WorldWideScience

Sample records for comm math phys

  1. Comment on “Maxwell's equations and electromagnetic Lagrangian density in fractional form” [J. Math. Phys. 53, 033505 (2012)

    International Nuclear Information System (INIS)

    Rabei, Eqab M.; Al-Jamel, A.; Widyan, H.; Baleanu, D.

    2014-01-01

    In a recent paper, Jaradat et al. [J. Math. Phys. 53, 033505 (2012)] have presented the fractional form of the electromagnetic Lagrangian density within the Riemann-Liouville fractional derivative. They claimed that the Agrawal procedure [O. P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002)] is used to obtain Maxwell's equations in the fractional form, and the Hamilton's equations of motion together with the conserved quantities obtained from fractional Noether's theorem are reported. In this comment, we draw the attention that there are some serious steps of the procedure used in their work are not applicable even though their final results are correct. Their work should have been done based on a formulation as reported by Baleanu and Muslih [Phys. Scr. 72, 119 (2005)

  2. Comment on 'Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential' [J. Math. Phys. 48, 073515 (2007)

    International Nuclear Information System (INIS)

    Castro, L. B.; Castro, A. S. de

    2010-01-01

    It is shown that the paper 'Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential' by Merad and Bensaid [J. Math. Phys. 48, 073515 (2007)] is not correct in using inadvertently a non-Hermitian Hamiltonian in a formalism that does require Hermitian Hamiltonians.

  3. Comment on: Path integral solution of the Schroedinger equation in curvilinear coordinates: A straightforward procedure [J. Math. Phys. 37, 4310 endash 4319 (1996)

    International Nuclear Information System (INIS)

    Wurm, A.; LaChapelle, J.

    1997-01-01

    The authors comment on the paper by J. LaChapelle, J. Math. Phys. 37, 4310 (1996), and give explicit expressions for the parametrization, its solution, and the Lie derivatives of the Schroedinger equation for the case of n-dimensional spherical coordinates

  4. Comment penser comme un mathématicien

    CERN Document Server

    Houston, Kevin

    2011-01-01

    À la recherche d'un départ en pool position pour vos études de mathématiques ? Peut-être que vos cours de mathématiques vous ont déjà assommé, alors que vous pensiez les aimer ? Pas de panique. Cet ouvrage, véritable compagnon de route, vous aidera à progresser dans la pensée mathématique. En travaillant chacun des chapitres proposés, vous vous constituerez tout un outillage qui va vous permettre de bien saisir le sens des définitions, la portée des théorèmes et des démonstrations, et surtout vous aidera à résoudre des problèmes et à bien rédiger les textes correspondants. La plupart des méthodes de démonstration seront abordées : méthode directe, décomposition en cas, induction, par la contraposée, par l'absurde. Des exemples concrets sont proposés à chaque étape. Des sujets classiques rencontrés dans différents cours, seront plus largement développés : les diviseurs, l'algorithme d'Euclide, l'arithmétique modulaire, les relations d'équivalence, les injections, surje...

  5. Large Time Asymptotics for a Continuous Coagulation-Fragmentation Model with Degenerate Size-Dependent Diffusion

    KAUST Repository

    Desvillettes, Laurent; Fellner, Klemens

    2010-01-01

    We study a continuous coagulation-fragmentation model with constant kernels for reacting polymers (see [M. Aizenman and T. Bak, Comm. Math. Phys., 65 (1979), pp. 203-230]). The polymers are set to diffuse within a smooth bounded one

  6. Minimum-error quantum distinguishability bounds from matrix monotone functions: A comment on 'Two-sided estimates of minimum-error distinguishability of mixed quantum states via generalized Holevo-Curlander bounds' [J. Math. Phys. 50, 032106 (2009)

    International Nuclear Information System (INIS)

    Tyson, Jon

    2009-01-01

    Matrix monotonicity is used to obtain upper bounds on minimum-error distinguishability of arbitrary ensembles of mixed quantum states. This generalizes one direction of a two-sided bound recently obtained by the author [J. Tyson, J. Math. Phys. 50, 032106 (2009)]. It is shown that the previously obtained special case has unique properties.

  7. Large Time Asymptotics for a Continuous Coagulation-Fragmentation Model with Degenerate Size-Dependent Diffusion

    KAUST Repository

    Desvillettes, Laurent

    2010-01-01

    We study a continuous coagulation-fragmentation model with constant kernels for reacting polymers (see [M. Aizenman and T. Bak, Comm. Math. Phys., 65 (1979), pp. 203-230]). The polymers are set to diffuse within a smooth bounded one-dimensional domain with no-flux boundary conditions. In particular, we consider size-dependent diffusion coefficients, which may degenerate for small and large cluster-sizes. We prove that the entropy-entropy dissipation method applies directly in this inhomogeneous setting. We first show the necessary basic a priori estimates in dimension one, and second we show faster-than-polynomial convergence toward global equilibria for diffusion coefficients which vanish not faster than linearly for large sizes. This extends the previous results of [J.A. Carrillo, L. Desvillettes, and K. Fellner, Comm. Math. Phys., 278 (2008), pp. 433-451], which assumes that the diffusion coefficients are bounded below. © 2009 Society for Industrial and Applied Mathematics.

  8. Comment on "Comments on `The Euclidean gravitational action as black hole entropy, singularities and space-time voids'" [J. Math. Phys. 50, 042502 (2009)]-Schwarzschild black hole lives to fight another day

    Science.gov (United States)

    Kundu, Prasun K.

    2017-11-01

    In a comment published several years ago in this journal, Mitra [J. Math. Phys. 50, 042502 (2009)] has claimed to prove that a neutral point particle in general relativity as described by the Schwarzschild metric must have zero gravitational mass, i.e., the mass parameter M0 of a Schwarzschild black hole necessarily vanishes. It is shown that the purported proof is incorrect. The error stems from a basic misunderstanding of the mathematical description of coordinate volume element in a differentiable manifold.

  9. Fabrice Audié, Spinoza et les mathématiques, Paris, PUPS, 2005, 197 pages, 18 €.

    Directory of Open Access Journals (Sweden)

    Cécile Nicco

    2007-01-01

    Full Text Available Si, comme le souligne Pierre-François Moreau dans la préface, le rapport de la philosophie spinoziste aux mathématiques est « fort visible », il n’est pas pour autant facile à interpréter. En effet, l’intérêt de Spinoza pour les mathématiques est manifeste dans la forme géométrique de l’Éthique, des Principes de la philosophie de Descartes, et du premier Appendice du Court Traité ; mais elles sont aussi présentes en tant que problèmes à traiter ou comme illustrations dans la correspondance et...

  10. A Centerless Virasoro Algebra of Master Symmetries for the Ablowitz-Ladik Hierarchy

    Directory of Open Access Journals (Sweden)

    Luc Haine

    2013-12-01

    Full Text Available We show that the (semi-infinite Ablowitz-Ladik (AL hierarchy admits a centerless Virasoro algebra of master symmetries in the sense of Fuchssteiner [Progr. Theoret. Phys. 70 (1983, 1508-1522]. An explicit expression for these symmetries is given in terms of a slight generalization of the Cantero, Moral and Velázquez (CMV matrices [Linear Algebra Appl. 362 (2003, 29-56] and their action on the tau-functions of the hierarchy is described. The use of the CMV matrices turns out to be crucial for obtaining a Lax pair representation of the master symmetries. The AL hierarchy seems to be the first example of an integrable hierarchy which admits a full centerless Virasoro algebra of master symmetries, in contrast with the Toda lattice and Korteweg-de Vries hierarchies which possess only ''half of'' a Virasoro algebra of master symmetries, as explained in Adler and van Moerbeke [Duke Math. J. 80 (1995, 863-911], Damianou [Lett. Math. Phys. 20 (1990, 101-112] and Magri and Zubelli [Comm. Math. Phys. 141 (1991, 329-351].

  11. Renormalization problem in a class of nonrenormalizable theories

    International Nuclear Information System (INIS)

    Symanzik, K.

    1975-08-01

    A possible way to approach the simplest nonrenormalizable theory - phi 4 theory in more than four space-time dimensions - is described. The problems of extension to other nonrenormalizable theories are discussed and the conclusions reached so far are compared with the corresponding ones for renormalizable theories. For more details, Comm. Math. Phys. or DESY 75/12 should be consulted. (BJ) [de

  12. Une histoire des mathématiques routes et dédales

    CERN Document Server

    Dahan-Dalmedico, Amy

    1986-01-01

    L'histoire des mathématiques est celle des conjectures, des hésitations, des impasses, des modèles concurrents, des intuitions fulgurantes, des synthèses théoriques... La naissance et le développement de l'activité mathématique sont ici replacés dans leur contexte historique et leur environnement culturel, économique et institutionnel. Le cadre est ainsi fixé pour l'étude précise de différents thèmes : équations, espace, limite, fonctions, lois, opérations ; notions fondamentales auxquelles tout élève, étudiant, enseignant est confronté. Les mathématiques ne se présentent pas, ici, comme un corps figé d'axiomes, théorèmes, lemmes et corollaires ; elles tissent une toile en devenir qui suscite bien des curiosités.

  13. Integrable Hierarchy of the Quantum Benjamin-Ono Equation

    Directory of Open Access Journals (Sweden)

    Maxim Nazarov

    2013-12-01

    Full Text Available A hierarchy of pairwise commuting Hamiltonians for the quantum periodic Benjamin-Ono equation is constructed by using the Lax matrix. The eigenvectors of these Hamiltonians are Jack symmetric functions of infinitely many variables x_1,x_2,…. This construction provides explicit expressions for the Hamiltonians in terms of the power sum symmetric functions p_n=x^n_1+x^n_2+⋯ and is based on our recent results from [Comm. Math. Phys. 324 (2013, 831-849].

  14. Les pratiques de l'enseignant : Une étude de didactique des mathématiques : recherche de synthèses et perspectives

    OpenAIRE

    Margolinas, Claire

    1999-01-01

    Les écoles d'été de didactique des mathématiques précédentes ont donné une place importante à l'enseignant. Les travaux qui se centrent directement sur l'enseignant comme objet d'étude sont devenus de plus en plus nombreux depuis une dizaine d'année (voir Margolinas et Perrin-Glorian 1997, RDM 17.3). Néanmoins, le maître, comme partie prenante du système didactique, a toujours été présent dans les travaux de didactique. Produire une synthèse de recherches sur les pratiques de l'enseignant, de...

  15. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.

    Science.gov (United States)

    Casad, Bettina J; Hale, Patricia; Wachs, Faye L

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.

  16. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes

    Science.gov (United States)

    Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000

  17. Parent-Child Math Anxiety and Math-Gender Stereotypes Predict Adolescents’ Math Education Outcomes

    Directory of Open Access Journals (Sweden)

    Bettina J Casad

    2015-11-01

    Full Text Available Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children’s math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa for performance beliefs and outcomes (self-efficacy and GPA. Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and for boys, and for boys with GPA. These findings address gaps in the literature on the role of parents’ math anxiety in the effects of children’s math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents’ math anxiety and dispelling gender stereotypes in math classrooms.

  18. Working memory, math performance, and math anxiety.

    Science.gov (United States)

    Ashcraft, Mark H; Krause, Jeremy A

    2007-04-01

    The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.

  19. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes

    OpenAIRE

    Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.

    2015-01-01

    Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math de...

  20. Talking Math, Blogging Math

    OpenAIRE

    Mathews, Linda Marie

    2009-01-01

    Talking Math, Blogging Math is a curriculum designed to aid middle school Pre- Algebra students' mathematical problem-solving through the use of academic language instruction, explanatory proofs, and online technology (blogging). Talking Math, Blogging Math was implemented over a period of ten weeks during the 2008 - 2009 school year. The school where the curriculum was implemented is a non-traditional classroom-based charter school. The 7th, 8th and 9th grade students attended class twice a ...

  1. Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.

    Science.gov (United States)

    Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A

    2015-12-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.

  2. Female teachers' math anxiety affects girls' math achievement.

    Science.gov (United States)

    Beilock, Sian L; Gunderson, Elizabeth A; Ramirez, Gerardo; Levine, Susan C

    2010-02-02

    People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.

  3. When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math

    Science.gov (United States)

    Lyons, Ian M.; Beilock, Sian L.

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929

  4. When math hurts: math anxiety predicts pain network activation in anticipation of doing math.

    Directory of Open Access Journals (Sweden)

    Ian M Lyons

    Full Text Available Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs, math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula. Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.

  5. When math hurts: math anxiety predicts pain network activation in anticipation of doing math.

    Science.gov (United States)

    Lyons, Ian M; Beilock, Sian L

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.

  6. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance.

    Science.gov (United States)

    Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.

  7. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    Science.gov (United States)

    Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID

  8. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    Directory of Open Access Journals (Sweden)

    Elizabeth A Necka

    2015-10-01

    Full Text Available Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap to assess individuals’ self-math overlap. This nonverbal single-item measure showed that identifying oneself with math (having higher self-math overlap was strongly associated with lower math anxiety (r=-.610. We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be

  9. Lab. of Appl. Math. Phys

    DEFF Research Database (Denmark)

    Albertsen, Niels Christian

    1989-01-01

    A new system of poles for the Green's function for a dielectric-coated cylinder has been found. In general, these poles correspond to creeping waves, which are strongly attenuated except for very thick coatings. For radii below a critical value, one of the new poles replaces one of those previous...

  10. Math anxiety and math performance in children: The mediating roles of working memory and math self-concept.

    Science.gov (United States)

    Justicia-Galiano, M José; Martín-Puga, M Eva; Linares, Rocío; Pelegrina, Santiago

    2017-12-01

    Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. This study aimed to investigate the role of two possible mediational mechanisms between math anxiety and math performance. Specifically, we sought to test the simultaneous mediating role of working memory and math self-concept. A total of 167 children aged 8-12 years participated in this study. Children completed a set of questionnaires used to assess math and trait anxiety, math self-concept as well as measures of math fluency and math problem-solving. Teachers were asked to rate each student's math achievement. As measures of working memory, two backward span tasks were administered to the children. A series of multiple mediation analyses were conducted. Results indicated that both mediators (working memory and math self-concept) contributed to explaining the relationship between math anxiety and math achievement. Results suggest that working memory and self-concept could be worth considering when designing interventions aimed at helping students with math anxiety. Longitudinal designs could also be used to better understand the mediational mechanisms that may explain the relationship between math anxiety and math performance. © 2017 The British Psychological Society.

  11. Intergenerational Effects of Parents' Math Anxiety on Children's Math Achievement and Anxiety.

    Science.gov (United States)

    Maloney, Erin A; Ramirez, Gerardo; Gunderson, Elizabeth A; Levine, Susan C; Beilock, Sian L

    2015-09-01

    A large field study of children in first and second grade explored how parents' anxiety about math relates to their children's math achievement. The goal of the study was to better understand why some students perform worse in math than others. We tested whether parents' math anxiety predicts their children's math achievement across the school year. We found that when parents are more math anxious, their children learn significantly less math over the school year and have more math anxiety by the school year's end-but only if math-anxious parents report providing frequent help with math homework. Notably, when parents reported helping with math homework less often, children's math achievement and attitudes were not related to parents' math anxiety. Parents' math anxiety did not predict children's reading achievement, which suggests that the effects of parents' math anxiety are specific to children's math achievement. These findings provide evidence of a mechanism for intergenerational transmission of low math achievement and high math anxiety. © The Author(s) 2015.

  12. Universals and Specifics of Math Self-Concept, Math Self-Efficacy, and Math Anxiety across 41 PISA 2003 Participating Countries

    Science.gov (United States)

    Lee, Jihyun

    2009-01-01

    The overarching goal of the present study is to investigate the factorial structure of three closely related constructs: math self-concept, math self-efficacy, and math anxiety. The factorial structure consisting of three factors, each representing math self-concept, math self-efficacy, and math anxiety, is supported in all 41 countries employed…

  13. College Math Assessment: SAT Scores vs. College Math Placement Scores

    Science.gov (United States)

    Foley-Peres, Kathleen; Poirier, Dawn

    2008-01-01

    Many colleges and university's use SAT math scores or math placement tests to place students in the appropriate math course. This study compares the use of math placement scores and SAT scores for 188 freshman students. The student's grades and faculty observations were analyzed to determine if the SAT scores and/or college math assessment scores…

  14. Taking Math Anxiety out of Math Instruction

    Science.gov (United States)

    Shields, Darla J.

    2007-01-01

    To take math anxiety out of math instruction, teachers need to first know how to easily diagnose it in their students and second, how to analyze causes. Results of a recent study revealed that while students believed that their math anxiety was largely related to a lack of mathematical understanding, they often blamed their teachers for causing…

  15. A Study of Perceptions of Math Mindset, Math Anxiety, and View of Math by Young Adults

    Science.gov (United States)

    Hocker, Tami

    2017-01-01

    This study's purpose was to determine whether instruction in growth math mindset led to change in perceptions of 18-22-year-old at-risk students in math mindset, math anxiety, and view of math. The experimental curriculum was created by the researcher with the guidance of experts in mathematics and education and focused on the impact of brain…

  16. Finite difference evolution equations and quantum dynamical semigroups

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Weber, T.

    1983-12-01

    We consider the recently proposed [Bonifacio, Lett. Nuovo Cimento, 37, 481 (1983)] coarse grained description of time evolution for the density operator rho(t) through a finite difference equation with steps tau, and we prove that there exists a generator of the quantum dynamical semigroup type yielding an equation giving a continuous evolution coinciding at all time steps with the one induced by the coarse grained description. The map rho(0)→rho(t) derived in this way takes the standard form originally proposed by Lindblad [Comm. Math. Phys., 48, 119 (1976)], even when the map itself (and, therefore, the corresponding generator) is not bounded. (author)

  17. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    OpenAIRE

    Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individual...

  18. The influence of experiencing success in math on math anxiety, perceived math competence, and math performance

    NARCIS (Netherlands)

    Jansen, B.R.J.; Louwerse, J.; Straatemeier, M.; van der Ven, S.H.G.; Klinkenberg, S.; van der Maas, H.L.J.

    2013-01-01

    It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a

  19. Math in Action. Hands-On, Minds-On Math.

    Science.gov (United States)

    Waite-Stupiansky, Sandra; Stupiansky, Nicholas G.

    1998-01-01

    Hands-on math must also involve students' minds in creative thinking. Math manipulatives must be used for uncovering, not just discovering. This paper presents guidelines for planning hands-on, minds-on math for elementary students. Suggestions include dialoging, questioning, integrating manipulatives and other tools, writing, and evaluating. (SM)

  20. Math Anxiety and Math Ability in Early Primary School Years

    Science.gov (United States)

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2010-01-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa—contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development. PMID:20401159

  1. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P. [Univ. of California, San Diego, CA (United States)

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  2. Motivation and Math Anxiety for Ability Grouped College Math Students

    Science.gov (United States)

    Helming, Luralyn

    2013-01-01

    The author studied how math anxiety, motivation, and ability group interact to affect performance in college math courses. This clarified the effects of math anxiety and ability grouping on performance. It clarified the interrelationships between math anxiety, motivation, and ability grouping by considering them in a single analysis. It introduces…

  3. When approximate number acuity predicts math performance: The moderating role of math anxiety

    Science.gov (United States)

    Libertus, Melissa E.

    2018-01-01

    Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments. PMID:29718939

  4. When approximate number acuity predicts math performance: The moderating role of math anxiety.

    Science.gov (United States)

    Braham, Emily J; Libertus, Melissa E

    2018-01-01

    Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS) have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.

  5. When approximate number acuity predicts math performance: The moderating role of math anxiety.

    Directory of Open Access Journals (Sweden)

    Emily J Braham

    Full Text Available Separate lines of research suggest that people who are better at estimating numerical quantities using the approximate number system (ANS have better math performance, and that people with high levels of math anxiety have worse math performance. Only a handful of studies have examined both ANS acuity and math anxiety in the same participants and those studies report contradictory results. To address these inconsistencies, in the current study 87 undergraduate students completed assessments of ANS acuity, math anxiety, and three different measures of math. We considered moderation models to examine the interplay of ANS acuity and math anxiety on different aspects of math performance. Math anxiety and ANS acuity were both unique significant predictors of the ability to automatically recall basic number facts. ANS acuity was also a unique significant predictor of the ability to solve applied math problems, and this relation was further qualified by a significant interaction with math anxiety: the positive association between ANS acuity and applied problem solving was only present in students with high math anxiety. Our findings suggest that ANS acuity and math anxiety are differentially related to various aspects of math and should be considered together when examining their respective influences on math ability. Our findings also raise the possibility that good ANS acuity serves as a protective factor for highly math-anxious students on certain types of math assessments.

  6. Measurement of math beliefs and their associations with math behaviors in college students.

    Science.gov (United States)

    Hendy, Helen M; Schorschinsky, Nancy; Wade, Barbara

    2014-12-01

    Our purpose in the present study was to expand understanding of math beliefs in college students by developing 3 new psychometrically tested scales as guided by expectancy-value theory, self-efficacy theory, and health belief model. Additionally, we identified which math beliefs (and which theory) best explained variance in math behaviors and performance by college students and which students were most likely to have problematic math beliefs. Study participants included 368 college math students who completed questionnaires to report math behaviors (attending class, doing homework, reading textbooks, asking for help) and used a 5-point rating scale to indicate a variety of math beliefs. For a subset of 84 students, math professors provided final math grades. Factor analyses produced a 10-item Math Value Scale with 2 subscales (Class Devaluation, No Future Value), a 7-item single-dimension Math Confidence Scale, and an 11-item Math Barriers Scale with 2 subscales (Math Anxiety, Discouraging Words). Hierarchical multiple regression revealed that high levels of the newly discovered class devaluation belief (guided by expectancy-value theory) were most consistently associated with poor math behaviors in college students, with high math anxiety (guided by health belief model) and low math confidence (guided by self-efficacy theory) also found to be significant. Analyses of covariance revealed that younger and male students were at increased risk for class devaluation and older students were at increased risk for poor math confidence. (c) 2014 APA, all rights reserved.

  7. Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation

    Science.gov (United States)

    Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.

    2015-01-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438

  8. Parents' Beliefs about Children's Math Development and Children's Participation in Math Activities

    OpenAIRE

    Susan Sonnenschein; Claudia Galindo; Shari R. Metzger; Joy A. Thompson; Hui Chih Huang; Heather Lewis

    2012-01-01

    This study explored associations between parents’ beliefs about children’s development and children’s reported math activities at home. Seventy-three parents were interviewed about the frequency of their children’s participation in a broad array of math activities, the importance of children doing math activities at home, how children learn math, parents’ role in their children’s math learning, and parents’ own math skills. Although the sample consisted of African Americans, Chinese, Latino, ...

  9. DataComm in Flight Deck Surface Trajectory-Based Operations

    Science.gov (United States)

    Bakowski, Deborah L.; Foyle, David C.; Hooey, Becky L.; Meyer, Glenn R.; Wolter, Cynthia A.

    2012-01-01

    The purpose of this pilot-in-the-loop aircraft taxi simulation was to evaluate a NextGen concept for surface trajectory-based operations (STBO) in which air traffic control (ATC) issued taxi clearances with a required time of arrival (RTA) by Data Communications (DataComm). Flight deck avionics, driven by an error-nulling algorithm, displayed the speed needed to meet the RTA. To ensure robustness of the algorithm, the ability of 10 two-pilot crews to meet the RTA was tested in nine experimental trials representing a range of realistic conditions including a taxi route change, an RTA change, a departure clearance change, and a crossing traffic hold scenario. In some trials, these DataComm taxi clearances or clearance modifications were accompanied by 'preview' information, in which the airport map display showed a preview of the proposed route changes, including the necessary speed to meet the RTA. Overall, the results of this study show that with the aid of the RTA speed algorithm, pilots were able to meet their RTAs with very little time error in all of the robustness-testing scenarios. Results indicated that when taxi clearance changes were issued by DataComm only, pilots required longer notification distances than with voice communication. However, when the DataComm was accompanied by graphical preview, the notification distance required by pilots was equivalent to that for voice.

  10. The Influence of Experiencing Success in Math on Math Anxiety, Perceived Math Competence, and Math Performance

    Science.gov (United States)

    Jansen, Brenda R. J.; Louwerse, Jolien; Straatemeier, Marthe; Van der Ven, Sanne H. G.; Klinkenberg, Sharon; Van der Maas, Han L. J.

    2013-01-01

    It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a computer-adaptive program. A total of 207 children (grades 3-6)…

  11. Math Anxiety Is Related to Some, but Not All, Experiences with Math

    OpenAIRE

    Krystle O'Leary; Cheryll L. Fitzpatrick; Darcy Hallett

    2017-01-01

    Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through...

  12. Math Anxiety, Working Memory, and Math Achievement in Early Elementary School

    Science.gov (United States)

    Ramirez, Gerardo; Gunderson, Elizabeth A.; Levine, Susan C.; Beilock, Sian L.

    2013-01-01

    Although math anxiety is associated with poor mathematical knowledge and low course grades (Ashcraft & Krause, 2007), research establishing a connection between math anxiety and math achievement has generally been conducted with young adults, ignoring the emergence of math anxiety in young children. In the current study, we explored whether…

  13. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School.

    Science.gov (United States)

    Daches Cohen, Lital; Rubinsten, Orly

    2017-01-01

    Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother's math anxiety and maternal behaviors (environmental factors); (b) children's arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children's math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers' attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children's skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.

  14. Math Anxiety Is Related to Some, but Not All, Experiences with Math.

    Science.gov (United States)

    O'Leary, Krystle; Fitzpatrick, Cheryll L; Hallett, Darcy

    2017-01-01

    Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples) were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.

  15. Math Anxiety Is Related to Some, but Not All, Experiences with Math

    Directory of Open Access Journals (Sweden)

    Krystle O'Leary

    2017-12-01

    Full Text Available Math anxiety has been defined as unpleasant feelings of tension and anxiety that hinder the ability to deal with numbers and math in a variety of situations. Although many studies have looked at situational and demographic factors associated with math anxiety, little research has looked at the self-reported experiences with math that are associated with math anxiety. The present study used a mixed-methods design and surveyed 131 undergraduate students about their experiences with math through elementary school, junior high, and high school, while also assessing math anxiety, general anxiety, and test anxiety. Some reported experiences (e.g., support in high school, giving students plenty of examples were significantly related to the level of math anxiety, even after controlling for general and test anxiety, but many other factors originally thought to be related to math anxiety did not demonstrate a relation in this study. Overall, this study addresses a gap in the literature and provides some suggestive specifics of the kinds of past experiences that are related to math anxiety and those that are not.

  16. A note on positive energy theorem for spaces with asymptotic SUSY compactification

    International Nuclear Information System (INIS)

    Dai Xianzhe

    2005-01-01

    We extend the higher dimensional positive mass theorem in [Dai, X., Commun. Math. Phys. 244, 335-345 (2004)] to the Lorentzian setting. This includes the original higher dimensional positive energy theorem whose spinor proof is given in [Witten, E., Commun. Math. Phys. 80, 381-402 (1981)] and [Parker, T., and Taubes, C., Commun. Math. Phys. 84, 223-238 (1982)] for dimension 4 and in [Zhang, X., J. Math. Phys. 40, 3540-3552 (1999)] for dimension 5

  17. Academic Committee of the conference

    International Nuclear Information System (INIS)

    2016-01-01

    A.I. Leont'ev (Chairman) - Academician of RAS, Bauman MSTU V.O. Gladyshev - Dr. Sci. (Phys., Math.), Head of NUK FN Bauman MSTU V.T. Kalugin - Dr.Sci. (Engineering), Head of NUK SM Bauman MSTU V.V. Selivanov - Dr.Sci. (Engineering), Professor, Head of Dept. SM-4, Bauman MSTU M.I. Kiselev - Dr. Sci. (Phys., Math.), Professor, Dept. MT-4, Bauman MSTU R.Z. Kavtaradze - Dr. Sci. (Engineering), Professor, Bauman MSTU V.N. Mel'nikov - Dr. Sci. (Phys., Math.), Professor, Head of the Centre of Gravitation and Fundamental Metrology, VNIIMS; Deputy director of the Institute of Gravitation and Cosmology, PFUR; President of RGS Ju.S. Vladimirov - Dr. Sci. (Phys., Math.), Professor, Lomonosov MSU D. V. Gal'cov - Dr. Sci. (Phys., Math.), Professor, Lomonosov MSU A.P. Efremov - Dr. Sci. (Phys., Math.), Professor, First Pro-Rector (Education), PFUR, Director of the Institute of Gravitation and Cosmology of PFUR Ju.P. Rybakov - Dr. Sci. (Phys., Math.), Professor, Head of Dept. of Theor. Physics and Mechanics, PFUR Ju.G. Rudoj - Dr. Sci. (Phys., Math.), Professor, Dept. of Theor. Physics and Mechanics, PFUR V.P. Vizgin - Dr. Sci. (Phys., Math.), Head of sector, S. Vavilov IHST, RAS V.L. Gvozdeckij - PhD, Head of Dept., Head of sector, S. Vavilov IHST, RAS G.Yu. Bogoslovsky - Dr. Sci. (Phys., Math.), Professor, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University P. Fournier-Sikr - Dr., European Space Agency, France G.M. Webb - Prof., Commercial Space Technologies Ltd., London, United Kingdom P. Rowlands - Prof. University of Liverpool, Liverpool, United Kingdom M. Abishev - Prof., Al-Farabi Kazakh National University, Head of Theoretical and Nuclear Physics Department, Almaty, Kazakhstan E. Chubaryan - Prof., Yerevan State University, Head of Laboratory, Yerevan,Republic of Armenia A.V. Minkevich - Prof., Belarusian State University, Minsk, Belarus and Warmia and Mazury University in Olsztyn, Poland A.I. Zhuk - Prof., Odessa National University, Odessa, Ukraine

  18. Modern maths

    CERN Multimedia

    Thom,R

    1974-01-01

    Le Prof. R. Thom expose ses vues sur l'enseignement des mathématiques modernes et des mathémathiques de toujours. Il est un grand mathématicien et était professeur à Strasbourg; maintenant il est professeur de hautes études scientifiques et était invité par le Prof. Piaget à Genève

  19. CommWalker: correctly evaluating modules in molecular networks in light of annotation bias.

    Science.gov (United States)

    Luecken, M D; Page, M J T; Crosby, A J; Mason, S; Reinert, G; Deane, C M

    2018-03-15

    Detecting novel functional modules in molecular networks is an important step in biological research. In the absence of gold standard functional modules, functional annotations are often used to verify whether detected modules/communities have biological meaning. However, as we show, the uneven distribution of functional annotations means that such evaluation methods favor communities of well-studied proteins. We propose a novel framework for the evaluation of communities as functional modules. Our proposed framework, CommWalker, takes communities as inputs and evaluates them in their local network environment by performing short random walks. We test CommWalker's ability to overcome annotation bias using input communities from four community detection methods on two protein interaction networks. We find that modules accepted by CommWalker are similarly co-expressed as those accepted by current methods. Crucially, CommWalker performs well not only in well-annotated regions, but also in regions otherwise obscured by poor annotation. CommWalker community prioritization both faithfully captures well-validated communities and identifies functional modules that may correspond to more novel biology. The CommWalker algorithm is freely available at opig.stats.ox.ac.uk/resources or as a docker image on the Docker Hub at hub.docker.com/r/lueckenmd/commwalker/. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online.

  20. Maths in Prison

    Directory of Open Access Journals (Sweden)

    Catherine Patricia Byrne

    2015-08-01

    Full Text Available I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT. This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a prison maths teacher.

  1. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School

    Science.gov (United States)

    Daches Cohen, Lital; Rubinsten, Orly

    2017-01-01

    Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother’s math anxiety and maternal behaviors (environmental factors); (b) children’s arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed. PMID:29180973

  2. Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School

    Directory of Open Access Journals (Sweden)

    Lital Daches Cohen

    2017-11-01

    Full Text Available Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a mother’s math anxiety and maternal behaviors (environmental factors; (b children’s arithmetic skills (cognitive factors; and (c intrinsic math motivation (personal factor. A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed.

  3. Front tracking for hyperbolic conservation laws

    CERN Document Server

    Holden, Helge

    2002-01-01

    Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm.

  4. RsComm User Manual. Data system for the control of continuous recording measuring instruments (monitors); RsComm brukermanual. Datasystem for kontroll av kontinuerlig registrerende maaleinstrumenter (monitorer)

    Energy Technology Data Exchange (ETDEWEB)

    Marsteen, L.

    1996-02-01

    Norwegian Institute for Air Research (NILU) has, as a part of the quality control systems, developed an automatic system of data recording. This report describes the installation and use of the RsComm software. Using RsComm and a NILU data recorder it is possible to run system tests on air quality analyzers via a telephone line. Test reports are generated. 17 figs.

  5. The relation between math self-concept, test and math anxiety, achievement motivation and math achievement in 12 to 14-year-old typically developing adolescents

    OpenAIRE

    Timmerman, H.L.; Toll, S.W.M.; van Luit, J.E.H.

    2017-01-01

    :This study examines the relation between math self-concept, test and math anxiety, achievement motivation, and math achievement in typically developing 12 to 14-year-old adolescents (N = 108) from a school for secondary education in the Netherlands. Data was obtained using a math speed test, achievement motivation test, and the math experience questionnaire. A significant positive correlation was found between math self-concept and math achievement in all four math domains (measurement, rela...

  6. Gender compatibility, math-gender stereotypes, and self-concepts in math and physics

    Science.gov (United States)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.

  7. Multi-particle Anderson Localisation: Induction on the Number of Particles

    International Nuclear Information System (INIS)

    Chulaevsky, Victor; Suhov, Yuri

    2009-01-01

    This paper is a follow-up of our recent papers Chulaevsky and Suhov (Commun Math Phys 283:479-489, 2008) and Chulaevsky and Suhov (Commun Math Phys in press, 2009) covering the two-particle Anderson model. Here we establish the phenomenon of Anderson localisation for a quantum N-particle system on a lattice with short-range interaction and in presence of an IID external potential with sufficiently regular marginal cumulative distribution function (CDF). Our main method is an adaptation of the multi-scale analysis (MSA; cf. Froehlich and Spencer, Commun Math Phys 88:151-184, 1983; Froehlich et al., Commun Math Phys 101:21-46, 1985; von Dreifus and Klein, Commun Math Phys 124:285-299, 1989) to multi-particle systems, in combination with an induction on the number of particles, as was proposed in our earlier manuscript (Chulaevsky and Suhov 2007). Recently, Aizenman and Warzel (2008) proved spectral and dynamical localisation for N-particle lattice systems with a short-range interaction, using an extension of the Fractional-Moment Method (FMM) developed earlier for single-particle models in Aizenman and Molchanov (Commun Math Phys 157:245-278, 1993) and Aizenman et al. (Commun Math Phys 224:219-253, 2001) (see also references therein) which is also combined with an induction on the number of particles

  8. Maths in Prison

    OpenAIRE

    Catherine Patricia Byrne

    2015-01-01

    I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a ...

  9. Maths in Prison

    OpenAIRE

    Byrne, Catherine; Carr, Michael

    2015-01-01

    I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a p...

  10. PhysLink Physics and Astronomy online education and reference

    CERN Document Server

    The PhysLink.com is a comprehensive physics and astronomy online education, research and reference web site. In addition to providing high-quality content, PhysLink.com is a meeting place for professionals, students and other curious minds.

  11. Advanced Math Equals Career Readiness. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    The equation is simple: No matter their background, students who take challenging math courses in high school get better jobs and earn more money throughout their entire lives. This paper stresses that: (1) Higher-level math opens doors for any and all postsecondary programs and keeps it open for advancement beyond entry-level jobs; and (2)…

  12. A Latent Profile Analysis of Math Achievement, Numerosity, and Math Anxiety in Twins

    Science.gov (United States)

    Hart, Sara A.; Logan, Jessica A. R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.

    2016-01-01

    Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity, and math anxiety. Latent profile analysis indicated 5 groupings of…

  13. Central extensions of cotangent universal hierarchy: (2+1)-dimensional bi-Hamiltonian systems

    International Nuclear Information System (INIS)

    Sergyeyev, Artur; Szablikowski, Blazej M.

    2008-01-01

    We introduce the cotangent universal hierarchy that extends the universal hierarchy from [L. Martinez Alonso, A.B. Shabat, Phys. Lett. A 300 (1) (2002) 58, (nlin.SI/0202008); A.B. Shabat, Theor. Math. Phys. 136 (2003) 1066; L. Martinez Alonso, A.B. Shabat, J. Nonlinear Math. Phys. 10 (2) (2003) 229, (nlin.SI/0310036); L. Martinez Alonso, A.B. Shabat, Theor. Math. Phys. 140 (2) (2004) 1073, (nlin.SI/0312043); A. Shabat, J. Nonlinear Math. Phys. 12 (Suppl. 1) (2005) 614]. Then we construct a (2+1)-dimensional double central extension of the cotangent universal hierarchy and show that this extension is bi-Hamiltonian. This yields, as a byproduct, the central extension of the original universal hierarchy

  14. The Effectiveness of Using STAR Math to Improve PSSA Math Scores

    Science.gov (United States)

    Holub, Sherry L.

    2017-01-01

    This is a quantitative study examining whether STAR Math, a student monitoring system, can improve PSSA Math scores. The experimental school used STAR Math during the 2015-2016 school year in grouping students for remediation and intervention. The control school used traditional curriculum measures to group students for remediation and…

  15. Advanced Math Course Taking: Effects on Math Achievement and College Enrollment

    Science.gov (United States)

    Byun, Soo-yong; Irvin, Matthew J.; Bell, Bethany A.

    2015-01-01

    Using data from the Educational Longitudinal Study of 2002-2006, the authors investigated the effects of advanced math course taking on math achievement and college enrollment and how such effects varied by socioeconomic status and race/ethnicity. Results from propensity score matching and sensitivity analyses showed that advanced math course…

  16. Classical oscillator with position-dependent mass in a complex domain

    International Nuclear Information System (INIS)

    Ghosh, Subir; Modak, Sujoy Kumar

    2009-01-01

    We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [A.V. Smilga, J. Phys. A 41 (2008) 244026, (arXiv:0706.4064); A. Mostafazadeh, J. Math. Phys. 43 (2002) 205; A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814; A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944]. The role of PT-symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40 (1999) 2201; C.M. Bender, D.D. Holm, D. Hook, J. Phys. A 40 (2007) F793, (arXiv:0705.3893)

  17. Affective and Motivational Factors Mediate the Relation between Math Skills and Use of Math in Everyday Life

    Science.gov (United States)

    Jansen, Brenda R. J.; Schmitz, Eva A.; van der Maas, Han L. J.

    2016-01-01

    This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life. PMID:27148122

  18. Affective and motivational factors mediate the relation between math skills and use of math in everyday life

    Directory of Open Access Journals (Sweden)

    Brenda RJ Jansen

    2016-04-01

    Full Text Available This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations. Data from a Dutch nation-wide research on math among adults (N = 521 were used to investigate the question whether math anxiety and perceived math competence mediated the relationship between math skills and use of math in everyday life, taken gender differences into account. Results showed that women reported higher math anxiety, lower perceived math competence, and lower use of math in everyday life, compared to men. Women's skills were estimated at a lower level than men's. For both women and men, higher skills were associated with higher perceived math competence, which in turn was associated with more use of math in everyday life. Only for women, math anxiety also mediated the relation between math skills and use of math in everyday life.

  19. Math and Gender: Is Math a Route to a High-Powered Career?

    DEFF Research Database (Denmark)

    Joensen, Juanna Schrøter; Nielsen, Helena Skyt

    There is a large gender gap in advanced math coursework in high school that many believe exists because girls are discouraged from taking math courses. In this paper, we exploit an institutional change that reduced the costs of acquiring advanced high school math to determine if access is, in fact......, the mechanism - in particular for girls at the top of the math ability distribution. By estimating marginal treatment effects of acquiring advanced math qualifications, we document substantial beneficial wage effects from encouraging even more females to opt for these qualifications. Our analysis suggests...... that the beneficial effect comes from accelerating graduation and attracting females to high-paid or traditionally male-dominated career tracks and to CEO positions. Our results may be reconciled with experimental and empirical evidence suggesting there is a pool of unexploited math talent among high ability girls...

  20. Principals in Partnership with Math Coaches

    Science.gov (United States)

    Grant, Catherine Miles; Davenport, Linda Ruiz

    2009-01-01

    One of the most promising developments in math education is the fact that many districts are hiring math coaches--also called math resource teachers, math facilitators, math lead teachers, or math specialists--to assist elementary-level teachers with math instruction. What must not be lost, however, is that principals play an essential role in…

  1. Counseling the Math Anxious

    Science.gov (United States)

    Tobias, Sheila; Donady, Bonnie

    1977-01-01

    Describes the rationale and mode of operations for a Math Clinic at Wellesley University and Wesleyan College where counselors and math specialists work together to combat "math anxiety," particularly in female students. (HMV)

  2. Eléments de mathématique topologie algébrique

    CERN Document Server

    Bourbaki, Nicolas

    2016-01-01

    Ce livre des Éléments de mathématique est consacré à la Topologie algébrique. Les quatre premiers chapitres présentent la théorie des revêtements d'un espace topologique et du groupe de Poincaré. On construit le revêtement universel d'un espace connexe pointé délaçable et on établit l'équivalence de catégories entre revêtements de cet espace et actions du groupe de Poincaré. On démontre une version générale du théorème de van Kampen exprimant le groupoïde de Poincaré d'un espace topologique comme un coégalisateur de diagrammes de groupoïdes. Dans de nombreuses situations géométriques, on en déduit une présentation explicite du groupe de Poincaré. .

  3. GRE math tests

    CERN Document Server

    Kolby, Jeff

    2014-01-01

    Twenty-three GRE Math Tests! The GRE math section is not easy. There is no quick fix that will allow you to ""beat"" the section. But GRE math is very learnable. If you study hard and master the techniques in this book, your math score will improve--significantly! The GRE cannot be ""beaten."" But it can be mastered--through hard work, analytical thought, and by training yourself to think like a test writer. Many of the problems in this book are designed to prompt you to think like a test writer. For example, you will find ""Duals."" These are pairs of similar problems in which only one prop

  4. Étude de la possibilité d'utilisation du rônier comme armature ...

    African Journals Online (AJOL)

    ... traditionnelles, permettent d'envisager son utilisation comme armature dans le béton. ... Les résultats obtenus permettent de confirmer que le rônier peut être utilisé comme ... Keywords : wood, Borassus palm, framework, concrete, beam.

  5. On the Leaky Math Pipeline: Comparing Implicit Math-Gender Stereotypes and Math Withdrawal in Female and Male Children and Adolescents

    Science.gov (United States)

    Steffens, Melanie C.; Jelenec, Petra; Noack, Peter

    2010-01-01

    Many models assume that habitual human behavior is guided by spontaneous, automatic, or implicit processes rather than by deliberate, rule-based, or explicit processes. Thus, math-ability self-concepts and math performance could be related to implicit math-gender stereotypes in addition to explicit stereotypes. Two studies assessed at what age…

  6. DataComm in Flight Deck Surface Trajectory-Based Operations. Chapter 20

    Science.gov (United States)

    Bakowski, Deborah L.; Foyle, David C.; Hooey, Becky L.; Meyer, Glenn R.; Wolter, Cynthia A.

    2012-01-01

    The purpose of this pilot-in-the-loop aircraft taxi simulation was to evaluate a NextGen concept for surface trajectory-based operations (STBO) in which air traffic control (ATC) issued taxi clearances with a required time of arrival (RTA) by Data Communications (DataComm). Flight deck avionics, driven by an error-nulling algorithm, displayed the speed needed to meet the RTA. To ensure robustness of the algorithm, the ability of 10 two-pilot crews to meet the RTA was tested in nine experimental trials representing a range of realistic conditions including a taxi route change, an RTA change, a departure clearance change, and a crossing traffic hold scenario. In some trials, these DataComm taxi clearances or clearance modifications were accompanied by preview information, in which the airport map display showed a preview of the proposed route changes, including the necessary speed to meet the RTA. Overall, the results of this study show that with the aid of the RTA speed algorithm, pilots were able to meet their RTAs with very little time error in all of the robustness-testing scenarios. Results indicated that when taxi clearance changes were issued by DataComm only, pilots required longer notification distances than with voice communication. However, when the DataComm was accompanied by graphical preview, the notification distance required by pilots was equivalent to that for voice.

  7. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children's Math Skills.

    Science.gov (United States)

    Hart, Sara A; Ganley, Colleen M; Purpura, David J

    2016-01-01

    There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.

  8. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children's Math Skills.

    Directory of Open Access Journals (Sweden)

    Sara A Hart

    Full Text Available There is a growing literature concerning the role of the home math environment in children's math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children's math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children's skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills.

  9. Reciprocal Relations among Motivational Frameworks, Math Anxiety, and Math Achievement in Early Elementary School

    Science.gov (United States)

    Gunderson, Elizabeth A.; Park, Daeun; Maloney, Erin A.; Beilock, Sian L.; Levine, Susan C.

    2018-01-01

    School-entry math achievement is a strong predictor of math achievement through high school. We asked whether reciprocal relations among math achievement, math anxiety, and entity motivational frameworks (believing that ability is fixed and a focus on performance) can help explain these persistent individual differences. We assessed 1st and 2nd…

  10. The relation between math self-concept, test and math anxiety, achievement motivation and math achievement in 12 to 14-year-old typically developing adolescents

    NARCIS (Netherlands)

    Timmerman, H.L.; Toll, S.W.M.; van Luit, J.E.H.

    2017-01-01

    :This study examines the relation between math self-concept, test and math anxiety, achievement motivation, and math achievement in typically developing 12 to 14-year-old adolescents (N = 108) from a school for secondary education in the Netherlands. Data was obtained using a math speed test,

  11. Using an Intelligent Tutor and Math Fluency Training to Improve Math Performance

    Science.gov (United States)

    Arroyo, Ivon; Royer, James M.; Woolf, Beverly P.

    2011-01-01

    This article integrates research in intelligent tutors with psychology studies of memory and math fluency (the speed to retrieve or calculate answers to basic math operations). It describes the impact of computer software designed to improve either strategic behavior or math fluency. Both competencies are key to improved performance and both…

  12. Advanced Math: Closing the Equity Gap. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    Minority and low-income students are less likely to have access to, enroll in and succeed in higher-level math courses in high school than their more advantaged peers. Under these circumstances, higher-level math courses function not as the intellectual and practical boost they should be, but as a filter that screens students out of the pathway to…

  13. The Role of Parental Math Anxiety and Math Attitude in Their Children's Math Achievement

    Science.gov (United States)

    Soni, Akanksha; Kumari, Santha

    2017-01-01

    The present study investigated the antecedents and consequences of children's math anxiety and math attitude. A total of 595 students aged 10 to 15 years (5th to 10th grades) and 1 parent of each (mother or father) participated in the study. The study was conducted in India, with the study sample drawn from schools in South-West Punjab. Math…

  14. Math Safari.

    Science.gov (United States)

    Nelson, Vaunda; Stanko, Anne

    1992-01-01

    Describes Math Safari, a mathematical, scientific, geographic, informational adventure for fourth grade students. It integrates all curriculum areas and other skills by using information children must find in books to pose math problems about animals. It encourages cooperative learning, critical reading, analysis, and use of research skills. (SM)

  15. Attentional Bias in Math Anxiety

    Directory of Open Access Journals (Sweden)

    Orly eRubinsten

    2015-10-01

    Full Text Available Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety as well (i.e., a persistent negative reaction to math. Twenty seven participants (14 with high levels of math anxiety and 13 with low levels of math anxiety were presented with a novel computerized numerical version of the well established dot probe task. One of 6 types of prime stimuli, either math related or typically neutral, were presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks. Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in math anxiety. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words. These findings suggest that attentional bias is linked to unduly intense math anxiety symptoms.

  16. Math Performance as a Function of Math Anxiety and Arousal Performance Theory

    Science.gov (United States)

    Farnsworth, Donald M., Jr.

    2009-01-01

    While research continues to link increased math anxiety with reduced working memory, the exact nature of the relationship remains elusive. In addition, research regarding the extent of the impact math anxiety has on working memory is contradictory. This research clarifies the directional nature of math anxiety as it pertains to working memory, and…

  17. Visual Data Comm: A Tool for Visualizing Data Communication in the Multi Sector Planner Study

    Science.gov (United States)

    Lee, Hwasoo Eric

    2010-01-01

    Data comm is a new technology proposed in future air transport system as a potential tool to provide comprehensive data connectivity. It is a key enabler to manage 4D trajectory digitally, potentially resulting in improved flight times and increased throughput. Future concepts with data comm integration have been tested in a number of human-in-the-loop studies but analyzing the results has proven to be particularly challenging because future traffic environment in which data comm is fully enabled has assumed high traffic density, resulting in data set with large amount of information. This paper describes the motivation, design, current and potential future application of Visual Data Comm (VDC), a tool for visualizing data developed in Java using Processing library which is a tool package designed for interactive visualization programming. This paper includes an example of an application of VDC on data pertaining to the most recent Multi Sector Planner study, conducted at NASA s Airspace Operations Laboratory in 2009, in which VDC was used to visualize and interpret data comm activities

  18. Math Stuff

    CERN Document Server

    Pappas, Theoni

    2002-01-01

    Whether it's stuff in your kitchen or garden, stuff that powers your car or your body, stuff that helps you work, communicate or play, or stuff that you've never heard of you can bet that mathematics is there. MATH STUFF brings it all in the open in the Pappas style. Not many people think of mathematics as fascinating, exciting and invaluable. Yet Pappas writes about math ideas in such a way that conveys its often overlooked fascination, excitement, and worth. MATH STUFF deals with 38 topics in an non-threatening way that piques our curiosities. Open the book at random, and learn about such to

  19. The Effects of the Elevate Math Summer Program on Math Achievement and Algebra Readiness. REL 2015-096

    Science.gov (United States)

    Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal

    2015-01-01

    The Effects of the Elevate Math summer program on math achievement and algebra readiness: This randomized trial examined the effects of the Elevate Math summer program on math achievement and algebra readiness, as well as math interest and self-efficacy, among rising 8th grade students in California's Silicon Valley. The Elevate Math summer math…

  20. Phys FilmMakers: teaching science students how to make YouTube-style videos

    Science.gov (United States)

    Coates, Rebecca L.; Kuhai, Alvina; Turlej, Laurence Z. J.; Rivlin, Tom; McKemmish, Laura K.

    2018-01-01

    Phys FilmMakers (PFM) is a new type of course in which a science expert and science communicator partner teach physics students how to make YouTube-style videos on cutting-edge scientific research within the university department. Here, we describe this new course, outline its key components and provide recommendations for others considering implementing a similar FilmMakers-style course using feedback from course tutors and students. We discuss successful and less successful teaching techniques as well as use our experience to identify areas that science students in particular often have difficulties: finding an interesting ‘hook’ for the video, imagining creative B-roll and making a succinct video by removing extraneous (though usually correct and often interesting) material. The course has two major components: workshop sessions in which students learn the key elements of film-making and independent video production where PFM students partner with senior PhD or post-doc researchers to produce a video on their research. This partnership with the department means that the videos produced serve not only as interesting ‘edutainment’ to encourage teenagers and young adults into Science, Technology, Engineering and Maths subjects, but also provide valuable outreach for the academic department.

  1. Two-parametric PT-symmetric quartic family

    International Nuclear Information System (INIS)

    Eremenko, Alexandre; Gabrielov, Andrei

    2012-01-01

    We describe a parametrization of the real spectral locus of the two-parametric family of PT-symmetric quartic oscillators. For this family, we find a parameter region where all eigenvalues are real, extending the results of Dorey et al (2007 J. Phys. A: Math Theor. 40 R205–83) and Shin (2005 J. Phys. A: Math. Gen. 38 6147–66; 2002 Commun. Math. Phys. 229 543–64). (paper)

  2. The Effects of Math Anxiety

    Science.gov (United States)

    Andrews, Amanda; Brown, Jennifer

    2015-01-01

    Math anxiety is a reoccurring problem for many students, and the effects of this anxiety on college students are increasing. The purpose of this study was to examine the association between pre-enrollment math anxiety, standardized test scores, math placement scores, and academic success during freshman math coursework (i.e., pre-algebra, college…

  3. Early Math Interest and the Development of Math Skills

    Science.gov (United States)

    Fisher, Paige H.; Dobbs-Oates, Jennifer; Doctoroff, Greta L.; Arnold, David H.

    2012-01-01

    Prior models suggest that math attitudes and ability might strengthen each other over time in a reciprocal fashion (Ma, 1997). The current study investigated the relationship between math interest and skill both concurrently and over time in a preschool sample. Analyses of concurrent relationships indicated that high levels of interest were…

  4. Math

    CERN Document Server

    Robertson, William C

    2006-01-01

    Flummoxed by formulas? Queasy about equations? Perturbed by pi? Now you can stop cursing over calculus and start cackling over Math, the newest volume in Bill Robertson's accurate but amusing Stop Faking It! best sellers. As Robertson sees it, too many people view mathematics as a set of rules to be followed, procedures to memorize, and theorems to apply. This book focuses on the reasoning behind the rules, from math basics all the way up to a brief introduction to calculus.

  5. Understanding the Home Math Environment and Its Role in Predicting Parent Report of Children’s Math Skills

    Science.gov (United States)

    Ganley, Colleen M.; Purpura, David J.

    2016-01-01

    There is a growing literature concerning the role of the home math environment in children’s math development. In this study, we examined the relation between these constructs by specifically addressing three goals. The first goal was to identify the measurement structure of the home math environment through a series of confirmatory factor analyses. The second goal was to examine the role of the home math environment in predicting parent report of children’s math skills. The third goal was to test a series of potential alternative explanations for the relation between the home math environment and parent report of children’s skills, specifically the direct and indirect role of household income, parent math anxiety, and parent math ability as measured by their approximate number system performance. A final sample of 339 parents of children aged 3 through 8 drawn from Mechanical Turk answered a questionnaire online. The best fitting model of the home math environment was a bifactor model with a general factor representing the general home math environment, and three specific factors representing the direct numeracy environment, the indirect numeracy environment, and the spatial environment. When examining the association of the home math environment factors to parent report of child skills, the general home math environment factor and the spatial environment were the only significant predictors. Parents who reported doing more general math activities in the home reported having children with higher math skills, whereas parents who reported doing more spatial activities reported having children with lower math skills. PMID:28005925

  6. Understand electrical and electronics maths

    CERN Document Server

    Bishop, Owen

    1993-01-01

    Understand Electrical and Electronics Maths covers elementary maths and the aspects of electronics. The book discusses basic maths including quotients, algebraic fractions, logarithms, types of equations and balancing of equations. The text also describes the main features and functions of graphs and the solutions to simpler types of electronics problems. The book then tackles the applications of polar coordinates in electronics, limits, differentiation and integration, and the applications of maths of rates of change in electronics. The activities of an electronic circuit; techniques of math

  7. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  8. Short-cut math

    CERN Document Server

    Kelly, Gerard W

    1984-01-01

    Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method. No special math ability needed.

  9. Solving America's Math Problem

    Science.gov (United States)

    Vigdor, Jacob

    2013-01-01

    Concern about students' math achievement is nothing new, and debates about the mathematical training of the nation's youth date back a century or more. In the early 20th century, American high-school students were starkly divided, with rigorous math courses restricted to a college-bound elite. At midcentury, the "new math" movement sought,…

  10. Teaching Math Their Way.

    Science.gov (United States)

    Tankersley, Karen

    1993-01-01

    Teachers at a K-8 urban school in Phoenix, Arizona, worked to develop an effective math program that generated student interest and positive self-esteem. They eventually set aside classroom and large enclosed porch area to house math manipulative lab, where children could learn new concepts at concrete level. Results are excitement about math and…

  11. L’amour comme émotion morale? Partialité parentale et égalité des chances

    OpenAIRE

    Merrill, Nathaniel Roberto Buil

    2014-01-01

    Introduction Partialité parentale et égalité des chances Quelles relations justifient la partialité de l’amour parental ? Mitiger ou neutraliser les inégalités des chances provoquées par l’amour ? Trois théories sur l’amour Que veut dire : « aimer quelqu’un » ? L’amour comme désir L’amour comme émotion L’amour comme relation Le conflit entre amour et morale Amour parental en tant que création de valeur Amour partial de la relation amoureuse Amour impartial ...

  12. Nurses' maths: researching a practical approach.

    Science.gov (United States)

    Wilson, Ann

    To compare a new practical maths test with a written maths test. The tests were undertaken by qualified nurses training for intravenous drug administration, a skill dependent on maths accuracy. The literature showed that the higher education institutes (HEIs) that provide nurse training use traditional maths tests, a practical way of testing maths had not been described. Fifty five nurses undertook two maths tests based on intravenous drug calculations. One was a traditional written test. The second was a new type of test using a simulated clinical environment. All participants were also interviewed one week later to ascertain their thoughts and feelings about the tests. There was a significant improvement in maths test scores for those nurses who took the practical maths test first. It is suggested that this is because it improved their conceptualisation skills and thus helped them to achieve accuracy in their calculations. Written maths tests are not the best way to help and support nurses in acquiring and improving their maths skills and should be replaced by a more practical approach.

  13. Matrix superpotentials and superintegrable systems for arbitrary spin

    International Nuclear Information System (INIS)

    Nikitin, A G

    2012-01-01

    A countable set of quantum superintegrable systems for arbitrary spin is solved explicitly using tools of supersymmetric quantum mechanics. It is shown that these systems (introduced by Pronko (2007 J. Phys. A: Math. Theor. 40 13331)) are special cases of models with shape invariant effective potentials that have recently been classified in Nikitin and Karadzhov (2011 J. Phys. A: Math. Theor. 44 305204, 2011 J. Phys. A: Math. Theor. 44 445202). (paper)

  14. Math Anxiety and Math Performance in Children: The Mediating Roles of Working Memory and Math Self-Concept

    Science.gov (United States)

    Justicia-Galiano, M. José; Martín-Puga, M. Eva; Linares, Rocío; Pelegrina, Santiago

    2017-01-01

    Background: Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. Aims: This study aimed to investigate the role of two possible…

  15. On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies.

    Science.gov (United States)

    Ramirez, Gerardo; Chang, Hyesang; Maloney, Erin A; Levine, Susan C; Beilock, Sian L

    2016-01-01

    Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Assessing communication skills in dietetic consultations: the development of the reliable and valid DIET-COMMS tool.

    Science.gov (United States)

    Whitehead, K A; Langley-Evans, S C; Tischler, V A; Swift, J A

    2014-04-01

    There is an increasing emphasis on the development of communication skills for dietitians but few evidence-based assessment tools available. The present study aimed to develop a dietetic-specific, short, reliable and valid assessment tool for measuring communication skills in patient consultations: DIET-COMMS. A literature review and feedback from 15 qualified dietitians were used to establish face and content validity during the development of DIET-COMMS. In total, 113 dietetic students and qualified dietitians were video-recorded undertaking mock consultations, assessed using DIET-COMMS by the lead author, and used to establish intra-rater reliability, as well as construct and predictive validity. Twenty recorded consultations were reassessed by nine qualified dietitians to assess inter-rater reliability: eight of these assessors were interviewed to determine user evaluation. Significant improvements in DIET-COMMS scores were achieved as students and qualified staff progressed through their training and gained experience, demonstrating construct validity, and also by qualified staff attending a training course, indicating predictive validity (P skills in practice was questioned. DIET-COMMS is a short, user-friendly, reliable and valid tool for measuring communication skills in patient consultations with both pre- and post-registration dietitians. Additional work is required to develop a training package for assessors and to identify how DIET-COMMS assessment can acceptably be incorporated into practice. © 2013 The British Dietetic Association Ltd.

  17. Le plan du métro comme métaphore spatiale et cognitive dans la visualisation

    Directory of Open Access Journals (Sweden)

    Coleta Vaisman

    2016-05-01

    Full Text Available Le point de départ de notre article est la carte du métro comme interface de médiation entre le territoire et l’utilisateur du réseau de transport. Cette carte est une représentation topographique qui, avec le diagramme de Beck, a évolué vers un modèle topologique. Notre démarche méthodologique s’articule en quatre points : le plan du métro vu comme un dialogue entre topographie et topologie ; la carte employée comme un système de visualisation ; la carte interactive comme métaphore spatiale et la carte comme modèle de représentation des connaissances. Sur cette base, nous voulons montrer que cette carte, hors contexte géographique, constitue une forme de métaphore visuelle. Notre travail montre l’importance de la visualisation de l’information et de ses représentations spatiales avec la métaphore du métro. Notre objectif va donc être d’établir les ponts conceptuels entre la métaphore spatiale et la métaphore cognitive pour passer des cartes interactives vers l’usage de la carte du métro comme une représentation visuelle universelle des connaissances.

  18. Is math anxiety in the secondary classroom limiting physics mastery? A study of math anxiety and physics performance

    Science.gov (United States)

    Mercer, Gary J.

    This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.

  19. Three brief assessments of math achievement.

    Science.gov (United States)

    Steiner, Eric T; Ashcraft, Mark H

    2012-12-01

    Because of wide disparities in college students' math knowledge-that is, their math achievement-studies of cognitive processing in math tasks also need to assess their individual level of math achievement. For many research settings, however, using existing math achievement tests is either too costly or too time consuming. To solve this dilemma, we present three brief tests of math achievement here, two drawn from the Wide Range Achievement Test and one composed of noncopyrighted items. All three correlated substantially with the full achievement test and with math anxiety, our original focus, and all show acceptable to excellent reliability. When lengthy testing is not feasible, one of these brief tests can be substituted.

  20. Math Anxiety and Math Ability in Early Primary School Years

    Science.gov (United States)

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2009-01-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported…

  1. Dr Math at your service

    CSIR Research Space (South Africa)

    Butgereit, L

    2012-10-01

    Full Text Available In this presentation the author explains how the Dr Math service works; how tutors are recruited to act as Dr Math; and how school pupils can reach Dr Math for help with their mathematics homework....

  2. GRE math workbook

    CERN Document Server

    Madore, Blair

    2015-01-01

    Reflective of the current GRE, this third edition includes a description of the General Math Exam explaining structure, questions types, and scoring, strategies for problem solving, two full-length math sample sections structured to reflect the actual exam, answers thoroughly explained, and more.

  3. Mathematics anxiety: separating the math from the anxiety.

    Science.gov (United States)

    Lyons, Ian M; Beilock, Sian L

    2012-09-01

    Anxiety about math is tied to low math grades and standardized test scores, yet not all math-anxious individuals perform equally poorly in math. We used functional magnetic resonance imaging to separate neural activity during the anticipation of doing math from activity during math performance itself. For higher (but not lower) math-anxious individuals, increased activity in frontoparietal regions when simply anticipating doing math mitigated math-specific performance deficits. This network included bilateral inferior frontal junction, a region involved in cognitive control and reappraisal of negative emotional responses. Furthermore, the relation between frontoparietal anticipatory activity and highly math-anxious individuals' math deficits was fully mediated (or accounted for) by activity in caudate, nucleus accumbens, and hippocampus during math performance. These subcortical regions are important for coordinating task demands and motivational factors during skill execution. Individual differences in how math-anxious individuals recruit cognitive control resources prior to doing math and motivational resources during math performance predict the extent of their math deficits. This work suggests that educational interventions emphasizing control of negative emotional responses to math stimuli (rather than merely additional math training) will be most effective in revealing a population of mathematically competent individuals, who might otherwise go undiscovered.

  4. Organizing Committee of the Conference

    International Nuclear Information System (INIS)

    2016-01-01

    A.A. Aleksandrov (Chairman) - Dr.Sci. (Engineering), Professor, Rector of Bauman MSTU V.N. Zimin - Dr.Sci. (Engineering), First Pro-Rector (Research), Bauman MSTU V.O. Gladyshev - Dr. Sci. (Phys., Math.), Head of NUK FN, Bauman MSTU V.T. Kalugin - Dr. Sci. (Engineering), Head of NUK SM, Bauman MSTU A.N. Morozov - Dr. Sci. (Phys., Math.), Professor, Head of Dept. FN-4, Bauman MSTU Ju.I. Dimitrienko - Dr. Sci. (Phys., Math.), Professor, Head of Dept. FN-11, Bauman MSTU L.P. Orlenko - Dr. Sci. (Engineering), Professor, Dept. SM-4, Bauman MSTU V.V. Zelencov - PhD (Engineering), lecturer, Dept. SM-6, Bauman MSTU V.N. Mel'nikov - Dr. Sci. (Phys., Math.), Professor, Head of the Centre of Gravitation and Fundamental Metrology, VNIIMS; Deputy director of the Institute of Gravitation and Cosmology, PFUR; President of RGS K.A. Bronnikov - Dr. Sci. (Phys., Math.), Chief researcher, Centre of Gravitation and Fundamental Metrology, VNIIMS; Professor Institute of Gravitation and Cosmology, PFUR N.N. Sysoev - Dr. Sci. (Phys., Math.), Professor, Dean of the Faculty of Physics of Lomonosov Moscow State University Ju.V. Gerasimov - PhD (Engineering), lecturer, Dept. Of Physics, Bauman MSTU P.N. Antonyuk - PhD (Engineering), Dept. FN-11, Bauman MSTU - Scientific Secretary of the conference A.P. Fournier-Sikr - Dr., European Space Agency, France G.M. Webb - Prof., Commercial Space Technologies Ltd., London, United Kingdom (paper)

  5. Changes in Math Prerequisites and Student Performance in Business Statistics: Do Math Prerequisites Really Matter?

    OpenAIRE

    Jeffrey J. Green; Courtenay C. Stone; Abera Zegeye; Thomas A. Charles

    2007-01-01

    We use a binary probit model to assess the impact of several changes in math prerequisites on student performance in an undergraduate business statistics course. While the initial prerequisites did not necessarily provide students with the necessary math skills, our study, the first to examine the effect of math prerequisite changes, shows that these changes were deleterious to student performance. Our results helped convince the College of Business to change the math prerequisite again begin...

  6. Math practice and its influence on math skills and executive functions in adolescents with mild to borderline intellectual disability.

    Science.gov (United States)

    Jansen, Brenda R J; De Lange, Eva; Van der Molen, Mariët J

    2013-05-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an MBID-sample using computerized math training. Also, it was investigated whether EF and math performance were related and whether computerized math training had beneficial effects on EF. The sample consisted of a total of 58 adolescents (12-15 years) from special education. Participants were randomly assigned to either the experimental group or a treatment as usual (TAU) group. In the experimental condition, participants received 5 weeks of training. Math performance and EF were assessed before and after the training period. Math performance improved equally in both groups. However, frequently practicing participants improved more than participants in the control group. Visuo-spatial memory skills were positively related to addition and subtraction skills. Transfer effects from math training to EF were absent. It is concluded that math skills may increase if a reasonable effort in practicing math skills is made. The relation between visuo-spatial memory skills provides opportunities for improving math performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effects of Math Anxiety and Perfectionism on Timed versus Untimed Math Testing in Mathematically Gifted Sixth Graders

    Science.gov (United States)

    Tsui, Joanne M.; Mazzocco, Michèle M. M.

    2009-01-01

    This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition preceded the untimed condition. We also found that children with higher levels of either math anxiety or perfectionism had a smaller performance discrepancy during timed versus untimed testing, relative to children with lower levels of math anxiety or perfectionism. There were no statistically significant gender differences in overall test performance, nor in levels of math anxiety or perfectionism; however, the difference between performance on timed and untimed math testing was statistically significant for girls, but not for boys. Implications for educators are discussed. PMID:20084180

  8. Affective and motivational factors mediate the relation between math skills and use of math in everyday life

    NARCIS (Netherlands)

    Jansen, B.R.J.; Schmitz, E.A.; van der Maas, H.L.J.

    2016-01-01

    This study focused on the use of math in everyday life (the propensity to recognize and solve quantitative issues in real life situations). Data from a Dutch nation-wide research on math among adults (N = 521) were used to investigate the question whether math anxiety and perceived math competence

  9. Addressing Math Anxiety in the Classroom

    Science.gov (United States)

    Finlayson, Maureen

    2014-01-01

    In today's educational systems, students of all levels of education experience math anxiety. Furthermore, math anxiety is frequently linked to poor achievement in mathematics. The purpose of this study is to examine the causes of math anxiety and to explore strategies which pre-service teachers have identified to overcome math anxiety. The…

  10. Invariants of triangular Lie algebras

    International Nuclear Information System (INIS)

    Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman

    2007-01-01

    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated

  11. Turning Negatives into Positives: The Role of an Instructional Math Course on Preservice Teachers' Math Beliefs

    Science.gov (United States)

    Looney, Lisa; Perry, David; Steck, Andy

    2017-01-01

    Teachers' beliefs about mathematics can play a role in their teaching effectiveness (Bandura, 1993). Negative attitudes toward math (e.g., math anxiety) or low self-efficacy beliefs for teaching math can act as barriers to the teaching process, impacting the achievement and math beliefs of students (Beilock, Gunderson, Ramirez, & Levine, 2010;…

  12. Helping Students Get Past Math Anxiety

    Science.gov (United States)

    Scarpello, Gary

    2007-01-01

    Math anxiety can begin as early as the fourth grade and peaks in middle school and high school. It can be caused by past classroom experiences, parental influences, and remembering poor past math performance. Math anxiety can cause students to avoid challenging math courses and may limit their career choices. It is important for teachers, parents…

  13. Group Activities for Math Enthusiasts

    Science.gov (United States)

    Holdener, J.; Milnikel, R.

    2016-01-01

    In this article we present three group activities designed for math students: a balloon-twisting workshop, a group proof of the irrationality of p, and a game of Math Bingo. These activities have been particularly successful in building enthusiasm for mathematics and camaraderie among math faculty and students at Kenyon College.

  14. The Impact of MOVE IT Math(TM) and Traditional Textbook Instruction on Math Achievement Scores

    Science.gov (United States)

    Bennett, Angela Stephens

    2010-01-01

    One recommendation of government, education, and business leaders is an increased emphasis on math and science instruction in public schools. The purpose of this quantitative study using a posttest, quasi-experimental design was to determine if the Math Opportunities, Valuable Experiences, and Innovative Teaching (MOVE IT Math(TM)) program…

  15. All Students Need Advanced Mathematics. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…

  16. Addressing the Math-Practice Gap in Elementary School: Are Tablets a Feasible Tool for Informal Math Practice?

    Science.gov (United States)

    Stacy, Sara T; Cartwright, Macey; Arwood, Zjanya; Canfield, James P; Kloos, Heidi

    2017-01-01

    Students rarely practice math outside of school requirements, which we refer to as the "math-practice gap". This gap might be the reason why students struggle with math, making it urgent to develop means by which to address it. In the current paper, we propose that math apps offer a viable solution to the math-practice gap: Online apps can provide access to a large number of problems, tied to immediate feedback, and delivered in an engaging way. To substantiate this conversation, we looked at whether tablets are sufficiently engaging to motivate children's informal math practice. Our approach was to partner with education agencies via a community-based participatory research design. The three participating education agencies serve elementary-school students from low-SES communities, allowing us to look at tablet use by children who are unlikely to have extensive access to online math enrichment programs. At the same time, the agencies differed in several structural details, including whether our intervention took place during school time, after school, or during the summer. This allowed us to shed light on tablet feasibility under different organizational constraints. Our findings show that tablet-based math practice is engaging for young children, independent of the setting, the student's age, or the math concept that was tackled. At the same time, we found that student engagement was a function of the presence of caring adults to facilitate their online math practice.

  17. The role of expressive writing in math anxiety.

    Science.gov (United States)

    Park, Daeun; Ramirez, Gerardo; Beilock, Sian L

    2014-06-01

    Math anxiety is a negative affective reaction to situations involving math. Previous work demonstrates that math anxiety can negatively impact math problem solving by creating performance-related worries that disrupt the working memory needed for the task at hand. By leveraging knowledge about the mechanism underlying the math anxiety-performance relationship, we tested the effectiveness of a short expressive writing intervention that has been shown to reduce intrusive thoughts and improve working memory availability. Students (N = 80) varying in math anxiety were asked to sit quietly (control group) prior to completing difficulty-matched math and word problems or to write about their thoughts and feelings regarding the exam they were about to take (expressive writing group). For the control group, high math-anxious individuals (HMAs) performed significantly worse on the math problems than low math-anxious students (LMAs). In the expressive writing group, however, this difference in math performance across HMAs and LMAs was significantly reduced. Among HMAs, the use of words related to anxiety, cause, and insight in their writing was positively related to math performance. Expressive writing boosts the performance of anxious students in math-testing situations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Using Brief Guided Imagery to Reduce Math Anxiety and Improve Math Performance: A Pilot Study

    Science.gov (United States)

    Henslee, Amber M.; Klein, Brandi A.

    2017-01-01

    The objective of this study was to investigate whether brief guided imagery could provide a short-term reduction in math anxiety and improve math performance. Undergraduates (N = 581) were screened for math anxiety, and the highest and lowest quartiles were recruited to participate in a lab-based study. Participants were assigned to a brief guided…

  19. Math and Movement: Practical Ways to Incorporate Math into Physical Education

    Science.gov (United States)

    Wade, Marcia

    2016-01-01

    Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…

  20. Engaging Math-Avoidant College Students

    Directory of Open Access Journals (Sweden)

    M. Paul Latiolais

    2009-07-01

    Full Text Available This paper is an informal, personal account of how we, as two college teachers, became interested in math anxiety, decided to explore it amongst students at our institution in order to inform our teaching, and became convinced that the massive problem is math avoidance. We tried discussion groups, but few students attended, although those that did made useful suggestions. Thus informed, we designed an innovative course, Confronting College Mathematics as a Humanities course with the possibility of credit toward the math requirement, but it was undersubscribed in its first offering and had to be canceled. How can we get college students who avoid math to break through the barrier of math avoidance? We have now begun to explore a new approach: Second Life, where students can engage math—and quantitative literacy—virtually, and anonymously.

  1. Gender Compatibility, Math-Gender Stereotypes, and Self-Concepts in Math and Physics

    Science.gov (United States)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-01-01

    Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and…

  2. Avoiding math on a rapid timescale: Emotional responsivity and anxious attention in math anxiety.

    Science.gov (United States)

    Pizzie, Rachel G; Kraemer, David J M

    2017-11-01

    Math anxiety (MA) is characterized by negative feelings towards mathematics, resulting in avoidance of math classes and of careers that rely on mathematical skills. Focused on a long timescale, this research may miss important cognitive and affective processes that operate moment-to-moment, changing rapid reactions even when a student simply sees a math problem. Here, using fMRI with an attentional deployment paradigm, we show that MA influences rapid spontaneous emotional and attentional responses to mathematical stimuli upon brief presentation. Critically, participants viewed but did not attempt to solve the problems. Indicating increased threat reactivity to even brief presentations of math problems, increased MA was associated with increased amygdala response during math viewing trials. Functionally and anatomically defined amygdala ROIs yielded similar results, indicating robustness of the finding. Similar to the pattern of vigilance and avoidance observed in specific phobia, behavioral results of the attentional paradigm demonstrated that MA is associated with attentional disengagement for mathematical symbols. This attentional avoidance is specific to math stimuli; when viewing negatively-valenced images, MA is correlated with attentional engagement, similar to other forms of anxiety. These results indicate that even brief exposure to mathematics triggers a neural response related to threat avoidance in highly MA individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The neurodevelopmental basis of math anxiety.

    Science.gov (United States)

    Young, Christina B; Wu, Sarah S; Menon, Vinod

    2012-05-01

    Math anxiety is a negative emotional reaction to situations involving mathematical problem solving. Math anxiety has a detrimental impact on an individual's long-term professional success, but its neurodevelopmental origins are unknown. In a functional MRI study on 7- to 9-year-old children, we showed that math anxiety was associated with hyperactivity in right amygdala regions that are important for processing negative emotions. In addition, we found that math anxiety was associated with reduced activity in posterior parietal and dorsolateral prefrontal cortex regions involved in mathematical reasoning. Multivariate classification analysis revealed distinct multivoxel activity patterns, which were independent of overall activation levels in the right amygdala. Furthermore, effective connectivity between the amygdala and ventromedial prefrontal cortex regions that regulate negative emotions was elevated in children with math anxiety. These effects were specific to math anxiety and unrelated to general anxiety, intelligence, working memory, or reading ability. Our study identified the neural correlates of math anxiety for the first time, and our findings have significant implications for its early identification and treatment.

  4. More math into Latex

    CERN Document Server

    Grätzer, George

    2007-01-01

    For close to two decades, Math into Latex has been the standard introduction and complete reference for writing articles and books containing mathematical formulas. In this fourth edition, the reader is provided with important updates on articles and books. An important new topic is discussed: transparencies (computer projections). Key features of More Math into Latex, 4th edition: Installation instructions for PC and Mac users; An example-based, visual approach and a gentle introduction with the Short Course; A detailed exposition of multiline math formulas with a Visual Guide; A unified appr

  5. A deformation quantization theory for noncommutative quantum mechanics

    International Nuclear Information System (INIS)

    Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz

    2010-01-01

    We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].

  6. String Math 2017

    CERN Document Server

    The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.

  7. Basic Maths Practice Problems For Dummies

    CERN Document Server

    Beveridge, Colin

    2012-01-01

    Fun, friendly coaching and all the practice you need to tackle maths problems with confidence and ease In his popular Basic Maths For Dummies, professional maths tutor Colin Beveridge proved that he could turn anyone - even the most maths-phobic person - into a natural-born number cruncher. In this book he supplies more of his unique brand of maths-made- easy coaching, plus 2,000 practice problems to help you master what you learn. Whether you're prepping for a numeracy test or an employability exam, thinking of returning to school, or you'd just like to be one of those know-it-alls who says

  8. DE LA BANDE DESSINÉE COMME MOSAÏQUE: Calypso de Baltus et Peeters

    Directory of Open Access Journals (Sweden)

    Fabrice Leroy

    2008-11-01

    Full Text Available Par son ordonnancement vignettal complexe, sa juxtaposition d’images fixes, sémantiquement et esthétiquement corrélées, la bande dessinée s’indexe indubitablement au paradigme mosaïcal, dont Lucien Dällenbach a rappelé l’importance historique et la validité contemporaine. Pour explorer la pertinence de cette métaphore critique quant à l’étude de la bande dessinée, nous proposons de nous pencher sur une bande dessinée qui évoque elle-même la mosaïque, non seulement comme thème narratif, mais également comme principe structurant : l’album Calypso d’Anne Baltus et Benoît Peeters (1995. La mosaïque y joue en effet un rôle thématique primordial : il y est question d’une jeune historienne de l’art, occupée à restaurer un pan de mosaïque. Image spéculaire des amours impossibles de la jeune femme, cette mosaïque s’affiche non seulement comme représentation dans la représentation (mise en abyme fréquente dans les scénarios de Peeters, mais aussi comme un modèle esthétique qui préside à la mise en page de l’album entier, et contribue plus spécifiquement à ses effets fantastiques.

  9. Efimov effect in 2-neutron halo nuclei

    Indian Academy of Sciences (India)

    . B33, 563 (1970). [3] V Efimov, Comm. Nucl. Part. Phys. 19, 271 (1990). [4] Th Cornelius and W Glöckle, J. Chem. Phys. 85, 3906 (1986). B D Esry, C D Lin and C H Greene, Phys. Rev. A54, 394 (1996). J P D'Incao, H Suno and B D Esry, Phys.

  10. Attentional bias in math anxiety.

    Science.gov (United States)

    Rubinsten, Orly; Eidlin, Hili; Wohl, Hadas; Akibli, Orly

    2015-01-01

    Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety (MA) as well (i.e., a persistent negative reaction to math). Twenty seven participants (14 with high levels of MA and 13 with low levels of MA) were presented with a novel computerized numerical version of the well established dot probe task. One of six types of prime stimuli, either math related or typically neutral, was presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks) that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks). Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in MA. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words). These findings suggest that attentional bias is linked to unduly intense MA symptoms.

  11. Math Anxiety Assessment with the Abbreviated Math Anxiety Scale: Applicability and usefulness: insights from the Polish adaptation

    Directory of Open Access Journals (Sweden)

    Krzysztof eCipora

    2015-11-01

    Full Text Available Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS, known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations.We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857 was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety.The current study shows transcultural validity of math anxiety assessment with the AMAS.

  12. Math Anxiety Assessment with the Abbreviated Math Anxiety Scale: Applicability and Usefulness: Insights from the Polish Adaptation.

    Science.gov (United States)

    Cipora, Krzysztof; Szczygieł, Monika; Willmes, Klaus; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety has an important impact on mathematical development and performance. However, although math anxiety is supposed to be a transcultural trait, assessment instruments are scarce and are validated mainly for Western cultures so far. Therefore, we aimed at examining the transcultural generality of math anxiety by a thorough investigation of the validity of math anxiety assessment in Eastern Europe. We investigated the validity and reliability of a Polish adaptation of the Abbreviated Math Anxiety Scale (AMAS), known to have very good psychometric characteristics in its original, American-English version as well as in its Italian and Iranian adaptations. We also observed high reliability, both for internal consistency and test-retest stability of the AMAS in the Polish sample. The results also show very good construct, convergent and discriminant validity: The factorial structure in Polish adult participants (n = 857) was very similar to the one previously found in other samples; AMAS scores correlated moderately in expected directions with state and trait anxiety, self-assessed math achievement and skill as well temperamental traits of emotional reactivity, briskness, endurance, and perseverance. Average scores obtained by participants as well as gender differences and correlations with external measures were also similar across cultures. Beyond the cultural comparison, we used path model analyses to show that math anxiety relates to math grades and self-competence when controlling for trait anxiety. The current study shows transcultural validity of math anxiety assessment with the AMAS.

  13. Classroom Learning Environment and Gender: Do They Explain Math Self-Efficacy, Math Outcome Expectations, and Math Interest during Early Adolescence?

    Science.gov (United States)

    Deacon, Mary M.

    2011-01-01

    Despite initiatives to increase and broaden participation in science, technology, engineering, and mathematics (STEM) fields, women remain underrepresented in STEM. While U.S. girls and women perform as well as, if not better, than boys and men in math, research results indicate that there are significant declines in girls' math self-efficacy,…

  14. An investigation of boys’ and girls’ emotional experience of math, their math performance, and the relation between these variables

    NARCIS (Netherlands)

    Erturan, S; Jansen, B.

    2015-01-01

    GGender differences in children’s emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages

  15. A descriptive study of high school Latino and Caucasian students' values about math, perceived math achievement and STEM career choice

    Science.gov (United States)

    Rodriguez Flecha, Samuel

    The purpose of this study was to examine high school students' math values, perceived math achievement, and STEM career choice. Participants (N=515) were rural high school students from the U.S. Northwest. Data was collected by administering the "To Do or Not to Do:" STEM pilot survey. Most participants (n=294) were Latinos, followed by Caucasians (n=142). Fifty-three percent of the students rated their math achievement as C or below. Of high math students, 57% were male. Females were 53% of low math students. Caucasians (61%) rated themselves as high in math in a greater proportion than Latinos (39%). Latinos (58%) rated themselves as low in math in a greater proportion than Caucasians (39%). Math Values play a significant role in students' perceived math achievement. Internal math values (r =.68, R2 =.46, p =.001) influenced perceived math achievement regardless of gender (males: r =.70, R2 =.49, p =.001; females: r =.65, R2 =.43, p =.001), for Latinos (r =.66, R2 =.44, p =.001), and Caucasians (r =.72, R2 =.51, p =.001). External math values (r =.53, R2 =.28, p =.001) influenced perceived math achievement regardless of gender (males: r =.54, R2 =.30, p =.001; females: r =.49, R2 =.24, p =.001), for Latinos (r =.47, R2 =.22, p =.001), and Caucasians (r =.58, R2 =.33, p =.001). Most high-math students indicated an awareness of being good at math at around 11 years old. Low-math students said that they realized that math was difficult for them at approximately 13 years of age. The influence of parents, teachers, and peers may vary at different academic stages. Approximately half of the participants said there was not a person who had significantly impacted their career choice; only a minority said their parents and teachers were influencing them to a STEM career. Parents and teachers are the most influential relationships in students' career choice. More exposure to STEM role models and in a variety of professions is needed. Possible strategies to impact students

  16. Barron's SAT math workbook

    CERN Document Server

    Leff MS, Lawrence S

    2016-01-01

    This completely revised edition reflects all of the new questions and question types that will appear on the new SAT, scheduled to be administered in Spring 2016. Includes hundreds of revised math questions and answer explanations, math strategies, test-taking tips, and much more.

  17. SAT math prep course

    CERN Document Server

    Kolby, Jeff

    2011-01-01

    Comprehensive Prep for SAT Math Every year, students pay 1,000 and more to test prep companies to prepare for the math section of the new SAT. Now you can get the same preparation in a book. Features: * Comprehensive Review: Twenty-three chapters provide complete review of SAT math. * Practice: Includes 164 examples and more than 500 exercises! Arranged from easy to medium to hard to very hard. * Diagnostic Test: The diagnostic test measures your strengths and weaknesses and directs you to areas you need to study more. * Performance: If your target is a 700+ score, this is the book!

  18. Math Is Like a Scary Movie? Helping Young People Overcome Math Anxiety

    Science.gov (United States)

    Kulkin, Margaret

    2016-01-01

    Afterschool teachers who tutor students or provide homework help have a unique opportunity to help students overcome the social or emotional barriers that so often block learning. They can embrace a creative and investigative approach to math learning. Margaret Kulkin's interest in being a math attitude "myth-buster" led her to apply to…

  19. Math Practice and Its Influence on Math Skills and Executive Functions in Adolescents with Mild to Borderline Intellectual Disability

    Science.gov (United States)

    Jansen, Brenda R. J.; De Lange, Eva; Van der Molen, Mariet J.

    2013-01-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this delay. We aimed to improve math skills in an…

  20. Enhancing Mathematical Communication for Virtual Math Teams

    Science.gov (United States)

    Stahl, Gerry; Çakir, Murat Perit; Weimar, Stephen; Weusijana, Baba Kofi; Ou, Jimmy Xiantong

    2010-01-01

    The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT) service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies…

  1. Mars Comm/Nav MicroSat Network Using the Multi-Mission Bus Launched Piggyback by Ariane 5

    Science.gov (United States)

    Hastrup, R. C.; Cesarone, R. J.; Morabito, D. D.

    1999-01-01

    Recently, NASA's Jet Propulsion Laboratory completed a Mars Exploration Program Architecture Definition Study with strong international participation. The recommendations of this study include establishment of a low cost in-situ communications and navigation satellite network to provide enabling and enhancing support for the international exploration of Mars. This would be the first step toward establishing a "virtual presence throughout the solar system" as called for in NASA's Strategic Plan. Response to the proposed comm/nav satellite network has been very favorably received, as reflected by the inclusion of a line item in NASA's budget submittal to Congress, which provides funding for implementation of the network with first launch in the 2003 opportunity. Funding has already been provided for a phase A study being conducted this year. This paper presents the planned implementation of the comm/nav network, which will utilize microsats based on a multi-mission spacecraft bus being designed for launch by the Ariane 5 as a secondary payload. A companion paper at this conference, entitled "The Multi-Purpose Mars Micro-Mission System Design Utilizing Ariane 5 Piggyback Launch", describes the multimission bus design. This paper addresses the application of the multi-mission bus to the comm/nav microsat mission. Following an introduction, which provides the background that has led to the proposed comm/nav network, the paper discusses the projected user needs with emphasis on the various possible robotic missions (landers, rovers, ascent vehicles, balloons, aircraft, etc.) progressing toward eventual piloted missions. Next, the paper describes the concept for an evolving network of comm/nav microsats and the expected capability to satisfy the user needs. Results of communications and navigation performance analysis are summarized for attractive satellite constellation configurations. The important comm/nav microsat functional requirements on the multi

  2. Math-Gender Stereotypes in Elementary School Children

    Science.gov (United States)

    Cvencek, Dario; Meltzoff, Andrew N.; Greenwald, Anthony G.

    2011-01-01

    A total of 247 American children between 6 and 10 years of age (126 girls and 121 boys) completed Implicit Association Tests and explicit self-report measures assessing the association of (a) "me" with "male" (gender identity), (b) "male" with "math" (math-gender stereotype), and (c) "me" with "math" (math self-concept). Two findings emerged.…

  3. An Investigation of Boys' and Girls' Emotional Experience of Math, Their Math Performance, and the Relation between These Variables

    Science.gov (United States)

    Erturan, Selin; Jansen, Brenda

    2015-01-01

    Gender differences in children's emotional experience of math, their math performance, and the relation between these variables were investigated in two studies. In Study 1, test anxiety, math anxiety, and math performance (whole-number computation) were measured in 134 children in grades 3-8 (ages 7-15 years). In Study 2, perceived math…

  4. Le pneumothorax spontané comme une manifestation évolutive de ...

    African Journals Online (AJOL)

    Le pneumothorax spontané comme une manifestation évolutive de la polyarthrite rhumatoide: à propos d'une observation clinique et revue de la litterature. Magaye Gaye, Assane Ndiaye, Mouhamed Lamine Fall, Souleymane Diatta, Papa Adama Dieng, Papa Salmane Ba, Amadou Gabriel Ciss, Mouhamadou Ndiaye ...

  5. Effects of Math Anxiety and Perfectionism on Timed versus Untimed Math Testing in Mathematically Gifted Sixth Graders

    Science.gov (United States)

    Tsui, Joanne M.; Mazzocco, Michele M. M.

    2006-01-01

    This study was designed to examine the effects of math anxiety and perfectionism on math performance, under timed testing conditions, among mathematically gifted sixth graders. We found that participants had worse math performance during timed versus untimed testing, but this difference was statistically significant only when the timed condition…

  6. La maison des mathématiques

    CERN Document Server

    Villani, Cédric; Moncorgé, Vincent

    2014-01-01

    Comment travaillent les mathématiciens ? C'est peut-être en se promenant dans les couloirs de la première des " maisons des mathématiques " de France, l'institut Henri Poincaré, que l'on trouvera quelques réponses. Le mathématicien Cédric Villani et le physicien Jean-Philippe Uzan nous invitent à découvrir cette discipline et ses acteurs. Au fil des pages on suit, à travers de superbes images signées du photographe Vincent Moncorgé, la façon dont se fabrique cette science qui reste souvent mystérieuse. Toutes les dimensions, scientifique, esthétique et poétique, des mathématiques sont convoquées grâce à des regards croisés : la diversité des inspirations des chercheurs, la source de leur créativité, l'imaginaire littéraire et artistique des mathématiques, la drôle de tribu des mathématiciens. Un voyage au cœur de cette " auberge espagnole " des mathématiques, campus " à la française " accueillant des centaines de chercheurs du monde entier, devenu un lieu d'émulation et d'éc...

  7. Opportunities for Learning Math in Elementary School: Implications for SES Disparities in Procedural and Conceptual Math Skills

    Science.gov (United States)

    Bachman, Heather J.; Votruba-Drzal, Elizabeth; El Nokali, Nermeen E.; Castle Heatly, Melissa

    2015-01-01

    The present study examined whether multiple opportunities to learn math were associated with smaller socioeconomic status (SES) disparities in fifth-grade math achievement using data from the NICHD Study of Early Child Care and Youth Development (SECCYD; N = 1,364). High amounts of procedural math instruction were associated with higher…

  8. Developmental Math Programs in California Community College: An Analysis of Math Boot Camp at Cosumnes River College

    Science.gov (United States)

    Powell, Torence J.

    2017-01-01

    The California Community College system, as an open access institution, is tasked with helping students who possess math skills far below college-level complete math course requirements for obtaining an associate degree or transfer to a university. Colleges have created various developmental math programs to achieve this mission; this paper…

  9. Math anxiety and exposure to statistics in messages about genetically modified foods: effects of numeracy, math self-efficacy, and form of presentation.

    Science.gov (United States)

    Silk, Kami J; Parrott, Roxanne L

    2014-01-01

    Health risks are often communicated to the lay public in statistical formats even though low math skills, or innumeracy, have been found to be prevalent among lay individuals. Although numeracy has been a topic of much research investigation, the role of math self-efficacy and math anxiety on health and risk communication processing has received scant attention from health communication researchers. To advance theoretical and applied understanding regarding health message processing, the authors consider the role of math anxiety, including the effects of math self-efficacy, numeracy, and form of presenting statistics on math anxiety, and the potential effects for comprehension, yielding, and behavioral intentions. The authors also examine math anxiety in a health risk context through an evaluation of the effects of exposure to a message about genetically modified foods on levels of math anxiety. Participants (N = 323) were randomly assigned to read a message that varied the presentation of statistical evidence about potential risks associated with genetically modified foods. Findings reveal that exposure increased levels of math anxiety, with increases in math anxiety limiting yielding. Moreover, math anxiety impaired comprehension but was mediated by perceivers' math confidence and skills. Last, math anxiety facilitated behavioral intentions. Participants who received a text-based message with percentages were more likely to yield than participants who received either a bar graph with percentages or a combined form. Implications are discussed as they relate to math competence and its role in processing health and risk messages.

  10. SimCommSys: taking the errors out of error-correcting code simulations

    Directory of Open Access Journals (Sweden)

    Johann A. Briffa

    2014-06-01

    Full Text Available In this study, we present SimCommSys, a simulator of communication systems that we are releasing under an open source license. The core of the project is a set of C + + libraries defining communication system components and a distributed Monte Carlo simulator. Of principal interest is the error-control coding component, where various kinds of binary and non-binary codes are implemented, including turbo, LDPC, repeat-accumulate and Reed–Solomon. The project also contains a number of ready-to-build binaries implementing various stages of the communication system (such as the encoder and decoder, a complete simulator and a system benchmark. Finally, SimCommSys also provides a number of shell and python scripts to encapsulate routine use cases. As long as the required components are already available in SimCommSys, the user may simulate complete communication systems of their own design without any additional programming. The strict separation of development (needed only to implement new components and use (to simulate specific constructions encourages reproducibility of experimental work and reduces the likelihood of error. Following an overview of the framework, we provide some examples of how to use the framework, including the implementation of a simple codec, the specification of communication systems and their simulation.

  11. Les grands problèmes mathématiques ils orientent l'avenir des maths

    CERN Document Server

    2012-01-01

    Les mathématiques ont leurs sept merveilles ! Il s’agit des sept problèmes du millénaire, mis à prix à un million de dollars chacun par l’Institut Clay de mathématiques en 2000. Mais l’intelligence des mathématiciens est aussi mise à l’épreuve par bien d’autres problèmes, tels ceux de Hilbert. Découvrez dans ce numéro comment ces énigmes orientent l’avenir de la discipline ouvrant la voie à de nouvelles connaissances fondamentales.

  12. Math starters 5- to 10-minute activities aligned with the common core math standards, grades 6-12

    CERN Document Server

    Muschla, Judith A; Muschla, Erin

    2013-01-01

    A revised edition of the bestselling activities guide for math teachers Now updated with new math activities for computers and mobile devices-and now organized by the Common Core State Standards-this book includes more than 650 ready-to-use math starter activities that get kids quickly focused and working as soon as they enter the classroom. Ideally suited for any math curriculum, these high-interest problems spark involvement in the day's lesson, help students build skills, and allow teachers to handle daily management tasks without wasting valuable instructional time. A newly updated edit

  13. Spectral bounds for the PT-breaking Hamiltonian p2 + x4 + iax

    International Nuclear Information System (INIS)

    Handy, C R; Wang Xiaoqian

    2003-01-01

    The non-Hermitian Hamiltonian p 2 + x 4 + iax, which spontaneously breaks PT-symmetry, and the subject of a recent study by Bender et al (2001 J. Phys. A: Math. Gen. 34 L31), is amenable to a positivity representation, facilitating the generation of converging bounds to the complex-eigenenergies of the PT-breaking states. This system is much easier (i.e. fewer variational parameters) than the previously studied case of the Hamiltonian p 2 + ix 3 + iax (2001 Handy J. Phys. A: Math. Gen. 34 5065, Handy et al 2001 J. Phys. A: Math. Gen. 34 5593), as first proposed by Delabaere and Trinh (2000 J. Phys. A: Math. Gen. 33 8771), enabling the generation of low order algebraic spectral bounds (i.e. Re(E) > 81/4 (Im(E)/a) 4 + O(a 2 )), in addition to high order, numerically generated, converging bounds to the discrete states. We examine both approaches here

  14. NextGen Flight Deck Data Comm : Auxiliary Synthetic Speech Phase II

    Science.gov (United States)

    2015-07-01

    Data Comma text-based controller-pilot communication systemis expected to yield several NextGen safety and efficiency benefits. With Data Comm, communication becomes a visual task, and may potentially increase head-down time on the flight deck ...

  15. Exploring Physics with Computer Animation and PhysGL

    Science.gov (United States)

    Bensky, T. J.

    2016-10-01

    This book shows how the web-based PhysGL programming environment (http://physgl.org) can be used to teach and learn elementary mechanics (physics) using simple coding exercises. The book's theme is that the lessons encountered in such a course can be used to generate physics-based animations, providing students with compelling and self-made visuals to aid their learning. Topics presented are parallel to those found in a traditional physics text, making for straightforward integration into a typical lecture-based physics course. Users will appreciate the ease at which compelling OpenGL-based graphics and animations can be produced using PhysGL, as well as its clean, simple language constructs. The author argues that coding should be a standard part of lower-division STEM courses, and provides many anecdotal experiences and observations, that include observed benefits of the coding work.

  16. Choke or thrive? The relation between salivary cortisol and math performance depends on individual differences in working memory and math-anxiety.

    Science.gov (United States)

    Mattarella-Micke, Andrew; Mateo, Jill; Kozak, Megan N; Foster, Katherine; Beilock, Sian L

    2011-08-01

    In the current study, we explored how a person's physiological arousal relates to their performance in a challenging math situation as a function of individual differences in working memory (WM) capacity and math-anxiety. Participants completed demanding math problems before and after which salivary cortisol, an index of arousal, was measured. The performance of lower WM individuals did not depend on cortisol concentration or math-anxiety. For higher WM individuals high in math-anxiety, the higher their concentration of salivary cortisol following the math task, the worse their performance. In contrast, for higher WM individuals lower in math-anxiety, the higher their salivary cortisol concentrations, the better their performance. For individuals who have the capacity to perform at a high-level (higher WMs), whether physiological arousal will lead an individual to choke or thrive depends on math-anxiety. 2011 APA, all rights reserved

  17. An Annotated Math Lab Inventory.

    Science.gov (United States)

    Schussheim, Joan Yares

    1980-01-01

    A listing of mathematics laboratory material is organized as follows: learning kits, tape programs, manipulative learning materials, publications, math games, math lab library, and an alphabetized listing of publishers and/or companies offering materials. (MP)

  18. Culture and math.

    Science.gov (United States)

    Tcheang, Lili

    2014-01-01

    Cultural differences have been shown across a number of different cognitive domains from vision, language, and music. Mathematical cognition is another domain that is an integral part of modern society and because there are a fixed number of ways in which many math operations can be performed, it is also an apposite tool for cultural comparisons. This discussion examines the literature on mathematical processing in accordance with culture, summarizing the brain regions involved across various mathematical tasks. In doing so, we provide a clear picture of the anatomical similarities and differences between cultures when performing different math tasks. This information is useful to explore the possibility of enhancement of mathematical skills, where different strategies may be applicable in accordance with culture. It also contributes to the evolutionary development of different math skills and the growing theory that anatomical and behavioral studies must account for the cultural identity of their sample.

  19. Trajectories of Self-Perceived Math Ability, Utility Value and Interest across Middle School as Predictors of High School Math Performance

    Science.gov (United States)

    Petersen, Jennifer Lee; Hyde, Janet Shibley

    2017-01-01

    Although many studies have documented developmental change in mathematics motivation, little is known about how these trends predict math performance. A sample of 288 participants from the United States reported their perceived math ability, math utility value and math interest in 5th, 7th and 9th grades. Latent growth curve models estimated…

  20. Neural correlates of math anxiety - an overview and implications.

    Science.gov (United States)

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.

  1. Coxeter groups A4, B4 and D4 for two-qubit systems

    Indian Academy of Sciences (India)

    2008). [40] M Koca, R Koç and M Al-Barwani, J. Math. Phys. 44, 3123 (2003). [41] A Kossakowski and M Ohya, Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 10, 411. (2007). [42] M Koca, R Koç and M Al-Barwani, J. Phys. A: Math. Gen.

  2. Enhancing Mathematical Communication for Virtual Math Teams

    Directory of Open Access Journals (Sweden)

    Gerry Stahl

    2010-06-01

    Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies the online math discourse that takes place during sessions of virtual math teams working on open-ended problem-solving tasks. In particular, it investigates methods of group cognition that are employed by teams in this setting. The VMT environment currently integrates social networking, synchronous text chat, a shared whiteboard for drawing, web browsers and an asynchronous wiki for exchanging findings within the larger community. A simple version of MathML is supported in the whiteboard, chat and wiki for displaying mathematical expressions. The VMT Project is currently integrating the dynamic mathematics application, GeoGebra, into its collaboration environment. This will create a multi-user version of GeoGebra, which can be used in concert with the chat, web browsers, curricular topics and wiki repository.

  3. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Science.gov (United States)

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  4. Valorisation agricole des déchets comme alternative à leur gestion ...

    African Journals Online (AJOL)

    Valorisation agricole des déchets comme alternative à leur gestion dans les villes d'Afrique subsaharienne : caractérisation des déchets urbains à Lubumbashi et évaluation de leurs effets sur la croissance des cultures vivrières.

  5. Phylogeny of the TRAF/MATH domain.

    Science.gov (United States)

    Zapata, Juan M; Martínez-García, Vanesa; Lefebvre, Sophie

    2007-01-01

    The TNF-receptor associated factor (TRAF) domain (TD), also known as the meprin and TRAF-C homology (MATH) domain is a fold of seven anti-parallel p-helices that participates in protein-protein interactions. This fold is broadly represented among eukaryotes, where it is found associated with a discrete set of protein-domains. Virtually all protein families encompassing a TRAF/MATH domain seem to be involved in the regulation of protein processing and ubiquitination, strongly suggesting a parallel evolution of the TRAF/MATH domain and certain proteolysis pathways in eukaryotes. The restricted number of living organisms for which we have information of their genetic and protein make-up limits the scope and analysis of the MATH domain in evolution. However, the available information allows us to get a glimpse on the origins, distribution and evolution of the TRAF/MATH domain, which will be overviewed in this chapter.

  6. Math Tracks: What Pace in Math Is Best for the Middle School Child?

    Science.gov (United States)

    Morrison, Michelle

    2011-01-01

    Mathematics is a critical part of academic preparation of the middle school child, or, as Dr. Maria Montessori would refer to them, children in the third plane of development. Montessori educators are sincere in their endeavors not only to prepare young students for further studies of math and the application of math in their world and careers,…

  7. Literacy Specialists in Math Class! Closing the Achievement Gap on State Math Assessments

    Science.gov (United States)

    DiGisi, Lori L.; Fleming, Dianne

    2005-01-01

    Sixth and eighth grade students who are English language learners must be able to read and interpret 39 math word problems in order to successfully calculate the answers on the Massachusetts state math assessment (MCAS). The first year that MCAS was administered, many ELL students read the questions, found them confusing, and left them blank,…

  8. Math at home adds up to achievement in school.

    Science.gov (United States)

    Berkowitz, Talia; Schaeffer, Marjorie W; Maloney, Erin A; Peterson, Lori; Gregor, Courtney; Levine, Susan C; Beilock, Sian L

    2015-10-09

    With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement. Copyright © 2015, American Association for the Advancement of Science.

  9. Math practice and its influence on math skills and executive functions in adolescents with mild to borderline intellectual disability

    NARCIS (Netherlands)

    Jansen, B.R.J.; Lange, E.; van der Molen, M.J.

    2013-01-01

    Adolescents with mild to borderline intellectual disability (MBID) often complete schooling without mastering basic math skills, even though basic math is essential for math-related challenges in everyday life. Limited attention to cognitive skills and low executive functioning (EF) may cause this

  10. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    Directory of Open Access Journals (Sweden)

    Zhan Shi

    Full Text Available Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  11. VibeComm: Radio-Free Wireless Communication for Smart Devices Using Vibration

    Directory of Open Access Journals (Sweden)

    Inhwan Hwang

    2014-11-01

    Full Text Available This paper proposes VibeComm, a novel communication method for smart devices using a built-in vibrator and accelerometer. The proposed approach is ideal for low-rate off-line communication, and its communication medium is an object on which smart devices are placed, such as tables and desks. When more than two smart devices are placed on an object and one device wants to transmit a message to the other devices, the transmitting device generates a sequence of vibrations. The vibrations are propagated through the object on which the devices are placed. The receiving devices analyze their accelerometer readings to decode incoming messages. The proposed method can be the alternative communication method when general types of radio communication methods are not available. VibeComm is implemented on Android smartphones, and a comprehensive set of experiments is conducted to show its feasibility.

  12. The Sum of All Fears: The Effects of Math Anxiety on Math Achievement in Fifth Grade Students and the Implications for School Counselors

    Science.gov (United States)

    Ruff, Sarah E.; Boes, Susan R.

    2014-01-01

    Low math achievement is a recurring weakness in many students. Math anxiety is a persistent and significant theme to math avoidance and low achievement. Causes for math anxiety include social, cognitive, and academic factors. Interventions to reduce math anxiety are limited as they exclude the expert skills of professional school counselors to…

  13. Students as Math Level Designers

    DEFF Research Database (Denmark)

    Jensen, Erik Ottar; Hanghøj, Thorkild; Schoenau-Fog, Henrik

    The short paper presents preliminary findings from a pilot study on how students become motivated through design of learning games in math. The research is carried out in a Danish public school with two classes of 5th graders (N = 42 students). Over the course of two weeks, the students work...... with a design template for a runner game in the Unity 3D game design engine. The students are introduced to the concept of “flow” (Csikszentmihalyi, 1991) as a game design principle and are asked to design levels for a math runner game, which are both engaging as well as a meaningful way of learning math....... In this way, the students are positioned as “math level designers”, which means that they both have to redesign the difficulty of the runner game as well as the difficulty of the mathematical questions and possible answers....

  14. Math you can really use--every day

    CERN Document Server

    Herzog, David Alan

    2007-01-01

    Math You Can Really Use--Every Day skips mind-numbing theory and tiresome drills and gets right down to basic math that helps you do real-world stuff like figuring how much to tip, getting the best deals shopping, computing your gas mileage, and more. This is not your typical, dry math textbook. With a comfortable, easygoing approach, it: Covers math you''ll need for balancing your checkbook, choosing or managing credit cards, comparing options for mortgages, insurance, and investments, and moreIncludes the basics on fractions, decimals, percentages, measurements, and geometric mathClues you in on simple shortcutsIncludes examples plus pop quizzes with answers to help you solidify your understanding Features tear-out guides you can take with you for tipping and converting measurements Want to know how much 20% off is in dollars and cents? Want to figure out how much gas is going to cost for your road trip? This is the math book you''ll really use!

  15. Identifying Maths Anxiety in Student Nurses and Focusing Remedial Work

    Science.gov (United States)

    Bull, Heather

    2009-01-01

    Maths anxiety interferes with maths cognition and thereby increases the risk of maths errors. To initiate strategies for preventing anxiety-related errors progressing into nursing practice, this study explored the hypothesis that student nurses experience high maths anxiety in association with poor maths performance, and that high maths anxiety is…

  16. The Effects of the Elevate Math Summer Program on Math Achievement and Algebra Readiness

    Science.gov (United States)

    Snipes, Jason; Huang, Chun-Wei; Jaquet, Karina; Finkelstein, Neal

    2016-01-01

    To raise math success rates in middle school, many schools and districts have implemented summer math programs designed to improve student preparation for algebra content in grade 8. However, little is known about the effectiveness of these programs. While students who participate typically experience learning gains, there is little rigorous…

  17. Cognitive consistency and math-gender stereotypes in Singaporean children.

    Science.gov (United States)

    Cvencek, Dario; Meltzoff, Andrew N; Kapur, Manu

    2014-01-01

    In social psychology, cognitive consistency is a powerful principle for organizing psychological concepts. There have been few tests of cognitive consistency in children and no research about cognitive consistency in children from Asian cultures, who pose an interesting developmental case. A sample of 172 Singaporean elementary school children completed implicit and explicit measures of math-gender stereotype (male=math), gender identity (me=male), and math self-concept (me=math). Results showed strong evidence for cognitive consistency; the strength of children's math-gender stereotypes, together with their gender identity, significantly predicted their math self-concepts. Cognitive consistency may be culturally universal and a key mechanism for developmental change in social cognition. We also discovered that Singaporean children's math-gender stereotypes increased as a function of age and that boys identified with math more strongly than did girls despite Singaporean girls' excelling in math. The results reveal both cultural universals and cultural variation in developing social cognition. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Math anxiety in Thai early adolescents: a cognitive-behavioral perspective.

    Science.gov (United States)

    Wangsiriwech, Tawatchai; Pisitsungkagarn, Kullaya; Jarukasemthawee, Somboon

    2017-08-29

    With its high prevalence and debilitating impact on students, math anxiety is well studied within the educational context. However, the problem has yet to be examined from the psychological perspective, which is necessary in order to produce a more comprehensive perspective and to pave the way for therapeutic intervention. The current study, therefore, was conducted to identify cognitive and behavioral factors relevant to the occurrence and maintenance of math anxiety. Data were collected from 300 grade 9 students (150 females and 150 males) from public and private schools in Bangkok, Thailand. Participants responded to the measures of math anxiety, negative math beliefs, negative math appraisals and math avoidance. Structural equation modeling was conducted. Model fit indices obtained consistently suggested the good fitness of the model to the data [e.g. χ2/df = 0.42, root mean square error of approximation (RMSEA) = 0.00]. Negative math beliefs, negative math appraisals and math avoidance had a significant direct effect on math anxiety. Additionally, the indirect effect of negative math appraisal was observed between negative math beliefs and math anxiety. In summary, the proposed model accounted for 84.5% of the variance in the anxiety. The findings are discussed with particular focus on implications for therapeutic intervention for math anxiety.

  19. Avoidance temperament and social-evaluative threat in college students' math performance: a mediation model of math and test anxiety.

    Science.gov (United States)

    Liew, Jeffrey; Lench, Heather C; Kao, Grace; Yeh, Yu-Chen; Kwok, Oi-man

    2014-01-01

    Standardized testing has become a common form of student evaluation with high stakes, and limited research exists on understanding the roles of students' personality traits and social-evaluative threat on their academic performance. This study examined the roles of avoidance temperament (i.e., fear and behavioral inhibition) and evaluative threat (i.e., fear of failure and being viewed as unintelligent) in standardized math test and course grades in college students. Undergraduate students (N=184) from a large public university were assessed on temperamental fear and behavioral inhibition. They were then given 15 minutes to complete a standardized math test. After the test, students provided data on evaluative threat and their math performance (scores on standardized college entrance exam and average grades in college math courses). Results indicate that avoidance temperament was linked to social-evaluative threat and low standardized math test scores. Furthermore, evaluative threat mediated the influence of avoidance temperament on both types of math performance. Results have educational and clinical implications, particularly for students at risk for test anxiety and underperformance. Interventions targeting emotion regulation and stress management skills may help individuals reduce their math and test anxieties.

  20. Can Low-Cost Online Summer Math Programs Improve Student Preparation for College-Level Math? Evidence from Randomized Experiments at Three Universities

    Science.gov (United States)

    Chingos, Matthew M.; Griffiths, Rebecca J.; Mulhern, Christine

    2017-01-01

    Every year many students enter college without the math preparation needed to succeed in their desired programs of study. Many of these students struggle to catch up, especially those who are required to take remedial math courses before entering college-level math. Increasing the number of students who begin at the appropriate level of math has…

  1. Evaluation of the MIND Research Institute's Spatial-Temporal Math (ST Math) Program in California

    Science.gov (United States)

    Wendt, Staci; Rice, John; Nakamoto, Jonathan

    2014-01-01

    The MIND Research Institute contracted with the Evaluation Research Program at WestEd to conduct an independent assessment of mathematics outcomes in elementary school grades across California that were provided with the ST Math program. Spatial-Temporal (ST) Math is a game-based instructional software designed to boost K-5 and secondary-level…

  2. Math anxiety differentially affects WAIS-IV arithmetic performance in undergraduates.

    Science.gov (United States)

    Buelow, Melissa T; Frakey, Laura L

    2013-06-01

    Previous research has shown that math anxiety can influence the math performance level; however, to date, it is unknown whether math anxiety influences performance on working memory tasks during neuropsychological evaluation. In the present study, 172 undergraduate students completed measures of math achievement (the Math Computation subtest from the Wide Range Achievement Test-IV), math anxiety (the Math Anxiety Rating Scale-Revised), general test anxiety (from the Adult Manifest Anxiety Scale-College version), and the three Working Memory Index tasks from the Wechsler Adult Intelligence Scale-IV Edition (WAIS-IV; Digit Span [DS], Arithmetic, Letter-Number Sequencing [LNS]). Results indicated that math anxiety predicted performance on Arithmetic, but not DS or LNS, above and beyond the effects of gender, general test anxiety, and math performance level. Our findings suggest that math anxiety can negatively influence WAIS-IV working memory subtest scores. Implications for clinical practice include the utilization of LNS in individuals expressing high math anxiety.

  3. Saxon Math. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2017

    2017-01-01

    "Saxon Math" is a curriculum for students in grades K-12. The amount of new math content students receive each day is limited and students practice concepts every day. New concepts are developed, reviewed, and practiced cumulatively rather than in discrete chapters or units. This review focuses on studies of "Saxon Math"'s…

  4. Investigating Validity of Math 105 as Prerequisite to Math 201 among Undergraduate Students, Nigeria

    Science.gov (United States)

    Zakariya, Yusuf F.

    2016-01-01

    In this study, the author examined the validity of MATH 105 as a prerequisite to MATH 201. The data for this study was extracted directly from the examination results logic of the university. Descriptive statistics in form of correlations and linear regressions were used to analyze the obtained data. Three research questions were formulated and…

  5. Math Education at a Crossroads

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    With an enrollment of 550 students once a year the first year course Math1 at the Technical University of Denmark is one of the largest courses at university level in Denmark. Since its re-formation 6 years ago a number of interesting valuable assets concerning undergraduate math education...

  6. From Mxit to Dr Math

    CSIR Research Space (South Africa)

    Botha, Adèle

    2013-02-01

    Full Text Available In 2007, Laurie Butgereit, a researcher at the CSIR Meraka Institute, started to use Mxit as a communication channel to tutor her son in mathematics. Her son and a number of his friends logged in, and Dr Math was born. At the inception of Dr Math...

  7. Math Branding in a Community College Library

    Science.gov (United States)

    Brantz, Malcolm; Sadowski, Edward B.

    2010-01-01

    As a strategy to promote the Arapahoe Community College Library's collections and services, the Library undertook to brand itself as a math resource center. In promoting one area of expertise, math was selected to help address the problem of a large portion of high school graduates' inability to work at college-level math. A "Math…

  8. Neural correlates of math anxiety – an overview and implications

    Science.gov (United States)

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824

  9. Neural correlates of math anxiety – An overview and implications

    Directory of Open Access Journals (Sweden)

    Christina eArtemenko

    2015-09-01

    Full Text Available Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i math anxiety elicits emotion- and pain-related activation during and before math activities, (ii that the negative emotional response to math anxiety impairs processing efficiency, and (iii that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.

  10. Firefighter Math - a web-based learning tool

    Science.gov (United States)

    Dan Jimenez

    2010-01-01

    Firefighter Math is a web based interactive resource that was developed to help prepare wildland fire personnel for math based training courses. The website can also be used as a refresher for fire calculations including slope, flame length, relative humidity, flow rates, unit conversion, etc. The website is designed to start with basic math refresher skills and...

  11. Nodal domains on isospectral quantum graphs: the resolution of isospectrality?

    International Nuclear Information System (INIS)

    Band, Ram; Shapira, Talia; Smilansky, Uzy

    2006-01-01

    We present and discuss isospectral quantum graphs which are not isometric. These graphs are the analogues of the isospectral domains in R 2 which were introduced recently in Gordon et al (1992 Bull. Am. Math. Soc. 27 134-8), Chapman (1995 Am. Math. Mon. 102 124), Buser et al (1994 Int. Math. Res. Not. 9 391-400), Okada and Shudo (2001 J. Phys. A: Math. Gen. 34 5911-22), Jakobson et al (2006 J. Comput. Appl. Math. 194 141-55) and Levitin et al (2006 J. Phys. A: Math. Gen. 39 2073-82)) all based on Sunada's construction of isospectral domains (Sunada T 1985 Ann. Math. 121 196-86). After presenting some of the properties of these graphs, we discuss a few examples which support the conjecture that by counting the nodal domains of the corresponding eigenfunctions one can resolve the isospectral ambiguity

  12. Numbers and other math ideas come alive

    CERN Document Server

    Pappas, Theoni

    2012-01-01

    Most people don't think about numbers, or take them for granted. For the average person numbers are looked upon as cold, clinical, inanimate objects. Math ideas are viewed as something to get a job done or a problem solved. Get ready for a big surprise with Numbers and Other Math Ideas Come Alive. Pappas explores mathematical ideas by looking behind the scenes of what numbers, points, lines, and other concepts are saying and thinking. In each story, properties and characteristics of math ideas are entertainingly uncovered and explained through the dialogues and actions of its math

  13. How Math Anxiety Relates to Number–Space Associations

    Science.gov (United States)

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number–space associations constitute a potential risk factor of math anxiety. PMID:27683570

  14. How math anxiety relates to number-space associations

    Directory of Open Access Journals (Sweden)

    Carrie Georges

    2016-09-01

    Full Text Available Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioural evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.

  15. How Math Anxiety Relates to Number-Space Associations.

    Science.gov (United States)

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.

  16. Symmetric positive differential equations and first order hyperbolic systems

    International Nuclear Information System (INIS)

    Tangmanee, S.

    1981-12-01

    We prove that under some conditions the first order hyperbolic system and its associated mixed initial boundary conditions considered, for example, in Kreiss (Math. Comp. 22, 703-704 (1968)) and Kreiss and Gustafsson (Math. Comp. 26, 649-686 (1972)), can be transformed into a symmetric positive system of P.D.E.'s with admissible boundary conditions of Friedrich's type (Comm. Pure Appl. Math 11, 333-418 (1958)). (author)

  17. Polynomial solutions of nonlinear integral equations

    International Nuclear Information System (INIS)

    Dominici, Diego

    2009-01-01

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials

  18. Polynomial solutions of nonlinear integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu

    2009-05-22

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.

  19. Local first integrals for systems of differential equations

    International Nuclear Information System (INIS)

    Zhang Xiang

    2003-01-01

    The main purpose of this paper is to provide some sufficient conditions for a system of differential equations to have local first integrals in a certain neighbourhood of a singularity. Our results generalize those given in Kwek et al (2003 Z. Angew. Math. Phys. 54 26) and Li et al (2003 Z. Angew. Math. Phys. 54 235)

  20. An Optimal Dissipative Encoder for the Toric Code

    Science.gov (United States)

    2014-01-16

    Topological quantummemory J. Math. Phys. 43 4452–505 [6] Diehl S, Micheli A, Kantian A, Kraus B, Büchler H P and Zoller P 2008 Quantum states and phases in...Diehl S, Kantian A, Micheli A and Zoller P 2008 Preparation of entangled states by quantum Markov processes Phys. Rev. A 78 042307 [12] Marvian I 2013...Information Theory (Cambridge: Cambridge University Press) [20] Wolf M and Cirac J I 2008 Dividing quantum channels Commun. Math. Phys. 279 147 11

  1. Order of Administration of Math and Verbal Tests: An Ecological Intervention to Reduce Stereotype Threat on Girls' Math Performance

    Science.gov (United States)

    Smeding, Annique; Dumas, Florence; Loose, Florence; Régner, Isabelle

    2013-01-01

    In 2 field experiments, we relied on the very features of real testing situations--where both math and verbal tests are administered--to examine whether order of test administration can, by itself, create vs. alleviate stereotype threat (ST) effects on girls' math performance. We predicted that taking the math test before the verbal test would be…

  2. "Math Anxiety" Explored in Studies

    Science.gov (United States)

    Sparks, Sarah D.

    2011-01-01

    Math problems make more than a few students--and even teachers--sweat, but new brain research is providing insights into the earliest causes of the anxiety so often associated with mathematics. Experts argue that "math anxiety" can bring about widespread, intergenerational discomfort with the subject, which could lead to anything from fewer…

  3. A Motivational Technique for Business Math

    Science.gov (United States)

    Voelker, Pamela

    1977-01-01

    The author suggests the use of simulation and role playing as a method of motivating students in business math. Examples of career-oriented business math simulation games are counting change, banking, payrolls, selling, and shopping. (MF)

  4. What Math Teachers Need Most

    Science.gov (United States)

    Nelson, Barbara Scott; Sassi, Annette

    2007-01-01

    The combination of new instructional methods and new accountability pressures puts many in a quandary in evaluating math instruction. There is much for principals to learn about how and under what conditions new instructional methods work in math classrooms, how to support teachers as they develop new instructional skills, and how to integrate a…

  5. Math Fact Strategies Research Project

    Science.gov (United States)

    Boso, Annie

    2011-01-01

    An action research project was conducted in order to determine effective math fact strategies for first graders. The traditional way of teaching math facts included using timed tests and flashcards, with most students counting on their fingers or a number line. Six new research-based strategies were taught and analyzed to decide which methods…

  6. Developing Mathematical Resilience of Prospective Math Teachers

    Science.gov (United States)

    Ariyanto, L.; Herman, T.; Sumarmo, U.; Suryadi, D.

    2017-09-01

    Prospective math teachers need to develop positive adaptive attitudes toward mathematics that will enable them to continue learning despite having to deal with obstacles and difficulties. This research focuses on the resilience improvement of the prospective mathematic teachers after being treated using problem-based learning based on their basic knowledge on mathematic and their overall knowledge on math. This research used only one group for pre-test and post-test. The result of this research shows that there is improvement on prospective teachers’ resilience after they were given treatment using problem-based learning. One of the factors causing the resilience improvement of the prospective mathematic teachers is the instructions on students’ work sheet. In the instructions, stud ents were asked to write difficulties in solving math problems as well as write down the solution they take to overcome them. This research can be used as a reference for other researchers who want to do the same research related on students’ resiliency o n math and or math lecturers to improve the resilience of prospective teachers to be resilient teachers on math in the future.

  7. Le big bang n'est pas une théorie comme les autres

    CERN Document Server

    Bonnet-Bidaud, Jean-Marc; Leglu, Dominique; Reinisch, Gilbert

    2009-01-01

    Le big bang n'est pas une théorie comme les autres. Ce n'est d'ailleurs pas une théorie physique au sens propre du terme, mais un scénario cosmologique issu des équations de la relativité générale. Il est le modèle qui s'ajuste le mieux aux observations actuelles, mais à quel prix ? Il nous livre un Univers composé à 96 % de matière et d'énergie noires inconnues. C'est donc un euphémisme que de dire que le big bang semble poser autant - sinon plus - de questions qu'il n'en résout. En ce sens, le big bang apparaît davantage comme une paramétrisation de notre ignorance plutôt que comme une modélisation d'un phénomène. Pourtant, le succès du big bang et l'adhésion qu'il suscite, tant dans la sphère scientifique que dans la sphère médiatique, ne se démentent pas. Surmédiatisé, son statut dépasse celui de modèle théorique, et la simple évocation de son nom suffit pour justifier des opérations de marketing scientifique ou rejeter des cosmologies alternatives. Pour éclaircir les pr...

  8. Does Geographic Setting Alter the Roles of Academically Supportive Factors? African American Adolescents' Friendships, Math Self-Concept, and Math Performance

    Science.gov (United States)

    Jones, Martin H.; Irvin, Matthew J.; Kibe, Grace W.

    2012-01-01

    The study is one of few to examine how living in rural, suburban, or urban settings may alter factors supporting African Americans adolescents' math performance. The study examines the relationship of math self-concept and perceptions of friends' academic behaviors to African American students' math performance. Participants (N = 1,049) are…

  9. How to Make the Most of Math Manipulatives.

    Science.gov (United States)

    Burns, Marilyn

    1996-01-01

    A discussion of how to use math manipulatives to teach elementary students focuses on essential program elements: what math manipulatives are and why they are used, common questions about math manipulatives, how one teacher introduced the geoboard into the classroom, and pattern block activities. (SM)

  10. Math Learning Begins at Home

    Science.gov (United States)

    Eason, Sarah H.; Levine, Susan C.

    2017-01-01

    Children demonstrate gaps in the math knowledge that they possess by the time they begin school, and these gaps have been found to predict long-term outcomes not only in math but also in reading. Consequently, it is important to identify what accounts for these early differences and how they can be addressed to ensure that all children enter…

  11. Basic math and pre-algebra practice problems for dummies

    CERN Document Server

    Zegarelli, Mark

    2013-01-01

    1001 Basic Math & Pre- Algebra Practice Problems For  Dummies   Practice makes perfect-and helps deepen your understanding of basic math and pre-algebra 1001 Basic Math & Pre-Algebra Practice Problems For Dummies, with free access to online practice problems, takes you beyond the instruction and guidance offered in Basic Math & Pre-Algebra For Dummies, giving you 1,001 opportunities to practice solving problems from the major topics in your math course. You begin with some basic arithmetic practice, move on to fractions, decimals, and per

  12. Math Academy: Are You Game? Explorations in Probability. Supplemental Math Materials for Grades 3-6

    Science.gov (United States)

    Rimbey, Kimberly

    2007-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the themed program "Are You Game? Math Academy--Explorations in Probability," which teachers can use to…

  13. Primary maths anyone can feed skittles to sharks

    CERN Document Server

    Tiley-Nunn, Nick

    2014-01-01

    Primary maths is stereotypically loved by a few hairy oddballs, tolerated by most sane primary practitioners; loathed by many. With the right approach, however; the right mindset and sense of the impossible being achievable, maths can be moulded into the diamond in the rough of the primary curriculum. Enter Nick Tiley-Nunn: Britain's most imaginative, most exciting primary maths specialist. Over years of practice he has generated ideas about the teaching of maths that are so distinct, so far out and so utterly brilliant that any primary teacher struggling to grasp the nettle of teaching long division will emerge from communing with his ideas not just with some clichéd sense that ‘maths can be fun', but that it can be brilliant, life-enhancing and truly hilarious. This book presents ideas for primary maths teaching so wildly creative and so full of the joy of life that any classroom of kids will be grateful you read it.

  14. Training the approximate number system improves math proficiency.

    Science.gov (United States)

    Park, Joonkoo; Brannon, Elizabeth M

    2013-10-01

    Humans and nonhuman animals share an approximate number system (ANS) that permits estimation and rough calculation of quantities without symbols. Recent studies show a correlation between the acuity of the ANS and performance in symbolic math throughout development and into adulthood, which suggests that the ANS may serve as a cognitive foundation for the uniquely human capacity for symbolic math. Such a proposition leads to the untested prediction that training aimed at improving ANS performance will transfer to improvement in symbolic-math ability. In the two experiments reported here, we showed that ANS training on approximate addition and subtraction of arrays of dots selectively improved symbolic addition and subtraction. This finding strongly supports the hypothesis that complex math skills are fundamentally linked to rudimentary preverbal quantitative abilities and provides the first direct evidence that the ANS and symbolic math may be causally related. It also raises the possibility that interventions aimed at the ANS could benefit children and adults who struggle with math.

  15. Fractional quiver W-algebras

    Science.gov (United States)

    Kimura, Taro; Pestun, Vasily

    2018-04-01

    We introduce quiver gauge theory associated with the non-simply laced type fractional quiver and define fractional quiver W-algebras by using construction of Kimura and Pestun (Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1072-1; Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1073-0) with representation of fractional quivers.

  16. Specific Cognitive Predictors of Early Math Problem Solving

    Science.gov (United States)

    Decker, Scott L.; Roberts, Alycia M.

    2015-01-01

    Development of early math skill depends on a prerequisite level of cognitive development. Identification of specific cognitive skills that are important for math development may not only inform instructional approaches but also inform assessment approaches to identifying children with specific learning problems in math. This study investigated the…

  17. The Aftermath of Remedial Math: Investigating the Low Rate of Certificate Completion among Remedial Math Students

    Science.gov (United States)

    Bahr, Peter Riley

    2013-01-01

    Nationally, a majority of community college students require remedial assistance with mathematics, but comparatively few students who begin the remedial math sequence ultimately complete it and achieve college-level math competency. The academic outcomes of students who begin the sequence but do not complete it are disproportionately unfavorable:…

  18. 76 Valorisation agricole des déchets comme alternative à leur ...

    African Journals Online (AJOL)

    User

    Valorisation agricole des déchets comme alternative à leur gestion dans les villes d'Afrique subsaharienne : caractérisation des déchets urbains à. Lubumbashi et évaluation de leurs effets sur la croissance des cultures vivrières. Louis BABOY LONGANZA1,2, Laurent KIDINDA KIDINDA1*,Dominique TSHIPAMA TAMINA3,.

  19. Math word problems for dummies

    CERN Document Server

    Sterling, Mary Jane

    2008-01-01

    Covers percentages, probability, proportions, and moreGet a grip on all types of word problems by applying them to real lifeAre you mystified by math word problems? This easy-to-understand guide shows you how to conquer these tricky questions with a step-by-step plan for finding the right solution each and every time, no matter the kind or level of problem. From learning math lingo and performing operations to calculating formulas and writing equations, you''ll get all the skills you need to succeed!Discover how to: * Translate word problems into plain English* Brush up on basic math skills* Plug in the right operation or formula* Tackle algebraic and geometric problems* Check your answers to see if they work

  20. Business math for dummies

    CERN Document Server

    Sterling, Mary Jane

    2008-01-01

    Now, it is easier than ever before to understand complex mathematical concepts and formulas and how they relate to real-world business situations. All you have to do it apply the handy information you will find in Business Math For Dummies. Featuring practical practice problems to help you expand your skills, this book covers topics like using percents to calculate increases and decreases, applying basic algebra to solve proportions, and working with basic statistics to analyze raw data. Find solutions for finance and payroll applications, including reading financial statements, calculating wages and commissions, and strategic salary planning. Navigate fractions, decimals, and percents in business and real estate transactions, and take fancy math skills to work. You'll be able to read graphs and tables and apply statistics and data analysis. You'll discover ways you can use math in finance and payroll investments, banking and payroll, goods and services, and business facilities and operations. You'll learn ho...

  1. A Correlation of Community College Math Readiness and Student Success

    Science.gov (United States)

    Brown, Jayna Nicole

    Although traditional college students are more prepared for college-level math based on college admissions tests, little data have been collected on nontraditional adult learners. The purpose of this study was to investigate relationships between math placement tests and community college students' success in math courses and persistence to degree or certificate completion. Guided by Tinto's theory of departure and student retention, the research questions addressed relationships and predictability of math Computer-adaptive Placement Assessment and Support System (COMPASS) test scores and students' performance in math courses, persistence in college, and degree completion. After conducting correlation and regression analyses, no significant relationships were identified between COMPASS Math test scores and students' performance (n = 234) in math courses, persistence in college, or degree completion. However, independent t test and chi-squared analyses of the achievements of college students who tested into Basic Math (n = 138) vs. Introduction to Algebra (n = 96) yielded statistically significant differences in persistence (p = .039), degree completion (p college students' math competencies and degree achievement.

  2. Carnegie Math Pathways 2015-2016 Impact Report: A Five-Year Review. Carnegie Math Pathways Technical Report

    Science.gov (United States)

    Hoang, Hai; Huang, Melrose; Sulcer, Brian; Yesilyurt, Suleyman

    2017-01-01

    College math is a gateway course that has become a constraining gatekeeper for tens of thousands of students annually. Every year, over 500,000 students fail developmental mathematics, preventing them from achieving their college and career goals. The Carnegie Math Pathways initiative offers students an alternative. It comprises two Pathways…

  3. Inhibition Performance in Children with Math Disabilities

    OpenAIRE

    Winegar, Kathryn Lileth

    2013-01-01

    This study examined the inhibition deficit hypothesis in children with math disabilities (MD). Children with and without MD were compared on two inhibition tasks that included the random generation of numbers and letters. The results addressed three hypotheses. Weak support was found for the first hypothesis which stated difficulties related to inhibition are significantly related to math performance. I found partial support for this hypothesis in that inhibition was related to math problem s...

  4. Teachers’ ability in using math learning media

    Science.gov (United States)

    Masniladevi; Prahmana, R. C. I.; Helsa, Y.; Dalais, M.

    2017-12-01

    The studies aim to enhance teachers’ knowledge and skill in making math instructional media, develop math instructional media, train and assist the use of instructional media in learning math in the classroom. The method used in the activities adopted the pattern of preventive implementation, planning stage, program implementation, observation and evaluation and reflection. The research results show that the evaluation of teachers’ ability is still in average category. The result required more intensive training.

  5. Number-specific and general cognitive markers of preschoolers' math ability profiles.

    Science.gov (United States)

    Gray, Sarah A; Reeve, Robert A

    2016-07-01

    Different number-specific and general cognitive markers have been claimed to underlie preschoolers' math ability. It is unclear, however, whether similar/different cognitive markers, or combinations of them, are associated with different patterns of emerging math abilities (i.e., different patterns of strength and weakness). To examine this question, 103 preschoolers (40-60 months of age) completed six math tasks (count sequence, object counting, give a number, naming numbers, ordinal relations, and arithmetic), three number-specific markers of math ability (dot enumeration, magnitude comparison, and spontaneous focusing on numerosity), and four general markers (working memory, response inhibition, attention, and vocabulary). A three-step latent profile modeling procedure identified five math ability profiles that differed in their patterns of math strengths and weaknesses; specifically, the profiles were characterized by (a) excellent math ability on all math tasks, (b) good arithmetic ability, (c) good math ability but relatively poor count sequence recitation ability, (d) average ability on all math tasks, and (e) poor ability on all math tasks. After controlling for age, only dot enumeration and spontaneous focusing on numerosity were associated with the math ability profiles, whereas vocabulary was also marginally significant, and these markers were differentially associated with different profiles; that is, different cognitive markers were associated with different patterns of strengths and weaknesses in math abilities. Findings are discussed in terms of their implications for the development of math cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Simple arithmetic: not so simple for highly math anxious individuals.

    Science.gov (United States)

    Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-12-01

    Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.

  7. L'Utopie comme esquisse d'un avenir meilleur

    Directory of Open Access Journals (Sweden)

    Hervé Ondoua

    2012-12-01

    Full Text Available Le postmodernisme se donne explicitement comme une philosophie de la mondialisation. En occident, Jacques Derrida, par sa déconstruction, est l’un des penseurs qui anime le débat postmoderne en considérant que notre ère manque la fin de rationalité, du progrès et de la recherche d’un sens. La déconstruction se définit comme l’ensemble des techniques et stratégies utilisées par Derrida pour démonter, fissurer et déplacer toute logique universelle. Par le mécanisme de la différance, l’homme sort de tout cadre originaire (grands ensembles, méta récits, seul demeure la trace. L’homme pris dans la trace marque son refus de solidarité avec tout centre, tout principe, toute origine, etc. Cette idée est radicalisée par le légiste, personnage emblématique dans l���Utopie de Thomas More. En effet, le légiste fait l’éloge de la justice sévère anglaise. Partant de la théorie socio-biologiste selon laquelle les comportements sociaux sont génétiques, le légiste dans l’Utopie de More soutient qu’il faut une justice sévère, inflexible, rigide pour nettoyer la cité de ces maux. Dans ce sens, il faut condamner autant d’individus à la potence, car les maux sociaux sont naturels et innées. C’est contre cette approche néolibérale que s’insurge Thomas More. Tout comme les mouvements de gauches, l’Utopie de More explique les maux sociaux par les injustices sociales, la démission de la société, et surtout le manque de l’éducation. Du coup, avec l’Utopie, il s’agit de relativiser le monde dans lequel nous vivons : un autre monde est possible que celui dans lequel nous vivons. Partant delà, l’utopie notamment celle de Francis Bacon ou Thomas More, n’est-elle pas un genre littéraire altermondialiste ? Si la logique néolibérale impose son diktat et pose le principe selon lequel il n’y a pas d’alternative autre que ce que nous offre le capitalisme, ne faut-il pas voir dans l’Utopie, un

  8. Preschool Math Exposure in Private Center-Based Care and Low-SES Children's Math Development

    Science.gov (United States)

    Bachman, Heather J.; Degol, Jessica L.; Elliott, Leanne; Scharphorn, Laura; El Nokali, Nermeen E.; Palmer, Kalani M.

    2018-01-01

    Research Findings: The present study examined the amount of exposure to math activities that children of low socioeconomic status (SES) encounter in private community-based preschool classrooms and whether greater time in these activities predicted higher math skills. Three cohorts of 4- to 5-year-old children were recruited from 30 private…

  9. Building a Math-Positive Culture: How to Support Great Math Teaching in Your School (ASCD Arias)

    Science.gov (United States)

    Seeley, Cathy L.

    2016-01-01

    Cathy L. Seeley, former president of the National Council of Teachers of Mathematics, turns the spotlight on administrative leaders who are seeking to improve their math programs, offering an overview of what an effective program looks like and examples of actions to take to achieve that goal. "Building a Math-Positive Culture" addresses…

  10. Neural correlates of math anxiety – an overview and implications

    OpenAIRE

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that pr...

  11. Using the Intel Math Kernel Library on Peregrine | High-Performance

    Science.gov (United States)

    Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier

  12. Teachers and Counselors: Building Math Confidence in Schools

    Directory of Open Access Journals (Sweden)

    Joseph M. Furner

    2017-08-01

    Full Text Available Mathematics teachers need to take on the role of counselors in addressing the math anxious in today's math classrooms. This paper looks at the impact math anxiety has on the future of young adults in our high-tech society. Teachers and professional school counselors are encouraged to work together to prevent and reduce math anxiety. It is important that all students feel confident in their ability to do mathematics in an age that relies so heavily on problem solving, technology, science, and mathematics. It really is a school's obligation to see that their students value and feel confident in their ability to do math, because ultimately a child's life: all decisions they will make and careers choices may be determined based on their disposition toward mathematics. This paper raises some interesting questions and provides some strategies (See Appendix A for teachers and counselors for addressing the issue of math anxiety while discussing the importance of developing mathematically confident young people for a high-tech world of STEM.

  13. Metacognitive awareness and math anxiety in gifted students

    Directory of Open Access Journals (Sweden)

    Hakan Sarıcam

    2015-12-01

    Full Text Available The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students’ metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted volunteer secondary school students in Turkey. The mean age of the participants was 12.56 years ranging from 12 to 13 years. For gathering data, the Maths Anxiety Scale for Elementary School Students and The Metacognitive Awareness Inventory for Children were used. For analysing the data, Spearman correlation analysis, the Mann Whitney U test, and linear regression analysis were used. According to the findings: firstly, gifted students’ metacognitive awareness scores were higher than those of non-gifted students. On the other hand, non-gifted students’ maths anxiety levels were higher than those of gifted students. Secondly, there was negative correlation between metacognitive awareness and math anxiety. Finally, the findings of linear regression analysis indicated that metacognitive awareness is explained by 48% total variance of maths anxiety in gifted students.

  14. Briefing paper for universities on Core Maths

    OpenAIRE

    Glaister, Paul

    2015-01-01

    This briefing paper outlines the rationale for and development of the new Core Maths qualifications, the characteristics of Core Maths, and why Core Maths is important for higher education. It is part of a communication to university vice-chancellors from the Department for Business, Innovation and Skills (BIS) comprising this paper and a joint Ministerial letter from Jo Johnson, Minister of State for Universities and Science in BIS, and Nick Gibb, Minister of State for Schools in the Departm...

  15. Instant Math Storymats with Hands-on Activities for Building Essential Primary Math Skills, Grades K-2.

    Science.gov (United States)

    Spann, Mary Beth

    This book contains 18 reproducible Math Storymats which can be a refreshing addition to any early elementary math program. Each storymat is accompanied by two separate read-aloud story selections that guide children in using plastic disk-shaped markers to interact with the mats in specific and open-ended ways. Together the mats and the…

  16. Metacognition and Confidence: Comparing Math to Other Academic Subjects

    Directory of Open Access Journals (Sweden)

    Shanna eErickson

    2015-06-01

    Full Text Available Two studies addressed student metacognition in math, measuring confidence accuracy about math performance. Underconfidence would be expected in light of pervasive math anxiety. However, one might alternatively expect overconfidence based on previous results showing overconfidence in other subject domains. Metacognitive judgments and performance were assessed for biology, literature, and mathematics tests. In Study 1, high school students took three different tests and provided estimates of their performance both before and after taking each test. In Study 2, undergraduates similarly took three shortened SAT II Subject Tests. Students were overconfident in predicting math performance, indeed showing greater overconfidence compared to other academic subjects. It appears that both overconfidence and anxiety can adversely affect metacognitive ability and can lead to math avoidance. The results have implications for educational practice and other environments that require extensive use of math.

  17. Childcare Quality and Preschoolers' Math Development

    Science.gov (United States)

    Choi, Ji Young; Dobbs-Oates, Jennifer

    2014-01-01

    This study examined the associations between four types of childcare quality (i.e. teacher-child closeness, frequency of math-related activities, and teacher education and experience) and preschoolers' residualised gain in math over the course of six months. Additionally, potential interactions between teacher-child closeness and other indicators…

  18. On a classification of irreducible almost-commutative geometries IV

    International Nuclear Information System (INIS)

    Jureit, Jan-Hendrik; Stephan, Christoph A.

    2008-01-01

    In this paper, we will classify the finite spectral triples with KO-dimension 6, following the classification found in Iochum, B., Schuecker, T., and Stephan, C. A., J. Math. Phys. 45, 5003 (2004); Jureit, J.-H. and Stephan, C. A., J. Math. Phys. 46, 043512 (2005); Schuecker, T. (unpublished); Jureit, J.-H., Schuecker, T., and Stephan, C. A., J. Math. Phys. 46, 072302 (2005). with up to four summands in the matrix algebra. Again, heavy use is made of Krajewski diagrams [Krajewski, T., J. Geom. Phys. 28, 1 (1998).] This work has been inspired by the recent paper by Connes (unpublished) and Barrett (unpublished). In the classification, we find that the standard model of particle physics in its minimal version fits the axioms of noncommutative geometry in the case of KO-dimension 6. By minimal version, it is meant that at least one neutrino has to be massless and mass-terms mixing particles and antiparticles are prohibited

  19. More than Counting: Whole Math Activities for Preschool and Kindergarten.

    Science.gov (United States)

    Moomaw, Sally; Hieronymus, Brenda

    This book presents extensive sampling of a "whole math" curriculum for preschool and kindergarten children ages 3 and older. An introductory chapter is followed by seven curriculum chapters that discuss math manipulatives, collections, grid games, path games, graphing, math and gross-motor play, and the "math suitcase." Each chapter is divided…

  20. Asymptotic expansion of the Keesom integral

    International Nuclear Information System (INIS)

    Abbott, Paul C

    2007-01-01

    The asymptotic evaluation and expansion of the Keesom integral, K(a), is discussed at some length in Battezzati and Magnasco (2004 J. Phys. A: Math. Gen. 37 9677; 2005 J. Phys. A: Math. Gen. 38 6715). Here, using standard identities, it is shown that this triple integral can be reduced to a single integral from which the asymptotic behaviour is readily obtained using Laplace's method. (comment)

  1. Math Anxiety and the "Math Gap": How Attitudes toward Mathematics Disadvantages Students as Early as Preschool

    Science.gov (United States)

    Geist, Eugene

    2015-01-01

    This study was conducted to examine the attitudes of Head Start teachers toward mathematics and how it may influence how and what they teach in the classroom. In general, the findings of this study can be summarized as this: 1) Math anxiety affects how teachers assess their ability at mathematics. The more math anxiety they report, the lower they…

  2. Supporting English Language Learners in Math Class, Grades 6-8

    Science.gov (United States)

    Melanese, Kathy; Chung, Luz; Forbes, Cheryl

    2011-01-01

    This new addition to Math Solutions "Supporting English Language Learners in Math Class series" offers a wealth of lessons and strategies for modifying grades 6-8 instruction. Section I presents an overview of teaching math to English learners: the research, the challenges, the linguistic demands of a math lesson, and specific strategies and…

  3. L’investiture impériale comme fête. Une approche comparative des fêtes de couronnement

    OpenAIRE

    Rudolph, Harriet

    2013-01-01

    La fête peut être décrite comme un mode spécifique d’inclusion sociale qui se distingue par une occasion spécifique, sa mise en relief démonstrative par rapport au quotidien tout comme le caractère collectif et la dimension de représentation ostentatoire qui lui sont propres. Dans la fête se constituent des cadres d’actions tels que la cour princière, la ville, la commune ou la paroisse en tant que structures sociales et politiques. Les fêtes sont des événements de communication dont des acte...

  4. Collisional Dynamics of the B 3Pi(O+) State of Bromine Monochloride.

    Science.gov (United States)

    1986-08-01

    Hays, Optics Comm, 28(2), 209, Feb 1979. 132. M. Giegelmann, H.P. Grienelsen, K. Hola , Yue-Jing Hu, J Krasinski and K.L. Kompa, AP Phys, 23, 283, 1980...133. M. Diegelmann, K. Hola , and K.L. Kompa, Optics Comm, 29(3), 334, June 1979. 134. S.J. Davis, AFWL-TR-79-104, Air Force Weapons Laboratory, 167

  5. Concilier des performances pour une agriculture durable - L'agriculture biologique comme prototype.

    OpenAIRE

    Sautereau, Natacha; Penvern, Servane; Petitgenet, Morgane; Fauriel, Joël; Bellon, Stéphane

    2011-01-01

    L'agriculture biologique est de plus en plus reconnue comme prototype d’agriculture durable car elle combine de multiples performances. Toutefois des tensions apparaissent entre certaines de ces performances. Une équipe de l’unité Écodéveloppement d’Avignon explore ces tensions en l'arboriculture fruitière.

  6. Five Keys for Teaching Mental Math

    Science.gov (United States)

    Olsen, James R.

    2015-01-01

    After studying the Common Core State Standards for Mathematics (CCSSM) and brain-based learning research, James Olsen believes mental math instruction in secondary school mathematics (grades 7-12) and in teacher education programs needs increased attention. The purpose of this article is to share some keys for teaching mental math. Olsen also…

  7. Mini-Portfolio on Math and Science.

    Science.gov (United States)

    Teaching PreK-8, 1996

    1996-01-01

    Presents six articles dealing with math and science education: "Sneaker Geometry" (Jack George), "Fairs with a Flair" (Diane McCarty), "Generating Excitement with Math Projects" (Jeffrey Kostecky and Louis Roe), "Playing with Numbers" (Diana Smith), "When Student Teachers Want to Do Hands-On Science" (Betsy Feldkamp-Price), and "Science ala Carte"…

  8. Decreasing Math Anxiety in College Students

    Science.gov (United States)

    Perry, Andrew B.

    2004-01-01

    This paper examines the phenomenon of mathematics anxiety in contemporary college and university students. Forms of math anxiety range from moderate test anxiety to extreme anxiety including physiological symptoms such as nausea. For each of several types of math anxiety, one or more case studies is analyzed. Selected strategies for coping with…

  9. Contextual Factors Related to Math Anxiety in Second-Grade Children

    Science.gov (United States)

    Jameson, Molly M.

    2014-01-01

    As the United States falls farther behind other countries in standardized math assessments, the author seeks to understand why U.S. students perform so poorly. One of the possible explanations to U.S. students' poor math performance may be math anxiety. However, math anxiety in elementary school children is a neglected area in the research. The…

  10. Impact of Math Snacks Games on Students' Conceptual Understanding

    Science.gov (United States)

    Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.

    2016-01-01

    This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…

  11. Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers

    Directory of Open Access Journals (Sweden)

    Emily Szkudlarek

    2018-05-01

    Full Text Available Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1 compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2 to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children (n = 158 were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that

  12. Approximate Arithmetic Training Improves Informal Math Performance in Low Achieving Preschoolers.

    Science.gov (United States)

    Szkudlarek, Emily; Brannon, Elizabeth M

    2018-01-01

    Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children ( n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic

  13. The Influence of Math Anxiety, Math Performance, Worry, and Test Anxiety on the Iowa Gambling Task and Balloon Analogue Risk Task.

    Science.gov (United States)

    Buelow, Melissa T; Barnhart, Wesley R

    2017-01-01

    Multiple studies have shown that performance on behavioral decision-making tasks, such as the Iowa Gambling Task (IGT) and Balloon Analogue Risk Task (BART), is influenced by external factors, such as mood. However, the research regarding the influence of worry is mixed, and no research has examined the effect of math or test anxiety on these tasks. The present study investigated the effects of anxiety (including math anxiety) and math performance on the IGT and BART in a sample of 137 undergraduate students. Math performance and worry were not correlated with performance on the IGT, and no variables were correlated with BART performance. Linear regressions indicated math anxiety, physiological anxiety, social concerns/stress, and test anxiety significantly predicted disadvantageous selections on the IGT during the transition from decision making under ambiguity to decision making under risk. Implications for clinical evaluation of decision making are discussed. © The Author(s) 2015.

  14. OGIEN, Albert. La démocratie comme revendication et comme forme de vie. Tradução para língua portuguesa de

    Directory of Open Access Journals (Sweden)

    Agripa Faria Alexandre

    2015-12-01

    Full Text Available http://dx.doi.org/10.5007/1807-1384.2015v12n2p279 OGIEN, Albert. La démocratie comme revendication et comme forme de vie, publicado em Raisons Politiques, n. 57, 2015/1, pp. 31-47. Uma forma original de ação política surgiu nos regimes democráticos. Ela manifesta-se pelo lado de fora dos canais oficiais estabelecidos do sistema representativo, cobrando a expansão do significado da democracia. Este artigo propõe descrever este fenômeno, mostrando como a democracia pode ser concebida como forma de vida – em referência à definição de Wittgenstein. Ele mostra então a proximidade desta noção com a de ‘situação’, de Goffman. Finalmente, com base nas teses de Dewey sobre investigação, o artigo descreve o conteúdo da prática da democracia como modo de vida – no que concerne à promoção da autonomia dos cidadãos e à garantia do pluralismo como forma de vida e de pensamento. A análise lembra que, em toda sociedade de Estado, a realização da democracia depende de um processo incessante que liga dois modos de intercâmbio constante de conceituar a democracia: como sistema de representação e como forma de vida.

  15. Tutoring math platform accessible for visually impaired people.

    Science.gov (United States)

    Maćkowski, Michał Sebastian; Brzoza, Piotr Franciszek; Spinczyk, Dominik Roland

    2018-04-01

    There are many problems with teaching and assessing impaired students in higher education, especially in technical science, where the knowledge is represented mostly by structural information like: math formulae, charts, graphs, etc. Developing e-learning platform for distance education solves this problem only partially due to the lack of accessibility for the blind. The proposed method is based on the decomposition of the typical mathematical exercise into a sequence of elementary sub-exercises. This allows for interactive resolving of math exercises and assessment of the correctness of exercise solutions at every stage. The presented methods were prepared and evaluated by visually impaired people and students. The article presents the accessible interactive tutoring platform for math teaching and assessment, and experience in exploring it. The results of conducted research confirm good understanding of math formulae described according to elaborated rules. Regardless of the level of complexity of the math formulae the level of math formulae understanding is higher for alternative structural description. The proposed solution enables alternative descriptions of math formulae. Based on the research results, the tool for computer-aided interactive learning of mathematics adapted to the needs of the blind has been designed, implemented and deployed as a platform for on-site and online and distance learning. The designed solution can be very helpful in overcoming many barriers that occur while teaching impaired students. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Basic math and pre-algebra for dummies

    CERN Document Server

    Zegarelli, Mark

    2014-01-01

    Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methodsRelevant cultural vernacular and referencesStandard For Dummies materials that

  17. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Tangible Math

    Science.gov (United States)

    Scarlatos, Lori L.

    2006-01-01

    Educators recognize that group work and physical involvement with learning materials can greatly enhance the understanding and retention of difficult concepts. As a result, math manipulatives--such as pattern blocks and number lines--have increasingly been making their way into classrooms and children's museums. Yet without the constant guidance…

  19. What to Do About Canada's Declining Math Scores?

    OpenAIRE

    Anna Stokke

    2015-01-01

    The declining performance of Canadian students on international math assessments should worry Canadians and their provincial governments. Strong mathematics knowledge is required for success in the workforce, and early achievement in math is one of the best predictors of later academic success and future career options. Between 2003 and 2012, all but two Canadian provinces showed statistically significant declines in math scores on international exams administered by the Organization for Econ...

  20. Math anxiety in second and third graders and its relation to mathematics achievement.

    Science.gov (United States)

    Wu, Sarah S; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod

    2012-01-01

    Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure for assessing math anxiety in second and third graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Mathematical Reasoning and Numerical Operations subtests of the Wechsler Individual Achievement Test (WIAT-II). Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were strongly correlated with Mathematical Reasoning scores, which involves more complex verbal problem solving. SEMA scores were weakly correlated with Numerical Operations which assesses basic computation skills, suggesting that math anxiety has a pronounced effect on more demanding calculations. We also found that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement

  1. The role of early language abilities on math skills among Chinese children.

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    Full Text Available The present study investigated the role of early language abilities in the development of math skills among Chinese K-3 students. About 2000 children in China, who were on average aged 6 years, were assessed for both informal math (e.g., basic number concepts such as counting objects and formal math (calculations including addition and subtraction skills, language abilities and nonverbal intelligence.Correlation analysis showed that language abilities were more strongly associated with informal than formal math skills, and regression analyses revealed that children's language abilities could uniquely predict both informal and formal math skills with age, gender, and nonverbal intelligence controlled. Mediation analyses demonstrated that the relationship between children's language abilities and formal math skills was partially mediated by informal math skills.The current findings indicate 1 Children's language abilities are of strong predictive values for both informal and formal math skills; 2 Language abilities impacts formal math skills partially through the mediation of informal math skills.

  2. Mathematizing: An Emergent Math Curriculum Approach for Young Children

    Science.gov (United States)

    Rosales, Allen C.

    2015-01-01

    Based on years of research with early childhood teachers, author Allen Rosales provides an approach to create an emergent math curriculum that integrates children's interests with math concepts. The mathematizing approach is different from traditional math curriculums, as it immerses children in a process that is designed to develop their…

  3. A one-parameter model for the spread of Avian Influenza A/H5N1

    International Nuclear Information System (INIS)

    Eifert, Hans-Justus; Held, Sascha; Messer, Joachim A.

    2009-01-01

    Using a Lindblad dissipation dynamics [Lindblad G. On the generators of quantum dynamical semigroups. Commun Math Phys 1976;48:119-130 and see also Gorini V, Frigerio A, Verri M, Kossakowski A, Sudarshan ECG. Properties of quantum Markovian master equations. Rep Math Phys 1978;13:149-173; Alicki R, Messer J. Nonlinear quantum dynamical semigroups for many-body open systems. J Stat Phys 1983;32:299-312.] for biological rate equations we derive a one-component discrete dynamics for the spread of Avian Influenza. Numerical solutions of the difference equations are calculated and compared with measurement data.

  4. Comment on 'Nonlinear gyrokinetic theory with polarization drift' [Phys. Plasmas 17, 082304 (2010)

    International Nuclear Information System (INIS)

    Leerink, S.; Parra, F. I.; Heikkinen, J. A.

    2010-01-01

    In this comment, we show that by using the discrete particle distribution function the changes of the phase-space volume of gyrocenter coordinates due to the fluctuating ExB velocity do not explicitly appear in the Poisson equation and the [Sosenko et al., Phys. Scr. 64, 264 (2001)] result is recovered. It is demonstrated that there is no contradiction between the work presented by Sosenko et al. and the work presented by [Wang et al., Phys. Plasmas 17, 082304 (2010)].

  5. Math anxiety in second and third graders and its relation to mathematics achievement

    Directory of Open Access Journals (Sweden)

    Sarah eWu

    2012-06-01

    Full Text Available Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in 2nd and 3rd graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA, a new measure for assessing math anxiety in 2nd and 3rd graders that is based on the Math Anxiety Rating Scale. We demonstrate the construct validity and reliability of the SEMA and use it to characterize the effect of math anxiety on standardized measures of math abilities, as assessed using the Wechsler Individual Achievement Test (WIAT-II. Math achievement, as measured by the WIAT-II Math Composite score, was significantly and negatively correlated with SEMA but not with trait anxiety scores. Additional analyses showed that SEMA scores were significantly correlated with scores on the Math Reasoning subtest, which involves more complex verbal problem solving, but not with the Numerical Operations subtest which assesses basic computation skills. Our results suggest that math anxiety has a pronounced effect on more demanding calculations. Our results further suggest that math anxiety has an equally detrimental impact on math achievement regardless of whether children have an anxiety related to numbers or to the situational and social experience of doing math. Critically, these effects were unrelated to trait anxiety, providing the first evidence that the specific effects of math anxiety can be detected in the earliest stages of formal math learning in school. Our findings provide new insights into the developmental origins of math anxiety, and further underscore the need to remediate math anxiety and its deleterious effects on math achievement in young children.

  6. Strategies for Reducing Math Anxiety. Information Capsule. Volume 1102

    Science.gov (United States)

    Blazer, Christie

    2011-01-01

    Approximately 93 percent of Americans indicate that they experience some level of math anxiety. Math anxiety is defined as negative emotions that interfere with the solving of mathematical problems. Studies have found that some students who perform poorly on math assessments actually have a full understanding of the concepts being tested; however,…

  7. Séries de problèmes dans une tradition d'enseignement des mathématiques en Hongrie au 20e siècle1

    Directory of Open Access Journals (Sweden)

    Gosztonyi Katalin

    2015-01-01

    Full Text Available Dans cet article, nous discutons l'intérêt d'étudier des « séries de problèmes » pour la caractérisation d'une tradition d'enseignement des mathématiques en Hongrie au 20e siècle. Dans la partie 1, nous résumons le contexte historique et les principes partagés dans cette tradition sur les mathématiques et leur enseignement. Dans la partie 2, nous étudions plus en détail un texte d'un membre de cette communauté, un extrait du Jeux avec l'infini de Rózsa Péter, qui nous servira de modèle pour les analyses ultérieures. Dans la partie 3, nous présentons différents documents liés à la réforme de l'enseignement des mathématiques dirigée par Tamás Varga dans les décennies 1960 et 1970, cette réforme étant considérée comme une étape significative dans l'histoire de cette « tradition hongroise ». Nous tenterons de montrer qu'une réflexion sur la mise en ordre des problèmes joue un rôle crucial dans la structuration de ces textes divers, écrits souvent dans une forme narrative et quasi-littéraire ; et que l'étude des « séries de problèmes » présentées dans ces textes peut apporter une contribution importante à la caractérisation de la tradition en question.

  8. Math Game(s) - an alternative (approach) to teaching math?

    NARCIS (Netherlands)

    Ruttkay, Z.M.; Eliens, A.P.W.; Breitlauch, L.

    2009-01-01

    Getting students to read, digest and practice material is difficult in any discipline, but even more so for math, since many students have to cope with motivational problems and feelings of inadequacy, often due to prior unsuccesful training and teaching methods. In this paper we look at the

  9. Membangun Karakter Anak Usia Dini melalui Pembelajaran Math Character

    Directory of Open Access Journals (Sweden)

    Titin Faridatun Nisa’

    2016-09-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui penerapan pembelajaran math character untuk membangun karakter Anak Usia Dini (AUD dan kesulitan-kesulitan yang dialami guru dalam penerapan pembelajaran math character. Target penelitian ini adalah terbentuknya karakter anak usia dini melalui pembelajaran math character. Jenis penelitian ini adalah penelitian deskriptif dengan metode penelitian kualitatif. Teknik pengumpulan informasi penelitian ini dengan metode observasi dan wawancara. Analisis data penelitian ini menggunakan analisis deskriptif. Hasil penelitian menunjukkan bahwa penerapan pembelajaran math character dapat membangun delapan belas nilai-nilai karakter AUD. Kesulitan-kesulitan yang dialami guru dalam pembentukan karakter AUD melalui pembelajaran math character meliputi tema yang digunakan termasuk tema baru, siswa belum terbiasa dengan pembelajaran berbasis sentra, usia siswa bervariasi, dan adanya ikut campur wali siswa dalam kegiatan pembelajaran di kelas sehingga siswa menjadi kurang mandiri.

  10. Math Clock: Perangkat Penunjuk Waktu Kreatif untuk Olahraga Otak

    Directory of Open Access Journals (Sweden)

    Galuh Boy Hertantyo

    2014-11-01

    Full Text Available Brain is one of the most vital parts for humans, with the number of brain function that is needed for the body, the brain becomes a very important part of the human body. If there is damage to the brain will certainly cause the performance of the human body will not run properly. Because of that, it’s very important to maintain brain health. There is a way to maintain brain health, for example is by doing brain exercise. Examples of brain exercise is to do simple math calculations or doing brain games like sudoku. Because of that, created a tool that can help the brain to maintain brain exercise. The tool is called math clock. Making math clock tool consists of hardware and software. The hardware consists of RTC as real time data input, ATmega328 as microcontroller and dot matrix 32x16 as a tool to display the output that has been processed by the microcontroller. The software is built using C with Arduino IDE. Math clock will process the data from RTC then processed it, in microcontroller so when output displayed on dot matrix, output will be simple mathematical operation with real time clock data on it. Test results show that, math clock is capable of displaying a simple mathematical calculation operations such as addition, subtraction, multiplication and division. The mathematical operation that display on math clock, appears to be random, so it’s not triggered by same mathematical operation. In math clock the display will change every 20 second, so in 1 minute there are 3 different kinds of mathematical operations. The results of questionnaires of 10 different students, showed 9 out of 10 students said math clock is a tool that easy to use as a clock. Math clock will be alternative for doing brain exercise every day.

  11. Formula for Success: Engaging Families in Early Math Learning

    Science.gov (United States)

    Global Family Research Project, 2017

    2017-01-01

    Early math ability is one of the best predictors of children's later success in school. Because children's learning begins in the home, families are fundamental in shaping children's interest and skills in math. The experience of learning and doing math, however, looks different from the instruction that was offered when most adults were in…

  12. Elementary Teachers' Perceptions of Their Professional Teaching Competencies: Differences between Teachers of Math/Science Majors and Non-Math/Science Majors in Taiwan

    Science.gov (United States)

    Wu, Li-Chen; Chao, Li-ling; Cheng, Pi-Yun; Tuan, Hsiao-Lin; Guo, Chorng-Jee

    2018-01-01

    The purpose of this study was to probe the differences of perceived professional teaching competence between elementary school math/science teachers in Taiwan who are majored in math/science and those who are not. A researcher-developed Math/Science Teachers' Professional Development Questionnaire was used in a nationwide survey, using a two-stage…

  13. Football to improve math and reading performance

    NARCIS (Netherlands)

    Van Klaveren, Chris; De Witte, Kristof

    2015-01-01

    Schools frequently increase the instructional time to improve primary school children's math and reading skills. There is, however, little evidence that math and reading skills are effectively improved by these instruction-time increases. This study evaluates ‘Playing for Success’ (PfS), an extended

  14. Insecure attachment is associated with math anxiety in middle childhood.

    Science.gov (United States)

    Bosmans, Guy; De Smedt, Bert

    2015-01-01

    Children's anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (M age = 10.34 years; SD age = 0.63) filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex, and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.

  15. Insecure attachment is associated with math anxiety in middle childhood

    Directory of Open Access Journals (Sweden)

    Guy eBosmans

    2015-10-01

    Full Text Available Children’s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect-regulation mechanism that is characteristic for insecure attachment relationships. To test this hypothesis, 87 children primary school children (Mage = 10.34 years; SDage = 0.63 filled out questionnaires measuring insecure attachment and math anxiety. They all completed a timed and untimed standardized test of mathematics achievement. Our data revealed that individual differences in math anxiety were significantly related to insecure attachment, independent of age, sex and IQ. Both tests of mathematics achievement were associated with insecure attachment and this effect was mediated by math anxiety. This study is the first to indicate that math anxiety might develop in the context of insecure parent-child attachment relationships.

  16. Almost-commutative geometries beyond the standard model II: new colours

    International Nuclear Information System (INIS)

    Stephan, Christoph A

    2007-01-01

    We will present an extension of the standard model of particle physics in its almost-commutative formulation. This extension is guided by the minimal approach to almost-commutative geometries employed by Iochum et al (2004 J. Math. Phys. 45 5003 (Preprint hep-th/0312276)), Jureit and Stephan (2005 J. Math. Phys. 46 043512 (Preprint hep-th/0501134)), Schuecker (2005 Preprint hep-th/0501181), Jureit et al (2005 J. Math. Phys. 46 072303 (Preprint hep-th/0503190)) and Jureit and Stephan (2006 Preprint hep-th/0610040), although the model presented here is not minimal itself. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model and two new fermions of opposite electromagnetic charge which may possess a new colour-like gauge group. As a new phenomenon, grand unification is no longer required by the spectral action

  17. Almost-commutative geometries beyond the standard model

    International Nuclear Information System (INIS)

    Stephan, Christoph A

    2006-01-01

    In Iochum et al (2004 J. Math. Phys. 45 5003), Jureit and Stephan (2005 J. Math. Phys. 46 043512), Schuecker T (2005 Preprint hep-th/0501181) and Jureit et al (2005 J. Math. Phys. 46 072303), a conjecture is presented that almost-commutative geometries, with respect to sensible physical constraints, allow only the standard model of particle physics and electro-strong models as Yang-Mills-Higgs theories. In this paper, a counter-example will be given. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model of particle physics and two new fermions of opposite electro-magnetic charge. This is the second Yang-Mills-Higgs model within noncommutative geometry, after the standard model, which could be compatible with experiments. Combined to a hydrogen-like composite particle, these new particles provide a novel dark matter candidate

  18. Atomic effect algebras with compression bases

    International Nuclear Information System (INIS)

    Caragheorgheopol, Dan; Tkadlec, Josef

    2011-01-01

    Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.

  19. A new 2D integrable system with a quartic second invariant

    International Nuclear Information System (INIS)

    Yehia, Hamad M

    2012-01-01

    The construction of all 2D Lagrangian systems which admit besides the energy another integral of motion that is quartic in velocities was reduced in our previous article (Yehia 2006 J. Phys. A: Math. Gen. 39 5807–24) to a single nonlinear PDE. In this paper, we introduce a new solution of this equation, leading to a new integrable system with a quartic integral, which involves 16 free parameters. A special case of the new system admits interpretation in a problem of rigid body dynamics. It gives a new integrable variation of the cases due to Kowalevski (1889 Acta Math. 12 177–232), Chaplygin (1903 Tr. Otdel. Phys. Nauk Obsh. Liub. Estest. 11 7–10), Goriatchev (1916 Varshav. Univ. Izv. 1–13) and Yehia (2006 J. Phys. A: Math. Gen. 39 5807–24). (paper)

  20. Technical Math For Dummies

    CERN Document Server

    Schoenborn, Barry

    2010-01-01

    Technical Math For Dummies is your one-stop, hands-on guide to acing the math courses you’ll encounter as you work toward getting your degree, certifacation, or�license in the skilled trades. You’ll get easy-to-follow, plain-English guidance on mathematical formulas and methods that professionals use every day in the automotive, health, construction, licensed trades, maintenance, and other trades. You’ll learn how to apply concepts of algebra, geometry, and trigonometry and their formulas related to occupational areas of study. Plus, you’ll find out how to perform basic arithmetic

  1. District Finds the Right Equation to Improve Math Instruction

    Science.gov (United States)

    Holmstrom, Annette

    2010-01-01

    The math problem is common to most U.S. school districts, and education leaders are well aware that U.S. math achievement lags far behind many other countries in the world. University Place (Washington) School District Superintendent Patti Banks found the conspicuous income gap for math scores even more disturbing. In her school district, only 23%…

  2. The influence of math anxiety on symbolic and non-symbolic magnitude processing.

    Science.gov (United States)

    Dietrich, Julia F; Huber, Stefan; Moeller, Korbinian; Klein, Elise

    2015-01-01

    Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.

  3. The influence of math anxiety on symbolic and non-symbolic magnitude processing

    Directory of Open Access Journals (Sweden)

    Julia Felicitas Dietrich

    2015-10-01

    Full Text Available Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS, which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.

  4. Math Academy: Play Ball! Explorations in Data Analysis & Statistics. Book 3: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2008-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Play Ball! Explorations in Data Analysis & Statistics," which teachers can use to…

  5. Math Academy: Dining Out! Explorations in Fractions, Decimals, & Percents. Book 4: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2007-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Dining Out! Explorations in Fractions, Decimals, and Percents," which teachers can use…

  6. Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology

    Science.gov (United States)

    Redish, Edward F.; Kuo, Eric

    2015-07-01

    Mathematics is a critical part of much scientific research. Physics in particular weaves math extensively into its instruction beginning in high school. Despite much research on the learning of both physics and math, the problem of how to effectively include math in physics in a way that reaches most students remains unsolved. In this paper, we suggest that a fundamental issue has received insufficient exploration: the fact that in science, we don't just use math, we make meaning with it in a different way than mathematicians do. In this reflective essay, we explore math as a language and consider the language of math in physics through the lens of cognitive linguistics. We begin by offering a number of examples that show how the use of math in physics differs from the use of math as typically found in math classes. We then explore basic concepts in cognitive semantics to show how humans make meaning with language in general. The critical elements are the roles of embodied cognition and interpretation in context. Then, we show how a theoretical framework commonly used in physics education research, resources, is coherent with and extends the ideas of cognitive semantics by connecting embodiment to phenomenological primitives and contextual interpretation to the dynamics of meaning-making with conceptual resources, epistemological resources, and affect. We present these ideas with illustrative case studies of students working on physics problems with math and demonstrate the dynamical nature of student reasoning with math in physics. We conclude with some thoughts about the implications for instruction.

  7. Symbolic math for computation of radiation shielding

    International Nuclear Information System (INIS)

    Suman, Vitisha; Datta, D.; Sarkar, P.K.; Kushwaha, H.S.

    2010-01-01

    Radiation transport calculations for shielding studies in the field of accelerator technology often involve intensive numerical computations. Traditionally, radiation transport equation is solved using finite difference scheme or advanced finite element method with respect to specific initial and boundary conditions suitable for the geometry of the problem. All these computations need CPU intensive computer codes for accurate calculation of scalar and angular fluxes. Computation using symbols of the analytical expression representing the transport equation as objects is an enhanced numerical technique in which the computation is completely algorithm and data oriented. Algorithm on the basis of symbolic math architecture is developed using Symbolic math toolbox of MATLAB software. Present paper describes the symbolic math algorithm and its application as a case study in which shielding calculation of rectangular slab geometry is studied for a line source of specific activity. Study of application of symbolic math in this domain evolves a new paradigm compared to the existing computer code such as DORT. (author)

  8. Representation of numerical magnitude in math-anxious individuals.

    Science.gov (United States)

    Colomé, Àngels

    2018-01-01

    Larger distance effects in high math-anxious individuals (HMA) performing comparison tasks have previously been interpreted as indicating less precise magnitude representation in this population. A recent study by Dietrich, Huber, Moeller, and Klein limited the effects of math anxiety to symbolic comparison, in which they found larger distance effects for HMA, despite equivalent size effects. However, the question of whether distance effects in symbolic comparison reflect the properties of the magnitude representation or decisional processes is currently under debate. This study was designed to further explore the relation between math anxiety and magnitude representation through three different tasks. HMA and low math-anxious individuals (LMA) performed a non-symbolic comparison, in which no group differences were found. Furthermore, we did not replicate previous findings in an Arabic digit comparison, in which HMA individuals showed equivalent distance effects to their LMA peers. Lastly, there were no group differences in a counting Stroop task. Altogether, an explanation of math anxiety differences in terms of less precise magnitude representation is not supported.

  9. Promotive and Corrosive Factors in African American Students' Math Beliefs and Achievement.

    Science.gov (United States)

    Diemer, Matthew A; Marchand, Aixa D; McKellar, Sarah E; Malanchuk, Oksana

    2016-06-01

    Framed by expectancy-value theory (which posits that beliefs about and the subjective valuation of a domain predict achievement and decision-making in that domain), this study examined the relationships among teacher differential treatment and relevant math instruction on African American students' self-concept of math ability, math task value, and math achievement. These questions were examined by applying structural equation modeling to 618 African American youth (45.6 % female) followed from 7th to 11th grade in the Maryland Adolescent Development in Context Study. While controlling for gender and prior math achievement, relevant math instruction promoted and teacher differential treatment corroded students' math beliefs and achievement over time. Further, teacher discrimination undermined students' perceptions of their teachers, a mediating process under-examined in previous inquiry. These findings suggest policy and practice levers to narrow opportunity gaps, as well as foster math achievement and science, technology, engineering and math success.

  10. Comments on a derivation and application of the 'maximum entropy production' principle

    International Nuclear Information System (INIS)

    Grinstein, G; Linsker, R

    2007-01-01

    We show that (1) an error invalidates the derivation (Dewar 2005 J. Phys. A: Math. Gen. 38 L371) of the maximum entropy production (MaxEP) principle for systems far from equilibrium, for which the constitutive relations are nonlinear; and (2) the claim (Dewar 2003 J. Phys. A: Math. Gen. 36 631) that the phenomenon of 'self-organized criticality' is a consequence of MaxEP for slowly driven systems is unjustified. (comment)

  11. Geometry of hyperbolic monopoles

    International Nuclear Information System (INIS)

    Nash, C.

    1986-01-01

    The hyperbolic monopoles of Atiyah [M. F. Atiyah, Commun. Math. Phys. 93, 471 (1984); ''Magnetic monopoles in hyperbolic space,'' in Proceedings of the International Colloquium on Vector Bundles (Tata Institute, Bombay, 1984)] and Chakrabarti [A. Chakrabarti, J. Math. Phys. 27, 340 (1986)] are introduced and their geometric properties and relations to instantons and ordinary monopoles clarified. A key tool is the use of the ball model of hyperbolic space to construct and examine solutions

  12. Scattering of charged particles

    International Nuclear Information System (INIS)

    Barrachina, R.O.; Macek, J.H.

    1989-01-01

    Different methods of avoiding the known difficulties of the Coulomb potential scattering theory are reviewed. Mulherin and Zinnes' [J. Math. Phys. 11, 1402 (1976)] ''distorted'' free waves and van Haeringen's [J. Math. Phys. 17, 995 (1976)] Coulomb asymptotic states are considered. The equivalence of both approaches on the energy shell is shown. Actually the possibility of deriving the first method within van Haeringen's formalism by means of a distorted wave procedure is demonstrated

  13. Improving Student Achievement in Math and Science

    Science.gov (United States)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order

  14. Interactions, strings and isotopies in higher order anisotropic superspaces

    CERN Document Server

    Vacaru, Sergiu Ion

    2001-01-01

    The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions, published in J. Math. Phys., Nucl. Phys. B, Ann. Phys. (NY), JHEP, Rep. Math. Phys., Int. J. Theor. Phys. and in some former Soviet Union and Romanian scientific journals. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces with higher order anisotropy and inhomogeneity. The approach proceeds by developing the concept of higher order anisotropic (super)space which unifies the logical and manthematical aspects of modern Kaluza--Klein theories and generalized Lagrange and Finsler geometry and leads to modeling of physical processes on higher order fiber (super)bundles provided with nonlinear and distinguished connections and metric structures. This book can be also considered as a pedagogical survey on the mentioned subjects.

  15. Response to intervention in math

    CERN Document Server

    Riccomini, Paul J

    2010-01-01

    Boost academic achievement for all students in your mathematics classroom! This timely resource leads the way in applying RTI to mathematics instruction. The authors describe how the three tiers can be implemented in specific math areas and illustrate RTI procedures through case studies. Aligned with the NMAP final report and IES practice guide, this book includes: Intervention strategies for number sense, fractions, problem solving, and more Procedures for teaching math using systematic and explicit instruction for assessment, instructional planning, and evaluation Essential components to con

  16. Math Problem

    Science.gov (United States)

    Oguntoyinbo, Lekan

    2012-01-01

    Many experts give the nation's schools a poor grade for their approach to teaching mathematics and for their preparation of mathematics teachers. While many policymakers make much of data that suggest children in the United States lag behind many other advanced countries in math, many experts call for a change in mathematics education,…

  17. Talking Maths

    Science.gov (United States)

    Murray, Jenny

    2006-01-01

    Discussion in maths lessons has always been something encouraged by ATM but can be difficult to initiate for non-specialist and inexperienced teachers who may feel they need material in books to get them going. In this article, the author describes resources aimed at encouraging discussion among primary mathematicians. These resources include: (1)…

  18. The Relationship between Cognitive Reserve and Math Abilities

    Directory of Open Access Journals (Sweden)

    Giorgio Arcara

    2017-12-01

    Full Text Available Cognitive Reserve is the capital of knowledge and experiences that an individual acquires over their life-span. Cognitive Reserve is strictly related to Brain Reserve, which is the ability of the brain to cope with damage. These two concepts could explain many phenomena such as the modality of onset in dementia or the different degree of impairment in cognitive abilities in aging. The aim of this study is to verify the effect of Cognitive Reserve, as measured by a questionnaire, on a variety of numerical abilities (number comprehension, reading and writing numbers, rules and principles, mental calculations and written calculations, in a group of healthy older people (aged 65–98 years. Sixty older individuals were interviewed with the Cognitive Reserve Index questionnaire (CRIq, and assessed with the Numerical Activities of Daily Living battery (NADL, which included formal tasks on math abilities, an informal test on math, one interview with the participant, and one interview with a relative on the perceived math abilities. We also took into account the years of education, as another proxy for Cognitive Reserve. In the multiple regression analyses on all formal tests, CRIq scores did not significantly predict math performance. Other variables, i.e., years of education and Mini-Mental State Examination score, accounted better for math performance on NADL. Only a subsection of CRIq, CRIq-Working-activity, was found to predict performance on a NADL subtest assessing informal use of math in daily life. These results show that education might better explain abstract math functions in late life than other aspects related to Cognitive Reserve, such as lifestyle or occupational attainment.

  19. The Relationship between Cognitive Reserve and Math Abilities.

    Science.gov (United States)

    Arcara, Giorgio; Mondini, Sara; Bisso, Alice; Palmer, Katie; Meneghello, Francesca; Semenza, Carlo

    2017-01-01

    Cognitive Reserve is the capital of knowledge and experiences that an individual acquires over their life-span. Cognitive Reserve is strictly related to Brain Reserve, which is the ability of the brain to cope with damage. These two concepts could explain many phenomena such as the modality of onset in dementia or the different degree of impairment in cognitive abilities in aging. The aim of this study is to verify the effect of Cognitive Reserve, as measured by a questionnaire, on a variety of numerical abilities (number comprehension, reading and writing numbers, rules and principles, mental calculations and written calculations), in a group of healthy older people (aged 65-98 years). Sixty older individuals were interviewed with the Cognitive Reserve Index questionnaire (CRIq), and assessed with the Numerical Activities of Daily Living battery (NADL), which included formal tasks on math abilities, an informal test on math, one interview with the participant, and one interview with a relative on the perceived math abilities. We also took into account the years of education, as another proxy for Cognitive Reserve. In the multiple regression analyses on all formal tests, CRIq scores did not significantly predict math performance. Other variables, i.e., years of education and Mini-Mental State Examination score, accounted better for math performance on NADL. Only a subsection of CRIq, CRIq-Working-activity, was found to predict performance on a NADL subtest assessing informal use of math in daily life. These results show that education might better explain abstract math functions in late life than other aspects related to Cognitive Reserve, such as lifestyle or occupational attainment.

  20. Football to Improve Math and Reading Performance

    Science.gov (United States)

    Van Klaveren, Chris; De Witte, Kristof

    2015-01-01

    Schools frequently increase the instructional time to improve primary school children's math and reading skills. There is, however, little evidence that math and reading skills are effectively improved by these instruction-time increases. This study evaluates "Playing for Success" (PfS), an extended school day program for underachieving…

  1. A DAFT DL_POLY distributed memory adaptation of the Smoothed Particle Mesh Ewald method

    Science.gov (United States)

    Bush, I. J.; Todorov, I. T.; Smith, W.

    2006-09-01

    The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.

  2. Metacognitive awareness and math anxiety in gifted students

    OpenAIRE

    Hakan Sarıcam; Üzeyir Ogurlu

    2015-01-01

    The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students’ metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted) volunteer secondary school students in Turkey. The mean age of the participants was 12.56 years ranging from 12 to 13 years. For gathering data, the Maths Anxiety Scale for Elementary S...

  3. Explaining Math Achievement: Personality, Motivation, and Trust

    Science.gov (United States)

    Kilic-Bebek, Ebru

    2009-01-01

    This study investigated the statistical significance of student trust next to the well-tested constructs of personality and motivation to determine whether trust is a significant predictor of course achievement in college math courses. Participants were 175 students who were taking undergraduate math courses in an urban public university. The…

  4. Penguin Math

    Science.gov (United States)

    Green, Daniel; Kearney, Thomas

    2015-01-01

    Emperor penguins, the largest of all the penguin species, attain heights of nearly four feet and weigh up to 99 pounds. Many students are not motivated to learn mathematics when textbook examples contain largely nonexistent contexts or when the math is not used to solve significant problems found in real life. This article's project explores how…

  5. Identifying U.S. Marine Corps Recruit Characteristics That Correspond to Success in Specific Occupational Fields

    Science.gov (United States)

    2016-06-01

    physical and biological sciences Science/ Technical Arithmetic Reasoning (AR) Ability to solve arithmetic word problems Math Word Knowledge (WK) Ability...Ability to obtain information from written passages Verbal Mathematics Knowledge (MK) Knowledge of high school mathematics principles Math ...Combat Camera 04 Logistics 48 Recruiting and Retention Specialist 05 MAGTF Plans 55 Music 06 Comm 57 CBRN 08 Arty 58 MP 11 Utilities 59 Electronics Maint

  6. Neurocognitive and Behavioral Predictors of Math Performance in Children With and Without ADHD.

    Science.gov (United States)

    Antonini, Tanya N; Kingery, Kathleen M; Narad, Megan E; Langberg, Joshua M; Tamm, Leanne; Epstein, Jeffery N

    2016-02-01

    This study examined neurocognitive and behavioral predictors of math performance in children with and without ADHD. Neurocognitive and behavioral variables were examined as predictors of (a) standardized mathematics achievement scores, (b) productivity on an analog math task, and (c) accuracy on an analog math task. Children with ADHD had lower achievement scores but did not significantly differ from controls on math productivity or accuracy. N-back accuracy and parent-rated attention predicted math achievement. N-back accuracy and observed attention predicted math productivity. Alerting scores on the attentional network task predicted math accuracy. Mediation analyses indicated that n-back accuracy significantly mediated the relationship between diagnostic group and math achievement. Neurocognition, rather than behavior, may account for the deficits in math achievement exhibited by many children with ADHD. © The Author(s) 2013.

  7. Identification et étude phytochimique de plantes utilisées comme ...

    African Journals Online (AJOL)

    La présente étude réalisée sur les plantes diurétiques utilisées au sud Bénin et principalement à Porto-Novo a pour objectif d'identifier et de caractériser les groupes de substances chimiques contenus dans les drogues végétales utilisées comme diurétiques à Porto-Novo, pour le traitement traditionnel ou la prévention du ...

  8. Promoting children's health through physically active math classes: a pilot study.

    Science.gov (United States)

    Erwin, Heather E; Abel, Mark G; Beighle, Aaron; Beets, Michael W

    2011-03-01

    School-based interventions are encouraged to support youth physical activity (PA). Classroom-based PA has been incorporated as one component of school wellness policies. The purpose of this pilot study is to examine the effects of integrating PA with mathematics content on math class and school day PA levels of elementary students. Participants include four teachers and 75 students. Five math classes are taught without PA integration (i.e., baseline) followed by 13 math classes that integrate PA. Students wear pedometers and accelerometers to track PA during math class and throughout the school day. Students perform significantly more PA on school days and in math classes during the intervention. In addition, students perform higher intensity (step min(-1)) PA during PA integration math classes compared with baseline math classes. Integrating PA into the classroom is an effective alternative approach to improving PA levels among youth and is an important component of school-based wellness policies.

  9. News from the Library: Zentralblatt MATH: it's not all about maths

    CERN Multimedia

    CERN Library

    2011-01-01

    The CERN Library provides access to numerous and diverse information services of interest to the CERN community. Among them, Zentralblatt MATH stands out from our offer of online databases.   Zentralblatt MATH covers more than 3 million articles published in about 3500 journals, from 1826 to the present. Most bibliographic records are linked to the online published article. It covers all areas of pure and applied mathematics and also theoretical computer science, mathematical quantum and statistical physics, classical, solid and fluid mechanics, and general relativity and astronomy. Therefore, this database is useful in many disciplines beyond mathematics. It is daily updated and allows advanced search functionalities. Among others things, it includes the content of the Electronic Research Archive for Mathematics, the European Mathematical Information Service, and the Mathematics Preprint Search System. Please note the "Online Ordering" button next to every bibliographic recor...

  10. Remediation of Childhood Math Anxiety and Associated Neural Circuits through Cognitive Tutoring.

    Science.gov (United States)

    Supekar, Kaustubh; Iuculano, Teresa; Chen, Lang; Menon, Vinod

    2015-09-09

    Math anxiety is a negative emotional reaction that is characterized by feelings of stress and anxiety in situations involving mathematical problem solving. High math-anxious individuals tend to avoid situations involving mathematics and are less likely to pursue science, technology, engineering, and math-related careers than those with low math anxiety. Math anxiety during childhood, in particular, has adverse long-term consequences for academic and professional success. Identifying cognitive interventions and brain mechanisms by which math anxiety can be ameliorated in children is therefore critical. Here we investigate whether an intensive 8 week one-to-one cognitive tutoring program designed to improve mathematical skills reduces childhood math anxiety, and we identify the neurobiological mechanisms by which math anxiety can be reduced in affected children. Forty-six children in grade 3, a critical early-onset period for math anxiety, participated in the cognitive tutoring program. High math-anxious children showed a significant reduction in math anxiety after tutoring. Remarkably, tutoring remediated aberrant functional responses and connectivity in emotion-related circuits anchored in the basolateral amygdala. Crucially, children with greater tutoring-induced decreases in amygdala reactivity had larger reductions in math anxiety. Our study demonstrates that sustained exposure to mathematical stimuli can reduce math anxiety and highlights the key role of the amygdala in this process. Our findings are consistent with models of exposure-based therapy for anxiety disorders and have the potential to inform the early treatment of a disability that, if left untreated in childhood, can lead to significant lifelong educational and socioeconomic consequences in affected individuals. Significance statement: Math anxiety during early childhood has adverse long-term consequences for academic and professional success. It is therefore important to identify ways to alleviate

  11. A Solution Space for a System of Null-State Partial Differential Equations: Part 3

    Science.gov (United States)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the third of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE κ ). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban, in Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Extending these results, we prove in this article that dim and entirely consists of (real-valued) solutions constructed with the CFT Coulomb gas (contour integral) formalism. In order to prove this claim, we show that a certain set of C N such solutions is linearly independent. Because the formulas for these solutions are complicated, we prove linear independence indirectly. We use the linear injective map of Lemma 15 in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012) to send each solution of the mentioned set to a vector in , whose components we find as inner products of elements in a Temperley-Lieb algebra. We gather these vectors together as columns of a symmetric matrix, with the form of a meander matrix. If the determinant of this matrix does not vanish, then the set of C N Coulomb gas solutions is linearly independent. And if this determinant does vanish, then we construct an alternative set of C N Coulomb gas solutions and follow a similar procedure to show that this set is linearly independent. The latter situation is closely related to CFT minimal models. We emphasize that, although the system of PDEs arises in CFT in away that is typically non-rigorous, our treatment of this system here and in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404

  12. Minimum-complexity helicopter simulation math model

    Science.gov (United States)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  13. Convergence of Mayer and Virial expansions and the Penrose tree-graph identity

    Science.gov (United States)

    Procacci, Aldo; Yuhjtman, Sergio A.

    2017-01-01

    We establish new lower bounds for the convergence radius of the Mayer series and the Virial series of a continuous particle system interacting via a stable and tempered pair potential. Our bounds considerably improve those given by Penrose (J Math Phys 4:1312, 1963) and Ruelle (Ann Phys 5:109-120, 1963) for the Mayer series and by Lebowitz and Penrose (J Math Phys 7:841-847, 1964) for the Virial series. To get our results, we exploit the tree-graph identity given by Penrose (Statistical mechanics: foundations and applications. Benjamin, New York, 1967) using a new partition scheme based on minimum spanning trees.

  14. Combining Basic Business Math and Electronic Calculators.

    Science.gov (United States)

    Merchant, Ronald

    As a means of alleviating math anxiety among business students and of improving their business machine skills, Spokane Falls Community College offers a course in which basic business math skills are mastered through the use of desk top calculators. The self-paced course, which accommodates varying student skill levels, requires students to: (1)…

  15. Getting Manipulative about Math.

    Science.gov (United States)

    Scheer, Janet K.; And Others

    1984-01-01

    Math manipulatives that are made from inexpensive, common items help students understand basic mathematics concepts. Learning activities using Cheerios, jellybeans, and clay as teaching materials are suggested. (DF)

  16. Limit theorems for random walks on a strip in subdiffusive regimes

    International Nuclear Information System (INIS)

    Dolgopyat, D; Goldsheid, I

    2013-01-01

    We study the asymptotic behaviour of occupation times of a transient random walk (RW) in a quenched random environment (RE) on a strip in a subdiffusive regime. The asymptotic behaviour of hitting times, which is a more traditional object of study, is exactly the same. As a particular case, we solve a long standing problem of describing the asymptotic behaviour of a RW with bounded jumps on a one-dimensional lattice. Our technique results from the development of ideas from our previous work (Dolgopyat and Goldsheid 2012 Commun. Math. Phys. 315 241–77) on the simple RWs in RE and those used in Bolthausen and Goldsheid (2000 Commun. Math. Phys. 214 429–47; 2008 Commun. Math. Phys. 278 253–88) and Goldsheid (2008 Probab. Theory Relat. Fields 141 471–511) for the study of random walks on a strip. (paper)

  17. Squashed Entanglement, k-Extendibility, Quantum Markov Chains, and Recovery Maps

    Science.gov (United States)

    Li, Ke; Winter, Andreas

    2018-02-01

    Squashed entanglement (Christandl and Winter in J. Math. Phys. 45(3):829-840, 2004) is a monogamous entanglement measure, which implies that highly extendible states have small value of the squashed entanglement. Here, invoking a recent inequality for the quantum conditional mutual information (Fawzi and Renner in Commun. Math. Phys. 340(2):575-611, 2015) greatly extended and simplified in various work since, we show the converse, that a small value of squashed entanglement implies that the state is close to a highly extendible state. As a corollary, we establish an alternative proof of the faithfulness of squashed entanglement (Brandão et al. Commun. Math. Phys. 306:805-830, 2011). We briefly discuss the previous and subsequent history of the Fawzi-Renner bound and related conjectures, and close by advertising a potentially far-reaching generalization to universal and functorial recovery maps for the monotonicity of the relative entropy.

  18. Relationship between Affective Dimension and Math Learning

    Directory of Open Access Journals (Sweden)

    Ronny Gamboa Araya

    2014-05-01

    Full Text Available Math has become an obstacle to achieve educational goals for a large number of students; thus it has transcended the academic world and has become a cognitive and emotional impairment.  What students feel, perceive, believe, and how they act directly influences this.  In addition, what teachers feel and perceive, their expectations, beliefs and attitudes towards the discipline also play an important role in how they teach and in the affective dimension of their students.  Based on theoretical aspects from various authors, this paper is aimed at addressing some elements regarding the affective dimension, and at showing elements pertaining to teachers and students, and their relationship with math learning and teaching.  It was concluded that the role of the affective dimension in math learning must be addressed by math educators in order to understand the process from the perspective of the actors associated with it, both students and teachers, as well as to achieve a change in the discipline by improving the beliefs and attitudes of students and teachers.

  19. String-math 2012

    CERN Document Server

    Katz, Sheldon; Klemm, Albrecht; Morrison, David R

    2015-01-01

    This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.

  20. Productive failure in learning math.

    Science.gov (United States)

    Kapur, Manu

    2014-06-01

    When learning a new math concept, should learners be first taught the concept and its associated procedures and then solve problems, or solve problems first even if it leads to failure and then be taught the concept and the procedures? Two randomized-controlled studies found that both methods lead to high levels of procedural knowledge. However, students who engaged in problem solving before being taught demonstrated significantly greater conceptual understanding and ability to transfer to novel problems than those who were taught first. The second study further showed that when given an opportunity to learn from the failed problem-solving attempts of their peers, students outperformed those who were taught first, but not those who engaged in problem solving first. Process findings showed that the number of student-generated solutions significantly predicted learning outcomes. These results challenge the conventional practice of direct instruction to teach new math concepts and procedures, and propose the possibility of learning from one's own failed problem-solving attempts or those of others before receiving instruction as alternatives for better math learning. © 2014 Cognitive Science Society, Inc.

  1. Elementary School Math Instruction: Can Reading Specialists Assist?

    Science.gov (United States)

    Heinrichs, Audrey S.

    1987-01-01

    Discusses the contradictions found in recommendations for direction instruction or informal math language development, and some suggestions for practical resolution of disagreements, to enable school reading specialists to provide both background and practical help to classroom instructors teaching math. (HTH)

  2. L’image comme métaphore de la connaissance du monde postmoderne

    Directory of Open Access Journals (Sweden)

    Fabio La Rocca

    2008-07-01

    Full Text Available À partir de la vision du monde postmoderne oculocentrique, dans le quel l’image devient un élément constitutif de la connaissance, cet article propose une réflexion sur la forme image-métaphore comme instance « monstratrice », dans la tentative d’achever la proposition d’un modèle explicatif de la réalité sociale.

  3. Enhanced learning of proportional math through music training and spatial-temporal training.

    Science.gov (United States)

    Graziano, A B; Peterson, M; Shaw, G L

    1999-03-01

    It was predicted, based on a mathematical model of the cortex, that early music training would enhance spatial-temporal reasoning. We have demonstrated that preschool children given six months of piano keyboard lessons improved dramatically on spatial-temporal reasoning while children in appropriate control groups did not improve. It was then predicted that the enhanced spatial-temporal reasoning from piano keyboard training could lead to enhanced learning of specific math concepts, in particular proportional math, which is notoriously difficult to teach using the usual language-analytic methods. We report here the development of Spatial-Temporal Math Video Game software designed to teach fractions and proportional math, and its strikingly successful use in a study involving 237 second-grade children (age range six years eight months-eight years five months). Furthermore, as predicted, children given piano keyboard training along with the Math Video Game training scored significantly higher on proportional math and fractions than children given a control training along with the Math Video Game. These results were readily measured using the companion Math Video Game Evaluation Program. The training time necessary for children on the Math Video Game is very short, and they rapidly reach a high level of performance. This suggests that, as predicted, we are tapping into fundamental cortical processes of spatial-temporal reasoning. This spatial-temporal approach is easily generalized to teach other math and science concepts in a complementary manner to traditional language-analytic methods, and at a younger age. The neural mechanisms involved in thinking through fractions and proportional math during training with the Math Video Game might be investigated in EEG coherence studies along with priming by specific music.

  4. Learning to Be a Math Teacher: What Knowledge Is Essential?

    Science.gov (United States)

    Reid, Mary; Reid, Steven

    2017-01-01

    This study critically examined the math content knowledge (MCK) of teacher candidates (TCs) enrolled in a two-year Master of Teaching (MT) degree. Teachers require a solid math knowledge base in order to support students' achievement. Provincial and international math assessments have been of major concern in Ontario, Canada, due to declining…

  5. Effects of methylphenidate on acute math performance in children with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Grizenko, Natalie; Cai, Emmy; Jolicoeur, Claude; Ter-Stepanian, Mariam; Joober, Ridha

    2013-11-01

    Examine the short-term (acute) effects of methylphenidate (MPH) on math performance in children with attention-deficit hyperactivity disorder (ADHD) and what factors predict improvement in math performance. One hundred ninety-eight children with ADHD participated in a double-blind, placebo-controlled, randomized crossover MPH trial. Math response to MPH was determined through administration of math problems adjusted to their academic level during the Restricted Academic Situation Scale (RASS). Student t tests were conducted to assess change in math performance with psychostimulants. Correlation between change on the RASS and change on the math performance was also examined. Linear regression was performed to determine predictor variables. Children with ADHD improved significantly in their math with MPH (P math performance on MPH was highly correlated. A child's age at baseline and Wechsler Individual Achievement Test (WIAT)-Numerical Operations standard scores at baseline accounted for 15% of variances for acute math improvement. MPH improves acute math performance in children with ADHD. Younger children with lower math scores (as assessed by the WIAT) improved most on math scores when given psychostimulants. NCT00483106.

  6. Math Academy: Let's Go to the Mall! Explorations in Combinatorics. Book 5: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2008-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Let's Go to the Mall! Explorations in Combinatorics," which teachers can use to enhance…

  7. ShopComm: Community-Supported Online Shopping for Older Adults.

    Science.gov (United States)

    Gorkovenko, Katerina; Tigwell, Garreth W; Norrie, Christopher S; Waite, Miriam; Herron, Daniel

    2017-01-01

    The United Kingdom has an ageing population whose members experience significant life transitions as they grow older, for example, losing mobility due to deteriorating health. For these adults, digital technology has the potential to sustain their independence and improve their quality of life. However older adults can be reluctant to use digital solutions. In this paper, we review a local charity providing a grocery shopping service for older adults who are unable to go themselves. We explore how older adults perceive the benefits and drawbacks of both physical and digital shopping. Using these insights, we designed ShopComm to enable and support older adults with mobility impairments to shop online.

  8. Taking Math Outside of the Classroom: Math in the City

    Science.gov (United States)

    Radu, Petronela

    2013-01-01

    Math in the City is an interdisciplinary mathematics course offered at University of Nebraska-Lincoln in which students engage in a real-world experience to understand current major societal issues of local and national interest. The course is run in collaboration with local businesses, research centers, and government organizations, that provide…

  9. Supporting Early Math--Rationales and Requirements for High Quality Software

    Science.gov (United States)

    Haake, Magnus; Husain, Layla; Gulz, Agneta

    2015-01-01

    There is substantial evidence that preschooler's performance in early math is highly correlated to math performance throughout school as well as academic skills in general. One way to help children attain early math skills is by using targeted educational software and the paper discusses potential gains of using such software to support early math…

  10. Apollinaire et le détournement de l’arsenal militaire : la vitesse comme vecteur amoureux

    Directory of Open Access Journals (Sweden)

    Lionel Cuillé

    2014-12-01

    Full Text Available Le détournement de l’arsenal militaire se comprend à la lumière des spéculations de F.T Marinetti sur la vitesse, notion esthétique fédérant le futurisme italien. Le canon de 75, au service duquel Apollinaire est affecté, fut considéré comme une prouesse technologique dont la vélocité devait permettre une victoire fulgurante contre l’Allemagne. C’est ce vecteur de vitesse qui devient le support d’une nouvelle poétique. Certains Calligrammes se lisent dès lors comme un dispositif grâce auquel le poète-artilleur reconfigure, pour la contester, l’opposition entre l’idéal féminin et la luxure, deux postulations que Marinetti déclare exorciser par la magie de la vitesse.

  11. Attentional bias in high math-anxious individuals: evidence from an emotional Stroop task

    Science.gov (United States)

    Suárez-Pellicioni, Macarena; Núñez-Peña, Maria Isabel; Colomé, Àngels

    2015-01-01

    Attentional bias toward threatening or emotional information is considered a cognitive marker of anxiety, and it has been described in various clinical and subclinical populations. This study used an emotional Stroop task to investigate whether math anxiety is characterized by an attentional bias toward math-related words. Two previous studies failed to observe such an effect in math-anxious individuals, although the authors acknowledged certain methodological limitations that the present study seeks to avoid. Twenty high math-anxious (HMA) and 20 low math-anxious (LMA) individuals were presented with an emotional Stroop task including math-related and neutral words. Participants in the two groups did not differ in trait anxiety or depression. We found that the HMA group showed slower response times to math-related words than to neutral words, as well as a greater attentional bias (math-related – neutral difference score) than the LMA one, which constitutes the first demonstration of an attentional bias toward math-related words in HMA individuals. PMID:26539137

  12. Attentional bias in high math-anxious individuals: evidence from an emotional Stroop task

    Directory of Open Access Journals (Sweden)

    MACARENA eSUÁREZ PELLICIONI

    2015-10-01

    Full Text Available Attentional bias towards threatening or emotional information is considered a cognitive marker of anxiety, and it has been described in various clinical and subclinical populations. This study used an emotional Stroop task to investigate whether math anxiety is characterized by an attentional bias towards math-related words. Two previous studies failed to observe such an effect in math-anxious individuals, although the authors acknowledged certain methodological limitations that the present study seeks to avoid. Twenty high math-anxious (HMA and 20 low math-anxious (LMA individuals were presented with an emotional Stroop task including math-related and neutral words. Participants in the two groups did not differ in trait anxiety or depression. We found that the HMA group showed slower response times to math-related words than to neutral words, as well as a greater attentional bias (math-related – neutral difference score than the LMA one, which constitutes the first demonstration of an attentional bias towards math-related words in HMA individuals.

  13. Math and science illiteracy: Social and economic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.L.

    1994-05-01

    Today`s highly competitive global economy is being driven by increasingly rapid technological development. This paper explores the problems of math and science illiteracy in the United States and the potential impact on our economic survival in this environment during the next century. Established educational methods that reward task performance, emphasize passive lecture, and fail to demonstrate relevance to real life are partly to blame. Social norms, stereotypes, and race and gender bias also have an impact. To address this crisis, we need to question the philosophy of an educational system that values task over concept. Many schools have already initiated programs at all grade levels to make math and science learning more relevant, stimulating, and fun. Teaching methods that integrate math and science learning with teamwork, social context, and other academic subjects promote the development of higher-order thinking skills and help students see math and science as necessary skills.

  14. Are Psychology Students Getting Worse at Math?: Trends in the Math Skills of Psychology Statistics Students across 21 Years

    Science.gov (United States)

    Carpenter, Thomas P.; Kirk, Roger E.

    2017-01-01

    Statistics is an important subject in psychology and social science education. However, inadequate mathematical skills can pose a barrier to learning statistics. Some educators have suggested that students' math skills are declining. The present research examined trends in the math skills of psychology undergraduates across 21 years. Students…

  15. Supporting English Language Learners in Math Class, Grades K-2

    Science.gov (United States)

    Bresser, Rusty; Melanese, Kathy; Sphar, Christine

    2009-01-01

    More than 10 percent of the students in our nation's public schools are English language learners, and this number grows each year. Many of these students are falling behind in math. "Supporting English Language Learners in Math Class, Grades K-2" outlines the challenges ELL students face when learning math and provides a wealth of specific…

  16. Supporting English Language Learners in Math Class, Grades 3-5

    Science.gov (United States)

    Bresser, Rusty; Melanese, Kathy; Sphar, Christine

    2009-01-01

    More than 10 percent of the students in our nation's public schools are English language learners, and this number grows each year. Many of these students are falling behind in math. "Supporting English Language Learners in Math Class, Grades 3-5" outlines the challenges ELL students face when learning math and provides a wealth of specific…

  17. Girls Talk Math - Engaging Girls Through Math Media

    Science.gov (United States)

    Bernardi, Francesca; Morgan, Katrina

    2017-11-01

    ``Girls Talk Math: Engaging Girls through Math Media'' is a free two-week long summer day camp for high-school girls in the Triangle area of NC. This past June the camp had its second run thanks to renewed funding from the Mathematical Association of America Tensor Women and Mathematics Grant. The camp involved 35 local high-school students who identify as female. Campers complete challenging problem sets and research the life of a female scientist who worked on similar problems. They report their work in a blog post and record a podcast about the scientist they researched. The curriculum has been developed by Mathematics graduate students at UNC from an inquiry based learning perspective; problem sets topics include some theoretical mathematics, but also more applied physics-based material. Campers worked on fluid dynamics, special relativity, and quantum mechanics problem sets which included experiments. The camp has received positive feedback from the local community and the second run saw a large increase in the number of participants. The program is evaluated using pre and post surveys, which measure campers' confidence and interest in pursuing higher level courses in STEM. The results from the past two summers have been encouraging. Mathematical Association of America Tensor Women and Mathematics Grant.

  18. Math on MXit: the medium is the message

    CSIR Research Space (South Africa)

    Butgereit, L

    2007-07-01

    Full Text Available Homework is a necessary evil in the path of learning mathematics at school. Mathematics homework is traditionally seen as difficult and boring. In the case of difficult homework, “math clubs” and “math extra lessons” are often perceived as even more...

  19. Math Garden: A new educational and scientific instrument

    NARCIS (Netherlands)

    Straatemeier, M.

    2014-01-01

    This dissertation describes the research concerning the construction of a new educational and scientific instrument. This instrument, Math Garden, is a web application in which children can practice arithmetic by playing math games in which items are tailored to their ability level. At the same

  20. MathSci

    OpenAIRE

    De Robbio, Antonella

    1997-01-01

    This paper shows the prestigious mathematics database MathSci, produced by American Mathematical Society (AMS). It is an indexing resource that deals with the whole literature about mathematics. The subject involved in referred to mathematical sciences and others relating such as Statistics, Information science, Operative research and Mathematics Physics. Moreover it indexes sciences related to applied mathematics such as Astronomy, Astrophysics, Biology, Compartmental Sciences, Thermodyn...

  1. Reduction of quantum systems and the local Gauss law

    Science.gov (United States)

    Stienstra, Ruben; van Suijlekom, Walter D.

    2018-05-01

    We give an operator-algebraic interpretation of the notion of an ideal generated by the unbounded operators associated with the elements of the Lie algebra of a Lie group that implements the symmetries of a quantum system. We use this interpretation to establish a link between Rieffel induction and the implementation of a local Gauss law in lattice gauge theories similar to the method discussed by Kijowski and Rudolph (J Math Phys 43:1796-1808, 2002; J Math Phys 46:032303, 2004).

  2. Restructuring Schools To Be Math Friendly to Females.

    Science.gov (United States)

    Karp, Karen; Shakeshaft, Charol

    1997-01-01

    The gender gap in math Scholastic Aptitude Test scores, attributable to course avoidance, lack of confidence, and unbalanced classroom instruction, can have serious consequences for young women, such as limited university selection, limited career choices, and lower lifetime salaries. Solutions include hiring math specialists, establishing role…

  3. Spinning gas clouds with precession: a new formulation

    International Nuclear Information System (INIS)

    Gaffet, B

    2010-01-01

    We consider Dyson's model (Dyson F J 1968 J. Math. Mech. 18 91) of an ellipsoidally stratified ideal gas cloud expanding adiabatically into a vacuum, in the Liouville integrable case where the gas is monatomic (γ = 5/3) and there is no vorticity (Gaffet B 2001a J. Phys. A: Math. Gen. 34 2097; Paper I). In the cases of rotation about a fixed axis the separation of variables can be achieved, and the separable variables are linearly related to a set of three variables denoted by ρ, R, W (Gaffet B 2001b J. Phys. A: Math. Gen. 34 9195; Paper II). We show in the present work that these variables admit a natural generalization to cases of rotation about a movable axis (precessing motion). The present study is restricted to the consideration of the so-called degenerate cases (see Gaffet B 2006 J. Phys. A: Math. Gen. 39 99; Paper III), but we hope to generalize our results in the future to the non-degenerate ones as well. We also present a new, compact and generally valid formulation of one of the integrals of motion, of the sixth degree in the momenta, denoted by I 6 .

  4. An Integration of Math with Auto Technician Courses

    Science.gov (United States)

    Valenzuela, Hector

    2012-01-01

    This article describes the development of the contextualized math, the course design, student teaching and daily interaction with the students, and the implementation aspects of the research project designed to develop contextualized mathematics and integrate it into the Auto Technician courses. The applied math curriculum was integrated into…

  5. Is there a Causal Effect of High School Math on Labor Market Outcomes?

    DEFF Research Database (Denmark)

    Joensen, Juanna Schrøter; Nielsen, Helena Skyt

    Outsourcing of jobs to low-wage countries has increased the focus onthe accumulation of skills - such as Math skills - in high-wage countries.In this paper, we exploit a high school pilot scheme to identify the causaleffect of advanced high school Math on labor market outcomes. The pilotscheme...... reduced the costs of choosing advanced Math because it allowedfor at more flexible combination of Math with other courses. We findclear evidence of a causal relationship between Math and earnings for thestudents who are induced to choose Math after being exposed to the pilotscheme. The effect partly stems...

  6. Teachers Awareness of Students’ Anxiety in Math Classroom: Teachers’ Treatment VS Students’ Anxiety

    OpenAIRE

    Wanda Nugroho Yanuarto

    2016-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that pr...

  7. Americans Need Advanced Math to Stay Globally Competitive. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    No student who hopes to compete in today's rapidly evolving global economy and job market can afford to graduate from high school with weak mathematical skills, which include the ability to use logic, reason, and solve problems. The benefits associated with improving the math performance of American students also extend to the larger U.S. economy.…

  8. Feedback Design Patterns for Math Online Learning Systems

    Science.gov (United States)

    Inventado, Paul Salvador; Scupelli, Peter; Heffernan, Cristina; Heffernan, Neil

    2017-01-01

    Increasingly, computer-based learning systems are used by educators to facilitate learning. Evaluations of several math learning systems show that they result in significant student learning improvements. Feedback provision is one of the key features in math learning systems that contribute to its success. We have recently been uncovering feedback…

  9. The Effect of Cooperative Groups on Math Anxiety

    Science.gov (United States)

    Batton, Melissa

    2010-01-01

    Research indicates that many students have difficulty with mathematics, which can be attributed to many factors including math anxiety. Students who experience math anxiety have poor attitudes towards mathematics and perform below grade level based on class and statewide assessments. The purpose of this quasi-experimental quantitative study was to…

  10. Strengthening maths learning dispositions through ‘math clubs’

    OpenAIRE

    Mellony Graven

    2016-01-01

    In this paper, I argue that the establishment of after-school mathematics clubs in early grades holds rich potential for supporting the development of increasingly participatory and sense-making maths learning dispositions. Within the South African Numeracy Chair project, lead by the author, multiple after-school mathematics clubs have been set up for learners in Grades 3-6 across Eastern Cape schools. These clubs are a complementary initiative to teacher development, aimed at improving low l...

  11. Singapore Math®. What Works Clearinghouse Intervention Report. Updated December 2015

    Science.gov (United States)

    What Works Clearinghouse, 2015

    2015-01-01

    This report on "Singapore Math®" updates the 2009 WWC review of the curriculum to include seven new studies. Despite the additional research, no studies meet WWC design standards and therefore, no conclusions can be made about the effectiveness of "Singapore Math®." [For the 2009 report, "Singapore Math," see…

  12. Family of electrovac colliding wave solutions of Einstein's equations

    International Nuclear Information System (INIS)

    Li, W.; Ernst, F.J.

    1989-01-01

    Beginning with any colliding wave solution of the vacuum Einstein equations, a corresponding electrified colliding wave solution can be generated through the use of a transformation due to Harrison [J. Math. Phys. 9, 1744 (1968)]. The method, long employed in the context of stationary axisymmetric fields, is equally applicable to colliding wave solutions. Here it is applied to a large family of vacuum metrics derived by applying a generalized Ehlers transformation to solutions published recently by Ernst, Garcia, and Hauser (EGH) [J. Math. Phys. 28, 2155, 2951 (1987); 29, 681 (1988)]. Those EGH solutions were themselves a generalization of solutions first derived by Ferrari, Ibanez, and Bruni [Phys. Rev. D 36, 1053 (1987)]. Among the electrovac solutions that are obtained is a charged version of the Nutku--Halil [Phys. Rev. Lett. 39, 1379 (1977)] metric that possesses an arbitrary complex charge parameter

  13. Why Aren't More Minorities Taking Advanced Math?

    Science.gov (United States)

    Walker, Erica N.

    2007-01-01

    Black and Latino students are still underepresented in upper-level math classes in the United States, a fact which has serious implications for their academic achievement and futures. Walker provides six suggestions for how educators can encourage more black and Latino students to successfully take higher level math courses: (1) Expand our…

  14. Metacognitive Awareness and Math Anxiety in Gifted Students

    Science.gov (United States)

    Saricam, Hakan; Ogurlu, Üzeyir

    2015-01-01

    The basic purpose of this study has been to examine the relationships between metacognitive awareness and maths anxiety in gifted students. The second aim was to compare with gifted and non-gifted students' metacognitive awareness and maths anxiety levels. The participants were 300 (150 gifted, 150 non-gifted) volunteer secondary school students…

  15. A meta-analysis of math performance in Turner syndrome.

    Science.gov (United States)

    Baker, Joseph M; Reiss, Allan L

    2016-02-01

    Studies investigating the relationship between Turner syndrome and math learning disability have used a wide variation of tasks designed to test various aspects of mathematical competencies. Although these studies have revealed much about the math deficits common to Turner syndrome, their diversity makes comparisons between individual studies difficult. As a result, the consistency of outcomes among these diverse measures remains unknown. The overarching aim of this review is to provide a systematic meta-analysis of the differences in math and number performance between females with Turner syndrome and age-matched neurotypical peers. We provide a meta-analysis of behavioral performance in Turner syndrome relative to age-matched neurotypical populations on assessments of math and number aptitude. In total, 112 comparisons collected across 17 studies were included. Although 54% of all statistical comparisons in our analyses failed to reject the null hypothesis, our results indicate that meaningful group differences exist on all comparisons except those that do not require explicit calculation. Taken together, these results help elucidate our current understanding of math and number weaknesses in Turner syndrome, while highlighting specific topics that require further investigation. © 2015 Mac Keith Press.

  16. Abelian Chern endash Simons theory. II. A functional integral approach

    International Nuclear Information System (INIS)

    Manoliu, M.

    1998-01-01

    Following Witten, [Commun. Math. Phys. 21, 351 endash 399 (1989)] we approach the Abelian quantum Chern endash Simons (CS) gauge theory from a Feynman functional integral point of view. We show that for 3-manifolds with and without a boundary the formal functional integral definitions lead to mathematically proper expressions that agree with the results from the rigorous construction [J. Math. Phys. 39, 170 endash 206 (1998)] of the Abelian CS topological quantum field theory via geometric quantization. copyright 1998 American Institute of Physics

  17. The Value of the Math Circle for Gifted Middle School Students

    Science.gov (United States)

    Burns, Barbara; Henry, Julie; McCarthy, Dianne; Tripp, Jennifer

    2017-01-01

    Math Circles are designed to allow students to explore mathematics using a problem-solving/inquiry approach. Many of the students attending our Math Circle are mathematically talented and curious. This study examines the perspectives of the students and their families in determining why students attend Math Circle, what they enjoy about Math…

  18. Integrating Music into Math in a Virtual Reality Game: Learning Fractions

    Science.gov (United States)

    Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng

    2016-01-01

    The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…

  19. The Efficiency of Delone Coverings of the Canonical Tilings MATH {cal T}(*(A_4)) -> T^*(A4) and MATH {cal T}(*(D_6)) -> T^*(D6)

    Science.gov (United States)

    Papadopolos, Zorka; Kasner, Gerald

    This chapter is devoted to the coverings of the two quasiperiodic canonical tilings MATH {cal T}(*(A_4)) -> T^*(A4) and MATH {cal T}(*(D_6)) equiv {cal T}(*(2F)) -> T^*(D6) T^*(2F), obtained by projection from the root lattices A4 and D6, respectively. In the first major part of this chapter, in Sect. 5.2, we shall introduce a Delone covering MATH {cal C}(s_{{cal) T}(*(A_4)}) -> C^sT^*(A4) of the 2-dimensional decagonal tiling MATH {cal T}(*(A_4)) -> T^*(A4). In the second major part of this chapter, Sect. 5.3, we summarize the results related to the Delone covering of the icosahedral tiling MATH {cal T}(*(D_6)) -> T^*(D6), MATH {cal C}_{{cal T}(*(D_6)}) -> CT^*(D6) and determine the zero-, single-, and double- deckings and the resulting thickness of the covering. In the conclusions section, we give some suggestions as to how the definition of the Delone covering might be changed in order to reach some real (full) covering of the icosahedral tiling MATH {cal T}(*(D_6)) -> T^*(D6). In Section 5.2 the definition of the Delone covering is also changed in order to avoid an unnecessary large thickness of the covering.

  20. Math Anxiety in Second and Third Graders and Its Relation to Mathematics Achievement

    OpenAIRE

    Wu, Sarah S.; Barth, Maria; Amin, Hitha; Malcarne, Vanessa; Menon, Vinod

    2012-01-01

    Although the detrimental effects of math anxiety in adults are well understood, few studies have examined how it affects younger children who are beginning to learn math in a formal academic setting. Here, we examine the relationship between math anxiety and math achievement in second and third graders. In response to the need for a grade-appropriate measure of assessing math anxiety in this group we first describe the development of Scale for Early Mathematics Anxiety (SEMA), a new measure f...

  1. The "Parrot Math" Attack on Memorization

    Directory of Open Access Journals (Sweden)

    Bill Quirk

    2013-01-01

    Full Text Available Constructivist math educators regularly cite Parrot Math by Thomas C. O'Brien. Although this paper promotes constructivist "activity-based" learning over direct instruction, it's primary claim to fame is the open hostility to memorization. Professor O'Brien rejects "memorization and parrot-like drill " in favor of "children's invented strategies." He references a paper by Kamii and Dominick as evidence of "considerable research" showing that mastery of the standard algorithms of arithmetic is harmful for children. [See The Bogus Research in Kamii and Dominick's Harmful Algorithms Papers

  2. Teachers Awareness of Students’ Anxiety in Math Classroom: Teachers’ Treatment VS Students’ Anxiety

    Directory of Open Access Journals (Sweden)

    Wanda Nugroho Yanuarto

    2016-08-01

    Full Text Available Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. The purpose of this study is to provide some treatments to overcome students’ anxiety in math classroom at The University of Muhammadiyah Purwokerto, Indonesia especially in Math Department, but before it has attempted to investigate the factors that students’ anxiety can possibly stem from, both within the classroom environment and out of classroom in the wilder social context.

  3. Effects of Online Visual and Interactive Technological Tool (OVITT) on Early Adolescent Students' Mathematics Performance, Math Anxiety and Attitudes toward Math

    Science.gov (United States)

    Orabuchi, Nkechi

    2013-01-01

    This study reported the results of a 3-month quasi-experimental study that determined the effectiveness of an online visual and interactive technological tool on sixth grade students' mathematics performance, math anxiety and attitudes towards math. There were 155 sixth grade students from a middle school in the North Texas area who participated…

  4. The Math Promise: Celebrating at Home and School

    Science.gov (United States)

    Legnard, Danielle; Austin, Susan

    2014-01-01

    The Math Promise is a contract that family members make with one another. They commit to spending mathematical time together; getting to know each other's mathematical thinking and understanding; and finding time to play math games, solve problems, and notice mathematics in their daily lives. Whether parents and children are cooking in the…

  5. Review of Math for Life by Jeffrey Bennett

    Directory of Open Access Journals (Sweden)

    Eric Gaze

    2012-07-01

    Full Text Available Math for Life: Crucial Ideas You Didn’t Learn in School by Jeffrey Bennett is a general interest mathematics book focused on the topic of innumeracy, the mathematics required to be numerate and why quantitative literacy is important for an educated citizenry. This book raises the very important question of why the mathematics we need to navigate our daily world is given such short shrift in our K-12 math education system. Math for Life is directed at multiple constituencies. For those wishing to develop their quantitative literacy, it provides a primer of the crucial topics, explained with compelling examples in an accessible easy-to-read style. For educators, it provides a valuable synopsis of what the math education curriculum should have at its core. I conclude the review with an analysis of the book’s contributions to these varied domains. In particular, I call into question the algebra-centric high school curriculum and explore possible alternatives to the current myopic focus on calculus in our broken mathematics education system.

  6. PhysTrack’: a Matlab based environment for video tracking of kinematics in the physics laboratory

    Science.gov (United States)

    Umar Hassan, Muhammad; Sabieh Anwar, Muhammad

    2017-07-01

    In the past two decades, several computer software tools have been developed to investigate the motion of moving bodies in physics laboratories. In this article we report a Matlab based video tracking library, PhysTrack, primarily designed to investigate kinematics. We compare PhysTrack with other commonly available video tracking tools and outline its salient features. The general methodology of the whole video tracking process is described with a step by step explanation of several functionalities. Furthermore, results of some real physics experiments are also provided to demonstrate the working of the automated video tracking, data extraction, data analysis and presentation tools that come with this development environment. We believe that PhysTrack will be valuable for the large community of physics teachers and students already employing Matlab.

  7. Insecure attachment is associated with math anxiety in middle childhood

    OpenAIRE

    Bosmans, Guy; De Smedt, Bert

    2015-01-01

    Children?s anxiety for situations requiring mathematical problem solving, a concept referred to as math anxiety, has a unique and detrimental impact on concurrent and long-term mathematics achievement and life success. Little is known about the factors that contribute to the emergence of math anxiety. The current study builds on the hypothesis that math anxiety might reflect a maladaptive affect regulation mechanism that is characteristic for insecure attachment relationships. To test this hy...

  8. Where's the Math?

    Science.gov (United States)

    Texas Child Care, 2003

    2003-01-01

    Offers examples of materials and activities that promote and guide math-learning opportunities in all areas of the classroom. Materials and activities relate to: (1) art center; (2) science and discovery center; (3) blocks; (4) library and writing centers; (5) music and movement; (6) manipulatives; (7) dramatic play; (8) outdoor play; and (9)…

  9. Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology

    Science.gov (United States)

    Redish, Edward F.; Kuo, Eric

    2015-01-01

    Mathematics is a critical part of much scientific research. Physics in particular weaves math extensively into its instruction beginning in high school. Despite much research on the learning of both physics and math, the problem of how to effectively include math in physics in a way that reaches most students remains unsolved. In this paper, we…

  10. Is There a Causal Effect of High School Math on Labor Market Outcomes?

    Science.gov (United States)

    Joensen, Juanna Schroter; Nielsen, Helena Skyt

    2009-01-01

    In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear evidence of a causal relationship between math and…

  11. Impact of University Lecturers' Intervention in School MathTeaching

    Indian Academy of Sciences (India)

    Some schools in the neighbourhood of Sefako MakgathoHealth Sciences University (SMU) in South Africa persistentlyyielded poor mathematics results in the past years. Thiswas of concern since maths is the main subject for manyopportunities, including admissiontoSMUstudy programmes.Some SMU maths lecturers ...

  12. Distributional sources for Newman's holomorphic Coulomb field

    International Nuclear Information System (INIS)

    Kaiser, Gerald

    2004-01-01

    Newman (1973 J. Math. Phys. 14 102-3) considered the holomorphic extension E-tilde(z) of the Coulomb field E(x) in R 3 . From an analysis of its multipole expansion, he concluded that the real and imaginary parts E(x+iy)≡Re E-tilde(x+iy), H(x+iy)≡Im E-tilde(x+iy), viewed as functions of x, are the electric and magnetic fields generated by a spinning ring of charge R. This represents the EM part of the Kerr-Newman solution to the Einstein-Maxwell equations (Newman E T and Janis A I 1965 J. Math. Phys. 6 915-7; Newman E T et al 1965 J. Math. Phys. 6 918-9). As already pointed out in Newman and Janis (1965 J. Math. Phys. 6 915-7), this interpretation is somewhat problematic since the fields are double-valued. To make them single-valued, a branch cut must be introduced so that R is replaced by a charged disc D having R as its boundary. In the context of curved spacetime, D becomes a spinning disc of charge and mass representing the singularity of the Kerr-Newman solution. Here we confirm the above interpretation of E and H without resorting to asymptotic expansions, by computing the charge and current densities directly as distributions in R 3 supported in D. This will show that D spins rigidly at the critical rate so that its rim R moves at the speed of light

  13. Math-A-Day A Book of Days for Your Mathematical Year

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    Pappas has come up with yet another way to make math part of your life. MATH -A-DAY is not a calendar and not a reference book, but a compendium of mathematical information that will give you your math fix everyday.Each day -kick starts your brain with a problem or puzzle with detailed solutions includedhas a mathematical quote to inspire the other side of your brainfeatures a historical or current math note on a host of mathematica ideashas its date expressed in another number systemStart off your day with it. · Take it to meetings. · Share it with friends.

  14. Comment on “Theoretical analysis of high-field transport in graphene on a substrate” [J. Appl. Phys. 116, 034507 (2014)

    International Nuclear Information System (INIS)

    Tan, Michael L. P.; Arora, Vijay K.

    2014-01-01

    In a recent article, Serov et al. [J. Appl. Phys. 116, 034507 (2014)] claim: “This study represents the first time that the high-field behavior in graphene on a substrate was investigated taking into account intrinsic graphene properties,” ignoring the most recent anisotropic distribution function [V. K. Arora et al., J. Appl. Phys. 112, 114330 (2012)] also published in J. Appl. Phys., targeting the same experimental data [V. E. Dorgan et al., Appl. Phys. Lett. 97, 082112 (2010)]. The claim of Serov et al. of being first is refuted and many shortcomings of the hydrodynamic model for a highly quantum and degenerate graphene nanolayer are pointed out

  15. Maths4Stats: Educating teachers

    Directory of Open Access Journals (Sweden)

    Renette J. Blignaut

    2013-02-01

    Full Text Available The inadequate nature of the education infrastructure in South Africa has led to poor academic performance at public schools. Problems within schools such as under-qualified teachers and poor teacher performance arise due to the poorly constructed education system in our country. The implementation in 2012 of the Curriculum and Assessment Policy Statement (CAPS at public schools in South Africa saw the further crippling of some teachers, as they were unfamiliar with parts of the CAPS subject content. The Statistics and Population Studies department at the University of the Western Cape was asked to join the Maths4Stats project in 2012. This project was launched by Statistics South Africa in an effort to assist in training the teachers in statistical content within the CAPS Mathematics curricula. The University of the Western Cape’s team would like to share their experience of being part of the Maths4Stats training in the Western Cape. This article focuses on how the training sessions were planned and what the outcomes were. With the knowledge gained from our first Maths4Stats experience, it is recommended that future interventions are still needed to ensure that mathematics teachers become well-informed and confident to teach topics such as data handling, probability and regression analysis.

  16. Is there a Causal Effect of High School Math on Labor Market Outcomes?

    DEFF Research Database (Denmark)

    Joensen, E. Juanna Schröter; Nielsen, Helena Skyt

    2009-01-01

    In this paper, we exploit a high school pilot scheme to identify the causal effect of advanced high school math on labor market outcomes. The pilot scheme reduced the costs of choosing advanced math because it allowed for a more flexible combination of math with other courses. We find clear...... evidence of a causal relationship between math and earnings for students who are induced to choose math after being exposed to the pilot scheme. The effect partly stems from the fact that these students end up with a higher education....

  17. An absence theorem for static wave maps in the Schwarzschild-AdS spacetime

    International Nuclear Information System (INIS)

    Xie Naqing

    2005-01-01

    In this Letter, we obtain an absence theorem for static wave maps defined from the Schwarzschild-anti de Sitter spacetime into any Riemannian manifold. This work extends the results in [Chinese Ann. Math. B 5 (1984) 737, Lett. Math. Phys. 14 (1987) 343

  18. Math Academy: Can You See It in Nature? Explorations in Patterns & Functions. Book 2: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2007-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to students. This booklet contains the "Math Academy--Can You See It in Nature? Explorations in Patterns & Functions," which a teacher can use to…

  19. Preschool acuity of the approximate number system correlates with school math ability.

    Science.gov (United States)

    Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin

    2011-11-01

    Previous research shows a correlation between individual differences in people's school math abilities and the accuracy with which they rapidly and nonverbally approximate how many items are in a scene. This finding is surprising because the Approximate Number System (ANS) underlying numerical estimation is shared with infants and with non-human animals who never acquire formal mathematics. However, it remains unclear whether the link between individual differences in math ability and the ANS depends on formal mathematics instruction. Earlier studies demonstrating this link tested participants only after they had received many years of mathematics education, or assessed participants' ANS acuity using tasks that required additional symbolic or arithmetic processing similar to that required in standardized math tests. To ask whether the ANS and math ability are linked early in life, we measured the ANS acuity of 200 3- to 5-year-old children using a task that did not also require symbol use or arithmetic calculation. We also measured children's math ability and vocabulary size prior to the onset of formal math instruction. We found that children's ANS acuity correlated with their math ability, even when age and verbal skills were controlled for. These findings provide evidence for a relationship between the primitive sense of number and math ability starting early in life. 2011 Blackwell Publishing Ltd.

  20. Classroom Environment, Achievement Goals and Maths Performance: Gender Differences

    Science.gov (United States)

    Gherasim, Loredana Ruxandra; Butnaru, Simona; Mairean, Cornelia

    2013-01-01

    This study investigated how gender shapes the relationships between classroom environment, achievement goals and maths performance. Seventh-grade students ("N"?=?498) from five urban secondary schools filled in achievement goal orientations and classroom environment scales at the beginning of the second semester. Maths performance was…

  1. Social Capital, Information, and Socioeconomic Disparities in Math Coursework

    Science.gov (United States)

    Crosnoe, Robert; Schneider, Barbara

    2011-01-01

    Analysis of the National Education Longitudinal Study revealed that socioeconomically advantaged students persist in high school math at higher rates than their disadvantaged peers, even when they have the same initial placements and skill levels. These disparities are larger among students with prior records of low academic status because students from more privileged backgrounds persist in math coursework even when their prior performance predicts they will not. Among students with low middle school math performance, those from socioeconomically disadvantaged families appear to benefit from having consultants for coursework decisions, so that they make up ground with their socioeconomically advantaged peers. PMID:21743762

  2. Reply to 'Comment on 'Almost-periodic time observables for bound quantum systems''

    International Nuclear Information System (INIS)

    Hall, Michael J W

    2009-01-01

    In a recent paper (Hall 2008 J. Phys. A: Math. Gen. 41 255301), I made several critical remarks on a 'Hermitian time operator' proposed by Galapon (2002 Proc. R. Soc. A 458 2671). Galapon has correctly pointed out that remarks pertaining to 'denseness' of the commutator domain are wrong (Galapon 2008 J. Phys. A: Math. Theor. 42 018001). However, the other remarks still apply, and it is further noted that a given quantum system can be a member of this domain only at a set of times of total measure zero. (reply)

  3. Business Math without Tears.

    Science.gov (United States)

    Merchant, Ronald

    1980-01-01

    Describes a new course at Spokane Falls Community College which builds on and reviews basic business math and electronic calculator skills. Material is self-paced and includes work with metrics. Discusses student evaluation of the course and type of equipment used. (CT)

  4. Determinants of Grades in Maths for Students in Economics

    DEFF Research Database (Denmark)

    Cappellari, Lorenzo; Lucifora, Claudio; Pozzoli, Dario

    attended are signi cantly associated with maths grades. Ceteris paribus, females typically do better than males. Since students can postpone the exam or repeat it when they fail, we also analyze the determinants of the elapsed time to pass the exam using survival analysis. Modeling simultaneously maths...

  5. HeartMath and Ubuntu integral healing approaches for social ...

    African Journals Online (AJOL)

    HeartMath and Ubuntu integral healing approaches for social coherence and physical activity. Stephen D. Edwards. Abstract. This research was motivated by many social health problems confronting planet earth. Its aim is to introduce HeartMath and Ubuntu as complimentary, integral healing approaches for promoting ...

  6. Cognitive and Academic Profiles Associated with Math Disability Subtypes

    Science.gov (United States)

    Kubas, Hanna A.; Schmid, Amy D.; Drefs, Michelle A.; Poole, Jennifer M.; Holland, Sara; Fiorello, Catherine A.

    2014-01-01

    Children with math disabilities (MD) represent a heterogeneous group and often display deficits in one or more cognitive domains. Math proficiency requires a number of different cognitive processes, including quantitative knowledge, working memory, processing speed, fluid reasoning, and executive functions. Assessment practices that do not address…

  7. The Reliability of Randomly Generated Math Curriculum-Based Measurements

    Science.gov (United States)

    Strait, Gerald G.; Smith, Bradley H.; Pender, Carolyn; Malone, Patrick S.; Roberts, Jarod; Hall, John D.

    2015-01-01

    "Curriculum-Based Measurement" (CBM) is a direct method of academic assessment used to screen and evaluate students' skills and monitor their responses to academic instruction and intervention. Interventioncentral.org offers a math worksheet generator at no cost that creates randomly generated "math curriculum-based measures"…

  8. Placing Math Reform: Locating Latino English Learners in Math Classrooms and Communities

    Science.gov (United States)

    Erbstein, Nancy

    2015-01-01

    This article explores how place matters in public school reform efforts intended to promote more equitable opportunities and outcomes. Qualitative case studies of three California middle schools' eighth grade math reforms and the resulting opportunities for Latino English learners are presented, using the conceptual frameworks of critical human…

  9. La science comme pratique d’intégration dans la société des princes. Les Grimaldi de Monaco et la curiosité savante (xviie–xviiie siècle

    Directory of Open Access Journals (Sweden)

    Thomas Fouilleron

    2011-09-01

    Full Text Available Jusque-là seigneur de Monaco, Honoré II (1597-1662 prend, en 1612, le titre de prince. En 1641, il se place sous la protection du roi de France qui confirme, par le traité de Péronne, sa souveraineté. Parallèlement à son effort d’affirmation politique, il s’attache à intégrer la société européenne des princes en adoptant les pratiques culturelles de la distinction monarchique.Souverains à Monaco et grands aristocrates en France, les Grimaldi constituent, au xviie siècle, des cabinets de curiosités. Miroirs de souveraineté, substituts de regalia ou de mirabilia, ces objets rares et précieux publient l’éminence de la dynastie aux yeux des visiteurs de leurs palais, en particulier des voyageurs savants en route vers l’Italie. La qualité de ces derniers en fait des hôtes choyés par les princes. Même si certains, comme le mathématicien Bernouilli ou l’astronome Cassini, n’ont qu’une vision rapide et lointaine de la Principauté, d’autres, comme le géologue Saussure, le naturaliste Millin ou le médecin botaniste Fodéré, usent de leur regard de spécialistes pour décrire les spécificités du petit État dans leur discipline. Certains s’arrêtent, comme le père jésuite Laval, en 1719, pour faire des expérimentations devant le prince Antoine Ier (1661-1731, qui, dans sa bibliothèque, conserve des outils de géométrie. Amateur d’art et esprit éclairé, Jacques Ier (1689-1751 achète, quant à lui, des instruments du cabinet de Bonnier de La Mosson. La provenance prestigieuse de ces objets distingue et sanctionne sa curiosité. À la fin du xviiie siècle, la science devient « utile » et objet de gouvernement. Honoré III (1720-1795 commande des mémoires sur la culture du mûrier. Il fait venir de façon précoce des chevaux anglais pour améliorer la race normande et recourt à l’expertise d’un agronome d’outre-Manche pour mettre en valeur ses terres. À Monaco, il fait évaluer par

  10. Not Just Numbers: Creating a Partnership Climate to Improve Math Proficiency in Schools

    Science.gov (United States)

    Sheldon, Steven B.; Epstein, Joyce L.; Galindo, Claudia L.

    2009-01-01

    Although we know that family involvement is associated with stronger math performance, little is known about what educators are doing to effectively involve families and community members, and whether this measurably improves math achievement at their schools. This study used data from 39 schools to assess the effects of family and community involvement activities on school levels of math achievement. The study found that better implementation of math-related practices of family and community involvement predicted stronger support from parents for schools’ partnership programs, which, in turn, helped estimate the percentage of students scoring proficient on math achievement tests. PMID:20200592

  11. New Tools to Convert PDF Math Contents into Accessible e-Books Efficiently.

    Science.gov (United States)

    Suzuki, Masakazu; Terada, Yugo; Kanahori, Toshihiro; Yamaguchi, Katsuhito

    2015-01-01

    New features in our math-OCR software to convert PDF math contents into accessible e-books are shown. A method for recognizing PDF is thoroughly improved. In addition, contents in any selected area including math formulas in a PDF file can be cut and pasted into a document in various accessible formats, which is automatically recognized and converted into texts and accessible math formulas through this process. Combining it with our authoring tool for a technical document, one can easily produce accessible e-books in various formats such as DAISY, accessible EPUB3, DAISY-like HTML5, Microsoft Word with math objects and so on. Those contents are useful for various print-disabled students ranging from the blind to the dyslexic.

  12. Threats and Supports to Female Students' Math Beliefs and Achievement.

    Science.gov (United States)

    McKellar, Sarah E; Marchand, Aixa D; Diemer, Matthew A; Malanchuk, Oksana; Eccles, Jacquelynne S

    2018-03-23

    This study examines how student perceptions of teacher practices contribute to female high school students' math beliefs and achievement. Guided by the expectancy-value framework, we hypothesized that students' motivation beliefs and achievement outcomes in mathematics are fostered by teachers' emphasis on the relevance of mathematics and constrained by gender-based differential treatment. To examine these questions, structural equation modeling was applied to a longitudinal panel of 518 female students from the Maryland Adolescent Development in Context Study. While controlling for prior achievement and race, gendered differential treatment was negatively associated with math beliefs and achievement, whereas relevant math instruction was positively associated with these outcomes. These findings suggest inroads that may foster positive math motivational beliefs and achievement among young women. © 2018 Society for Research on Adolescence.

  13. Comparing computer adaptive and curriculum-based measures of math in progress monitoring.

    Science.gov (United States)

    Shapiro, Edward S; Dennis, Minyi Shih; Fu, Qiong

    2015-12-01

    The purpose of the study was to compare the use of a Computer Adaptive Test and Curriculum-Based Measurement in the assessment of mathematics. This study also investigated the degree to which slope or rate of change predicted student outcomes on the annual state assessment of mathematics above and beyond scores of single point screening assessments (i.e., the computer adaptive test or the CBM assessment just before the administration of the state assessment). Repeated measurement of mathematics once per month across a 7-month period using a Computer Adaptive Test (STAR-Math) and Curriculum-Based Measurement (CBM, AIMSweb Math Computation, AIMSweb Math Concepts/Applications) was collected for a maximum total of 250 third, fourth, and fifth grade students. Results showed STAR-Math in all 3 grades and AIMSweb Math Concepts/Applications in the third and fifth grades had primarily linear growth patterns in mathematics. AIMSweb Math Computation in all grades and AIMSweb Math Concepts/Applications in Grade 4 had decelerating positive trends. Predictive validity evidence showed the strongest relationships were between STAR-Math and outcomes for third and fourth grade students. The blockwise multiple regression by grade revealed that slopes accounted for only a very small proportion of additional variance above and beyond what was explained by the scores obtained on a single point of assessment just prior to the administration of the state assessment. (c) 2015 APA, all rights reserved).

  14. Visual Attention and Math Performance in Survivors of Childhood Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Richard, Annette E; Hodges, Elise K; Heinrich, Kimberley P

    2018-01-24

    Attentional and academic difficulties, particularly in math, are common in survivors of childhood acute lymphoblastic leukemia (ALL). Of cognitive deficits experienced by survivors of childhood ALL, attention deficits may be particularly responsive to intervention. However, it is unknown whether deficits in particular aspects of attention are associated with deficits in math skills. The current study investigated relationships between math calculation skills, performance on an objective measure of sustained attention, and parent- and teacher-reported attention difficulties. Twenty-four survivors of childhood ALL (Mage = 13.5 years, SD= 2.8 years) completed a computerized measure of sustained attention and response control and a written measure of math calculation skills in the context of a comprehensive clinical neuropsychological evaluation. Parent and teacher ratings of inattention and impulsivity were obtained. Visual response control and visual attention accounted for 26.4% of the variance observed among math performance scores after controlling for IQ (p < .05). Teacher-rated, but not parent-rated, inattention was significantly negatively correlated with math calculation scores. Consistency of responses to visual stimuli on a computerized measure of attention is a unique predictor of variance in math performance among survivors of childhood ALL. Objective testing of visual response control, rather than parent-rated attentional problems, may have clinical utility in identifying ALL survivors at risk for math difficulties. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Compte rendu critique du livre Voir son steak comme un animal mort, de Martin Gibert

    Directory of Open Access Journals (Sweden)

    Drolet, Marie-Josée

    2016-10-01

    Full Text Available This critical review provides, first, a step-by-step synthesis of the arguments presented in each chapter of Martin Gibert’s bookVoir son steak comme un animal mort (Seeing your steak as a dead animal. Second, a critical perspective of the book and a personal reflection are presented.

  16. Assessing the Effect of Language Demand in Bundles of Math Word Problems

    Science.gov (United States)

    Banks, Kathleen; Jeddeeni, Ahmad; Walker, Cindy M.

    2016-01-01

    Differential bundle functioning (DBF) analyses were conducted to determine whether seventh and eighth grade second language learners (SLLs) had lower probabilities of answering bundles of math word problems correctly that had heavy language demands, when compared to non-SLLs of equal math proficiency. Math word problems on each of four test forms…

  17. Girls' math performance under stereotype threat: the moderating role of mothers' gender stereotypes.

    Science.gov (United States)

    Tomasetto, Carlo; Alparone, Francesca Romana; Cadinu, Mara

    2011-07-01

    Previous research on stereotype threat in children suggests that making gender identity salient disrupts girls' math performance at as early as 5 to 7 years of age. The present study (n = 124) tested the hypothesis that parents' endorsement of gender stereotypes about math moderates girls' susceptibility to stereotype threat. Results confirmed that stereotype threat impaired girls' performance on math tasks among students from kindergarten through 2nd grade. Moreover, mothers' but not fathers' endorsement of gender stereotypes about math moderated girls' vulnerability to stereotype threat: performance of girls whose mothers strongly rejected the gender stereotype about math did not decrease under stereotype threat. These findings are important because they point to the role of mothers' beliefs in the development of girls' vulnerability to the negative effects of gender stereotypes about math. PsycINFO Database Record (c) 2011 APA, all rights reserved

  18. Math anxiety and its relationship with basic arithmetic skills among primary school children

    OpenAIRE

    Sorvo, Riikka; Koponen, Tuire; Viholainen, Helena; Aro, Tuija; Räikkönen, Eija; Peura, Pilvi; Dowker, Ann; Aro, Mikko

    2017-01-01

    Background Children have been found to report and demonstrate math anxiety as early as the first grade. However, previous results concerning the relationship between math anxiety and performance are contradictory, with some studies establishing a correlation between them while others do not. These contradictory results might be related to varying operationalizations of math anxiety. Aims In this study, we aimed to examine the prevalence of math anxiety and its relationship with bas...

  19. Confining strings revisited - a short comment

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2000-03-01

    We show that Polyakov's confining string Nucl. Phys. B486, (1997) 23, is the author's previously proposed self-avoiding extrinsic strings (Luiz C.L. Botelho), Rev. Bras. Fis. 16, 279, (1986); CALTECH-preprint 68, 1444, (1987); J. Math. Phys. 30 (9), (1989), 2160). (author)

  20. Quantum mechanics of yr and non-yr -symmetric potentials in three ...

    Indian Academy of Sciences (India)

    2016-06-17

    Jun 17, 2016 ... the path integral method have drawn peculiar interest in laser physics [10]. ...... [6] C M Bender, S Boettcher and P N Meisinger, J. Math. Phys. 40, 2201 (1999) ... D R Nelson and N M Snerb, Phys. Rev. E 58, 1383 (1998).

  1. Experiences of Visually Impaired Students in Community College Math Courses

    Science.gov (United States)

    Swan, S. Tomeka

    Blind and visually impaired students who attend community colleges face challenges in learning mathematics (Forrest, 2010). Scoy, McLaughlin, Walls, and Zuppuhaur (2006) claim these students are at a disadvantage in studying mathematics due to the visual and interactive nature of the subject, and by the way mathematics is taught. In this qualitative study six blind and visually impaired students attended three community colleges in one Mid-Atlantic state. They shared their experiences inside the mathematics classroom. Five of the students were enrolled in developmental level math, and one student was enrolled in college level math. The conceptual framework used to explore how blind and visually impaired students persist and succeed in math courses was Piaget's theory on constructivism. The data from this qualitative study was obtained through personal interviews. Based on the findings of this study, blind and visually impaired students need the following accommodations in order to succeed in community college math courses: Accommodating instructors who help to keep blind and visually impaired students motivated and facilitate their academic progress towards math completion, tutorial support, assistive technology, and a positive and inclusive learning environment.

  2. Contact dynamics math model

    Science.gov (United States)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  3. Conservation Abilities, Visuospatial Skills, and Numerosity Processing Speed: Association With Math Achievement and Math Difficulties in Elementary School Children.

    Science.gov (United States)

    Lambert, Katharina; Spinath, Birgit

    The aim of the present study was to investigate the associations between elementary school children's mathematical achievement and their conservation abilities, visuospatial skills, and numerosity processing speed. We also assessed differences in these abilities between children with different types of learning problems. In Study 1 ( N = 229), we investigated second to fourth graders and in Study 2 ( N = 120), third and fourth graders. Analyses revealed significant contributions of numerosity processing speed and visuospatial skills to math achievement beyond IQ. Conservation abilities were predictive in Study 1 only. Children with math difficulties showed lower visuospatial skills and conservation abilities than children with typical achievement levels and children with reading and/or spelling difficulties, whereas children with combined difficulties explicitly showed low conservation abilities. These findings provide further evidence for the relations between children's math skills and their visuospatial skills, conservation abilities, and processing speed and contribute to the understanding of deficits that are specific to mathematical difficulties.

  4. Math Game(s) - an alternative (approach) to teaching math?

    OpenAIRE

    Ruttkay, Z.M.; Eliens, A.P.W.; Breitlauch, L.

    2009-01-01

    Getting students to read, digest and practice material is difficult in any discipline, but even more so for math, since many students have to cope with motivational problems and feelings of inadequacy, often due to prior unsuccesful training and teaching methods. In this paper we look at the opportunities offered by computer graphics, visual programming and game design as an alternative for traditional methods of teaching mathemathics. In particular, games may be deployed both as intruments to d...

  5. Kac's question, planar isospectral pairs and involutions in projective space: II. Classification of generalized projective isospectral data

    International Nuclear Information System (INIS)

    Thas, Koen

    2006-01-01

    In Am. Math. Monthly (73 1-23 (1966)), Kac asked his famous question 'Can one hear the shape of a drum?', which was eventually answered negatively in Gordon et al (1992 Invent. Math. 110 1-22) by construction of planar isospectral pairs. Giraud (2005 J. Phys. A: Math. Gen. 38 L477-83) observed that most of the known examples can be generated from solutions of a certain equation which involves a set of involutions of an n-dimensional projective space over some finite field. He then generated all possible solutions for n = 2, when the involutions fix the same number of points. In Thas (2006 J. Phys. A: Math. Gen. 39 L385-8) we showed that no other examples arise for any other dimension, still assuming that the involutions fix the same number of points. In this paper we study the problem for involutions not necessarily fixing the same number of points, and solve the problem completely

  6. Do high school students with different styles have different level of math anxiety?

    OpenAIRE

    Shirvani, Hosin; Guerra, Federico

    2015-01-01

    This study included 240 mostly Hispanic students from one high school. The study used a learning style survey and a math anxiety survey to find students’ learning styles and level of math anxiety. The study examined whether students with three learning styles (auditory, visual, and kinesthetic) had a different level of math anxiety. The study found that children with kinesthetic learning style had higher math anxiety than the other two types. The study also examined whether there were differe...

  7. Enjoying mathematics or feeling competent in mathematics? Reciprocal effects on mathematics achievement and perceived math effort expenditure.

    Science.gov (United States)

    Pinxten, Maarten; Marsh, Herbert W; De Fraine, Bieke; Van Den Noortgate, Wim; Van Damme, Jan

    2014-03-01

    The multidimensionality of the academic self-concept in terms of domain specificity has been well established in previous studies, whereas its multidimensionality in terms of motivational functions (the so-called affect-competence separation) needs further examination. This study aims at exploring differential effects of enjoyment and competence beliefs on two external validity criteria in the field of mathematics. Data analysed in this study were part of a large-scale longitudinal research project. Following a five-wave design, math enjoyment, math competence beliefs, math achievement, and perceived math effort expenditure measures were repeatedly collected from a cohort of 4,724 pupils in Grades 3-7. Confirmatory factor analysis (CFA) was used to test the internal factor structure of the math self-concept. Additionally, a series of nested models was tested using structural equation modelling to examine longitudinal reciprocal interrelations between math competence beliefs and math enjoyment on the one hand and math achievement and perceived math effort expenditure on the other. Our results showed that CFA models with separate factors for math enjoyment and math competence beliefs fit the data substantially better than models without it. Furthermore, differential relationships between both constructs and the two educational outcomes were observed. Math competence beliefs had positive effects on math achievement and negative effects on perceived math effort expenditure. Math enjoyment had (mild) positive effects on subsequent perceived effort expenditure and math competence beliefs. This study provides further support for the affect-competence separation. Theoretical issues regarding adequate conceptualization and practical consequences for practitioners are discussed. © 2013 The British Psychological Society.

  8. Shall we introduce narrative investigation practices in math teaching?

    Directory of Open Access Journals (Sweden)

    Rosália Maria Ribeiro de Aragão

    2005-06-01

    Full Text Available This is a discussion of epistemological, methodological and theoretical elements of research in current Math Education and that of the teacher-reflective-researcher practice in contemporary society. The objectives of such discussion are: a to introduce basic notions to understand the relation between researcher and the object of investigation; and b to direct Math teachers to undertake research from the very beginning of their trawling. In order to achieve research goals, teachers in trainning can both study classroom dynamics through the testimony of the students as well as analyze meanings in practices of narrative investigation. It is recommended that such practices are incorporated to daily Math teaching and learning processes

  9. Matrix biorthogonal polynomials on the unit circle and non-Abelian Ablowitz-Ladik hierarchy

    International Nuclear Information System (INIS)

    Cafasso, Mattia

    2009-01-01

    Adler and van Moerbeke (2001 Commun. Pure Appl. Math. 54 153-205) described a reduction of the 2D-Toda hierarchy called the Toeplitz lattice. This hierarchy turns out to be equivalent to the one originally described by Ablowitz and Ladik (1975 J. Math. Phys. 16 598-603) using semidiscrete zero- curvature equations. In this paper, we obtain the original semidiscrete zero-curvature equations starting directly from the Toeplitz lattice and we generalize these computations to the matrix case. This generalization leads us to the semidiscrete zero-curvature equations for the non-Abelian (or multicomponent) version of the Ablowitz-Ladik equations (Gerdzhikov and Ivanov 1982 Theor. Math. Phys. 52 676-85). In this way, we extend the link between biorthogonal polynomials on the unit circle and the Ablowitz-Ladik hierarchy to the matrix case.

  10. Retraction: On the origin of power-law distributions in systems with constrained phase space [Condens. Matter Phys., 2013, vol. 16, 43802

    Directory of Open Access Journals (Sweden)

    Editorial Board

    2014-03-01

    Full Text Available The article Condens. Matter Phys., 2013, vol. 16, 43802 ( DOI:10.5488/CMP.16.43802 has been retracted by the decision of the Editorial Board. There is a significant overlap with an article: Phys. Rev. E, 2006, vol. 74, 036120 ( DOI:10.1103/PhysRevE.74.036120. Appologies are offered to readers of the journal that this was not detected during the submission process.

  11. Essential math and calculations for pharmacy technicians

    CERN Document Server

    Reddy, Indra K

    2003-01-01

    Working with Roman and Arabic NumeralsUsing Fractions and Decimals in Pharmacy MathUsing Ratios, Proportions and Percentages in Dosage CalculationsApplying Systems of MeasurementsInterpreting Medication OrdersIdentifying Prescription Errors and OmissionsWorking with Liquid Dosage FormsWorking with Solid Dosage FormsAdjusting IsotonicityWorking with Buffer and Ionization ValuesDealing with ReconstitutionsDetermining Milliequivalent StrengthsCalculating Caloric Values Determining IV Flow RatesWorking with Insulin and Heparin ProductsAppendices: A: Working with Temperature ConversionsB: Working with Capsule Dosage FormsC: Dealing with Pediatric Dosages D: Understanding Essential Business Math.

  12. Language, reading, and math learning profiles in an epidemiological sample of school age children.

    Science.gov (United States)

    Archibald, Lisa M D; Oram Cardy, Janis; Joanisse, Marc F; Ansari, Daniel

    2013-01-01

    Dyscalculia, dyslexia, and specific language impairment (SLI) are relatively specific developmental learning disabilities in math, reading, and oral language, respectively, that occur in the context of average intellectual capacity and adequate environmental opportunities. Past research has been dominated by studies focused on single impairments despite the widespread recognition that overlapping and comorbid deficits are common. The present study took an epidemiological approach to study the learning profiles of a large school age sample in language, reading, and math. Both general learning profiles reflecting good or poor performance across measures and specific learning profiles involving either weak language, weak reading, weak math, or weak math and reading were observed. These latter four profiles characterized 70% of children with some evidence of a learning disability. Low scores in phonological short-term memory characterized clusters with a language-based weakness whereas low or variable phonological awareness was associated with the reading (but not language-based) weaknesses. The low math only group did not show these phonological deficits. These findings may suggest different etiologies for language-based deficits in language, reading, and math, reading-related impairments in reading and math, and isolated math disabilities.

  13. Language, reading, and math learning profiles in an epidemiological sample of school age children.

    Directory of Open Access Journals (Sweden)

    Lisa M D Archibald

    Full Text Available Dyscalculia, dyslexia, and specific language impairment (SLI are relatively specific developmental learning disabilities in math, reading, and oral language, respectively, that occur in the context of average intellectual capacity and adequate environmental opportunities. Past research has been dominated by studies focused on single impairments despite the widespread recognition that overlapping and comorbid deficits are common. The present study took an epidemiological approach to study the learning profiles of a large school age sample in language, reading, and math. Both general learning profiles reflecting good or poor performance across measures and specific learning profiles involving either weak language, weak reading, weak math, or weak math and reading were observed. These latter four profiles characterized 70% of children with some evidence of a learning disability. Low scores in phonological short-term memory characterized clusters with a language-based weakness whereas low or variable phonological awareness was associated with the reading (but not language-based weaknesses. The low math only group did not show these phonological deficits. These findings may suggest different etiologies for language-based deficits in language, reading, and math, reading-related impairments in reading and math, and isolated math disabilities.

  14. Impact of Delivery Modality, Student GPA, and Time-Lapse since High School on Successful Completion of College-Level Math after Taking Developmental Math

    Science.gov (United States)

    Acosta, Diane; North, Teresa Lynn; Avella, John

    2016-01-01

    This study considered whether delivery modality, student GPA, or time since high school affected whether 290 students who had completed a developmental math series as a community college were able to successfully complete college-level math. The data used in the study was comprised of a 4-year period historical student data from Odessa College…

  15. Evaluating Number Sense in Community College Developmental Math Students

    Science.gov (United States)

    Steinke, Dorothea A.

    2017-01-01

    Community college developmental math students (N = 657) from three math levels were asked to place five whole numbers on a line that had only endpoints 0 and 20 marked. How the students placed the numbers revealed the same three stages of behavior that Steffe and Cobb (1988) documented in determining young children's number sense. 23% of the…

  16. Remediation of Math Anxiety in Preservice Elementary School Teachers

    Science.gov (United States)

    Dunkle, Susan M.

    2010-01-01

    The purpose of this study was to measure the level of math anxiety in preservice elementary teachers, and then to determine if remediation methods would lower the measured level of anxiety in these same preservice teachers. The 10-day study provided an intense remediation using a time-series design to measure change on the Revised Math Anxiety…

  17. Math and Science Gateways to California's Fastest Growing Careers

    Science.gov (United States)

    EdSource, 2008

    2008-01-01

    Some students--and parents--think math and science are not too important for their future. As everyday life becomes more dependent on technology, most people will need a better background in math and science to succeed in today's global economy. To get high-paying jobs in some of California's fastest-growing occupations, a strong background in…

  18. A longitudinal analysis of sex differences in math and spatial skills in primary school age children☆

    Science.gov (United States)

    Lachance, Jennifer A.; Mazzocco, Michèle M.M.

    2009-01-01

    We report on a longitudinal study designed to assess possible sex differences in math achievement, math ability, and math-related tasks during the primary school age years. Participants included over 200 children from one public school district. Annual assessments included measures of math ability, math calculation achievement scores, rapid naming and decoding tasks, visual perception tests, visual motor tasks, and reading skills. During select years of the study we also administered tests of counting and math facts skills. We examined whether girls or boys were overrepresented among the bottom or top performers on any of these tasks, relative to their peers, and whether growth rates or predictors of math-related skills differed for boys and girls. Our findings support the notion that sex differences in math are minimal or nonexistent on standardized psychometric tests routinely given in assessments of primary school age children. There was no persistent finding suggesting a male or female advantage in math performance overall, during any single year of the study, or in any one area of math or spatial skills. Growth rates for all skills, and early correlates of later math performance, were comparable for boys and girls. The findings fail to support either persistent or emerging sex differences on non-specialized math ability measures during the primary school age years. PMID:20463851

  19. Maintaining Students’ Involvement in a Math Lecture Using Countdown Timers

    Directory of Open Access Journals (Sweden)

    Ann Krizzel A. Aban

    2015-12-01

    Full Text Available Involving students in a lecture is an important but not an easy task that every lecturer must encourage. This task becomes even greater in a math class that is composed of eighty to a hundred sixty students. In 2007, the University of the Philippines Los Baños (UPLB started offering some of its basic math courses in lecture-recitation set-up. This shift and many other factors drove most math instructors of UPLB to widely use presentation software, such as the PowerPoint (PPT, to deliver their lectures. The non-stop use of these softwares, however, seems to have negative effects on the students when it comes to maintaining their involvement in a lecture discussion for they tend to be more passive spectators. On the other hand, adding countdown timers strategically on some parts of the discussion seems to lessen such negative effects. This study determined the effectiveness of using countdown timers in maintaining students’ involvement in a lecture of MATH 27 (Analytic Geometry and Calculus II, a course in UPLB commonly taken by sophomore students. Results show that the effectiveness of countdown timers, as perceived by the students, is independent to students’ genders and degree programs, but is dependent to the colleges where the students belong to. Also, some effects of countdown timers are significantly correlated to various data from students’ profiles. It was concluded in the study that the use of countdown timers is effective in maintaining student’s involvement in MATH 27 lectures and might also be useful in other math lecture classes

  20. Multi-User GeoGebra for Virtual Math Teams

    Directory of Open Access Journals (Sweden)

    Gerry Stahl

    2010-05-01

    Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams to discuss mathematics. The VMT collaboration environment now includes the dynamic mathematics application, GeoGebra. It offers a multi-user version of GeoGebra, which can be used in concert with VMT’s chat, web browsers, curricula and wiki repository.

  1. Quantum chaos on discrete graphs

    International Nuclear Information System (INIS)

    Smilansky, Uzy

    2007-01-01

    Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)

  2. Cognitive Prediction of Reading, Math, and Attention: Shared and Unique Influences.

    Science.gov (United States)

    Peterson, Robin L; Boada, Richard; McGrath, Lauren M; Willcutt, Erik G; Olson, Richard K; Pennington, Bruce F

    The current study tested a multiple-cognitive predictor model of word reading, math ability, and attention in a community-based sample of twins ages 8 to 16 years ( N = 636). The objective was to identify cognitive predictors unique to each skill domain as well as cognitive predictors shared among skills that could help explain their overlap and thus help illuminate the basis for comorbidity of related disorders (reading disability, math disability, and attention deficit hyperactivity disorder). Results indicated that processing speed contributes to the overlap between reading and attention as well as math and attention, whereas verbal comprehension contributes to the overlap between reading and math. There was no evidence that executive functioning skills help account for covariation among these skill domains. Instead, specific executive functions differentially related to certain outcomes (i.e., working memory to math and inhibition to attention). We explored whether the model varied in younger versus older children and found only minor differences. Results are interpreted within the context of the multiple deficit framework for neurodevelopmental disorders.

  3. Impaired math achievement in patients with acute vestibular neuritis.

    Science.gov (United States)

    Moser, Ivan; Vibert, Dominique; Caversaccio, Marco D; Mast, Fred W

    2017-12-01

    Broad cognitive difficulties have been reported in patients with peripheral vestibular deficit, especially in the domain of spatial cognition. Processing and manipulating numbers relies on the ability to use the inherent spatial features of numbers. It is thus conceivable that patients with acute peripheral vestibular deficit show impaired numerical cognition. Using the number Stroop task and a short math achievement test, we tested 20 patients with acute vestibular neuritis and 20 healthy, age-matched controls. On the one hand, patients showed normal congruency and distance effects in the number Stroop task, which is indicative of normal number magnitude processing. On the other hand, patients scored lower than healthy controls in the math achievement test. We provide evidence that the lower performance cannot be explained by either differences in prior math knowledge (i.e., education) or slower processing speed. Our results suggest that peripheral vestibular deficit negatively affects numerical cognition in terms of the efficient manipulation of numbers. We discuss the role of executive functions in math performance and argue that previously reported executive deficits in patients with peripheral vestibular deficit provide a plausible explanation for the lower math achievement scores. In light of the handicapping effects of impaired numerical cognition in daily living, it is crucial to further investigate the mechanisms that cause mathematical deficits in acute PVD and eventually develop adequate means for cognitive interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Spectroscopy of annular drums and quantum rings: Perturbative and nonperturbative results

    International Nuclear Information System (INIS)

    Alvarado, Carlos; Amore, Paolo

    2011-01-01

    We obtain systematic approximations to the states (energies and wave functions) of quantum rings (annular drums) of arbitrary shape by conformally mapping the annular domain to a simply connected domain. Extending the general results of Amore [J. Math. Phys. 51, 052105 (2010)], we obtain an analytical formula for the spectrum of quantum ring of arbitrary shape: for the cases of a circular annulus and of an asymmetric annulus considered here this formula is remarkably simple and precise. We also obtain precise variational bounds for the ground state of different quantum rings. Finally, we extend the conformal collocation method of Amore [J. Math. Phys. 51, 052105 (2010); J. Phys. A 41, 265206 (2008)] to the class of problems considered here and calculate precise numerical solutions for a large number of states (≅2000).

  5. Euler polynomials and identities for non-commutative operators

    Science.gov (United States)

    De Angelis, Valerio; Vignat, Christophe

    2015-12-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.

  6. Macro-méthodologie et didactique des mathématiques

    OpenAIRE

    Fluckiger, Annick

    2017-01-01

    La didactique des mathématiques née, dans les années soixante, d’une réflexion menée sur les moyens d’améliorer l’enseignement des mathématiques, a eu l’ambition de se constituer en science (science des conditions spécifiques de la diffusion des connaissances mathématiques utiles au fonctionnement des institutions humaines selon Brousseau). Elle a alors été amenée à se doter de moyens d’études appropriés pour englober l’ensemble des recherches sur la diffusion des connaissances. La diversific...

  7. Das habt ihr schon im Mathe gelernt! Stimmt das wirklich?

    DEFF Research Database (Denmark)

    Avelar Sotomaior Karam, Ricardo; Uhden, Olaf; Höttecke, Dietmar

    2016-01-01

    Mathematics is widely considered to be a prerequisite for learning physics. However, it is quite naive to believe that learning basic math is sufficient to use mathematics as a reasoning tool to think about the physical world. The main reason is that using mathematics in physics is substantially...... different than in math. In this paper we show how the way physicists make use of some basic mathematical concepts (e.g. multiplication, division and functions) is specific to physics by identifying their historical genesis and contrasting with the way these concepts are usually taught in math lessons. We...

  8. MATH: A Scientific Tool for Numerical Methods Calculation and Visualization

    Directory of Open Access Journals (Sweden)

    Henrich Glaser-Opitz

    2016-02-01

    Full Text Available MATH is an easy to use application for various numerical methods calculations with graphical user interface and integrated plotting tool written in Qt with extensive use of Qwt library for plotting options and use of Gsl and MuParser libraries as a numerical and parser helping libraries. It can be found at http://sourceforge.net/projects/nummath. MATH is a convenient tool for use in education process because of its capability of showing every important step in solution process to better understand how it is done. MATH also enables fast comparison of similar method speed and precision.

  9. The Groove of Growth: How Early Gains in Math Ability Influence Adolescent Achievement

    Science.gov (United States)

    Watts, Tyler W.; Duncan, Greg J.; Siegler, Robert S.; Davis-Kean, Pamela E.

    2014-01-01

    A number of studies, both small scale and of nationally-representative student samples, have reported substantial associations between school entry math ability and later elementary school achievement. However, questions remain regarding the persistence of the association between early growth in math ability and later math achievement due to the…

  10. 77 FR 37016 - Applications for New Awards: Upward Bound Math and Science Program

    Science.gov (United States)

    2012-06-20

    ... DEPARTMENT OF EDUCATION Applications for New Awards: Upward Bound Math and Science Program AGENCY... Bound Math and Science Program. Notice inviting applications for new awards for fiscal year (FY) 2012.... There are three types of grants under the UB Program: regular UB grants, Veterans UB grants, and UB Math...

  11. On relativistic irreducible quantum fields fulfilling CCR

    International Nuclear Information System (INIS)

    Baumann, K.

    1987-01-01

    Let phi be a relativistic scalar field fulfilling canonical commutation relations (CCR). Furthermore it is assumed that the time zero fields and momenta form an irreducible set. Based on estimates given by Herbst [I. W. Herbst, J. Math. Phys. 17, 1210 (1976)], and by methods developed by Powers [R. T. Powers, Commun. Math. Phys. 4, 145 (1967)], it is shown that phi has to be a free field in n>3 space dimensions. For n = 3 (resp. n = 2) restrictions that look similar to the restriction in a formal :phi 4 : 3 /sub +/ 1 (resp. :phi 6 : 2 /sub +/ 1 ) theory are obtained

  12. Quantum synchronization of the Schrödinger–Lohe model

    International Nuclear Information System (INIS)

    Choi, Sun-Ho; Ha, Seung-Yeal

    2014-01-01

    We present a quantum synchronization estimate of the Schrödinger–Lohe (S–L) model introduced by Lohe (2010 J. Phys. A: Math. Theor. 43 465301). The S–L model describes the dynamics of quantum oscillators on the nodes of a quantum network. When the coupling strength is positive and the maximal L 2 distances between normalized initial wave functions are smaller than (1/2), we show that the L 2 distances between wave functions converge to zero exponentially fast. Our result generalizes earlier work by Chi et al (2014 J. Math. Phys. 55 052703) for the Lohe model. (paper)

  13. Sub-exponential mixing of random billiards driven by thermostats

    International Nuclear Information System (INIS)

    Yarmola, Tatiana

    2013-01-01

    We study the class of open continuous-time mechanical particle systems introduced in the paper by Khanin and Yarmola (2013 Commun. Math. Phys. 320 121–47). Using the discrete-time results from Khanin and Yarmola (2013 Commun. Math. Phys. 320 121–47) we demonstrate rigorously that, in continuous time, a unique steady state exists and is sub-exponentially mixing. Moreover, all initial distributions converge to the steady state and, for a large class of initial distributions, convergence to the steady state is sub-exponential. The main obstacle to exponential convergence is the existence of slow particles in the system. (paper)

  14. The three-box paradox revisited

    International Nuclear Information System (INIS)

    Ravon, Tamar; Vaidman, Lev

    2007-01-01

    The classical three-box paradox of Kirkpatrick (2003 J. Phys. A: Math. Gen. 36 4891) is compared to the original quantum three-box paradox of Aharonov and Vaidman (1991 J. Phys. A: Math. Gen. 24 2315). It is argued that the quantum three-box experiment is a 'quantum paradox' in the sense that it is an example of a classical task which cannot be accomplished using classical means, but can be accomplished using quantum devices. It is shown that Kirkpatrick's card game is analogous to a different game with a particle in three boxes which does not contain paradoxical features

  15. Financial Statement Math

    OpenAIRE

    2007-01-01

    game tool Game Tool Interactive Media Element The purpose of this interactive exercise is to help you understand the math in the income statement and balance sheet., Give the proper mathematical computations in order to correctly prepare the income statement and the balance sheet.The exercise is divided into 3 parts: The income Statement, The Balance Sheet - Assets, The Balance Sheet - Liabilities, GB3050 Financial Reporting and Analysis

  16. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory,…

  17. An Investigation on Elementary School Students' Level of Math Learning, Using Math E-Books (A Case Study: Pishtazan Computer Primary School, 4th Zone of Tehran

    Directory of Open Access Journals (Sweden)

    Arezoo Naseri

    2016-11-01

    Full Text Available Since the focus on technology exists in all schools and classes, teachers need to know how to apply it in their teaching practices. The use of ICT in education is an undeniable necessity. Since the use of information and communication technology can smooth the paths of teaching-learning process for students, the researchers in this study tried to apply one of the information and communication technology tools, called electronic books (E-books in teaching math. The aim of this study is to examine elementary school students' level of math learning, using math e-books with the focus on teaching multiplication (Case Study: Pishtazan computer primary school, the 4th zone of Tehran. Using a quasi-experimental study, 61 third grade students from two primary schools for girls located in the 4th education zone of Tehran were selected. Math tests were used to collect data. Using T-test for independent samples, the results showed that level of math learning was higher in the students who have been trained with the help of e-book, compared to the students who have been trained through traditional teaching method.

  18. Comment on “Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma” [Phys. Plasmas 20, 072703 (2013)

    International Nuclear Information System (INIS)

    Habibi, M.; Ghamari, F.

    2014-01-01

    Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)

  19. Positive Feedback From Male Authority Figures Boosts Women's Math Outcomes.

    Science.gov (United States)

    Park, Lora E; Kondrak, Cheryl L; Ward, Deborah E; Streamer, Lindsey

    2018-03-01

    People often search for cues in the environment to determine whether or not they will be judged or treated negatively based on their social identities. Accordingly, feedback from gatekeepers-members of majority groups who hold authority and power in a field-may be an especially important cue for those at risk of experiencing social identity threat, such as women in math settings. Across a series of studies, women who received positive ("Good job!") versus objective (score only) feedback from a male (vs. female) authority figure in math reported greater confidence; belonging; self-efficacy; more favorable Science, Technology, Engineering, and Mathematics (STEM) attitudes/identification/interest; and greater implicit identification with math. Men were affected only by the type of math feedback they received, not by the source of feedback. A meta-analysis across studies confirmed results. Together, these findings suggest that positive feedback from gatekeepers is an important situational cue that can improve the outcomes of negatively stereotyped groups.

  20. The PD COMM trial: a protocol for the process evaluation of a randomised trial assessing the effectiveness of two types of SLT for people with Parkinson's disease.

    Science.gov (United States)

    Masterson-Algar, Patricia; Burton, Christopher R; Brady, Marian C; Nicoll, Avril; Clarke, Carl E; Rick, Caroline; Hughes, Max; Au, Pui; Smith, Christina H; Sackley, Catherine M

    2017-08-29

    The PD COMM trial is a phase III multi-centre randomised controlled trial whose aim is to evaluate the effectiveness and cost-effectiveness of two approaches to speech and language therapy (SLT) compared with no SLT intervention (control) for people with Parkinson's disease who have self-reported or carer-reported problems with their speech or voice. Our protocol describes the process evaluation embedded within the outcome evaluation whose aim is to evaluate what happened at the time of the PD COMM intervention implementation and to provide findings that will assist in the interpretation of the PD COMM trial results. Furthermore, the aim of the PD COMM process evaluation is to investigate intervention complexity within a theoretical model of how the trialled interventions might work best and why. Drawing from the Normalization Process Theory and frameworks for implementation fidelity, a mixed method design will be used to address process evaluation research questions. Therapists' and participants' perceptions and experiences will be investigated via in-depth interviews. Critical incident reports, baseline survey data from therapists, treatment record forms and home practice diaries also will be collected at relevant time points throughout the running of the PD COMM trial. Process evaluation data will be analysed independently of the outcome evaluation before the two sets of data are then combined. To date, there are a limited number of published process evaluation protocols, and few are linked to trials investigating rehabilitation therapies. Providing a strong theoretical framework underpinning design choices and being tailored to meet the complex characteristics of the trialled interventions, our process evaluation has the potential to provide valuable insight into which components of the interventions being delivered in PD COMM worked best (and what did not), how they worked well and why. ISRCTN Registry, ISRCTN12421382 . Registered on 18 April 2016.

  1. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    Science.gov (United States)

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Math anxiety and its relationship to inhibitory abilities and perceived emotional intelligence

    Directory of Open Access Journals (Sweden)

    Maria-José Justicia-Galiano

    2016-01-01

    Full Text Available Math anxiety has been found to be an emotional problem that has a negative effect on students' academic performance across different levels of education. This type of anxiety could be related to certain cognitive and emotional processes. A first objective was to examine the relationship between math anxiety and certain inhibitory abilities responsible of eliminating intrusive thoughts or preventing them access to consciousness. A second aim was to determine the extent in which math anxiety and students' self-perceptions of their own emotional abilities are related. To this end, 187 first-year undergraduate psychology students were administered different measures to assess math anxiety, statistics anxiety, inhibitory abilities, and perceived emotional intelligence. The results showed that students with high math anxiety were more likely to experience intrusive thoughts, were less effective at suppressing these thoughts, and reported lower scores in understanding and regulating their emotions. These cognitive mechanisms and emotional abilities are of relevance to better understand the nature of this type of anxiety.

  3. Blog : un journal intime comme mémoire de soi

    Directory of Open Access Journals (Sweden)

    Nolwenn Hénaff

    2011-08-01

    Full Text Available Tenir un journal est devenu, pour un individu, une manière possible de vivre, ou d’accompagner un moment de sa vie (Lejeune, 2006. Les usages sont donc multiples : construction d’une identité narrative, fixation du temps, libération du moi, introspection, outil de contrôle, de soutien, méthode d’organisation de la pensée, plaisir d’écrire. Si l’écriture papier reste la forme la plus courante du récit biographique, d’autres supports médiatiques comme la télévision ou la radio sont venus offrir de nouveaux terrains d’expérimentation de ces récits de soi. Plus récemment, l’avènement d’Internet et de ses outils simplifiés de publication ont fait émerger des formes biographiques innovantes. Pourtant, qu’il s’agisse de traverser une crise, de garder la mémoire d’une expérience forte, ou, plus ordinairement, de relater ses vacances et ses voyages, le journal se positionne avant tout, et résolument, comme un espace de liberté : on écrit quand on veut, comme on veut. Le « Souci de soi » comme dirait Foucault, l’espace dominé par les sensations, et la temporalité marquée par la notion d’instants, de moments ayant une connotation expressément personnelle sont autant d’indices révélant la pratique de l’écriture intime en ligne. Le blog apparaît à des moments de vie et accompagne souvent des tournants biographiques (ruptures, questionnement mais aussi nouveaux apprentissages, nouvelles rencontres, etc.. Nous proposons dans cet article d’analyser le blog en tant que support de mémoire personnelle et d’étudier à travers des exemples concrets les stratégies développées par les blogueurs pour se créer via ce dispositif communicationnel innovant un « espace de conserverie de soi » en ligne.Keeping a journal has become a way of live, or to moment a moment in one’s life (Lejeune, 2006. It has multiple uses: construction of a narrative identity, marking time, liberating the

  4. Math Teachers' Attitudes towards Photo Math Application in Solving Mathematical Problem Using Mobile Camera

    Science.gov (United States)

    Hamadneh, Iyad M.; Al-Masaeed, Aslan

    2015-01-01

    This study aimed at finding out mathematics teachers' attitudes towards photo math application in solving mathematical problems using mobile camera; it also aim to identify significant differences in their attitudes according to their stage of teaching, educational qualifications, and teaching experience. The study used judgmental/purposive…

  5. Self-Reflection and Math Performance in an Online Learning Environment

    Science.gov (United States)

    Choi, Jinnie; Walters, Alyssa; Hoge, Pat

    2017-01-01

    According to recent reports, K-12 full-time virtual school students have shown lower performance in math than their counterparts in brick-and-mortar schools. However, research is lacking in what kind of programmatic interventions virtual schools might be particularly well-suited to provide to improve math performance. Engaging students in…

  6. Do the Math: Course Redesign's Impact on Learning and Scheduling

    Science.gov (United States)

    Squires, John; Faulkner, Jerry; Hite, Carl

    2009-01-01

    The math department at Cleveland State Community College embarked upon course redesign in 2008. As a result of this project, student engagement, learning, and success rates have increased dramatically. By including both developmental and college level math courses in the redesign, the department has been able to implement innovative scheduling and…

  7. Science and Math in the Library Media Center Using GLOBE.

    Science.gov (United States)

    Aquino, Teresa L.; Levine, Elissa R.

    2003-01-01

    Describes the Global Learning and Observations to Benefit the Environment (GLOBE) program which helps school library media specialists and science and math teachers bring earth science, math, information literacy, information technology, and student inquiry into the classroom. Discusses use of the Internet to create a global network to study the…

  8. Effects of Math Anxiety on Student Success in Higher Education

    Science.gov (United States)

    Nunez-Pena, M. I.; Suarez-Pellicioni, M.; Bono, R.

    2013-01-01

    This study examines whether math anxiety and negative attitudes toward mathematics have an effect on university students' academic achievement in a methodological course forming part of their degree. A total of 193 students were presented with a math anxiety test and some questions about their enjoyment, self-confidence and motivation regarding…

  9. Math anxiety: Brain cortical network changes in anticipation of doing mathematics.

    Science.gov (United States)

    Klados, Manousos A; Pandria, Niki; Micheloyannis, Sifis; Margulies, Daniel; Bamidis, Panagiotis D

    2017-12-01

    Following our previous work regarding the involvement of math anxiety (MA) in math-oriented tasks, this study tries to explore the differences in the cerebral networks' topology between self-reported low math-anxious (LMA) and high math-anxious (HMA) individuals, during the anticipation phase prior to a mathematical related experiment. For this reason, multichannel EEG recordings were adopted, while the solution of the inverse problem was applied in a generic head model, in order to obtain the cortical signals. The cortical networks have been computed for each band separately, using the magnitude square coherence metric. The main graph theoretical parameters, showed differences in segregation and integration in almost all EEG bands of the HMAs in comparison to LMAs, indicative of a great influence of the anticipatory anxiety prior to mathematical performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Gender stereotype endorsement differentially predicts girls' and boys' trait-state discrepancy in math anxiety.

    Science.gov (United States)

    Bieg, Madeleine; Goetz, Thomas; Wolter, Ilka; Hall, Nathan C

    2015-01-01

    Mathematics is associated with anxiety for many students; an emotion linked to lower well-being and poorer learning outcomes. While findings typically show females to report higher trait math anxiety than males, no gender differences have to date been found in state (i.e., momentary) math anxiety. The present diary study aimed to replicate previous findings in investigating whether levels of academic self-concept was related to this discrepancy in trait vs. state anxiety measures. Additionally, mathematics-related gender stereotype endorsement (mathematics is a male domain) was investigated as an additional predictor of the trait-state discrepancy. The sample included 755 German 9th and 10th graders who completed self-report measures of trait math anxiety, math self-concept, and gender stereotype endorsement, in addition to state measures of anxiety after math classes by use of a standardized diary for 2-3 weeks (N within = 6207). As expected, females reported higher trait math anxiety but no gender differences were found for state math anxiety. Also in line with our assumptions, multilevel analyses showed the discrepancy between trait and state anxiety to be negatively related to students' self-concept (i.e., a lower discrepancy for students with higher self-concepts). Furthermore, gender stereotype endorsement differentially predicted the trait-state discrepancy: When controlling for self-concept in mathematics, females who endorsed the gender stereotype of math being a male domain more strongly overestimated their trait math anxiety as compared to their state anxiety whereas this effect was not significant for males. The present findings suggest that gender stereotype endorsement plays an important role in explaining gender differences in math anxiety above and beyond academic self-concept. Implications for future research and educational practice are discussed.

  11. Gender stereotype endorsement differentially predicts girls' and boys' trait-state discrepancy in math anxiety

    Directory of Open Access Journals (Sweden)

    Madeleine eBieg

    2015-09-01

    Full Text Available Mathematics is associated with anxiety for many students; an emotion linked to lower well-being and poorer learning outcomes. While findings typically show females to report higher trait math anxiety than males, no gender differences have to date been found in state (i.e., momentary math anxiety. The present diary study aimed to replicate previous findings in investigating whether levels of academic self-concept was related to this discrepancy in trait versus state anxiety measures. Additionally, mathematics-related gender stereotype endorsement (mathematics is a male domain was investigated as an additional predictor of the trait-state discrepancy. The sample included 755 German 9th and 10th graders who completed self-report measures of trait math anxiety, math self-concept, and gender stereotype endorsement, in addition to state measures of anxiety after math classes by use of a standardized diary for 2-3 weeks (Nwithin = 6207. As expected, females reported higher trait math anxiety but no gender differences were found for state math anxiety. Also in line with our assumptions, multilevel analyses showed the discrepancy between trait and state anxiety to be negatively related to students’ self-concept (i.e., a lower discrepancy for students with higher self-concepts. Furthermore, gender stereotype endorsement differentially predicted the trait-state discrepancy: When controlling for self-concept in mathematics, females who endorsed the gender stereotype of math being a male domain more strongly overestimated their trait math anxiety as compared to their state anxiety whereas this effect was not significant for males. The present findings suggest that gender stereotype endorsement plays an important role in explaining gender differences in math anxiety above and beyond academic self-concept. Implications for future research and educational practice are discussed.

  12. Meeting a Math Achievement Crisis

    Science.gov (United States)

    Jennings, Lenora; Likis, Lori

    2005-01-01

    An urban community spotlighted declining mathematics achievement and took some measures, in which the students' performance increased substantially. The Benjamin Banneker Charter Public School in Cambridge, Massachusetts, engaged the entire community and launched the campaign called "Math Everywhere", which changed Benjamin Banneker's…

  13. All you need in Maths!

    NARCIS (Netherlands)

    van de Craats, J.; Bosch, R.

    2014-01-01

    All You Need in Maths! covers the basic mathematics you need to successfully embark on a university or college career in technology, natural sciences, computer and information science, economics, business and management studies, and related disciplines. By basic mathematics we mean elementary

  14. 78 FR 2379 - Agency Information Collection Activities; Comment Request; Impact Evaluation of Math Professional...

    Science.gov (United States)

    2013-01-11

    ...; Comment Request; Impact Evaluation of Math Professional Development AGENCY: IES/NCES, Department of... of Math Professional Development. OMB Control Number: 1850-NEW. Type of Review: New information... requests clearance to recruit and collect data from districts, schools, and teachers for a study of math...

  15. The effects of gender composition on women's experience in math work groups.

    Science.gov (United States)

    Grover, Sarah S; Ito, Tiffany A; Park, Bernadette

    2017-06-01

    The present studies tested a model outlining the effects of group gender composition on self- and others' perceptions of women's math ability in a truly interactive setting with groups composed entirely of naïve participants (N = 158 4-person groups across 3 studies). One woman in each group was designated to be the "expert" by having her complete a tutorial that gave her task-relevant knowledge for a subsequent group task. Group gender composition was hypothesized to influence perceptions of women's math ability through intrapersonal processes (stereotype threat effects on performance) and interpersonal processes (social cohesion between the expert and other group members). Group composition affected the experts' performance in the group math task, but importantly, it also affected their social cohesion with group members. Moreover, both of these effects-lowered performance and poorer social cohesion in male-dominated groups-made independent contributions in accounting for group gender composition effects on perceptions of women's math ability (Studies 1 and 2). Boundary conditions were examined in a 3rd study. Women who had a history of excelling in math and had chosen a math-intensive STEM major were selected to be the designated experts. We predicted and found this would be sufficient to eliminate the effect of group gender composition on interpersonal processes, and correspondingly the effect on women's perceived math ability. Interestingly (and consistent with past work on stereotype threat effects among highly domain-identified individuals), there were continued performance differences indicative of effects on intrapersonal processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Math and Economics: Implementing Authentic Instruction in Grades K-5

    Science.gov (United States)

    Althauser, Krista; Harter, Cynthia

    2016-01-01

    The purpose of this study is to outline a partnership program that involved a local elementary school district, an institution of higher education, the local business community, and a state economic education advocacy group to integrate economics into math in grades K-5. The "Economics: Math in Real Life" program was provided in…

  17. See ya later calculator simple math tricks you can do in your head

    CERN Document Server

    Portable Press, Editors of

    2017-01-01

    See Ya Later Calculator demystifies numbers and math. With these simple, precise, and downright magical math tricks, readers can do everyday math faster than it takes to dig out their phone and find the calculator app. Clear, step-by-step, easily memorizable directions demonstrate more than 125 math operations anyone can do in their head. Plus, it features do-it-yourself math projects, puzzles, and even a bonus section for advanced mathophiles. Get ready to tackle fun problems such as… How to easily square any number How to add three-digit numbers How to use a mirror to measure the height of a building. How to make a ruler out of a dollar bill How to use geometry to paint walls, cut floor tiling, and do other home renovations How to subtract numbers…by adding And lots more...no calculator required.

  18. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses.

    Science.gov (United States)

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1-3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses.

  19. Stochastic foundations of undulatory transport phenomena: generalized Poisson–Kac processes—part I basic theory

    International Nuclear Information System (INIS)

    Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro

    2017-01-01

    This article introduces the notion of generalized Poisson–Kac (GPK) processes which generalize the class of ‘telegrapher’s noise dynamics’ introduced by Kac (1974 Rocky Mount. J. Math . 4 497) in 1974, using Poissonian stochastic perturbations. In GPK processes the stochastic perturbation acts as a switching amongst a set of stochastic velocity vectors controlled by a Markov-chain dynamics. GPK processes possess trajectory regularity (almost everywhere) and asymptotic Kac limit, namely the convergence towards Brownian motion (and to stochastic dynamics driven by Wiener perturbations), which characterizes also the long-term/long-distance properties of these processes. In this article we introduce the structural properties of GPK processes, leaving all the physical implications to part II and part III (Giona et al 2016a J. Phys. A: Math. Theor ., 2016b J. Phys. A: Math. Theor .). (paper)

  20. Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs

    Science.gov (United States)

    Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel

    2013-03-01

    Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.

  1. Math Error Types and Correlates in Adolescents with and without Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Agnese Capodieci

    2017-10-01

    Full Text Available Objective: The aim of this study was to examine the types of errors made by youth with and without a parent-reported diagnosis of attention deficit and hyperactivity disorder (ADHD on a math fluency task and investigate the association between error types and youths’ performance on measures of processing speed and working memory.Method: Participants included 30 adolescents with ADHD and 39 typically developing peers between 14 and 17 years old matched in age and IQ. All youth completed standardized measures of math calculation and fluency as well as two tests of working memory and processing speed. Math fluency error patterns were examined.Results: Adolescents with ADHD showed less proficient math fluency despite having similar math calculation scores as their peers. Group differences were also observed in error types with youth with ADHD making more switch errors than their peers.Conclusion: This research has important clinical applications for the assessment and intervention on math ability in students with ADHD.

  2. Math Error Types and Correlates in Adolescents with and without Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Capodieci, Agnese; Martinussen, Rhonda

    2017-01-01

    Objective: The aim of this study was to examine the types of errors made by youth with and without a parent-reported diagnosis of attention deficit and hyperactivity disorder (ADHD) on a math fluency task and investigate the association between error types and youths' performance on measures of processing speed and working memory. Method: Participants included 30 adolescents with ADHD and 39 typically developing peers between 14 and 17 years old matched in age and IQ. All youth completed standardized measures of math calculation and fluency as well as two tests of working memory and processing speed. Math fluency error patterns were examined. Results: Adolescents with ADHD showed less proficient math fluency despite having similar math calculation scores as their peers. Group differences were also observed in error types with youth with ADHD making more switch errors than their peers. Conclusion: This research has important clinical applications for the assessment and intervention on math ability in students with ADHD.

  3. Interactive geometry inside MathDox

    NARCIS (Netherlands)

    Cuypers, H.; Hendriks, M.; Knopper, J.W.

    2010-01-01

    In this paper we describe how we envision using interactive geometry inside MathDox pages. In particular, by some examples we discuss how users and mathematical services (offered by various mathematical software packages) can interact with the geometric objects available. This not only includes

  4. Brief Report: Gum Chewing Affects Standardized Math Scores in Adolescents

    Science.gov (United States)

    Johnston, Craig A.; Tyler, Chermaine; Stansberry, Sandra A.; Moreno, Jennette P.; Foreyt, John P.

    2012-01-01

    Gum chewing has been shown to improve cognitive performance in adults; however, gum chewing has not been evaluated in children. This study examined the effects of gum chewing on standardized test scores and class grades of eighth grade math students. Math classes were randomized to a gum chewing (GC) condition that provided students with gum…

  5. Basic Math Skills and Performance in an Introductory Economics Class

    Science.gov (United States)

    Ballard, Charles L.; Johnson, Marianne F.

    2004-01-01

    The authors measure math skills with a broader set of explanatory variables than have been used in previous studies. To identify what math skills are important for student success in introductory microeconomics, they examine (1) the student's score on the mathematics portion of the ACT Assessment Test, (2) whether the student has taken calculus,…

  6. Closed-form summations of Dowker's and related trigonometric sums

    Science.gov (United States)

    Cvijović, Djurdje; Srivastava, H. M.

    2012-09-01

    Through a unified and relatively simple approach which uses complex contour integrals, particularly convenient integration contours and calculus of residues, closed-form summation formulas for 12 very general families of trigonometric sums are deduced. One of them is a family of cosecant sums which was first summed in closed form in a series of papers by Dowker (1987 Phys. Rev. D 36 3095-101 1989 J. Math. Phys. 30 770-3 1992 J. Phys. A: Math. Gen. 25 2641-8), whose method has inspired our work in this area. All of the formulas derived here involve the higher-order Bernoulli polynomials. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  7. Preschool children's mathematical knowledge: The effect of teacher "math talk.".

    Science.gov (United States)

    Klibanoff, Raquel S; Levine, Susan C; Huttenlocher, Janellen; Vasilyeva, Marina; Hedges, Larry V

    2006-01-01

    This study examined the relation between the amount of mathematical input in the speech of preschool or day-care teachers and the growth of children's conventional mathematical knowledge over the school year. Three main findings emerged. First, there were marked individual differences in children's conventional mathematical knowledge by 4 years of age that were associated with socioeconomic status. Second, there were dramatic differences in the amount of math-related talk teachers provided. Third, and most important, the amount of teachers' math-related talk was significantly related to the growth of preschoolers' conventional mathematical knowledge over the school year but was unrelated to their math knowledge at the start of the school year. Copyright 2006 APA, all rights reserved.

  8. La danse comme réécriture « géopoétique » de l’espace ?

    OpenAIRE

    Torrent, Céline

    2017-01-01

    C’est à partir d’une perspective littéraire que nous avons fait le choix d’aborder la thématique de la « géographie de la danse ». Ainsi, ce n’est pas tant sur la manière dont la géographie comme science peut étudier la danse que nous nous pencherons, que sur la façon dont la danse, comprise comme création choré­gra­phique, peut s’approprier la géo-graphie, prise au sens littéral d’écriture de l’espace terrestre, de graphie propre à l’espace.Plus précisément, notre étude s’inscrira dans le ca...

  9. (Quasi)-convexification of Barta's (multi-extrema) bounding theorem: Infx(HΦ(x)/Φ(x)) ≤ Egr ≤ Supx(HΦ(x)/Φ(x))

    International Nuclear Information System (INIS)

    Handy, C R

    2006-01-01

    There has been renewed interest in the exploitation of Barta's configuration space theorem (BCST) (Barta 1937 C. R. Acad. Sci. Paris 204 472) which bounds the ground-state energy, Inf x (HΦ(x)/Φ(x)) ≤ E gr ≤ Sup x (HΦ(x)/Φ(x)), by using any Φ lying within the space of positive, bounded, and sufficiently smooth functions, C. Mouchet's (Mouchet 2005 J. Phys. A: Math. Gen. 38 1039) BCST analysis is based on gradient optimization (GO). However, it overlooks significant difficulties: (i) appearance of multi-extrema; (ii) inefficiency of GO for stiff (singular perturbation/strong coupling) problems; (iii) the nonexistence of a systematic procedure for arbitrarily improving the bounds within C. These deficiencies can be corrected by transforming BCST into a moments' representation equivalent, and exploiting a generalization of the eigenvalue moment method (EMM), within the context of the well-known generalized eigenvalue problem (GEP), as developed here. EMM is an alternative eigenenergy bounding, variational procedure, overlooked by Mouchet, which also exploits the positivity of the desired physical solution. Furthermore, it is applicable to Hermitian and non-Hermitian systems with complex-number quantization parameters (Handy and Bessis 1985 Phys. Rev. Lett. 55 931, Handy et al 1988 Phys. Rev. Lett. 60 253, Handy 2001 J. Phys. A: Math. Gen. 34 5065, Handy et al 2002 J. Phys. A: Math. Gen. 35 6359). Our analysis exploits various quasi-convexity/concavity theorems common to the GEP representation. We outline the general theory, and present some illustrative examples

  10. The Anti-Anxiety Curriculum: Combating Math Anxiety in the Classroom

    Science.gov (United States)

    Geist, Eugene

    2010-01-01

    Negative attitudes toward mathematics and what has come to be know as "math anxiety" are serious obstacles for children in all levels of schooling today. In this paper, the literature is reviewed and critically assessed in regards to the roots of math anxiety and its especially detrimental effect on children in "at-risk" populations such as low…

  11. The Dirac equation in external fields: Variable separation in Cartesian coordinates

    International Nuclear Information System (INIS)

    Shishkin, G.V.; Cabos, W.D.

    1991-01-01

    The method of separation of variables in the Dirac equation proposed in an earlier work by one of the present authors [J. Math. Phys. 30, 2132 (1989)] is developed for the complete set of interactions of the Dirac particle. The essence of the method consists of the separation of the first-order matrix differential operators that define the dependence of the Dirac bispinor on the related variables, but commutation of such operators with or between the operator of the equation is not assumed. This approach, which is perfectly justified in the presence of gravitational [Theor. Math. Phys. 70, 204 (1987)] or vector fields [J. Math. Phys. 30, 2132 (1989)], permits one to find all the possibilities of separation of variables in the Dirac equation in the case of the most general set of external fields. The complete set of interactions of the Dirac particle is determined by the symmetry group of equations, namely, viz. the SU(4) group. The interactions are scalar, vector, tensor, pseudovector and pseudoscalar. The analysis in this article is limited to Cartesian coordinates. The corresponding results for the general curvilinear coordinates will be presented in a future paper

  12. Executive Function Buffers the Association between Early Math and Later Academic Skills

    Directory of Open Access Journals (Sweden)

    Andrew D. Ribner

    2017-05-01

    Full Text Available Extensive evidence has suggested that early academic skills are a robust indicator of later academic achievement; however, there is mixed evidence of the effectiveness of intervention on academic skills in early years to improve later outcomes. As such, it is clear there are other contributing factors to the development of academic skills. The present study tests the role of executive function (EF (a construct made up of skills complicit in the achievement of goal-directed tasks in predicting 5th grade math and reading ability above and beyond math and reading ability prior to school entry, and net of other cognitive covariates including processing speed, vocabulary, and IQ. Using a longitudinal dataset of N = 1292 participants representative of rural areas in two distinctive geographical parts of the United States, the present investigation finds EF at age 5 strongly predicts 5th grade academic skills, as do cognitive covariates. Additionally, investigation of an interaction between early math ability and EF reveals the magnitude of the association between early math and later math varies as a function of early EF, such that participants who have high levels of EF can “catch up” to peers who perform better on assessments of early math ability. These results suggest EF is pivotal to the development of academic skills throughout elementary school. Implications for further research and practice are discussed.

  13. Untitled

    Indian Academy of Sciences (India)

    J. Math. Phys. 4552. Bogoliubov N N and Mitropolsky Y A 1961 Asymoptotic methods in theory of nonlinear oscilla- tions (Eng. Trans. (Delhi: Hindustan Publishing Corporation) p. 51. Boyd J P 1980 J. Phys. Oceanogr. 101. Clarke RA 1971 Geophys. Fluid Dyn. 2343-354. Domaracki Al and Loesch AZ, 1977.J. Atmos. Sci.

  14. Mediators of methylphenidate effects on math performance in children with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Froehlich, Tanya E; Antonini, Tanya N; Brinkman, William B; Langberg, Joshua M; Simon, John O; Adams, Ryan; Fredstrom, Bridget; Narad, Megan E; Kingery, Kathleen M; Altaye, Mekibib; Matheson, Heather; Tamm, Leanne; Epstein, Jeffery N

    2014-01-01

    Stimulant medications, such as methylphenidate (MPH), improve the academic performance of children with attention-deficit hyperactivity disorder (ADHD). However, the mechanism by which MPH exerts an effect on academic performance is unclear. We examined MPH effects on math performance and investigated possible mediation of MPH effects by changes in time on-task, inhibitory control, selective attention, and reaction time variability. Children with ADHD aged 7 to 11 years (N = 93) completed a timed math worksheet (with problems tailored to each individual's level of proficiency) and 2 neuropsychological tasks (Go/No-Go and Child Attention Network Test) at baseline, then participated in a 4-week, randomized, controlled, titration trial of MPH. Children were then randomly assigned to their optimal MPH dose or placebo for 1 week (administered double-blind) and repeated the math and neuropsychological tasks (posttest). Baseline and posttest videorecordings of children performing the math task were coded to assess time on-task. Children taking MPH completed 23 more math problems at posttest compared to baseline, whereas the placebo group completed 24 fewer problems on posttest versus baseline, but the effects on math accuracy (percent correct) did not differ. Path analyses revealed that only change in time on-task was a significant mediator of MPH's improvements in math productivity. MPH-derived math productivity improvements may be explained in part by increased time spent on-task, rather than improvements in neurocognitive parameters, such as inhibitory control, selective attention, or reaction time variability.

  15. Gender differences in the causal relation between adolescents' maths self-concept and scholastic performance

    Directory of Open Access Journals (Sweden)

    Cristina Antunes

    2007-05-01

    Full Text Available Mathematics is a core subject in every school curriculum and it is strongly correlated with maths self-concept, which is defined as the subjective feelings and beliefs about one's competence in maths. In general, boys tend to report higher maths self-concept than girls, but the difference between boys and girls' maths scholastic performance is low or even inexistent. Some authors maintain that academic self-concept can play an important role as a motivational variable, promoting self-confidence and investment in the learning process. This study examined the causal relations between maths self-concept and maths scholastic performance in four cohorts of boys and girls within a three-wave longitudinal study. The first two cohorts were composed of 187 girls and 139 boys attending grades 7 and 8 at Time 1 and the third and fourth cohorts were composed of 167 girls and 123 boys attending grades 9 and 10 at Time 1. Structural Equation Modelling was used to test the fit of several models of causal relations. The results revealed that for the first two cohorts the best models were reciprocal and skill-development for both boys and girls. However, for the older students, a reciprocal model gave a best fit for the boys, but for the girls there was only one significant effect from maths self-concept to maths scholastic performance. Results are discussed on the basis of gender-related differential learning expectancies.

  16. Intuition et déduction en mathématiques

    CERN Document Server

    Leclercq, Bruno

    2015-01-01

    À la fin du XVIIIe siècle, Emmanuel Kant pouvait encore voir dans les mathématiques le modèle même des jugements synthétiques a priori, c'est-à-dire dotés d'un contenu intuitif propre quoique non dérivé de l'expérience sensible. Des géométries non-euclidiennes à la théorie des transfinis de Cantor, les mathématiques du XIXe siècle vont cependant faire triompher des systèmes mathématiques résolument déductifs et non plus intuitifs. Sur fond d'interrogations quant à la légitimité de ces développements récents, interrogations renforcées par la découverte de paradoxes, d'âpres débats vont alors o

  17. Learning to Love Math: Teaching Strategies that Change Student Attitudes and Get Results

    Science.gov (United States)

    Willis, Judy

    2010-01-01

    Has it ever seemed to you that some students are hardwired to dislike math? If so, then here's a book that explains how negative attitudes toward math get established in the brain and what you can do to turn those attitudes around. Math teacher and neurologist Judy Willis gives you over 50 strategies you can use right away in any grade level to:…

  18. The role of social support in students' perceived abilities and attitudes toward math and science.

    Science.gov (United States)

    Rice, Lindsay; Barth, Joan M; Guadagno, Rosanna E; Smith, Gabrielle P A; McCallum, Debra M

    2013-07-01

    Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social support, and the relationship between this component and attitude and self-efficacy in math and science. A large cross-sectional design was used gathering data from 1,552 participants in four adolescent school settings from 5th grade to early college (41 % female, 80 % white). Students completed measures of perceived social support from parents, teachers and friends as well as their perceived ability and attitudes toward math and science. Fifth grade and college students reported higher levels of support from teachers and friends when compared to students at other grade levels. In addition, students who perceived greater social support for math and science from parents, teachers, and friends reported better attitudes and had higher perceptions of their abilities in math and science. Lastly, structural equation modeling revealed that social support had both a direct effect on math and science perceived abilities and an indirect effect mediated through math and science attitudes. Findings suggest that students who perceive greater social support for math and science from parents, teachers, and friends have more positive attitudes toward math and science and a higher sense of their own competence in these subjects.

  19. Multidimensional assessment of self-regulated learning with middle school math students.

    Science.gov (United States)

    Callan, Gregory L; Cleary, Timothy J

    2018-03-01

    This study examined the convergent and predictive validity of self-regulated learning (SRL) measures situated in mathematics. The sample included 100 eighth graders from a diverse, urban school district. Four measurement formats were examined including, 2 broad-based (i.e., self-report questionnaire and teacher ratings) and 2 task-specific measures (i.e., SRL microanalysis and behavioral traces). Convergent validity was examined across task-difficulty, and the predictive validity was examined across 3 mathematics outcomes: 2 measures of mathematical problem solving skill (i.e., practice session math problems, posttest math problems) and a global measure of mathematical skill (i.e., standardized math test). Correlation analyses were used to examine convergent validity and revealed medium correlations between measures within the same category (i.e., broad-based or task-specific). Relations between measurement classes were not statistically significant. Separate regressions examined the predictive validity of the SRL measures. While controlling all other predictors, a SRL microanalysis metacognitive-monitoring measure emerged as a significant predictor of all 3 outcomes and teacher ratings accounted for unique variance on 2 of the outcomes (i.e., posttest math problems and standardized math test). Results suggest that a multidimensional assessment approach should be considered by school psychologists interested in measuring SRL. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. The Laplace transform approach for a Dirac isotonic oscillator with a tensor potential in D-dimensions

    International Nuclear Information System (INIS)

    Roshanzamir-Nikou, M; Goudarzi, H

    2014-01-01

    The exact bound-state energy and the corresponding eigenfunctions of a relativistic spin 1/2 harmonic oscillator with a centripetal barrier, known as an isotonic oscillator including the tensor interaction term are obtained in D-dimensions. In particular, we use the Laplace transform method in the pseudospin symmetry limit. It is shown that our analytical results are consistent with those obtained by Agboola (2012 J. Math. Phys. 53 052302) and Ikhdair and Sever (2011 J. Math. Phys. 52 122108) in the absence of the tensor interaction using different methods. Further, we give some numerical results on the energy levels for different values of related quantum numbers. (paper)