharge potential range of the irregular HC negative electrode is lower than the spherical HC electrode due to the existence of lithium ion intercalation plateau, which is conducive to the sufficient utilization of the AC positive electrode. The working potential range of LIC should be controlled to realize the optimization of electrochemical performance of LIC. LIC-IH at the working potential range of 2.0-4.0 V exhibits the optimal electrochemical performance, high energy density up to 85.7 Wh kg −1 and power density as high as 7.6 kW kg −1 (based on active material mass of two electrodes), excellent capacity retention about 96.0% after 5000 cycles.

  1. Adsorption of tetrabutylammonium cations on negatively charged surfaces of the Hg, Ga, In-Ga, Tl-Ga electrodes

    International Nuclear Information System (INIS)

    Damaskin, B.B.; Baturina, O.A.; Vykhodtseva, L.N.; Emets, V.V.; Kazarinov, V.E.

    1999-01-01

    The differential capacitance curves in the 0.05M Na 2 SO 4 + [(C 4 H 9 ) 4 N]BF 4 aqueous solutions on the electrodes of mercury gallium and also of the In-Ga and Tl-Ga alloys are obtained. The adsorption parameters of the tetrabutylammonium cations on each of the electrodes within the frames of two parallel condensers model, supplemented by the Frumkin isotherm are calculated. The conclusion is made that different adsorption behaviour of the (C 4 H 9 ) 4 N + cations on the gallium subgroup metals by the electrodes high negative charges is related to nonuniform electrochemical work of the output electrons [ru

  2. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes

    International Nuclear Information System (INIS)

    Arora, P.; Doyle, M.; White, R.E.

    1999-01-01

    Two major issues facing lithium-ion battery technology are safety and capacity grade during cycling. A significant amount of work has been done to improve the cycle life and to reduce the safety problems associated with these cells. This includes newer and better electrode materials, lower-temperature shutdown separators, nonflammable or self-extinguishing electrolytes, and improved cell designs. The goal of this work is to predict the conditions for the lithium deposition overcharge reaction on the negative electrode (graphite and coke) and to investigate the effect of various operating conditions, cell designs and charging protocols on the lithium deposition side reaction. The processes that lead to capacity fading affect severely the cycle life and rate behavior of lithium-ion cells. One such process is the overcharge of the negative electrode causing lithium deposition, which can lead to capacity losses including a loss of active lithium and electrolyte and represents a potential safety hazard. A mathematical model is presented to predict lithium deposition on the negative electrode under a variety of operating conditions. The Li x C 6 vertical bar 1 M LiPF 6 , 2:1 ethylene carbonate/dimethyl carbonate, poly(vinylidene fluoride-hexafluoropropylene) vert b ar LiMn 2 O 4 cell is simulated to investigate the influence of lithium deposition on the charging behavior of intercalation electrodes. The model is used to study the effect of key design parameters (particle size, electrode thickness, and mass ratio) on the lithium deposition overcharge reaction. The model predictions are compared for coke and graphite-based negative electrodes. The cycling behavior of these cells is simulated before and after overcharge to understand the hazards and capacity fade problems, inherent in these cells, can be minimized

  3. A Facile Strategy for the Preparation of MoS3 and its Application as a Negative Electrode for Supercapacitors.

    Science.gov (United States)

    Zhang, Tong; Kong, Ling-Bin; Dai, Yan-Hua; Yan, Kun; Shi, Ming; Liu, Mao-Cheng; Luo, Yong-Chun; Kang, Long

    2016-09-06

    Owing to their graphene-like structure and available oxidation valence states, transition metal sulfides are promising candidates for supercapacitors. Herein, we report the application of MoS3 as a new negative electrode for supercapacitors. MoS3 was fabricated by the facile thermal decomposition of a (NH4 )2 MoS4 precursor. For comparison, samples of MoS3 &MoS2 and MoS2 were also synthesized by using the same method. Moreover, this is the first report of the application of MoS3 as a negative electrode for supercapacitors. MoS3 displayed a high specific capacitance of 455.6 F g(-1) at a current density of 0.5 A g(-1) . The capacitance retention of the MoS3 electrode was 92 % after 1500 cycles, and even 71 % after 5000 cycles. In addition, an asymmetric supercapacitor assembly of MoS3 as the negative electrode demonstrated a high energy density at a high potential of 2.0 V in aqueous electrolyte. These notable results show that MoS3 has significant potential in energy-storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrogenation of the rare earth alloys for production negative electrodes of nickel-metal hydride batteries

    International Nuclear Information System (INIS)

    Casini, Julio Cesar Serafim

    2011-01-01

    In this work were studied of La 0.7-x Mg x Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (X = 0 and 0.7) alloys for negative electrodes of the nickel-metal hydride batteries. The hydrogenation of the alloys was performed varying pressing of H 2 (2 and 10 bar) and temperature (room and 500 ℃). The discharge capacity of the nic kel-metal hydride batteries were analyzed in ARBIN BT- 4 electrical test equipment. The as-cast alloys were analyzed by scanning electron microscopy (SEM), energy disperse spectroscopy (EDX) and X-Ray diffraction. The increasing Mg addition in the alloy increases maximum discharge capacity but decrease cycle life of the batteries. The maximum discharge capacity was obtained with the Mg 0.7 Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy (60 mAh) and the battery which presented the best performance was La 0.4 Mg 0.3 Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy (53 mAh and 150 cycles). The H 2 capability of absorption was diminished for increased Mg addition and no such effect occurs for Mg 0.7 Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy. (author)

  5. Controllable Negative Differential Resistance Behavior of an Azobenzene Molecular Device Induced by Different Molecule-Electrode Distances

    International Nuclear Information System (INIS)

    Fan Zhi-Qiang; Zhang Zhen-Hua; Qiu Ming; Deng Xiao-Qing; Tang Gui-Ping

    2012-01-01

    We report the ab initio calculations of transport behaviors of an azobenzene molecular device which is similar to the experimental configurations. The calculated results show that the transport behaviors of the device are sensitive to the molecule-electrode distance and the currents will drop rapidly when the molecule-electrode distance changes from 1.7 Å to 2.0 Å. More interestingly, the negative differential resistance behavior can be found in our device. Nevertheless, it is not the inherent property of an azobenzene molecular device but an effect of the molecule-electrode distance. Detailed analyses of the molecular projected self-consistent Hamiltonian states and the transmission spectra of the system reveal the physical mechanism of these behaviors. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery

    International Nuclear Information System (INIS)

    Leung, P.K.; Ponce-de-Leon, C.; Low, C.T.J.; Walsh, F.C.

    2011-01-01

    Highlights: → Use methanesulfonic acid to avoid dendrite formation during a long (>4 h) zinc electrodeposition. → Electrochemical characterization of Zn(II) deposition and its morphology using methanesulfonic acid solutions. → Use of additives to improve the efficiency of zinc deposition and dissolution as the half cell reaction of a redox flow battery. - Abstract: Electrodeposition and dissolution of zinc in methanesulfonic acid were studied as the negative electrode reactions in a hybrid redox flow battery. Cyclic voltammetry at a rotating disk electrode was used to characterize the electrochemistry and the effect of process conditions on the deposition and dissolution rate of zinc in aqueous methanesulfonic acid. At a sufficiently high current density, the deposition process became a mass transport controlled reaction. The diffusion coefficient of Zn 2+ ions was 7.5 x 10 -6 cm 2 s -1 . The performance of the zinc negative electrode in a parallel plate flow cell was also studied as a function of Zn 2+ ion concentration, methanesulfonic acid concentration, current density, electrolyte flow rate, operating temperature and the addition of electrolytic additives, including potassium sodium tartarate, tetrabutylammonium hydroxide, and indium oxide. The current-, voltage- and energy efficiencies of the zinc-half cell reaction and the morphologies of the zinc deposits are also discussed. The energy efficiency improved from 62% in the absence of additives to 73% upon the addition of 2 x 10 -3 mol dm -3 of indium oxide as a hydrogen suppressant. In aqueous methanesulfonic acid with or without additives, there was no significant dendrite formation after zinc electrodeposition for 4 h at 50 mA cm -2 .

  7. Study of the influence of carbon on the negative lead-acid battery electrodes

    Czech Academy of Sciences Publication Activity Database

    Bača, P.; Micka, Karel; Křivík, P.; Tonar, K.; Tošer, P.

    2011-01-01

    Roč. 196, č. 8 (2011), s. 3988-3992 ISSN 0378-7753 Institutional research plan: CEZ:AV0Z40400503 Keywords : lead battery electrodes * doping with carbon * accelerated testing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.951, year: 2011

  8. Chemical coupling of carbon nanotubes and silicon nanoparticles for improved negative electrode performance in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Cedric; Crosnier, Olivier; Schleich, Donald M.; Brousse, Thierry [Laboratoire de Genie des Materiaux et Procedes Associes (LGMPA), Ecole Polytechnique de l' Universite de Nantes, Rue Christian Pauc, BP50609, 44306 Nantes Cedex 3 (France); Retoux, Richard [Laboratoire CRISMAT-CNRS/UMR 6508, ENSICAEN, Universite de Caen Basse-Normandie, 6 bd Marechal Juin, 14050 Caen (France); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, succursale Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada)

    2011-09-23

    Multi-walled carbon nanotube (MWCNT)/silicon nanocomposites obtained by a grafting technique using the diazonium chemistry are used to prepare silicon negative electrodes for lithium-ion batteries. The covalent bonding of the two compounds is obtained via mono- and multi-layers of phenyl bridges, leading to an ideal dispersion of MWCNTs and silicon nanoparticles that are bound together. The presence of MWCNTs close to silicon nanoparticles enhances the electronic pathway to the active material particles and probably helps to prevent silicon decrepitation upon repeated lithium insertion/extraction by improving the mechanical stability of the electrode at a nanoscale level. This effect results in the enhancement of cycling ability and capacity, which are demonstrated by comparing the nanocomposite electrode to a simple mixture of the two compounds. This technique can be applied to other carbon conductive additives together with silicon or other nanosized active compounds. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Design, fabrication, and characterization of a 2.3 kJ plasma focus of negative inner electrode

    International Nuclear Information System (INIS)

    Mathuthu, M.; Zengeni, T.G.; Gholap, A.V.

    1997-01-01

    The design, fabrication, and characterization of a 2.3 kJ plasma focus device with negative inner electrode are discussed. The purpose of the design was to initiate research in and study of plasma dynamics, nuclear reactions, and neutron emission mechanisms at the university. Also the device will be used to teach and demonstrate plasma phenomena at the postgraduate level and to perform experiments with inverted polarity to examine different operating regimes with nonstandard gases. It is hoped that in the long run the research work will help find a solution to the polarity riddle of plasma focus devices. When the system was operated with spectrographic argon as the filling gas, the best focus was obtained at a pressure range of 0.1 endash 1.25 Torr. With nitrogen as the filling gas, the best focus was obtained at pressures between 0.1 and 1.25 Torr. Air gave the best focus at a pressure range of 0.5 endash 1.5 Torr. The observed good focus action is attributed to the small inner electrode length (this reduces the amount of anode material ablated into the current sheath) and tapering of the inner electrode. Positive z-directed electrons contribute to the temperature and further ionization of the plasma gas during focusing. The performance of the device compares quite well with other known devices. copyright 1997 American Institute of Physics

  10. PAN-based carbon fiber negative electrodes for structural lithium-ion batteries

    OpenAIRE

    Hellqvist Kjell, Maria; Jacques, Eric; Zenkert, Dan; Behm, Mårten; Lindbergh, Göran

    2011-01-01

    Several grades of commercially-available polyacrylonitrile (PAN)-based carbon fibers have been studied for structural lithium-ion batteries to understand how the sizing, different lithiation rates and number of fibers per tow affect the available reversible capacity, when used as both current collector and electrode, for use in structural batteries. The study shows that at moderate lithiation rates, 100 mA g-1, most of the carbon fibers display a reversible capacity close to or above 100 mAh ...

  11. A paste type negative electrode using a MmNi{sub 5} based hydrogen storage alloy for a nickel-metal hydride (Ni-MH) battery

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H.; Matsumoto, T.; Watanabe, S.; Kobayashi, K.; Hoshino, H. [Tokai Univ., Kanagawa (Japan). School of Engineering

    2001-07-01

    Different conducting materials (nickel, copper, cobalt, graphite) were mixed with a MmNi{sub 5} type hydrogen storage alloy, and negative electrodes for a nickel-metal hydride(Ni-MH) rechargeable battery were prepared and examined with respect to the discharge capacity of the electrodes. The change in the discharge capacity of the electrodes with different conducting materials was measured as a function of the number of electrochemical charge and discharge cycles. From the measurements, the electrodes with cobalt and graphite were found to yield much higher discharge capacities than those with nickel or cobalt. From a comparative discharge measurements for an electrode composed of only cobalt powder without the alloy and an electrode with a mixture of cobalt and the alloy, an appreciable contribution of the cobalt surface to the enhancement of charge and discharge capacities was found. (author)

  12. Electrical discharge occurring between a negatively charged particle cloud and a grounded sphere electrode

    International Nuclear Information System (INIS)

    Higashiyama, Y; Migita, S; Toki, K; Sugimoto, T

    2008-01-01

    Electrostatic discharge occurring between a space-charge cloud and a grounded object was investigated using a large-scale charged particle cloud formed by using three set of cloud generators consisting of a blower and corona charger. The ejecting velocity of the particles affects the formation of the charged cloud. At the lower velocity, the charged cloud spread due to electrostatic repulsion force, while at the higher velocity cloud forms an elongated conical shape. To cause electrostatic discharge between the cloud and a grounded object, a grounded sphere electrode with 100 mm in diameter was set at the inside or outside of the cloud. The brush-like discharge channels reached the maximum length of 0.55 m. The discharge current has a waveform with single or multi-peak, a current peak of several amperes, the maximum charge quantity of 2 μC, and the duration of several microseconds. The relationship between the charge quantity and the current peak or the duration in each discharge was examined. The discharge between the cloud and the electrode placed at the outside of the cloud has relatively longer channels and multi-peak current with the longer duration, while that at the inside of the cloud has the lower charge quantity with single peak.

  13. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy.

    Science.gov (United States)

    Matsushita, Tadashi; Watanabe, Jiro; Nakao, Tatsuya; Yamashita, Seiichi

    2014-11-01

    For the last decades, the performance of the lithium-ion battery (LIB) has been significantly improved and its applications have been expanding rapidly. However, its performance has yet to be enhanced.In the lithium-ion battery development, it is important to elucidate the electrode structure change in detail during the charge and discharge cycling. In particular, solid electrolyte interface (SEI) formed by decomposition of the electrolytes on the graphite negative electrode surface should play an important role for battery properties. Therefore, it is essential to control the structure and composition of SEI to improve the battery performance. Here, we conducted a scanning electron microscope (SEM) and transmission electron microscope (TEM) study to elucidate the structures of the SEI during the charge and discharge process using LiNi1/3Co1/3Mn1/3O2 [1] cathode and graphite anode. [2] Since SEI is a lithium-containing compound with high activity, it was observed without being exposed to the atmosphere. The electrodes including SEI were sampled after dismantling batteries with cutoff voltages of 3V and 4.2V for the charge process and 3V for the discharge process. Fig.1 shows SEM images of the graphite electrode surface during the charge and discharge process. The change of the SEI structure during the process was clearly observed. Further, TEM images showed that the SEI grew thicker during the charge process and becomes thinner when discharged. These results with regard to the reversible SEI structure could give a new insight for the battery development.jmicro;63/suppl_1/i21/DFU056F1F1DFU056F1Fig. 1.SEM images of the graphite electrode surface:(a) before charge process;(b) with charge-cutoff voltage of 3.0V; (c) with charge-cutoff voltage of 4.2V; (d) with discharge-cutoff voltage of 3.0V. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Interaction of Cecropin B with Zwitterionic and Negatively Charged Lipid Bilayers Immobilized at Gold Electrode Surface

    International Nuclear Information System (INIS)

    Juhaniewicz, Joanna; Szyk-Warszyńska, Lilianna; Warszyński, Piotr; Sęk, Sławomir

    2016-01-01

    Membranolytic properties of cationic antimicrobial peptide cecropin B were investigated using electrochemical techniques, atomic force microscopy and quartz crystal microbalance with dissipation monitoring. Two types of artificial lipid bilayers supported on gold electrode were used as model systems composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (Chol) at 7:3 molar ratio and L-α-phosphatidylethanolamine (E. coli) (PE), L-α-phosphatidylglycerol sodium salt (E. coli) (PG) at 8:2 molar ratio. Thus the lipid content was intended to represent either mammalian or bacterial membrane respectively. Model bilayers were exposed to cecropin B at 1 μM concentration and the changes in bilayer structure, permeability and morphology were monitored as a function of time. We have found that cecropin B does not show any pronounced effect on POPC/Chol bilayer, while PE/PG system was strongly affected in the presence of the peptide. This observation suggests that cecropin B shows some selectivity with respect to lipid composition of the membrane. In case of PE/PG membrane, we have observed that peptide action involves electrostatically driven adsorption of the cecropin B at the top of the bilayer with simultaneous fluidization and swelling of the membrane. The latter may facilitate the rearrangement and insertion of the molecules into the core of the lipid bilayer, which leads to further rupture and degradation of the film through formation of mixed peptide-lipid aggregates.

  15. Influence of composition on phase occurrence during charge process of AB5+x Ni-MH negative electrode materials

    International Nuclear Information System (INIS)

    Vivet, S.; Latroche, M.; Chabre, Y.; Joubert, J.-M.; Knosp, B.; Percheron-Guegan, A.

    2005-01-01

    Multi-substituted LaNi 5 -type alloys (AB 5+ x ) are widely used as negative electrode materials in commercial Ni-MH batteries. Cobalt substitution on Ni sites allows to enhance battery cycle life by reducing alloy pulverization induced by hydrogen cycling. This improvement is attributed to the occurrence of a three-phase process (α, β and γ) during electrochemical hydrogen loading. In order to better understand the effect of the composition on the phase occurrence and to reduce the rate of costly cobalt, an in situ neutron diffraction study has been performed at room temperature during electrochemical charge of two different electrode materials MmNi 4.07 Mn 0.63 Al 0.2 M 0.4 with M=Fe and Mn and B/A=5.3. These cobalt free compounds show cycle life comparable to that of commercial materials. The results show that three phases are also observed for these samples. The γ-phase content depends on M and is higher for M=Fe than for M=Mn. These results are related to the improved cycle lives and to the alloy pulverization process

  16. Electrochemical modification of a pyrolytic graphite sheet for improved negative electrode performance in the vanadium redox flow battery

    Science.gov (United States)

    Kabir, Humayun; Gyan, Isaiah O.; Francis Cheng, I.

    2017-02-01

    The vanadium redox flow battery is a promising technology for buffering renewable energies. It is recognized that negative electrode is the limitation in this device where there are problems of slow heterogeneous electron transfer (HET) of V3+/2+ and parasitic H2 evolution. Any methods aimed at addressing one of these barriers must assess the effects on the other. We examine electrochemical enhancement of a common commercially available material. Treatment of Panasonic pyrolytic graphite sheets is through oxidation at 2.1 V vs. Ag/AgCl for 1 min in 1 M H2SO4. This increases the standard HET rate for V3+/2+ from 3.2 × 10-7 to 1 × 10-3 cm/s, one of the highest in literature and shifts voltammetric reductive peak potential from -1.0 V to -0.65 V in 50 mM V3+ in 1 M H2SO4. Infrared analysis of the surfaces indicates formation of Csbnd OH, Cdbnd O, and Csbnd O functionalities. These groups catalyze HET with V3+/2+ as hypothesized by Skyllas-Kasacos. Also of significance is that electrode modification decreases the fraction of the current directed towards H2 evolution. This proportion decreases by two orders of a magnitude from 12% to 0.1% as measured at the respective voltammetric peak potentials of -1.0 V (pristine) and -0.65 V (modified).

  17. Bipolar lead acid batteries with ceramic partitioning walls. Forming and characterization of negative electrodes; Bipolaera blybatterier med keramiska mellanvaeggar. Tillverkning och karaktaerisering av negativa elektroder

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ove; Haraldsen, Britta [Chalmers Univ. of Technology, Goeteborg (Sweden). Environmental Inorganic Chemistry

    2001-01-01

    Bipolar electrodes are built with positive and negative paste on each side of a partitioning wall (PW). The PW must be dimensional stable and shall not allow electrolyte to flow through. The process of lead infiltration in porous ceramic plates is studied in this report in combination with different methods of forming pos. and neg. halves. Plante formed negative paste can not withstand a high pressure - relief details must be included in the design. The expanders in NAM are necessary to maintain the capacity. Positive Plante formed electrodes are not proper formed due to a too high current density. Furthermore, they are very brittle. The usefulness of paste plates has been shown and the future work will be directed towards such bipolar electrodes to be included in prototype batteries.

  18. Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode

    Science.gov (United States)

    Ming, SUN; Zhan, TAO; Zhipeng, ZHU; Dong, WANG; Wenjun, PAN

    2018-05-01

    The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods. The nozzle-cylinder electrode in the discharge reactor was supplied with a negative nanosecond pulsed generator. The optical emission spectrum diagnosis revealed that OH (A2∑+ → X2Π, 306–309 nm), N2 (C3Π→B3Πg, 337 nm), O (3p5p→3s5s0, 777.2 nm) and O (3p3p→3s3s0, 844.6 nm) were produced in the discharge plasma channels. The electron temperature (T e) was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm, and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 eV. The gas temperature (T g) that was measured by Lifbase was in a range from 400 K to 600 K.

  19. Fabrication of Si negative electrodes for Li-ion batteries (LIBs) using cross-linked polymer binders.

    Science.gov (United States)

    Jang, Suk-Yong; Han, Sien-Ho

    2016-12-19

    Currently, Si as an active material for LIBs has been attracting much attention due to its high theoretical specific capacity (3572 mAh g -1 ). However, a disadvantage when using a Si negative electrode for LIBs is the abrupt drop of its capabilities during the cycling process. Therefore, there have been a few studies of polymers such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR) and polyacrylic acid (PAA) given that the robust structure of a polymeric binder to LIBs anodes is a promising means by which to enhance the performance of high-capacity anodes. These studies essentially focused mainly on modifying of the linear-polymer component or on copolymers dissolved in solvents. Cross-linking polymers as a binder may be preferred due to their good scratch resistance, excellent chemical resistance and high levels of adhesion and resilience. However, because these types of polymers (with a rigid structure and cross-linking points) are also insoluble in general organic solvents, applying these types in this capacity is virtually impossible.

  20. Cantilever-type electrode array-based high-throughput microparticle sorting platform driven by gravitation and negative dielectrophoretic force

    International Nuclear Information System (INIS)

    Kim, Youngho; Kim, Byungkyu; Lee, Junghun; Kim, Younggeun; Shin, Sang-Mo

    2011-01-01

    In this paper, we describe a cantilever-type electrode (CE) array-based high-throughput sorting platform, which is a tool used to separate microparticles using gravitation and negative dielectrophoretic (n-DEP) force. This platform consists of meso-size channels and a CE array, which is designed to separate a large number of target particles by differences in their dielectric material properties (DMP) and the weight of the particles. We employ a two-step separation process, with sedimentation as the first step and n-DEP as the second step. In order to differentiate the weight and the DMP of each particle, we employ the sedimentation phenomena in a vertical channel and the CE-based n-DEP in an inclined channel. By using three kinds of polystyrene beads with diameters of 10, 25 and 50 µm, the optimal population (10 7 beads ml −1 ) of particles and the appropriate length (25 mm) of the vertical channel for high performance were determined experimentally. Conclusively, by combining sedimentation and n-DEP schemes, we achieve 74.5, 94.7 and 100% separation efficiency for sorting microparticles with a diameter of 10, 25 and 50 µm, respectively.

  1. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    Science.gov (United States)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  2. Physically-based impedance modeling of the negative electrode in All-Vanadium Redox Flow Batteries: insight into mass transport issues

    International Nuclear Information System (INIS)

    Zago, M.; Casalegno, A.

    2017-01-01

    Highlights: •Performance losses induced by migration though the porous electrode are negligible. •Convection at carbon fiber results in a linear branch at low frequency in Nyquist plot. •When the reaction is concentrated, diffusion losses though the electrode diminishes. •Diffusion process in the pores becomes more limiting at high current. •Charge transfer resistance decreases with increasing current. -- Abstract: Mass transport of the electrolyte over the porous electrode is one of the most critical issues hindering Vanadium Redox Flow Battery commercialization, leading to increased overpotential at high current and limiting system power density. In this work, a 1D physically based impedance model of Vanadium Redox Flow Battery negative electrode is developed, taking into account electrochemical reactions, convection at carbon fiber, diffusion in the pores and migration and diffusion through electrode thickness. The model is validated with respect to experimental data measured in a symmetric cell hardware, which allows to keep the State of Charge constant during the measurement. The physically based approach permits to elucidate the origin of different impedance features and quantify the corresponding losses. Charge transfer resistance decreases with increasing current and is generally lower compared to the ones related to mass transport phenomena. Migration losses through the porous electrode are negligible, while convection at carbon fiber is relevant and in Nyquist plot results in a linear branch at low frequency. In presence of significant convection losses the reaction tends to concentrate close to the channel: this leads to a reduction of diffusion losses through the electrode, while diffusion process in the pores becomes more limiting.

  3. Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Dept. of Chemistry, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Le, D.-B. [3M Electronic Markets Materials Division, 3M Center, St. Paul, MN 55144-1000 (United States); Ferguson, P.P. [Dept. of Physics and Atmospheric Science, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Dahn, J.R., E-mail: jeff.dahn@dal.c [Dept. of Chemistry, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Dept. of Physics and Atmospheric Science, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada)

    2010-03-01

    A lithium polyacrylate (Li-PAA) binder has been developed by 3M Company that is useful with electrodes comprising alloy anode materials. This binder was used to prepare electrodes made with Sn{sub 30}Co{sub 30}C{sub 40} material prepared by mechanical attrition. The electrochemical performance of electrodes using Li-PAA binder was characterized and compared to those using sodium carboxymethyl cellulose (CMC) and polyvinylidene fluoride (PVDF) binders. The Sn{sub 30}Co{sub 30}C{sub 40} electrodes using Li-PAA and CMC binders show much smaller irreversible capacity than the ones using PVDF binder. Poor capacity retention is observed when PVDF binder is used. By contrast, the electrodes using Li-PAA binder show excellent capacity retention for Sn{sub 30}Co{sub 30}C{sub 40} materials and a specific capacity of 450 mAh/g is achieved for at least 100 cycles. The results suggest that Li-PAA is a promising binder for electrodes made from large-volume change alloy materials.

  4. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery

    DEFF Research Database (Denmark)

    Shearing, P.R.; Howard, L.E.; Jørgensen, Peter Stanley

    2010-01-01

    The 3-dimensional microstructure of a porous electrode from a lithium-ion battery has been characterized for the first time. We use X-ray tomography to reconstruct a 43 × 348 × 478 μm sample volume with voxel dimensions of 480 nm, subsequent division of the reconstructed volumes into sub...

  5. Effects of buffer agents on hydrogen adsorption and desorption at/within activated carbon for the negative electrode of aqueous asymmetric supercapacitors

    International Nuclear Information System (INIS)

    Chien, Hsiu-Chuan; Wu, Tzu-Ho; Rajkumar, Muniyandi; Hu, Chi-Chang

    2016-01-01

    Highlights: • H adsorption causes local pH increase and negatively shifts the double-layer potential window. • The local pH variation at AC/electrolyte interface can be controlled via adding buffer agents. • H adsorption potential on AC in buffer electrolytes follows the Nernstian dependence. • The pseudocapacitive reversibility of H adsorption/desorption at/within AC is too poor. - Abstract: In this work, the effects of adding buffer agents into aqueous electrolytes on the hydrogen adsorption/desorption behaviour at/within activated carbon are systematically investigated for the negative electrode of asymmetric supercapacitors. Due to the poor electrochemical reversibility of hydrogen adsorption/desorption at/within activated carbon, the hydrogen responses at/within activated carbon are not suitable for pseudo-capacitive energy storage of high-performance asymmetric supercapacitor. The electrochemical adsorption of H atoms consumes protons and causes the local pH change at the activated carbon/electrolyte interface, leading to the negative shift in the H adsorption potential when weakly acidic, neutral, and weakly basic electrolytes without buffer agents are employed. The addition of buffer agents into electrolytes significantly improves the rate of proton supply and promotes the rate of hydrogen adsorption at/within AC. Interestingly, the onset potential of significant H adsorption obtained from the buffered electrolytes generally follows the Nernstian dependence, suggesting the Nerstian dependence of H"+/H_a_d_s on AC at all pH values. In order to obtain the energy storage devices with high coulombic and energy efficiencies, the onset potential of significant H adsorption obtained from the electrolyte containing buffer agents is a reliable lower potential limit of the AC-coated negative electrode for aqueous asymmetric supercapacitors.

  6. Synthesis, characterization and electrochemical performance of core/shell structured carbon coated silicon powders for lithium ion battery negative electrodes

    Directory of Open Access Journals (Sweden)

    Tuğrul Çetinkaya

    2017-06-01

    Full Text Available Surface of nano silicon powders were coated with amorphous carbon by pyrolysis of polyacronitrile (PAN polymer. Microstructural characterization of amorphous carbon coated silicon powders (Si-C were carried out using scanning electron microscopy (SEM and thickness of carbon coating is defined by transmission electron microscopy (TEM. Elemental analyses of Si-C powders were performed using energy dispersive X-ray spectroscopy (EDS. Structural and phase characterization of Si-C composite powders were investigated using X-ray diffractometer (XRD and Raman spectroscopy. Produced Si-C powders were prepared as an electrode on the copper current collector and electrochemical tests were carried out using CR2016 button cells at 200 mA/g constant current density. According to electrochemical test results, carbon coating process enhanced the electrochemical performance by reducing the problems stem from volume change and showed 770 mAh/g discharge capacity after 30 cycles.

  7. Electrochemical properties of LaMO3 (M=Co or Fe) as the negative electrode in a hydrogen battery

    Science.gov (United States)

    Lim, D.-K.; Im, H.-N.; Kim, J.; Song, S.-J.

    2013-01-01

    Undoped orthorthombic LaFeO3 and monoclinic LaCoO3 oxides were selected as an anode material for Ni-H battery due to their high electron conductivity by multivalent transition status of B-site cation. Both groups of oxides were prepared by a conventional solid-state reaction method, and their electrochemical charge/discharge properties were investigated. The electrochemical kinetic properties, exchange current density, and proton diffusivity were also extracted using linear polarization measurement and the potential-step method. X-ray photoelectron spectroscopy (XPS) analysis was used to measure the oxidation state of the transition metal in the specimens. A non-linear least-square fitting deconvoluted the peaks, suggesting that the valence state of Fe and Co in the sample was mainly +3. The hydrogen diffusion rate was also estimated using the potential-step method, giving 5.42×10-16 and 5.72×10-16 cm2 s-1 for LaCoO3 and LaFeO3, respectively which are an order of magnitude larger than that of Sr doped LaFeO3 oxide electrodes.

  8. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    Science.gov (United States)

    Fubiani, G.; Boeuf, J. P.

    2015-10-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.

  9. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    International Nuclear Information System (INIS)

    Fubiani, G; Boeuf, J P

    2015-01-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric. (paper)

  10. Hydrometallurgical method for recycling rare earth metals, cobalt, nickel, iron, and manganese from negative electrodes of spent Ni-MH mobile phone batteries

    International Nuclear Information System (INIS)

    Santos, Vinicius Emmanuel de Oliveira dos; Lelis, Maria de Fatima Fontes; Freitas, Marcos Benedito Jose Geraldo de

    2014-01-01

    A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni-MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO 4 ) 2 .H 2 O) and lanthanum sulfate (La 2 (SO 4 ) 3 .H 2 O) as the major recovered components. Iron was recovered as Fe(OH) 3 and FeO. Manganese was obtained as Mn 3 O 4 .The recovered Ni(OH) 2 and Co(OH) 2 were subsequently used to synthesize LiCoO 2 , LiNiO 2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques. (author)

  11. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P. [Univ. of California, San Diego, CA (United States)

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  12. Synthesis and properties of Li2SnO3/polyaniline nanocomposites as negative electrode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Qiufen; Huang, Ying; Miao, Juan; Zhao, Yang; Wang, Yan

    2012-10-01

    The nanocomposites Li2SnO3/polyaniline (Li2SnO3/PANI) have been synthesized by a micro emulsion polymerization method. The structure, morphology and electrochemical properties of the as-prepared materials are characterized by XRD, FTIR, Raman, XPS, TGA, TEM and electrochemical measurements. Results show that Li2SnO3/PANI nanocomposites are composed of uniform and blocky nano-sized particles (40-50 nm) with clear lattice fringes. Electrochemical measurement suggests that Li2SnO3/PANI exhibits better cycling properties and lower initial irreversible capacities than Li2SnO3 as negative electrodes materials for lithium-ion batteries. At a current density of 60 mA g-1 in the voltage about 0.05-2.0 V, the initial irreversible capacity of Li2SnO3/PANI is 563 mAh g-1 while it is 687.5 mAh g-1 to Li2SnO3. The capacity retained of Li2SnO3/PANI (569.2 mAh g-1) is higher than that of Li2SnO3 (510.2 mAh g-1) after 50 cycles. The PANI in the Li2SnO3/PANI nanocomposites can buffer the released stress caused by the drastic volume variation during the alloying/de-alloying process of Li-Sn.

  13. Ion-exchange synthesis and improved Li insertion property of lithiated H2Ti12O25 as a negative electrode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Kunimitsu Kataoka

    2016-03-01

    Full Text Available We successfully prepared the lithiated H2Ti12O25 sample by the H+/Li+ ion exchange synthetic technique in the molten LiNO3 at 270 °C using H2Ti12O25 as a starting compound. Chemical composition of the obtained lithiated H2Ti12O25 sample was determined to be H1.05Li0.35Ti12O25-δ having δ = 0.3 by ICP-AES and DTA-TG analyses. The H+/Li+ ion exchange was also confirmed by powder XRD, 1H-MAS NMR, and 7Li-MAS NMR measurements. Electrochemical Li insertion and extraction measurements revealed that the initial coulombic efficiency was improved from 88% in H2Ti12O25 to 93% in the lithiated H2Ti12O25 sample. In addition, superior capacity retention properties for the charge and discharge cycling performance and good charge rate capability of the present lithiated H2Ti12O25 were confirmed in the electrochemical measurements. Accordingly, the lithiated H2Ti12O25 is suggested to be one of the promising high-voltage and high-capacity oxide negative electrodes in advanced lithium-ion batteries.

  14. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Fleutot, Benoit, E-mail: benoit.fleutot@u-picardie.fr [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France); Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie [Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens (France); Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459 (France)

    2017-04-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12} (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li{sub 3}PO{sub 4} coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li{sub 3}PO{sub 4} coated Li{sub 4}Ti{sub 5}O{sub 12} is improved at high C-rate by the surface modification (improvement of 30 mAh g{sup −1} at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  15. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    International Nuclear Information System (INIS)

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-01-01

    Highlights: • Dense layer coating of based-phosphate ionic conductor obtained by spray-drying. • Influence of dense ionic conductor at the negative surface material on performances. • Impact of dense ionic conductor coating on outgassing phenomena. - Abstract: Li_4Ti_5O_1_2 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li_3PO_4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li_3PO_4 coated Li_4Ti_5O_1_2 is improved at high C-rate by the surface modification (improvement of 30 mAh g"−"1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  16. Uncharged positive electrode composition

    Science.gov (United States)

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  17. Synthesis and properties of Li2SnO3/polyaniline nanocomposites as negative electrode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Qiufen; Huang Ying; Miao Juan; Zhao Yang; Wang Yan

    2012-01-01

    Highlights: ► Li 2 SnO 3 /polyaniline nanocomposite (40–50 nm) was synthesized by micro emulsion polymerization. ► Li 2 SnO 3 /PANI exhibits lower initial irreversible capacities than Li 2 SnO 3 . ► Its capacity retains 569.2 mAh g −1 after 50 cycles. - Abstract: The nanocomposites Li 2 SnO 3 /polyaniline (Li 2 SnO 3 /PANI) have been synthesized by a micro emulsion polymerization method. The structure, morphology and electrochemical properties of the as-prepared materials are characterized by XRD, FTIR, Raman, XPS, TGA, TEM and electrochemical measurements. Results show that Li 2 SnO 3 /PANI nanocomposites are composed of uniform and blocky nano-sized particles (40–50 nm) with clear lattice fringes. Electrochemical measurement suggests that Li 2 SnO 3 /PANI exhibits better cycling properties and lower initial irreversible capacities than Li 2 SnO 3 as negative electrodes materials for lithium-ion batteries. At a current density of 60 mA g −1 in the voltage about 0.05–2.0 V, the initial irreversible capacity of Li 2 SnO 3 /PANI is 563 mAh g −1 while it is 687.5 mAh g −1 to Li 2 SnO 3 . The capacity retained of Li 2 SnO 3 /PANI (569.2 mAh g −1 ) is higher than that of Li 2 SnO 3 (510.2 mAh g −1 ) after 50 cycles. The PANI in the Li 2 SnO 3 /PANI nanocomposites can buffer the released stress caused by the drastic volume variation during the alloying/de-alloying process of Li–Sn.

  18. Recycling of negative electrodes from spent Ni-Cd batteries as CdO with nanoparticle sizes and its application in remediation of azo dye

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, T.F.M.; Santana, I.L.; Moura, M.N.; Ferreira, S.A.D.; Lelis, M.F.F.; Freitas, M.B.J.G., E-mail: marcosbj@hotmail.com

    2017-07-01

    In this study, negative electrodes from spent Ni-Cd batteries were recycled as CdCO{sub 3}, which was thermally treated to produce synthetized, nanostructured CdO. There is interest in CdO because of its energy band gap, high electrical conductivity and selective catalytic properties. CdO was characterized in this study by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The XRD pattern showed CdO peaks in a crystalline cubic phase, and the average crystallite diameter was 22.21 nm. TEM micrographs showed the formation of clusters containing nanostructures. We also tested the efficiency of CdO catalytic activity in degrading Reactive Black 5 (RB5) dye. Degradation was conducted in conditions of pH = 4.0, pH = 5.97 and pH = 8.0. The degradation efficiency was, respectively, 65.42%, 61.80% and 67.01% after 480 min of reaction. The determining step in the reaction mechanism for dye degradation was the formation of the radical ion OH·. Therefore, the degradation exhibited a first-order reaction. The catalytic activity of CdO and the rate constant values were independent of the pH of the solution. This work presents potential solutions for two environmental problems: recycling Cd and dye degradation. - Graphical abstract: Recycling of spent Ni-Cd batteries as CdO nanoparticles. - Highlights: • This work presents solutions for Cd recycling and dye degradation. • Anodes of Ni-Cd batteries were recycled as CdO with nanometer-sized particles. • CdO presents catalytic activity in the degradation of reactive black dye. • Decoloration of reactive black dye exhibits first-order reaction. • The rate constant values are independent of the pH solution.

  19. N{sub 2}H{sub 4} electrooxidation at negative potential on novel wearable nano-Ni-MWNTs-textile electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongming; Wang, Bin; Cao, Dianxue; Ye, Ke; Xu, Yang; Yin, Jinling; Cheng, Kui; Wang, Guiling, E-mail: wangguiling@hrbeu.edu.cn

    2014-10-15

    Highlights: • The novel Ni-MWNTs-textile electrode is prepared by the facile “dipping and drying” and electrodeposition process. • The Ni-MWNTs-textile electrode exhibits a special three dimensional network structure. • The Ni-MWNTs-textile electrode exhibits excellent performance for N{sub 2}H{sub 4} electrooxidation. - Abstract: A new composite Ni electrode is simply prepared by electrodeposition of nano-scaled Ni particles onto multi-walled carbon nanotubes (MWNTs)-enabled conductive textile fiber (cosmetic cotton) which owns an especial three-dimensional (3D) network structure. The morphology and phase structure of the Ni-MWNTs-textile electrode are characterized by scanning electron microscope, transmission electron microscope and X-ray diffraction spectrometer, and the catalytic performance for the N{sub 2}H{sub 4} electrooxidation is tested by linear sweep voltammetry and chronoamperometry. The results show that the Ni-MWNTs-textile electrode exhibits a remarkably high catalytic activity and good stability for N{sub 2}H{sub 4} electrooxidation. The onset potential stays at around −0.9 V and the oxidation current density reaches as high as 12 mA cm{sup −2} in the solution containing 1 mol dm{sup −3} NaOH and 20 mmol dm{sup −3} N{sub 2}H{sub 4} at around −0.80 V, both of which outstrip the previous reports.

  20. Synthesis and properties of Li{sub 2}SnO{sub 3}/polyaniline nanocomposites as negative electrode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiufen [School of Science, Northwestern Polytechnical University, Xi' an 710129 (China); School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Huang Ying, E-mail: yingh@nwpu.edu.cn [School of Science, Northwestern Polytechnical University, Xi' an 710129 (China); Miao Juan [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Zhao Yang; Wang Yan [School of Science, Northwestern Polytechnical University, Xi' an 710129 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Li{sub 2}SnO{sub 3}/polyaniline nanocomposite (40-50 nm) was synthesized by micro emulsion polymerization. Black-Right-Pointing-Pointer Li{sub 2}SnO{sub 3}/PANI exhibits lower initial irreversible capacities than Li{sub 2}SnO{sub 3}. Black-Right-Pointing-Pointer Its capacity retains 569.2 mAh g{sup -1} after 50 cycles. - Abstract: The nanocomposites Li{sub 2}SnO{sub 3}/polyaniline (Li{sub 2}SnO{sub 3}/PANI) have been synthesized by a micro emulsion polymerization method. The structure, morphology and electrochemical properties of the as-prepared materials are characterized by XRD, FTIR, Raman, XPS, TGA, TEM and electrochemical measurements. Results show that Li{sub 2}SnO{sub 3}/PANI nanocomposites are composed of uniform and blocky nano-sized particles (40-50 nm) with clear lattice fringes. Electrochemical measurement suggests that Li{sub 2}SnO{sub 3}/PANI exhibits better cycling properties and lower initial irreversible capacities than Li{sub 2}SnO{sub 3} as negative electrodes materials for lithium-ion batteries. At a current density of 60 mA g{sup -1} in the voltage about 0.05-2.0 V, the initial irreversible capacity of Li{sub 2}SnO{sub 3}/PANI is 563 mAh g{sup -1} while it is 687.5 mAh g{sup -1} to Li{sub 2}SnO{sub 3}. The capacity retained of Li{sub 2}SnO{sub 3}/PANI (569.2 mAh g{sup -1}) is higher than that of Li{sub 2}SnO{sub 3} (510.2 mAh g{sup -1}) after 50 cycles. The PANI in the Li{sub 2}SnO{sub 3}/PANI nanocomposites can buffer the released stress caused by the drastic volume variation during the alloying/de-alloying process of Li-Sn.

  1. "One-for-All" Strategy in Fast Energy Storage: Production of Pillared MOF Nanorod-Templated Positive/Negative Electrodes for the Application of High-Performance Hybrid Supercapacitor.

    Science.gov (United States)

    Qu, Chong; Liang, Zibin; Jiao, Yang; Zhao, Bote; Zhu, Bingjun; Dang, Dai; Dai, Shuge; Chen, Yu; Zou, Ruqiang; Liu, Meilin

    2018-05-02

    Currently, metal-organic frameworks (MOFs) are intensively studied as active materials for electrochemical energy storage applications due to their tunable structure and exceptional porosities. Among them, water stable pillared MOFs with dual ligands have been reported to exhibit high supercapacitor (SC) performance. Herein, the "One-for-All" strategy is applied to synthesize both positive and negative electrodes of a hybrid SC (HSC) from a single pillared MOF. Specifically, Ni-DMOF-TM ([Ni(TMBDC)(DABCO) 0.5 ], TMBDC: 2,3,5,6-tetramethyl-1,4-benzenedicarboxylic acid, DABCO: 1,4-diazabicyclo[2.2.2]-octane) nanorods are directly grown on carbon fiber paper (CFP) (denoted as CFP@TM-nanorods) with the help of triethylamine and function as the positive electrode of HSC under alkaline electrolyte. Meanwhile, calcinated N-doped hierarchical porous carbon nanorods (CFP@TM-NPCs) are produced and utilized as the negative counter-electrode from a one-step heat treatment of CFP@TM-nanorods. After assembling these two electrodes together to make a hybrid device, the TM-nanorods//TM-NPCs exhibit a wide voltage window of 1.5 V with a high sloping discharge plateau between 1-1.2 V, indicating its great potential for practical applications. This as-described "One-for-All" strategy is widely applicable and highly reproducible in producing MOF-based electrode materials for HSC applications, which shortens the gap between experimental synthesis and practical application of MOFs in fast energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrochemical performance of the rare-earth perovskite-type oxide La0.6Sr0.4Co0.2Fe0.8O3 as negative electrode material for Ni/oxide rechargeable batteries

    Directory of Open Access Journals (Sweden)

    John Henao

    2017-08-01

    Full Text Available Abstract In this paper, the perovskite-type oxide La0.6Sr0.4Co0.2Fe0.8O3 was evaluated as a novel negative electrode material for Ni/oxide rechargeable batteries. The structure and morphology of the as-prepared powder was studied by scanning electron microscopy and X-ray diffraction. The electrochemical performance of the perovskite-type oxide was investigated using chronopotentiometric, chronoamperometric and potentiodynamic polarization techniques. The maximum discharge capacity values of the perovskite-type electrodes were obtained during the first three cycles (51, 172 and 462 mAh g−1 at 298, 313 and 333 K, respectively. The maximum adsorption capability of hydrogen in the perovskite-type electrode was 1.72% wt. hydrogen at a current rate of 125 mA g−1, 333 K and 6 M KOH. The cycling ability was fairly good with 64% capacity conservation after 20 cycles at 333 K. The electrochemical evaluation was also performed using different electrolyte concentrations; interestingly, the maximum discharge capacity of the perovskite-type electrodes increased in a linear-like manner with the incremental changes in electrolyte concentration. The hydrogen diffusion coefficient and exchange current density were also estimated to discuss the kinetics of the process.

  3. Investigation of the effect of mechanical pressure on the performance of negative lead accumulator electrodes during partial state of charge operation

    Czech Academy of Sciences Publication Activity Database

    Bača, P.; Micka, Karel; Křivík, P.; Tonar, K.; Tošer, P.

    2012-01-01

    Roč. 207, JUN 1 2012 (2012), s. 37-44 ISSN 0378-7753 Institutional research plan: CEZ:AV0Z40400503 Keywords : Lead battery electrodes * Doping with carbon or titanium dioxide * Effect of mechanical pressure Subject RIV: CG - Electrochemistry Impact factor: 4.675, year: 2012

  4. Effect of additives on the performance of negative lead-acid battery electrodes during formation and partial state of charge operation

    Czech Academy of Sciences Publication Activity Database

    Křivík, P.; Micka, Karel; Bača, P.; Tonar, K.; Tošer, P.

    2012-01-01

    Roč. 209, JUL 1 2012 (2012), s. 15-19 ISSN 0378-7753 Institutional research plan: CEZ:AV0Z40400503 Keywords : load acid battery electrodes * Doping with carbon * PSoC cycling Subject RIV: CG - Electrochemistry Impact factor: 4.675, year: 2012

  5. Investigations of AB{sub 5}-type negative electrode for nickel-metal hydride cell with regard to electrochemical and microstructural characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Sumita [Department of Physics, Govt. P.G. College, Uttarkashi, Uttarakhand 249193 (India); Upadhyay, R.K. [Department of Physics, Govt. P.G. College, Rishikesh 249201 (India)

    2010-05-01

    In the present investigation, AB{sub 5}-type hydrogen storage alloys with compositions Mm{sub 0.8}La{sub 0.2}Ni{sub 3.7}Al{sub 0.38}Co{sub 0.3}Mn{sub 0.5}Mo{sub 0.02} and Mm{sub 0.75}Ti{sub 0.05}La{sub 0.2}Ni{sub 3.7}Al{sub 0.38}Co{sub 0.3}Mn{sub 0.5}Mo{sub 0.02} are synthesized by radio-frequency induction melting. The electrochemical properties are studied through the measurements of discharge capacity, activation process, rate capability, self-discharge rate and cyclic stability of both the electrodes. Pressure-composition isotherms are plotted by converting the electrode potential into the hydrogen pressure following the Nernst equation. The structural and microstructural characterizations are performed by means of X-ray diffraction phase analysis and scanning electron microscopy of as-fabricated and electrochemically tested electrodes. An attempt is made to correlate the observed electrochemical properties with the structural-microstructural characteristics. (author)

  6. Influence of electrolyte composition and temperature on behaviour of AB5 hydrogen storage alloy used as negative electrode in Ni-MH batteries

    Science.gov (United States)

    Karwowska, Malgorzata; Jaron, Tomasz; Fijalkowski, Karol J.; Leszczynski, Piotr J.; Rogulski, Zbigniew; Czerwinski, Andrzej

    2014-10-01

    The AB5-type metal alloy (Mm-Ni4.1Al0.2Mn0.4Co0.45) has been investigated in different electrolytes (LiOH, NaOH, KOH, RbOH, CsOH). All of the electrochemical measurements have been performed using limited volume electrode technique (LVE). Thickness of the working electrode is nearly equal to the diameter of the grain (ca. 50 μm). Hydrogen diffusion coefficient has been determined using chronoamperometry. Hydrogen diffusion coefficient calculated for 100% state of charge reaches maximum value in KOH (DH = 4.65·10-10 cm2 s-1). We have obtained the highest value of capacity for the electrode in KOH and the lowest - in CsOH. The temperature influence on alloy capacity has been also tested. The alloy has been also characterised with SEM coupled with EDS, TGA/DSC and powder XRD. The unit cell of MmNi4.1Al0.2Mn0.4Co0.45 have been refined in the Cu5.4Yb0.8 structure type (a modified LaNi5 structure); the structure is unaffected by the electrochemical treatment.

  7. RsComm User Manual. Data system for the control of continuous recording measuring instruments (monitors); RsComm brukermanual. Datasystem for kontroll av kontinuerlig registrerende maaleinstrumenter (monitorer)

    Energy Technology Data Exchange (ETDEWEB)

    Marsteen, L.

    1996-02-01

    Norwegian Institute for Air Research (NILU) has, as a part of the quality control systems, developed an automatic system of data recording. This report describes the installation and use of the RsComm software. Using RsComm and a NILU data recorder it is possible to run system tests on air quality analyzers via a telephone line. Test reports are generated. 17 figs.

  8. "Comme ci comme Ca"

    DEFF Research Database (Denmark)

    Nissen, Heidi Lykke

    2017-01-01

    I 2014 fik Danmark en ny pædagoguddannelse der introducerede medicin som et vidensmål for studerende på specialiseringen social/special-pædagogik. Medicin i socialpsykiatrien er en stor og omfangsgribende del af mange borgeres liv, og eftersom pædagoger er en af de faggrupper, der løfter...... medicinopgaven på de sociale botilbud, giver det god mening at uddanne pædagoger til at kunne forholde sig professionelt til emnet. Medicin og viden om medicin er dog langt fra hverken entydigt eller entydigt godt, og det kan undre, at det ikke er ”medicinpædagogik”, der kom på dagsordenen i pædagoguddannelsen....... Denne undren er afsættet for artiklen....

  9. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries.

    Science.gov (United States)

    Liu, Dequan; Liu, Zheng Jiao; Li, Xiuwan; Xie, Wenhe; Wang, Qi; Liu, Qiming; Fu, Yujun; He, Deyan

    2017-12-01

    To satisfy the increasing energy demands of portable electronics, electric vehicles, and miniaturized energy storage devices, improvements to lithium-ion batteries (LIBs) are required to provide higher energy/power densities and longer cycle lives. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes are promising candidates for use as electrodes in next-generation LIBs owing to their extremely high gravimetric and volumetric capacities, low working voltages, and natural abundances. However, due to the violent volume changes that occur during lithium-ion insertion/extraction and the formation of an unstable solid electrolyte interface, the use of Group IVA element-based anodes in commercial LIBs is still a great challenge. Evaluating the electrochemical performance of an anode in a full-cell configuration is a key step in investigating the possible application of the active material in LIBs. In this regard, the recent progress and important approaches to overcoming and alleviating the drawbacks of Group IVA element-based anode materials are reviewed, such as the severe volume variations during cycling and the relatively brittle electrode/electrolyte interface in full-cell LIBs. Finally, perspectives and future challenges in achieving the practical application of Group IVA element-based anodes in high-energy and high-power-density LIB systems are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. L'Utopie comme esquisse d'un avenir meilleur

    Directory of Open Access Journals (Sweden)

    Hervé Ondoua

    2012-12-01

    Full Text Available Le postmodernisme se donne explicitement comme une philosophie de la mondialisation. En occident, Jacques Derrida, par sa déconstruction, est l’un des penseurs qui anime le débat postmoderne en considérant que notre ère manque la fin de rationalité, du progrès et de la recherche d’un sens. La déconstruction se définit comme l’ensemble des techniques et stratégies utilisées par Derrida pour démonter, fissurer et déplacer toute logique universelle. Par le mécanisme de la différance, l’homme sort de tout cadre originaire (grands ensembles, méta récits, seul demeure la trace. L’homme pris dans la trace marque son refus de solidarité avec tout centre, tout principe, toute origine, etc. Cette idée est radicalisée par le légiste, personnage emblématique dans l���Utopie de Thomas More. En effet, le légiste fait l’éloge de la justice sévère anglaise. Partant de la théorie socio-biologiste selon laquelle les comportements sociaux sont génétiques, le légiste dans l’Utopie de More soutient qu’il faut une justice sévère, inflexible, rigide pour nettoyer la cité de ces maux. Dans ce sens, il faut condamner autant d’individus à la potence, car les maux sociaux sont naturels et innées. C’est contre cette approche néolibérale que s’insurge Thomas More. Tout comme les mouvements de gauches, l’Utopie de More explique les maux sociaux par les injustices sociales, la démission de la société, et surtout le manque de l’éducation. Du coup, avec l’Utopie, il s’agit de relativiser le monde dans lequel nous vivons : un autre monde est possible que celui dans lequel nous vivons. Partant delà, l’utopie notamment celle de Francis Bacon ou Thomas More, n’est-elle pas un genre littéraire altermondialiste ? Si la logique néolibérale impose son diktat et pose le principe selon lequel il n’y a pas d’alternative autre que ce que nous offre le capitalisme, ne faut-il pas voir dans l’Utopie, un

  11. FeSi4P4: A novel negative electrode with atypical electrochemical mechanism for Li and Na-ion batteries

    Science.gov (United States)

    Coquil, Gaël; Fullenwarth, Julien; Grinbom, Gal; Sougrati, Moulay Tahar; Stievano, Lorenzo; Zitoun, David; Monconduit, Laure

    2017-12-01

    The electrochemical mechanism and performance of FeSi4P4, vs. Na and Li were studied using a combination of operando X-ray diffraction, 57Fe Mössbauer spectroscopy, and SQUID magnetometry. This silicon- and phosphorous-rich material exhibits a high capacity of 1750 mAh/g, retaining 1120 mAh/g after 40 cycles, and reacts through an original reversible mechanism surprisingly involving only slight changes in the chemical environment of the iron. Magnetic measurements and 57Fe Mössbauer spectroscopy at low temperature reveal the reversible but incomplete change of the magnetic moment upon charge and discharge. Such a mild reversible process without drastic phase transition (with the exception of the crystalline to amorphous transition during the first lithiation) can explain the satisfying capacity retention. The electrochemical mechanism appears thus to be significantly different from the classical conversion or alloying/dealloying mechanisms usually observed in Lithium ion batteries for p-group element based materials. The same iron silicon phosphide electrode shows also interesting but significantly lower performance vs. Na, with a limited capacity retention 350 mAh/g.

  12. Galvanic high temperature cell with solid negative electrode and an electrolyte melt. Galvanische Hochtemperaturzelle mit fester negativer Elektrode und einem Schmelzelektrolyten

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W; Borger, W

    1987-01-08

    The purpose of the invention is to make an electrolyte melt available for high temperature cells (e.g. LiFeS cells), which guarantees ion transport and also acts as a separator. The invention starts from the fact that binary melts of the LiCl/KCl type are only liquid (i.e. without solid components) at a certain temperature at certain concentrations. With suitable mixing conditions, which apart from a eutectic composition, are mainly on the side of one of the two components, one can ensure that this component is present in the solid phase. In this way, a solid framework of LiCl, for example, is formed between the electrode plates in situ as a separator, in the pores of which the excess melt (e.g. LiCl/KCl) can carry out ion conduction. The volumetric ratio of the electrolyte melt in which liquid and solid phases are present at the working temperature of the cell should preferably be in the range of 2:1 to 1:2.

  13. Pyro-Synthesis of Nanostructured Spinel ZnMn2O4/C as Negative Electrode for Rechargeable Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Alfaruqi, Muhammad Hilmy; Rai, Alok Kumar; Mathew, Vinod; Jo, Jeonggeun; Kim, Jaekook

    2015-01-01

    ZnMn 2 O 4 /C nanoparticles are synthesized by one step polyol assisted pyro-synthesis for use as the anode in rechargeable lithium ion batteries without any post heat treatment. The as-prepared ZnMn 2 O 4 /C is tetragonal with a spherical particle size in the range of 10–30 nm. Electrochemical measurements were performed using the as-prepared powders as the active material for a lithium-ion cell. The nanoparticle electrode delivered an initial charge capacity of 666.1 mAh g −1 and exhibited a capacity retention of ∼81% (539.4 mAh g −1 ) after 50 cycles. The capacity enhancement in the as-prepared ZnMn 2 O 4 /C may be explained on the basis of the polyol medium that enables to develop a sufficient carbon network that can act as electrical conduits during electrochemical reactions. The carbon network appears to enhance the particle-connectivity and hence improve the electronic conductivities

  14. The effect of high charging rates activation on the specific discharge capacity and efficiency of a negative electrode based on a LaMgAlMnCoNi alloy

    International Nuclear Information System (INIS)

    Ferreira, E.A.; Zarpelon, L.M.C.; Casini, J.C.S.; Takiishi, H.; Faria, R.N.

    2009-01-01

    A nickel-metal hydride (Ni-MH) rechargeable battery has been prepared using a La 0.7 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy as the negative electrode. The maximum discharge capacity of the La 0.7 Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy has been determined (350 mAh/g). Using a high starting charging rate (2857 mAg -1 ) an efficiency of 49% has been achieved in the 4 th cycle. The alloy and powders have been characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD). (author)

  15. Efficient spin-filtering, magnetoresistance and negative differential resistance effects of a one-dimensional single-molecule magnet Mn(dmit2-based device with graphene nanoribbon electrodes

    Directory of Open Access Journals (Sweden)

    N. Liu

    2017-12-01

    Full Text Available We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC and the antiparallel configuration (APC. At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.

  16. Adsorption behavior of n-butanol molecules on negatively charged surfaces of electrodes of mercury, gallium, and alloys In-Ga and Tl-Ga

    International Nuclear Information System (INIS)

    Damskin, B.B.; Baturina, O.A.; Vasil'ev, S.Yu.; Emets, V.V.; Kazarinov, V.E.

    1999-01-01

    Curves of differential capacitance in the interfaces Hg/H 2 O, Ga/H 2 O, (In-Ga)/H 2 O and (Tl-Ga)H 2 O in 0.05 M Na 2 SO 4 solutions with different additions of n-butanol have been obtained by the bridge method at a frequency of 420 Hz and temperature of 32 deg C. The method of regression analysis of the curves permitted ascertaining the adsorption parameters of n-butanol for the range of charges q, where there is no chemisorption of H 2 O dipoles. The data obtained suggested that the difference in the adsorption behaviour of organic molecules on the metals studied in the range of higher negative charges is largely determined by different electron electrochemical work functions, the definition being given by S. Trasatti [ru

  17. CommWalker: correctly evaluating modules in molecular networks in light of annotation bias.

    Science.gov (United States)

    Luecken, M D; Page, M J T; Crosby, A J; Mason, S; Reinert, G; Deane, C M

    2018-03-15

    Detecting novel functional modules in molecular networks is an important step in biological research. In the absence of gold standard functional modules, functional annotations are often used to verify whether detected modules/communities have biological meaning. However, as we show, the uneven distribution of functional annotations means that such evaluation methods favor communities of well-studied proteins. We propose a novel framework for the evaluation of communities as functional modules. Our proposed framework, CommWalker, takes communities as inputs and evaluates them in their local network environment by performing short random walks. We test CommWalker's ability to overcome annotation bias using input communities from four community detection methods on two protein interaction networks. We find that modules accepted by CommWalker are similarly co-expressed as those accepted by current methods. Crucially, CommWalker performs well not only in well-annotated regions, but also in regions otherwise obscured by poor annotation. CommWalker community prioritization both faithfully captures well-validated communities and identifies functional modules that may correspond to more novel biology. The CommWalker algorithm is freely available at opig.stats.ox.ac.uk/resources or as a docker image on the Docker Hub at hub.docker.com/r/lueckenmd/commwalker/. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online.

  18. Liquid electrode

    Science.gov (United States)

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  19. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  20. Visual Data Comm: A Tool for Visualizing Data Communication in the Multi Sector Planner Study

    Science.gov (United States)

    Lee, Hwasoo Eric

    2010-01-01

    Data comm is a new technology proposed in future air transport system as a potential tool to provide comprehensive data connectivity. It is a key enabler to manage 4D trajectory digitally, potentially resulting in improved flight times and increased throughput. Future concepts with data comm integration have been tested in a number of human-in-the-loop studies but analyzing the results has proven to be particularly challenging because future traffic environment in which data comm is fully enabled has assumed high traffic density, resulting in data set with large amount of information. This paper describes the motivation, design, current and potential future application of Visual Data Comm (VDC), a tool for visualizing data developed in Java using Processing library which is a tool package designed for interactive visualization programming. This paper includes an example of an application of VDC on data pertaining to the most recent Multi Sector Planner study, conducted at NASA s Airspace Operations Laboratory in 2009, in which VDC was used to visualize and interpret data comm activities

  1. Investigation of Imbalanced Activated Carbon Electrode Supercapacitors

    OpenAIRE

    Tieshi He; Xue Ren; Junping Nie; Jun Ying; Kedi Cai

    2015-01-01

    Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC) of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′)-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distrib...

  2. Investigation on the structure, thermodynamic and electrochemical properties of the MmNi3.55Mn0.4Al0.3Fe0.75 compound used as negative electrode in Ni–MH batteries

    International Nuclear Information System (INIS)

    Ben Moussa, M.; Abdellaoui, M.; Lamloumi, J.; Percheron Guégan, A.

    2013-01-01

    Highlights: •The solid–gas capacity at room temperature is equal to 3.93 H/mol. •The value pressure equilibrium is 0.024 bar. •The average radius particles decrease with number of cycles. •The hydrogen diffusion coefficient D H , increase with number of cycles. -- Abstract: The structure, thermodynamic and electrochemical properties of the hydride poly-substituted MmNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 alloy used as material for negative electrode in Ni–MH batteries investigated. The solid–gas capacity and pressure equilibrium measurement at room temperature are respectively 3.93 H/mol and 0.024 bars. The chronoamperometry method shows the size of the particles (a) participating in the electrochemical reaction decrease of cycle number. The hydrogen diffusion coefficient determined by electrochemical impedance spectroscopy (EIS) increase of the number of cycles from 3.5 × 10 −12 cm 2 s −1 before cycling to 7.29 × 10 −10 cm 2 s −1 after 13 cycles charge–decharge

  3. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  4. DataComm in Flight Deck Surface Trajectory-Based Operations

    Science.gov (United States)

    Bakowski, Deborah L.; Foyle, David C.; Hooey, Becky L.; Meyer, Glenn R.; Wolter, Cynthia A.

    2012-01-01

    The purpose of this pilot-in-the-loop aircraft taxi simulation was to evaluate a NextGen concept for surface trajectory-based operations (STBO) in which air traffic control (ATC) issued taxi clearances with a required time of arrival (RTA) by Data Communications (DataComm). Flight deck avionics, driven by an error-nulling algorithm, displayed the speed needed to meet the RTA. To ensure robustness of the algorithm, the ability of 10 two-pilot crews to meet the RTA was tested in nine experimental trials representing a range of realistic conditions including a taxi route change, an RTA change, a departure clearance change, and a crossing traffic hold scenario. In some trials, these DataComm taxi clearances or clearance modifications were accompanied by 'preview' information, in which the airport map display showed a preview of the proposed route changes, including the necessary speed to meet the RTA. Overall, the results of this study show that with the aid of the RTA speed algorithm, pilots were able to meet their RTAs with very little time error in all of the robustness-testing scenarios. Results indicated that when taxi clearance changes were issued by DataComm only, pilots required longer notification distances than with voice communication. However, when the DataComm was accompanied by graphical preview, the notification distance required by pilots was equivalent to that for voice.

  5. DataComm in Flight Deck Surface Trajectory-Based Operations. Chapter 20

    Science.gov (United States)

    Bakowski, Deborah L.; Foyle, David C.; Hooey, Becky L.; Meyer, Glenn R.; Wolter, Cynthia A.

    2012-01-01

    The purpose of this pilot-in-the-loop aircraft taxi simulation was to evaluate a NextGen concept for surface trajectory-based operations (STBO) in which air traffic control (ATC) issued taxi clearances with a required time of arrival (RTA) by Data Communications (DataComm). Flight deck avionics, driven by an error-nulling algorithm, displayed the speed needed to meet the RTA. To ensure robustness of the algorithm, the ability of 10 two-pilot crews to meet the RTA was tested in nine experimental trials representing a range of realistic conditions including a taxi route change, an RTA change, a departure clearance change, and a crossing traffic hold scenario. In some trials, these DataComm taxi clearances or clearance modifications were accompanied by preview information, in which the airport map display showed a preview of the proposed route changes, including the necessary speed to meet the RTA. Overall, the results of this study show that with the aid of the RTA speed algorithm, pilots were able to meet their RTAs with very little time error in all of the robustness-testing scenarios. Results indicated that when taxi clearance changes were issued by DataComm only, pilots required longer notification distances than with voice communication. However, when the DataComm was accompanied by graphical preview, the notification distance required by pilots was equivalent to that for voice.

  6. NextGen Flight Deck Data Comm : Auxiliary Synthetic Speech Phase II

    Science.gov (United States)

    2015-07-01

    Data Comma text-based controller-pilot communication systemis expected to yield several NextGen safety and efficiency benefits. With Data Comm, communication becomes a visual task, and may potentially increase head-down time on the flight deck ...

  7. 76 Valorisation agricole des déchets comme alternative à leur ...

    African Journals Online (AJOL)

    User

    Valorisation agricole des déchets comme alternative à leur gestion dans les villes d'Afrique subsaharienne : caractérisation des déchets urbains à. Lubumbashi et évaluation de leurs effets sur la croissance des cultures vivrières. Louis BABOY LONGANZA1,2, Laurent KIDINDA KIDINDA1*,Dominique TSHIPAMA TAMINA3,.

  8. Valorisation agricole des déchets comme alternative à leur gestion ...

    African Journals Online (AJOL)

    Valorisation agricole des déchets comme alternative à leur gestion dans les villes d'Afrique subsaharienne : caractérisation des déchets urbains à Lubumbashi et évaluation de leurs effets sur la croissance des cultures vivrières.

  9. Concilier des performances pour une agriculture durable - L'agriculture biologique comme prototype.

    OpenAIRE

    Sautereau, Natacha; Penvern, Servane; Petitgenet, Morgane; Fauriel, Joël; Bellon, Stéphane

    2011-01-01

    L'agriculture biologique est de plus en plus reconnue comme prototype d’agriculture durable car elle combine de multiples performances. Toutefois des tensions apparaissent entre certaines de ces performances. Une équipe de l’unité Écodéveloppement d’Avignon explore ces tensions en l'arboriculture fruitière.

  10. Compte rendu critique du livre Voir son steak comme un animal mort, de Martin Gibert

    Directory of Open Access Journals (Sweden)

    Drolet, Marie-Josée

    2016-10-01

    Full Text Available This critical review provides, first, a step-by-step synthesis of the arguments presented in each chapter of Martin Gibert’s bookVoir son steak comme un animal mort (Seeing your steak as a dead animal. Second, a critical perspective of the book and a personal reflection are presented.

  11. Le pneumothorax spontané comme une manifestation évolutive de ...

    African Journals Online (AJOL)

    Le pneumothorax spontané comme une manifestation évolutive de la polyarthrite rhumatoide: à propos d'une observation clinique et revue de la litterature. Magaye Gaye, Assane Ndiaye, Mouhamed Lamine Fall, Souleymane Diatta, Papa Adama Dieng, Papa Salmane Ba, Amadou Gabriel Ciss, Mouhamadou Ndiaye ...

  12. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  13. Étude de la possibilité d'utilisation du rônier comme armature ...

    African Journals Online (AJOL)

    ... traditionnelles, permettent d'envisager son utilisation comme armature dans le béton. ... Les résultats obtenus permettent de confirmer que le rônier peut être utilisé comme ... Keywords : wood, Borassus palm, framework, concrete, beam.

  14. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra; Wang, Ruiqi; Alshareef, Husam N.

    2015-01-01

    electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid

  15. Capacitance enhancement via electrode patterning

    International Nuclear Information System (INIS)

    Ho, Tuan A.; Striolo, Alberto

    2013-01-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties

  16. Electrode Processes in Porous Electrodes.

    Science.gov (United States)

    1985-11-26

    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  17. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  18. Investigation of Imbalanced Activated Carbon Electrode Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tieshi He

    2015-01-01

    Full Text Available Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distribution, and life cycle. The imbalanced supercapacitor with an AC weight ratio of 80 : 120 of positive to negative electrode has an average potential distribution in each electrode, and it revealed the best electrochemical performance: specific capacitor was 39.6 F·g−1, while the charge-discharge efficiency was 97.2% after 2000 life cycle tests.

  19. VibeComm: Radio-Free Wireless Communication for Smart Devices Using Vibration

    Directory of Open Access Journals (Sweden)

    Inhwan Hwang

    2014-11-01

    Full Text Available This paper proposes VibeComm, a novel communication method for smart devices using a built-in vibrator and accelerometer. The proposed approach is ideal for low-rate off-line communication, and its communication medium is an object on which smart devices are placed, such as tables and desks. When more than two smart devices are placed on an object and one device wants to transmit a message to the other devices, the transmitting device generates a sequence of vibrations. The vibrations are propagated through the object on which the devices are placed. The receiving devices analyze their accelerometer readings to decode incoming messages. The proposed method can be the alternative communication method when general types of radio communication methods are not available. VibeComm is implemented on Android smartphones, and a comprehensive set of experiments is conducted to show its feasibility.

  20. DE LA BANDE DESSINÉE COMME MOSAÏQUE: Calypso de Baltus et Peeters

    Directory of Open Access Journals (Sweden)

    Fabrice Leroy

    2008-11-01

    Full Text Available Par son ordonnancement vignettal complexe, sa juxtaposition d’images fixes, sémantiquement et esthétiquement corrélées, la bande dessinée s’indexe indubitablement au paradigme mosaïcal, dont Lucien Dällenbach a rappelé l’importance historique et la validité contemporaine. Pour explorer la pertinence de cette métaphore critique quant à l’étude de la bande dessinée, nous proposons de nous pencher sur une bande dessinée qui évoque elle-même la mosaïque, non seulement comme thème narratif, mais également comme principe structurant : l’album Calypso d’Anne Baltus et Benoît Peeters (1995. La mosaïque y joue en effet un rôle thématique primordial : il y est question d’une jeune historienne de l’art, occupée à restaurer un pan de mosaïque. Image spéculaire des amours impossibles de la jeune femme, cette mosaïque s’affiche non seulement comme représentation dans la représentation (mise en abyme fréquente dans les scénarios de Peeters, mais aussi comme un modèle esthétique qui préside à la mise en page de l’album entier, et contribue plus spécifiquement à ses effets fantastiques.

  1. L’image comme métaphore de la connaissance du monde postmoderne

    Directory of Open Access Journals (Sweden)

    Fabio La Rocca

    2008-07-01

    Full Text Available À partir de la vision du monde postmoderne oculocentrique, dans le quel l’image devient un élément constitutif de la connaissance, cet article propose une réflexion sur la forme image-métaphore comme instance « monstratrice », dans la tentative d’achever la proposition d’un modèle explicatif de la réalité sociale.

  2. Short Comm.

    African Journals Online (AJOL)

    E-LIBRARY

    Industrialization of every state of the world is not achievable in this present decade/era, ... manufacturing of goods, individual manual labor is often replaced by .... Trained librarians no longer belong to the class of the oppressed or rather the ...

  3. Short Comm.

    African Journals Online (AJOL)

    OGECHI

    mainframe-based applications, incompatible proprietary hardware platforms, disparate software, ... responding to changing organizational structures; ... (2) The various technologies and equipment that manipulate these resources, and.

  4. SimCommSys: taking the errors out of error-correcting code simulations

    Directory of Open Access Journals (Sweden)

    Johann A. Briffa

    2014-06-01

    Full Text Available In this study, we present SimCommSys, a simulator of communication systems that we are releasing under an open source license. The core of the project is a set of C + + libraries defining communication system components and a distributed Monte Carlo simulator. Of principal interest is the error-control coding component, where various kinds of binary and non-binary codes are implemented, including turbo, LDPC, repeat-accumulate and Reed–Solomon. The project also contains a number of ready-to-build binaries implementing various stages of the communication system (such as the encoder and decoder, a complete simulator and a system benchmark. Finally, SimCommSys also provides a number of shell and python scripts to encapsulate routine use cases. As long as the required components are already available in SimCommSys, the user may simulate complete communication systems of their own design without any additional programming. The strict separation of development (needed only to implement new components and use (to simulate specific constructions encourages reproducibility of experimental work and reduces the likelihood of error. Following an overview of the framework, we provide some examples of how to use the framework, including the implementation of a simple codec, the specification of communication systems and their simulation.

  5. L’amour comme émotion morale? Partialité parentale et égalité des chances

    OpenAIRE

    Merrill, Nathaniel Roberto Buil

    2014-01-01

    Introduction Partialité parentale et égalité des chances Quelles relations justifient la partialité de l’amour parental ? Mitiger ou neutraliser les inégalités des chances provoquées par l’amour ? Trois théories sur l’amour Que veut dire : « aimer quelqu’un » ? L’amour comme désir L’amour comme émotion L’amour comme relation Le conflit entre amour et morale Amour parental en tant que création de valeur Amour partial de la relation amoureuse Amour impartial ...

  6. OGIEN, Albert. La démocratie comme revendication et comme forme de vie. Tradução para língua portuguesa de

    Directory of Open Access Journals (Sweden)

    Agripa Faria Alexandre

    2015-12-01

    Full Text Available http://dx.doi.org/10.5007/1807-1384.2015v12n2p279 OGIEN, Albert. La démocratie comme revendication et comme forme de vie, publicado em Raisons Politiques, n. 57, 2015/1, pp. 31-47. Uma forma original de ação política surgiu nos regimes democráticos. Ela manifesta-se pelo lado de fora dos canais oficiais estabelecidos do sistema representativo, cobrando a expansão do significado da democracia. Este artigo propõe descrever este fenômeno, mostrando como a democracia pode ser concebida como forma de vida – em referência à definição de Wittgenstein. Ele mostra então a proximidade desta noção com a de ‘situação’, de Goffman. Finalmente, com base nas teses de Dewey sobre investigação, o artigo descreve o conteúdo da prática da democracia como modo de vida – no que concerne à promoção da autonomia dos cidadãos e à garantia do pluralismo como forma de vida e de pensamento. A análise lembra que, em toda sociedade de Estado, a realização da democracia depende de um processo incessante que liga dois modos de intercâmbio constante de conceituar a democracia: como sistema de representação e como forma de vida.

  7. Assessing communication skills in dietetic consultations: the development of the reliable and valid DIET-COMMS tool.

    Science.gov (United States)

    Whitehead, K A; Langley-Evans, S C; Tischler, V A; Swift, J A

    2014-04-01

    There is an increasing emphasis on the development of communication skills for dietitians but few evidence-based assessment tools available. The present study aimed to develop a dietetic-specific, short, reliable and valid assessment tool for measuring communication skills in patient consultations: DIET-COMMS. A literature review and feedback from 15 qualified dietitians were used to establish face and content validity during the development of DIET-COMMS. In total, 113 dietetic students and qualified dietitians were video-recorded undertaking mock consultations, assessed using DIET-COMMS by the lead author, and used to establish intra-rater reliability, as well as construct and predictive validity. Twenty recorded consultations were reassessed by nine qualified dietitians to assess inter-rater reliability: eight of these assessors were interviewed to determine user evaluation. Significant improvements in DIET-COMMS scores were achieved as students and qualified staff progressed through their training and gained experience, demonstrating construct validity, and also by qualified staff attending a training course, indicating predictive validity (P skills in practice was questioned. DIET-COMMS is a short, user-friendly, reliable and valid tool for measuring communication skills in patient consultations with both pre- and post-registration dietitians. Additional work is required to develop a training package for assessors and to identify how DIET-COMMS assessment can acceptably be incorporated into practice. © 2013 The British Dietetic Association Ltd.

  8. Le plan du métro comme métaphore spatiale et cognitive dans la visualisation

    Directory of Open Access Journals (Sweden)

    Coleta Vaisman

    2016-05-01

    Full Text Available Le point de départ de notre article est la carte du métro comme interface de médiation entre le territoire et l’utilisateur du réseau de transport. Cette carte est une représentation topographique qui, avec le diagramme de Beck, a évolué vers un modèle topologique. Notre démarche méthodologique s’articule en quatre points : le plan du métro vu comme un dialogue entre topographie et topologie ; la carte employée comme un système de visualisation ; la carte interactive comme métaphore spatiale et la carte comme modèle de représentation des connaissances. Sur cette base, nous voulons montrer que cette carte, hors contexte géographique, constitue une forme de métaphore visuelle. Notre travail montre l’importance de la visualisation de l’information et de ses représentations spatiales avec la métaphore du métro. Notre objectif va donc être d’établir les ponts conceptuels entre la métaphore spatiale et la métaphore cognitive pour passer des cartes interactives vers l’usage de la carte du métro comme une représentation visuelle universelle des connaissances.

  9. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  10. Le big bang n'est pas une théorie comme les autres

    CERN Document Server

    Bonnet-Bidaud, Jean-Marc; Leglu, Dominique; Reinisch, Gilbert

    2009-01-01

    Le big bang n'est pas une théorie comme les autres. Ce n'est d'ailleurs pas une théorie physique au sens propre du terme, mais un scénario cosmologique issu des équations de la relativité générale. Il est le modèle qui s'ajuste le mieux aux observations actuelles, mais à quel prix ? Il nous livre un Univers composé à 96 % de matière et d'énergie noires inconnues. C'est donc un euphémisme que de dire que le big bang semble poser autant - sinon plus - de questions qu'il n'en résout. En ce sens, le big bang apparaît davantage comme une paramétrisation de notre ignorance plutôt que comme une modélisation d'un phénomène. Pourtant, le succès du big bang et l'adhésion qu'il suscite, tant dans la sphère scientifique que dans la sphère médiatique, ne se démentent pas. Surmédiatisé, son statut dépasse celui de modèle théorique, et la simple évocation de son nom suffit pour justifier des opérations de marketing scientifique ou rejeter des cosmologies alternatives. Pour éclaircir les pr...

  11. Identification et étude phytochimique de plantes utilisées comme ...

    African Journals Online (AJOL)

    La présente étude réalisée sur les plantes diurétiques utilisées au sud Bénin et principalement à Porto-Novo a pour objectif d'identifier et de caractériser les groupes de substances chimiques contenus dans les drogues végétales utilisées comme diurétiques à Porto-Novo, pour le traitement traditionnel ou la prévention du ...

  12. Les Firewalls comme solution aux problèmes de sécurité | Nouali ...

    African Journals Online (AJOL)

    Le principe d'un firewall est de séparer le réseau interne du réseau externe, Internet en général, et de filtrer toutes les connexions émanant d'Internet vers le réseau interne en un seul point qui sera considéré comme un point fort de défense. L'avantage de cette solution est que les mesures de sécurité du réseau interne ...

  13. ShopComm: Community-Supported Online Shopping for Older Adults.

    Science.gov (United States)

    Gorkovenko, Katerina; Tigwell, Garreth W; Norrie, Christopher S; Waite, Miriam; Herron, Daniel

    2017-01-01

    The United Kingdom has an ageing population whose members experience significant life transitions as they grow older, for example, losing mobility due to deteriorating health. For these adults, digital technology has the potential to sustain their independence and improve their quality of life. However older adults can be reluctant to use digital solutions. In this paper, we review a local charity providing a grocery shopping service for older adults who are unable to go themselves. We explore how older adults perceive the benefits and drawbacks of both physical and digital shopping. Using these insights, we designed ShopComm to enable and support older adults with mobility impairments to shop online.

  14. A solvated electron lithium electrode for secondary batteries

    Science.gov (United States)

    Sammells, A. F.; Semkow, K. W.

    1986-09-01

    Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.

  15. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  16. When negation is not negation

    OpenAIRE

    Milicevic, Nataša

    2008-01-01

    In this paper I will discuss the formation of different types of yes/no questions in Serbian (examples in (1)), focusing on the syntactically and semantically puzzling example (1d), which involves the negative auxiliary inversion. Although there is a negative marker on the fronted auxiliary, the construction does not involve sentential negation. This coincides with the fact that the negative quantifying NPIs cannot be licensed. The question formation and sentential negation have similar synta...

  17. ‘La parole comme instrument de la vérité.’

    Directory of Open Access Journals (Sweden)

    Louis-David Delahaye

    2003-10-01

    Full Text Available La nouvelle vient de tomber, inattendue : Socrate est traduit devant le tribunal ! C'est comme un coup de tonnerre dans l'esprit de Platon, qui décide de réagir en écrivant l'Apologie de Socrate . Il ne se contente pas de souligner le côté factice de l'affaire. Il en profite pour régler ses comptes avec les accusateurs et avec cette Athènes qui se veut l’« École de la Grèce ». Manifestement, elle ne sait pas déjouer les pièges d'une opinion qui célèbre ...

  18. Nickel hydrogen bipolar battery electrode design

    Science.gov (United States)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  19. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  20. Advanced screening of electrode couples

    Science.gov (United States)

    Giner, J. D.; Cahill, K.

    1980-01-01

    The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed.

  1. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  2. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  3. Near-Electrode Imager

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II

    1999-05-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  4. Mars Comm/Nav MicroSat Network Using the Multi-Mission Bus Launched Piggyback by Ariane 5

    Science.gov (United States)

    Hastrup, R. C.; Cesarone, R. J.; Morabito, D. D.

    1999-01-01

    Recently, NASA's Jet Propulsion Laboratory completed a Mars Exploration Program Architecture Definition Study with strong international participation. The recommendations of this study include establishment of a low cost in-situ communications and navigation satellite network to provide enabling and enhancing support for the international exploration of Mars. This would be the first step toward establishing a "virtual presence throughout the solar system" as called for in NASA's Strategic Plan. Response to the proposed comm/nav satellite network has been very favorably received, as reflected by the inclusion of a line item in NASA's budget submittal to Congress, which provides funding for implementation of the network with first launch in the 2003 opportunity. Funding has already been provided for a phase A study being conducted this year. This paper presents the planned implementation of the comm/nav network, which will utilize microsats based on a multi-mission spacecraft bus being designed for launch by the Ariane 5 as a secondary payload. A companion paper at this conference, entitled "The Multi-Purpose Mars Micro-Mission System Design Utilizing Ariane 5 Piggyback Launch", describes the multimission bus design. This paper addresses the application of the multi-mission bus to the comm/nav microsat mission. Following an introduction, which provides the background that has led to the proposed comm/nav network, the paper discusses the projected user needs with emphasis on the various possible robotic missions (landers, rovers, ascent vehicles, balloons, aircraft, etc.) progressing toward eventual piloted missions. Next, the paper describes the concept for an evolving network of comm/nav microsats and the expected capability to satisfy the user needs. Results of communications and navigation performance analysis are summarized for attractive satellite constellation configurations. The important comm/nav microsat functional requirements on the multi

  5. Negative mass

    International Nuclear Information System (INIS)

    Hammond, Richard T

    2015-01-01

    Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given. (paper)

  6. L’histoire de la linguistique comme épistémologie : Jakobson contre Saussure

    Directory of Open Access Journals (Sweden)

    Toutain Anne-Gaëlle

    2014-07-01

    Full Text Available Cette communication, qui s’attache à la comparaison des histoires jakobsonienne et saussurienne de la linguistique, s’efforce de montrer que ces deux horizons de rétrospection, que tout oppose (l’histoire jakobsonienne est continuiste et met en valeur l’ancienneté de la science du langage tandis que l’histoire saussurienne, outre qu’elle situe la naissance de la linguistique au dix-neuvième siècle, est au contraire faite de ruptures, impliquent deux constructions distinctes de l’objet de la linguistique, et s’opposent ainsi avant tout comme deux problématiques radicalement différentes. L’histoire jakobsonienne de la linguistique est une synthèse dialectique dont la possibilité se fonde sur un objet donné et totalisant, le langage, dont la définition n’est pas interrogée, et qui fédère également la diversité des linguistiques et des différentes disciplines ayant trait au langage. Saussure nous donne en revanche à lire la constitution progressive d’un objet, en rupture avec la connaissance commune : la langue, objet distinct du langage et objet propre de la linguistique, dont le postulat permet la théorisation du son et du sens comme objets linguistiques et l’étiologie des idiomes. Il apparaît ainsi que l’opposition jakobsonienne à Saussure témoigne avant tout de la résistance d'une problématique présaussurienne. Néanmoins, s’il s’agit là d’épistémologie, il s’agit par ailleurs, corrélativement, et quoi qu’il faille penser de l’histoire saussurienne de la linguistique, de deux mises en œuvre distinctes de l’histoire des sciences : l’une, empirique, celle de Jakobson, l’autre, épistémologique, celle de Saussure.

  7. Study of the structural, thermodynamic and electrochemical properties of LaNi3.55Mn0.4Al0.3(Co1-xFe x)0.75 (0 ≤ x ≤ 1) compounds used as negative electrode in Ni-MH batteries

    International Nuclear Information System (INIS)

    Ayari, M.; Paul-Boncour, V.; Lamloumi, J.; Mathlouthi, H.; Percheron-Guegan, A.

    2006-01-01

    This study concerns the influence of iron for cobalt substitution on the structural, thermodynamic and electrochemical properties of the hydrides of poly-substituted LaNi 3.55 Mn 0.4 Al 0.3 (Co 1-x Fe x ) 0.75 (0 ≤ x ≤ 1) alloys used as material for negative electrode in Ni-MH batteries. The Fe substitution leads to an increase of the cell parameter, this increase is linear according to the rate of substitution, and a decrease of the equilibrium pressure in agreement with the geometric law. Nevertheless, it is observed that the Fe substitution leads to a deviation from the linear variation between the logarithm of the pressure and the cell volume observed for Co, Mn and Al for Ni substitution. The Fe for Co substitution leads also to a decrease of the solid-gas and electrochemical capacity

  8. Negative Leadership

    Science.gov (United States)

    2013-03-01

    Negative Leadership by Colonel David M. Oberlander United States Army United States Army War...SUBTITLE Negative Leadership 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Colonel David M...Dr. Richard C. Bullis Department of Command Leadership , and Management 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING

  9. Negative liability

    NARCIS (Netherlands)

    Dari-Mattiacci, G.

    2009-01-01

    Negative and positive externalities pose symmetrical problems to social welfare. The law internalizes negative externalities by providing general tort liability rules. According to such rules, those who cause harm to others should pay compensation. In theory, in the presence of positive

  10. Negative ... concord?

    NARCIS (Netherlands)

    Giannakidou, A

    The main claim of this paper is that a general theory of negative concord (NC) should allow for the possibility of NC involving scoping of a universal quantifier above negation. I propose that Greek NC instantiates this option. Greek n-words will be analyzed as polarity sensitive universal

  11. A polyoxovanadate as an advanced electrode material for supercapacitors.

    Science.gov (United States)

    Chen, Han-Yi; Wee, Grace; Al-Oweini, Rami; Friedl, Jochen; Tan, Kim Soon; Wang, Yuxi; Wong, Chui Ling; Kortz, Ulrich; Stimming, Ulrich; Srinivasan, Madhavi

    2014-07-21

    Polyoxovanadate Na(6)V(10)O(28) is investigated for the first time as electrode material for supercapacitors (SCs). The electrochemical properties of Na(6)V(10)O(28) electrodes are studied in Li(+) -containing organic electrolyte (1 M LiClO(4) in propylene carbonate) by galvanostatic charge/discharge and cyclic voltammetry in a three-electrode configuration. Na(6)V(10)O(28) electrodes exhibit high specific capacitances of up to 354 F g(-1). An asymmetric SC with activated carbon as positive electrode and Na(6)V(10)O(28) as negative electrode is fabricated and exhibits a high energy density of 73 Wh kg(-1) with a power density of 312 W kg(-1), which successfully demonstrates that Na(6)V(10)O(28) is a promising electrode material for high-energy SC applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  13. Blog : un journal intime comme mémoire de soi

    Directory of Open Access Journals (Sweden)

    Nolwenn Hénaff

    2011-08-01

    Full Text Available Tenir un journal est devenu, pour un individu, une manière possible de vivre, ou d’accompagner un moment de sa vie (Lejeune, 2006. Les usages sont donc multiples : construction d’une identité narrative, fixation du temps, libération du moi, introspection, outil de contrôle, de soutien, méthode d’organisation de la pensée, plaisir d’écrire. Si l’écriture papier reste la forme la plus courante du récit biographique, d’autres supports médiatiques comme la télévision ou la radio sont venus offrir de nouveaux terrains d’expérimentation de ces récits de soi. Plus récemment, l’avènement d’Internet et de ses outils simplifiés de publication ont fait émerger des formes biographiques innovantes. Pourtant, qu’il s’agisse de traverser une crise, de garder la mémoire d’une expérience forte, ou, plus ordinairement, de relater ses vacances et ses voyages, le journal se positionne avant tout, et résolument, comme un espace de liberté : on écrit quand on veut, comme on veut. Le « Souci de soi » comme dirait Foucault, l’espace dominé par les sensations, et la temporalité marquée par la notion d’instants, de moments ayant une connotation expressément personnelle sont autant d’indices révélant la pratique de l’écriture intime en ligne. Le blog apparaît à des moments de vie et accompagne souvent des tournants biographiques (ruptures, questionnement mais aussi nouveaux apprentissages, nouvelles rencontres, etc.. Nous proposons dans cet article d’analyser le blog en tant que support de mémoire personnelle et d’étudier à travers des exemples concrets les stratégies développées par les blogueurs pour se créer via ce dispositif communicationnel innovant un « espace de conserverie de soi » en ligne.Keeping a journal has become a way of live, or to moment a moment in one’s life (Lejeune, 2006. It has multiple uses: construction of a narrative identity, marking time, liberating the

  14. La réciprocité comme stratégie / reciprocity as a strategy

    Directory of Open Access Journals (Sweden)

    Alicia Guidonet

    2008-10-01

    Full Text Available Le texte littéraire, examiné et contextualisé historiquement, offre des voies de compréhension des stratégies mises en œuvre par une classe sociale afin de se perpétuer en période de crise. Ainsi, en considérant spécifiquement certaines des figures de la réciprocité, nous observons l’importance, non seulement des liens sociaux qui favorisent la reproduction sociale, mais aussi celle de l’alimentation comme moteur d’établissement de ces liens.Setting a literary text into its historical context leads to better understanding of the strategies developed by a social class in order to achieve social reproduction in times of crisis. Focussing on reciprocity, the author examines not only the importance of social relationships in terms of facilitating social reproduction, but also the relevance of food as an engine for the development of such relationships.

  15. Added clinical value of the inferior temporal EEG electrode chain.

    Science.gov (United States)

    Bach Justesen, Anders; Eskelund Johansen, Ann Berit; Martinussen, Noomi Ida; Wasserman, Danielle; Terney, Daniella; Meritam, Pirgit; Gardella, Elena; Beniczky, Sándor

    2018-01-01

    To investigate the diagnostic added value of supplementing the 10-20 EEG array with six electrodes in the inferior temporal chain. EEGs were recorded with 25 electrodes: 19 positions of the 10-20 system, and six additional electrodes in the inferior temporal chain (F9/10, T9/10, P9/10). Five-hundred consecutive standard and sleep EEG recordings were reviewed using the 10-20 array and the extended array. We identified the recordings with EEG abnormalities that had peak negativities at the inferior temporal electrodes, and those that only were visible at the inferior temporal electrodes. From the 286 abnormal recordings, the peak negativity was at the inferior temporal electrodes in 81 cases (28.3%) and only visible at the inferior temporal electrodes in eight cases (2.8%). In the sub-group of patients with temporal abnormalities (n = 134), these represented 59% (peak in the inferior chain) and 6% (only seen at the inferior chain). Adding six electrodes in the inferior temporal electrode chain to the 10-20 array improves the localization and identification of EEG abnormalities, especially those located in the temporal region. Our results suggest that inferior temporal electrodes should be added to the EEG array, to increase the diagnostic yield of the recordings. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  16. Development of reliable lithium microreference electrodes for long-term in situ studies of lithium-based battery systems

    NARCIS (Netherlands)

    Zhou, J.; Notten, P.H.L.

    2004-01-01

    An in situ method to prepare lithium microreference electrodes has been developed. The microreference electrodes are made by electrochemical deposition of metallic lithium from both the positive and negative electrodes onto a copper wire positioned in-between the two Li-based battery electrodes. The

  17. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  18. Apollinaire et le détournement de l’arsenal militaire : la vitesse comme vecteur amoureux

    Directory of Open Access Journals (Sweden)

    Lionel Cuillé

    2014-12-01

    Full Text Available Le détournement de l’arsenal militaire se comprend à la lumière des spéculations de F.T Marinetti sur la vitesse, notion esthétique fédérant le futurisme italien. Le canon de 75, au service duquel Apollinaire est affecté, fut considéré comme une prouesse technologique dont la vélocité devait permettre une victoire fulgurante contre l’Allemagne. C’est ce vecteur de vitesse qui devient le support d’une nouvelle poétique. Certains Calligrammes se lisent dès lors comme un dispositif grâce auquel le poète-artilleur reconfigure, pour la contester, l’opposition entre l’idéal féminin et la luxure, deux postulations que Marinetti déclare exorciser par la magie de la vitesse.

  19. L’investiture impériale comme fête. Une approche comparative des fêtes de couronnement

    OpenAIRE

    Rudolph, Harriet

    2013-01-01

    La fête peut être décrite comme un mode spécifique d’inclusion sociale qui se distingue par une occasion spécifique, sa mise en relief démonstrative par rapport au quotidien tout comme le caractère collectif et la dimension de représentation ostentatoire qui lui sont propres. Dans la fête se constituent des cadres d’actions tels que la cour princière, la ville, la commune ou la paroisse en tant que structures sociales et politiques. Les fêtes sont des événements de communication dont des acte...

  20. Energy storage systems having an electrode comprising Li.sub.xS.sub.y

    Science.gov (United States)

    Xiao, Jie; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Wang, Wei; Zheng, Jianming; Xu, Wu; Shao, Yuyan; Yang, Zhenguo

    2016-08-02

    Improved lithium-sulfur energy storage systems can utilizes Li.sub.xS.sub.y as a component in an electrode of the system. For example, the energy storage system can include a first electrode current collector, a second electrode current collector, and an ion-permeable separator separating the first and second electrode current collectors. A second electrode is arranged between the second electrode current collector and the separator. A first electrode is arranged between the first electrode current collector and the separator and comprises a first condensed-phase fluid comprising Li.sub.xS.sub.y. The energy storage system can be arranged such that the first electrode functions as a positive or a negative electrode.

  1. Use of glasses as industrial dosimeters; Utilisation des verres comme dosimetres industriels

    Energy Technology Data Exchange (ETDEWEB)

    Balestic, F. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Le Clerc, P.; Bonnaud, M. [Centre de Recherches des Glaceries de Saint-Gobain (France)

    1959-07-01

    Glasses have the property of colouring under the action of ionizing radiations. We endeavoured to specify the conditions under which the intensity of coloration can be used as a measure of the quantity of radiation to which the glass has been submitted. In the case of a glass loaded with cobalt, a study of the optical density at different wavelengths enabled us to find the factors governing the formation of coloured centres and their conservation in the glass. We give a set of calibrating curves for different values of these parameters (irradiation rate, irradiation temperature; fading time and fading temperature), enabling determination of radiation doses in the range from 10 000 to 1 000 000 rep from measured optical density. (author) [French] Les verres ont la propriete de se colorer sous l'action des rayonnements ionisants. Nous avons cherche a preciser les conditions dans lesquelles l'intensite de la coloration peut servir de mesure de la quantite du rayonnement auquel le verre a ete soumis. Dans le cas d'un verre charge au cobalt, l'etude de la densite optique a differentes longueurs d'onde a mis en evidence divers facteurs dont depend la formation des centres colores et leur conservation dans le verre. En prenant comme parametres ces divers facteurs (temperature d'irradiation, intensite d'irradiation, temperature de conservation et duree de conservation) nous avons etabli des courus d'etalonnage permettant la determination de doses entre 10 000 et 1 000 000 rep d'apres la densite optique observee. (auteur)

  2. Use of glasses as industrial dosimeters; Utilisation des verres comme dosimetres industriels

    Energy Technology Data Exchange (ETDEWEB)

    Balestic, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Le Clerc, P; Bonnaud, M [Centre de Recherches des Glaceries de Saint-Gobain (France)

    1959-07-01

    Glasses have the property of colouring under the action of ionizing radiations. We endeavoured to specify the conditions under which the intensity of coloration can be used as a measure of the quantity of radiation to which the glass has been submitted. In the case of a glass loaded with cobalt, a study of the optical density at different wavelengths enabled us to find the factors governing the formation of coloured centres and their conservation in the glass. We give a set of calibrating curves for different values of these parameters (irradiation rate, irradiation temperature; fading time and fading temperature), enabling determination of radiation doses in the range from 10 000 to 1 000 000 rep from measured optical density. (author) [French] Les verres ont la propriete de se colorer sous l'action des rayonnements ionisants. Nous avons cherche a preciser les conditions dans lesquelles l'intensite de la coloration peut servir de mesure de la quantite du rayonnement auquel le verre a ete soumis. Dans le cas d'un verre charge au cobalt, l'etude de la densite optique a differentes longueurs d'onde a mis en evidence divers facteurs dont depend la formation des centres colores et leur conservation dans le verre. En prenant comme parametres ces divers facteurs (temperature d'irradiation, intensite d'irradiation, temperature de conservation et duree de conservation) nous avons etabli des courus d'etalonnage permettant la determination de doses entre 10 000 et 1 000 000 rep d'apres la densite optique observee. (auteur)

  3. Electrode stabilizing materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  4. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  5. Lateralization of cortical negative motor areas.

    Science.gov (United States)

    Borggraefe, Ingo; Catarino, Claudia B; Rémi, Jan; Vollmar, Christian; Peraud, Aurelia; Winkler, Peter A; Noachtar, Soheyl

    2016-10-01

    The lateral and mesial aspects of the central and frontal cortex were studied by direct electrical stimulation of the cortex in epilepsy surgery candidates in order to determine the localization of unilateral and bilateral negative motor responses. Results of electrical cortical stimulation were examined in epilepsy surgery candidates in whom invasive electrodes were implanted. The exact localization of subdural electrodes was defined by fusion of 3-dimensional reconstructed MRI and CT images in 13 patients and by analysis of plane skull X-rays and intraoperative visual localization of the electrodes in another 7 patients. Results of electrical stimulation of the cortex were evaluated in a total of 128 patients in whom invasive electrodes were implanted for planning resective epilepsy surgery. Twenty patients, in whom negative motor responses were obtained, were included in the study. Bilateral upper limb negative motor responses were more often elicited from stimulation of the mesial frontal cortex whereas stimulation of the lateral central cortex leads to contralateral upper limb negative motor responses (pfrontal gyrus whereas contralateral negative motor responses localized predominantly in the anterior part of the precentral gyrus (pgyrus and the mesial fronto-central cortex showing functional differences with regard to unilateral and bilateral upper limb representation. The lateral fronto-central negative motor area serves predominantly contralateral upper limb motor control whereas the mesial frontal negative motor area represents bilateral upper limb movement control. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Negative CO

    NARCIS (Netherlands)

    Meysman, F.J.R.; Montserrat, F.

    2017-01-01

    Negative emission technologies (NETs) target the removal of carbon dioxide (CO2) from the atmosphere, and are being actively investigated as a strategy to limit global warming to within the 1.5–2°C targets of the 2015 UN climate agreement. Enhanced silicate weathering (ESW) proposes to

  7. Negative Certainty

    Science.gov (United States)

    Ariso, José María

    2017-01-01

    The definitions of "negative knowledge" and the studies in this regard published to date have not considered the categorial distinction Wittgenstein established between knowledge and certainty. Hence, the important role that certainty, despite its omission, should have in these definitions and studies has not yet been shown. In this…

  8. Optimization and fabrication of porous carbon electrodes for Fe/Cr redox flow cells

    Science.gov (United States)

    Jalan, V.; Morriseau, B.; Swette, L.

    1982-01-01

    Negative electrode development for the NASA chromous/ferric Redox battery is reported. The effects of substrate material, gold/lead catalyst composition and loading, and catalyzation procedures on the performance of the chromium electrode were investigated. Three alternative catalyst systems were also examined, and 1/3 square foot size electrodes were fabricated and delivered to NASA at the conclusion of the program.

  9. Bacterial and fungal killing by iontophoresis with long-lived electrodes.

    OpenAIRE

    Davis, C P; Wagle, N; Anderson, M D; Warren, M M

    1991-01-01

    Iontophoresis with gold, carbon, and platinum electrodes was shown to effectively reduce or eliminate gram-positive, gram-negative, and Candida albicans inocula in synthetic urine. Platinum and gold electrodes were more effective than carbon electrodes, but platinum showed the best longevity and may reduce or eliminate microbial colonization of catheters.

  10. Lithium electrode and an electrical energy storage device containing the same

    Science.gov (United States)

    Lai, San-Cheng

    1976-07-13

    An improved lithium electrode structure comprises an alloy of lithium and silicon in specified proportions and a supporting current-collecting matrix in intimate contact with said alloy. The lithium electrode of the present invention is utilized as the negative electrode in a rechargeable electrochemical cell.

  11. Transparent Electrodes with Nanotubes and Graphene for Printed Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Marcin Słoma

    2014-01-01

    Full Text Available We report here on printed electroluminescent structures containing transparent electrodes made of carbon nanotubes and graphene nanoplatelets. Screen-printing and spray-coating techniques were employed. Electrodes and structures were examined towards optical parameters using spectrophotometer and irradiation meter. Electromechanical properties of transparent electrodes are exterminated with cyclical bending test. Accelerated aging process was conducted according to EN 62137 standard for reliability tests of electronics. We observed significant negative influence of mechanical bending on sheet resistivity of ITO, while resistivity of nanotube and graphene based electrodes remained stable. Aging process has also negative influence on ITO based structures resulting in delamination of printed layers, while those based on carbon nanomaterials remained intact. We observe negligible changes in irradiation for structures with carbon nanotube electrodes after accelerated aging process. Such materials demonstrate a high application potential in general purpose electroluminescent devices.

  12. Autostéréogramme d'une montagne gaussienne -utilisant une structure paradoxale périodique comme texture de camouflage-

    OpenAIRE

    Colonna , Jean-François

    2011-01-01

    Autostereogram -using a periodical paradoxal structure as a desguise texture- with an hidden gaussian mountain (Autostéréogramme d'une montagne gaussienne -utilisant une structure paradoxale périodique comme texture de camouflage-)

  13. Le genre comme rapport d’inégalité sociale dans le discours publicitaire

    Directory of Open Access Journals (Sweden)

    Jean-Claude Soulages

    2016-12-01

    Full Text Available Loin de se réduire à une simple transaction commerciale, une annonce publicitaire est un espace de croyances sur des identités, des rôles et des pratiques sociales. Au même titre que d’autres productions fictionnelles de la culture de masse, elle représente l’une des faces de ce miroir social alimenté par la circulation incessante d’attitudes et de croyances, affichant même s’il s’agit bien souvent pour cette dernière d’un positionnement ludique, un second monde peuplé par nos avatars. La publicité tout comme le fait la fiction télévisée définit l’horizon des possibles d’une communauté donnée. Ce qu’elles réalisent toutes deux c’est l’entrée de l’imaginaire dans le réel. Même si, à partir des années 70, s’opère un lent défigement des stéréotypes sexistes, le publicitaire ne se fera aucunement le porte-parole explicite d’une quelconque lutte féministe, il optera toujours pour une tactique ambivalente de double speak: des effets de décadrage mettant en exergue des situations délibérément décalées ou burlesques (Un homme qui change les couches de bébé! Un clown qui fait la lessive!, mais cristallisant des inégalités de rôles. En jouant tout à la fois sur le défigement et la réactivation des stéréotypes, c’est bien un rôle de passeur et de go between, qu’est assigné le publicitaire en se faisant l’arbitre ventriloque de ces conflits de légitimité et de construction identitaire qui agitent notre modernité.

  14. Effect of electrode geometry on photovoltaic performance of polymer solar cells

    International Nuclear Information System (INIS)

    Li, Meng; Ma, Heng; Liu, Hairui; Wu, Dongge; Niu, Heying; Cai, Wenjun

    2014-01-01

    This paper investigates the impact of electrode geometry on the performance of polymer solar cells (PSCs). The negative electrodes with equal area (0.09 cm 2 ) but different shape (round, oval, square and triangular) are evaluated with respect to short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency of PSCs. The results show that the device with round electrodes gives the best photovoltaic performance; in contrast, the device with triangular electrodes reveals the worst properties. A maximum of almost a 19% increase in power conversion efficiency with a round electrode is obtained in the devices compared with that of the triangular electrode. To conclude, the electrode boundary curvature has a significant impact on the performance of PSCs. The larger curvature, i.e. sharper electrodes edges, perhaps has a negative effect on exciton separation and carrier transport in photoelectric conversion processes. (paper)

  15. Operating a redox flow battery with a negative electrolyte imbalance

    Science.gov (United States)

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  16. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  17. Negative Ion Sources: Magnetron and Penning

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    The history of the magnetron and Penning electrode geometry is briefly outlined. Plasma generation by electrical discharge-driven electron impact ionization is described and the basic physics of plasma and electrodes relevant to magnetron and Penning discharges are explained. Negative ions and their applications are introduced, along with their production mechanisms. Caesium and surface production of negative ions are detailed. Technical details of how to build magnetron and Penning surface plasma sources are given, along with examples of specific sources from around the world. Failure modes are listed and lifetimes compared. (author)

  18. Negative Ion Sources: Magnetron and Penning

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    The history of the magnetron and Penning electrode geometry is briefly outlined. Plasma generation by electrical discharge-driven electron impact ionization is described and the basic physics of plasma and electrodes relevant to magnetron and Penning discharges are explained. Negative ions and their applications are introduced, along with their production mechanisms. Caesium and surface production of negative ions are detailed. Technical details of how to build magnetron and Penning surface plasma sources are given, along with examples of specific sources from around the world. Failure modes are listed and lifetimes compared.

  19. Surface negative ion production in ion sources

    International Nuclear Information System (INIS)

    Belchenko, Y.

    1993-01-01

    Negative ion sources and the mechanisms for negative ion production are reviewed. Several classes of sources with surface origin of negative ions are examined in detail: surface-plasma sources where ion production occurs on the electrode in contact with the plasma, and ''pure surface'' sources where ion production occurs due to conversion or desorption processes. Negative ion production by backscattering, impact desorption, and electron- and photo-stimulated desorption are discussed. The experimental efficiencies of intense surface negative ion production realized on electrodes contacted with hydrogen-cesium or pure hydrogen gas-discharge plasma are compared. Recent modifications of surface-plasma sources developed for accelerator and fusion applications are reviewed in detail

  20. Hydrometallurgical method for recycling rare earth metals, cobalt, nickel, iron, and manganese from negative electrodes of spent Ni-MH mobile phone batteries; Metodo hidrometalurgico para reciclagem de metais terras raras, cobalto, niquel, ferro e manganes de eletrodos negativos de baterias exauridas de Ni-MH de telefone celular

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Vinicius Emmanuel de Oliveira dos; Lelis, Maria de Fatima Fontes; Freitas, Marcos Benedito Jose Geraldo de, E-mail: viniciusemmanuel@hotmail.com [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Quimica; Celante, Vinicius Guilherme [Instituto Federal do Espirito Santo (IFES), Aracruz, ES (Brazil)

    2014-07-01

    A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni-MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO{sub 4}){sub 2}.H{sub 2}O) and lanthanum sulfate (La{sub 2}(SO{sub 4}){sub 3}.H{sub 2}O) as the major recovered components. Iron was recovered as Fe(OH){sub 3} and FeO. Manganese was obtained as Mn{sub 3}O{sub 4}.The recovered Ni(OH){sub 2} and Co(OH){sub 2} were subsequently used to synthesize LiCoO{sub 2}, LiNiO{sub 2} and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques. (author)

  1. Le voyage en « oxygène rare » comme expérience initiatique

    Directory of Open Access Journals (Sweden)

    Michel Raspaud

    2003-09-01

    Full Text Available L’expérimentation de la haute altitude (souvent baptisée « zone de la mort » en Himalaya, avec son cortège d’essais techniques et d’erreurs souvent fatales, apparaît bien comme le prototype de l’initiation en montagne. Par delà l’explication classique du phénomène d’ordalie, il s’agit bien d’un « rite personnel de passage » où la souffrance et la douleur renvoient à une anthropologie alpine.

  2. Magnesium and aluminium-base products. For use as structural materials; Magnesium, aluminium et alliages. Emploi comme materiaux de structure

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J; Boudouresques, B; Alfille, L; Klersy, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This paper deals with the ability of some Mg and Al-base products to be used as structural materials in thermal reactors. The results presented here are relating to investigations carried out for completing the design of french reactors. (author)Fren. [French] Les auteurs traitent de l'aptitude de quelques materiaux legers et ultra-legers a l'utilisation comme elements de structure des reacteurs thermiques. Les resultats presentes sont relatifs aux etudes effectuees pour l'etablissement des projets de piles fran ises. (auteur)

  3. Information financière, juste valeur et contrôle interne : La corporate governance comme illusion rationnelle ?

    OpenAIRE

    Jerman, Lambert

    2014-01-01

    Pour les principes dominants de la « bonne » gouvernance depuis le rapport Cadbury de 1992, le gouvernement d’entreprise se définit comme un conflit d’agence entre actionnaires et managers. L’information financière, avec la juste valeur, incarne alors un moyen privilégié de résoudre par la transparence et la discipline de dispositifs de contrôle interne cette opposition. La présente contribution se propose en conséquence de répondre à la question de recherche suivante : dans quelle mesure la ...

  4. Les folksonomies comme support émergent de navigation sociale et de structuration des données du Web

    OpenAIRE

    Crépel , Maxime

    2008-01-01

    En nous basant sur les premiers travaux venant alimenter le débat soulevé par le modèle de classification des folksonomies, ainsi que de résultats d’enquêtes réalisées à partir d’entretiens auprès d’utilisateurs du site Flickr, il s’agit d’analyser les enjeux de ce nouveau mode d’indexation des informations comme modèle controversé de structuration des ressources du web et de comprendre les implications de son intégration pour la recherche d’information et la navigation sur internet....

  5. Magnesium and aluminium-base products. For use as structural materials; Magnesium, aluminium et alliages. Emploi comme materiaux de structure

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J.; Boudouresques, B.; Alfille, L.; Klersy, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This paper deals with the ability of some Mg and Al-base products to be used as structural materials in thermal reactors. The results presented here are relating to investigations carried out for completing the design of french reactors. (author)Fren. [French] Les auteurs traitent de l'aptitude de quelques materiaux legers et ultra-legers a l'utilisation comme elements de structure des reacteurs thermiques. Les resultats presentes sont relatifs aux etudes effectuees pour l'etablissement des projets de piles fran ises. (auteur)

  6. Mais oui, il était un joli temps du passé comme les autres, mon joli petit hypocoristique…

    OpenAIRE

    Bres, Jacques

    2003-01-01

    International audience; Comment rendre compte de l'imparfait dans le tour hypocoristique ? Les explications proposées consistent, de différentes manières, à ne pas prendre l'imparfait pour ce qu'il est et à lui imputer des valeurs produites par d'autres paramètres co(n)textuels. J'avance que, dans le tour hypocoristique comme dans tous ses autres emplois, l'imparfait donne la même instruction temporalo-aspectuelle; et que l'effet de sens hypocoristique est produit résultativement par l'intera...

  7. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  8. La question locale comme nouvelle frontière socio-spatiale

    Directory of Open Access Journals (Sweden)

    Christophe Gibout

    2009-06-01

    Full Text Available Partant de l’objet football socialement reconnu et de deux formes de pratique préalablement identifiées – pratiques fédérale et de « pied d’immeuble » – notre travail interroge l’influence et l’importance de la localisation dans la définition formelle des pratiques et la compréhension de leurs logiques identitaires. Parce que les pratiquants déploient des « arts de faire » singuliers sur un territoire jouant le rôle de lien et de liant, notre enquête montre que la dichotomie rural/urbain ne semble plus aujourd’hui heuristiquement pertinente pour comprendre le construit de la pratique sportive. Dès lors émerge la question locale – celle du « chez soi » – comme élément central de la construction sociale de la pratique sportive ; en témoigne la réalité d’une autre forme de football, non exclusive des deux autres : le football « sauvage ».The local question as a new socio-spatial frontierBeyond opposition between urban and rural soccer: the “at home” oneOn the basis of socially recognized football and of two beforehand identified forms of practice – official soccer and football played at the foot of one's building – our work questions the influence and the importance of the localization in the definition of the practices and in the comprehension of their identity logics. Because of the players use « second hand habits » on a territory playing the part of bond and binder, our investigation shows that the rural/urban dichotomy doesn’t seem any more relevant today to understand the construction of sport’s practice. Consequently emerges the local question – the one of « at home » – as central element of the social construction of the sport’s practice as testified to the reality of another form of football, nonexclusive of both others: « wild » football.Lo local como nueva frontera socio-espacialMas allá de la oposición entre el futbol urbano y el futbol rural

  9. La mesure comme représentation de l’objet

    Directory of Open Access Journals (Sweden)

    Danielle Laberge

    2011-04-01

    Full Text Available Adoptant une perspective d’interpénétration des méthodes et nous centrant sur le rôle des actes méthodiques dans la production des connaissances, nous procédons à l’examen de la place et du rôle de l’interprétation dans le processus de la mesure. Partant de la définition d’Abraham Kaplan selon laquelle « la mesure est l’assignation de nombres à des objets, des événements ou des situations à partir d’un système de règles définissant des propriétés pouvant être quantifiées » (Kaplan, 1964, nous considérons la mesure comme une activité méthodique de recherche constituée d’un ensemble d’actes interprétatifs distincts, mis en œuvre à des moments divers du processus de recherche. Nous montrons que la mesure est susceptible à la fois de réduire la complexité et de la restaurer. La mesure ne peut être limitée à sa dimension quantitative. Elle se construit dans l’interrelation permanente avec les autres actes de connaissance.Measurement process as object’s representation. Analysis and interpretationIn this article we examine the status and the role of interpretation in the measurement process, from the point of view of mixed methods. Starting with Abraham Kaplan’s definition of “measurement as the assignment of numbers to objects (or events or situations in accord with some rule defining properties that can be quantified”, we state that measurement is produced through a set of different interpretations at various moments during the research process. It cannot be seen only as a reduction of complexity and a quantification of reality since it is also a way of restoring complexity and quality. Measurement must be understood in relation with all the other knowledge operations.La medida como objeto de representaciones. Análisis e interpretaciónEn este artículo examínanos el estatuto y el papel de los métodos de medida desde el punto de vista de lo que constituye un acto metódico. A partir

  10. The industrial application of a uranium dioxide electrode

    International Nuclear Information System (INIS)

    Needes, C.R.S.; Nicol, M.J.; Finkelstein, N.P.; Ormrod, G.T.W.

    1975-01-01

    A correlation between the potential of a UO 2 electrode and the rate of recovery of uranium has been proved in laboratory and plant trials. When the recovery rates change because of variation in the concentrations of Fe(III), Fe(II), SO 2- 4 , and H + , a positive correlation is observed. However, an increase in the concentration of phosphate in solution produces an increase in the UO 2 electrode potential but a decrease in the rate of leaching of UO 2 . The correlation between the UO 2 electrode potential and the rate of leaching of UO 2 is then negative. It is concluded that, as a control device, the electrode cannot compete with the platinum electrode for use on certain plants. Nevertheless, the UO 2 electrode will act as a useful warning device if the total concentration of iron in solution decreases to below a level concomitant with the economic recovery of uranium. Furthermore, because of the positive correlation between the UO 2 electrode potential and the phosphate concentration, the electrode will also be of value in the detection of an increase in the phosphate level in solution. When it was incorporated in a suitable industrial probe, the electrode was found to be able to withstand the rigours of the leaching conditions in a large pilot-plant pachuca, and only failed after six weeks operation [af

  11. High density plasma productions by hydrogen storage electrode in the Tohoku University Heliac

    International Nuclear Information System (INIS)

    Utoh, H.; Takahashi, H.; Tanaka, Y.; Takenaga, M.; Ogawa, M.; Shinde, J.; Iwazaki, K.; Shinto, K.; Kitajima, S.; Sasao, M.; Nishimura, K.; Inagaki, S.

    2005-01-01

    In the Tohoku University Heliac (TU-Heliac), the influence of a radial electric field on improved modes has been investigated by an electrode biasing. In both positive and negative biasing experiments by the stainless steel (SUS) electrode (cold-electron or ion collection), the improvement of plasma confinement was clearly observed. Furthermore, by negative biasing with a hot cathode (electron injection), the radial electric fields can be actively controlled as a consequence of the control of the electrode current I E . By using the electrode made of a hydrogen storage metal, for example Titanium (Ti) or Vanadium (V), the following possibility can be expected: (1) ions accelerated from the positive biased electrode allow the simulation for the orbit loss of high-energy particles, (2) the electrons/neutral- particles injected from the negative biased electrode provide the production of the high- density plasma, if hydrogen are successfully stored in the electrode. In this present work, several methods were tried as the treatment for hydrogen storage. In the case of the Ti electrode biased positively after the treatment, the improvement of plasma confinement was observed in He plasma, which were same as the experimental results of the SUS electrode. However, in the electron density profiles inside the electrode position there was difference between the biased plasma by the Ti electrode and that by the SUS electrode. In some of Ar discharges biased negatively with the Ti electrode after the treatment, the electron density and the line intensity of H α increased about 10 times of those before biasing. This phenomenon has not been observed in the Ar plasma biased by the SUS electrode. This result suggested that the Ti electrode injected electrons/neutral-hydrogen into the plasma. This high-density plasma productions were observed only 1 ∼ 3 times in the one treatment for hydrogen storage. By using a Vanadium (V) electrode, productions of the high-density plasma

  12. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  13. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  14. Gentrification as policy – empirical frontiers La gentrification comme objectif politique – pistes de recherche empirique

    Directory of Open Access Journals (Sweden)

    Mathieu Van Criekingen

    2012-12-01

    Full Text Available This paper essentially argues that contemporary gentrification ought to be conceived of as a prevailing, though place-specific policy strategy. What is at stake is to move beyond common but limited representations of gentrification as a mere process of neighbourhood change through which urban space is dedicated to progressively more affluent users, and to specifically acknowledge the role of state actors in fostering this socio-spatial transformation. The paper mainly builds on findings brought out by selected – and still quite rare – works seeking to empirically document and make sense of the emergence or consolidation of a pro-gentrification coherence across changes in diverse policy fields (e.g. housing, tourism, culture, infrastructures, etc.. Findings brought out of analyses conducted in Paris, Roubaix and Antwerp are particularly scrutinized. They transversally suggest that following a pro-gentrification policy agenda practically means combining actions on demand and supply of gentrifying spaces together with the production of legitimating representations ; moreover, they stress that the arrangement of a pro-gentrification policy agenda is a social construct built on strategic (re-organisation of urban governance structures. These findings suggest that reinforcing the empirical bases of the multifaceted and place-specific ties between gentrification and urban policy ought to be considered as a priority task for researchers seeking to make sense of contemporary urban change, while sustaining the critical essence of the gentrification concept and further developing its capacity to mobilise around issues of social justice and class domination in cities.L’argument central de cet article est qu’il importe d’envisager la gentrification contemporaine comme une stratégie de politique urbaine, multiforme et de grande ampleur. L’enjeu est ici de dépasser les représentations usuelles de la gentrification ne reconnaissant à celle

  15. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  16. Porous electrode preparation method

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  17. A study of the electrochemical behaviour of electrodes in operating solid-state supercapacitors

    International Nuclear Information System (INIS)

    Staiti, P.; Lufrano, F.

    2007-01-01

    The electrochemical behaviour of electrodes and of complete solid-state supercapacitors has been studied by cyclic voltammetry (CV) and galvanostatic charge/discharge (CD) measurements using two independent electrochemical equipments. The first one controlled the execution of the test and recorded the voltage and current values of the complete supercapacitor while the other one recorded the potential changes of the single electrodes. In this work, two different types of capacitors were studied: (a) a symmetric supercapacitor using carbon electrodes, and (b) a hybrid (asymmetric) supercapacitor with ruthenium oxide/carbon in the positive electrode and carbon in the negative electrode. The studies evidenced that in the symmetric capacitors the positive electrode controlled the capacitive performance and an optimal mass ratio from 1.2:1 to 1.3:1 between the positive and the negative electrodes was found in the investigated conditions. For the hybrid supercapacitor it was observed that the ruthenium-based positive electrode influenced the capacitive performance of carbon-based negative electrode and that an accurate balance of carbon loading in the negative electrode was necessary

  18. Multi-component intermetallic electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  19. Sandwich-type electrode

    Science.gov (United States)

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  20. Ion-selective electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhelson, Konstantin N. [St. Petersburg State Univ. (Russian Federation). Ion-Selective Electrode Laboratory

    2013-06-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing ISEs are outlined, and the transfer of methods into routine analysis is considered.

  1. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  2. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  3. La richesse de la flore comme levier pour maintenir la biodiversité dans le vignoble ?

    OpenAIRE

    Rabolin Chantal; Schneider Christophe; Thiollet-Scholtus Marie; Bockstaller Christian

    2017-01-01

    The intensification of crop management have led to an impoverishment of the biological diversity, resulting in the loss of ecosystem services. In viticulture, flora could play an interesting role because it can compensate the negative impacts of vine monoculture. The flora biodiversity favours fauna biodiversity, sustaining especially the presence of pollinating insects in the grapevine inter row sown with grass or legumes and area around grapevine plots. These aspects have been poorly studie...

  4. Continuous separation of submicron particles using Angled electrodes

    International Nuclear Information System (INIS)

    Yunus, Nurul A Md; Green, Nicolas G

    2008-01-01

    Dielectrophoretic separation of particles is achieved by the generation of electric forces on the particles by non-uniform electric fields. This paper presents a technique based on negative dielectrophoresis in a novel design of electrode array for the non-contact separation of polarisable particles. Angled electrodes are used to generate a lateral force in a microfluidic channel separating a mixed stream of particles into distinct streams of constituent components and achieving a high degree of spatial separation.

  5. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  6. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    Science.gov (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  7. Conceptualiser l’addiction : entre l’écueil du mythe et celui de la maladie comme les autres

    Directory of Open Access Journals (Sweden)

    Mélanie Trouessin

    2016-04-01

    Full Text Available La mise en évidence du statut de construction socioculturelle de l’addiction, le fait que l’on pourrait devenir addict à tout et la critique de la notion de perte de contrôle parlent, entre autres, en faveur d’un scepticisme vis-à-vis de l’addiction, auquel appartiennent ceux qui pensent que l’addiction consiste dans un choix pleinement assumé de l’individu, au sein d’un mode de vie. Une telle conception, empreinte ou non de moralisme, impute cependant une responsabilité à l’individu addict, un stigmate social ou moral très fort, synonyme d’un moins bon accès au soin. C’est pour contrecarrer cette stigmatisation que s’est instaurée une reconfiguration de l’addiction autour de la notion de maladie : si celle-ci n’est pas neuve, elle va depuis peu de pair avec l’ambition que les maladies mentales, a fortiori l’addiction, ne soient plus considérées comme des « maladies à part » mais « comme les autres » au même titre que le diabète, l’asthme ou le cancer. Dans cette optique, les neurosciences revêtent une importance particulière puisqu’elles offrent à la psychiatrie la possibilité de s’objectiver en identifiant les substrats organiques – neurobiologiques – des troubles mentaux. Mais la question se pose de savoir si une maladie a besoin d’être organique pour être dite réelle. Il nous semble que certains chercheurs, dans leur lutte contre le mythe de l’addiction, risquent de tomber dans l’écueil inverse de la normalisation des maladies mentales. En outre, même si nous n’adhérons pas à la conception sceptique de l’addiction, il y a cependant certains éléments – mis en évidence par les partisans de l’addiction comme mythe – que nous pensons devoir être pris en compte dans une enquête sur la nature de l’addiction.

  8. Method of making electrodes for electrochemical cell. [Li-Al alloy

    Science.gov (United States)

    Kaun, T.D.; Kilsdonk, D.J.

    1981-07-29

    A method is described for making an electrode for an electrochemical cell in which particulate electrode-active material is mixed with a liquid organic carrier chemically inert with respect to the electrode-active material, mixing the liquid carrier to form an extrudable slurry. The liquid carrier is present in an amount of from about 10 to about 50% by volume of the slurry, and then the carrier is removed from the slurry leaving the electrode-active material. The method is particularly suited for making a lithium-aluminum alloy negative electrode for a high-temperature cell.

  9. The standardized EEG electrode array of the IFCN.

    Science.gov (United States)

    Seeck, Margitta; Koessler, Laurent; Bast, Thomas; Leijten, Frans; Michel, Christoph; Baumgartner, Christoph; He, Bin; Beniczky, Sándor

    2017-10-01

    Standardized EEG electrode positions are essential for both clinical applications and research. The aim of this guideline is to update and expand the unifying nomenclature and standardized positioning for EEG scalp electrodes. Electrode positions were based on 20% and 10% of standardized measurements from anatomical landmarks on the skull. However, standard recordings do not cover the anterior and basal temporal lobes, which is the most frequent source of epileptogenic activity. Here, we propose a basic array of 25 electrodes including the inferior temporal chain, which should be used for all standard clinical recordings. The nomenclature in the basic array is consistent with the 10-10-system. High-density scalp EEG arrays (64-256 electrodes) allow source imaging with even sub-lobar precision. This supplementary exam should be requested whenever necessary, e.g. search for epileptogenic activity in negative standard EEG or for presurgical evaluation. In the near future, nomenclature for high density electrodes arrays beyond the 10-10 system needs to be defined, to allow comparison and standardized recordings across centers. Contrary to the established belief that smaller heads needs less electrodes, in young children at least as many electrodes as in adults should be applied due to smaller skull thickness and the risk of spatial aliasing. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. The PD COMM trial: a protocol for the process evaluation of a randomised trial assessing the effectiveness of two types of SLT for people with Parkinson's disease.

    Science.gov (United States)

    Masterson-Algar, Patricia; Burton, Christopher R; Brady, Marian C; Nicoll, Avril; Clarke, Carl E; Rick, Caroline; Hughes, Max; Au, Pui; Smith, Christina H; Sackley, Catherine M

    2017-08-29

    The PD COMM trial is a phase III multi-centre randomised controlled trial whose aim is to evaluate the effectiveness and cost-effectiveness of two approaches to speech and language therapy (SLT) compared with no SLT intervention (control) for people with Parkinson's disease who have self-reported or carer-reported problems with their speech or voice. Our protocol describes the process evaluation embedded within the outcome evaluation whose aim is to evaluate what happened at the time of the PD COMM intervention implementation and to provide findings that will assist in the interpretation of the PD COMM trial results. Furthermore, the aim of the PD COMM process evaluation is to investigate intervention complexity within a theoretical model of how the trialled interventions might work best and why. Drawing from the Normalization Process Theory and frameworks for implementation fidelity, a mixed method design will be used to address process evaluation research questions. Therapists' and participants' perceptions and experiences will be investigated via in-depth interviews. Critical incident reports, baseline survey data from therapists, treatment record forms and home practice diaries also will be collected at relevant time points throughout the running of the PD COMM trial. Process evaluation data will be analysed independently of the outcome evaluation before the two sets of data are then combined. To date, there are a limited number of published process evaluation protocols, and few are linked to trials investigating rehabilitation therapies. Providing a strong theoretical framework underpinning design choices and being tailored to meet the complex characteristics of the trialled interventions, our process evaluation has the potential to provide valuable insight into which components of the interventions being delivered in PD COMM worked best (and what did not), how they worked well and why. ISRCTN Registry, ISRCTN12421382 . Registered on 18 April 2016.

  11. Protected electrodes for plasma panels

    International Nuclear Information System (INIS)

    Hall, S.W.

    1984-01-01

    A metal oxide coating is applied between the conductive base and the magnesium oxide dielectric of the input and/or erase electrode(s) in a plasma display device to prevent break-down of the dielectric

  12. Hybrid capacitor with activated carbon electrode, Ni(OH){sub 2} electrode and polymer hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Iwakura, Chiaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan); Sugoh, Nozomu; Iwasaki, Hideharu [Kurashiki Research Laboratory, Kuraray Co., Ltd., 2045-1 Sakazu, Kurashiki, Okayama 710-8691 (Japan)

    2006-06-19

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH){sub 2} positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities. (author)

  13. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    Science.gov (United States)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  14. 'C'estoit comme songe et mocquerie de parler de pardon.' Obstructie bij een pacificatiemaatregel (1566-1567

    Directory of Open Access Journals (Sweden)

    V. Soen

    2004-01-01

    Full Text Available ‘C’estoit comme songe et mocquerie de parler de pardon.’ Blocking a peace initiative (1566-1567After the Compromise of the Nobles and a spurt of iconoclasm in 1566, a general pardon — a collective amnesty — was repeatedly proposed as a strategy to pacify the Low Countries and reaffirm royal power. This article describes how and why the suggestion to issue a general pardon provoked policymakers in Brussels and Madrid to place major obstacles in its path, even though the collective amnesty was in fact drawn up as a salutary measure. Alternate reactions from key players such as Philip II, Margarita de Parma, the Duke of Alba and Cardinal Granvelle actually corresponded to well-defined patterns and conceptions of issuing a pardon.

  15. La création séparation comme œuvre de l'origine

    OpenAIRE

    Wénin, André

    2013-01-01

    La séparation est l'opération adéquate permettant de sortir du chaos. Or, en Genèse 1, quand Dieu met en œuvre son propre nom en disant Yehî, il sépare. Mais ce qui se passe ainsi au commencement a lieu aussi dans l'histoire. D'autres commencements s'y produisent, comme on le voit au début de l'aventure d'Abraham (Gn 12) ou de Moïse (Ex 3), dans l'exode du peuple sortant d'Égypte (Ex 14) et lors de la conclusion de l'alliance au Sinaï (Ex 19-20). A chaque fois, en intimant une séparation, la ...

  16. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  17. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  18. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  19. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  20. The VFAT3-Comm-Port: a complete communication port for front-end ASICs intended for use within the high luminosity radiation environments of the LHC

    International Nuclear Information System (INIS)

    Dabrowski, M.; Aspell, P.; Bonacini, S.; Ciaglia, D.; Kloukinas, K.; Lentdecker, G. De; Robertis, G. De; Kupiainen, M.; Talvitie, J.; Tuuva, T.; Leroux, P.; Tavernier, F.

    2015-01-01

    This paper presents the VFAT3 Comm-Port (V3CP), which offers a single port for all communication to and from a front-end ASIC within the HL-LHC environment. This includes synchronization to the LHC clock, slow control communication, the execution of fast control commands and the readout of data

  1. Essai de productions aquicoles intégrées : possibilités d'utilisation des boues de pisciculture comme amendement organique agricole

    Directory of Open Access Journals (Sweden)

    LESEL R.

    1976-07-01

    Full Text Available Des essais comparatifs ont été faits dans le but de déterminer l'efficacité des boues de pisciculture comme amendement organique. Il apparaît que ces boues constituent un amendement aussi efficace qu'un poids équivalent de fumier de ferme.

  2. La sociologie comme véhicule: une nouvelle méthode d’apprentissage dans l’éducation de la photographie documentaire

    NARCIS (Netherlands)

    Noordenbos, C.; Sorgedrager, B.; Teijmant, I.; Gerritsma, R.

    2007-01-01

    Faire de la recherche dans le monde des arts est d’actualité. On se rend compte de plus en plus que la recherche est une partie importante du processus de travail. Durant ces quatre dernières années, comme professeurs de photographie et de sociologie au Département de Photographie à l’École des Arts

  3. Le cobaye Cavia porcellus L., comme animal de boucherie au Cameroun

    Directory of Open Access Journals (Sweden)

    Ngou Ngoupayou, JD.

    1994-01-01

    Full Text Available Guinea Pig Cavia porcellus L. As A Meat Producing Animal In Cameroon. Guinea pig Cavia porcellus farming for meat production remains a marginalised activity in Cameroon in spite of the advantages this specie offers. With the view to promote its production, a national countrywide survey was carried out in order to evaluate the production systems and constraints. Traditional guinea pig farming appears to be a secondary household activity undertaken by small farmers basically women. The extensive production system which reveals no management practices, integrates very well in the agricultural systems (small livestock, food crops and natural forages production of the western highlands and southern forest zones of Cameroon. Guinea pig productivity remains low due to many constraints such as predation, uncontrolled breeding, inbreeding, poor feeding, negative selection and lack of veterinary care. Nevertheless, guinea pig farming plays an important role in the well being of low income village dwellers as food security, cash savings and socio-cultural values within the populations of South Cameroon. The promotion of its production requires an awareness of animal scientists, development authorities, as well as on station research if improved raising conditions.

  4. The microstructures and electrochemical performances of La0.6Gd0.2Mg0.2Ni3.0Co0.5-xAlx (x=0-0.5) hydrogen storage alloys as negative electrodes for nickel/metal hydride secondary batteries

    Science.gov (United States)

    Li, Rongfeng; Xu, Peizhen; Zhao, Yamin; Wan, Jing; Liu, Xiaofang; Yu, Ronghai

    2014-12-01

    La0.6Gd0.2Mg0.2Ni3.0Co0.5-xAlx (x = 0-0.5) hydrogen storage alloys were prepared by induction melting followed by annealing treatment at 1173 K for 8 h. The effects of substitution Al for Co on the microstructures and electrochemical performances were studied systematically. The structure analyses show that all alloys consist of multiphase structures such as (La, Mg)2Ni7 phase, (La, Mg) Ni3 phase and LaNi5 phase. The abundance of (La, Mg)2Ni7 phase decreases while the abundance of LaNi5 phase and (La, Mg)Ni3 phase increases directly as the Al content increasing. The electrochemical tests show that the maximum discharge capacity of alloy electrodes are almost unchanged when x ≤ 0.2 while the cyclic stability of the alloy electrode are improved significantly after proper amount of Al substitution for Co. The alloy electrode with x = 0.1 exhibits the better balance between discharge capacity and cycling life than any others. Moreover, at the discharge current density of 900 mA g-1, the high rate dischargeability (HRD) of the alloy electrodes decreases with increasing Al substitution and the relative analyses reveal that the charge transfer on alloy surface is more important than the hydrogen diffusion in alloy bulk for the kinetic properties of the alloy electrodes.

  5. La richesse de la flore comme levier pour maintenir la biodiversité dans le vignoble ?

    Directory of Open Access Journals (Sweden)

    Rabolin Chantal

    2017-01-01

    Full Text Available The intensification of crop management have led to an impoverishment of the biological diversity, resulting in the loss of ecosystem services. In viticulture, flora could play an interesting role because it can compensate the negative impacts of vine monoculture. The flora biodiversity favours fauna biodiversity, sustaining especially the presence of pollinating insects in the grapevine inter row sown with grass or legumes and area around grapevine plots. These aspects have been poorly studied until now. A grapevine experiment set in Alsace at INRA Colmar in the frame of the DEPHY-EXPE PEPSVI project was used to address these questions. Between 2014 and 2016, floristic survey was carried out on 4 sites, within an area of 500 m2 within each plot. On those sites, different grapevine systems based on integrated, biological, or biodynamic production were tested. The “presence/absence” method implemented to characterize flora composition and richness on the grapevine row, the inter-row sown with grass, and the tilled inter-row. Results showed that Asteraceae, Fabaceae and Poaceae were the most represented flora families. Asteraceae and Fabaceae may provide pollination ecosystem services if they are well managed and allowed to flower. Moreover, Fabaceae family increases soil fertility by symbiotic fixation. The role of environmental factors, i.e., semi-natural area like hedge or forest edge close to vineyard, and anthropic factors, i.e., soil cover management, were also characterized and shown as impacted on flora composition and richness under grapevine rows and between inter- rows. Flora characterization will continue in 2017 and 2018 to validate the present results and to assess the evolution of flora composition and richness in different climatic conditions.

  6. Plasma structures in front of a floated emissive electrode

    International Nuclear Information System (INIS)

    Ishiguro, S.; Sato, N.

    1993-01-01

    A particle simulation with plasma source is carried out on plasma structures generated by an electron emissive electrode floated in a collisionless plasma. When low-temperature, high-density thermal electrons are emitted, there appears a negative potential dip in front of the electrode, which is always accompanied by a low-frequency oscillation. On the other hand, three regimes of plasma structures appear for an electron beam injection. When a high-flux electron beam is injected, an electron sheath is generated in front of the electrode. The sheath reflects ions flowing to the electrode, providing an increase in the plasma density. When a low-flux electron beam is injected, no electron sheath is generated. When an intermediate-flux beam is injected, the electron sheath structure appears periodically in time. The lifetime of the sheath is proportional to the system length. These results of beam injection are almost consistent with those of a Q-machine experiment

  7. Carbon materials modified by plasma treatment as electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lota, Grzegorz; Frackowiak, Elzbieta [Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Tyczkowski, Jacek; Kapica, Ryszard [Technical University of Lodz, Faculty of Process and Environmental Engineering, Division of Molecular Engineering, Wolczanska 213, 90-924 Lodz (Poland); Lota, Katarzyna [Institute of Non-Ferrous Metals Branch in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznan (Poland)

    2010-11-15

    The carbon material was modified by RF plasma with various reactive gases: O{sub 2}, Ar and CO{sub 2}. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application. (author)

  8. Glucose Oxidation on Gold-modified Copper Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jieun; Pyo, Sung Gyu; Son, Hyungbin; Kim, Sookil [Chung-Ang Univ., Seoul (Korea, Republic of); Ahn, Sang Hyun; Son, Hyungbin [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-09-15

    The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

  9. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  10. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  11. Erosion on spark plug electrodes; Funkenerosion an Zuendkerzenelektroden

    Energy Technology Data Exchange (ETDEWEB)

    Rager, J.

    2006-07-01

    Durability of spark plugs is mainly determined by spark gap widening, caused by electrode wear. Knowledge about the erosion mechanisms of spark plug materials is of fundamental interest for the development of materials with a high resistance against electrode erosion. It is therefore crucial to identify those parameters which significantly influence the erosion behaviour of a material. In this work, a reliable and reproducible testing method is presented which produces and characterizes electrode wear under well-defined conditions and which is capable of altering parameters specifically. Endurance tests were carried out to study the dependence of the wear behaviour of pure nickel and platinum on the electrode temperature, gas, electrode gap, electrode diameter, atmospheric pressure, and partial pressure of oxygen. It was shown that erosion under nitrogen is negligible, irrespective of the material. This disproves all common mechanism discussed in the literature explaining material loss of spark plug electrodes. Based on this observation and the variation of the mentioned parameters a new erosion model was deduced. This relies on an oxidation of the electrode material and describes the erosion of nickel and platinum separately. For nickel, electrode wear is caused by the removal of an oxide layer by the spark. In the case of platinum, material loss occurs due to the plasma-assisted formation and subsequent evaporation of volatile oxides in the cathode spot. On the basis of this mechanism a new composite material was developed whose erosion resistance is superior to pure platinum. Oxidation resistant metal oxide particles were added to a platinum matrix, thus leading to a higher erosion resistance of the composite. However, this can be decreased by a side reaction, the separation of oxygen from the metal oxides, which effectively assists the oxidation of the matrix. This reaction can be suppressed by using highly stable oxides, characterized by a large negative Gibbs

  12. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.

    1985-01-01

    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  13. Direct extraction of negative lithium ions from a lithium plasma

    International Nuclear Information System (INIS)

    Wada, M.; Tsuda, H.; Sasao, M.

    1990-01-01

    Negative lithium ions (Li - ) were directly extracted from a lithium plasma in a multiline cusp plasma container. A pair of permanent magnets mounted near the extractor electrode created the filter magnetic field that separated the extraction region plasma from the main discharge plasma. The plasma electrode facing the extraction region plasma was biased with respect to the other parts of the chamber wall, which acted as discharge anodes. The larger filter magnetic field resulted larger Li - current. When the bias to the plasma electrode was several volts positive against the anode potential, extracted Li - current took the maximum for a fixed strength of the filter field. These dependences of Li - upon the filter magnetic field and the plasma electrode bias are similar to the ones of negative hydrogen ions

  14. L’individu comme problème phénoménologique chez Hannah Arendt et Michel Henry

    Directory of Open Access Journals (Sweden)

    Jan Cerny

    2012-12-01

    Full Text Available Cette étude, dans un premier temps, apporte des preuves à la possibilité d’interpréter la pensée politique de Hannah Arendt comme un projet phénoménologique original dont le but est d’élever l’apparence de la personne au rang de mode unique de l’apparaître. Puis elle présente brièvement la phénoménologie matérielle de Michel Henry dans laquelle le Soi individuel joue un rôle tout aussi central, puisqu’il est la condition de l’apparence de la vie et le fondement de tout apparaître. En conclusion, l’étude esquisse les conséquences d’une telle position privilégiée du sujet individuel pour la conception théorique de la réalité effective de l’apparaître, de même que pour les problèmes pratiques de l’action de l’homme dans le monde.

  15. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  16. Field testing of sulphide electrodes

    International Nuclear Information System (INIS)

    Singh, P.R.; Gaonkar, K.B.; Gadiyar, H.S.

    1993-01-01

    Sulphide ion selective electrodes have been developed at BARC, for determination of Ag + and S - ions directly and Cl - and CN - ions indirectly. The electrodes were tested for their use in sulphide environments in the EAD (Effluent After Dilution) stream at the Heavy Water Plant, Kota. The electrodes are suitable in the concentration range of 16000 ppm to 0.002 ppm, with a slope of 29-31 mV per decade change in the sulphide ion concentration. The response time is less than 10 seconds. These electrodes are reliable for continuous on-line use for a long period. (author). 7 refs., 11 figs., 1 tab

  17. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  18. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  19. A study of nitroxide polyradical/activated carbon composite as the positive electrode material for electrochemical hybrid capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-qiao; Zou, Ying; Xia, Yong-yao [Chemistry Department and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2007-01-01

    We present a new concept of the hybrid electrochemical capacitor technology in which a poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) nitroxide polyradical/activated carbon composite (PTMA-AC) is used as the positive electrode material and activated carbon is used as the negative electrode material. On the positive electrode, both reversible reduction and oxidation of nitroxide polyradical and non-faradic ion sorption/de-sorption of activated carbon are involved during charge and discharge process. The capacity of the composite electrode is 30% larger than that of the pure activated carbon electrode. A hybrid capacitor fabricated by the PTMA-AC composite positive electrode and the activated carbon negative electrode shows a good cycling life, it can be charged/discharged for over 1000 cycles with slight capacity loss. The hybrid capacitor also has a good rate capability, it maintains 80% of the initial capacity even at the high discharge current of up to 20C. (author)

  20. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.

    Science.gov (United States)

    DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg

    2016-06-01

    Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.

  1. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  2. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  3. Effect of preparation method of metal hydride electrode on efficiency of hydrogen electrosorption process

    Energy Technology Data Exchange (ETDEWEB)

    Giza, Krystyna [Czestochowa University of Technology (Poland). Faculty of Production Engineering and Materials Technology; Drulis, Henryk [Trzebiatowski Institute of Low Temperatures and Structure Research PAS, Wroclaw (Poland)

    2016-02-15

    The preparation of negative electrodes for nickel-metal hydride batteries using LaNi{sub 4.3}Co{sub 0.4}Al{sub 0.3} alloy is presented. The constant current discharge technique is employed to determine the discharge capacity, the exchange current density and the hydrogen diffusion coefficient of the studied electrodes. The electrochemical performance of metal hydride electrode is strongly affected by preparation conditions. The results are compared and the advantages and disadvantages of preparation methods of the electrodes are also discussed.

  4. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  5. EDM Electrode for Internal Grooves

    Science.gov (United States)

    Ramani, V.; Werner, A.

    1985-01-01

    Electroerosive process inexpensive alternative to broaching. Hollow brass electrodes, soldered at one end to stainless-steel holding ring, held in grooves in mandrel. These electrodes used to machine grooves electrically in stainless-steel tube three-eights inch (9.5 millimeters) in diameter. Tool used on tubes already in place in equipment.

  6. Making EDM Electrodes By Stereolithography

    Science.gov (United States)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  7. Surface-modified electrodes (SME)

    NARCIS (Netherlands)

    Schreurs, J.P.G.M.; Barendrecht, E.

    1984-01-01

    This review deals with the literature (covered up to August 1983), the characterization and the applications of Surface-Modified Electrodes (SME). As a special class of SME's, the Enzyme-Modified Electrode (EME) is introduced. Three types of modification procedures are distinguished; i.e. covalent

  8. Storage-battery electrodes. [preparation

    Energy Technology Data Exchange (ETDEWEB)

    1961-12-29

    Two incompatible thermoplastic resins are mixed with a powdered electrochemical active substance. The substance may be, for example, an oxide of cadmium, iron, lead, or zinc or nickel hydroxide. After the mixture is shaped into elements which are inserted into conducting sheaths for an electrode, the one resin is washed out to form a porous electrode. (RWR)

  9. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  10. Improved photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  11. La danse comme réécriture « géopoétique » de l’espace ?

    OpenAIRE

    Torrent, Céline

    2017-01-01

    C’est à partir d’une perspective littéraire que nous avons fait le choix d’aborder la thématique de la « géographie de la danse ». Ainsi, ce n’est pas tant sur la manière dont la géographie comme science peut étudier la danse que nous nous pencherons, que sur la façon dont la danse, comprise comme création choré­gra­phique, peut s’approprier la géo-graphie, prise au sens littéral d’écriture de l’espace terrestre, de graphie propre à l’espace.Plus précisément, notre étude s’inscrira dans le ca...

  12. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  13. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  14. Adsorption at electrodes

    International Nuclear Information System (INIS)

    Hubbard, A.T.; Ping Gao

    1991-01-01

    Surface electrochemical studies are described and summarized in which atomic, ionic or molecular layers were allowed to form from aqueous solutions at well-defined Pt(111) surfaces. The resulting adsorbed layers were chemisorbed in most cases and stable in vacuum, permitting identification and quantitation by Auger spectroscopy, EELS, LEED and electrochemistry. Adsorbed atomic, ionic, or molecular layers formed at metal-solution interfaces frequently display long-range order. Molecular properties of the adsorbed layers correlate with their electrochemical properties. The molecular orientation of organic adsorbates was deduced from packing density measurements, supplemented with vibrational spectra. Interfacial variables such as electrode potential have a strong influence on interfacial structure along with the nature and mode of surface attachment of adsorbates. The angular distribution of Auger electron emission from metal single crystals and atomic adsorbed layers has proved to be useful for direct imaging of surface crystal and interfacial structure. (author). 14 refs, 11 figs

  15. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  16. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  17. Daily Exposure to Negative Campaign Messages Decreases Same-Sex Couples’ Psychological and Relational Well-Being

    OpenAIRE

    Frost, D; Fingerhut, A

    2016-01-01

    Throughout history, the rights of stigmatized minority group members have been subject to popular debate and voter referenda. The impact of the resulting devaluing social discourse on the well-being of minority group members remains unknown. For example, exposure to the discourse leading up to decisions on same-sex marriage may have negative consequences for sexual minority individuals and same-sex couples. We examined the impact of exposure to same-sex marriage campaign messages (e.g., comme...

  18. Habiter la mémoire à la frontière de l’oubli : la maison comme seuil

    Directory of Open Access Journals (Sweden)

    Joana Duarte Bernardes

    2010-04-01

    Full Text Available Selon Gaston Bachelard, la maison est tantôt le coffre de nos souvenirs, tantôt un état d’âme. Cela veut dire que, même avant de devenir figure onirique ou lieu imaginé de notre passé-futur, la maison abrite et rend possible le processus de la mémoire. Et, parce qu’elle révèle une intimité, soit aux éléments extérieurs, soit aux détails intérieurs, elle fait toujours figure de présent. Renfermant un univers personnel et familier, pourtant, en même temps, exhibant des mécanismes d’ouverture, la maison trace une ligne entre le soi et les autres, entre le groupe et le pluriel. Avec ses murs, ses fenêtres et ses portes, la maison permet le dialogue. La porte, par exemple, s’ouvre à l’ami bienvenu et se resserre face à l’ennemi, ce qui fait de la maison la place de l’hospitalité aussi bien que de l’hostilité. Enfin, elle comporte le seuil, marque distinctive de l’ensemble sémantique de la maison, parce qu’il est le corridor que l’on traverse aussi bien pour entrer que pour sortir. Toujours début et fin, le seuil surpasse la face de Janus en obligeant la confrontation des deux faces, comme si l’identité ne pouvait rien voir sans l’altérité. C’est notre objectif d’éclairer le rôle que la maison accomplit comme grande mémoire de nos souvenirs, devant laquelle le seuil signale une ambiguïté pas toujours pacifique, soit du point de vue du sujet qui habite, soit du point de vue de celui qui frappe à la porte: l’hôte, l’intrus, l’étranger.  According to Gaston Bachelard, the house is sometimes our box of souvenirs, sometimes a state of mind. It means that even before becoming a dream figure or an imagined place of our past-future, the house all at once holds and makes possible the process of memory. And because the house reveals intimacy, either to exterior elements or to interior details, it always is an actor of the present. While enclosing a personal and familiar universe, it

  19. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    Science.gov (United States)

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions. [Patent application

    Science.gov (United States)

    Mrazek, F.C.; Smaga, J.A.; Battles, J.E.

    1981-01-19

    A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  1. Porous carbonaceous electrode structure and method for secondary electrochemical cell

    Science.gov (United States)

    Kaun, Thomas D.

    1977-03-08

    Positive and negative electrodes are provided as rigid, porous carbonaceous matrices with particulate active material fixedly embedded. Active material such as metal chalcogenides, solid alloys of alkali metal or alkaline earth metals along with other metals and their oxides in particulate form are blended with a thermosetting resin and a solid volatile to form a paste mixture. Various electrically conductive powders or current collector structures can be blended or embedded into the paste mixture which can be molded to the desired electrode shape. The molded paste is heated to a temperature at which the volatile transforms into vapor to impart porosity as the resin begins to cure into a rigid solid structure.

  2. ELECTROD FLUOR-SELECTIV

    Directory of Open Access Journals (Sweden)

    Mariana DÎRU

    2018-03-01

    Full Text Available A fost preparat un senzor anionic specific, bazat pe pivalatul trinuclear al cromului(III ca material electro­activ încorporat în membrana PVC plastifiată. Senzorul prezintă răspuns Nernstian (55,78 mV/decadă în intervalul de concentrație 10-1-10-4 mol/L cu limita de detecție 2,0∙10-5 mol/L pentru anionul fluorură. Domeniul optim de pH de funcţionare a electrodului asamblat este ˃5. Senzorul dat are un timp de răspuns de 30-60 s și reproductibilitatea rezultatelor se menține timp de 3 luni. Coeficienții potențiometrici ai selectivității au fost determinați prin metoda soluțiilor separate. A fost realizată aplicarea acestor electrozi la analiza pastei de dinți ce conține fluorură și rezultatele experimentale au fost comparate cu datele de pe prospect.FLUORIDE-SELECTIVE ELECTRODEA specific anionic sensor has been prepared, based on trinuclearchromium(III pivalate as sensing material incorpo­rated into the plasticized PVC-membrane. The sensor exhibited Nernstian response (55,78 mV/decade in the region between 10-1-10-4 mol/L with a detection limit of 2,0∙10-5 mol/L for fluoride. The working pH of the electrode was in the 5-6 range. The sensor has a response time 30-60 s and can be used for least 3 month. The potentiometric selectivity coefficients were determined by separate solution method. Application of these electrodes to the analysis of toothpaste containing fluoride has been realized and experimental results have been compared with the data on the prospectus.

  3. Studies of pyrrole black electrodes as possible battery positive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mengoli, G.; Musiani, M.M.; Fleischmann, M.; Pletcher, D.

    1984-05-01

    It is shown that a polypyrrole, pyrrole black, may be formed anodically in several aqueous acids. The polypyrrole film shows a redox couple at less positive potentials than that required to form the film and the charge associated with these reduction and oxidation processes together with their stabilty to cycling varies with the anion in solution and the potential where the polypyrrole is formed; over-oxidation of the film caused by taking its potential too positive has a particularly disadvantageous affect. In the acids HBr and HI, the polypyrrole films can act as a storage medium for Br/sub 2/ or I/sub 2/ so that they may be used as a substrate for a X/sub 2//X/sup -/ electrode. Such electrodes may be charge/discharge cycled and the pyrrole/Br/sub 2/ electrode shows promise as a battery positive electrode.

  4. Surgical implications of perimodiolar cochlear implant electrode design: avoiding intracochlear damage and scala vestibuli insertion.

    Science.gov (United States)

    Briggs, R J; Tykocinski, M; Saunders, E; Hellier, W; Dahm, M; Pyman, B; Clark, G M

    2001-09-01

    To review the mechanisms and nature of intracochlear damage associated with cochlear implant electrode array insertion, in particular, the various perimodiolar electrode designs. Make recommendations regarding surgical techniques for the Nucleus Contour electrode to ensure correct position and minimal insertion trauma. The potential advantages of increased modiolar proximity of intracochlear multichannel electrode arrays are a reduction in stimulation thresholds, an increase in dynamic range and more localized neural excitation. This may improve speech perception and reduce power consumption. These advantages may be negated if increased intracochlear damage results from the method used to position the electrodes close to the modiolus. A review of the University of Melbourne Department of Otolaryngology experience with temporal bone safety studies using the Nucleus standard straight electrode array and a variety of perimodiolar electrode array designs; comparison with temporal bone insertion studies from other centres and postmortem histopathology studies reported in the literature. Review of our initial clinical experience using the Nucleus Contour electrode array. The nature of intracochlear damage resulting from electrode insertion trauma ranges from minor, localized, spiral ligament tear to diffuse organ of Corti disruption and osseous spiral lamina fracture. The type of damage depends on the mechanical characteristics of the electrode array, the stiffness, curvature and size of the electrode in relation to the scala, and the surgical technique. The narrow, flexible, straight arrays are the least traumatic. Pre-curved or stiffer arrays are associated with an incidence of basilar membrane perforation. The cochleostomy must be correctly sited in relation to the round window to ensure scala tympani insertion. A cochleostomy anterior to the round window rather than inferior may lead to scala media or scala vestibuli insertion. Proximity of electrodes to the modiolus

  5. La protection de la jeunesse comme légitimation du contrôle des médias

    Directory of Open Access Journals (Sweden)

    Jean-Matthieu Méon

    2004-09-01

    Full Text Available Cet article propose une analyse comparée des dispositifs créés en France et aux Etats-Unis au lendemain de la Seconde Guerre Mondiale pour contrôler le contenu des publications destinées à la jeunesse. Il présente les mobilisations qui ont dénoncé le danger des publications « démoralisatrices » et « criminogènes » et la diversité des dispositifs alors mis en place, public en France et privé aux Etats-Unis. Ce faisant, il souligne l’importance du discours de protection de la jeunesse comme légitimation d’un contrôle des médias. L’approche comparée démontre aussi que les rapports pouvoirs / médias doivent être replacés dans leurs contextes historiques, nationaux, sociaux et politiques.Este artículo es un estudio comparado de los dispositivos instaurados tras la II Guerra Mundial en Francia y en Estados Unidos para controlar el contenido de las publicaciones destinadas a la juventud. Analiza la movilización de ciertos grupos, que denunciaron el peligro de esas publicaciones consideradas “desmoralizadoras” y “criminógenas”, y la diversidad de los dispositivos creados entonces, estatales en Francia y privados en EE. UU. De hecho, subraya la importancia del discurso de protección de la juventud para legitimar el control de los medios de comunicación. El enfoque comparativo demuestra también que las relaciones poderes / medios de comunicación no se pueden entender sin tomar en cuenta el contexto histórico, nacional, social y político.This paper proposes a comparative analysis of the systems created in France and in the United States after the Second World War in order to control the content of youth publications. It presents the mobilizations that denounced the danger of “demoralizing” and “crime-inducing” publications and the diversity of the systems thus created – public control in France, private control in the United States. So, this paper emphasises the importance of the discourses

  6. Electrode and limiter biasing experiments on the tokamak ISTTOK

    International Nuclear Information System (INIS)

    Silva, C.; Figueiredo, H.; Cabral, J.A.C.; Nedzelsky, I.; Varandas, C.A.F.

    2003-01-01

    In this contribution limiter and electrode biasing experiments are compared, in particular in what concerns their effects on the edge plasma parameters. For electrode AC bias a substantial increase (>50%) in the average plasma density is observed with positive voltage, without significant changes in the edge density, leading to steeper profiles. The ratio n e /Hα also increases significantly (>20%), indicating an improvement in gross particle confinement. The plasma potential profile is strongly modified as both the edge E r and its shear increase significantly. For positive limiter bias an increase in the average plasma density and the radiation losses is observed, resulting in almost no modification, or a slight, in particle confinement. Preliminary results of simultaneous electrode and limiter bias experiments show that the control of the plasma potential profile is very limited, since negative voltages do not modify the plasma parameters significantly. (author)

  7. Fractals in several electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunyong, E-mail: zhangchy@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); Wu, Jingyu [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fu, Degang [Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2014-09-15

    Highlights: • Fractal geometry was employed to characterize three important electrode materials. • The surfaces of all studied electrodes were proved to be very rough. • The fractal dimensions of BDD and ACF were scale dependent. • MMO film was more uniform than BDD and ACF in terms of fractal structures. - Abstract: In the present paper, the fractal properties of boron-doped diamond (BDD), mixed metal oxide (MMO) and activated carbon fiber (ACF) electrode have been studied by SEM imaging at different scales. Three materials are self-similar with mean fractal dimension in the range of 2.6–2.8, confirming that they all exhibit very rough surfaces. Specifically, it is found that MMO film is more uniform in terms of fractal structure than BDD and ACF. As a result, the intriguing characteristics make these electrodes as ideal candidates for high-performance decontamination processes.

  8. Electrode materials for rechargeable batteries

    Science.gov (United States)

    Abouimrane, Ali; Amine, Khalil

    2015-04-14

    Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.

  9. Modification of an enzyme electrode by electrodeposition of hydroquinone for use as the anode of a glucose fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Takashi; Yamazaki, Hiraku; Kondo, Mizuki [Department of Bioengineering, Faculty of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka 940-2188 (Japan); Shimomura, Masato, E-mail: smasato@vos.nagaokaut.ac.jp [Department of Bioengineering, Faculty of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka 940-2188 (Japan)

    2012-06-15

    An electrode having immobilized glucose oxidase (GOx) was modified with polyhydroquinone (PHQ), which was employed as an electron-transferring mediator, by a simple electrochemical method and used as the anode of a glucose fuel cell. The GOx-immobilized electrode was fabricated by attaching polyallylamine (PAAm) and then GOx covalently onto a gold electrode covered with a monolayer formed with 3-mercaptopropionic acid. Subsequently, the GOx-immobilized electrode (GOx/PAAm electrode) was modified with PHQ by electrodeposition of hydroquinone. The cyclic voltammogram of the modified electrode (PHQ/GOx/PAAm electrode) in a phosphate buffer solution (0.10 M, pH 7.0) showed redox peaks due to the electrodeposited PHQ, whereas no redox peaks were found for the GOx/PAAm electrode in the buffer solution containing p-benzoquinone (BQ). The onset potential of glucose oxidation with the PHQ/GOx/PAAm electrode became ca. 0.2 V more negative than that observed with the GOx/PAAm electrode in the presence of BQ. The glucose fuel cell equipped with the PHQ/GOx/PAAm electrode as an anode gave a 3 times larger power output than the cell with the GOx/PAAm electrode using dissolved quinone as the mediator.

  10. Composite Electrodes for Electrochemical Supercapacitors

    OpenAIRE

    Li, Jun; Yang, QuanMin; Zhitomirsky, Igor

    2010-01-01

    Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with to...

  11. Water desalination using capacitive deionization with microporous carbon electrodes.

    Science.gov (United States)

    Porada, S; Weinstein, L; Dash, R; van der Wal, A; Bryjak, M; Gogotsi, Y; Biesheuvel, P M

    2012-03-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positively charged anode. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Here we report the use for CDI of carbide-derived carbon (CDC), a porous material with well-defined and tunable pore sizes in the sub-nanometer range. When comparing electrodes made with CDC with electrodes based on activated carbon, we find a significantly higher salt adsorption capacity in the relevant cell voltage window of 1.2-1.4 V. The measured adsorption capacity for four materials tested negatively correlates with known metrics for pore structure of the carbon powders such as total pore volume and BET-area, but is positively correlated with the volume of pores of sizes <1 nm, suggesting the relevance of these sub-nanometer pores for ion adsorption. The charge efficiency, being the ratio of equilibrium salt adsorption over charge, does not depend much on the type of material, indicating that materials that have been identified for high charge storage capacity can also be highly suitable for CDI. This work shows the potential of materials with well-defined sub-nanometer pore sizes for energy-efficient water desalination. © 2012 American Chemical Society

  12. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  13. Influence of the RF electrode cleanliness on plasma characteristics and dust-particle generation in methane dusty plasmas

    Science.gov (United States)

    Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.

    2018-01-01

    The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.

  14. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  15. The kinetics of porous insertion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Atlung, S; West, K [British Columbia Univ., Vancouver (Canada)

    1989-05-01

    The principles of porous electrodes are discussed as well as the discharge of the insertion compound, the working potential, transport in the electrolyte, the time dependence of the electrolyte concentration, and modeling of the porous electrode. The simulation of a TiS2 porous electrode and the composite insertion electrode are considered as well. The influence of electrode thickness and porosity in a typical porous TiS2 electrode is revealed. It is shown that the use of insertion compounds as battery electrodes is limited by the requirement that the inserted ion must be distributed in the interior of the insertion compound particle. 15 refs.

  16. Stimulation and recording electrodes for neural prostheses

    CERN Document Server

    Pour Aryan, Naser; Rothermel, Albrecht

    2015-01-01

    This book provides readers with basic principles of the electrochemistry of the electrodes used in modern, implantable neural prostheses. The authors discuss the boundaries and conditions in which the electrodes continue to function properly for long time spans, which are required when designing neural stimulator devices for long-term in vivo applications. Two kinds of electrode materials, titanium nitride and iridium are discussed extensively, both qualitatively and quantitatively. The influence of the counter electrode on the safety margins and electrode lifetime in a two electrode system is explained. Electrode modeling is handled in a final chapter.

  17. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  18. Extraction electrode geometry for a calutron

    International Nuclear Information System (INIS)

    Veach, A.M.; Bell, W.A. Jr.

    1975-01-01

    This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source

  19. Magnetic field effects on the open circuit potential of ferromagnetic electrodes in corroding solutions.

    Science.gov (United States)

    Dass, Amala; Counsil, Joseph A; Gao, Xuerong; Leventis, Nicholas

    2005-06-02

    Magnetic fields shift the open circuit potential (OCP) of ferromagnetic electrodes (Fe, Co, and Ni) in corroding solutions. The OCP changes we observe (a) follow the series Fe>Co>Ni; (b) increase with the magnetic flux density; (c) reach a maximum with disk electrodes approximately 1 mm in diameter; and (d) depend on the orientation of the electrode. We report that when the surface of the electrode is oriented parallel (theta = 90 degrees) or perpendicular (theta = 0 degrees) to the magnetic field, the open circuit potential moves in opposite directions (positive and negative, respectively) with the largest changes occurring when the electrode surface is parallel to the magnetic field. Nonconvective sleeve electrodes produce the same behavior. The overall experimental evidence suggests that the magnetic field changes the OCP by modifying the surface concentrations of the paramagnetic participants in the corrosion process of the ferromagnetic electrode by species in solution; this in turn is accomplished by imposing a field-gradient driven mode of mass transfer upon paramagnetic species in solution (magnetophoresis). Simulations of the magnetic field around the ferromagnetic electrode at the two extreme orientations considered here show that in one case (theta = 90 degrees) field gradients actually repel, while in the other case (theta = 0 degrees) they attract paramagnetic species in the vicinity of the electrode.

  20. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide

    International Nuclear Information System (INIS)

    Hori, Y.; Ito, H.; Okano, K.; Nagasu, K.; Sato, S.

    2003-01-01

    Silver-coated ion exchange membrane electrodes (solid polymer electrolyte, SPE) were prepared by electroless deposition of silver onto ion exchange membranes. The SPE electrodes were used for carbon dioxide (CO 2 ) reduction with 0.2 M K 2 SO 4 as the electrolyte with a platinum plate (Pt) for the counterelectrode. In an SPE electrode system prepared from a cation exchange membrane (CEM), the surface of the SPE was partly ruptured during CO 2 reduction, and the reaction was rapidly suppressed. SPE electrodes made of an anion exchange membrane (SPE/AEM) sustained reduction of CO 2 to CO for more than 2 h, whereas, the electrode potential shifted negatively during the electrolysis. The reaction is controlled by the diffusion of CO 2 through the metal layer of the SPE electrode at high current density. Ultrasonic radiation, applied to the preparation of SPE/AEM, was effective to improve the electrode properties, enhancing the electrolysis current of CO 2 reduction. Observation by a scanning electron microscope (SEM) showed that the electrode metal layer became more porous by the ultrasonic radiation treatment. The partial current density of CO 2 reduction by SPE/AEM amounted to 60 mA cm -2 , i.e. three times the upper limit of the conventional electrolysis by a plate electrode. Application of SPE device may contribute to an advancement of CO 2 fixation at ambient temperature and pressure

  1. Negative-ion states

    International Nuclear Information System (INIS)

    Compton, R.N.

    1982-01-01

    In this brief review, we discuss some of the properties of atomic and molecular negative ions and their excited states. Experiments involving photon reactions with negative ions and polar dissociation are summarized. 116 references, 14 figures

  2. Negative ion detachment processes

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1990-10-01

    This paper discusses the following topics: H - and D - collisions with atomic hydrogen; collisional decomposition of SF 6 - ; two-electron loss processes in negative ion collisions; associative electron detachment; and negative ion desorption from surfaces

  3. Sentential Negation in English

    Science.gov (United States)

    Mowarin, Macaulay

    2009-01-01

    This paper undertakes a detailed analysis of sentential negation in the English language with Chomsky's Government-Binding theory of Transformational Grammar as theoretical model. It distinguishes between constituent and sentential negation in English. The essay identifies the exact position of Negation phrase in an English clause structure. It…

  4. L’héritage de l’immigration postcoloniale comme expérience vécue

    Directory of Open Access Journals (Sweden)

    Ahmed Boubeker

    2007-09-01

    Full Text Available L’émergence de « l’immigration » dans l’espace public français pose la question essentielle des malentendus entre histoire et mémoire et souligne la nécessité d’une révision critique du grand récit national. Le lien entre mémoire collective et mémoire nationale est remis en cause par ces débordements qui font que d’autres récits confinés jusqu’alors au registre de mémoires clandestines trouvent place sur la scène médiatique et culturelle. A l’heure où une Cité Nationale de l’Histoire de l’Immigration ouvre ses portes, cet article interroge l’héritage de l’immigration comme expérience vécue. Il tente de mettre en perspectives les conditions de reconnaissance d’une mémoire politique des luttes des oubliés de l’histoire favorisant une remise en cause des anciennes hiérarchies dans l’écriture de l’histoire. Mais il souligne aussi les travers possibles d’une patrimonialisation de l’immigration qui, loin d’une reconnaissance effective, pourrait participer d’une instrumentalisation publique de la mémoire.La irrupción de la «inmigración» en el espacio público francés plantea la pregunta de las confusiones entre la historia y la memoria y subraya la necesidad de una revisión crítica del gran relato nacional. La relación entre memoria colectiva y memoria nacional es cuestionada por sus excesos, que han permitido a otros relatos confinados hasta ahora en el registro de las memorias clandestinas consiguir un lugar en la escena mediática y cultural. En el momento en que se inaugura la Cité Nationale de l’Histoire de l’Immigration, este artículo analiza la herencia de la inmigración como experiencia vivida. Intenta poner en perspectiva las condiciones de reconocimiento de una memoria política de los olvidados de la historia, que cuestiona las antiguas jerarquías en la escritura de la historia. Pero subraya también los defectos posibles de una patrimonialización de la

  5. Désir, besoin, dépendance : l'addiction comme (épreuve de la modernité

    Directory of Open Access Journals (Sweden)

    Rita Di Lorenzo

    2016-04-01

    Full Text Available La frontière entre la santé et la pathologie est un lieu fascinant et dangereux, au caractère poreux et riche de familiarités des deux côtés, inavouées et coûteuses. Le terme d’addiction semble s’installer précisément sur cette frontière, gagnant en étendue médiatique ce qu’il perd en précision nosographique ; ainsi, aujourd’hui, nous serions « tous addicts » – au sucre, au téléphone portable, au chocolat, au café, aux soldes, à la chirurgie esthétique, à Facebook, à l’amour, cette liste pouvant être continuée par chacun d’entre nous puisque nous avons tous fait, nous faisons et ferons tous, l’expérience de la force des (mauvaises habitudes, du désir, voire de la pulsion, de l’abus et de la dépendance. Notre société contemporaine semble stimuler cette expérience, en multipliant tant les objets addictogènes que les comportements addictifs : d’une part par le statut attribué aux biens sériels, d’autre part par la dimension pulsionnelle revendiquée dans les habitudes de consommation. Société du plaisir, peut-être plus hédoniste qu’épicurienne, l’époque contemporaine impose le plaisir et son désir comme nouvelle norme. Dès lors, quel est notre rapport à la pulsion, au désir compulsif, au dépassement des limites imposées aux besoins et aux envies socialement acceptables ? Comment notre société régule le désir ? Comment la politique et les médias concourent-ils à le structurer, voire à le prescrire ? Quels mécanismes à l’œuvre dans l’addiction contredisent cette prescription, et surtout : s’agit-il véritablement d’une contradiction ? Notre culture de performance et satisfaction rapides peut effectivement expliquer certaines dépendances induites par leur objet ; néanmoins, la véritable addiction mentale se nourrit d’éléments plus profondément constitutifs de l’identité de l’homme moderne et contemporain : avant tout, la fragilité des acquis, la

  6. Microfabrication process for patterning metallic lithium encapsulated electrodes

    International Nuclear Information System (INIS)

    Oukassi, Sami; Dunoyer, Nicolas; Salot, Raphael; Martin, Steve

    2009-01-01

    This work presents recent achievements concerning thin film encapsulation of metallic lithium negative electrode. In the context of this study, the encapsulation stack includes polymer and dielectric layers combined in such way to optimize barrier performances of the whole structure towards oxygen and water vapor permeation. The first part of this work is dedicated to the description of the barrier stack architecture and properties. A second part presents the application of a microfabrication process to the metallic lithium negative electrode and barrier stack so as to have very small features (100 μm x 100 μm patterns). The microfabrication process includes several steps of photolithography and etching (dry and wet) blocks, which allows us to reach the target critical dimensions. These results show a method of patterning functional metallic lithium. It demonstrates the feasibility of energy sources miniaturization which is an important issue in the field of autonomous and wireless sensor networks.

  7. Negative ion sources

    International Nuclear Information System (INIS)

    Ishikawa, Junzo; Takagi, Toshinori

    1983-01-01

    Negative ion sources have been originally developed at the request of tandem electrostatic accelerators, and hundreds of nA to several μA negative ion current has been obtained so far for various elements. Recently, the development of large current hydrogen negative ion sources has been demanded from the standpoint of the heating by neutral particle beam injection in nuclear fusion reactors. On the other hand, the physical properties of negative ions are interesting in the thin film formation using ions. Anyway, it is the present status that the mechanism of negative ion action has not been so fully investigated as positive ions because the history of negative ion sources is short. In this report, the many mechanisms about the generation of negative ions proposed so far are described about negative ion generating mechanism, negative ion source plasma, and negative ion generation on metal surfaces. As a result, negative ion sources are roughly divided into two schemes, plasma extraction and secondary ion extraction, and the former is further classified into the PIG ion source and its variation and Duoplasmatron and its variation; while the latter into reflecting and sputtering types. In the second half of the report, the practical negative ion sources of each scheme are described. If the mechanism of negative ion generation will be investigated more in detail and the development will be continued under the unified know-how as negative ion sources in future, the development of negative ion sources with which large current can be obtained for any element is expected. (Wakatsuki, Y.)

  8. Effect of cesium seeding on hydrogen negative ion volume production

    International Nuclear Information System (INIS)

    Bacal, M.; Balghiti-Sube, F. El; Elizarov, L. I.; Tontegode, A. J.

    1998-01-01

    The effect of cesium vapor partial pressure on the plasma parameters has been studied in the dc hybrid negative ion source ''CAMEMBERT III.'' The cesium vapor pressure was varied up to 10 -5 Torr and was determined by a surface ionization gauge in the absence of the discharge. The negative ion relative density measured by laser photodetachment in the center of the plasma extraction region increases by a factor of four when the plasma is seeded with cesium. However the plasma density and the electron temperature (determined using a cylindrical electrostatic probe) are reduced by the cesium seeding. As a result, the negative ion density goes up by a factor of two at the lowest hydrogen pressure studied. The velocity of the directed negative ion flow to the plasma electrode, determined from two-laser beam photodetachment experiments, appears to be affected by the cesium seeding. The variation of the extracted negative ion and electron currents versus the plasma electrode bias will also be reported for pure hydrogen and cesium seeded plasmas. The cesium seeding leads to a dramatic reduction of the electron component, which is consistent with the reduced electron density and temperature. The negative ion current is enhanced and a goes through a maximum at plasma electrode bias lower than 1 V. These observations lead to the conclusion that the enhancement of pure volume production occurs in this type of plasma. Possible mechanisms for this type of volume process will be discussed

  9. Polemic and Descriptive Negations

    DEFF Research Database (Denmark)

    Horslund, Camilla Søballe

    2011-01-01

    to semantics and pragmatics, negations can be used in three different ways, which gives rise to a typology of three different types of negations: 1) the descriptive negation, 2) the polemic negation, and 3) the meta-linguistic negation (Nølke 1999, 4). This typology illuminates the fact that the negation...... common in certain social context or genres, while polemic negations are more likely to come up in other genres and social settings. Previous studies have shown a relation between articulatory prominence and register, which may further inform the analysis. Hence, the paper investigates how articulatory...... prominence and register may either work in concert or oppose each other with respect to the cues they provide for the interpretation....

  10. Detecting aberrant opioid behavior in the emergency department: a prospective study using the screener and Opioid Assessment for Patients with Pain-Revised (SOAPP®-R), Current Opioid Misuse Measure (COMM)™, and provider gestalt.

    Science.gov (United States)

    Varney, Shawn M; Perez, Crystal A; Araña, Allyson A; Carey, Katherine R; Ganem, Victoria J; Zarzabal, Lee A; Ramos, Rosemarie G; Bebarta, Vikhyat S

    2018-03-03

    Emergency department (ED) providers have limited time to evaluate patients at risk for opioid misuse. A validated tool to assess the risk for aberrant opioid behavior may mitigate adverse sequelae associated with prescription opioid misuse. We sought to determine if SOAPP-R, COMM, and provider gestalt were able to identify patients at risk for prescription opioid misuse as determined by pharmacy records at 12 months. We conducted a prospective observational study of adult patients in a high volume US ED. Patients completed the SOAPP-R and COMM, and treating EM providers evaluated patients' opioid misuse risk. We performed variable-centered, person-centered, and hierarchical cluster analyses to determine whether provider gestalt, SOAPP-R, or COMM, or a combination, predicted higher misuse risk. The primary outcome was the number of opioid prescriptions at 12 months according to pharmacy records. For 169 patients (mean age 43 years, 51% female, 73% white), correlation analysis showed a strong relationship between SOAPP-R and COMM with predicting the number of opioid prescriptions dispensed at 12 months. Provider scores estimating opioid misuse were not related to SOAPP-R and only weakly associated with COMM. In our adjusted regression models, provider gestalt and SOAPP-R uniquely predicted opioid prescriptions at 6 and 12 months. Using designated cutoff scores, only SOAPP-R detected a difference in the number of opioid prescriptions. Cluster analysis revealed that provider gestalt, SOAPP-R, and COMM scores jointly predicted opioid prescriptions. Provider gestalt and self-report instruments uniquely predicted the number of opioid prescriptions in ED patients. A combination of gestalt and self-assessment scores can be used to identify at-risk patients who otherwise miss the cutoff scores for SOAPP-R and COMM.

  11. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  12. RETGEM with polyvinylchloride (PVC) electrodes

    CERN Document Server

    Razin, V I; Reshetin, A I; Filippov, S N

    2009-01-01

    This paper presents a new design of the RETGEM (Resistive Electrode Thick GEM) based on electrodes made of a polyvinylchloride material (PVC). Our device can operate with gains of 10E5 as a conventional TGEM at low counting rates and as RPC in the case of high counting rates without of the transit to the violent sparks. The distinct feature of present RETGEM is the absent of the metal coating and lithographic technology for manufacturing of the protective dielectric rms. The electrodes from PVC permit to do the holes by a simple drilling machine. Detectors on a RETGEM basis could be useful in many fields of an application requiring a more cheap manufacturing and safe operation, for example, in a large neutrino experiments, in TPC, RICH systems.

  13. Composite Electrodes for Electrochemical Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yang QuanMin

    2010-01-01

    Full Text Available Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7–15 mg cm−2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC. The highest SC of 185 F g−1 was obtained at a scan rate of 2 mV s−1 for mass loading of 7 mg cm−2. The SC decreased with increasing scan rate and increasing electrode mass.

  14. Composite Electrodes for Electrochemical Supercapacitors

    Science.gov (United States)

    Li, Jun; Yang, Quan Min; Zhitomirsky, Igor

    2010-03-01

    Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4-6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7-15 mg cm-2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC). The highest SC of 185 F g-1 was obtained at a scan rate of 2 mV s-1 for mass loading of 7 mg cm-2. The SC decreased with increasing scan rate and increasing electrode mass.

  15. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    this activation procedure. Studies of the activity of single metal hydride particles show that each particle has different properties after activation, by hot polarisation, in a porous electrode. The differences in activation among single particles may be due to differences in contact resistance between the individual metal hydride particle and the current collector in the porous electrode, which would result in a current distribution. Annealing of the gas atomised AB{sub 5} type alloy increases the discharge capacity but does not otherwise affect the activation. The corrosion and passivation of metal hydride electrodes of AB{sub 5} type alloys was studied. A high depth of discharge (DOD) decreases the discharge rate capability of the metal hydride electrodes and this is explained by passivation. A surface passivation may enhance particle cracking, which would make the electrode more susceptible to corrosion. The passivation of metal hydride electrodes increases for increasing cut-off-potential (COP) during discharging. This can be explained by an increasing corrosion of the particle surfaces. A corrosion phenomenon was measured at high DOD and correlated to the passivation of the metal hydride particle surface. Lowering the COP can reduce the negative effect of this phenomenon. The cycle life of the gas-atomised material is slightly improved by decreasing the COP but is independent of hot-polarisation activation treatment. Annealing this material significantly improves both discharge capacity and cycle life. A change of surface morphology due to the annealing has been identified and may contribute to the decreased electrode degradation. The formation of hydroxides on the particle surfaces is in general regarded to be negative for the electrode kinetics and is probably responsible for the long time degradation of metal hydride electrodes.

  16. Electrodes for Semiconductor Gas Sensors

    Science.gov (United States)

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  17. Nanofiber membrane-electrode-assembly and method of fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2018-01-23

    In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.

  18. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    Directory of Open Access Journals (Sweden)

    Bashar Yafouz

    2014-04-01

    Full Text Available This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.

  19. Influence of Electric Fields on Biofouling of Carbonaceous Electrodes.

    Science.gov (United States)

    Pandit, Soumya; Shanbhag, Sneha; Mauter, Meagan; Oren, Yoram; Herzberg, Moshe

    2017-09-05

    Biofouling commonly occurs on carbonaceous capacitive deionization electrodes in the process of treating natural waters. Although previous work reported the effect of electric fields on bacterial mortality for a variety of medical and engineered applications, the effect of electrode surface properties and the magnitude and polarity of applied electric fields on biofilm development has not been comprehensively investigated. This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA) and a carbon aerogel (CA) in the presence and the absence of an electric field. The experiments were conducted using a two-electrode flow cell with a voltage window of ±0.9 V. The CA was less susceptible to biofilm formation compared to the PA due to its lower surface roughness, lower hydrophobicity, and significant antimicrobial properties. For both positive and negative applied potentials, we observed an inverse relationship between biofilm formation and the magnitude of the applied potential. The effect is particularly strong for the CA electrodes and may be a result of cumulative effects between material toxicity and the stress experienced by cells at high applied potentials. Under the applied potentials for both electrodes, high production of endogenous reactive oxygen species (ROS) was indicative of bacterial stress. For both electrodes, the elevated specific ROS activity was lowest for the open circuit potential condition, elevated when cathodically and anodically polarized, and highest for the ±0.9 V cases. These high applied potentials are believed to affect the redox potential across the cell membrane and disrupt redox homeostasis, thereby inhibiting bacterial growth.

  20. Characterisation of nano-interdigitated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Skjolding, L H D; Ribayrol, A; Montelius, L [Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Spegel, C [Department of Analytical Chemistry Lund University, Box 124, SE-221 00 Lund (Sweden); Emneus, J [MIC - Department of Micro and Nanotechnology, DTU - Building 345 East, DK-2800 Kgs. Lyngby (Denmark)], E-mail: lars_henrik.daehli_skjolding@ftf.lth.se

    2008-03-15

    Interdigitated electrodes made up of two individually addressable interdigitated comb-like electrode structures have frequently been suggested as ultra sensitive electrochemical biosensors. Since the signal enhancement effects due to cycling of the reduced and oxidized species are strongly dependent on the inter electrode distances, since the nature of the enhancement is due to overlying diffusion layers, interdigitated electrodes with an electrode separation of less then one micrometer are desired for maximum signal amplification. Fabrication of submicron structures can only be made by advanced lithography techniques. By use of electron beam lithography we have fabricated arrays of interdigitated electrodes with an electrode separation distance of 200 nm and an electrode finger width of likewise 200 nm. The entire electrode structure is 100 micrometre times 100 micrometre, and the active electrode area is dictated by the opening in the passivation layer, that is defined by UV lithography. Here we report measurements of redox cycling of ferrocyanide by coupled cyclic voltammograms, where the potential at one of the working electrodes are varied and either an oxidising or reducing potential is applied to the complimentary interdigitated electrode. The measurements show fast conversion and high collection efficiency round 87% as expected for nano-interdigitated electrodes.

  1. Negative Ion Density Fronts

    International Nuclear Information System (INIS)

    Igor Kaganovich

    2000-01-01

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas

  2. O2-enhanced methanol oxidation reaction at novel Pt-Ru-C co-sputtered electrodes

    International Nuclear Information System (INIS)

    Umeda, Minoru; Matsumoto, Yosuke; Inoue, Mitsuhiro; Shironita, Sayoko

    2013-01-01

    Highlights: ► Novel Pt-Ru-C electrodes were prepared by a co-sputtering technique. ► Co-sputtered electrodes with C result in highly efficient O 2 -enhanced methanol oxidation. ► Pt–Ru-alloy-based co-sputtered electrode induces a negative onset potential of methanol oxidation. ► The Pt-Ru-C electrodes allow a negative onset potential of O 2 -enhanced methanol oxidation. ► The optimum atomic ratios of Pt-Ru-C are Pt: 0.24–0.80, Ru: 0.14–0.61, C: 0.06–0.37. -- Abstract: A Pt-Ru-C electrode has been developed using a co-sputtering technique for use as the anode catalyst of a mixed-reactant fuel cell. The physical and electrochemical characteristics of the electrodes demonstrate that co-sputtered Pt and Ru form a Pt–Ru alloy. The crystallite sizes of the catalysts investigated in this study are reduced by the addition of C to the Pt–Ru alloy. Cu stripping voltammograms suggest that the sputtering of C and the formation of the Pt–Ru alloy synergically increase the electrochemical surface area of the electrodes. The methanol oxidation performances of the prepared electrodes were evaluated in N 2 and O 2 atmospheres; the Pt-Ru-C electrodes achieve an O 2 -induced negative shift in the onset potential of the methanol oxidation (E onset ) and enhance the methanol oxidation current density in the O 2 atmosphere. The mechanism of O 2 -enhanced methanol oxidation with a negative E onset at the Pt-Ru-C electrodes is attributed to a change in the electronic structure of Pt due to the formation of Pt–Ru alloy and the generation of O-based adsorption species by the reduction of O 2 . Finally, the composition of the Pt-Ru-C electrode for the O 2 -enhanced methanol oxidation with a negative E onset was found to be optimal at an atomic ratio of Pt: 0.24–0.80, Ru: 0.14–0.61, and C: 0.06–0.37

  3. Voltammetric enzyme sensor for urea using mercaptohydroquinone-modified gold electrode as the base transducer.

    Science.gov (United States)

    Mizutani, F; Yabuki, S; Sato, Y

    1997-01-01

    A voltammetric urea-sensing electrode was prepared by combining a lipid-attached urease layer with a 2,5-dihydroxythiophenol-modified gold electrode. A self-assembled monolayer of dihydroxythiophenol was prepared on the gold surface by soaking the electrode into an ethanolic solution containing the modifier. A layer of the lipid-attached enzyme and that of acetyl cellulose overcoat were successively made on the dihydroxythiophenol-modified electrode by applying a dip-coating procedure. The addition of urea in a test solution (10 mM phosphate buffer, pH 7.0) brought about an increase of pH near the urease layer. The pH shift accompanied a negative shift of the anodic peak, which corresponded to the electro-oxidation of dihydroxyphenol moiety to form quinone, on the linear sweep voltammograms for the urease/dihydroxythiophenol electrode. The concentration of urea (0.2-5 mM) could be determined by measuring the electrode current at -0.05 V versus Ag/AgCl from the voltammogram. The electrode was applied to the determination of urea in human urine; the measurement of electrode current at such a low potential provided the urea determination without any electrochemical interference from L-ascorbic acid and uric acid.

  4. Novel high-voltage power lateral MOSFET with adaptive buried electrodes

    International Nuclear Information System (INIS)

    Zhang Wen-Tong; Wu Li-Juan; Qiao Ming; Luo Xiao-Rong; Zhang Bo; Li Zhao-Ji

    2012-01-01

    A new high-voltage and low-specific on-resistance (R on,sp ) adaptive buried electrode (ABE) silicon-on-insulator (SOI) power lateral MOSFET and its analytical model of the electric fields are proposed. The MOSFET features are that the electrodes are in the buried oxide (BOX) layer, the negative drain voltage V d is divided into many partial voltages and the output to the electrodes is in the buried oxide layer and the potentials on the electrodes change linearly from the drain to the source. Because the interface silicon layer potentials are lower than the neighboring electrode potentials, the electronic potential wells are formed above the electrode regions, and the hole potential wells are formed in the spacing of two neighbouring electrode regions. The interface hole concentration is much higher than the electron concentration through designing the buried layer electrode potentials. Based on the interface charge enhanced dielectric layer field theory, the electric field strength in the buried layer is enhanced. The vertical electric field E I and the breakdown voltage (BV) of ABE SOI are 545 V/μm and −587 V in the 50 μm long drift region and the 1 μm thick dielectric layer, and a low R on,sp is obtained. Furthermore, the structure also alleviates the self-heating effect (SHE). The analytical model matches the simulation results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Progress in understanding SOFC electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Jørgensen, M.J.

    2002-01-01

    The literature of SOFC electrode kinetics and mechanisms is full of contradicting details in case of both the SOFC anode and cathode processes. Only weak patterns may be identified. One interpretation is that each of the reported data sets reflects a laboratory specific nature of each of the elec...

  6. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  7. A sulfur–microporous carbon composite positive electrode for lithium/sulfur and silicon/sulfur rechargeble batteries

    Directory of Open Access Journals (Sweden)

    Takuya Takahashi

    2015-12-01

    Full Text Available Sulfur is an advantageous material as a promising next-generation positive electrode material for high-energy lithium batteries due to a high theoretical capacity of 1672 mA h g−1 although its discharge potential is somewhat modest: ca. 2 V vs Li/Li+. However, a sulfur positive electrode has some crucial problems for practical use, which are mainly attributed to the dissolution of its intermediate products in charge–discharge processes. In order to resolve the dissolution problem of lithium polysulfide, we attempted to synthesize a sulfur–microporous activated carbon (AC composite positive electrode. Moreover, we have systematically researched the battery performance of sulfur–microporous AC positive electrode with variations of electrolytes as well as negative electrodes, and found its promising positive electrode performance for a next-generation rechargeable battery.

  8. Operando studies of all-vanadium flow batteries: Easy-to-make reference electrode based on silver-silver sulfate

    Science.gov (United States)

    Ventosa, Edgar; Skoumal, Marcel; Vázquez, Francisco Javier; Flox, Cristina; Morante, Joan Ramon

    2014-12-01

    In-depth evaluation of the electrochemical performance of all-vanadium redox flow batteries (VRFBs) under operando conditions requires the insertion of a reliable reference electrode in the battery cell. In this work, an easy-to-make reference electrode based on silver-silver sulfate is proposed and described for VRFBs. The relevance and feasibility of the information obtained by inserting the reference electrode is illustrated with the study of ammoxidized graphite felts. In this case, we show that the kinetic of the electrochemical reaction VO2+/VO2+ is slower than that of V2+/V3+ at the electrode. While the slow kinetics at the positive electrode limits the voltage efficiency, the operating potential of the negative electrode, which is outside the stability widow of water, reduces the coulombic efficiency due to the hydrogen evolution.

  9. A Modality Called 'Negation'

    NARCIS (Netherlands)

    Berto, F.

    2015-01-01

    I propose a comprehensive account of negation as a modal operator, vindicating a moderate logical pluralism. Negation is taken as a quantifier on worlds, restricted by an accessibility relation encoding the basic concept of compatibility. This latter captures the core meaning of the operator. While

  10. Depositing bulk or micro-scale electrodes

    Science.gov (United States)

    Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.

    2016-11-01

    Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.

  11. Detection of EEG electrodes in brain volumes.

    Science.gov (United States)

    Graffigna, Juan P; Gómez, M Eugenia; Bustos, José J

    2010-01-01

    This paper presents a method to detect 128 EEG electrodes in image study and to merge with the Nuclear Magnetic Resonance volume for better diagnosis. First we propose three hypotheses to define a specific acquisition protocol in order to recognize the electrodes and to avoid distortions in the image. In the second instance we describe a method for segmenting the electrodes. Finally, registration is performed between volume of the electrodes and NMR.

  12. Recovery of fluoride ion selective electrode

    International Nuclear Information System (INIS)

    Monteiro, R.P.G.

    1988-01-01

    A recovery procedure of fluoride ion selective electrode based upon the body radiography of inactive electrode and introduction of suitable internal regeneration solution, is developed. The recovered electrode was tested in standard solutions of fluoride ions (10 sup5) to 10 -1M showing as good performance as the new one. The fluor determination by potentiometric measurements with selective electrode is used in nuclear fuel cycle for quality control of thorium and uranium mixed oxide pellets and pellets of uranium dioxides. (author) [pt

  13. Alkali metal ion battery with bimetallic electrode

    Science.gov (United States)

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  14. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  15. Minimizing electrode contamination in an electrochemical cell

    Science.gov (United States)

    Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

    2014-12-09

    An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

  16. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T

    1999-01-01

    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  17. Trojan Horses and Friendly Faces: Irish Gaelic Typography as Propaganda Comment former les caractères : la typographie gaélique comme instrument de propagande

    Directory of Open Access Journals (Sweden)

    Mathew D. Staunton

    2009-10-01

    Full Text Available Dans son livre Cinq cents ans d’imprimerie, l’historien S. H. Steinberg plaide pour l’élimination des caractères non-latin et cite le gaélique d’Irlande comme l’exemple même d’une typographie devenue désuète. Si cette critique peut être considérée comme malveillante par certains commentateurs, elle n’en fournit pas moins un cadre utile à une étude des caractères typographiques gaéliques et de leur signification.Comme Steinberg, nous pouvons envisager la typographie gaélique de trois manières.Premièrement, loin d’avoir été développées en Irlande, les fontes gaéliques furent d’abord conçues et fabriquées en Angleterre. Des formes plus tardives apparurent en Belgique, France, Italie, Australie et aux Etats-Unis. Ont-elles une identité essentiellement irlandaise ?Deuxièmement, la création de ces fontes découla, à l’origine, de la politique religieuse d’Elizabeth Ière. Elles devinrent plus tard un instrument de la Contre-réforme et plus tard encore du nationalisme irlandais. En dehors de son utilisation à des fins de propagande, la typographie gaélique a-t-elle jamais véritablement existé ?Enfin, les inventeurs des caractères typographiques gaéliques se sont toujours montrés hostiles à toute évolution susceptible de parvenir à une plus grande lisibilité. La forme de chaque caractère répond davantage à un critère d’authenticité visuelle qu’à une quelconque notion d’efficacité.  Comment l’irlandité est-elle ainsi véhiculée par la typographie ?

  18. Corrosion effect on the electrochemical properties of LaNi3.55Mn0.4Al0.3Co0.75 and LaNi3.55Mn0.4Al0.3Fe0.75 negative electrodes used in Ni-MH batteries

    International Nuclear Information System (INIS)

    Khaldi, Chokri; Boussami, Sami; Rejeb, Borhene Ben; Mathlouthi, Hamadi; Lamloumi, Jilani

    2010-01-01

    The thermodynamic parameters, electrochemical capacity, equilibrium potential and the equilibrium pressure, of LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 alloys have been evaluated from the electrochemical isotherms (C/30 and OCV methods) and CV technique. A comparative study has been done between the parameter values deduced from the electrochemical methods and the solid-gas method. The parameter values deduced from the electrochemical methods are influenced by the electrochemical corrosion of the alloys in aqueous KOH electrolyte. The corrosion behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 electrodes after activation was investigated using the method of the potentiodynamic polarization. The variation of current and potential corrosion values with the state of charge (SOC) show that the substitution of cobalt by iron accentuates the corrosion process. The high-rate dischargeability (HRD) of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 and LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 alloys was examined. By increasing the discharge current the (HRD) decrease linearly for both the alloys and for the LaNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 compound is greater then for the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 one.

  19. Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes.

    Science.gov (United States)

    Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto

    2017-02-08

    Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.

  20. Effect of antimony on lead-acid battery negative

    International Nuclear Information System (INIS)

    Mahato, B.K.; Bullock, K.R.; Strebe, J.L.; Wilkinson, D.F.

    1985-01-01

    The role of antimony on the lead-acid battery negative in terms of its effect on charge efficiency, its effect on gassing overpotential, its interactive influence with lignin expander in controlling the charge efficiency, and its retentive behavior or purging characteristics as SbH 3 in the overcharge gas stream was investigated. Linear potential sweep (LPS) cycling of Plante-type lead electrodes were used to determine the effect of antimony on gassing overpotential and to monitor its concentration either in the active material or the exit gas stream. Results showed a significant contribution of antimony in decreasing charge efficiency and an overwhelming role of lignin expander in suppressing the effect of antimony on charge efficiency. The critical lead-electrode potential for purging antimony from the electrode is close to -1275 mV (vs. Hg/Hg 2 SO 4 )

  1. Logfile-Analysen zur Evaluation der didaktischen Einbettung von CSCL-Systemen - am Beispiel der CommSy-Nutzung in offenen Seminaren

    Directory of Open Access Journals (Sweden)

    Martin Klein

    2005-02-01

    Full Text Available In unserem Beitrag evaluieren wir die didaktische Einbettung einer CSCL-Anwendung anhand von Logfile-Analysen. Dazu betrachten wir exemplarisch die Nutzung des webbasierten Systems CommSy in einer projektorientierten Lehrveranstaltung, die wir als offenes Seminar charakterisieren. Wir erzielen zwei Ergebnisse: (1 Wir geben Hinweise zur Gestaltung des Nutzungskontexts eines CSCL-Systems sowie zur Unterstützung seiner anfänglichen und kontinuierlichen Nutzung. (2 Wir beschreiben die Analyse von Nutzungsanlässen und -mustern sowie von NutzerInnentypen anhand von Logfiles. Dabei können Logfile-Analysen zur Validierung weiterer Evaluationsergebnisse dienen, sind selbst jedoch nur in Kombination mit zusätzlichen Informationen zum Nutzungskontext interpretierbar.

  2. ISC High Performance 2016 International Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, P^3MA, VHPC, WOPSSS

    CERN Document Server

    Mohr, Bernd; Kunkel, Julian M

    2016-01-01

    This book constitutes revised selected papers from 7 workshops that were held in conjunction with the ISC High Performance 2016 conference in Frankfurt, Germany, in June 2016. The 45 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They stem from the following workshops: Workshop on Exascale Multi/Many Core Computing Systems, E-MuCoCoS; Second International Workshop on Communication Architectures at Extreme Scale, ExaComm; HPC I/O in the Data Center Workshop, HPC-IODC; International Workshop on OpenPOWER for HPC, IWOPH; Workshop on the Application Performance on Intel Xeon Phi – Being Prepared for KNL and Beyond, IXPUG; Workshop on Performance and Scalability of Storage Systems, WOPSSS; and International Workshop on Performance Portable Programming Models for Accelerators, P3MA.

  3. L’INFLUENCE DES PARTICULARITÉS BIOCHIMIQUES DE CERTAINS HYBRIDES DE MAÏS UTILISÉS COMME SUBSTRAT SUR LA QUALITÉ DES SPORES DE PENICILLIUM CHRISOGENUM

    Directory of Open Access Journals (Sweden)

    Mariana Zaharia

    2005-08-01

    Full Text Available Dans ce travail, nous avons essayé de mettre en évidence la modalité dont le substrat sur lequel sont obtenues les spores utilisées comme inocule peut influencer le taux de biosynthèse du mycélium issu de ces spores en culture submergée (en flacons agités. Nous avons également cherché à déceler la variante optimale de substrat et la mise en évidence des éventuels aspects biochimiques qui pourraient influencer négativement la qualité des spores. Pour des raisons pratiques, on a opté pour des variantes de substrat naturel appartenant à une même espèce végétale (caryopses de 23 hybrides de maïs autochtones.

  4. Le développement du travail en réseau comme stratégie de changement dans les politiques publiques

    OpenAIRE

    Vedelago , François

    2008-01-01

    International audience; Le terme de réseau, aujourd'hui extrêmement répandu, provoque à sa seule évocation tout à la fois un " effet de modernisme " et, pour les acteurs, il s'impose comme une démarche obligée de résolution de problème. Au sein du système de santé, soumis à des réformes constantes qui recomposent ses différents éléments en permanence depuis une vingtaine d'années, les formes de coordinations entre les acteurs requièrent de leur part des adaptations continues. Les réseaux de s...

  5. Dépendance sans intégration : La cosubordination comme mode de jonction propositionnelle et sa pertinence en acquisition du français L2

    Directory of Open Access Journals (Sweden)

    Buysse Manon

    2016-01-01

    Full Text Available La jonction propositionnelle, ou le processus visant à combiner plusieurs propositions dans un énoncé complexe, est un phénomène largement décrit en linguistique française (Bronckart & Schneuwly 1984, Clark 1998, Kern 2000. Dans un contexte d’acquisition du français comme langue seconde (FL2, en particulier, la complexification propositionnelle est un des objets de recherche centraux (Benazzo 2004, Kerr-Barnes 1998, Véronique 2005, Welcomme 2013. Certaines études axées sur le développement global d’apprenants du français exploitent en outre la jonction de propositions comme un indice essentiel pour évaluer la progression dans la maîtrise de la langue seconde (Bartning & Kirchmeyer 2003, Schlyter 2003, Bartning & Schlyter 2004. Le cadre d’analyse généralement adopté pour décrire le développement de la jonction propositionnelle est la bipartition traditionnelle entre la coordination d’une part (Georges est malade et il ne veut pas manger et la subordination d’autre part (Georges dit qu’il est malade, complétive, ou George ne veut pas manger parce qu’il est malade, adverbiale. Pourtant, cette opposition binaire ne rend pas compte de l’écart très important entre le moment d’acquisition d’énoncés comme Quand il pleut, je prends un parapluie et celui de phrases composées comme Je connais l’homme dont tu me parles. De plus, elle ne permet pas la description adéquate de types de jonction propositionnelle tels que Il veut laver la voiture et J’essayerai de venir à ta fête. Pour permettre une approche plus affinée de la jonction propositionnelle, la Grammaire du Rôle et de la Référence (Role and Reference Grammar ou RRG ; Van Valin & LaPolla 1997, Van Valin 2005 avance un troisième type de relation syntaxique entre propositions, la cosubordination. Nous évaluerons l’apport de la tripartition proposée pour l’acquisition d’une L2 en analysant le développement progressif de la jonction

  6. Le discours rappporté comme effet de montage du discours citant et du segment citationnel. Contribution à l’étude du discours journalistique

    Directory of Open Access Journals (Sweden)

    Biardzka Elżbieta

    2012-07-01

    Full Text Available Dans notre étude, nous nous proposons un vaste retour aux données empiriques qui nous permettra de repérer et de décrire un dispositif sémantico-énonciatif et grammatical qui est à l'origine de la prolifération de pratiques du discours rapporté (désormais DR, codifiées et non codifiées, particulièrement répandues dans la presse écrite. Nous avons calculé nos résultats de recherche sur l'analyse d'un corpus journalistique d'à peu près 1500 exemples. Nous considérons le DR comme une séquence textuelle binaire, embrassant deux segments: le discours citant (DC qui verbalise les données situationnelles de l'énonciation primaire, et le segment citationnel (Cit qui représente les paroles. Compris de la sorte, le DR peut se figurer sous l'équation suivante: DR= DC + Cit. Nous envisageons le DC et la Cit comme des sortes de briques, mettons comme des Lego, qui entrent dans plusieurs combinaisons possibles pour donner naissance aux séquences du DR. Pour étudier le mécanisme qui les engendre, nous inventorions et décrivons les propriétés formelles et sémantico-énonciatives des segments DC et Cit. L'inventaire des formes grammaticales que peut revêtir le DC embrasse 6 cas de figures: la phrase introductive, la phrase complète, l'interrogation, l'incise, les syntagmes en "selon A", ensuite d'autres syntagmes, comme les syntagmes nominaux, adjectivaux, représentant des cas de différentes "incomplétudes" formelles et de réductions. La Citation, terme générique dans notre étude, recouvre trois types d'occurrences: les Citations reproductions, les Citations reformulations et les Citations mixtes. Les relations syntaxiques entres les deux segments du DR dépendent de la forme du DC et se définissent par deux cas de figure. Soit le journaliste rapporte les paroles de différentes personnes sans les assimiler à la syntaxe de son propre énoncé (combinatoire libre, soit il les intègre dans son discours conformément aux

  7. Le rôle de l’alun comme mordant en teinture. Une approche par la simulation numérique

    OpenAIRE

    Delamare, François; Monasse, Bernard

    2015-01-01

    Alun et mordançage des textiles Parmi les multiples emplois de l’alun, il en est un qui dépasse très largement les autres en importance économique. C’est celui de mordant pour la teinture des textiles. Le fait est bien documenté au moins depuis la période médiévale et même peut-être antérieurement, par exemple depuis la période romaine, comme le présent colloque semble l’établir. Les colorants concernés sont très nombreux. Seules les teintures employant les colorants de la famille de l’indigo...

  8. Long life lithium batteries with stabilized electrodes

    Science.gov (United States)

    Amine, Khalil [Downers Grove, IL; Liu, Jun [Naperville, IL; Vissers, Donald R [Naperville, IL; Lu, Wenquan [Darien, IL

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  9. Long-pulse operation of an intense negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Kaneko, Osamu; Oka, Yoshihide; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the National Institute for Fusion Science, as the heating system for the Large Helical Device (LHD), the negative ion NBI system of 20 MW incident power has been planned, and the development of a large current, large size negative ion source has been advanced. Based on the results obtained so far, the design of the LHD-NBI system was reconsidered, and the specification of the actual negative ion source was decided as 180 KeV-40A. This time, the grounding electrode with heightened heat removal capacity was made, and the long pulse operation was attempted, therefore, its results are reported. The structure of the external magnetic filter type large negative ion source used for the long pulse experiment is explained. In order to form the negative ion beam of long pulses, it is necessary to form stable are discharge plasma for long time, and variable resistors were attached to the output side of arc power sources of respective filament systems. By adjusting the resistors, uniform are discharge was able to be caused for longer than 10 s stably. The results of the long pulse experiment are reported. The dependence of the characteristics of negative ion beam on plasma electrode temperature was small, and the change of the characteristics of negative ion beam due to beam pulse width was not observed. (K.I.)

  10. Atomic negative ions

    International Nuclear Information System (INIS)

    Brage, T.

    1991-01-01

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given

  11. Piercing by composite electrode tool

    International Nuclear Information System (INIS)

    Abdukarimov, Eh.T.; Krakov, B.G.; Saidinov, S.Ya.

    1990-01-01

    The construction of the electrode consisting of a dielectric shell, where a working liquid enters, and a metal rod is designed for precision super-deep piercing by the electroerosion treatment method. Technological parameters of piercing with small diameter (0.5-1.9 mm) for 12Kh18N10T steel, copper and tungsten are presented. A possibility to use a new tool for treating components of any form and sizes is marked

  12. Redox electrode materials for supercapatteries

    OpenAIRE

    Yu, Linpo; Chen, George Z.

    2016-01-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power...

  13. Analytic Potentials for Realistic Electrodes

    International Nuclear Information System (INIS)

    Barlow, Stephan E.; Taylor, Aimee E.; Swanson, Kenneth R.

    2002-01-01

    Finite difference algorithms are widely used to numerically solve Laplace's equation for electrode structures that are not amendable to analytic treatment. This includes essentially all real situations. However, in many cases, it is desirable to have the solution in an analytic form. A common practice is to 'fit' the numerical solution either by least squares or cubic spline approach. Neither of these approaches is really accurate, nor do they produce unique results. These limitations are avoided by our approach.

  14. Potentiometric titration with polarized electrodes

    International Nuclear Information System (INIS)

    Chikryzova, E.G.

    1977-01-01

    Based on the analysis of the works carried out during 1911-75 consideration is given to the present state of the method of potentiometric titration with polarized electrodes. The material is generalized in the tabular form indicating the elments of interest, titration conditions and the objects to be analyzed. The list and classification of the potentiometric titration methods intended for determining organic and inorganic substances are presented

  15. Electrode Cultivation and Interfacial Electron Transport in Subsurface Microorganisms

    Science.gov (United States)

    Karbelkar, A. A.; Jangir, Y.; Reese, B. K.; Wanger, G.; Anderson, C.; El-Naggar, M.; Amend, J.

    2016-12-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical electrodes to emulate the microhabitats, redox and geochemical gradients, and the spatially dependent interspecies interactions encountered in the subsurface. Electrochemical

  16. Surface modification of recording electrodes

    Directory of Open Access Journals (Sweden)

    Iaci Miranda Pereira

    2013-01-01

    Full Text Available Waterborne Polyurethanes (PUs are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1 the impact on electrical performance of electrode materials (platinum and silicon modified chemically by a layer of waterborne PU, and (2 the behavior of rat cardiac fibroblasts and rat cardiomyocytes when in contact with an electrode surface. Diisocyanate and poly(caprolactone diol were the main reagents for producing PUs. The electrochemical impedance of the electrode/electrolyte interface was accessed by electrochemical impedance spectroscopy. The cellular viability, proliferation, and morphology changes were investigated using an MTT assay. Cardiomyocyte adherence was observed by scanning electron microscopy. The obtained surface was uniform, flat, and transparent. The film showed good adhesion, and no peeling was detected. The electrochemical impedance decreased over time and was influenced by the ionic permeability of the PU layer. The five samples did not show cytotoxicity when in contact with neonatal rat cells.

  17. Modeling of Changing Electrode Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, Geoffrey Allen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1980-12-01

    A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

  18. Additional magnetoelectric effect in electrode-arrayed magnetoelectric composite

    Directory of Open Access Journals (Sweden)

    D. A. Pan

    2014-11-01

    Full Text Available An electrode-arrayed magnetoelectric (ME composite was proposed, in which the positive and negative electrodes of the PZT-5H plate (Pb(Zr0.52Ti0.48O3 were equally divided into a 2 × 5 array, while the PZT plate remained intact. The ME voltage coefficients of these 10 sections were measured individually and in parallel/series modes. The magnetoelectric coefficient is doubled compared with un-arrayed condition, when the 10 sections are connected in parallel/series using an optimized connecting sequence derived from the charge matching rule. This scheme can also be applied to other types of layered magnetoelectric composites to obtain additional magnetoelectric effect from the original composite structure.

  19. High temperature SU-8 pyrolysis for fabrication of carbon electrodes

    DEFF Research Database (Denmark)

    Hassan, Yasmin Mohamed; Caviglia, Claudia; Hemanth, Suhith

    2017-01-01

    In this work, we present the investigation of the pyrolysis parameters at high temperature (1100 °C) for the fabrication of two-dimensional pyrolytic carbon electrodes. The electrodes were fabricated by pyrolysis of lithographically patterned negative epoxy based photoresist SU-8. A central...... composite experimental design was used to identify the influence of dwell time at the highest pyrolysis temperature and heating rate on electrical, electrochemical and structural properties of the pyrolytic carbon: Van der Pauw sheet resistance measurements, cyclic voltammetry, electrochemical impedance...... spectroscopy and Raman spectroscopy were used to characterize the pyrolytic carbon. The results show that the temperature increase from 900 °C to 1100 °C improves the electrical and electrochemical properties. At 1100 °C, longer dwell time leads to lower resistivity, while the variation of the pyrolysis...

  20. Lithium manganese oxide spinel electrodes

    Science.gov (United States)

    Darling, Robert Mason

    Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The

  1. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  2. Selecting electrode configurations for image-guided cochlear implant programming using template matching.

    Science.gov (United States)

    Zhang, Dongqing; Zhao, Yiyuan; Noble, Jack H; Dawant, Benoit M

    2018-04-01

    Cochlear implants (CIs) are neural prostheses that restore hearing using an electrode array implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). We have proposed a system to assist the audiologist in programming the CI that we call image-guided CI programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend deactivation of a subset of electrodes to avoid NSO. We have shown that IGCIP significantly improves hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires manual intervention. With expertise, distance-versus-frequency curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. We propose an automated technique for electrode configuration selection. A comparison between this approach and one we have previously proposed shows that our method produces results that are as good as those obtained with our previous method while being generic and requiring fewer parameters.

  3. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  4. NEGATION AFFIXES IN ENGLISH

    Directory of Open Access Journals (Sweden)

    Dedy Subandowo -

    2017-02-01

    Full Text Available Abstract: This research entitled "Negation Affixes in English". This study is aimed to describe the various negation affixes in English, morphological process, morphophonemic and meaning. The research data were taken from various sources of English grammar book, morphology, research journal and the book which relatees to the research. English grammar books used in this study are written by Otto Jesperson, Marcella Frank, Greenbaum and Geoffrey Leech.  The method used in this research is the descriptive-qualitative method. While the data collection techniques are performed by using jot-down method. And the results of analysis are presented in tabular form and descriptive method. The result of the research shows that English has six types of negative affixes which are categorized by the intensity of its appearance, such as dis-, in-, non-, un-, anti- and -less. Based on the function, negation affixes are divided into several categories such as adjectives, nouns, verbs, and adverbs. The morphophonemic affix in- has four allomorphs, they are in-, im-, il- and ir- . While the analysis revealed that negation affixes have some basic meanings, such as ‘not’, ‘without’, and ‘anti’.

  5. Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking

    Science.gov (United States)

    Rajaraman, Swaminathan; Bragg, Julian A.; Ross, James D.; Allen, Mark G.

    2011-08-01

    We report the development of metal transfer micromolded (MTM) three-dimensional microelectrode arrays (3D MEAs) for a transcutaneous nerve tracking application. The measurements of electrode-skin-electrode impedance (ESEI), electromyography (EMG) and nerve conduction utilizing these minimally invasive 3D MEAs are demonstrated in this paper. The 3D MEAs used in these measurements consist of a metalized micro-tower array that can penetrate the outer layers of the skin in a painless fashion and are fabricated using MTM technology. Two techniques, an inclined UV lithography approach and a double-side exposure of thick negative tone resist, have been developed to fabricate the 3D MEA master structure. The MEAs themselves are fabricated from the master structure utilizing micromolding techniques. Metal patterns are transferred during the micromolding process, thereby ensuring reduced process steps compared to traditional silicon-based approaches. These 3D MEAs have been packaged utilizing biocompatible Kapton® substrates. ESEI measurements have been carried out on test human subjects with standard commercial wet electrodes as a reference. The 3D MEAs demonstrate an order of magnitude lower ESEI (normalized to area) compared to wet electrodes for an area that is 12.56 times smaller. This compares well with other demonstrated approaches in literature. For a nerve tracking demonstration, we have chosen EMG and nerve conduction measurements on test human subjects. The 3D MEAs show 100% improvement in signal power and SNR/√area as compared to standard electrodes. They also demonstrate larger amplitude signals and faster rise times during nerve conduction measurements. We believe that this microfabrication and packaging approach scales well to large-area, high-density arrays required for applications like nerve tracking. This development will increase the stimulation and recording fidelity of skin surface electrodes, while increasing their spatial resolution by an order of

  6. Electrode phenomena, tensor conductivity and electrode heating in seeded argon

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Z.; de Montardy, A.

    1963-04-15

    Contact potential drops along the electrodes often prevent measurements of ionized gas conductivity. In order to avoid such potential drops, a measurement cell using double probe technique was realized. By adding a third probe, it is also possible to measure the conductivity tensor components. Formulas commonly used are shown to be incorrect. In order to evaluate non- equilibrium conductivity, the excitation temperature of the seed is to be considered, rather than electron temperature, especially in small scale experiments, where charged particle losses by ambipolar diffusion are to be expected. (auth)

  7. Transition of poloidal viscosity by electrode biasing in the Large Helical Device

    International Nuclear Information System (INIS)

    Kitajima, S.; Ishii, K.; Sato, Y.; Kanno, M.; Tachibana, J.; Okamoto, A.; Sasao, M.; Takahashi, H.; Masuzaki, S.; Shoji, M.; Ashikawa, N.; Tokitani, M.; Yokoyama, M.; Suzuki, Y.; Satake, S.; Ido, T.; Shimizu, A.; Suzuki, C.; Inagaki, S.; Takayama, M.

    2013-01-01

    Electrode biasing experiments were carried out in various magnetic configurations on the Large Helical Device (LHD). The transitions of poloidal viscosity, which were accompanied with bifurcation phenomena characterized by a negative resistance in an electrode characteristic, were clearly observed on LHD by the electrode biasing. The critical external driving force required for transition was compared with the local maximum in ion viscosity, and the radial resistivity before the transition also compared with the expected value from a neoclassical theory. The critical driving force increased and the radial resistivity decreased with the major radius of the magnetic axis R ax going outwards. The configuration dependence of the transition condition and the radial resistivity qualitatively agreed with neoclassical theories. The radial electric field and the viscosity were also evaluated by the neoclassical transport code for a non-axisymmetric system, and estimated electrode voltage required for the transition, which was consistent with the experimental results. (paper)

  8. An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap

    International Nuclear Information System (INIS)

    Alisoy, H. Z.; Alagoz, B. B.; Alagoz, S.; Alisoy, G. T.

    2013-01-01

    This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics

  9. An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap

    Science.gov (United States)

    Z. Alisoy, H.; Alagoz, S.; T. Alisoy, G.; B. Alagoz, B.

    2013-10-01

    This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics.

  10. On Various Negative Translations

    Directory of Open Access Journals (Sweden)

    Gilda Ferreira

    2011-01-01

    Full Text Available Several proof translations of classical mathematics into intuitionistic mathematics have been proposed in the literature over the past century. These are normally referred to as negative translations or double-negation translations. Among those, the most commonly cited are translations due to Kolmogorov, Godel, Gentzen, Kuroda and Krivine (in chronological order. In this paper we propose a framework for explaining how these different translations are related to each other. More precisely, we define a notion of a (modular simplification starting from Kolmogorov translation, which leads to a partial order between different negative translations. In this derived ordering, Kuroda and Krivine are minimal elements. Two new minimal translations are introduced, with Godel and Gentzen translations sitting in between Kolmogorov and one of these new translations.

  11. Negative ion sourcery

    International Nuclear Information System (INIS)

    Os, C.F.A. van.

    1989-01-01

    The work described in this thesis is involved by current research programs in the field of nuclear-fusion. A brief introduction to fusion is given, anticipated problems related to current drive of the fusion plasma are pinpointed and probable suggestions to overcome these problems are described. One probable means for current drive is highlighted; Neutral Beam Injection (NBI). This is based on injecting a 1 MeV neutral hydrogen or deuterium beam into a fusion plasma. Negative ions are needed as primary particles because they can easily be neutralized at 1 MeV. The two current schemes for production of negative ions are described, volume production and negative surface ionization. The latter method is extensively studied in this thesis. (author). 171 refs.; 55 figs.; 7 tabs

  12. Bifunctional electrodes for unitised regenerative fuel cells

    International Nuclear Information System (INIS)

    Altmann, Sebastian; Kaz, Till; Friedrich, Kaspar Andreas

    2011-01-01

    Research highlights: → Different oxygen electrode configurations for the operation in a unitised reversible fuel cell were tested. → Polarisation curves and EIS measurements were recorded. → The mixture of catalysts performs best for the present stage of electrode development. → Potential improvements for the different compositions are discussed. - Abstract: The effects of different configurations and compositions of platinum and iridium oxide electrodes for the oxygen reaction of unitised regenerative fuel cells (URFC) are reported. Bifunctional oxygen electrodes are important for URFC development because favourable properties for the fuel cell and the electrolysis modes must be combined into a single electrode. The bifunctional electrodes were studied under different combinations of catalyst mixtures, multilayer arrangements and segmented configurations with single catalyst areas. Distinct electrochemical behaviour was observed for both modes and can be explained on the basis of impedance spectroscopy. The mixture of both catalysts performs best for the present stage of electrode development. Also, the multilayer electrodes yielded good results with the potential for optimisation. The influence of ionic and electronic resistances on the relative performance is demonstrated. However, penalties due to cross currents in the heterogeneous electrodes were identified and explained by comparing the performance curves with electrodes composed of a single catalyst. Potential improvements for the different compositions are discussed.

  13. 3D Printed Dry EEG Electrodes.

    Science.gov (United States)

    Krachunov, Sammy; Casson, Alexander J

    2016-10-02

    Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  14. 3D Printed Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    Sammy Krachunov

    2016-10-01

    Full Text Available Electroencephalography (EEG is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI. A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  15. HVDC Ground Electrodes and Tectonic Setting

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2017-12-01

    Ground electrodes in HVDC transmission are huge grounding systems for the DC part of the converter substation, about 1 km wide, sized to inject in the ground DC currents up to 3.5 kA. This work presents an analysis of how the tectonic setting at converter substation location is determinant for the search of the best electrode location (Site Selection) and on its design and performance. It will briefly present the author experience on HVDC electrode design, summarized as follows: Itaipu - Foz do Iguaçu electrodes (transmitter side) located in the middle of Paraná Sedimentary Basin, and Ibiúna electrodes (receiving side) on the border of the basin, 6 km from the geological strike, where the crystalline basement outcrops in São Paulo state; Madeira River - North electrodes (transmitting side) located on the Northwest border of South Amazon Craton, where the crystalline basement is below a shallow sediments layer, and South electrodes (receiving side) located within Paraná Sedimentary Basin; Chile - electrodes located on the Andean forearc, where the Nazca Plate plunges under the South American Plate; Kenya - Ethiopia - electrodes located in the African Rift; Belo Monte - North electrodes (transmitter side) located within the Amazonian Sedimentary Basin, about 35 km of its South border, and South electrodes (receiving side) within Paraná Sedimentary Basin (bipole 1) and on crystalline metamorphic terrain "Brasília Belt" (bipole 2). This diversity of geological conditions results on ground electrodes of different topologies and dimensions, with quite different electrical and thermal performances. A brief study of the geology of the converter stations regions, the so-called Desktop Study, allows for the preview of several important parameters for the site selection and design of the electrodes, such as localization, type, size and estimate of the interference area, which are important predictors of the investment to be made and indications of the design to be

  16. Radiologic and functional evaluation of electrode dislocation from the scala tympani to the scala vestibuli in patients with cochlear implants.

    Science.gov (United States)

    Fischer, N; Pinggera, L; Weichbold, V; Dejaco, D; Schmutzhard, J; Widmann, G

    2015-02-01

    Localization of the electrode after cochlear implantation seems to have an impact on auditory outcome, and conebeam CT has emerged as a reliable method for visualizing the electrode array position within the cochlea. The aim of this retrospective study was to evaluate the frequency and clinical impact of scalar dislocation of various electrodes and surgical approaches and to evaluate its influence on auditory outcome. This retrospective single-center study analyzed a consecutive series of 63 cochlear implantations with various straight electrodes. The placement of the electrode array was evaluated by using multiplanar reconstructed conebeam CT images. For the auditory outcome, we compared the aided hearing thresholds and the charge units of maximum comfortable loudness level at weeks 6, 12, and 24 after implantation. In 7.9% of the cases, the electrode array showed scalar dislocation. In all cases, the electrode array penetrated the basal membrane within 45° of the electrode insertion. All 3 cases of cochleostomy were dislocated in the first 45° segment. No hearing differences were noted, but the charge units of maximum comfortable loudness level seemed to increase with time in patients with dislocations. The intracochlear dislocation rate of various straight electrodes detected by conebeam CT images is relatively low. Scalar dislocation may not negatively influence the hearing threshold but may require an increase of the necessary stimulus charge and should be reported by the radiologist. © 2015 by American Journal of Neuroradiology.

  17. The Importance of Ion Size and Electrode Curvature on Electrical Double Layers in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Guang [Clemson University; Qiao, Rui [ORNL; Huang, Jingsong [ORNL; Dai, Sheng [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL

    2010-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) {approx} [BMIM][Cl] (near the negative electrode) {approx} [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a 'Multiple Ion Layers with Overscreening' (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  18. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  19. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  20. Aluminum-carbon composite electrode

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  1. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  2. Graphene electrodes for stimulation of neuronal cells

    International Nuclear Information System (INIS)

    Koerbitzer, Berit; Nick, Christoph; Thielemann, Christiane; Krauss, Peter; Yadav, Sandeep; Schneider, Joerg J

    2016-01-01

    Graphene has the ability to improve the electrical interface between neuronal cells and electrodes used for recording and stimulation purposes. It provides a biocompatible coating for common electrode materials such as gold and improves the electrode properties. Graphene electrodes are also prepared on SiO 2 substrate to benefit from its optical properties like transparency. We perform electrochemical and Raman characterization of gold electrodes with graphene coating and compare them with graphene on SiO 2 substrate. It was found that the substrate plays an important role in the performance of graphene and show that graphene on SiO 2 substrate is a very promising material combination for stimulation electrodes. (paper)

  3. Ion counting in supercapacitor electrodes using NMR spectroscopy.

    Science.gov (United States)

    Griffin, John M; Forse, Alexander C; Wang, Hao; Trease, Nicole M; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P

    2014-01-01

    (19)F NMR spectroscopy has been used to study the local environments of anions in supercapacitor electrodes and to quantify changes in the populations of adsorbed species during charging. In the absence of an applied potential, anionic species adsorbed within carbon micropores (in-pore) are distinguished from those in large mesopores and spaces between particles (ex-pore) by a characteristic nucleus-independent chemical shift (NICS). Adsorption experiments and two-dimensional exchange experiments confirm that anions are in dynamic equilibrium between the in- and ex-pore environments with an exchange rate in the order of tens of Hz. (19)F in situ NMR spectra recorded at different charge states reveal changes in the intensity and NICS of the in-pore resonances, which are interpreted in term of changes in the population and local environments of the adsorbed anions that arise due to the charge-storage process. A comparison of the results obtained for a range of electrolytes reveals that several factors influence the charging mechanism. For a tetraethylammonium tetrafluoroborate electrolyte, positive polarisation of the electrode is found to proceed by anion adsorption at a low concentration, whereas increased ion exchange plays a more important role for a high concentration electrolyte. In contrast, negative polarization of the electrode proceeds by cation adsorption for both concentrations. For a tetrabutylammonium tetrafluoroborate electrolyte, anion expulsion is observed in the negative charging regime; this is attributed to the reduced mobility and/or access of the larger cations inside the pores, which forces the expulsion of anions in order to build up ionic charge. Significant anion expulsion is also observed in the negative charging regime for alkali metal bis(trifluoromethane)sulfonimide electrolytes, suggesting that more subtle factors also affect the charging mechanism.

  4. Immobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer

    Directory of Open Access Journals (Sweden)

    G. A. Rivas

    2005-11-01

    Full Text Available In this work we present a critical study of the nucleic acid layer immobilized atglassy carbon electrodes. Different studies were performed in order to assess the nature of theinteraction between DNA and the electrode surface. The adsorption and electrooxidation of DNAdemonstrated to be highly dependent on the surface and nature of the glassy carbon electrode. TheDNA layer immobilized at a freshly polished glassy carbon electrode was very stable even afterapplying highly negative potentials. The electron transfer of potassium ferricyanide, catechol anddopamine at glassy carbon surfaces modified with thin (obtained by adsorption under controlledpotential conditions and thick (obtained by casting the glassy carbon surface with highly concentratedDNA solutions DNA layers was slower than that at the bare glassy carbon electrode, although thiseffect was dependent on the thickness of the layer and was not charge selective. Raman experimentsshowed an important decrease of the vibrational modes assigned to the nucleobases residues,suggesting a strong interaction of these residues with the electrode surface. The hybridization ofoligo(dG21 and oligo(dC21 was evaluated from the guanine oxidation signal and the reduction of theredox indicator Co(phen33+ . In both cases the chronopotentiometric response indicated that thecompromise of the bases in the interaction of DNA with the electrode surface is too strong, preventingfurther hybridization. In summary, glassy carbon is a useful electrode material to detect DNA in adirect and very sensitive way, but not to be used for the preparation of biorecognition layers by directadsorption of the probe sequence on the electrode surface for detecting the hybridization event.

  5. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    Science.gov (United States)

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.

  6. Hierarchical Co3O4/PANI hollow nanocages: Synthesis and application for electrode materials of supercapacitors

    Science.gov (United States)

    Ren, Xiaohu; Fan, Huiqing; Ma, Jiangwei; Wang, Chao; Zhang, Mingchang; Zhao, Nan

    2018-05-01

    Hierarchically hollow Co3O4/polyaniline nanocages (Co3O4/PANI NCs) with enhanced specific capacitance and cycle performance for electrode material of supercapacitors are fabricated by combining self-sacrificing template and in situ polymerization route. Benefiting from the good conductivity of PANI improving an electron transport rate as well as high specific surface area from such a hollow structure, the electrode made of Co3O4/PANI NCs exhibits a large specific capacitance of 1301 F/g at the current density of 1 A/g, a much enhancement is obtained as compared with the pristine Co3O4 NCs electrode. The contact resistance (Re), charge-transfer (Rct) and Warburg resistance of Co3O4/PANI NCs electrode is significantly lower than that of the pristine Co3O4 NCs electrode, indicating the enhanced electrical conductivity. In addition, the Co3O4/PANI NCs electrode also displays superior cycling stability with 90 % capacitance retention after 2000 cycles. Moreover, an aqueous asymmetric supercapacitor was successfully assembled using Co3O4/PANI NCs as the positive electrode and activated carbon (AC) as the negative electrode, the assembled device exhibits a superior energy density of 41.5 Wh/kg at 0.8 kW/kg, outstanding power density of 15.9 kW/kg at 18.4 Wh/kg, which significantly transcending those of most previously reported. These results demonstrate that the hierarchically hollow Co3O4/PANI NCs composites have a potential for fabricating electrode of supercapacitors.

  7. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  8. Le Gascon extravagant, la valeur de l’expérience et la fiction comme discours d’histoire (de Loudun

    Directory of Open Access Journals (Sweden)

    Laurence Giavarini

    2007-06-01

    Full Text Available J’interroge dans cet article le rapport que le roman du Gascon entretient avec l’événement de la possession de Loudun qui n’y est jamais mentionné en tant que tel, mais sert constamment de référence à la lecture qu’on peut en faire. Comment l’écrit qu’est le Gascon participe-t-il de l’événement d’écritures qu’est, suivant l’analyse de Michel de Certeau, la possession de Loudun ? J’analyse successivement la façon dont la possession est d’emblée inscrite dans un lieu de la philosophie épicurienne, comment le récit enchâssé dans la fiction-cadre développe l’expérience du Gascon en une éthique du corps, et comment le roman peut ainsi se lire comme une « histoire de Loudun » en tant que symptôme. Le Gascon extravagant et sa préface se lisent ainsi comme des textes interrogeant dans la possession un théâtre du corps qui fonctionne à l’inverse d’une éthique des actions. Le roman serait une autre forme de consolation du problème religieux que la possession a « réglée » d’une manière spectaculaire et a-mémorielle, en se proposant pour sa part comme un fragment de mémoire gasconne et, sinon libertine, du moins protestante.Le Gascon extravagant, value of experience and fiction as a speech on the history (of Loudun : In this paper, I question the relation between the novel of the Gascon and the event of the demonic possession of the Ursulines in Loudun. This event is never mentioned, however it is constantly used as a reference in our way to read the novel. How the written piece that the Gascon is, does take part in the event of writings which is immediately this demonic possession, as stated by Michel de Certeau in his analysis ? I analyse first the way how this possession is immediately abscribed within a common place of the Epicurian philosophy, then how does the story embedded in the fiction-framework develop the gascon’s experience as a body ethics, and finally how the novel

  9. Fabricating solid carbon porous electrodes from powders

    Science.gov (United States)

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  10. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  11. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  12. Study of electrochemical behavior of desatinib using hanging mercury drop electrode and gold disc electrode

    Czech Academy of Sciences Publication Activity Database

    Nováková, Kateřina; Navrátil, Tomáš; Jaklová Dytrtová, Jana; Jakl, M.

    2015-01-01

    Roč. 11, č. 1 (2015), s. 116-116 ISSN 1336-7242 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : electrochemistry * hanging mercury drop electrode * gold electrode Subject RIV: CG - Electrochemistry

  13. Plasma Beam Interaction with Negative glow discharge

    International Nuclear Information System (INIS)

    El-Tayeb, H.A.; El-Gamal, H.A.

    2000-01-01

    A miniature coaxial gun has been used to study the effect of the energy spectrum of the ejected plasma on the interaction with negative glow region in a normal glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 K A as a single pulse with pulse duration of 60 MUs. Investigations are carried out with argon gas at pressure 0.4 Torr. The sheath thickness of the ejected plasma from the coaxial discharge was 6 cm with different densities and energies. The spectrum of electron energy varies between 6 eV and 1 eV, while the electron density varies between 5 x 10 12 cm -3 and 4x10 13 cm -3 . The peak velocity of the ejected plasma was 0. 8 x 10 5 cm sec -1 in the neutral argon atoms. Argon negative glow region used as base plasma has an electron temperature of 2.2 eV and electron density of 6.2 x10 7 cm -3 . It had been found that the velocity of the ejected plasma decreased when it moves in the negative glow region and its mean electron temperature decreased. The results are compared with the theory of beam interaction with cold plasma

  14. Asymmetric Supercapacitor Electrodes and Devices.

    Science.gov (United States)

    Choudhary, Nitin; Li, Chao; Moore, Julian; Nagaiah, Narasimha; Zhai, Lei; Jung, Yeonwoong; Thomas, Jayan

    2017-06-01

    The world is recently witnessing an explosive development of novel electronic and optoelectronic devices that demand more-reliable power sources that combine higher energy density and longer-term durability. Supercapacitors have become one of the most promising energy-storage systems, as they present multifold advantages of high power density, fast charging-discharging, and long cyclic stability. However, the intrinsically low energy density inherent to traditional supercapacitors severely limits their widespread applications, triggering researchers to explore new types of supercapacitors with improved performance. Asymmetric supercapacitors (ASCs) assembled using two dissimilar electrode materials offer a distinct advantage of wide operational voltage window, and thereby significantly enhance the energy density. Recent progress made in the field of ASCs is critically reviewed, with the main focus on an extensive survey of the materials developed for ASC electrodes, as well as covering the progress made in the fabrication of ASC devices over the last few decades. Current challenges and a future outlook of the field of ASCs are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polystyrene Based Silver Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Shiva Agarwal

    2002-06-01

    Full Text Available Silver(I selective sensors have been fabricated from polystyrene matrix membranes containing macrocycle, Me6(14 diene.2HClO4 as ionophore. Best performance was exhibited by the membrane having a composition macrocycle : Polystyrene in the ratio 15:1. This membrane worked well over a wide concentration range 5.0×10-6–1.0×10-1M of Ag+ with a near-Nernstian slope of 53.0 ± 1.0 mV per decade of Ag+ activity. The response time of the sensor is <15 s and the membrane can be used over a period of four months with good reproducibility. The proposed electrode works well in a wide pH range 2.5-9.0 and demonstrates good discriminating power over a number of mono-, di-, and trivalent cations. The sensor has also been used as an indicator electrode in the potentiometric titration of silver(II ions against NaCl solution. The sensor can also be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of Ag+ in solution having up to 25% (v/v nonaqueous fraction.

  16. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.

    Science.gov (United States)

    Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili

    2015-12-09

    Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.

  17. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  18. Preliminary study on the modelling of negative leader discharges

    International Nuclear Information System (INIS)

    Arevalo, L; Cooray, V

    2011-01-01

    Nowadays, there is considerable interest in understanding the physics underlying positive and negative discharges because of the importance of improving lightning protection systems and of coordinating the insulation for high voltages. Numerical simulations of positive switching impulses made in long spark gaps in a laboratory are achievable because the physics of the process is reasonably well understood and because of the availability of powerful computational methods. However, the existing work on the simulation of negative switching discharges has been held up by a lack of experimental data and the absence of a full understanding of the physics involved. In the scientific community, it is well known that most of the lightning discharges that occur in nature are of negative polarity, and because of their complexity, the only way to understand them is to generate the discharges in laboratories under controlled conditions. The voltage impulse waveshape used in laboratories is a negative switching impulse. With the aim of applying the available information to a self-consistent physical method, an electrostatic approximation of the negative leader discharge process is presented here. The simulation procedure takes into consideration the physics of positive and negative discharges, considering that the negative leader propagates towards a grounded electrode and the positive leader towards a rod electrode. The simulation considers the leader channel to be thermodynamic, and assumes that the conditions required to generate a thermal channel are the same for positive and negative leaders. However, the magnitude of the electrical charge necessary to reproduce their propagation and thermalization is different, and both values are based on experimental data. The positive and negative streamer development is based on the constant electric field characteristics of these discharges, as found during experimental measurements made by different authors. As a computational tool

  19. Modeling the SEI-formation on graphite electrodes in liFePO4 batteries

    NARCIS (Netherlands)

    Li, D.; Danilov, D.L.; Zhang, Zhongru; Chen, H.; Yang, Y.; Notten, P.H.L.

    2015-01-01

    An advanced model is proposed, describing the capacity losses of C6/LiFePO4 batteries under storage and cycling conditions. These capacity losses are attributed to the growth of a Solid Electrolyte Interface (SEI) at the surface of graphite particles in the negative electrode. The model assumes the

  20. Dualising Intuitionictic Negation

    Directory of Open Access Journals (Sweden)

    Graham Priest

    2009-01-01

    Full Text Available One of Da Costa's motives when he constructed the paraconsistent logic Cw was to dualise the negation of intuitionistic logic. In this paper I explore a different way of going about this task. A logic is defined by taking the Kripke semantics for intuitionistic logic, and dualising the truth conditions for negation. Various properties of the logic are established, including its relation to CWo Tableau and natural deduction systems for the logic are produced, as are appropriate algebraic structures. The paper then investigates dualising the intuitionistic conditional in the same way. This establishes various connections between the logic, and a logic called in the literature 'Brouwerian logic' or 'closed-set logic'.

  1. Dualising Intuitionistic Negation

    Directory of Open Access Journals (Sweden)

    Graham Priest

    2009-08-01

    Full Text Available One of Da Costa’s motives when he constructed the paraconsistent logic C! was to dualise the negation of intuitionistic logic. In this paper I explore a different way of going about this task. A logic is defined by taking the Kripke semantics for intuitionistic logic, and dualising the truth conditions for negation. Various properties of the logic are established, including its relation to C!. Tableau and natural deduction systems for the logic are produced, as are appropriate algebraic structures. The paper then investigates dualising the intuitionistic conditional in the same way. This establishes various connections between the logic, and a logic called in the literature ‘Brouwerian logic’ or ‘closed-set logic’.

  2. Universal electrode interface for electrocatalytic oxidation of liquid fuels.

    Science.gov (United States)

    Liao, Hualing; Qiu, Zhipeng; Wan, Qijin; Wang, Zhijie; Liu, Yi; Yang, Nianjun

    2014-10-22

    Electrocatalytic oxidations of liquid fuels from alcohols, carboxylic acids, and aldehydes were realized on a universal electrode interface. Such an interface was fabricated using carbon nanotubes (CNTs) as the catalyst support and palladium nanoparticles (Pd NPs) as the electrocatalysts. The Pd NPs/CNTs nanocomposite was synthesized using the ethylene glycol reduction method. It was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, voltammetry, and impedance. On the Pd NPs/CNTs nanocomposite coated electrode, the oxidations of those liquid fuels occur similarly in two steps: the oxidations of freshly chemisorbed species in the forward (positive-potential) scan and then, in the reverse scan (negative-potential), the oxidations of the incompletely oxidized carbonaceous species formed during the forward scan. The oxidation charges were adopted to study their oxidation mechanisms and oxidation efficiencies. The oxidation efficiency follows the order of aldehyde (formaldehyde) > carboxylic acid (formic acid) > alcohols (ethanol > methanol > glycol > propanol). Such a Pd NPs/CNTs nanocomposite coated electrode is thus promising to be applied as the anode for the facilitation of direct fuel cells.

  3. Rechargeable aluminum batteries with conducting polymers as positive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hudak, Nicholas S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

  4. Auditory mismatch negativity in schizophrenia: topographic evaluation with a high-density recording montage.

    Science.gov (United States)

    Hirayasu, Y; Potts, G F; O'Donnell, B F; Kwon, J S; Arakaki, H; Akdag, S J; Levitt, J J; Shenton, M E; McCarley, R W

    1998-09-01

    The mismatch negativity, a negative component in the auditory event-related potential, is thought to index automatic processes involved in sensory or echoic memory. The authors' goal in this study was to examine the topography of auditory mismatch negativity in schizophrenia with a high-density, 64-channel recording montage. Mismatch negativity topography was evaluated in 23 right-handed male patients with schizophrenia who were receiving medication and in 23 nonschizophrenic comparison subjects who were matched in age, handedness, and parental socioeconomic status. The Positive and Negative Syndrome Scale was used to measure psychiatric symptoms. Mismatch negativity amplitude was reduced in the patients with schizophrenia. They showed a greater left-less-than-right asymmetry than comparison subjects at homotopic electrode pairs near the parietotemporal junction. There were correlations between mismatch negativity amplitude and hallucinations at left frontal electrodes and between mismatch negativity amplitude and passive-apathetic social withdrawal at left and right frontal electrodes. Mismatch negativity was reduced in schizophrenia, especially in the left hemisphere. This finding is consistent with abnormalities of primary or adjacent auditory cortex involved in auditory sensory or echoic memory.

  5. Design and fabrication of a Transverse Field Focussing (TFF) 180 keV negative ion accelerator

    International Nuclear Information System (INIS)

    Matuk, C.A.; Anderson, O.A.; Owren, H.M.; Paterson, J.A.; Purgalis, P.

    1985-11-01

    The 180 keV Transverse Field Focussing (TFF) negative ion accelerator described is the final component of a negative ion based neutral beam acceleration system which is being developed as proof-of-principle demonstration of a radiation hardened neutral beamline. The 180 keV beamline consists of: a surface conversion negative ion source, a 80 keV pre-accelerator, a TFF pumping, matching, and transport section, and the 180 keV TFF accelerator presented. This beamline is expected to provide 1 A of H - at 180 keV. In the design of the accelerator, particular importance was given to the rigidity of the accelerator electrode mounting structures and to the electrical isolation of the electrodes along with their related cooling lines. An optical alignment scheme was developed to assemble and to insure precision alignment of the electrodes

  6. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  7. AC impedance electrochemical modeling of lithium-ion positive electrodes

    International Nuclear Information System (INIS)

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF 6 dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes (1). Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley (2). The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation (3). The resulting system of differential equations was solved

  8. Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking

    International Nuclear Information System (INIS)

    Rajaraman, Swaminathan; Allen, Mark G; Bragg, Julian A; Ross, James D

    2011-01-01

    We report the development of metal transfer micromolded (MTM) three-dimensional microelectrode arrays (3D MEAs) for a transcutaneous nerve tracking application. The measurements of electrode–skin–electrode impedance (ESEI), electromyography (EMG) and nerve conduction utilizing these minimally invasive 3D MEAs are demonstrated in this paper. The 3D MEAs used in these measurements consist of a metalized micro-tower array that can penetrate the outer layers of the skin in a painless fashion and are fabricated using MTM technology. Two techniques, an inclined UV lithography approach and a double-side exposure of thick negative tone resist, have been developed to fabricate the 3D MEA master structure. The MEAs themselves are fabricated from the master structure utilizing micromolding techniques. Metal patterns are transferred during the micromolding process, thereby ensuring reduced process steps compared to traditional silicon-based approaches. These 3D MEAs have been packaged utilizing biocompatible Kapton® substrates. ESEI measurements have been carried out on test human subjects with standard commercial wet electrodes as a reference. The 3D MEAs demonstrate an order of magnitude lower ESEI (normalized to area) compared to wet electrodes for an area that is 12.56 times smaller. This compares well with other demonstrated approaches in literature. For a nerve tracking demonstration, we have chosen EMG and nerve conduction measurements on test human subjects. The 3D MEAs show 100% improvement in signal power and SNR/√area as compared to standard electrodes. They also demonstrate larger amplitude signals and faster rise times during nerve conduction measurements. We believe that this microfabrication and packaging approach scales well to large-area, high-density arrays required for applications like nerve tracking. This development will increase the stimulation and recording fidelity of skin surface electrodes, while increasing their spatial resolution by an order

  9. « L’implantation » comme construction de la présence palestinienne au Liban durant la tutelle syrienne (1989-2005

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    2012-01-01

    Full Text Available Comment a été construite et formulée la question de la présence des réfugiés palestiniens au Liban par la classe politique libanaise dans l’après-guerre civile ?  Pour répondre à cette question, l’auteur propose d’étudier la question de l’implantation – al-tawtîn – en montrant l’existence de conditions d’ouverture d’un espace discursif sur cette question, à la faveur des accords de Taëf d’une part et d’autre part en vertu du contexte régional de signature des accords d’Oslo. Sont alors examinées les prises de positions argumentées sur la question palestinienne des différents acteurs du champ politique libanais durant les années quatre-vingt-dix et au début des années 2000. Trois types d’interprétation du tawtîn illustrent alors la nature polysémique de cette notion laquelle est conçue, en conclusion, comme un méta-discours en regard des positionnements communautaires des acteurs politiques libanais mais aussi du contexte de l’hégémonie syrienne au Liban.

  10. L’empathie comme outil herméneutique du soi: Note sur Paul Ricœur et Heinz Kohut

    Directory of Open Access Journals (Sweden)

    Michel Dupuis

    2011-01-01

    Full Text Available Le bref texte que Paul Ricœur consacre en 1986 à la psychanalyse développée par Heinz Kohut révèle une réinterprétation phénoménologique à la fois du contenu et des fonctions de l'empathie, au total considérée comme un véritable outil à l'œuvre dans l'herméneutique du soi. La vision kohutienne de la constitution du soi et du processus thérapeutique analytique produit une espèce de “dé-sentimentalisation” de l'empathie, en soulignant le rôle crucial du transfert intersubjectif, fort à distance de la théorie (freudienne solipsiste de l'ego.The short text published in 1986 by Paul Ricoeur about Heinz Kohut's psychoanalysis of the self reveals a phenomenological reinterpretation of the content and the functions of empathy, finally considered as an effective tool of the hermeneutics of the self. Kohut's model of constitution of the self and of the therapeutic analytical process produces a kind of “de-sentimentalization” of empathy, pointing to the crucial role of intersubjective transfer, far from a (Freudian solipsistic theory of the ego.

  11. Characterization of positive electrode/electrolyte interphase in lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dupre, N.; Martin, J.F.; Soudan, P.; Guyomard, D. [Inst.des Materiaux Jean Rouxel, Nantes (France)

    2008-07-01

    Lithium batteries appear to be the most viable energy source for portable electronic devices because of their energy density. The solid electrolyte interphase (SEI) between the negative electrode and the electrolyte of a Li-ion battery monitors the overall battery behaviour in terms of irreversible capacity loss, charge transfer kinetics and storage properties. This paper reported on a study that examined the influence of the storage atmosphere and the formation of a protective surface layer on the electrochemical performance. The objective was to better understand the interfacial problems controlling the long term life duration and cyclability. The positive/electrolyte interphase evolution was followed upon aging/cycling using 7Li MAS NMR, XPS and impedance spectroscopy. This very novel and uncommon technique was used to characterize the growth and evolution of the surface of some electrode materials for lithium batteries, due to contact with the ambient atmosphere or electrolyte or along electrochemical cycling. LiFePO4 and LiMn0.5Ni0.5O2 were chosen for the studies because they are among the most promising candidates for positive electrodes for future lithium batteries. The reaction of LiMn0.5Ni0.5O2 with the ambient atmosphere or LiPF6 electrolyte is extremely fast and leads to an important amount of lithium-containing diamagnetic species. The NMR spectra provided valuable structural information on the interaction between the interphase and the active material after contact with electrolyte or along electrochemical cycling. MAS NMR was shown to be a very promising tool to monitor phenomena taking place at the interface between electrode and electrolyte in lithium batteries. The study showed the affect of the potential on the strength of the interaction between the surface layer and the active material and the partial removal of this layer along the electrochemical cycling. 11 refs.

  12. Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Su, Y.; Zhitomirsky, I.

    2015-01-01

    Highlights: • Polypyrrole (PPy) coated multiwalled carbon nanotubes (MWCNT) were prepared. • New method is based on the use of new electrochemically active dopants for PPy. • The dopans provided dispersion of MWCNT and promoted PPy coating formation. • Symmetric PPy–MWCNT supercapacitors showed high capacitance and low resistance. • Asymmetric PPy–MWCNT/VN–MWCNT devices and modules allowed larger voltage window. - Abstract: Conductive polypyrrole (PPy) polymer – multiwalled carbon nanotubes (MWCNT) composites were synthesized using sulfanilic acid azochromotrop (SPADNS) and sulfonazo III sodium salt (CHR-BS) as anionic dopants for chemical polymerization of PPy. The composites were tested for application in electrodes of electrochemical supercapacitors (ES). Sedimentation tests, electrophoretic deposition experiments and Fourier transform infrared spectroscopy (FTIR) investigations showed that strong adsorption of anionic CHR-BS on MWCNT provided MWCNT dispersion. The analysis of scanning and transmission electron microscopy data demonstrated that the use of CHR-BS allowed the formation of PPy coatings on MWCNT. As a result, the composites, prepared using CHR-BS, showed higher capacitance, compared to the composites, prepared using SPADNS. The electrodes, containing MWCNT, coated with PPy showed a capacitance of 179 F g −1 for active mass loading of 10 mg cm −2 , good capacitance retention at scan rates in the range of 2–100 mV s −1 and excellent cyclic stability. Asymmetric ES devices, containing positive PPy–MWCNT electrodes and negative vanadium nitride (VN)–MWCNT electrodes showed significant improvement in energy storage performance, compared to the symmetric ES due to the larger voltage window. The low impedance and high capacitance of the individual cells paved the way to the development of modules with higher voltage, which showed good electrochemical performance

  13. Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes

    International Nuclear Information System (INIS)

    Chen, G-L; Kuo, David M T; Lai, W-T; Li, P-W

    2007-01-01

    We have fabricated a Ge quantum dot (QD) (∼10 nm) single-hole transistor with self-aligned electrodes using thermal oxidation of a SiGe-on-insulator nanowire based on FinFET technology. This fabricated device exhibits clear Coulomb blockade oscillations with large peak-to-valley ratio (PVCR) of 250-750 and negative differential conductance with PVCR of ∼12 at room temperature. This reveals that the gate-induced tunneling barrier lowering is effectively suppressed due to the self-aligned electrode structure. The magnitude of tunneling current spectra also reveals the coupling strengths between the energy levels of the Ge QD and electrodes

  14. APPLICATIONS OF A SINGLE CARBON ELECTRODE

    African Journals Online (AJOL)

    Preferred Customer

    Page 1 ... ABSTRACT: A single carbon electrode used with a common arc welder has been successfully used on steel to weld, to surface harden, to spot weld sheet, to pierce holes and to do simple brazing. ... applications: welding, spot welding, hole piercing, etc. The metal tube holding the carbon electrodes is banded with ...

  15. Low Energy Desalination Using Battery Electrode Deionization

    KAUST Repository

    Kim, Taeyoung

    2017-09-21

    New electrochemical technologies that use capacitive or battery electrodes are being developed to minimize energy requirements for desalinating brackish waters. When a pair of electrodes is charged in capacitive deionization (CDI) systems, cations bind to the cathode and anions bind to the anode, but high applied voltages (>1.2 V) result in parasitic reactions and irreversible electrode oxidation. In the battery electrode deionization (BDI) system developed here, two identical copper hexacyanoferrate (CuHCF) battery electrodes were used that release and bind cations, with anion separation occurring via an anion exchange membrane. The system used an applied voltage of 0.6 V, which avoided parasitic reactions, achieved high electrode desalination capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes between CuHCF electrodes (up to three anion and two cation exchange membranes) reduced energy consumption to only 0.02 kWh/m3 (approximately an order of magnitude lower than values reported for CDI), for an influent desalination similar to CDI (25 mM decreased to 17 mM). These results show that BDI could be effective as a very low energy method for brackish water desalination.

  16. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  17. Reverse electrodialysis : evaluation of suitable electrode systems

    NARCIS (Netherlands)

    Veerman, J.; Saakes, M.; Metz, S. J.; Harmsen, G. J.

    Reverse electrodialysis (RED) is a method for directly extracting electrical energy from salinity gradients, especially from sea and river water. For the commercial implementation of RED, the electrode system is a key component. In this paper, novel electrode systems for RED were compared with

  18. Doped graphene electrodes for organic solar cells

    International Nuclear Information System (INIS)

    Park, Hyesung; Kim, Ki Kang; Bulovic, Vladimir; Kong, Jing; Rowehl, Jill A

    2010-01-01

    In this work graphene sheets grown by chemical vapor deposition (CVD) with controlled numbers of layers were used as transparent electrodes in organic photovoltaic (OPV) devices. It was found that for devices with pristine graphene electrodes, the power conversion efficiency (PCE) is comparable to their counterparts with indium tin oxide (ITO) electrodes. Nevertheless, the chances for failure in OPVs with pristine graphene electrodes are higher than for those with ITO electrodes, due to the surface wetting challenge between the hole-transporting layer and the graphene electrodes. Various alternative routes were investigated and it was found that AuCl 3 doping on graphene can alter the graphene surface wetting properties such that a uniform coating of the hole-transporting layer can be achieved and device success rate can be increased. Furthermore, the doping both improves the conductivity and shifts the work function of the graphene electrode, resulting in improved overall PCE performance of the OPV devices. This work brings us one step further toward the future use of graphene transparent electrodes as a replacement for ITO.

  19. Organic conductive films for semiconductor electrodes

    Science.gov (United States)

    Frank, Arthur J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor overcoated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  20. Microneedle array electrode for human EEG recording.

    NARCIS (Netherlands)

    Lüttge, Regina; van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; van Putten, Michel Johannes Antonius Maria; Vander Sloten, Jos; Verdonck, Pascal; Nyssen, Marc; Haueisen, Jens

    2009-01-01

    Microneedle array electrodes for EEG significantly reduce the mounting time, particularly by circumvention of the need for skin preparation by scrubbing. We designed a new replication process for numerous types of microneedle arrays. Here, polymer microneedle array electrodes with 64 microneedles,

  1. mwnts composite film modified glassy carbon electrode

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A poly p-aminosalicylic acid (Poly(p-ASA)) and multiwall carbon nanotubes. (MWCNTs) composite modified glassy carbon (GC) electrode was constructed by casting the MWNTs on the GC electrode surface followed by electropolymerization of the p-ASA on the MWCNTs/GCE. The electrochemical behaviours ...

  2. Nanometer-spaced electrodes with calibrated separation

    NARCIS (Netherlands)

    Kervennic, Y.V.; Van der Zant, H.S.J.; Morpurgo, A.F.; Gurevich, L.; Kouwenhoven, L.P.

    2002-01-01

    We have fabricated pairs of platinum electrodes with separation between 20 and 3.5 nm. Our technique combines electron beam lithography and chemical electrodeposition. We show that the measurement of the conductance between the two electrodes through the electrolyte provides an accurate and

  3. Substitution of thoriated tungsten electrodes in Switzerland

    International Nuclear Information System (INIS)

    Kunz, H.; Piller, G.

    2006-01-01

    Thoriated tungsten electrodes are frequently used for inert gas welding (TIG/WIG). The use of these electrodes can lead to doses which are well above the limit for the general population (1mSv/year). This has been shown by different investigations, for example from the ''Berufsgenossenschaft''. With these findings in mind, the regulatory authorities (Swiss Federal Office of Public Health (SFOPH) and Swiss National Accident Insurance Association (Suva)) started in 1999 to examine the justification of thoriated tungsten electrodes and a possible substitution with products containing no radioactive material. Up to this time, the use of thoriated tungsten electrodes could be justified since no thorium-free products leading to comparable results were available on the market. This was also the reason why the SFOPH approved several types of these electrodes. Discussions with formation centers for welding and inquiries made at welding shops, trading companies and producers showed that in the mean-time thorium-free products with comparable welding specifications and results became available on the market. Since the 1 January 2004, thoriated tungsten electrodes can only be used if the user has obtained the corresponding license from the SFOPH. The use of thoriated tungsten electrodes is thus not completely forbidden, but very strict conditions have to be fulfilled. Up to now and due to the involvement of the relevant partners, the substitution process has not met any problem. Neither trading companies nor users made any opposition and no request for obtaining a license for thoriated tungsten electrodes was made. (orig.)

  4. Negative ion beam processes

    International Nuclear Information System (INIS)

    Hayward, T.D.; Lawrence, G.P.; Bentley, R.F.; Malanify, J.J.; Jackson, J.A.

    1975-06-01

    Los Alamos Scientific Laboratory fiscal year 1975 work on production of intense, very bright, negative hydrogen (H - ), ion beams and conversion of a high-energy (a few hundred MeV) negative beam into a neutral beam are described. The ion source work has used a cesium charge exchange source that has produced H - ion beams greater than or equal to 10 mA (about a factor of 10 greater than those available 1 yr ago) with a brightness of 1.4 x 10 9 A/m 2 -rad 2 (about 18 times brighter than before). The high-energy, neutral beam production investigations have included measurements of the 800-MeV H - -stripping cross section in hydrogen gas (sigma/sub -10/, tentatively 4 x 10 -19 cm 2 ), 3- to 6-MeV H - -stripping cross sections in a hydrogen plasma (sigma/sub -10/, tentatively 2 to 4 x 10 -16 cm 2 ), and the small-angle scattering that results from stripping an 800-MeV H - ion beam to a neutral (H 0 ) beam in hydrogen gas. These last measurements were interrupted by the Los Alamos Meson Physics Facility shutdown in December 1974, but should be completed early in fiscal year 1976 when the accelerator resumes operation. Small-angle scattering calculations have included hydrogen gas-stripping, plasma-stripping, and photodetachment. Calculations indicate that the root mean square angular spread of a 390-MeV negative triton (T - ) beam stripped in a plasma stripper may be as low as 0.7 μrad

  5. Electrochemical determination of xanthine oxidase inhibitor drug in urate lowering therapy using graphene nanosheets modified electrode

    International Nuclear Information System (INIS)

    Raj, M. Amal; John, S. Abraham

    2014-01-01

    We report the electrochemical determination of urate lowering therapeutic drug, allopurinol (AP) using the electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The ERGO modified GCE was fabricated by self–assembling graphene oxide (GO) on 1,6-hexadiamine (HDA) modified GCE by the electrostatic interaction between the positively charged amine group and the negatively charged GO layers followed by the electrochemical reduction of GO layers at negative potential. XPS results confirmed the attachment of GO and its electrochemical reduction. The electrochemical behavior of AP was examined at ERGO modified electrode in the presence of ascorbic acid (AA) and uric acid (UA). It was found that ERGO modified electrode not only enhanced the oxidation currents of AP, AA and UA but also showed stable signals for them for repetitive potential cycles. The present modified electrode was successfully used to determine these analytes simultaneously in a mixture. Selective determination of AP in the presence of high concentrations of AA and UA was also demonstrated at ERGO modified GCE. Using amperometry, detections of 40 and 200 nM of UA and AP were achieved and the detection limits were found to be 9.0 × 10 −9 M and 1.1 × 10 −7 M, respectively (S/N = 3). Further, the practical application of the present modified electrode was demonstrated by simultaneously determining the concentrations of AA, UA and AP in human blood serum and urine samples

  6. Bipolar Electrode Sample Preparation Devices

    Science.gov (United States)

    Wang, Yi (Inventor); Song, Hongjun (Inventor); Pant, Kapil (Inventor)

    2017-01-01

    An analyte selection device can include: a body defining a fluid channel having a channel inlet and channel outlet; a bipolar electrode (BPE) between the inlet and outlet; one of an anode or cathode electrically coupled with the BPE on a channel inlet side of the BPE and the other of the anode or cathode electrically coupled with the BPE on a channel outlet side of the BPE; and an electronic system operably coupled with the anode and cathode so as to polarize the BPE. The fluid channel can have any shape or dimension. The channel inlet and channel outlet can be longitudinal or lateral with respect to the longitudinal axis of the channel. The BPE can be any metallic member, such as a flat plate on a wall or mesh as a barrier BPE. The anode and cathode can be located at a position that polarizes the BPE.

  7. Carbonaceous electrode materials for supercapacitors.

    Science.gov (United States)

    Hao, Long; Li, Xianglong; Zhi, Linjie

    2013-07-26

    Supercapacitors have been widely studied around the world in recent years, due to their excellent power density and long cycle life. As the most frequently used electrode materials for supercapacitors, carbonaceous materials attract more and more attention. However, their relatively low energy density still holds back the widespread application. Up to now, various strategies have been developed to figure out this problem. This research news summarizes the recent advances in improving the supercapacitor performance of carbonaceous materials, including the incorporation of heteroatoms and the pore size effect (subnanopores' contribution). In addition, a new class of carbonaceous materials, porous organic networks (PONs) has been managed into the supercapacitor field, which promises great potential in not only improving the supercapacitor performances, but also unraveling the related mechanisms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor.

    Science.gov (United States)

    Ma, Guofu; Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang

    2018-01-01

    The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g -1 and 255 F g -1 at 0.5 A g -1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg -1 at a power density of 871.2 W kg -1 in the voltage window of 0-1.6 V with 2 M KOH solution.

  9. A Microbeam Resonator with Partial Electrodes for Logic and Memory Elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-11-10

    We demonstrate logic and memory elements based on an in-plane clamped-clamped microbeam resonator. The micro-resonator is electrostatically actuated through a drive electrode and the motional signal is capacitively sensed at a sense electrode, while the resonance characteristics are modulated by DC voltage pulses provided at two separate partial electrodes, independent of the drive/sense electrodes. For the logic applications, we use two separate electrodes to provide DC voltages defined as the logic inputs. The high (low) motional signal at on-resonance (off-resonance) state is defined as the logic output state “1” (“0”). For the memory operation, two stable vibrational states, high and low, within the hysteretic regime are defined as the memory states, “1” and “0”, respectively. We take advantage of the split electrode configuration to provide positive and negative DC voltage pulses selectively to set/reset the memory states (“1”/“0”) without affecting the driving and sensing terminals. Excluding the energy cost for supporting electronics, these devices consume energy in 10’s of picojoules per logic/memory operations. Furthermore, the devices are fabricated using silicon on insulator (SOI) wafers, have the potential for on-chip integration, and operate at moderate pressure (~1 Torr) and room temperature.

  10. A Microbeam Resonator with Partial Electrodes for Logic and Memory Elements

    KAUST Repository

    Hafiz, Md Abdullah Al; Ilyas, Saad; Ahmed, Sally; Younis, Mohammad I.; Fariborzi, Hossein

    2017-01-01

    We demonstrate logic and memory elements based on an in-plane clamped-clamped microbeam resonator. The micro-resonator is electrostatically actuated through a drive electrode and the motional signal is capacitively sensed at a sense electrode, while the resonance characteristics are modulated by DC voltage pulses provided at two separate partial electrodes, independent of the drive/sense electrodes. For the logic applications, we use two separate electrodes to provide DC voltages defined as the logic inputs. The high (low) motional signal at on-resonance (off-resonance) state is defined as the logic output state “1” (“0”). For the memory operation, two stable vibrational states, high and low, within the hysteretic regime are defined as the memory states, “1” and “0”, respectively. We take advantage of the split electrode configuration to provide positive and negative DC voltage pulses selectively to set/reset the memory states (“1”/“0”) without affecting the driving and sensing terminals. Excluding the energy cost for supporting electronics, these devices consume energy in 10’s of picojoules per logic/memory operations. Furthermore, the devices are fabricated using silicon on insulator (SOI) wafers, have the potential for on-chip integration, and operate at moderate pressure (~1 Torr) and room temperature.

  11. Conducting polymer coated neural recording electrodes

    Science.gov (United States)

    Harris, Alexander R.; Morgan, Simeon J.; Chen, Jun; Kapsa, Robert M. I.; Wallace, Gordon G.; Paolini, Antonio G.

    2013-02-01

    Objective. Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during

  12. Emerging Novel Metal Electrodes for Photovoltaic Applications.

    Science.gov (United States)

    Lu, Haifei; Ren, Xingang; Ouyang, Dan; Choy, Wallace C H

    2018-04-01

    Emerging novel metal electrodes not only serve as the collector of free charge carriers, but also function as light trapping designs in photovoltaics. As a potential alternative to commercial indium tin oxide, transparent electrodes composed of metal nanowire, metal mesh, and ultrathin metal film are intensively investigated and developed for achieving high optical transmittance and electrical conductivity. Moreover, light trapping designs via patterning of the back thick metal electrode into different nanostructures, which can deliver a considerable efficiency improvement of photovoltaic devices, contribute by the plasmon-enhanced light-mattering interactions. Therefore, here the recent works of metal-based transparent electrodes and patterned back electrodes in photovoltaics are reviewed, which may push the future development of this exciting field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pierce electrodes for a multigap accelerating system

    International Nuclear Information System (INIS)

    Davydenko, V.I.; Ivanov, A.A.; Kotelnikov, I.A.; Tiunov, M.A.

    2007-01-01

    A well-known Pierce's solution that allows to focus a beam of charged particles using properly shaped electrodes outside the beam is generalized to the case of multigap accelerating system. Simple parametric formulae for Pierce electrodes are derived for an accelerating system with current density, limited either by space charge or by emitting property of the cathode. As an example of general approach, Pierce electrodes shape is analyzed for a system with two accelerating gaps. It is shown that precise Pierce's solution exists if acceleration rate within second gap is lower than within first gap. In the opposite case quasi-Pierce solution can be implemented using non-equipotential electrode between the gaps, and guidelines, based on numerical simulations, for the design of equipotential focusing electrodes are given

  14. High voltage holding in the negative ion sources with cesium deposition

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.; Sanin, A.; Sotnikov, O., E-mail: O.Z.Sotnikov@inp.nsk.su [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  15. Negative leave balances

    CERN Multimedia

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1Â September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply. Â Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30Â September and/or 31Â December, leave will automatically be transferred from one account to another on the relevant dates i...

  16. Negative leave balances

    CERN Multimedia

    Human Resources Department

    2005-01-01

    Members of the personnel entitled to annual leave and, where appropriate, saved leave and/or compensatory leave are requested to take note of the new arrangements described below, which were recommended by the Standing Concertation Committee (SCC) at its meeting on 1 September 2005 and subsequently approved by the Director-General. The changes do not apply to members of the personnel participating in the Progressive Retirement Programme (PRP) or the Part-time Work as a pre-retirement measure, for whom the specific provisions communicated at the time of joining will continue to apply.  Negative balances in annual leave, saved leave and/or compensatory leave accounts at the end of the leave year (30th September) and on the date on which bonuses are credited to the saved leave account (31st December): Where members of the personnel have a leave account with a negative balance on 30 September and/or 31 December, leave will automatically be transferred from one account to another on the relevant dates in or...

  17. Ionization detector, electrode configuration and single polarity charge detection method

    Science.gov (United States)

    He, Z.

    1998-07-07

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge. 10 figs.

  18. Analysis of polypyrrole-coated stainless steel electrodes

    Indian Academy of Sciences (India)

    Analysis of polypyrrole-coated stainless steel electrodes - Estimation of specific ... is carried out on stainless steel electrodes using -toluene sulphonic acid. ... The feasibility of the electrode for supercapacitor applications is investigated.

  19. Electrode assembly for a lithium ion battery, process for the production of such electrode assembly, and lithium ion battery comprising such electrode assemblies

    NARCIS (Netherlands)

    Mulder, F.M.; Wagemaker, M.

    2013-01-01

    The invention provides an electrode assembly for a lithium ion battery, the electrode assembly comprising a lithium storage electrode layer on a current collector, wherein the lithium storage electrode layer is a porous layer having a porosity in the range of -35 %, with pores having pore widths in

  20. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    Science.gov (United States)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  1. Phospholipid monolayer coated microfabricated electrodes to model the interaction of molecules with biomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Coldrick, Zachary [Centre for Self-Organising Molecular Systems (SOMS), School of Chemistry, University of Leeds, Leeds, LS2 9JT (United Kingdom)], E-mail: eenzc@leeds.ac.uk; Steenson, Paul [School of Electronic Engineering, University of Leeds, Leeds, LS2 9JT (United Kingdom); Millner, Paul [Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT (United Kingdom); Davies, Matthew [Health and Safety Laboratories, Buxton, SK17 9JN (United Kingdom); Nelson, Andrew [Centre for Self-Organising Molecular Systems (SOMS), School of Chemistry, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2009-09-01

    The hanging mercury (Hg) drop electrode (HMDE) has a classical application as a tool to study adsorption and desorption processes of surface organic films due to its: (a) atomically smooth surface and, (b) hydrophobicity at its potential of zero charge. In this study we report on a replacement of the HMDE for studying supported organic layers in the form of platinum (Pt) working electrodes fabricated using lithography techniques on which a thin film of Hg is electrodeposited. These wafer-based Pt/Hg electrodes are characterised and compared to the HMDE using rapid cyclic voltammetry (RCV) and show similar capacitance-potential profiles while being far more mechanically stable and consuming considerably less Hg over their lifetime of several months. The electrodes have been used to support self-assembled phospholipid monolayers which are dynamic surface coatings with unique dielectric properties. The issue of surface contamination has been solved by regenerating the electrode surface prior to phospholipid coating by application of extreme cathodic potentials more negative than -2.6 V (vs. Ag/AgCl). The phospholipid coated electrodes presented in this paper mimic one half of a phospholipid bilayer and exhibit interactions with the biomembrane active drug molecules chlorpromazine, and quinidine. The magnitudes of these interactions have been assessed by recording changes in the capacitance-potential profiles in real time using RCV at 40 V s{sup -1} over potential ranges >1 V. A method for electrode coating with phospholipids with the electrodes fitted in a flow cell device has been developed. This has enabled sequential rapid cleaning/coating/interaction cycles for the purposes of drug screening and/or on-line monitoring for molecules of interest.

  2. Phospholipid monolayer coated microfabricated electrodes to model the interaction of molecules with biomembranes

    International Nuclear Information System (INIS)

    Coldrick, Zachary; Steenson, Paul; Millner, Paul; Davies, Matthew; Nelson, Andrew

    2009-01-01

    The hanging mercury (Hg) drop electrode (HMDE) has a classical application as a tool to study adsorption and desorption processes of surface organic films due to its: (a) atomically smooth surface and, (b) hydrophobicity at its potential of zero charge. In this study we report on a replacement of the HMDE for studying supported organic layers in the form of platinum (Pt) working electrodes fabricated using lithography techniques on which a thin film of Hg is electrodeposited. These wafer-based Pt/Hg electrodes are characterised and compared to the HMDE using rapid cyclic voltammetry (RCV) and show similar capacitance-potential profiles while being far more mechanically stable and consuming considerably less Hg over their lifetime of several months. The electrodes have been used to support self-assembled phospholipid monolayers which are dynamic surface coatings with unique dielectric properties. The issue of surface contamination has been solved by regenerating the electrode surface prior to phospholipid coating by application of extreme cathodic potentials more negative than -2.6 V (vs. Ag/AgCl). The phospholipid coated electrodes presented in this paper mimic one half of a phospholipid bilayer and exhibit interactions with the biomembrane active drug molecules chlorpromazine, and quinidine. The magnitudes of these interactions have been assessed by recording changes in the capacitance-potential profiles in real time using RCV at 40 V s -1 over potential ranges >1 V. A method for electrode coating with phospholipids with the electrodes fitted in a flow cell device has been developed. This has enabled sequential rapid cleaning/coating/interaction cycles for the purposes of drug screening and/or on-line monitoring for molecules of interest.

  3. Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides.

    Science.gov (United States)

    Roeser, Julien; Alting, Niels F A; Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer

    2013-07-16

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy carbon (GC) electrodes for the electrochemical oxidation and cleavage of peptides. An optimal working potential of 2000 mV was chosen to ensure oxidation of peptides on BDD by electron transfer processes only. Oxidation by electrogenerated OH radicals took place above 2500 mV on BDD, which is undesirable if cleavage of a peptide is to be achieved. BDD showed improved cleavage yield and reduced adsorption for a set of small peptides, some of which had been previously shown to undergo electrochemical cleavage C-terminal to tyrosine (Tyr) and tryptophan (Trp) on porous carbon electrodes. Repeated oxidation with BDD electrodes resulted in progressively lower conversion yields due to a change in surface termination. Cathodic pretreatment of BDD at a negative potential in an acidic environment successfully regenerated the electrode surface and allowed for repeatable reactions over extended periods of time. BDD electrodes are a promising alternative to GC electrodes in terms of reduced adsorption and fouling and the possibility to regenerate them for consistent high-yield electrochemical cleavage of peptides. The fact that OH-radicals can be produced by anodic oxidation of water at elevated positive potentials is an additional advantage as they allow another set of oxidative reactions in analogy to the Fenton reaction, thus widening the scope of electrochemistry in protein and peptide chemistry and analytics.

  4. Lithium battery electrodes with ultra-thin alumina coatings

    Science.gov (United States)

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  5. Do `negative' temperatures exist?

    Science.gov (United States)

    Lavenda, B. H.

    1999-06-01

    A modification of the second law is required for a system with a bounded density of states and not the introduction of a `negative' temperature scale. The ascending and descending branches of the entropy versus energy curve describe particle and hole states, having thermal equations of state that are given by the Fermi and logistic distributions, respectively. Conservation of energy requires isentropic states to be isothermal. The effect of adiabatically reversing the field is entirely mechanical because the only difference between the two states is their energies. The laws of large and small numbers, leading to the normal and Poisson approximations, characterize statistically the states of infinite and zero temperatures, respectively. Since the heat capacity also vanishes in the state of maximum disorder, the third law can be generalized in systems with a bounded density of states: the entropy tends to a constant as the temperature tends to either zero or infinity.

  6. Point Electrode Studies of the Solid Electrolyte-Electrode Interface

    DEFF Research Database (Denmark)

    Jacobsen, Torben

    the equivalent capacity, $C^{1/\\alpha}$, plotted against the contact area during an experimental period of 2 weeks. The contact area is calculated from the electrolyte resistance as $A=1/(4\\pi(\\sigma R_{YSZ})^2)$. After the electrode has been allowed to touch the electrolyte an increasing capacity proportional......$C in air. The different perturbations are indicated on the graph by numbers. 1-2\\hfill\\parbox[t]{7.3cm}{Thermal cycle at equilibrium. Determination of activation energies.} 3-4\\hfill\\parbox[t]{7.3cm}{ Potential step to -0.150\\,V for 5 hours. Activation.} 5-6\\hfill\\parbox[t]{7.3cm}{ Potential staircase 0...... $\\rightarrow$ -0.150 $\\rightarrow$ 0.050$\\rightarrow$ -0.150 0V. Potential dependence of parameters.} 6-7\\hfill\\parbox[t]{7.3cm}{ Potential step to 0.050\\,V for 4 hours. Activation.} 8-9\\hfill\\parbox[t]{7.3cm}{ As 5-6.} 9-10\\hfill\\parbox[t]{7.3cm}{Thermal cycle at -0.150\\,V. Activation energies.} 11-12\\hfill...

  7. Development of versatile multiaperture negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Cavenago, M.; Minarello, A.; Sattin, M. [INFN-LNL, v.le dell' Universita n 2, I-35020, Legnaro (PD) Italy (Italy); Serianni, G.; Antoni, V.; Bigi, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Degli Agostini, F.; Franchin, L.; Laterza, B.; Ravarotto, D.; Rossetto, F.; Zaniol, B.; Zucchetti, S. [Consorzio RFX, Associazione Euratom-ENEA sulla fusione, c.so S. Uniti 4, 35127 Padova (Italy); and others

    2015-04-08

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at −60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  8. Electrode systems for in situ vitrification

    Science.gov (United States)

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1990-01-01

    An electrode comprising a molybdenum rod is received within a conductive collar formed of graphite. The molybdenum rod and the graphite collar may be physically joined at the bottom. A pair of such electrodes are placed in soil containing buried waste material and an electric current is passed therebetween for vitrifying the soil. The graphite collar enhances the thermal conductivity of the combination, bringing heat to the surface, and preventing formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is suitably filled with a conductive ceramic powder that sinters upon the molybdenum rod, protecting the same from oxidation as graphite material is consumed, or a metal powder which liquefies at operating temperatures. The center of the molybdenum rod, used with a collar of separately, can be hollow and filled with a powdered metal, such as copper, which liquefies at operating temperatures. Connection to electrodes can be provided below ground level to avoid open circuit due to electrode deterioration, or sacrificial electrodes may be employed when operation is started. Outboard electrodes cna be utilized to square up a vitrified area.

  9. Rational design of new electrodes for electrochemotherapy.

    Science.gov (United States)

    Spugnini, E P; Citro, G; Porrello, A

    2005-06-01

    Electrochemotherapy associates the local delivery of anticancer drugs with the administration of permeabilizing electric pulses that support the antiblastic action. The basic instrumentation for this therapy is constituted by a pulse generator and various specific electrodes. While many efforts have been profuse by researchers in this field to obtain the standardization of the pulse generating equipment over the past 15 years, the delivery apparatus still needs refinements in order to reach most of the body districts, to control the homogeneity and stability of the electric fields and to further reduce morbidity. With the aim to develop innovative electrodes able to satisfy, at least partially, these requirements, extensive studies on pet patients with spontaneous neoplasms have been conducted, leading to the manufacturing of several different prototypes. In this paper we discuss the rationale of 11 different electrodes, briefly summarize the results obtained and their experimental validation, also presenting five paradigmatic clinical cases. In particular, it is shown that the caliper electrodes are more suited for the treatment of cutaneous and subcutaneous lesions, while the needle arrays are more efficacious in intraoperative settings. Furthermore, relevant peculiarities of unipolar electrodes are examined with a particular focus on the irregular current paths that they produce and on the potentialities of this feature. Remarkably, the decrease of the steric encumbrance turned out to be a stronger factor in electrode design than the containment of the total number of electric fields covered in serial ECT sessions. In the conclusions, perspectives and new challenges of electrode design for electrochemotherapy are illustrated.

  10. Nanostructured Solid Oxide Fuel Cell Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Zvi [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  11. Cyanex based uranyl sensitive polymeric membrane electrodes.

    Science.gov (United States)

    Badr, Ibrahim H A; Zidan, W I; Akl, Z F

    2014-01-01

    Novel uranyl selective polymeric membrane electrodes were prepared using three different low-cost and commercially available Cyanex extractants namely, bis(2,4,4-trimethylpentyl) phosphinic acid [L1], bis(2,4,4-trimethylpentyl) monothiophosphinic acid [L2] and bis(2,4,4-trimethylpentyl) dithiophosphinic acid [L3]. Optimization and performance characteristics of the developed Cyanex based polymer membrane electrodes were determined. The influence of membrane composition (e.g., amount and type of ionic sites, as well as type of plasticizer) on potentiometric responses of the prepared membrane electrodes was studied. Optimized Cyanex-based membrane electrodes exhibited Nernstian responses for UO₂(2+) ion over wide concentration ranges with fast response times. The optimized membrane electrodes based on L1, L2 and L3 exhibited Nernstian responses towards uranyl ion with slopes of 29.4, 28.0 and 29.3 mV decade(-1), respectively. The optimized membrane electrodes based on L1-L3 showed detection limits of 8.3 × 10(-5), 3.0 × 10(-5) and 3.3 × 10(-6) mol L(-1), respectively. The selectivity studies showed that the optimized membrane electrodes exhibited high selectivity towards UO₂(2+) ion over large number of other cations. Membrane electrodes based on L3 exhibited superior potentiometric response characteristics compared to those based on L1 and L2 (e.g., widest linear range and lowest detection limit). The analytical utility of uranyl membrane electrodes formulated with Cyanex extractant L3 was demonstrated by the analysis of uranyl ion in different real samples for nuclear safeguards verification purposes. The results obtained using direct potentiometry and flow-injection methods were compared with those measured using the standard UV-visible and inductively coupled plasma spectroscopic methods. © 2013 Published by Elsevier B.V.

  12. Insulating electrodes: a review on biopotential front ends for dielectric skin–electrode interfaces

    International Nuclear Information System (INIS)

    Spinelli, Enrique; Haberman, Marcelo

    2010-01-01

    Insulating electrodes, also known as capacitive electrodes, allow acquiring biopotentials without galvanic contact with the body. They operate with displacement currents instead of real charge currents, and the electrolytic electrode–skin interface is replaced by a dielectric film. The use of insulating electrodes is not the end of electrode interface problems but the beginning of new ones: coupling capacitances are of the order of pF calling for ultra-high input impedance amplifiers and careful biasing, guarding and shielding techniques. In this work, the general requirements of front ends for capacitive electrodes are presented and the different contributions to the overall noise are discussed and estimated. This analysis yields that noise bounds depend on features of the available devices as current and voltage noise, but the final noise level also depends on parasitic capacitances, requiring a careful shield and printed circuit design. When the dielectric layer is placed on the skin, the present-day amplifiers allow achieving noise levels similar to those provided by wet electrodes. Furthermore, capacitive electrode technology allows acquiring high quality ECG signals through thin clothes. A prototype front end for capacitive electrodes was built and tested. ECG signals were acquired with these electrodes in direct contact with the skin and also through cotton clothes 350 µm thick. They were compared with simultaneously acquired signals by means of wet electrodes and no significant differences were observed between both output signals

  13. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    Science.gov (United States)

    O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-08-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.

  14. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    International Nuclear Information System (INIS)

    O’Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-01-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact.This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface. (paper)

  15. Effect of Particle Size on Electrode Potential and Thermodynamics of Nanoparticles Electrode in Theory and Experiment

    International Nuclear Information System (INIS)

    Yunfeng, Yang; Yongqiang, Xue; Zixiang, Cui; Miaozhi, Zhao

    2014-01-01

    The particle size of electrode materials has a significant influence on the standard electrode potential and the thermodynamic properties of electrode reactions. In this paper, the size-dependent electrochemical thermodynamics has been theoretically investigated and successfully deduced electrochemical thermodynamics equations for nanoparticles electrode. At the same time, the electrode potential and thermodynamical properties of Ag 2 O/Ag nanoparticles electrode constructed by the solid and spherical Ag 2 O nanoparticles with different sizes further testified that the particle size of nanoparticles has a significant effect on electrochemical thermodynamics. The results show that the electrode potential depends on that of the smallest nanoparticle in a nanoparticles electrode which consisted of different particle sizes of nano-Ag 2 O. When the size of Ag 2 O nanoparticles reduces, the standard electrode potentials and the equilibrium constants of the corresponding electrode reactions increase, and the temperature coefficient, the mole Gibbs energy change, the mole enthalpy change and the mole entropy change decrease. Moreover, these physical quantities are all linearly related with the reciprocal of average particle size (r > 10 nm). The experimental regularities coincide with the theoretical equations

  16. Le chanoyu, cérémonie japonaise traditionnelle du thé, comme exemple d'éducation à la présence

    Directory of Open Access Journals (Sweden)

    Pascal Bouchez

    2014-04-01

    Full Text Available Que peut en retour, et par le détour, nous apprendre de manière distanciatrice le chanoyu de nos manières d’apprendre en Occident, et de nous construire dans l’interaction ? A l’heure de l'essor fulgurant des TICE, cette communication se propose de revenir sur les fondements d’une cérémonie traditionnelle du thé japonaise, d’envisager ses principes esthétiques et son « intentionnalité », avant d’interroger le concept singulier de technique mis en œuvre. L’objectif visé étant de souligner l’importance plus que jamais cruciale de l’ouverture du « chantier » d’une véritable « éducation à la présence » comme vecteur essentiel d’une éducation interculturelle électronique et présentielle adaptée aux défis du XXIe siècle. Chanoyu, the traditional Japanese tea ceremony as an example of in-presence education What can be learnt when taking a reflexive distance from the chanoyu concerning the ways in which we in the West learn and construct ourselves in interactions? With the meteoric rise of Information and Communication Technologies (ICT, this paper seeks to reexamine the basis of the traditional Japanese tea ceremony with its aesthetic principles, its “intentionality” and the singular concept of technique it puts into practice. The objective of this approach is to highlight the ever-important opening of a research domain into a veritable “in-presence education” as an essential vector in intercultural and in-presence electronic education adapted to the challenges of the 21st century.

  17. Le mythe comme fondement des territoires et de l’ordre social dans les îles de l’ouest de Sumatra (Indonésie

    Directory of Open Access Journals (Sweden)

    Dominique Guillaud

    2008-06-01

    Full Text Available Cet article explore quelques unes des pistes de recherche qui, inspirées par son terrain au Vanuatu, avaient été ouvertes dans le champ de la géographie culturelle par J. Bonnemaison : les relations entre mythe et territoire, l’inscription dans l’espace des rapports de pouvoir entre groupes humains, ou encore le rôle des géosymboles comme lieux de mémoire des systèmes politiques et sociaux. S’inspirant de ces avancées, l’article évoque le même type de correspondances entre l’ordre politique et l’ordre spatial dans des terrains insulaires d’Indonésie, les îles de Nias et et de Siberut, et tente de montrer la dimension stratégique investie dans les mythes et récits de fondation.This paper recalls some avenues of research that J. Bonnemaison explored in the field of cultural geography: the relations between myth and territory, the way in which political relationships are inscribed into space and land boundaries, and the role of “geosymbols” as memorials for political and social systems. This demonstration is inspired by the works that Bonnemaison carried out on a privileged field, the archipelago of Vanuatu; the paper explores the same kind of correspondences between political and spatial order in two Indonesian island, Nias and Siberut, and tries to reveal the strategic dimension invested in myths and narratives of foundation.

  18. Mismatch negativity, social cognition, and functional outcomes in patients after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui-yan Sun

    2015-01-01

    Full Text Available Mismatch negativity is generated automatically, and is an early monitoring indicator of neuronal integrity impairment and functional abnormality in patients with brain injury, leading to decline of cognitive function. Antipsychotic medication cannot affect mismatch negativity. The present study aimed to explore the relationships of mismatch negativity with neurocognition, daily life and social functional outcomes in patients after brain injury. Twelve patients with traumatic brain injury and 12 healthy controls were recruited in this study. We examined neurocognition with the Wechsler Adult Intelligence Scale-Revised China, and daily and social functional outcomes with the Activity of Daily Living Scale and Social Disability Screening Schedule, respectively. Mismatch negativity was analyzed from electroencephalogram recording. The results showed that mismatch negativity amplitudes decreased in patients with traumatic brain injury compared with healthy controls. Mismatch negativity amplitude was negatively correlated with measurements of neurocognition and positively correlated with functional outcomes in patients after traumatic brain injury. Further, the most significant positive correlations were found between mismatch negativity in the fronto-central region and measures of functional outcomes. The most significant positive correlations were also found between mismatch negativity at the FCz electrode and daily living function. Mismatch negativity amplitudes were extremely positively associated with Social Disability Screening Schedule scores at the Fz electrode in brain injury patients. These experimental findings suggest that mismatch negativity might efficiently reflect functional outcomes in patients after traumatic brain injury.

  19. L'anticipation comme actualisation

    DEFF Research Database (Denmark)

    Mondeme, Chloé

    2018-01-01

    It is commonly stated that anticipation is a phenomenon that is prior to a given action or situation, both time-wise and logically speaking. In this article, we focus in detail on how anticipation reconfigures the very action being anticipated. By ‘in detail’, we mean through the meticulous...... observation and analysis of ordinary interactions. The corpus is constituted of learning interactions, between dog educator and dogs in formation, in which anticipating an action, notably by assessing it before it happens, contributes in a large part to (re)configure it. This point leads us to develop...

  20. A comme... (A as in...).

    Science.gov (United States)

    Diaz, Olga; And Others

    1979-01-01

    Contains four suggested vocabulary learning activities, concentrating on (1) partitive expressions in street names, (2) sports vocabulary, (3) slang expressions, and (4) the many meanings of the words "jouer" and "jeu." (AM)

  1. La migration clandestine mexicaine comme un crime : commentaires sur quelques effets de la loi SB. 1070 de l’État de l’Arizona

    Directory of Open Access Journals (Sweden)

    Philippe Schaffhauser

    2011-11-01

    Full Text Available Cet article a pour objectif d’analyser les effets réels et possibles de l’entrée en vigueur en 2010 de la loi SB 1070, dite loi Arizona, laquelle se présente comme un dispositif juridique visant à lutter contre la migration clandestine dans cette partie de l’Union Américaine. Or cette loi a pour première conséquence pratique de criminaliser un type de situation migratoire et de stigmatiser ensuite la population mexicaine qui, selon les représentations sociales xénophobes, incarne para « excellence » (i.e. délit de facies, la figure du clandestin aux États-Unis. Être mexicain, dans ce pays, finit par être le commencement d’un délit ou du moins jette un doute sur la situation migratoire de l’ensemble des ressortissants de cette communauté nationale. L’article s’emploie à montrer l’arbitraire (l’État de l’Arizona comme tous les autres États de l’Union n’est pas compétent en matière de migration et la construction artificielle du délit imputé aux sans papiers. En effet, faire de la migration clandestine un crime pose le problème objectif de déterminer qui est la victime réelle d’un tel acte et, selon l’expression consacrée par John Stuart Mill, cette forme de migration apparaît au regard de la philosophie morale comme « crime sans victimes », puisque la seule victime de cette infraction à la loi c’est la société américaine toute entière, ses lois, ses normes, ses valeurs et ses institutions, soit une entité abstraite au regard de ce qui se joue au quotidien en matière migration clandestine et de contrôle policier.This article aims to examine the real effects and possible entry into force in 2010 of the so-called law SB 1070 Arizona law, which presents itself as a legal device to combat against illegal migration in this part of the American Union. However this Act is to first practical consequence criminalize a type of migratory situation and then condemn the Mexican population

  2. The Character as Text in Philip Massinger’s A New Way to Pay Old Debts Le Personnage comme texte dans A New Way to Pay Old Debts de Philip Massinger

    Directory of Open Access Journals (Sweden)

    Wendy Ribeyrol

    2009-06-01

    Full Text Available Dans A New Way to Pay Old Debts de Philip Massinger la réputation est perçue comme une feuille blanche sur laquelle le personnage doit écrire le récit de sa vie. L’idée de la vie d’un homme comme livre ou comme feuille de papier est fort ancienne, elle figure aussi bien dans la Bible que dans les livres d’emblèmes des XVIe et XVIIe siècles. Au moment de la mort, l’homme laisse ainsi à la postérité un texte édifiant dont il aura été l’auteur (auctor. Cet article démontre  qu’il faut néanmoins faire une distinction entre l’homme, qui prend plume et rédige son propre texte, et la femme qui doit attendre passivement qu’un autre compose le sien.

  3. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  4. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...

  5. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  6. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    International Nuclear Information System (INIS)

    Teyssedre, G.; Laurent, C.; Vu, T. T. N.

    2015-01-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10 −14 –10 −13  m 2  V −1  s −1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets

  7. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Science.gov (United States)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  8. The First Successful Compact Negative Heavy Ion Cyclotron

    International Nuclear Information System (INIS)

    Liu, Y.; Chen, M.; Li, D.; Lu, X.; Shen, L.; Xu, S.; Chen, G.

    1999-01-01

    A compact negative heavy ion minicyclotron has been set up in 1993 in Shanghai, China which is dedicated to the analysis of radioactive isotope 14 C. This is a new type of cyclotron with a series of gifted ideas, such as adopting triangular-wave Dee Voltage, configuring the asymmetric differential Dee electrodes with varying width and aperture, combining the yoke of the magnet with the vacuum chamber, designing a pair of the spherical electrostatic injection deflectors, adding auxiliary electrodes for extraction, alternately accelerating different particles and using Dynode-MCP detector for counting 14 C etc., all of which have aimed at increasing the transmission efficiency in the injection, acceleration and extraction region, eliminating various backgrounds and improving the precision of 14 C analysis. All of those will be introduced in this article. Finally, its operation performance and some difficulties will be discussed

  9. Negative electrode materials for lithium-ion solid-state microbatteries

    NARCIS (Netherlands)

    Baggetto, L.

    2010-01-01

    Electronic portable devices are becoming more and more important in our daily life. Many portable types of electronic equipment rely on rechargeable lithium-ion batteries as they can reversibly deliver the highest gravimetric and volumetric energy densities. Lithium-ion batteries are currently

  10. Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials.

    Science.gov (United States)

    Long, Conglai; Wei, Tong; Yan, Jun; Jiang, Lili; Fan, Zhuangjun

    2013-12-23

    We report a facile strategy to prepare iron nanosheets directly grown on graphene sheets nanocomposite (C-PGF) through the carbonization of iron ions adsorbed onto polyaniline nanosheet/graphene oxide hybrid material. Because of the synergistic effect of iron nanosheets and graphene sheets, the as-obtained C-PGF exhibits an ultrahigh capacitance of ca. 720 F g(-1) in 6 M KOH aqueous solution. Additionally, the assembled asymmetric supercapacitor (C-PGF//Ni(OH)2/CNTs) delivers a remarkable high power density and a noticeable ultrahigh energy density of ca. 140 Wh kg(-1) (based on the total mass of active materials) and an acceptable cycling performance of 78% retention after 2000 cycles. Therefore, the designed supercapacitors with high energy density, comparable to rechargeable lithium-ion batteries (LIBs), offer an important guideline for future design of advanced next-generation supercapacitors for both industrial and consumer applications.

  11. Facile synthesis of conjugated polymeric Schiff base as negative electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Ye, Haijun; Jiang, Fangqing; Li, Hongqin; Xu, Zheng; Yin, Jiao; Zhu, Hui

    2017-01-01

    Graphical abstract: Polymeric Schiff base (PSB) exhibits a stable cyclability as an organic Li-ion battery anode Display Omitted -- Highlights: •A conjugated Schiff base polymer has been synthesized by a solid-phase reaction. •The polymer suppresses the dissolution of organic monomer into the organic electrolyte. •The polymer demonstrates high reversible capacity and excellent cyclic performance. -- Abstract: The redox-active organic compounds show great potentials as anodes for high energy density Li-ion batteries (LIBs), comparing with the traditional transition metal-based inorganic compounds. However, the inevitable dissolution behaviors of these organics in organic electrolyte will arouse the recession in their cycling stabilities. To circumvent this problem, we successfully applied an electrochemically active imine group to connect the carbonyl compound to form conjugated polymer, where the occurrence of multi-electron reactions suppressed the dissolution of anthraquinone in the organic electrolyte with improved cycling stability and high capacity for LIBs. In detail, by virtue of a facile solid-phase reaction between 1, 4-diaminoanthraquinone (14DAAQ) and p-phthalaldehyde (PPD), a highly conjugated polymeric Schiff base (PSB) was synthesized. The obtained PSB exhibited a reversible specific capacity of 175 mAh g −1 at a current density of 10 mA g −1 . In addition, after 100 cycles, a cycling stability with 90% capacity retention can be maintained, manifesting a promising application of the organic material in high performance anodes for LIBs.

  12. Thermal stability of disordered carbon negative-electrode materials prepared from peanut shells

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Izumi; Doi, Takayuki; Yamaki, Jun-ichi [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga 816-8580 (Japan); Lin, Y.Y.; Fey, George Ting-Kuo [Department of Chemistry and Material Engineering, National Central University, Chungli 32054 (China)

    2008-01-21

    The thermal stability of electrochemically lithiated disordered carbon with a poly(vinylidene difluoride) binder and 1 mol dm{sup -3} LiPF{sub 6} dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) was investigated by differential scanning calorimetry (DSC) using a hermetically sealed pan. The disordered carbon used was prepared by pyrolyzing peanut shells with porogen at temperatures above 500 C. The disordered carbon gave much larger charge and discharge capacities than graphite when a weight ratio of porogen to peanut shells was set at 5. In DSC curves, several exothermic peaks were observed at temperatures ranging from 120 to 310 C. This behavior was similar to that for electrochemically lithiated graphite, except for an exothermic peak at around 250 C. However, the lithiated disordered carbon had a higher heat value, which was evaluated by integrating a DSC curve, compared to lithiated graphite. The heat values increased with an increase in accumulated irreversible capacities. These results suggest that heat generation at elevated temperatures should increase as an amount of irreversibly trapped lithium-ion increases. On the other hand, heat values per reversible capacities for disordered carbon, which showed larger capacities than graphite, were almost comparable to that for graphite. These results indicate that several types of disordered carbon showed larger capacity than graphite, while their thermal stability was lowered accordingly. (author)

  13. Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density

    Czech Academy of Sciences Publication Activity Database

    Černocká, Hana; Ostatná, Veronika; Paleček, Emil

    2015-01-01

    Roč. 174, AUG 2015 (2015), s. 356-360 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GAP301/11/2055; GA ČR(CZ) GA15-15479S; GA ČR(CZ) GA13-00956S Institutional support: RVO:68081707 Keywords : Bovine serum albumin * sensing of surface-attached protein stability * protein structural transition at Hg Subject RIV: BO - Biophysics Impact factor: 4.803, year: 2015

  14. Highly Conductive Polymer Electrolyte Impregnated 3d Li-Metal Negative Electrode, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — XABC (Xerion Advanced Battery Corp) proposes a novel anode with three unique features, each designed to 1) control or 2) prevent dendrite growth. The first feature...

  15. Organophosphonate biofunctionalization of diamond electrodes.

    Science.gov (United States)

    Caterino, R; Csiki, R; Wiesinger, M; Sachsenhauser, M; Stutzmann, M; Garrido, J A; Cattani-Scholz, A; Speranza, Giorgio; Janssens, S D; Haenen, K

    2014-08-27

    The modification of the diamond surface with organic molecules is a crucial aspect to be considered for any bioapplication of this material. There is great interest in broadening the range of linker molecules that can be covalently bound to the diamond surface. In the case of protein immobilization, the hydropathicity of the surface has a major influence on the protein conformation and, thus, on the functionality of proteins immobilized at surfaces. For electrochemical applications, particular attention has to be devoted to avoid that the charge transfer between the electrode and the redox center embedded in the protein is hindered by a thick insulating linker layer. This paper reports on the grafting of 6-phosphonohexanoic acid on OH-terminated diamond surfaces, serving as linkers to tether electroactive proteins onto diamond surfaces. X-ray photoelectron spectroscopy (XPS) confirms the formation of a stable layer on the surface. The charge transfer between electroactive molecules and the substrate is studied by electrochemical characterization of the redox activity of aminomethylferrocene and cytochrome c covalently bound to the substrate through this linker. Our work demonstrates that OH-terminated diamond functionalized with 6-phosphonohexanoic acid is a suitable platform to interface redox-proteins, which are fundamental building blocks for many bioelectronics applications.

  16. A phenomenon of direct conversion of ionizing energy resulting from the formation of negative droplets by electron capture during condensation of a vapour even without electronic affinity; Sur un phenomene de conversion directe d'energie ionisante resultant de la formation de gouttelettes negatives par capture d'electrons, lors de la condensation d'une vapeur, meme sans affinite electronique

    Energy Technology Data Exchange (ETDEWEB)

    Kraux, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-06-01

    An electromotive force is produced between a cold and a hot electrode immersed in an ionized vapour. It is shown that the dissymmetry thus created consists in the formation of heavy, negative charge carriers following the condensation of the vapour in the volume close to the cold electrode. The electromotive forces produced are explained on the basis of a decrease in the floating potential of the cold electrode. (author) [French] Une force electromotrice apparaissant entre une electrode chaude et une electrode froide plongees dans une vapeur ionisee, on etablit que la disymetrie ainsi causee consiste en la formation de porteurs de charge negatifs lourds consecutive a la condensation de la vapeur en volume pres de l'electrode froide. On justifie les forces electromotrices observees par la diminution du potentiel flottant de l'electrode froide. (auteur)

  17. Microdosimetry of negative pions

    International Nuclear Information System (INIS)

    Amols, H.I.; Dicello, J.F.; Lane, T.F.

    1976-01-01

    The radiation quality of negative and positive pions of initial momentum 168MeV/c has been determined at eight different depths in a liquid phantom. The measurements were made with a 2.5cm diameter spherical proportional counter with Shonka A-150 neutron tissue equivalent plastic walls. The gas pressure in the sensitive volume was chosen to stimulate a diameter of 2μm in unit density material. Dose distributions as a function of lineal energy change slowly in the entrance and plateau regions with a dose mean lineal energy of 6-8keV/μm. Less than 3% of the dose is delivered in excess of 50keV/μm in this region. In the Bragg peak region the distributions change rapidly as a function of depth with the dose mean lineal energy increasing to 38keV/μm at the peak and to 57keV/μm just beyond the peak. On the basis of these microdosimetric data predictions of RBE and OER have been made with the use of both the theory of dual radiation action and also the delta ray theory of cell survival. The former has been used to predict biological response at low doses and the latter at high doses. A comparison is made between the two theories at intermediate doses. The results of these calculations are not inconsistant with recent biological data

  18. Negative legacy of obesity.

    Directory of Open Access Journals (Sweden)

    Kohsuke Shirakawa

    Full Text Available Obesity promotes excessive inflammation, which is associated with senescence-like changes in visceral adipose tissue (VAT and the development of type 2 diabetes (T2DM and cardiovascular diseases. We have reported that a unique population of CD44hi CD62Llo CD4+ T cells that constitutively express PD-1 and CD153 exhibit cellular senescence and cause VAT inflammation by producing large amounts of osteopontin. Weight loss improves glycemic control and reduces cardiovascular disease risk factors, but its long-term effects on cardiovascular events and longevity in obese individuals with T2DM are somewhat disappointing and not well understood. High-fat diet (HFD-fed obese mice were subjected to weight reduction through a switch to a control diet. They lost body weight and visceral fat mass, reaching the same levels as lean mice fed a control diet. However, the VAT of weight reduction mice exhibited denser infiltration of macrophages, which formed more crown-like structures compared to the VAT of obese mice kept on the HFD. Mechanistically, CD153+ PD-1+ CD4+ T cells are long-lived and not easily eliminated, even after weight reduction. Their continued presence maintains a self-sustaining chronic inflammatory loop via production of large amounts of osteopontin. Thus, we concluded that T-cell senescence is essentially a negative legacy effect of obesity.

  19. Positive Effects of Negative Publicity: When Negative Reviews Increase Sales

    OpenAIRE

    Jonah Berger; Alan T. Sorensen; Scott J. Rasmussen

    2010-01-01

    Can negative information about a product increase sales, and if so, when? Although popular wisdom suggests that "any publicity is good publicity," prior research has demonstrated only downsides to negative press. Negative reviews or word of mouth, for example, have been found to hurt product evaluation and sales. Using a combination of econometric analysis and experimental methods, we unify these perspectives to delineate contexts under which negative publicity about a product will have posit...

  20. Production techniques for rare earth and other heavy negative ions

    International Nuclear Information System (INIS)

    McK Hyder, H.R.; Ashenfelter, J.; McGrath, R.

    1998-01-01

    Current nuclear structure studies demand a wide range of heavy negative ion beams for tandem acceleration. Some of the wanted isotopes have low natural abundances and many have low or negative electron affinities. For these, gas injection or the use of hydrides, oxides, or fluorides is required to achieve usable intensities. The chemical properties of the target materials, and of the additive gases used to form molecular ions, often have detrimental effects on ion source performance and life. These effects include insulator breakdown, ionizer poisoning, and the erosion or deposition of material on critical electrodes. Methods of controlling sputter source conditions are being studied on the Wright Nuclear Structure Laboratory ion source test bench with the object of extending source life, increasing target efficiency, and achieving consistent negative ion outputs. Results are reported for several heavy ions including tellurium, neodymium, and ytterbium. copyright 1998 American Institute of Physics

  1. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Mirsafaei, Mina; Cielecki, Pawel Piotr

    2017-01-01

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order...... patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm2, and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor of the large-scale OSCs fabricated on ITO...... with embedded Ag grids was enhanced by 18 % for the line grids pattern and 30 % for the square grids pattern compared to that of the reference OSCs. The increase in the Fill Factor was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE...

  2. Method of preparing an electrode material of lithium-aluminum alloy

    Science.gov (United States)

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  3. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes.

    Science.gov (United States)

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-08-21

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).

  4. Transition of poloidal viscosity by electrode biasing in the Large Helical Device

    International Nuclear Information System (INIS)

    Kitajima, S.; Ishii, K.; Takahashi, H.

    2012-11-01

    Electrode biasing experiments were tried in various magnetic configurations on the Large Helical Device (LHD). The transitions of poloidal viscosity, which were accompanied with bifurcation phenomena characterized by a negative resistance, were clearly observed on LHD by the electrode biasing. The critical external driving force required for transition were compared with the local maximum in ion viscosity, and the radial resistivity before the transition also compared with the expected value from a neoclassical theory. The critical driving force increased and the radial resistivity decreased with the major radius of the magnetic axis R ax going outward. The configuration dependence of the transition condition and the radial resistivity qualitatively agreed with neoclassical theories. The radial electric field and the viscosity were also evaluated by the neoclassical transport code for a non-axisymmetric system, and estimated electrode voltage required for the transition, which was consistent with the experimental results. (author)

  5. Observation of electrostatically released DNA from gold electrodes with controlled threshold voltages.

    Science.gov (United States)

    Takeishi, Shunsaku; Rant, Ulrich; Fujiwara, Tsuyoshi; Buchholz, Karin; Usuki, Tatsuya; Arinaga, Kenji; Takemoto, Kazuya; Yamaguchi, Yoshitaka; Tornow, Marc; Fujita, Shozo; Abstreiter, Gerhard; Yokoyama, Naoki

    2004-03-22

    DNA oligo-nucleotides, localized at Au metal electrodes in aqueous solution, are found to be released when applying a negative bias voltage to the electrode. The release was confirmed by monitoring the intensity of the fluorescence of cyanine dyes (Cy3) linked to the 5' end of the DNA. The threshold voltage of the release changes depending on the kind of linker added to the DNA 3'-terminal. The amount of released DNA depends on the duration of the voltage pulse. Using this technique, we can retain DNA at Au electrodes or Au needles, and release the desired amount of DNA at a precise location in a target. The results suggest that DNA injection into living cells is possible with this method. (c) 2004 American Institute of Physics

  6. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xue Kuanhong [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)], E-mail: khxue@njnu.edu.cn; Liu Jiamei [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Wei Ribing [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Chen Shaopeng [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)

    2006-09-11

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H{sub 2}SO{sub 4}, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E {sub pa} and E {sub pc} shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k {sup 0} increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  7. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Science.gov (United States)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  8. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    International Nuclear Information System (INIS)

    Xue Kuanhong; Liu Jiamei; Wei Ribing; Chen Shaopeng

    2006-01-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2 SO 4 , at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E pa and E pc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k 0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process

  9. Comparison of Enamel and Stainless Steel Electron Cloud Clearing Electrodes Tested in the CERN Proton Synchrotron

    CERN Document Server

    Caspers, Friedhelm; Mahner, C; Wendel, JC

    2010-01-01

    During the 2007 run with the nominal LHC proton beam, electron cloud has been clearly identified and characterized in the PS using a dedicated setup with shielded button-type pickups. Efficient electron cloud suppression could be achieved with a stainless steel stripline-type electrode biased to negative and positive voltages up to ± 1 kV. For the 2008 run, a second setup was installed in straight section 84 of the PS where the stainless steel was replaced by a stripline composed of an enamel insulator with a resistive coating. In contrast to ordinary stripline electrodes this setup presents a very low beam coupling impedance and could thus be envisaged for long sections of high-intensity machines. Here, we present first comparative measurements with this new type of enamel clearing electrode using the nominal LHC beam with 72 bunches and 25 ns bunch spacing.

  10. Micro-CAT with redundant electrodes (CATER)

    International Nuclear Information System (INIS)

    Berg, F.D. van den; Eijk, C.W.E. van; Hollander, R.W.; Sarro, P.M.

    2000-01-01

    High-rate X-ray or neutron counting introduces the problem of hit multiplicity when 2D position reconstruction is demanded. Implementation of a third readout electrode having a different angle than the anode or cathode allows to eliminate multiplicity problems. We present experimental results of a new type of gas-filled micro-patterned radiation detector, called 'Compteur a Trous a Electrodes Redondantes (CATER)', that disposes of such an extra readout channel in the form of a ring-shaped electrode that is positioned between the anode and the cathode. The ionic signal is shared between the ring-electrode and the cathode strip in a way that can be controlled by their potential difference. We observe a strong signal dependence on the drift field, which can be understood by the reduced transparency for the primary charge at high drift fields

  11. Improved technology for manufacture of carbon electrodes

    Indian Academy of Sciences (India)

    distribution, surface area, porosity, particle size distribution and type of pores. The .... the point from where the electrode sample has been drawn. ... In addition, qualitative information on the shape and the type of pores can be determined.

  12. Use of lanthanide catalysts in air electrodes

    International Nuclear Information System (INIS)

    Souza Parente, L.T. de

    1982-01-01

    A review on the lanthanide catalysts suitable for the reduction catalysis of oxygen in air electrodes is presented. The kinds of lanthanide indicated to be used as catalysts of oxygen reduction are shown. (A.R.H.) [pt

  13. Wearable Textile Electrodes for ECG Measurement

    Directory of Open Access Journals (Sweden)

    Lukas Vojtech

    2013-01-01

    Full Text Available The electrocardiogram (ECG is one of the most important parameters for monitoring of the physiological state of a person. Currently available systems for ECG monitoring are both stationary and wearable, but the comfort of the monitored person is not at a satisfactory level because these systems are not part of standard clothing. This article is therefore devoted to the development and measurement of wearable textile electrodes for ECG measurement device with high comfort for the user. The electrode material is made of electrically conductive textile. This creates a textile composite that guarantees high comfort for the user while ensuring good quality of ECG measurements. The composite is implemented by a carrier (a T-shirt with flame retardant and sensing electrodes embroidered with yarn based on a mixture of polyester coated with silver nanoparticles and cotton. The electrodes not only provide great comfort but are also antibacterial and antiallergic due to silver nanoparticles.

  14. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  15. Electrode Nanostructures in Lithium‐Based Batteries

    Science.gov (United States)

    Mahmood, Nasir

    2014-01-01

    Lithium‐based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium‐based (Li‐ion, Li‐air and Li‐S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium‐based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures. PMID:27980896

  16. Thin metal electrodes for semitransparent organic photovoltaics

    KAUST Repository

    Lee, Kyusung

    2013-08-01

    We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15-nm silver (Ag) rear electrode is 1.98% under AM 1.5-G illumination through the indium-tin-oxide side of the front anode at 100 mW/cm2 with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers. © 2013 ETRI.

  17. Electrode placement during electro-desalination of

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Andersson, Lovisa C. H.

    2017-01-01

    Carved stone sculptures and ornaments can be severely damaged by salt induced decay. Often the irregular surfaces are decomposed, and the artwork is lost. The present paper is an experimental investigation on the possibility for using electro-desalination for treatment of stone with irregular shape....... Electro-desalination experiments were made with different duration to follow the progress. Successful desalination of the whole stone piece was obtained, showing that also parts not being placed directly between the electrodes were desalinated. This is important in case of salt damaged carved stones......, where the most fragile parts thus can be desalinated without physically placing electrodes on them. The Cl removal rate was higher in the areas closest to the electrodes and slowest in the part, which was not placed directly between the electrodes. This is important to incorporate in the monitoring...

  18. Fluctuations at electrode-YSZ interfaces

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Hansen, Karin Vels; Skou, Eivind

    2005-01-01

    Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed. At temperat......Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed....../water atmosphere are presented for discussion. The origin of the observations is not known at present but it appears likely that they are related to the activation/deactivation mechanism of SOFCs....

  19. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes

    Science.gov (United States)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.

    2013-12-01

    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with

  20. Printed optically transparent graphene cellulose electrodes

    Science.gov (United States)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2016-02-01

    Optically transparent electrodes are a key component in variety of products including bioelectronics, touch screens, flexible displays, low emissivity windows, and photovoltaic cells. Although highly conductive indium tin oxide (ITO) films are often used in these electrode applications, the raw material is very expensive and the electrodes often fracture when mechanically stressed. An alternative low-cost material for inkjet printing transparent electrodes on glass and flexible polymer substrates is described in this paper. The water based ink is created by using a hydrophilic cellulose derivative, carboxymethyl cellulose (CMC), to help suspend the naturally hydrophobic graphene (G) sheets in a solvent composed of 70% DI water and 30% 2-butoxyethanol. The CMC chain has hydrophobic and hydrophilic functional sites which allow adsorption on G sheets and, therefore, permit the graphene to be stabilized in water by electrostatic and steric forces. Once deposited on the functionalized substrate the electrical conductivity of the printed films can be "tuned" by decomposing the cellulose stabilizer using thermal reduction. The entire electrode can be thermally reduced in an oven or portions of the electrode thermally modified using a laser annealing process. The thermal process can reduce the sheet resistance of G-CMC films to < 100 Ω/sq. Experimental studies show that the optical transmittance and sheet resistance of the G-CMC conductive electrode is a dependent on the film thickness (ie. superimposed printed layers). The printed electrodes have also been doped with AuCl3 to increase electrical conductivity without significantly increasing film thickness and, thereby, maintain high optical transparency.

  1. Carbon nanocages as supercapacitor electrode materials.

    Science.gov (United States)

    Xie, Ke; Qin, Xingtai; Wang, Xizhang; Wang, Yangnian; Tao, Haisheng; Wu, Qiang; Yang, Lijun; Hu, Zheng

    2012-01-17

    Supercapacitor electrode materials: Carbon nanocages are conveniently produced by an in situ MgO template method and demonstrate high specific capacitance over a wide range of charging-discharging rates with high stability, superior to the most carbonaceous supercapacitor electrode materials to date. The large specific surface area, good mesoporosity, and regular structure are responsible for the excellent performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Positive electrode for a lithium battery

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2015-04-07

    A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.

  3. Conducting Polymer Electrodes for Gel Electrophoresis

    OpenAIRE

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that p-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel ...

  4. In situ electrochemical-mass spectroscopic investigation of solid electrolyte interphase formation on the surface of a carbon electrode

    International Nuclear Information System (INIS)

    Gourdin, Gerald; Zheng, Dong; Smith, Patricia H.; Qu, Deyang

    2013-01-01

    The energy density of an electrochemical capacitor can be significantly improved by utilizing a lithiated negative electrode and a high surface area positive electrode. During lithiation of the negative carbon electrode, the electrolyte reacts with the electrode surface and undergoes decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode from further reactions between Li and the electrolyte. The reduction reactions that the solvent undergoes also form insoluble and gaseous by-products. In this work, those gaseous by-products generated by reductive decomposition of a carbonate-based electrolyte, 1.2 M LiPF 6 in EC/PC/DEC (3:1:4), were analyzed at different stages during the lithiation process of an amorphous carbon electrode. The stages in the generation of gaseous by-products were determined to come as a result of two, 1-electron reduction steps of the cyclic carbonate components of the electrolyte. Electrochemical impedance spectroscopy was also used to investigate the two distinct electrochemical processes and the development of the two phases of the SEI structure. This is the first time that the state of an electrochemical cell during the formation of the SEI layer has been systematically correlated with theoretical reaction mechanisms through the use of in situ electrochemical-MS and impedance spectroscopy analyses

  5. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    Science.gov (United States)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  6. Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite

    International Nuclear Information System (INIS)

    Chang, Longfei; Chen, Hualing; Zhu, Zicai; Li, Bo

    2012-01-01

    This paper primarily focuses on the manufacturing process of palladium-electroded ionic polymer–metal composite (IPMC). First, according to the special properties of Pd, many experiments were done to determine several specific procedures, including the addition of a reducing agent and the time consumed. Subsequently, the effects of the core manufacturing steps on the electrode morphology were revealed by scanning electron microscopy studies of 22 IPMC samples treated with different combinations of manufacturing steps. Finally, the effects of electrode characteristics on the electromechanical properties, including the sheet resistivity, the elastic modulus and the electro-active performance, of IPMCs were evaluated experimentally and analyzed according to the electrode morphology. (paper)

  7. Cu mesh for flexible transparent conductive electrodes.

    Science.gov (United States)

    Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

    2015-06-03

    Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

  8. Nanofabrication strategies for advanced electrode materials

    Directory of Open Access Journals (Sweden)

    Chen Kunfeng

    2017-09-01

    Full Text Available The development of advanced electrode materials for high-performance energy storage devices becomes more and more important for growing demand of portable electronics and electrical vehicles. To speed up this process, rapid screening of exceptional materials among various morphologies, structures and sizes of materials is urgently needed. Benefitting from the advance of nanotechnology, tremendous efforts have been devoted to the development of various nanofabrication strategies for advanced electrode materials. This review focuses on the analysis of novel nanofabrication strategies and progress in the field of fast screening advanced electrode materials. The basic design principles for chemical reaction, crystallization, electrochemical reaction to control the composition and nanostructure of final electrodes are reviewed. Novel fast nanofabrication strategies, such as burning, electrochemical exfoliation, and their basic principles are also summarized. More importantly, colloid system served as one up-front design can skip over the materials synthesis, accelerating the screening rate of highperformance electrode. This work encourages us to create innovative design ideas for rapid screening high-active electrode materials for applications in energy-related fields and beyond.

  9. Electrochemical characterisation of solid oxide cell electrodes for hydrogen production

    DEFF Research Database (Denmark)

    Bernuy-Lopez, Carlos; Knibbe, Ruth; He, Zeming

    2011-01-01

    Oxygen electrodes and steam electrodes are designed and tested to develop improved solid oxide electrolysis cells for H2 production with the cell support on the oxygen electrode. The electrode performance is evaluated by impedance spectroscopy testing of symmetric cells at open circuit voltage (OCV...

  10. Production of Manual Metal Arc Welding Electrodes with Local Raw ...

    African Journals Online (AJOL)

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between the base metal and a flux covered metal electrode with electric current that depends on the type of electrode, material, welding position and the desired strength. The composition of flux coated electrodes is complex and a ...

  11. CAD/CAM–designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes

    International Nuclear Information System (INIS)

    Chervin, Christopher N; Parker, Joseph F; Nelson, Eric S; Rolison, Debra R; Long, Jeffrey W

    2016-01-01

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal–air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal–air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal–air cell: one face freely exposed to gases, the other wetted by electrolyte. (paper)

  12. Electrochemical investigations of activation and degradation of hydrogen storage alloy electrodes in sealed Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.X.; Xu, Z.D. [Zhejiang University, Hangzhou (China). Dept. of Chemistry; Tu, J.P. [Zhejiang University, Hangzhou (China). Dept. of Materials Science and Engineering

    2002-04-01

    The M1Ni{sub 0.4}Co{sub 0.6}Al{sub 0.4} alloy was treated with hot alkaline solution containing a small amount of KBH{sub 4} and its effect on the activation and degradation behaviors of the hydrogen storage alloy electrodes in sealed Ni/MH batteries was investigated. It was found that the treated alloy electrode exhibited a better activation property than the untreated one in the sealed battery as well as in open cell. For the treated alloy electrode activating, the polarization resistance in the sealed battery was almost equal to that in the open cell. But in the case of the untreated alloy electrode activating, the polarization resistance in the sealed battery was larger than that in the open cell. The reason is that the oxide film on the untreated alloy surface suppressed the combination of the oxygen evolved on the positive electrode with hydrogen on the negative alloy surface. In addition, the decaying of capacity of the untreated alloy electrode was much faster than that of the treated one. The reasons were, that after surface treatment, the Ni-rich and Al-poor layer on the alloy surface not only had a high electrocatalytic activity for hydrogen electrode reaction, but also facilitated the combination of the oxygen with hydrogen and hydrogen adsorption on the alloy surface. (author)

  13. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery

    Science.gov (United States)

    Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana

    2017-09-01

    Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.

  14. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes

    Science.gov (United States)

    Chervin, Christopher N.; Parker, Joseph F.; Nelson, Eric S.; Rolison, Debra R.; Long, Jeffrey W.

    2016-04-01

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  15. Negative dimensional integrals. Pt. 1

    International Nuclear Information System (INIS)

    Halliday, I.G.; Ricotta, R.M.

    1987-01-01

    We propose a new method of evaluating integrals based on negative dimensional integration. We compute Feynman graphs by considering analytic extensions. Propagators are raised to negative integer powers and integrated over negative integer dimensions. We are left with the problem of computing polynomial integrals and summing finite series. (orig.)

  16. Negative chemical ionization mass spectrometry

    International Nuclear Information System (INIS)

    Smit, A.L.C.

    1979-01-01

    This thesis describes some aspects of Negative Chemical Ionization (NCI) mass spectrometry. The reasons for the growing interest in NCI are: (i) to extend the basic knowledge of negative ions and their reactions in the gas phase; (ii) to investigate whether or not this knowledge of negative ions can be used successfully to elucidate the structure of molecules by mass spectrometry. (Auth.)

  17. Thermodynamics of negative absolute pressures

    International Nuclear Information System (INIS)

    Lukacs, B.; Martinas, K.

    1984-03-01

    The authors show that the possibility of negative absolute pressure can be incorporated into the axiomatic thermodynamics, analogously to the negative absolute temperature. There are examples for such systems (GUT, QCD) processing negative absolute pressure in such domains where it can be expected from thermodynamical considerations. (author)

  18. Norepinephrine-modified glassy carbon electrode for the simultaneous determination of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Zare, H.R.; Memarzadeh, F.; Ardakani, M. Mazloum; Namazian, M.; Golabi, S.M.

    2005-01-01

    The oxidation of norepinephrine (NE) on a preactivated glassy carbon electrode leads to the formation of a deposited layer of about 4.2 x 10 -10 mol cm -2 at the surface of the electrode. The electron transfer rate constant, k s , and charge transfer coefficient, α, for electron transfer between the electrode and immobilized NE film were calculated as 44 s -1 and 0.46, respectively. The NE-modified glassy carbon electrode exhibited good electrocatalytic properties towards ascorbic acid (AA) oxidation in phosphate buffer (pH 7.0) with an overpotential of about 475 mV lower than that of the bare electrode. The electrocatalytic response was evaluated by cyclic voltammetry, chronoamperometry, amperometry and rotating disk voltammetry. The overall number of electrons involved in the catalytic oxidation of AA and the number of electrons involved in the rate-determining step are 2 and 1, respectively. The rate constant for the catalytic oxidation of AA was evaluated by RDE voltammetry and an average value of k h was found to be 8.42 x 10 3 M -1 s -1 . Amperometric determination of AA in stirred solution exhibits a linear range of 2.0-1300.0 μM (correlation coefficient 0.9999) and a detection limit of 0.076 μM. The precision of amperometry was found to be 1.9% for replicate determination of a 49.0 μM solution of AA (n = 6). In differential pulse voltammetric measurements, the NE-modified glassy carbon electrode can separate the AA and uric acid (UA) signals. Ascorbic acid oxidizes at more negative potential than UA. Also, the simultaneous determination of UA and AA is achieved at the NE-modified electrode

  19. Effect of covalently bonded polysiloxane multilayers on the electrochemical behavior of graphite electrode in lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Qinmin; Jiang, Yinghua [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2008-03-15

    Polysiloxane multilayers were covalently bonded to the surface of natural graphite particles via diazonium chemistry and silylation reaction. The as-prepared graphite exhibited excellent discharge-charge behavior as negative electrode materials in lithium ion batteries. The improvement in the electrochemical performance of the graphite electrodes was attributed to the formation of a stable and flexible passive film on their surfaces. It was also revealed that the chemical compositions of the multilayers exerted influence on the electrochemical behavior of the graphite electrodes. The result of this study presents a new strategy to the formation of elastic and strong passive film on the graphite electrode via molecular design. Owing to the diversity of polysilxoane multilayers, this method also enables researchers to control the surface chemistries of carbonaceous materials with flexibility. (author)

  20. A Porphyrin Complex as a Self-Conditioned Electrode Material for High-Performance Energy Storage.

    Science.gov (United States)

    Gao, Ping; Chen, Zhi; Zhao-Karger, Zhirong; Mueller, Jonathan E; Jung, Christoph; Klyatskaya, Svetlana; Diemant, Thomas; Fuhr, Olaf; Jacob, Timo; Behm, R Jürgen; Ruben, Mario; Fichtner, Maximilian

    2017-08-21

    The novel functionalized porphyrin [5,15-bis(ethynyl)-10,20-diphenylporphinato]copper(II) (CuDEPP) was used as electrodes for rechargeable energy-storage systems with an extraordinary combination of storage capacity, rate capability, and cycling stability. The ability of CuDEPP to serve as an electron donor or acceptor supports various energy-storage applications. Combined with a lithium negative electrode, the CuDEPP electrode exhibited a long cycle life of several thousand cycles and fast charge-discharge rates up to 53 C and a specific energy density of 345 Wh kg -1 at a specific power density of 29 kW kg -1 . Coupled with a graphite cathode, the CuDEPP anode delivered a specific power density of 14 kW kg -1 . Whereas the capacity is in the range of that of ordinary lithium-ion batteries, the CuDEPP electrode has a power density in the range of that of supercapacitors, thus opening a pathway toward new organic electrodes with excellent rate capability and cyclic stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.