WorldWideScience

Sample records for combustion technologies division

  1. Chemical Technology Division annual technical report, 1986

    International Nuclear Information System (INIS)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO 2 recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs

  2. Chemical Technology Division annual technical report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1986 are presented. In this period, CMT conducted research and development in areas that include the following: (1) high-performance batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants, the technology for fluidized-bed combustion, and a novel concept for CO/sub 2/ recovery from fossil fuel combustion; (5) methods for recovery of energy from municipal waste; (6) methods for the electromagnetic continuous casting of steel sheet; (7) techniques for treatment of hazardous waste such as reactive metals and trichloroethylenes; (8) nuclear technology related to waste management, a process for separating and recovering transuranic elements from nuclear waste, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (9) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 127 refs., 71 figs., 8 tabs.

  3. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  4. Chemical Technology Division annual technical report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  5. Chemical Technology Division annual technical report, 1993

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing 99 Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support

  6. Chemical Technology Division annual technical report, 1985

    International Nuclear Information System (INIS)

    1986-04-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1985 are presented. In this period, CMT conducted research and development in areas that include the following: (1) advanced batteries - mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) advanced fuel cells with molten carbonate or solid oxide electrolytes; (3) corrosion-protective coatings for high-strength steel; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methodologies for recovery of energy from municipal waste; (6) nuclear technology related to waste management, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and proof of breeding in a light water breeder reactor; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of catalytic hydrogenation and catalytic oxidation; materials chemistry for associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; the thermochemistry of zeolites and related silicates; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL

  7. Chemical Technology Division annual technical report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  8. Chemical Technology Division annual technical report 1989

    International Nuclear Information System (INIS)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing 99 Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL)

  9. Chemical Technology Division annual technical report, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    Highlights of the Chemical Technology (CMT) Divisions's activities during 1988 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries (mainly lithium-alloy/metal sulfide, sodium/metal chloride, and sodium/sulfur); (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for recovery of energy from municipal waste and techniques for treatment of hazardous chemical water; (6) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing /sup 99/Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (7) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 53 figs., 16 tabs

  10. Chemical Technology Division annual technical report 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  11. Chemical Technology Division annual technical report, 1994

    International Nuclear Information System (INIS)

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  12. Chemical Technology Division, Annual technical report, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  13. Chemical Technology Division, Annual technical report, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  14. Chemical technology division: Annual technical report 1987

    International Nuclear Information System (INIS)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs

  15. Chemical technology division: Annual technical report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1987 are presented. In this period, CMT conducted research and development in the following areas: (1) high-performance batteries--mainly lithium-alloy/metal sulfide and sodium/sulfur; (2) aqueous batteries (lead-acid, nickel/iron, etc.); (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (5) methods for the electromagnetic continuous casting of steel sheet and for the purification of ferrous scrap; (6) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (7) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor, and waste management; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; the thermochemistry of various minerals; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be the major user of the technical support provided by the Analytical Chemistry Laboratory at ANL. 54 figs., 9 tabs.

  16. LIEKKI 2 - Combustion technology is environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. [Aabo Akademi, Turku (Finland)

    1996-12-31

    Finland has wide experience in applications of various combustion technologies and fuels and in supplying energy to industry and municipalities. Furthermore, combustion hardware and equipment are amongst our most important export products. Above all, fluidized bed boilers, recovery boilers for pulp mills and heavy diesel engines and diesel power plants have achieved excellent success in the world markets. Exports of these products alone have amounted to several billions of Finnish marks of annual sales in recent years. Within modern combustion technology, the objective is to control flue gas emissions as far as possible in the process itself, thus doing away with the need for the separate scrubbing of flue gases. To accomplish this it has been necessary to conduct a large amount of research on the details of the chemistry of combustion emissions and the flows in furnaces and engine cylinders. A host of completely new products are being developed for the combustion technology field. The LIEKKI programme has been particularly interested in so-called combined-cycle processes based on pressurized fluidized bed technology

  17. Proceedings of the 1998 international joint power generation conference (FACT-Vol.22). Volume 1: Fuels and combustion technologies; Gas turbines; Environmental engineering; Nuclear engineering

    International Nuclear Information System (INIS)

    Gupta, A.; Natole, R.; Sanyal, A.; Veilleux, J.

    1998-01-01

    Papers are arranged under the following topical sections: Fuels and combustion technologies; Low NOx burner applications; Low cost solutions to utility NOx compliance issues; Coal combustion--Retrofit experiences, low NOx, and efficiency; Highly preheated air combustion; Combustion control and optimization; Advanced technology for gas fuel combustion; Spray combustion and mixing; Efficient power generation using gas turbines; Safety issues in power industry; Efficient and environmentally benign conversion of wastes to energy; Artificial intelligence monitoring, control, and optimization of power plants; Combustion modeling and diagnostics; Advanced combustion technologies and combustion synthesis; Aero and industrial gas turbine presentations IGTI gas turbine division; NOx/SO 2 ; Plant cooling water system problems and solutions; Issues affecting plant operations and maintenance; and Costs associated with operating and not operating a nuclear power plant. Papers within scope have been processed separately for inclusion on the database

  18. Chemical Technology Division annual technical report, 1990

    International Nuclear Information System (INIS)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs

  19. Chemical Technology Division annual technical report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  20. Energy Technology Division research summary - 1999.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  1. Improvement of fuel combustion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A.G.; Babii, V.I.; Enyakin, Y.P.; Kotler, V.R.; Ryabov, G.V.; Verbovetskii, E.K.; Nadyrov, I.I. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The main problems encountered in the further development of fuel combustion technologies at thermal power stations in Russia are considered. Experience is generalized and results are presented on the efficiency with which nitrogen oxide emissions are reduced by means of technological methods when burning natural gas, fuel oil, and coal. The problems that arise in the introduction of new combustion technologies and in using more promising grades of coal are considered. The results studies are presented that show that low grade Russian coals can be burnt in circulating fluidized bed boilers. 14 refs., 5 figs., 4 tabs.

  2. Energy Technology Division research summary 2004

    International Nuclear Information System (INIS)

    Poeppel, R. B.; Shack, W. J.

    2004-01-01

    The Energy Technology (ET) Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy (DOE). The Division's capabilities are generally applied to technical issues associated with energy systems, biomedical engineering, transportation, and homeland security. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the US Nuclear Regulatory Commission (NRC) remains another significant area of interest for the Division. The pie chart below summarizes the ET sources of funding for FY 2004

  3. Energy Technology Division research summary -- 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  4. Energy Technology Division research summary 2001

    International Nuclear Information System (INIS)

    2001-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the U.S. Department of Energy. As shown on the preceding page, the Division is organized into eight sections, four with concentrations in the materials area and four in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officer, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. This Overview highlights some major ET research areas. Research related to the operational safety of commercial light water nuclear reactors (LWRs) for the U.S. Nuclear Regulatory Commission (NRC) remains a significant area of interest for the Division. We currently have programs on environmentally assisted cracking, steam generator integrity, and the integrity of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out by three ET sections: Corrosion and Mechanics of Materials; Irradiation Performance; and Sensors, Instrumentation, and Nondestructive Evaluation

  5. Energy Technology Division research summary -- 1994

    International Nuclear Information System (INIS)

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE's Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division's Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments

  6. Chemical Technology Division Annual Report 2000

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. F.; Einziger, R. E.; Green, D. W.

    2001-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory (ANL), one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base through developing industrial technology and transferring that technology to industry. The Chemical Technology Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by ANL's mission. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to ANL and other organizations. The Division is multi-disciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia, urban planning, and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. In this annual report we present an overview of the technical programs together with representative highlights. The report is not intended to be comprehensive or encyclopedic, but to serve as an indication of the condition

  7. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  8. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  9. Chemical Technology Division annual technical report 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1997 are presented

  10. Laser and Plasma Technology Division annual report 1993

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1994-01-01

    This report describes the activities of the Laser and Plasma Technology Division during the year 1993. This Division is engaged in the research and development of high power beams namely laser, plasma and electron beams, which are characterized by high power density, normally in excess of 1 kW/mm 2 . Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad programme objectives of the Division are : (1) Development and technology readiness studies of laser, plasma and electron beam devices, (2) Studies on related physical phenomena with a view to gain better understanding of the devices, and (3) Improvements in technology and exploration of new areas. This report covers the activities of the Division during 1993 and describes how successfully the objectives have been met. The activities described in the report are diverse in nature. The report has been compiled from individual reports of various groups/sections with marginal editing. (author). refs., tabs., figs

  11. Laser and Plasma Technology Division annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venkatramani, N; Verma, R L [eds.; Bhabha Atomic Research Centre, Bombay (India). Laser and Plasma Technology Div.

    1994-12-31

    This report describes the activities of the Laser and Plasma Technology Division during the year 1993. This Division is engaged in the research and development of high power beams namely laser, plasma and electron beams, which are characterized by high power density, normally in excess of 1 kW/mm{sup 2}. Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad programme objectives of the Division are : (1) Development and technology readiness studies of laser, plasma and electron beam devices, (2) Studies on related physical phenomena with a view to gain better understanding of the devices, and (3) Improvements in technology and exploration of new areas. This report covers the activities of the Division during 1993 and describes how successfully the objectives have been met. The activities described in the report are diverse in nature. The report has been compiled from individual reports of various groups/sections with marginal editing. (author). refs., tabs., figs.

  12. Energy Technology Division research summary 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  13. Energy Technology Division research summary 1997.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water

  14. Chemical Technology Division annual technical report, 1992

    International Nuclear Information System (INIS)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO 2 in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel' ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL)

  15. Chemical Technology Division annual technical report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  16. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  17. Laser and Plasma Technology Division annual report 1995

    International Nuclear Information System (INIS)

    Venkatramani, N.

    1996-01-01

    This report describes the activity of the Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Mumbai during the period 1995. This division is engaged in the research and development of high power beams namely lasers, plasma and electron beams which are characterized by high power density. This division has strived to establish indigenous capability to cater to the requirements of the Department of Atomic Energy. The broad program objectives of the division are (1) development and technology readiness studies of laser, plasma and electron beam devices; (2) studies on related physical phenomena with a view to gain better understanding of the devices and (3) improvements in technology and exploration of new areas. This report has been compiled from individual reports of various groups/sections with marginal editing. At the end of each section; a list of publications by the staff members in the field indicated by the title of the section is given. refs., figs., tabs

  18. Update on status of fluidized-bed combustion technology

    International Nuclear Information System (INIS)

    Stallings, J.; Boyd, T.; Brown, R.

    1992-01-01

    During the 1980s, fluidized-bed combustion technology has become the dominant technology for solid-fuel-fired power generation systems in the United States. Atmospheric fluidized beds as large as 160 MWe in capacity are now in operation, while pressurized systems reaching 80 MWe have started up in the last year. The commercial status, boiler performance, emissions, and future developments for both atmospheric and pressurized fluidized-bed combustion systems are discussed

  19. Division of Agro technology and Biosciences: Past, Present and Future

    International Nuclear Information System (INIS)

    Khairuddin Abdul Rahim

    2012-01-01

    In presenter speech, he outlined several topics regarding development of Agro technology and Biosciences Division from 31 years ago. This division started with Unit Sains Hidupan Liar under PUSPATI in 1981 and change their names to Program Isotop dan Sinaran dalam Biologi dan Pertanian under Nuclear Technology Unit (UTN) (1983). In 1990 their premise change to MINT-Tech Park. This program responsible for conducting research in agro technology using nuclear technology. Several achievements achieved by this division since established. They also succeed in mutating banana namely Novaria banana (1994), Tongkat Ali rice (1990), ground nut (2003), orchids, organic fertilizer and foliage in 2000. The vision of this division are to promote and enhance innovation and applications in nuclear technology to achieve security in food productivity, safety and quality and ecological awareness for economics competitiveness and vibrancy in agrobioindustry and community development. (author)

  20. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  1. New technologies reducing emissions from combustion of biofuels

    International Nuclear Information System (INIS)

    Oravainen, H.

    1997-01-01

    In reducing CO 2 emissions, bioenergy will be the most important source of renewable energy in the next few decades. In principle, combustion of biomass is friendly to the environment because CO 2 released during combustion is recycled back into natural circulation. Biofuels normally contain little nitrogen and sulphur. However, depending on the combustion technology used, emissions may be quite high. This is true of combustion of biomass fuels in small appliances like wood stoves, fireplaces, small boilers etc. When fuels having high content of volatile matter are burnt in appliances using batch type combustion, the process is rather an unsteady-state combustion. Emissions of carbon monoxide, other combustible gases and particulates are quite difficult to avoid. With continuous combustion processes this is not normally a problem. This conference paper presents some means of reducing emissions from combustion of biofuels. 5 refs., 4 figs

  2. Laser and Plasma Technology Division, Annual Reports 1996 and 1997

    International Nuclear Information System (INIS)

    Venkatramani, N.

    1999-04-01

    This report describes the activity of the Laser and Plasma Technology Division of Bhabha Atomic Research Centre during the two year period 1996- 1997. This division is engaged in the research and development of high power beams mainly laser, plasma and electron beams. Laser and Plasma Technology Division has strived to establish indigenous capability to cater to the requirements of Department of Atomic Energy. This involves development and technology readiness study of laser, plasma and electron beam devices. In addition, studies are also carried out on related physical phenomenon with a view to gain better understanding of the devices. This report has been compiled from individual reports of various groups/sections working in the division. A list of publications by the several members of the division is also included. (author)

  3. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  4. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  5. Division of Information Technology - Overview

    International Nuclear Information System (INIS)

    Szlachciak, J.

    2007-01-01

    I have a great pleasure to introduce the youngest division in our Institute, namely the Division of Information Technology. The division was created in 2005, but this is the first time when it reports its activities. The main purpose of creation was a better management of al IT activities in different departments, lowering IT costs and increase security over all computer systems used be the Institute. Although we have started with small human resources, we have received a big support from other departments. Special thanks go to the Department of Detectors and Nuclear Electronics. Our division handles many service-oriented activities. In daily work we answer many IT-related questions and deliver our help in order to solve hardware and software problems. The style of our work can be described as a result-oriented one. Here is the list of our biggest achievements: · construction of the server room; · implementation of two electronic bank systems; · development of the dynamic hardware and software inventory system; · development of the Scientific Activity Database. (author)

  6. Chemical Technology Division. Annual technical report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems.

  7. Advanced coal combustion technologies and their environmental impact

    International Nuclear Information System (INIS)

    Bozicevic, Maja; Feretic, Danilo; Tomsic, Zeljko

    1997-01-01

    Estimations of world energy reserves show that coal will remain the leading primary energy source for electricity production in the foreseeable future. In order to comply with ever stricter environmental regulations and to achieve efficient use of limited energy resources, advanced combustion technologies are being developed. The most promising are the pressurised fluidized bed combustion (PFBC) and the integrated gasification combined cycle (IGCC). By injecting sorbent in the furnace, PFBC removes more than 90 percent of SO 2 in flue gases without additional emission control device. In addition, due to lower combustion temperature, NO x emissions are around 90 percent lower than those from pulverised coal (PC) plant. IGCC plant performance is even more environmentally expectable and its high efficiency is a result of a combined cycle usage. Technical, economic and environmental characteristics of mentioned combustion technologies will be presented in this paper. Comparison of PFBC, IGCC and PC power plants economics and air impact will also be given. (Author)

  8. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature super-conductors. The Division's wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by governmental and industrial

  9. The technology available for more efficient combustion of waste gases

    International Nuclear Information System (INIS)

    Burrows, J.

    1999-01-01

    Alternative combustion technologies for open flare systems are discussed, stressing their advantages and limitations while meeting the fundamental requirements of personnel and plant safety, high destruction efficiencies, environmental parameters and industrial reliability. The use of BACT (Best Available Control Technologies) is dependent on the destruction efficiency of waste gas defined by regulatory agencies or industrial leaders. Enclosed vapour combustors and high destruction efficiency thermal oxidation are two of the technologies which result in more efficient combustion of waste gases. There are several conditions that should be considered when choosing combustion equipment for the disposal of waste gas. These include volatile organic compounds content, lower heating value, the composition of the waste gas, the specified combustion efficiency, design flow rates, smokeless operation, operating conditions, ground level radiation, SO 2 dispersion, environmental and social expectations, and economic limitation. 10 figs

  10. Chemical Technology Division annual technical report, 2001

    International Nuclear Information System (INIS)

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-01-01

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors

  11. Fundamental and Technical Challenges for a Compatible Design Scheme of Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Chuguang Zheng

    2015-03-01

    Full Text Available Oxyfuel combustion with carbon capture and sequestration (CCS is a carbon-reduction technology for use in large-scale coal-fired power plants. Significant progress has been achieved in the research and development of this technology during its scaling up from 0.4 MWth to 3 MWth and 35 MWth by the combined efforts of universities and industries in China. A prefeasibility study on a 200 MWe large-scale demonstration has progressed well, and is ready for implementation. The overall research development and demonstration (RD&D roadmap for oxyfuel combustion in China has become a critical component of the global RD&D roadmap for oxyfuel combustion. An air combustion/oxyfuel combustion compatible design philosophy was developed during the RD&D process. In this paper, we briefly address fundamental research and technology innovation efforts regarding several technical challenges, including combustion stability, heat transfer, system operation, mineral impurities, and corrosion. To further reduce the cost of carbon capture, in addition to the large-scale deployment of oxyfuel technology, increasing interest is anticipated in the novel and next-generation oxyfuel combustion technologies that are briefly introduced here, including a new oxygen-production concept and flameless oxyfuel combustion.

  12. Materials and Components Technology Division research summary, 1992

    International Nuclear Information System (INIS)

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database

  13. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  14. Feasibility Assessment of CO2 Capture Retrofitted to an Existing Cement Plant : Post-combustion vs. Oxy-fuel Combustion Technology

    NARCIS (Netherlands)

    Gerbelová, Hana; Van Der Spek, Mijndert; Schakel, Wouter

    2017-01-01

    This research presents a preliminary techno-economic evaluation of CO2 capture integrated with a cement plant. Two capture technologies are evaluated, monoethanolamine (MEA) post-combustion CO2 capture and oxy-fuel combustion. Both are considered potential technologies that could contribute to

  15. CSIR Division of Mining Technology annual review 1993/94

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Division of Mining Technology of the CSIR (Council for Scientific and Industrial Research) works in partnership with the mining industry to solve problems threatening the health, safety and well-being of the workforce, and the productivity of mining operations through the development and implementation of knowledge and technology. The annual review describes the Division's research projects in the following field: rock engineering (for gold, platinum and coal mining); mining environment; occupational hygiene; surface environment; and mining equipment and systems (systems and equipment, orebody information, coal mining and causes of accidents). Details are also given of the Division's publications, research and consultancy services and information centre.

  16. Low emission turbulent technology for fuel combustion

    International Nuclear Information System (INIS)

    Finker, F. Z.; Kubyshkin, I. B.; Zakharov, B. Yu.; Akhmedov, D. B.; Sobchuk, Ch.

    1997-01-01

    The company 'POLITEKHENERGO' in co-operation and the Russian-Poland firm 'EnergoVIR' have performed investigations for modernization of the current existing boilers. A low emission turbulent technology has been used for the modernization of 10 industrial boilers. The reduction of NO x emissions is based on the following processes: 1) multistage combustion assured by two counter-deviated fluxes; 2) Some of the combustion facilities have an abrupt slope and a reduced air supply which leads to an intense separation of the fuel in the bottom part and a creation of a low-temperature combustion zone where the active restoration of the NO x takes part; 3) The influence of the top high-temperature zone on the NO x formation is small. Thus the 'sandwich' consisting of 'cold' and'hot' combustion layers provides a full rate combustion. This technique permits to: decrease of the NO x and CO x down to the European standard values;increase of the efficiency in 1-2%; obtain a stable coal combustion up to 97-98%; assure the large loading range (30 -100%); modernize and use the old boilers

  17. 75 FR 39044 - Unisys Corporation, Technology Business Segment, Unisys Information Technology Division, Formerly...

    Science.gov (United States)

    2010-07-07

    ..., Technology Business Segment, Unisys Information Technology Division, Formerly Known as BETT, Including... Assistance on April 29, 2010, applicable to workers of Unisys Corporation, Technology Business Segment... employees under the control of the Plymouth, Michigan location of Unisys Corporation, Technology Business...

  18. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  19. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  20. The combustion of biomass - the impact of its types and combustion technologies on the emission of nitrogen oxide

    Directory of Open Access Journals (Sweden)

    Mladenović Milica R.

    2016-01-01

    Full Text Available Harmonization of environmental protection and the growing energy needs of modern society promote the biomass application as a replacement for fossil fuels and a viable option to mitigate the green house gas emissions. For domestic conditions this is particularly important as more than 60% of renewables belongs to biomass. Beside numerous benefits of using biomass for energy purposes, there are certain drawbacks, one of which is a possible high emission of NOx during the combustion of these fuels. The paper presents the results of the experiments with multiple biomass types (soybean straw, cornstalk, grain biomass, sunflower oil, glycerin and paper sludge, using different combustion technologies (fluidized bed and cigarette combustion, with emphasis on the emission of NOx in the exhaust gas. A presentation of the experimental installations is given, as well as an evaluation of the effects of the fuel composition, combustion regimes and technology on the NOx emissions. As the biomass combustion took place at temperatures low enough that thermal and prompt NOx can be neglected, the conclusion is the emissions of nitrogen oxides primarily depend on the biomass composition- it is increasing with the increase of the nitrogen content, and decreases with the increase of the char content which provides catalytic surface for NOx reduction by CO. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed i br. III42011: Development and improvement of technologies for efficient use of energy of several forms of agricultural and forest biomass in an environmentally friendly manner, with the possibility of cogeneration

  1. Technology assessment of thermal treatment technologies using ORWARE

    International Nuclear Information System (INIS)

    Assefa, G.; Eriksson, O.; Frostell, B.

    2005-01-01

    A technology assessment of thermal treatment technologies for wastes was performed in the form of scenarios of chains of technologies. The Swedish assessment tool, ORWARE, was used for the assessment. The scenarios of chains of thermal technologies assessed were gasification with catalytic combustion, gasification with flame combustion, incineration and landfilling. The landfilling scenario was used as a reference for comparison. The technologies were assessed from ecological and economic points of view. The results are presented in terms of global warming potential, acidification potential, eutrophication potential, consumption of primary energy carriers and welfare costs. From the simulations, gasification followed by catalytic combustion with energy recovery in a combined cycle appeared to be the most competitive technology from an ecological point of view. On the other hand, this alternative was more expensive than incineration. A sensitivity analysis was done regarding electricity prices to show which technology wins at what value of the unit price of electricity (SEK/kW h). Within this study, it was possible to make a comparison both between a combined cycle and a Rankine cycle (a system pair) and at the same time between flame combustion and catalytic combustion (a technology pair). To use gasification just as a treatment technology is not more appealing than incineration, but the possibility of combining gasification with a combined cycle is attractive in terms of electricity production. This research was done in connection with an empirical R and D work on both gasification of waste and catalytic combustion of the gasified waste at the Division of Chemical Technology, Royal Institute of Technology (KTH), Sweden

  2. Review of modern low emissions combustion technologies for aero gas turbine engines

    Science.gov (United States)

    Liu, Yize; Sun, Xiaoxiao; Sethi, Vishal; Nalianda, Devaiah; Li, Yi-Guang; Wang, Lu

    2017-10-01

    Pollutant emissions from aircraft in the vicinity of airports and at altitude are of great public concern due to their impact on environment and human health. The legislations aimed at limiting aircraft emissions have become more stringent over the past few decades. This has resulted in an urgent need to develop low emissions combustors in order to meet legislative requirements and reduce the impact of civil aviation on the environment. This article provides a comprehensive review of low emissions combustion technologies for modern aero gas turbines. The review considers current high Technologies Readiness Level (TRL) technologies including Rich-Burn Quick-quench Lean-burn (RQL), Double Annular Combustor (DAC), Twin Annular Premixing Swirler combustors (TAPS), Lean Direct Injection (LDI). It further reviews some of the advanced technologies at lower TRL. These include NASA multi-point LDI, Lean Premixed Prevaporised (LPP), Axially Staged Combustors (ASC) and Variable Geometry Combustors (VGC). The focus of the review is placed on working principles, a review of the key technologies (includes the key technology features, methods of realising the technology, associated technology advantages and design challenges, progress in development), technology application and emissions mitigation potential. The article concludes the technology review by providing a technology evaluation matrix based on a number of combustion performance criteria including altitude relight auto-ignition flashback, combustion stability, combustion efficiency, pressure loss, size and weight, liner life and exit temperature distribution.

  3. Effect of automatic control technologies on emission reduction in small-scale combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M. [Control Engineering Laboratory, University of Oulu (Finland)

    2007-07-01

    Automatic control can be regarded as a primary measure for preventing combustion emissions. In this view, the control technology covers broadly the control methods, sensors and actuators for monitoring and controlling combustion. In addition to direct control of combustion process, it can also give tools for condition monitoring and optimisation of total heat consumption by system integration thus reducing the need for excess conversion of energy. Automatic control has already shown its potential in small-scale combustion. The potential, but still unrealised advantages of automatic control in this scale are the adaptation to changes in combustion conditions (fuel, environment, device, user) and the continuous optimisation of the air/fuel ratio. Modem control technology also covers combustion condition monitoring, diagnostics, and the higher level optimisation of the energy consumption with system integration. In theory, these primary measures maximise the overall efficiency, enabling a significant reduction in fuel consumption and thus total emissions per small-scale combustion unit, specifically at the annual level.

  4. Biomass combustion technologies for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr. [Appel Consultants, Inc., Stevenson Ranch, CA (United States); McGowin, C.R.; Hughes, E.E. [Electric Power Research Institute, Palo Alto, CA (United States)

    1993-12-31

    Technology in power production from biomass has been advancing rapidly. Industry has responded to government incentives such as the PURPA legislation in the US and has recognized that there are environmental advantages to using waste biomass as fuel. During the 1980s many new biomass power plants were built. The relatively mature stoker boiler technology was improved by the introduction of water-cooled grates, staged combustion air, larger boiler sizes up to 60 MW, higher steam conditions, and advanced sootblowing systems. Circulating fluidized-bed (CFB) technology achieved full commercial status, and now is the leading process for most utility-scale power applications, with more complete combustion, lower emissions, and better fuel flexibility than stoker technology. Bubbling fluidized-bed (BFB) technology has an important market niche as the best process for difficult fuels such as agricultural wastes, typically in smaller plants. Other biomass power generation technologies are being developed for possible commercial introduction in the 1990s. Key components of Whole Tree Energy{trademark} technology have been tested, conceptual design studies have been completed with favorable results, and plans are being made for the first integrated process demonstration. Fluidized-bed gasification processes have advanced from pilot to demonstration status, and the world`s first integrated wood gasification/combined cycle utility power plant is starting operation in Sweden in early 1993. Several European vendors offer biomass gasification processes commercially. US electric utilities are evaluating the cofiring of biomass with fossil fuels in both existing and new plants. Retrofitting existing coal-fired plants gives better overall cost and performance results than any biomass technologies;but retrofit cofiring is {open_quotes}fuel-switching{close_quotes} that provides no new capacity and is attractive only with economic incentives.

  5. Co-combustion of waste materials using fluidized bed technology

    Energy Technology Data Exchange (ETDEWEB)

    M. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Boavida; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2004-07-01

    There is growing interest in using renewable fuels in order to sustain the CO{sub 2} accumulation. Several waste materials can be used as coal substitutes as long as they contain significant combustible matter, as for example MSW and sewage sludge. Besides the outcome of the energetic valorization of such materials, combustion must be regarded as a pre-treatment process, contributing to the safe management of wastes. Landfilling is an expensive management option and requires a previous destruction of the organic matter present in residues, since its degradation generates greenhouse gases and produces acidic organic leachates. Fluidized bed combustion is a promising technology for the use of mixtures of coal and combustible wastes. This paper presents INETI's experience in the co-combustion of coal with this kind of residues performed in a pilot fluidized bed. Both the RDF (from MSW and sewage sludge) and sewage sludge combustion problems were addressed, relating the gaseous emissions, the behaviour of metals and the leachability of ashes and a comparison was made between co-combustion and mono-combustion in order to verify the influence of the utilization of coal. 9 refs., 1 fig., 3 tabs.

  6. Recent Progress in Space-Division Multiplexed Transmission Technologies

    DEFF Research Database (Denmark)

    Morioka, Toshio

    2013-01-01

    Recent development of transmission technologies based on space-division multiplexing is described with future perspectives including a recent achievement of one Pb/s transmission in a single strand of fiber....

  7. Catalytic combustion of gasified waste - Experimental part. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaeraas, Sven; Kusar, Henrik [Royal Institute of Technology, Stockholm (Sweden). Chemical Engineering and Technology

    2003-08-01

    This final report covers the work that has been performed within the project P 10547-2, 'Catalytic combustion of gasified waste - system analysis ORWARE'. This project is part of the research programme 'Energy from Waste' financed by the Swedish National Energy Administration. The project has been carried out at the division of Industrial Ecology and at the division of Chemical Technology at Royal Inst. of Technology. The aim of the project has been to study the potentials for catalytic combustion of gasified waste. The supposed end user of the technique is a smaller community in Sweden with 15,000-20,000 inhabitants. The project contains of two sub projects: an experimental part carried out at Chemical Technology and a system analysis carried out at Industrial Ecology. This report covers the experimental part of the project carried out at Chemical Technology. The aim for the experimental part has been to develop and test catalysts with long life-time and a high performance, to reduce the thermal-NO{sub x} below 5 ppm and to significantly reduce NO{sub x} formed from fuel-bound nitrogen. Different experimental studies have been carried out within the project: a set-up of catalytic materials have been tested over a synthetic mixture of the gasified waste, the influence of sulfur present in the gas stream, NO{sub x} formation from fuel bound nitrogen, kinetic studies of CO and H{sub 2} with and without the presence of water and the effects of adding a co-metal to palladium catalysts Furthermore a novel annular reactor design has been used to carry out experiments for kinetic measurements. Real gasification tests of waste pellets directly coupled to catalytic combustion have successfully been performed. The results obtained from the experiments, both the catalytic combustion and from the gasification, have been possible to use in the system analysis. The aim of the system analysis of catalytic combustion of gasified waste takes into consideration

  8. Improvement study for the dry-low-NOx hydrogen micromix combustion technology

    Directory of Open Access Journals (Sweden)

    A. Haj Ayed

    2015-09-01

    Full Text Available The dry-low-NOx (DLN micromix combustion principle is developed for the low emission combustion of hydrogen in an industrial gas turbine APU GTCP 36-300. The further decrease of NOx emissions along a wider operation range with pure hydrogen supports the introduction of the micromix technology to industrial applications. Experimental and numerical studies show the successful advance of the DLN micromix combustion to extended DLN operation range. The impact of the hydrogen fuel properties on the combustion principle and aerodynamic flame stabilization design laws, flow field, flame structure and emission characteristics is investigated by numerical analysis using an eddy dissipation concept combustion model and validated against experimental results.

  9. Chemical Engineering Division annual technical report, 1980

    International Nuclear Information System (INIS)

    Burris, L.; Webster, D.S.; Barney, D.L.; Cafasso, F.A.; Steindler, M.J.

    1981-06-01

    Highlights of the Chemical Engineering (CEN) Division's activities during 1980 are presented. In this period, CEN conducted research and development in the following areas: (1) rechargeable lithium-aluminum/iron sulfide batteries for electric vehicles and other applications; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) energy-efficient industrial electrochemical processes; (4) molten carbonate fuel cells for use by electric utilities; (5) coal technology, mainly fluidized-bed combustion of coal in the presence of SO 2 sorbent of limestone; (6) heat- and seed-recovery technology for open-cycle magnetohydrodynamic systems; (7) solar energy collectors and thermal energy storage; (8) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (9) fuel cycle technology - management of nuclear wastes, reprocessing of nuclear fuels, and proof-of-breeding studies for the Light Water Breeder Reactor; and (10) magnetic fusion research - systems analysis and engineering experimentation, materials research, and neutron dosimetry and damage analysis. The CEN Division also has a basic energy sciences program, which includes experimental and theoretical research on (1) the catalytic hydrogenation of carbon monoxide and methanol homologation, (2) the thermodynamic properties of a wide variety of inorganic and organic materials, (3) significant mechanisms for the formation of atmospheric sulfate and nitrogen-bearing aerosols, (4) processes occurring at electrodes and in electrolytes, and (5) the physical properties of salt vapors. In addition, the Division operated the Central Analytical Chemistry Laboratory

  10. 1998 Chemical Technology Division Annual Technical Report. Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-01-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented

  11. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard [Washington Univ., St. Louis, MO (United States); Kumfer, Benjamin [Washington Univ., St. Louis, MO (United States); Gopan, Akshay [Washington Univ., St. Louis, MO (United States); Yang, Zhiwei [Washington Univ., St. Louis, MO (United States); Phillips, Jeff [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Pint, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-29

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702) include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.

  12. RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW - VOLUME 2. APPENDICES

    Science.gov (United States)

    The report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories--cordwood stoves, fireplaces, masonry heat...

  13. Taylor revisited: Gender segregation and division of labour in the ICT - sector (information and communication technology)

    DEFF Research Database (Denmark)

    Nygaard, Else

    2001-01-01

    Information and communication technology, division of labour, gender segregation, working conditions......Information and communication technology, division of labour, gender segregation, working conditions...

  14. Natural gas reburning technology for NOx reduction from MSW combustion systems

    International Nuclear Information System (INIS)

    Penterson, C.A.; Abbasi, H.; Khinkis, M.J.; Wakamura, Y.; Linz, D.G.

    1990-01-01

    A technology for reducing emissions from municipal solid waste combustion systems through advanced combustion techniques is being developed. Pilot testing of natural gas reburning was first performed in the Institute of Gas Technology's pilot-scale furnace under conditions simulating the firing of 1.7 x 10 6 Btu/hr (0.5 MWth) of MSW. Pilot testing then continued in Riley Stoker Corporation's 3 x 10 6 Btu/hr (0.88 MWth), 7 ton/day, pilot-scale MSW combustor using actual MSW in both test series, injection of up to 15% (HHV basis) natural gas reduced NO, by 50--70% while maintaining or improving combustion efficiency as measured by CO and hydrocarbon emissions and temperature stability. This paper will review the test results and discuss the status of the full-scale field demonstration testing that is planned for 1990

  15. Laser and Plasma Technology Division annual report 1992

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1993-01-01

    The report describes the research and development (R and D) activities of Laser and Plasma technology Division, Bhabha Atomic Research Centre, Bombay during 1992. The broad programme objectives of the Division are: (1) development and technology readiness studies of laser, plasma and electron beam devices, (2) studies on related physical phenomena with a view to gain better understanding of the devices, and (3) improvements in technology and exploration of new areas. The R and D activities are reported under the sections entitled: (1) Laser Activities, (2) Thermal Plasma Activities, and (3) Electron Beam Activities. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. Some of the highlights of R and D work during 1992 are:(1) fabrication of an electron beam sustained CO 2 laser, (2) commissioning of a 6.5 m high LMMHD (Liquid Metal Magneto-hydrodynamic) generator loaded with 1.5 tons of mercury, (3) fabrication of electron beam processing equipment, and (4) study of the magnetic properties of vanadium nitride films produced by reactive sputtering in an indigenously developed DC magnetron sputtering equipment. (author). 56 figs., 6 tabs

  16. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  17. Combustion technology developments in power generation in response to environmental challenges

    Energy Technology Data Exchange (ETDEWEB)

    BeerBeer, J.M. [Massachusetts Inst. of Technology, Dept. of Chemical Engineering, Cambridge, MA (United States)

    2000-07-01

    Combustion system development in power generation is discussed ranging from the pre-environmental era in which the objectives were complete combustion with a minimum of excess air and the capability of scale up to increased boiler unit performances, through the environmental era (1970-), in which reduction of combustion generated pollution was gaining increasing importance, to the present and near future in which a combination of clean combustion and high thermodynamic efficiency is considered to be necessary to satisfy demands for CO{sub 2} emissions mitigation. From the 1970's on, attention has increasingly turned towards emission control technologies for the reduction of oxides of nitrogen and sulfur, the so-called acid rain precursors. By a better understanding of the NO{sub x} formation and destruction mechanisms in flames, it has become possible to reduce significantly their emissions via combustion process modifications, e.g. by maintaining sequentially fuel-rich and fuel-lean combustion zones in a burner flame or in the combustion chamber, or by injecting a hydrocarbon rich fuel into the NO{sub x} bearing combustion products of a primary fuel such as coal. Sulfur capture in the combustion process proved to be more difficult because calcium sulfate, the reaction product of SO{sub 2} and additive lime, is unstable at the high temperature of pulverised coal combustion. It is possible to retain sulfur by the application of fluidised combustion in which coal burns at much reduced combustion temperatures. Fluidised bed combustion is, however, primarily intended for the utilisation of low grade, low volatile coals in smaller capacity units, which leaves the task of sulfur capture for the majority of coal fired boilers to flue gas desulfurisation. During the last decade, several new factors emerged which influenced the development of combustion for power generation. CO{sub 2} emission control is gaining increasing acceptance as a result of the international

  18. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  19. Chemical Technology Division. Annual technical report, 1995

    International Nuclear Information System (INIS)

    Laidler, J.J.; Myles, K.M.; Green, D.W.; McPheeters, C.C.

    1996-06-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1995 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (3) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (4) processes for separating and recovering selected elements from waste streams, concentrating low-level radioactive waste streams with advanced evaporator technology, and producing 99 Mo from low-enriched uranium; (5) electrometallurgical treatment of different types of spent nuclear fuel in storage at Department of Energy sites; and (6) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems

  20. Techno-economic analysis of PC versus CFB combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-01

    In the last ten years circulating fluidised bed combustion (CFBC) has emerged as a viable alternative to pulverised coal combustion (PCC) for utility-scale coal power generation, with widespread deployment of 300 MW boilers and the successful demonstration of supercritical units of up to 600 MW. Although CFBC offers a greater degree of fuel flexibility and does not usually require downstream flue gas cleaning, high capital costs and high auxiliary power use have hindered the adoption of CFBC for utility power generation. Recent advances in CFBC unit capacity and steam conditions have led to higher efficiencies and economies of scale, with the result that a CFBC plant may now be more economically favourable than a PCC plant depending on a range of factors such as available fuels and regional emissions limits. This report reviews the state-of-the-art for both technologies and provides a comparison of their relative performances and economic costs. Standard operational parameters such as efficiency, availability, and flexibility are assessed, in addition to relative suitability for biomass cofiring and oxyfuel combustion as strategies for carbon mitigation. A review of recent cost evaluations of the two technologies is accompanied by a breakdown of individual plant expenses including flue gas scrubbing equipment and ash recycle value.

  1. Influence of injector technology on injection and combustion development - Part 2: Combustion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R.; Salvador, F.J.; Gimeno, J.; Morena, J. de la [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, E-46022 (Spain)

    2011-04-15

    The influence of injection technology on the fuel-air mixing process and the combustion development are analyzed by means of visualization techniques. For this purpose, two injectors (one solenoid and one piezoelectric) are characterized using an optical accessible two stroke engine. Visualization of liquid penetration has allowed the measurement of the stabilized liquid length, which is related with the efficiency of fuel-air mixing process. A theoretical derivation is used in order to relate this liquid length with chamber conditions, as well as to make a temporal analysis of these phenomena. After this, natural flame emission and chemiluminescence techniques are carried out. These results indicate that the piezoelectric system has a more efficient fuel-air mixing and combustion, reducing the characteristic times as well as soot formation. Finally, a correlation for the ignition delay of the two systems is obtained. (author)

  2. Future combustion technology for synthetic and renewable fuels in compression ignition engines (REFUEL). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aakko-Saksa, P.; Brink, A.; Happonen, M. [and others

    2012-07-01

    This domestic project, Future Combustion Technology for Synthetic and Renewable Fuels in Compression Ignition Engines (ReFuel), was part of a Collaborative Task 'Future Combustion Technology for Synthetic and Renewable Fuels in Transport' of International Energy Agency (IEA) Combustion Agreement. This international Collaborative Task is coordinated by Finland. The three-year (2009-2011) prooject was a joint research project with Aalto University (Aalto), Tampere University of Technology (TUT), Technical Research Centre of Finland (VTT) and Aabo Akademi University (AAU). The project was funded by TEKES, Waertsilae Oyj, Agro Sisu Power, Aker Arctic Technology Oy and the research partners listed above. Modern renewable diesel fuels have excellent physical and chemical properties, in comparison to traditional crude oil based fuels. Purely paraffinic fuels do not contain aromatic compounds and they are totally sulphur free. Hydrotreated Vegetable Oil (HVO) was studied as an example of paraffinic high cetane number (CN) diesel fuels. HVO has no storage and low temperature problems like the fatty acid methyl esters (FAMEs) have. The combustion properties are better than those of crude oil based fuels and FAME, because they have very high cetane numbers and contain no polyaromatic hydrocarbons (PAH). With low HVO density, viscosity and distillation temperatures, these advantageous properties allow far more advanced combustion strategies, such as very high exhaust gas recirculation (EGR) rates or extreme Miller timings, than has been possible with current fossil fuels. The implementation of these advanced combustion technologies, together with the novel renewable diesel fuel, brought significant nitrogen oxides (NO{sub x}), particulate matter (PM) emission reductions with no efficiency losses. (orig.)

  3. Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy

    International Nuclear Information System (INIS)

    Berggren, Christian; Magnusson, Thomas

    2012-01-01

    Reducing transport emissions, in particular vehicular emissions, is a key element for mitigating the risks of climate change. In much of the academic and public discourse the focus has been on alternative vehicle technologies and fuels (e.g. electric cars, fuel cells and hydrogen), whereas vehicles based on internal combustion engines have been perceived as close to their development limits. This paper offers a different perspective by demonstrating the accelerated improvement processes taking place in established combustion technologies as a result of a new competition between manufacturers and technologies, encouraged both by more stringent EU legislation and new CAFE levels in the US. The short-term perspective is complemented by an analysis of future improvement potentials in internal combustion technologies, which may be realized if efficient regulation is in place. Based on a comparison of four different regulatory approaches, the paper identifies the need for a long-term technology-neutral framework with stepwise increasing stringencies, arguing that this will encourage continual innovation and diffusion in the most effective way. - Highlights: ► From 1990 to 2008, CO 2 emissions from road transportation in the EU increased by 21%. ► Alternative vehicles are important, but internal combustion engines (ICE) will remain dominant. ► The paper shows how competition and new regulation accelerate the improvement of ICE-vehicles. ► The key factor for long-term emissions reduction is appropriate regulation, not technology. ► Most effective is a technology-neutral framework with stepwise increasing stringencies.

  4. Progress report for 1978-87 of the Food Technology and Enzyme Engineering Division

    International Nuclear Information System (INIS)

    Adhikari, H.R.; Ninjoor, V.; Satyanarayan, V.

    1988-01-01

    The salient features of the research and development (R and D) activities of the Food Technology and Enzyme Engineering Division of the Bhabha Atomic Research Centre, Bombay, during the decade 1978-1987 are summarized. The Division was a part of the erstwhile Biochemistry and Food Technology which was bifurcated in 1985. The main thrust of the Division's R and D work is directed towards the development of appropriate technologies for radiation preservation of agricultural produce in natural form for prolonged periods without any perceptible change in quality attributes. The suitable parameters have been evolved to apply radiation technology for: (1) arresting sprouting losses in turbers and bulbs, (2) controlling infestation of cereals, spices and ready to eat food items, by insects, microbial pests and pathogens and (3) controlling spoilage of sea foods, fruits and vegetables. It is remarkable to note that the data collected during wholesomeness and toxicological studies of various irradiated food products have been used by the Joint Expert Committee on Food Irradiation of WHO/IAEA/FAO to accord unconditional health and safety clearance to irradiation process using upto 10 KGy radiation doses. The products treated with gamma radiation within this limit do not require toxicological evaluation. The technique for poly-valent radio-vaccine infective diseases in farm animals have been standardized and a vaccine to prevent Salmonella infection in poultry is undergoing field trials in farms. The other activities of the Division are in the fields of enzyme technology, photosynthetic process, and toxicity and genotoxicity of food ingredients and additives. Lists of staff-members of the Division and their publications, their participation in various symposia, seminars, conferences etc. are appended. (M.G.B.)

  5. Technology for Transient Simulation of Vibration during Combustion Process in Rocket Thruster

    Science.gov (United States)

    Zubanov, V. M.; Stepanov, D. V.; Shabliy, L. S.

    2018-01-01

    The article describes the technology for simulation of transient combustion processes in the rocket thruster for determination of vibration frequency occurs during combustion. The engine operates on gaseous propellant: oxygen and hydrogen. Combustion simulation was performed using the ANSYS CFX software. Three reaction mechanisms for the stationary mode were considered and described in detail. The way for obtaining quick CFD-results with intermediate combustion components using an EDM model was found. The way to generate the Flamelet library with CFX-RIF was described. A technique for modeling transient combustion processes in the rocket thruster was proposed based on the Flamelet library. A cyclic irregularity of the temperature field like vortex core precession was detected in the chamber. Frequency of flame precession was obtained with the proposed simulation technique.

  6. RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    This report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories -- cordwood stoves, fireplaces, masonry h...

  7. Employee retention within the Information Technology Division of a South African Bank

    Directory of Open Access Journals (Sweden)

    Joy Mohlala

    2012-05-01

    Research purpose: To understand the challenges faced by the bank’s information technology leadership team to retain employees. Motivation for the study: To understand the challenges faced in attracting and retaining information technology professionals, and how this can serve as input for reducing skills shortages in Information Technology Divisions. Research design, approach and method: An interpretive approach employing a case study strategy and qualitative methods was employed. Semi structured interviews were conducted with thirteen senior managers and four directors of the bank’s Information Technology Division, who were selected on a purposive basis. Data were subjected to Creswell’s four stage data analysis process. Main findings: Findings indicate that employee turnover is the main contributor of skills shortages within the studied division. The lack of a retention strategy is making it difficult for leadership to identify crucial skills that must be retained. Practical/managerial implications: Evidence suggests that this bank, although they would like to retain information technology professionals, is not creating an environment conducive to do this, as little attention is paid to the unique demands of this group of employees. Contribution/value-add: This study investigates a specific group of employees for which a unique retention strategy does not exist. In understanding the challenges that impact on attracting and retaining information technology professionals, this study can contribute to the development of a retention strategy for these employees.

  8. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  9. The Chemical Technology Division at Argonne National Laboratory: Applying chemical innovation to environmental problems

    International Nuclear Information System (INIS)

    1995-01-01

    The Chemical Technology Division is one of the largest technical divisions at Argonne National Laboratory, a leading center for research and development related to energy and environmental issues. Since its inception in 1948, the Division has pioneered in developing separations processes for the nuclear industry. The current scope of activities includes R ampersand D on methods for disposing of radioactive and hazardous wastes and on energy conversion processes with improved efficiencies, lower costs, and reduced environmental impact. Many of the technologies developed by CMT can be applied to solve manufacturing as well as environmental problems of industry

  10. Results concerning a clean co-combustion technology of waste biomass with fossil fuel, in a pilot fluidised bed combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, Ioana; Trif-Tordai, Gavril; Ungureanu, Corneliu; Popescu, Francisc; Lontis, Nicolae [Politehnica Univ. Timisoara (Romania). Faculty for Mechanical Engineering

    2008-07-01

    The research focuses on a facility, the experimental results, interpretation and future plans concerning a new developed technology of using waste renewable energy by applying the cocombustion of waste biomass with coal, in a fluidised bed system. The experimental facility is working entirely in accordance to the allowed limits for the exhaust flue gas concentration, with special concern for typical pollutants. The experiments conclude that the technology is cleaner, has as main advantage the possibility to reduce both the SO{sub 2} and CO{sub 2} exhaust in comparison to standard fossil fuel combustion, under comparable circumstances. The combustion is occurring in a stable fluidised bed. (orig.)

  11. Lab-scale investigation of Middle-Bosnia coals to achieve high-efficient and clean combustion technology

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2014-01-01

    Full Text Available This paper describes full lab-scale investigation of Middle-Bosnia coals launched to support selection an appropriate combustion technology and to support optimization of the boiler design. Tested mix of Middle-Bosnia brown coals is projected coal for new co-generation power plant Kakanj Unit 8 (300-450 MWe, EP B&H electricity utility. The basic coal blend consisting of the coals Kakanj: Breza: Zenica at approximate mass ratio of 70:20:10 is low grade brown coal with very high percentage of ash - over 40%. Testing that coal in circulated fluidized bed combustion technique, performed at Ruhr-University Bohum and Doosan Lentjes GmbH, has shown its inconveniency for fluidized bed combustion technology, primarily due to the agglomeration problems. Tests of these coals in PFC (pulverized fuel combustion technology have been performed in referent laboratory at Faculty of Mechanical Engineering of Sarajevo University, on a lab-scale PFC furnace, to provide reliable data for further analysis. The PFC tests results are fitted well with previously obtained results of the burning similar Bosnian coal blends in the PFC dry bottom furnace technique. Combination of the coals shares, the process temperature and the air combustion distribution for the lowest NOx and SO2 emissions was found in this work, provided that combustion efficiency and CO emissions are within very strict criteria, considering specific settlement of lab-scale furnace. Sustainability assessment based on calculation economic and environmental indicators, in combination with Low Cost Planning method, is used for optimization the power plant design. The results of the full lab-scale investigation will help in selection optimal Boiler design, to achieve sustainable energy system with high-efficient and clean combustion technology applied for given coals.

  12. Laser and Plasma Technology Division : annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Bombay during 1991 is presented. The R and D activities are reported under the headings (1) Laser Activities, (2) Thermal Plasma Activities, (3) Electron Beam Activities and (4) Divisional Workshop Activities. List of publications is given at the end of each activity heading

  13. Influence of injector technology on injection and combustion development - Part 1: Hydraulic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R.; Salvador, F.J.; Gimeno, J.; Morena, J. de la [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, E-46022 (Spain)

    2011-04-15

    An experimental study of two real multi-hole Diesel injectors is performed under current DI Diesel engine operating conditions. The aim of the investigation is to study the influence of injector technology on the flow at the nozzle exit and to analyse its effect on the spray in evaporative conditions and combustion development. The injectors used are two of the most common technologies used nowadays: solenoid and piezoelectric. The nozzles for both injectors are very similar since the objective of the work is the understanding of the influence of the injector technology on spray characteristics for a given nozzle geometry. In the first part of the study, experimental measurements of hydraulic characterization have been analyzed for both systems. Analysis of spray behaviour in evaporative conditions and combustion development will be carried out in the second part of the work. Important differences between both injectors have been observed, especially in their transient opening and closing of the needle, leading to a more efficient air-fuel mixing and combustion processes for the piezoelectric actuated injector. (author)

  14. Chemical Sciences Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  15. Summary of beryllium electrorefining technology developed by KBI Division of Cabot Berylco Inc

    International Nuclear Information System (INIS)

    Pistole, C.O.

    1983-01-01

    Proprietary beryllium electrorefining technology has been purchased from the KBI Division of Cabot Berylco Inc. by Rockwell International, Rocky Flats Plant, as part of a DOE beryllium option study. This technology has been reviewed and is summarized. 12 figures, 7 tables

  16. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    Science.gov (United States)

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  18. Application and demonstration of oxyfuel combustion technologies to the existing power plant in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Terutoshi; Yamada, Toshihiko; Watanabe, Shuzo; Kiga, Takashi; Gotou, Takahiro [IHI Corporation, Tokyo (Japan). Power Plant Div.; Misawa, Nobuhiro [Electric Power Development Co., Ltd., Tokyo (Japan); Spero, Chris [CS Energy Ltd, Brisbane (Australia)

    2013-07-01

    Oxyfuel combustion is able to directly make the highly concentrated CO{sub 2} from the flue gas of pulverized coal fired power plant and, therefore, is expected as one of the promising technologies for CO{sub 2} capture. We are advancing the Oxyfuel combustion demonstration project, which is called Callide Oxyfuel Project, with the support of both Australian and Japanese governments. Currently the boiler retrofit work is completed and the commissioning in air combustion is going on. In this paper, we introduce the general outline of the Callide Oxyfuel Project and its progress.

  19. American Chemical Society. Division of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The meeting of the 201st American Chemical Society Division of Nuclear Chemistry and Technology was comprised from a variety of topics in this field including: nuclear chemistry, nuclear physics, and nuclear techniques for environmental studies. Particular emphasis was given to fundamental research concerning nuclear structure (seven of the nineteen symposia) and studies of airborne particle monitoring and transport (five symposia). 105 papers were presented

  20. Advances in nickel hydrogen technology at Yardney Battery Division

    Science.gov (United States)

    Bentley, J. G.; Hall, A. M.

    1987-01-01

    The current major activites in nickel hydrogen technology being addressed at Yardney Battery Division are outlined. Five basic topics are covered: an update on life cycle testing of ManTech 50 AH NiH2 cells in the LEO regime; an overview of the Air Force/industry briefing; nickel electrode process upgrading; 4.5 inch cell development; and bipolar NiH2 battery development.

  1. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  2. Pressurized fluidized-bed combustion technology exchange workshop

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  3. Laser and Plasma Technology Division annual report 1994

    International Nuclear Information System (INIS)

    Venkatramani, N.; Verma, R.L.

    1995-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Bombay during the period 1994 is presented. The activities are reported under the headings: 1) laser activities, 2) thermal plasma activities, 3) electron beam activity. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. (author). refs., tabs., figs

  4. Laser and Plasma Technology Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Venkatramani, N; Verma, R L [eds.; Bhabha Atomic Research Centre, Bombay (India). Laser and Plasma Technology Div.

    1996-12-31

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division of Bhabha Atomic Research Centre, Bombay during the period 1994 is presented. The activities are reported under the headings: (1) laser activities, (2) thermal plasma activities, (3) electron beam activity. At the end of each section, a list of publications by the staff members in the field indicated by the title of the section is given. (author). refs., tabs., figs.

  5. Chemical Technology Division progress report, July 1, 1991--December 31, 1992

    International Nuclear Information System (INIS)

    Genung, R.K.; Hightower, J.R.; Bell, J.T.

    1993-05-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period July 1, 1991, through December 31, 1992. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Special programmatic activities conducted by the division are identified and described. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included

  6. Laser and Plasma Technology Division : annual report (1990-91)

    International Nuclear Information System (INIS)

    1991-01-01

    A brief account of the research and development (R and D) activities carried out by Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Bombay during the period 1990-91 is presented. The R and D activities are reported under the headings: 1) Laser Activities, 2) Thermal Plasma Activities, and 3) Electron Beam Activities. List of publications including journal articles, papers published in symposia, conferences etc. is given at the end. (original). figs

  7. Materials and Components Technology Division research summary, 1991

    International Nuclear Information System (INIS)

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base

  8. Materials and Components Technology Division research summary, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  9. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    Energy Technology Data Exchange (ETDEWEB)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non

  10. Energy and Environmental Systems Division 1981 research review

    International Nuclear Information System (INIS)

    1982-04-01

    To effectively manage the nation's energy and natural resources, government and industry leaders need accurate information regarding the performance and economics of advanced energy systems and the costs and benefits of public-sector initiatives. The Energy and Environmental Systems Division (EES) of Argonne National Laboratory conducts applied research and development programs that provide such information through systems analysis, geophysical field research, and engineering studies. During 1981, the division: analyzed the production economics of specific energy resources, such as biomass and tight sands gas; developed and transferred to industry economically efficient techniques for addressing energy-related resource management and environmental protection problems, such as the reclamation of strip-mined land; determined the engineering performance and cost of advanced energy-supply and pollution-control systems; analyzed future markets for district heating systems and other emerging energy technologies; determined, in strategic planning studies, the availability of resources needed for new energy technologies, such as the imported metals used in advanced electric-vehicle batteries; evaluated the effectiveness of strategies for reducing scarce-fuel consumption in the transportation sector; identified the costs and benefits of measures designed to stabilize the financial condition of US electric utilities; estimated the costs of nuclear reactor shutdowns and evaluated geologic conditions at potential sites for permanent underground storage of nuclear waste; evaluated the cost-effectiveness of environmental regulations, particularly those affecting coal combustion; and identified the environmental effects of energy technologies and transportation systems

  11. Division of Waste Management programs. Progress report, July-December 1978

    International Nuclear Information System (INIS)

    Lerch, R.E.; Allen, C.R.; Richardson, G.L.

    1979-07-01

    This is the eleventh progress report on Division of Waste Management programs. The report describes progress in the second half of 1978 on the following programs: intermediate-level waste solidification, chemical processing of combustible solid waste, and application of acid digestion to commercial wastes. The latter two programs were combined in October 1978 into a single program, acid digestion of combustible wastes

  12. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  13. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  14. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  15. Multi-stage combustion using nitrogen-enriched air

    Science.gov (United States)

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  16. Chemical Biodynamics Division. Annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  17. Division of Information Technology - Overview

    International Nuclear Information System (INIS)

    Szlachciak, J.

    2008-01-01

    Full text: The Division of Information Technology continued its service-oriented activities in 2007. Our main duty was a day-to-day support to all units in the Institute in IT related matters. One of our tasks was the acquiring, configuration and delivery of new computer equipment to our users. We prepared technical specification for several biddings and we verified bids received from the point of view of correctness. Due to financial support from our government, we purchased about one-fourth of our existing computer equipment. This hardware has partially replaced the old units and partially supported our new staff. Implemented at the end of 2006 the Scientific Activity Database has continued its operation and has been extended by several useful reports and fields containing important information. We started preliminary activities related to implementation of video conferencing services in our Institute. Apart of taking part in seminars and consulting several companies, we have managed to transmit a few scientific seminars from Warsaw to our department in Lodz. (author)

  18. Chemical Technology Division annual technical report 1984

    International Nuclear Information System (INIS)

    1985-02-01

    In this period, CMT conducted research and development in the following areas: (1) advanced batteries - mainly lithium alloy/metal sulfide and sodium/sulfur for electric vehicles; (2) aqueous batteries - mainly improved lead-acid and nickel/iron for electric vehicles; (3) advanced fuel cells with molten carbonate or solid oxide electrolytes; (4) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamic plants and the technology for pressurized fluidized-bed combustors; (5) methodologies for recovery of energy from municipal waste; (6) solid and liquid desiccants that allow moisture to be removed with a minium of energy; (7) nuclear technology related to waste management, proof of breeding for a light water reactor, and the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor; and (8) physical chemistry of selected materials in environments simulating those of fission, fusion, and other energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting abundant raw materials to desired products; materials chemistry of liquids and vapors at high temperatures; interfacial processes of importance to corrosion science, surface science, and catalysis; atmospheric chemistry, most notably SO 2 oxidation mechanisms; and the thermochemistry of zeolites, related silicates, and inorganic compounds

  19. Irradiation technologies used for combustion gases and diluted sulfurous gases decontamination

    International Nuclear Information System (INIS)

    Villanueva Z, Loreto

    1998-01-01

    A brief description of irradiation technology used for ambient decontamination is presented here. The system is adequate fort gas and liquid effluents and solid wastes. In particular, the characteristics and applications of the irradiation done with an electron beam to gas effluent is described, mainly to clean combustion gases and other industrial gases containing sulfur and nitrogen oxides, S O x and N O x , respectively. This technology permits the remove of these contaminants and the acquisition of a solid byproduct, an ammonia sulfate-nitrate, apt for fertilizer applications. (author)

  20. The Association for Educational Communications and Technology: Division of School Media Specialists.

    Science.gov (United States)

    Miller, Mary Mock

    1993-01-01

    Reports on the Division of School Media Specialists of the Association for Educational Communications and Technology (AECT). Highlights include the mission statement; publications; board members and committee chairs; activities at the AECT conferences; and future concerns, including public relations and marketing plans for media specialists and…

  1. The critical assessment of the carbon dioxide purification technologies after Oxyfuel combustion of coals

    International Nuclear Information System (INIS)

    Iovchev, M.; Gadjanov, P.; Tzvetkov, N.

    2012-01-01

    The critical assessment of the two carbon dioxide purification technologies after Oxyfuel - combustion of coals are discussed in the report. It is noticed that these technologies proposed by 'Foster Wheeler' and 'Air Products' companies are under development now (2012) and their presence in the international market is to be expected in the next years. (authors)

  2. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  3. Retrospective Benefit-Cost Evaluation of U.S. DOE Vehicle Combustion Engine R&D Investments: Impacts of a Cluster of Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Link, Albert N. [Univ. of North Carolina, Greensboro, NC (United States)

    2010-05-01

    Advanced Combustion Engine R&D (ACE R&D) is one of the subprograms within DOE's Vehicle Technologies Office. The ACE subprogram's R&D is conducted in cooperation with the DOE Combustion Research Facility (CRF). This report summarizes the findings from a retrospective study of the net benefits to society from investments by DOE (both EERE and cooperative CRF efforts) in laser diagnostic and optical engine technologies and combustion modeling for heavy-duty diesel engines.

  4. FY 1999 Report on research and development project. Research and development of high-temperature air combustion technology; 1999 nendo koon kuki nensho seigyo gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The high-temperature air combustion technology recently developed greatly advances combustion technology. The technology, when applied to the other areas, may expand its applicable areas and contribute to environmental preservation, e.g., abatement of CO2 emissions. This is the motivation for promotion of this project. The combustion technology, developed by improving functions of industrial furnaces, cannot be directly applied to the other combustion heaters. This project is aimed at extraction of the problems involved, finding out the solutions, and thereby smoothly transferring the technology to commercialization. This project covers boilers firing finely pulverized coal, waste incineration processes and high-temperature chemical reaction processes, to which the new technology is applied. It is also aimed at establishment of advanced combustion control basic technology, required when the high-temperature air combustion technology is applied to these processes. In addition to application R and D efforts for each area, the basic phenomena characteristic of each combustion heater type are elucidated using microgravity and the like, to support the application R and D efforts from the basic side. This project also surveys reduction of environmental pollutants, e.g., NOx and dioxins. This report presents the results obtained in the first year. (NEDO)

  5. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Moussa, N.A.

    1999-01-01

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database

  6. Development of simultaneous hyperspectral coherent Raman imaging for advancing reduced emission combustion technology

    NARCIS (Netherlands)

    Bohlin, G.A.

    2016-01-01

    Overall aim and key objectives Advances in optical imaging techniques over the past decades have revolutionized our ability to study chemically reactive flows encountered in air-breathing combustion systems. Emerging technology for unravelling clean- and efficient

  7. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period are also included.

  8. Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988

    International Nuclear Information System (INIS)

    1989-02-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period are also included

  9. Chemical-looping combustion as a new CO{sub 2} management technology

    Energy Technology Data Exchange (ETDEWEB)

    Mattisson, Tobias; Lyngfelt, Anders [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy and Environment; Zafar, Qamar; Johansson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering

    2006-05-15

    Chemical-looping combustion (CLC) is a combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, a fuel reactor and an air reactor, are used in the process. In the fuel reactor, the metal oxide is reduced by the reaction with the fuel and in the air reactor; the reduced metal oxide is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, and almost pure stream of CO{sub 2} is obtained when water is condensed. Considerable research has been conducted on CLC in the last decade with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. The technique has been demonstrated successfully with both natural gas and syngas as fuel in continuous prototype reactors based on interconnected fluidized beds within the size range 0.3-50 kW, using different types of oxygen carriers based on the metals Ni, Co, Fe, Cu and Mn. From these tests it can be established that almost complete conversion of the fuel can be obtained and 100% CO{sub 2} capture is possible at a low cost. Further, work is going on to adapt the technique for use with solid fuels and for hydrogen production. This paper presents an overview of the research performed on CLC and highlights the current status of the technology.

  10. Fiscal 1975 Sunshine Project research report. General research on hydrogen energy subsystems and their peripheral technologies (Research on hydrogen combustion technology); 1975 nendo suiso nensho gijutsu ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-01

    This research mainly aims at establishment of various conditions necessary for using hydrogen fuel. The research includes (1) properties of hydrogen-methane mixture gas, and the proposal to future R and D, (2) extraction of various problems in practical use of home or industrial combustors, and evaluation of existing technologies, (3) the environmental impact of hydrogen fuel and its reduction measures, and (4) estimation of energy structures in cities and placing of hydrogen fuel in 2000. Detailed study items are as follows. In (1), general and proper combustion characteristics of and combustion technology for hydrogen- methane mixture system. In (2), problems for every use of various gas equipment, application of various gas equipment to hydrogen, peripheral technologies, conversion from natural gas, problems of heating furnaces and hydrogen burners, combustion safety/control equipment for various combustors, water content recovery combustion system, hydrogen embrittlement, and sealing. In (3), NO{sub x} generation in hydrogen combustion and its reduction measures. In (4), problems in introduction of a hydrogen-electric power energy system to an assumed model city in 2000. (NEDO)

  11. Combustion in fluidized bed reactors; Verbrennung in Wirbelschichtreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, Karl J. [vivis CONSULT GmbH, Nietwerder (Germany)

    2013-03-01

    Since the first application for the coal gasification, the fluidized bed technology has passed an impressive development. Nowadays, the fluidized bed technology is utilized at chemical processes, drying and cooling, gasification, combustion and purification of exhaust gas. In the firing technology, the fluidized technology initially has been proved in the combustion of very high ash coal and sewage sludge. Recently, the fluidized bed technology also is applied in the drying of sewage sludge, combustion of domestic waste - as in Japan and Sweden - as well as in the gasification and combustion of substitute fuels, biomass - wood pellets, wood chips, straw, cocoa shells and so forth - and residues from the paper manufacturing - such as in Germany and Austria. Under this aspect, the author of the contribution under consideration reports on the combustion of sewage sludge, substitute fuels and biomass.

  12. Combustion process science and technology

    Science.gov (United States)

    Hale, Robert R.

    1989-01-01

    An important and substantial area of technical work in which noncontact temperature measurement (NCTM) is desired is that involving combustion process research. In the planning for this workshop, it was hoped that W. Serignano would provide a briefing regarding the experimental requirements for thermal measurements to support such research. The particular features of thermal measurement requirements included those describing the timeline for combustion experiments, the requirements for thermal control and diagnostics of temperature and other related thermal measurements and the criticality to the involved science to parametric features of measurement capability including precision, repeatability, stability, and resolution. In addition, it was hoped that definitions could be provided which characterize the needs for concurrent imaging as it relates to science observations during the conduct of experimentation.

  13. Intelligent Integration between Human Simulated Intelligence and Expert Control Technology for the Combustion Process of Gas Heating Furnace

    Directory of Open Access Journals (Sweden)

    Yucheng Liu

    2014-01-01

    Full Text Available Due to being poor in control quality of the combustion process of gas heating furnace, this paper explored a sort of strong robust control algorithm in order to improve the control quality of the combustion process of gas heating furnace. The paper analyzed the control puzzle in the complex combustion process of gas heating furnace, summarized the cybernetics characteristic of the complex combustion process, researched into control strategy of the uncertainty complex control process, discussed the control model of the complex process, presented a sort of intelligent integration between human-simulated intelligence and expert control technology, and constructed the control algorithm for the combustion process controlling of gas heating furnace. The simulation results showed that the control algorithm proposed in the paper is not only better in dynamic and steady quality of the combustion process, but also obvious in energy saving effect, feasible, and effective in control strategy.

  14. Review of Membrane Oxygen Enrichment for Efficient Combustion

    Science.gov (United States)

    Ariono, Danu; Kusuma Wardani, Anita

    2017-07-01

    Oxygen enrichment from air is a simple way of increasing the efficiency of combustion process, as in oxy-combustion. Oxy-combustion has become one of the most attracting combustion technologies because of its potential to address both pollutant reduction and CO2 capture. In oxy-combustion, the fuel and recycled flue gas are combusted with oxygen enriched air (OEA). By using OEA, many benefits can be obtained, such as increasing available heat, improving ignition characteristics, flue gas reduction, increasing productivity, energy efficiency, turndown ratio, and flame stability. Membrane-based gas separation for OEA production becomes an attractive technology over the conventional technology due to the some advantages, including low capital cost, low energy consumption, compact size, and modularity. A single pass through membrane usually can enrich O2 concentration in the air up to 35% and a 50% concentration can be achieved with a double pass of membrane. The use of OEA in the combustion process eliminates the presence of nitrogen in the flue gas. Hence, the flue gas is mainly composed of CO2 and condensable water that can be easily separated. This paper gives an overview of oxy-combustion with membrane technology for oxygen enrichment process. Special attention is given to OEA production and the effect of OEA to the efficiency of combustion.

  15. Co-combustion: A summary of technology

    Directory of Open Access Journals (Sweden)

    Leckner Bo

    2007-01-01

    Full Text Available Co-combustion of biomass or waste together with a base fuel in a boiler is a simple and economically suitable way to replace fossil fuels by biomass and to utilize waste. Co-combustion in a high-efficiency power station means utilization of biomass and waste with a higher thermal efficiency than what otherwise had been possible. Due to transport limitations, the additional fuel will only supply a minor part (less than a few hundreds MW fuel of the energy in a plant. There are several options: co-combustion with coal in pulverized or fluidized bed boilers, combustion on added grates inserted in pulverized coal boilers, combustors for added fuel coupled in parallel to the steam circuit of a power plant, external gas producers delivering its gas to replace an oil, gas or pulverized fuel burner. Furthermore biomass can be used for reburning in order to reduce NO emissions or for afterburning to reduce N2O emissions in fluidized bed boilers. Combination of fuels can give rise to positive or negative synergy effects, of which the best known are the interactions between S, Cl, K, Al, and Si that may give rise to or prevent deposits on tubes or on catalyst surfaces, or that may have an influence on the formation of dioxins. With better knowledge of these effects the positive ones can be utilized and the negative ones can be avoided.

  16. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  17. Annotated bibliography of Accelerator Technology Division research and development, 1978-1985

    International Nuclear Information System (INIS)

    Jameson, R.A.; Nicol, C.S.; Cochran, M.A.

    1985-09-01

    A bibliography is presented of unclassified published and in-house technical material written by members of the Accelerator Technology Division, Los Alamos National Laboratory, since its inception in January, 1978. The author and subject concordances in this report provide cross-reference to detailed citations kept in a computer database and a microfilm file of the documents. The citations include an abstract and other notes, and can be searched for key words and phrases

  18. Chemical Technology Division progress report for the period July 1, 1988 to September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period July 1, 1988, through September 30, 1989. The following major areas are covered: waste management and environmental programs, the Waste Management Technology Center, radiochemical and isotope programs, basic science and technology, Nuclear Regulatory Commission and Electric Power Research Institute severe accident research programs, the Office of Safety and Operational Readiness, and administrative resources and facilities.

  19. CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities

    Directory of Open Access Journals (Sweden)

    A. Haj Ayed

    2017-03-01

    The study reveals great optimization potential of the micromix combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NOx emission. This allows to further increase the energy density of the micromix burners and to integrate this technology in industrial gas turbines.

  20. Distributed MIMO chaotic radar based on wavelength-division multiplexing technology.

    Science.gov (United States)

    Yao, Tingfeng; Zhu, Dan; Ben, De; Pan, Shilong

    2015-04-15

    A distributed multiple-input multiple-output chaotic radar based on wavelength-division multiplexing technology (WDM) is proposed and demonstrated. The wideband quasi-orthogonal chaotic signals generated by different optoelectronic oscillators (OEOs) are emitted by separated antennas to gain spatial diversity against the fluctuation of a target's radar cross section and enhance the detection capability. The received signals collected by the receive antennas and the reference signals from the OEOs are delivered to the central station for joint processing by exploiting WDM technology. The centralized signal processing avoids precise time synchronization of the distributed system and greatly simplifies the remote units, which improves the localization accuracy of the entire system. A proof-of-concept experiment for two-dimensional localization of a metal target is demonstrated. The maximum position error is less than 6.5 cm.

  1. Long life technology work at Rockwell International Space Division

    Science.gov (United States)

    Huzel, D. K.

    1974-01-01

    This paper presents highlights of long-life technology oriented work performed at the Space Division of Rockwell International Corporation under contract to NASA. This effort included evaluation of Saturn V launch vehicle mechanical and electromechanical components for potential extended life capabilities, endurance tests, and accelerated aging experiments. A major aspect was evaluation of the components at the subassembly level (i.e., at the interface between moving surfaces) through in-depth wear analyses and assessments. Although some of this work is still in progress, preliminary conclusions are drawn and presented, together with the rationale for each. The paper concludes with a summary of the effort still remaining.

  2. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  3. The 1988 Leti Division progress report

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The 1988 progress report of the CEA's LETI Division (Division of Electronics, Technology and Instrumentation, France) is presented. The missions of LETI Division involve military and nuclear applications of electronics and fundamental research. The research programs developed in 1988 are the following: materials and components, non-volatile silicon memories, silicon-over-insulator, integrated circuits technologies, common experimental laboratory (opened to the European community), mass memories, photodetectors, micron sensors and flat screens [fr

  4. Chemical Technology Division annual technical report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  5. Fuel Combustion and Engine Performance | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion and Engine Performance Fuel Combustion and Engine Performance Photo of a gasoline emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and combustion and engine research activities include: Developing experimental and simulation research platforms

  6. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech`s energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  7. Chemical Technology Division progress report, October 1, 1989--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This progress report reviews the mission of the Chemical Technology Division (Chem Tech) and presents a summary of organizational structure, programmatic sponsors, and funding levels for the period October 1, 1988, through June 30, 1991. The report also summarizes the missions and activities of organizations within Chem Tech for the reporting period. Specific projects performed within Chem Tech's energy research programs, waste and environmental programs, and radiochemical processing programs are highlighted. Other information regarding publications, patents, awards, and conferences organized by Chem Tech staff is also included.

  8. Hydrogen generation, distribution and combustion under severe LWR accident conditions: a state-of-technology report

    International Nuclear Information System (INIS)

    Postma, A.K.; Hilliard, R.K.

    1983-03-01

    This report reviews the current state of technology regarding hydrogen safety issues in light water reactor plants. Topics considered in this report include hydrogen generation, distribution in containment, and combustion characteristics. A companion report addresses hydrogen control. The objectives of the study were to identify the key safety issues related to hydrogen produced under severe accident conditions, to describe the state of technology for each issue, and to point out ongoing programs aimed at resolving the open issues

  9. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. DIAGNOSIS OF FAILURE OF COMBUSTION IN THE COMBUSTION CHAMBER WITH A THERMOVISION EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. V. Vorobiev

    2014-01-01

    Full Text Available The use of thermovision technology to diagnose failure of the combustion flame test tube of the main combustion chamber gas turbine engine is deal with in the article. Join the thermal radiation of the jet of combustion products and the internal elements was carried out using short-wave thermovision system AGA-782 with spectral spectral filters in several ranges from 3.2 to 5.6 microns. Thermovision is mounted on the axis of the flame tube. The output signal was recorded and processed on a computer in real time, allowing monitor the combustion process and the thermal state of the object during the experiment.

  11. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  12. The ORNL Chemical Technology Division, 1950-1994

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Genung, R.K.; McNeese, L.E.; Mrochek, J.E.

    1994-10-01

    This document attempts to reconstruct the role played by the Chemical Technology Division (Chem Tech) of the Oak Ridge National Laboratory (ORNL) in the atomic era since the 1940`s related to the development and production of nuclear weapons and power reactors. Chem Tech`s early contributions were landmark pioneering studies. Unknown and dimly perceived problems like chemical hazards, radioactivity, and criticality had to be dealt with. New chemical concepts and processes had to be developed to test the new theories being developed by physicists. New engineering concepts had to be developed and demonstrated in order to build facilities and equipment that had never before been attempted. Chem Tech`s role was chemical separations, especially uranium and plutonium, and nuclear fuel reprocessing. With diversification of national and ORNL missions, Chem Tech undertook R&D studies in many areas including biotechnology; clinical and environmental chemistry; nuclear reactors; safety regulations; effective and safe waste management and disposal; computer modeling and informational databases; isotope production; and environmental control. The changing mission of Chem Tech are encapsulated in the evolving activities.

  13. Boiler for combustion fuel in a fluidized bed

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2015-01-01

    Full Text Available Fuel combustion in fluidized bed combustion is a process that is current and which every day gives more attention and there are many studies that have been closely associated with this technology. This combustion technology is widespread and constantly improving the range of benefits it provides primarily due to reduced emissions. This paper presents the boilers for combustion in a fluidized bed, whit characteristics and advantages. Also is shown the development of this type of boilers in Republic of Serbia. In this paper is explained the concept of fluidized bed combustion. Boilers for this type of combustion can be improved and thereby increase their efficiency level. More detailed characteristics are given for boilers with bubbling and circulating fluidized bed as well as their mutual comparison.

  14. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  15. 78 FR 8587 - Thomson Reuters, Finance Operations & Technology Division, Including On-Site Leased Workers From...

    Science.gov (United States)

    2013-02-06

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,755] Thomson Reuters, Finance Operations & Technology Division, Including On-Site Leased Workers From Adecco; Eagan, MN; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordance with Section 223 of the Trade Act of 1974, as amended (`...

  16. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    Science.gov (United States)

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  17. Fiscal 1999 achievement report. Research and technology of important regional technologies (Development of combustion control system technology for rationalizing energy use); 1999 nendo energy shiyo gorika nensho nado seigyo system gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For upgrading and optimizing combustion control systems, research and development is conducted for materializing SiC devices capable of high-temperature operation. In the development of basic technologies common to various types of SiC semiconductor devices, XeCl excimer laser annealing is applied to SiC implanted with Al ions, and low-damage ion implantation is studied. In the development of techniques for forming SiC single crystals into substrates, warpage of 20{mu} or less, surface coarseness of 5{mu}m or less, etc., are achieved in 1-inch and 2-inch wafers. In the development of SiC sensor technology, techniques of heteroepitaxial growth of 3C-SiC on Si substrates and of 6H-SiC on 6H-SiC wafers are established and an optical sensor is built experimentally. A high-temperature UV sensor, switching device for control, rectification device for control, etc., are built of nitrogen ion implanted 6H-SiC. In the effort to develop combustion control system technology, the principle of system operation of the combustion control method proposed under this project is verified. (NEDO)

  18. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  19. Division of Waste Management programs. Progress report, January-June 1979

    International Nuclear Information System (INIS)

    Lerch, R.E.; Allen, C.R.; Crippen, M.D.

    1980-10-01

    This is the twelfth progress report on Division of Waste Management programs being conducted at the Hanford Engineering Development Laboratory (HEDL) for the United States Department of Energy. The report describes progress in the first half of 1979 on the following programs: Acid Digestion of Combustible Wastes; and Chemical Treatment of Transuranic Contaminated Metals

  20. Division of Information Technology - Overview

    International Nuclear Information System (INIS)

    Szlachciak, J.

    2010-01-01

    Full text: The Division of Information Technology continued its service-oriented activities in 2009. Our main duty was day-to-day support to all units in the Institute in IT related matters. One of our tasks was the acquiring, configuration and delivery of new computer equipment to our users. We automated the standard software installation task and decreased the delivery time for new and fully reconfigured computers to end users. We prepared the technical specifications for several bid and we verified thai the received bids complied with the specification. In addition to regular purchasing of computer equipment we supported the special software -related needs of EU projects. We purchased new licenses for: Computer Simulation Technology Studio Suite, Pulsar Physics General Particle Tracerm. Altium Designer. Autodesk Inventor. Autodesk AutoCAD Electrical, Altera Quartus II. Lahey/Fujitsu Fortran Professional. Code Gear Delphi, Steema Software TeeChart Pro, ANSYS Academic Research, Math Works Matlab, Keil PK51 Professional Developer's Kit, Corel Corporation CorelDraw Graphics Suite, Abbyy FineReader Professional, Adobe Acrobat Professional. We also renewed and increased the number of licenses for Microsoft and GFI products. We implemented a full high definition video conferencing system based on equipment from Lifesize. One-video conferencing terminal is placed in Swierk. another, enabling 4-way conferences, is located in Warsaw. This equipment is mainly used for teleconferences between our Institute and our partners in DESY and CERN. By the implementation of such a system we significantly improved the exchange of information and saved on travel costs. In addition the rooms housing the video conferencing systems were equipped with professional data projectors. We continued the modernization of the Local Area Network infrastructure. The first main achievement was a full replacement of cables and active network devices in the building where the Departments of Plasma

  1. Bendix Kansas City Division technological spinoff through 1978

    International Nuclear Information System (INIS)

    Barnes, H.T.

    1979-02-01

    The results of work of Bendix Kansas City Division are made available in the form of technical reports that are processed through the DOE Technical Information Center in Oak Ridge. The present report lists the documents released by the Division, along with author and subject indexes. Drawing sets released are also listed. Locations of report collections in the U.S., other countries, and international agencies are provided

  2. Technology for emission control in internal combustion engines; Kakushu nainen kikan ni okeru hai gas joka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M. [Kyoto University, Kyoto (Japan)

    1998-09-01

    Described herein are emission control technology and exhaust gas cleaning measures for internal combustion engines. Gas turbines burn relatively high-quality fuels, such as natural gas, kerosene, diesel oil and gas oil, where the major concerns are to reduce NOx and dust emissions. The NOx abatement techniques fall into two general categories; wet processes which inject water or steam, and dry processes which depend on improved combustion. Power generation and cogeneration which burn natural gas adopt lean, premixed combustion and two-stage combustion as the major approaches. Low-speed, large-size diesel engines, which realize very high thermal efficiency, discharge high concentrations of NOx. Delayed fuel injection timing is the most easy NOx abatement technique to meet the related regulations, but is accompanied by decreased fuel economy. Use of water-emulsified fuel, water layer injection and multi-port injection can reduce NOx emissions without decreasing fuel economy, depending on optimization methods adopted. Automobile gasoline engines are required to further clean exhaust gases by catalystic systems. 9 refs., 10 figs., 6 tabs.

  3. Publication sites productive uses of combustion ash

    Science.gov (United States)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used

  4. Progress report [of] Technical Physics Division

    International Nuclear Information System (INIS)

    Vijendran, P.; Deshpande, R.Y.

    1975-01-01

    Activities of the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, over the last few years are reported. This division is engaged in developing various technologies supporting the development of nuclear technology. The various fields in which development is actively being carried out are : (i) vacuum technology, (ii) mass spectrometry, (iii) crystal technology, (iv) cryogenics, and (v) magnet technology. For surface studies, the field emission microscope and the Auger electron spectrometer and other types of spectrometers have been devised and perfected. Electromagnets of requisite strength to be used in MHD programme and NMR instruments are being fabricated. Various crystals such as NaI(Tl), Ge, Fluorides, etc. required as windows and prisms in X and gamma-ray spectroscopy, have been grown. In the cryogenics field, expansion engines required for air liquefaction plants, vacuum insulated dewars, helium gas thermometers etc. have been constructed. In addition to the above, the Division provides consultancy and training to personnel from various institutions and laboratories. Equipment and systems perfected are transferred to commercial organizations for regular production. (A.K.)

  5. Technology Awareness and Farmers Perception in Adoption of Wheat Production Technologies: Case Study in Njoro and Rongai Divisions

    International Nuclear Information System (INIS)

    Ndiema, A.C.

    2002-01-01

    Wheat is the second most important cereal crop in Kenya but its production has not been able to meet high demand, since production is only fifty percent. The shortfall is supplemented by importation. The purpose of this study was to assess and describe farmers' perception on adoption of wheat production technologies in Njoro and Rongai divisions. One hundred and fifty (150) wheat farmers were randomly selected using stratified proportional random sampling technique. The data was analysed using descriptive and inferential statistics. farmers perception in wheat production is favourable with 80.2% agreeing that it access to credits by farmers. This was only possible to 7.3% of the farmers. above 90% of the farmers in the two divisions exist. Farmers' perception for small-scale 3.25% as higher than 2.75% for large-scale wheat farmers with t-test-2.21 at α=0.05 for pest and disease control.s Education level and farm size significantly affected adoption, while gender and age were not significant

  6. Clean Fuel, Clean Energy Conversion Technology: Experimental and Numerical Investigation of Palm Oil Mill Effluent Biogas Flameless Combustion

    Directory of Open Access Journals (Sweden)

    Seyed Ehsan Hosseini

    2015-08-01

    Full Text Available The combustion of effluent biogas from a palm oil mill is not feasible on a large scale because of its low calorific value (LCV. Therefore, the captured biogas is usually flared because of a lack of appropriate combustion technology. However, such biogas could be an excellent source of energy for combined heat and power (CHP generation in palm oil mills. In this paper, the feasibility of using biogas from palm oil mills in flameless combustion systems is investigated. In computational fluid dynamic (CFD modeling, a two-step reaction scheme is employed to simulate the eddy dissipation method (EDM. In such biogas flameless combustion, the temperature inside the chamber is uniform and hot spots are eliminated. The peak of the non-luminous flame volume and the maximum temperature uniformity occur under stoichiometric conditions when the concentration of oxygen in the oxidizer is 7%. In these conditions, as the concentration of oxygen in the oxidizer increases, the efficiency of palm oil mill effluent biogas flameless combustion increases. The maximum efficiency (around 61% in the experiment is achieved when the percentage of oxygen in the oxidizer is 7%.

  7. FY2014 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  8. FY2016 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-07-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  9. FY2015 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Vehicle Technologies Office, Washington, DC (United States); Gravel, Roland M. [Vehicle Technologies Office, Washington, DC (United States); Howden, Kenneth C. [Vehicle Technologies Office, Washington, DC (United States); Breton, Leo [Vehicle Technologies Office, Washington, DC (United States)

    2016-03-25

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  10. Environmental aspects of battery and fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The PA Consulting Group was commissioned by the Longer Term Studies Unit, Research and Technology Policy Division and Information and Manufacturing Technologies Division, Dept. of Trade and Industry to investigate possible environmental initiatives which might be driven by the European Commission and which could promote interest in alternative energy sources, particularly batteries and fuel cells. Findings confirmed that there is a role for fuel cells in power generation, the most commercially advanced technology being the phosphoric acid fuel cell (PAFC). Development of other systems such as Proton Exchange Membrane technology (PEMFC) and solid oxide fuel cells (SOFC) should also continue. Emissions from fuel cells are lower than those of gas turbines, their main competitors for power generation applications below 100 MW. The study concluded that there is a role for both batteries or fuel cells in powering electric vehicles. Battery powered retrofitted vehicles have an environmental impact comparable to that of internal combustion engine powered vehicles and they could become commercially viable in the context of a carbon tax scenario. Purpose built electric vehicles would be even more attractive. From an environmental viewpoint, fuels cells based on proton membrane membrane technology seemed the best option for powering vehicles if the technical targets could be met.

  11. Use of combustible wastes as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Salamov, A.A.

    1983-01-01

    Achievements of science and technology in creating and using units for combustion of wastes with recovery of heat of the escaping gases has been systematized and generalized. Scales and outlooks are examined for the use of general, industrial and agricultural waste as fuel, composition of the waste, questions of planning and operating units for combustion of solid refuse, settling of waste water and industrial and agricultural waste. Questions are covered for preparing them for combustion use in special units with recovery of heat and at ES, aspects of environmental protection during combustion of waste, cost indicators of the employed methods of recovering the combustible waste.

  12. Combustion strategy : United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, D. [Heriot-Watt Univ., Edingburgh, Scotland (United Kingdom). School of Engineering and Physical Sciences

    2009-07-01

    The United Kingdom's combustion strategy was briefly presented. Government funding sources for universities were listed. The United Kingdom Research Councils that were listed included the Arts and Humanities Research Council (AHRC) and the Biotechnology and Biological Sciences Research Council (BBSRC); the Engineering and Physical Sciences Research Council (EPSRC); the Economic and Social Research Council; the Medical Research Council; the Natural Environment Research Council; and the Science and Technology Facilities Council. The EPSRC supported 65 grants worth 30.5 million pounds. The combustion industry was noted to be dominated by three main players of which one was by far the largest. The 3 key players were Rolls-Royce; Jaguar Land Rover; and Doosan Babcock. Industry and government involvement was also discussed for the BIS Technology Strategy Board, strategy technology areas, and strategy application areas.

  13. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  14. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    International Nuclear Information System (INIS)

    Hoffman, Larry G.

    2000-01-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division

  15. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  16. Biomass combustion power generation technologies: Background report 4.1 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Van Wijk, A.

    1995-05-01

    New developments in biomass combustion technology in progress tend to go towards efficiencies which come close to the present fossil fuel fired systems. The objective of this study is to give a representation of the state of the art and future prospects of biomass combustion technologies and to compare those on a location-independent basis. This will be done both by a general boiler technology description on the basis of qualitative criteria and by a comparison of most recently built and planned power plants on more quantitative grounds. The methodology which has been used in gathering, selecting, presenting and comparing the information is discussed in chapter 2. In chapter 3, a general introduction is given on some basic principles of biomass combustion technology. This includes the combustion process, the Rankine steam cycle and NO x formation. Different boiler technologies which are in use for biomass combustion power generation are discussed in chapter 4. The main groups of boilers which are discussed are the pile burners, stoker fired boilers, suspension fired boilers and fluidized bed boilers. The description focuses on aspects such as construction, operation, fuel requirements, efficiencies and emissions. Chapter 5 deals with individual existing or planned biomass combustion plants, resulting from an international inventory. All the different technologies which have been discussed in chapter 4 are discussed in chapter 5 in the context of complete power plants. The information which is presented for each plant comprises a technical description, efficiencies, emissions and investment costs. At the end of chapter 5 an overview of comparable data from the literature is given, as well as an overview of the results of the inventory. 32 figs., 28 tabs., 4 appendices., 51 refs

  17. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.

    Science.gov (United States)

    Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio

    2015-07-01

    An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Energy and Environment Division annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Camp, J.A. (ed.)

    1978-01-01

    Research activities of this Division are reported under nine separate programs, namely: Energy Analysis; Solar Energy; Energy-Efficient Buildings; Chemical Process Research and Development; Environmental Research; Atmospheric Aerosol Research; Oil Shale Research; Instrumentation Development; and Combustion Research. A separate abstract was prepared for each of the nine programs, each of which contained several individual research summaries, with responsible researchers listed. All of the abstracts will appear in Energy Research Abstracts (ERA), and five will appear in Energy Abstracts for Policy Analysis (EAPA).

  19. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-04-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  20. NRG CO2NCEPT - Confirmation Of Novel Cost-effective Emerging Post-combustion Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Matthew [NRG Energy, Inc., Houston, TX (United States); Armpriester, Anthony [NRG Energy, Inc., Houston, TX (United States)

    2016-10-19

    Under DOE's solicitation DE-FOA-0001190, NRG and Inventys conceptualized a Large-Scale pilot (>10MWe) post-combustion CO2 capture project using Inventys' VeloxoThermTM carbon capture technology. The technology is comprised of an intensified thermal swing adsorption (TSA) process that uses a patented architecture of structured adsorbent and a novel process design and embodiment to capture CO2 from industrial flue gas streams. The result of this work concluded that the retrofit of this technology is economically and technically viable, but that the sorbent material selected for the program would need improving to meet the techno-economic performance requirements of the solicitation.

  1. Progress report of Applied Physics Division. 1 October 1980 - 30 June 1981. Acting Division Chief - Dr. J. Parry

    International Nuclear Information System (INIS)

    2004-01-01

    In September 1980, the Commission approved a reorganization of Physics Division, Engineering Research Division and Instrumentation and Control Division to form two new research divisions to be known as Applied Physics Division and Nuclear Technology Division. The Applied Physics Division will be responsible for applied science programs, particularly those concerned with nuclear techniques. The Division is organized as four sections with the following responsibilities: (1) Nuclear Applications and Energy Studies Section. Program includes studies in nuclear physics, nuclear applications, ion implantation and neutron scattering. (2) Semiconductor and Radiation Physics Section. Studies in semiconductor radiation detectors, radiation standards and laser applications. (3) Electronic Systems Section. This includes systems analysis, digital systems, instrument design, project instrumentation and instrument maintenance. (4) Fusion Physics Section. This covers work carried out by staff currently attached to university groups (author)

  2. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  3. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  4. Energy Division progress report, fiscal years 1994--1995

    Energy Technology Data Exchange (ETDEWEB)

    Moser, C.I. [ed.

    1996-06-01

    At ORNL, the Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this progress report for FY 1994 and FY 1995. The Division`s expenditures in FY 1995 totaled 44.9 million. Sixty percent of the divisions work was supported by the US DOE. Other significant sponsors include the US DOT, the US DOD, other federal agencies, and some private organizations. The Division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) transportation systems, and (3) energy use and delivery technologies. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, and impact statements, research on emergency preparedness, analysis of energy and environmental needs in developing countries, and transportation analysis. Transportation systems research seeks to improve the quality of both civilian and military transportation efforts. Energy use and delivery technologies focus on building equipment, building envelopes, (walls, roofs, attics, and materials), improvement of energy efficiency in buildings, and electric power systems.

  5. CFD simulation of gas and particles combustion in biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griselin, Nicolas

    2000-11-01

    In this thesis, gas and particle combustion in biomass furnaces is investigated numerically. The aim of this thesis is to use Computational Fluid Dynamics (CFD) technology as an effective computer based simulation tool to study and develop the combustion processes in biomass furnaces. A detailed model for the numerical simulation of biomass combustion in a furnace, including fixed-bed modeling, gas-phase calculation (species distribution, temperature field, flow field) and gas-solid two-phase interaction for flying burning particles is presented. This model is used to understand the mechanisms of combustion and pollutant emissions under different conditions in small scale and large scale furnaces. The code used in the computations was developed at the Division of Fluid Mechanics, LTH. The flow field in the combustion enclosure is calculated by solving the Favre-averaged Navier-Stokes equations, with standard {kappa} - {epsilon} turbulence closure, together with the energy conservation equation and species transport equations. Discrete transfer method is used for calculating the radiation source term in the energy conservation equation. Finite difference is used to solve the general form of the equation yielding solutions for gas-phase temperatures, velocities, turbulence intensities and species concentrations. The code has been extended through this work in order to include two-phase flow simulation of particles and gas combustion. The Favre-averaged gas equations are solved in a Eulerian framework while the submodels for particle motion and combustion are used in the framework of a Lagrangian approach. Numerical simulations and measurement data of unburned hydrocarbons (UHC), CO, H{sub 2}, O{sub 2} and temperature on the top of the fixed bed are used to model the amount of tar and char formed during pyrolysis and combustion of biomass fuel in the bed. Different operating conditions are examined. Numerical calculations are compared with the measured data. It is

  6. On-chip mode division multiplexing technologies

    DEFF Research Database (Denmark)

    Ding, Yunhong; Frellsen, Louise Floor; Guan, Xiaowei

    2016-01-01

    Space division multiplexing (SDM) is currently widely investigated in order to provide enhanced capacity thanks to the utilization of space as a new degree of multiplexing freedom in both optical fiber communication and on-chip interconnects. Basic components allowing the processing of spatial...... photonic integrated circuit mode (de) multiplexer for few-mode fibers (FMFs)....

  7. A REVIEW OF MILD COMBUSTION AND OPEN FURNACE DESIGN CONSIDERATION

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2012-12-01

    Full Text Available Combustion is still very important to generate energy. Moderate or Intense Low-oxygen Dilution (MILD combustion is one of the best new technologies for clean and efficient combustion. MILD combustion has been proven to be a promising combustion technology in industrial applications with decreased energy consumption due to the uniformity of its temperature distribution. It is clean compared to traditional combustion due to producing low NOx and CO emissions. This article provides a review and discussion of recent research and developments in MILD. The issue and applications are summarized, with some suggestions presented on the upgrading and application of MILD in the future. Currently MILD combustion has been successfully applied in closed furnaces. The preheating of supply air is no longer required since the recirculation inside the enclosed furnace already self-preheats the supply air and self-dilutes the oxygen in the combustion chamber. The possibility of using open furnace MILD combustion will be reviewed. The design consideration for open furnace with exhaust gas re-circulation (EGR was discussed.

  8. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  9. FY 1999 report on the result for research and development of instantaneously effective and innovative energy and environment technology. Development of technology to use combustible wastes as resources and fuels; 1999 nendo sokkoteki kakushinteki energy kankyo gijutsu kenkyu kaihatsu kanengomi saishigen nenryoka gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Manufacturing compressed fuel, or refuse paper and plastic fuel (RPF) from combustible wastes such as used papers and waste plastics to utilize them effectively as a fuel to substitute fossil fuels is regarded as a promising engagement. However, this process indispensably requires removal of chlorine contained in used papers and waste plastics to a degree that they do not impede the combustion. The present research and development is intended to develop a PRF pretreatment technology and a dechlorination technology, and establish a technology to utilize the materials as resources and fuels as thermal recycling of combustible wastes. The current fiscal year has performed research and development on the following themes: development of a sorting system and a crushing system in developing the pretreatment technology, whereas for the former system, sorting tests were carried out by using a vibration type wind power sorting machine and an inertia force wind power sorting machine, and for the latter system, data were obtained on the crushing characteristics; dechlorination tests, in which it was discovered that the mixing ratio of used paper in the material affects the chlorine concentration; research on combustion characteristics, in which fundamental combustion tests using a small fluidized bed, combustion tests using a bench scale fluidized bed, and stoker fired furnace combustion tests were performed; and demonstrative operation researches. (NEDO)

  10. Chemical Technology Division annual technical report, 1996

    International Nuclear Information System (INIS)

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R ampersand D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division's activities during 1996 are presented

  11. Optical code division multiple access fundamentals and applications

    CERN Document Server

    Prucnal, Paul R

    2005-01-01

    Code-division multiple access (CDMA) technology has been widely adopted in cell phones. Its astonishing success has led many to evaluate the promise of this technology for optical networks. This field has come to be known as Optical CDMA (OCDMA). Surveying the field from its infancy to the current state, Optical Code Division Multiple Access: Fundamentals and Applications offers the first comprehensive treatment of OCDMA from technology to systems.The book opens with a historical perspective, demonstrating the growth and development of the technologies that would eventually evolve into today's

  12. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for

  13. Current programmes of Metallurgy Division (1991)

    International Nuclear Information System (INIS)

    1991-01-01

    Current research and development programmes of the Metallurgy Division are listed under the headings: 1)Thrust Areas, 2)High Temperature Materials Section, 3)Chemical Metallurgy Section, 4)Metallurgical Thermochemistry Section, 5)Physical Metallurgy Section, 6)Mechanical Metallurgy Section, 7)Corrosion Metallurgy Section, 8)Electrochemical Science and Technology Section, 9)Ceramics Section, and 10)Fabrication and Maintenance Group. A list of equipment in the Division and a list of sciientific personnel of the Division are also given. (M.G.B.)

  14. A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Tomáš Dlouhý

    2012-01-01

    Full Text Available This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.

  15. Combustion Modeling with the G-Equation Modélisation de la combustion avec l'équation de G

    Directory of Open Access Journals (Sweden)

    Peters N.

    2006-12-01

    Full Text Available Numerical investigations concerning the turbulent flame front propagation in Gasoline Direct Injection (GDI engines were made by implementing a flamelet model in the CFD code Fire. The advantage of this combustion model is the decoupling of the chemistry from the turbulent flow. For this purpose the combustion chamber has to be divided into a burned and an unburned area, which is realized by transporting a scalar field (G-Equation. The reference value defines the present averaged flame position. The complete reaction kinetics is calculated interactively with the CFD code in a one dimensional Representative Interactive Flamelet (RIF code. This combustion model was verified by simulating a 2. 0 l-2 V gasoline engine with homogeneous combustion where a parameter study was conducted to check the flamelet model for plausibility. Finally, the potential of this combustion model was investigated by simulating a hypothetical 2. 0 1-4 V GDI engine. Une investigation numérique relative à la propagation des fronts de flammes turbulents dans les moteurs à essence à injection directe (GDI a été menée en implantant un modèle de flameletdans le code 3D Fire. L'avantage de ce modèle de combustion est de découpler la chimie de l'écoulement turbulent en divisant la chambre de combustion en deux zones : brûlée et imbrûlée, à l'aide d'une équation de transport d'un scalaire (équation de G. Une valeur de référence de ce scalaire définit la position moyenne de la flamme. Une chimie complète est calculée interactivement avec le calcul 3D à l'aide d'un code monodimensionnel RIF (Representative Interactive Flamelet. Le modèle de combustion a été validé sur la simulation d'un moteur 2 litres à 2 soupapes en combustion homogène pour vérifier la représentativité de l'approche flamelet . Puis, le potentiel du modèle de combustion a été étudié en simulant un moteur modèle 2 litres 4 soupapes GDI.

  16. Pre-Combustion Carbondioxide Capture in Integrated Gasification Combined Cycles

    Directory of Open Access Journals (Sweden)

    M. Zeki YILMAZOĞLU

    2010-02-01

    Full Text Available Thermal power plants have a significant place big proportion in the production of electric energy. Thermal power plants are the systems which converts heat energy to mechanical energy and also mechanical energy to electrical energy. Heat energy is obtained from combustion process and as a result of this, some harmful emissions, like CO2, which are the reason for global warming, are released to atmosphere. The contribution of carbondioxide to global warming has been exposed by the previous researchs. Due to this fact, clean energy technologies are growing rapidly all around the world. Coal is generally used in power plants and when compared to other fossil energy sources unit electricity production cost is less than others. When reserve rate is taken into account, coal may be converted to energy in a more efficient and cleaner way. The aim for using the clean coal technologies are to eradicate the harmful emissions of coal and to store the carbondioxide, orginated from combustion, in different forms. In line with this aim, carbondioxide may be captured by either pre-combustion, by O2/CO2 recycling combustion systems or by post combustion. The integrated gasification combined cycles (IGCC are available in pre-combustion capture systems, whereas in O2/CO2 recycling combustion systems there are ultrasuper critical boiler technologies and finally flue gas washing systems by amines exists in post combustion systems. In this study, a pre-combustion CO2 capture process via oxygen blown gasifiers is compared with a conventional power plant in terms of CO2 emissions. Captured carbondioxide quantity has been presented as a result of the calculations made throughout the study.

  17. Applied Physics Division 1998 Progress Report

    International Nuclear Information System (INIS)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M.

    2001-01-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program

  18. Applied Physics Division 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Applied physics Division

    1999-07-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program.

  19. FY 2000 report on research and development of combustion technology utilizing microgravity conditions for fuel diversification; 2000 nendo bisho juryoku kankyo wo riyoshita nenryo tayoka nensho gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This project is aimed at development of optimum combustion technology with diversified fuels, e.g., naphtha and LCO, for gas turbines and others as power sources for topographical energy supply. The combustion under the microgravity is also investigated using the underground facilities at Japan Microgravity Center. Described herein are the FY 2000 results. For construction of combustion model and simulation, the combustion reactions for various liquid fuels are simplified to calculate ignition delay, adiabatic flame temperature and laminar burning velocity with an error less than about 3%. The microgravity combustion experiments are conducted for spray dispersed into a cylinder, to find flame propagation velocities changing with the vaporization characteristics of liquid fuels, and also to construct the combustion models. The premixed turbulent combustion simulation program is developed using a probability density function and analyzed. Development of new combustion technologies includes the study themes of flame propagation and combustion of the air mixture of the multi-component fuel in which the spray exists, combustion characteristics of the droplets of diversified fuels, and combustion of gas turbines with diversified fuels. A propane/air mixture shows different flame propagation characteristics whether it contains kerosene or LCO droplets. The effects of electrical field intensity in the combustion zone on combustion of fuel droplets are elucidated. (NEDO)

  20. Infrastructure Engineering and Deployment Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Infrastructure Engineering and Deployment Division advances transportation innovation by being leaders in infrastructure technology, including vehicles and...

  1. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste

    International Nuclear Information System (INIS)

    McIlveen-Wright, D.R.; Huang, Y.; McMullan, J.T.; Pinto, F.; Franco, C.; Gulyurtlu, I.; Armesto, L.; Cabanillas, A.; Caballero, M.A.; Aznar, M.P.

    2006-01-01

    Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation. The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to decrease their amounts in the waste stream through energy recovery. Mixtures of a high ash coal with biomass and/or plastic using fluidised bed technologies (combustion and gasification) were considered. Experiments were carried out in laboratory and pilot plant fluidised bed systems on the combustion and air/catalyst and air/steam gasification of these feedstocks and the data obtained were used in the techno-economic analyses. The experimental results were used in simulations of medium to large-scale circulating fluidised bed (CFB) power generation plants. Techno-economic analysis of the modelled CFB combustion systems showed efficiencies of around 40.5% (and around 46.5% for the modelled CFB gasification systems) when fuelled solely by coal, which were only minimally affected by co-firing with up to 20% biomass and/or wastes. Specific investments were found to be around $2150/kWe to $2400/kWe ($1350/kWe to $1450/kWe) and break-even electricity selling prices to be around $68/MWh to $78/MWh ($49/MWh to $54/MWh). Their emissions were found to be within the emission limit values of the large combustion plant directive. Fluidised bed technologies were found to be very suitable for co-firing coal and biomass and/or plastic waste and to offer good options for the replacement of obsolete or polluting power plants. (author)

  2. Combustion chemistry - activities in the CHEK research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1997-10-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This presentation describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control) Research Programme. (orig.)

  3. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  4. Study of the O2/CO2 combustion technology; Sanso nensho gijutsu ni kakawaru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M [Center for Coal Utilization, Japan, Tokyo (Japan); Kiga, T; Yamada, T [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Arai, K [Nippon Sanso K.K., Tokyo (Japan); Mori, T [Inst. of Research and Innovation, Tokyo (Japan); Kimura, N; Okawa, M [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    This study is being progressed during a period from 1992 to 1999 as part of the NEDO`s clean coal technology program. This paper describes what has been discussed to date. The absorption method and the adsorption method may be used to recover CO2 as means to deal with the problem of global warming resulted from burning coals. These methods, however, have problems in economy caused from concentration of CO2 in flue gas being low. The present study is intended to raise the CO2 concentration in flue gas by using oxygen plus circulated flue gas in the place of combustion air, so that CO2 may be recovered as it is without being separated from the flue gas. Therefore, an oxygen-blown pulverized coal fired power generation plant having a cryogenic oxygen manufacturing equipment was designed to discuss the plant operability and economy, and the pulverized coal combustion technology by using a dynamic simulation. A large number of findings have been obtained already, and the study has reached a level at which grasping the whole image is now possible. 13 figs.

  5. State of art in incineration technology of radioactive combustible solid wastes

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1984-01-01

    The features of incineration treatment as the method of treating radioactive wastes are the effect of volume reduction and inorganic stabilization (change to ash). The process of incineration treatment is roughly divided into dry process and wet process. But that in practical use is dry incineration by excess air combustion or suppressed combustion. The important things in incineration techniques are the techniques of exhaust gas treatment as well as combustion techniques. In Europe and USA, incineration has been practiced in laboratories and reprocessing plants for low level combustible solids, but the example of application in nuclear power stations is few. In Japan, though the fundamental techniques are based on the introduction from Europe, the incineration treatment of combustible solids has been carried out in laboratories, reprocessing plants, nuclear fuel production facilities and also nuclear power stations. The techniques of solidifying ash by incineration and the techniques of incinerating spent ion exchange resin are actively developed, and the development of the treatment of radioactive wastes in the lump including incineration also is in progress. (Kako, I.)

  6. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....

  7. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...

  8. The progress report of the Instrumentation and Technological Electronical Division, for 1987

    International Nuclear Information System (INIS)

    1988-05-01

    The 1987 activity report of the CEA Instrumentation and Technological Electronic Division (ITED), is presented. The ITED fields of interest include nuclear, space, health, defense and civil domains. The research development and perspectives are summarized. Concerning materials and components the following research programs are included: silicon integrated circuits, silicon on isolator, common experimental laboratory, mass memory, lasers, photodetection, flat screens, and sensors. In the field of instrumentations and systems, the retained research guidelines are focused on: medical and biological instrumentation, the environment, the nuclear domain. Moreover, the research fields of physics, artificial intelligence and software, production, robots, architecture and integration are also included [fr

  9. Recent Developments Concerning Pellet Combustion Technologies - A Review of Austrian Developments

    International Nuclear Information System (INIS)

    Obernberger, I.; Thek, G.

    2006-01-01

    This paper gives an overview of recent developments concerning pellet combustion technologies in Austria. It covers basic information about the Austrian pellet market and market developments in recent years as well as about national framework conditions in Austria with regard to standards for Pellets, pellet furnaces and emission limits. A detailed overview is given of the state-of-the-art of Austrian pellet boiler technology, which is - from a technological point of view - probably the best developed market world-wide. Innovations, which have recently been developed and introduced into the market, are described. The most important innovations are new furnace developments based on CFD (Computational Fluid Dynamics) simulations, flue gas condensation systems for small-scale pellet boilers and multi-fuel concepts, where e.g. firewood and Pellets can be utilised in one boiler. Moreover, emissions from pellet furnaces are discussed and evaluated based on test stand and field measurements. In this respect, a focus is put on fine particulate emissions from pellet boilers. Finally, future developments based on ongoing research projects are described and discussed. The ongoing R and D activities focus on the further reduction of fine particulate emissions by primary and secondary measures, the utilisation of herbaceous biomass fuels and small or micro-scale CHP systems

  10. Flue Gas Emissions from Fluidized Bed Combustion

    NARCIS (Netherlands)

    Bramer, E.A.; Valk, M.

    1995-01-01

    During the past decades fluidized bed coal combustion was developed as a technology for burning coal in an effective way meeting the standards for pollution control. During the earlier years of research on fluidized bed combustion, the potential for limiting the S02 emission by adding limestone to

  11. OxyFuel combustion of Coal and Biomass

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg

    The power and heat producing sector is facing a continuously increasing demand to reduce its emissions of CO2. Oxyfuel combustion combined with CO2 storage is suggested as one of the possible, promising technologies which will enable the continuous use of the existing fleet of suspension-fired po......The power and heat producing sector is facing a continuously increasing demand to reduce its emissions of CO2. Oxyfuel combustion combined with CO2 storage is suggested as one of the possible, promising technologies which will enable the continuous use of the existing fleet of suspension......-fired power plants burning coal or other fuels during the period of transition to renewable energy sources. The oxyfuel combustion process introduces several changes to the power plant configuration. Most important, the main part of the flue gas is recirculated to the boiler and mixed with pure oxygen....... The oxidant thus contains little or no nitrogen and a near-pure CO2 stream can be produced by cooling the flue gas to remove water. The change to the oxidant composition compared to combustion in air will induce significant changes to the combustion process. This Ph.D. thesis presents experimental...

  12. Chemical Technology Division progress report for the period April 1, 1985 to December 31, 1986

    International Nuclear Information System (INIS)

    1987-08-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period April 1, 1985, through December 31, 1986. The following major areas are covered in the discussion: nuclear and chemical waste management, environmental control technology, basic science and technology, biotechnology research, transuranium-element processing, Nuclear Regulatory Commission programs, radioactive materials production, computer/engineering applications, fission energy, environmental cleanup projects, and various other work activities. As an appendix, the Administrative Summary presents a comprehensive compilation of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this report period. An organization chart, a staffing level and financial summary, and lists of seminars and Chem Tech consultants for the period are also included to provide additional information. 78 figs., 40 tabs

  13. Chemical Technology Division progress report for the period April 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period April 1, 1985, through December 31, 1986. The following major areas are covered in the discussion: nuclear and chemical waste management, environmental control technology, basic science and technology, biotechnology research, transuranium-element processing, Nuclear Regulatory Commission programs, radioactive materials production, computer/engineering applications, fission energy, environmental cleanup projects, and various other work activities. As an appendix, the Administrative Summary presents a comprehensive compilation of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this report period. An organization chart, a staffing level and financial summary, and lists of seminars and Chem Tech consultants for the period are also included to provide additional information. 78 figs., 40 tabs.

  14. Combustion chemistry. Activities in the CHEC research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K; Johnsson, J E; Glarborg, P; Frandsen, F; Jensen, A; Oestberg, M [Technical Univ. of Denmark, Dept. of Chemical Engineering, Lyngby (Denmark)

    1996-12-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This paper describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control Research Programme). (au) 173 refs.

  15. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Frostell, Bjoern [Royal Inst. of Technology, Stockholm (Sweden). Div. of Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Technology, Stockholm (Sweden). Div. of Chemical Technology

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second

  16. Systems Analysis of Technologies for Energy Recovery from Waste. Part I. Gasification followed by Catalytic Combustion, PEM Fuel Cells and Solid Oxide Fuel Cells for Stationary Applications in Comparison with Incineration. Part - II. Catalytic combustion - Experimental part

    International Nuclear Information System (INIS)

    Assefa, Getachew; Frostell, Bjoern; Jaeraas, Sven; Kusar, Henrik

    2005-02-01

    This project is entitled 'Systems Analysis: Energy Recovery from waste, catalytic combustion in comparison with fuel cells and incineration'. Some of the technologies that are currently developed by researchers at the Royal Institute of Technology include catalytic combustion and fuel cells as downstream units in a gasification system. The aim of this project is to assess the energy turnover as well as the potential environmental impacts of biomass/waste-to-energy technologies. In second part of this project economic analyses of the technologies in general and catalytic combustion and fuel cell technologies in particular will be carried out. Four technology scenarios are studied: (1) Gasification followed by Low temperature fuel cells (Proton Exchange Membrane (PEM) fuel cells) (2) Gasification followed by high temperature fuel cells (Solid Oxide Fuel Cells (SOFC) (3) Gasification followed by catalytic combustion and (4) Incineration with energy recovery. The waste used as feedstock is an industrial waste containing parts of household waste, paper waste, wood residues and poly ethene. In the study compensatory district heating is produced by combustion of biofuel. The power used for running the processes in the scenarios will be supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced from natural gas. The emissions from the system studied are classified and characterised using methodology from Life Cycle Assessment in to the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical Oxidants. Looking at the result of the four technology chains in terms of the four impact categories with impact per GWh electricity produced as a unit of comparison and from the perspective of the rank each scenario has in all the four impact categories, SOFC appears to be the winner technology followed by PEM and CC as second and third

  17. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation

    International Nuclear Information System (INIS)

    Simpson, Adam P.; Simon, A.J.

    2007-01-01

    To define 2nd law efficiency targets for novel separation technologies, a simplified model of a power plant with two forms of CO 2 capture was developed. In this investigation, oxy-fuel combustion and post-combustion CO 2 separation were compared on an exergetic basis. Using exergy balances and black-box models of power plant components, multiple scenarios were run to determine the impact of plant configuration and separation unit efficiency on overall plant performance. Second law efficiency values from the literature were used to set the baseline performance of various CO 2 separation configurations. Assumed advances in 2nd law efficiency were used to determine the potential for overall system performance improvement. It was found that the 2nd law efficiency of air separation must reach a critical value before the thermodynamics of oxy-fuel combustion become favorable. Changes in operating equivalence ratio significantly move the tipping-point between post-combustion and oxy-fuel strategies

  18. Energy Division annual progress report for period ending September 30, 1988

    International Nuclear Information System (INIS)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics

  19. Physics division annual report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  20. Comprehensive investigation of process characteristics for oxy-steam combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zou, Chun; Zheng, Chuguang

    2015-01-01

    Highlights: • Oxy-steam combustion exhibits better performance than oxy-CO 2 combustion. • Cost of electricity in oxy-steam combustion is 6.62% less than oxy-CO 2 combustion. • The increase of oxygen concentration in oxidant can improve its system performance. • The decrease of excess oxygen coefficient can be helpful for its system performance. • Integration with solar technology can enhance its thermodynamic performance. - Abstract: Oxy-steam combustion, as an alternative option of oxy-fuel combustion technology, is considered as a promising CO 2 capture technology for restraining CO 2 emissions from power plants. To attain its comprehensive process characteristics, process simulation, thermodynamic assessment, and sensitivity analysis for oxy-steam combustion pulverized-coal-fired power plants are investigated whilst its corresponding CO 2 /O 2 recycled combustion (oxy-CO 2 combustion) power plant is served as the base case for comparison. Techno-economic evaluation and integration with solar parabolic trough collectors are also discussed to justify its economic feasibility and improve its thermodynamic performance further, respectively. It is found that oxy-steam combustion exhibits better performance than oxy-CO 2 combustion on both thermodynamic and economic aspects, in which the cost of electricity decreases about 6.62% whilst the net efficiency and exergy efficiency increase about 0.90 and 1.01 percentage points, respectively. The increment of oxygen concentration in oxidant (20–45 mol.%) and decrease of excess oxygen coefficient (1.01–1.09) in a certain range are favorable for improving oxy-steam combustion system performance. Moreover, its thermodynamic performance can be improved when considering solar parabolic trough collectors for heating recycled water, even though its cost of electricity increases about 2 $/(MW h)

  1. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  2. Combustion research in the Internal Fluid Mechanics Division

    Science.gov (United States)

    Mularz, Edward J.

    1986-01-01

    The goal of this research is to bring computational fluid dynamics to a state of practical application for the aircraft engine industry. The approach is to have a strongly integrated computational and experimental program for all the disciplines associated with the gas turbine and other aeropropulsion systems by advancing the understanding of flow physics, heat transfer, and combustion processes. The computational and experimental research is integrated in the following way: the experiments that are performed provide an empirical data set so that physical models can be formulated to describe the processes that are occurring - for example, turbulence or chemical reaction. These experiments also form a data base for those who are doing code development by providing experimental data against which the codes can be verified and assesed. Models are generated as closure to some of the numerical codes, and they also provide physical insight for experiments. At the same time, codes which solve the complete Navier-Stokes equations can be used as a kind of numerical experiment from which far more extensive data can be obtained than ever could be obtained experimentally. This could provide physical insight into the complex processes that are taking place. These codes are also exercised against experimental data to assess the accuracy and applicability of models.

  3. The ACS-NUCL Division 50th Anniversary: Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Hobart, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-10

    The ACS Division of Nuclear Chemistry and Technology was initiated in 1955 as a subdivision of the Division of Industrial and Engineering Chemistry. Probationary divisional status was lifted in 1965. The Division’s first symposium was held in Denver in 1964 and it is fitting that we kicked-off the 50th Anniversary in Denver in the spring of 2015. Listed as a small ACS Division with only about 1,000 members, NUCL’s impact over the past fifty years has been remarkable. National ACS meetings have had many symposia sponsored or cosponsored by NUCL that included Nobel Laureates, U.S. Senators, other high-ranking officials and many students as speakers. The range of subjects has been exceptional as are the various prestigious awards established by the Division. Of major impact has been the past 30 years of the NUCL Nuclear Chemistry Summer Schools to help fill the void of qualified nuclear scientists and technicians. In celebrating the 50th Anniversary we honor the past, celebrate the present and shape the future of the Division and nuclear science and technology. To celebrate this auspicious occasion a commemorative lapel pin has been designed for distribution to NUCL Division members.

  4. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment

    Science.gov (United States)

    Kimnach, Greg L.; Lebron, Ramon C.

    1999-01-01

    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.

  5. Metals and Ceramics Division progress report for period ending December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.

    1994-07-01

    This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative R and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.

  6. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  7. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...

  8. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  9. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. [ed.

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division`s total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division`s programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  10. Methane combustion over lanthanum-based perovskite mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Arandiyan, Hamidreza [New South Wales Univ., Sydney (Australia). School of Chemical Engineering

    2015-11-01

    This book presents current research into the catalytic combustion of methane using perovskite-type oxides (ABO{sub 3}). Catalytic combustion has been developed as a method of promoting efficient combustion with minimum pollutant formation as compared to conventional catalytic combustion. Recent theoretical and experimental studies have recommended that noble metals supported on (ABO{sub 3}) with well-ordered porous networks show promising redox properties. Three-dimensionally ordered macroporous (3DOM) materials with interpenetrated and regular mesoporous systems have recently triggered enormous research activity due to their high surface areas, large pore volumes, uniform pore sizes, low cost, environmental benignity, and good chemical stability. These are all highly relevant in terms of the utilization of natural gas in light of recent catalytic innovations and technological advances. The book is of interest to all researchers active in utilization of natural gas with novel catalysts. The research covered comes from the most important industries and research centers in the field. The book serves not only as a text for researcher into catalytic combustion of methane, 3DOM perovskite mixed oxide, but also explores the field of green technologies by experts in academia and industry. This book will appeal to those interested in research on the environmental impact of combustion, materials and catalysis.

  11. Dr Hiroshi Ikukawa Director Planning and Evaluation Division Science and Technology Policy Bureau Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and Mr Robert Aymar signed an accord for the CERN.

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    Dr Hiroshi Ikukawa Director Planning and Evaluation Division Science and Technology Policy Bureau Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and Mr Robert Aymar signed an accord for the CERN.

  12. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1997-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  13. Co-combustion and gasification of various biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Mutanen, K. [A. Ahlstrom Corporation, Varkaus (Finland). Ahlstrom Pyropower

    1996-12-31

    During the last twenty years the development of fluidized bed combustion and gasification technology has made it possible to increase significantly utilisation of various biomasses in power and heat generation. The forerunner was the pulp and paper industry that has an adequate biomass fuel supply and energy demand on site. Later on municipalities and even utilities have seen biomass as a potential fuel. The range of available biomasses includes wood-based fuels and wastes like bark, wood chips, and saw dust, agricultural wastes like straw, olive waste and rice husk, sludges from paper mills and de-inking plants, other wastes like municipal sludges, waste paper and RDF. Recently new environmental regulations and taxation of fossil fuels have further increased interest in the use of biomasses in energy generation. However, in many cases available quantities and/or qualities of biomasses are not adequate for only biomass-based energy generation in an economic sense. On the other hand plant owners want to maintain a high level of fuel flexibility and fuel supply security. In some cases disposing by burning is the only feasible way to handle certain wastes. In many cases the only way to fulfil these targets and utilize the energy is to apply co-combustion or gasification of different fuels and wastes. Due to the fact that fluidized bed combustion technology offers a very high fuel flexibility and high combustion efficiency with low emissions it has become the dominating technology in co-combustion applications. This presentation will present Alhstrom`s experiences in co-combustion of biomasses in bubbling beds and Ahlstrom Pyroflow circulating fluidized beds based on about 200 operating references worldwide. CFB gasification will also be discussed 9 refs.

  14. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  15. Experimental and modeling studies of fire in compartments at Electricite de France, Research and Development Division

    International Nuclear Information System (INIS)

    Gautier, B.

    1997-12-01

    Since 1985, The Research and Development Division at Electricite de France has been in charge, through the development of the software MAGIC, to simulate the fire propagation in Nuclear Plants. The research program has included, since its beginning, an experimental activity dedicated to the combustion of fluids and electrical cables. This paper gives an overview of the works in progress and presents the latest results obtained, in particular in cable combustion. In this field, a three scale approach has been carried on, based on micro-thermo-gravimetry, calorimetry and real scale experiments. (author)

  16. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S; Toyoda, S [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  17. Chemical looping combustion: A new low-dioxin energy conversion technology.

    Science.gov (United States)

    Hua, Xiuning; Wang, Wei

    2015-06-01

    Dioxin production is a worldwide concern because of its persistence and carcinogenic, teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction, pyrolysis gas oxidized by seven common oxygen carriers, namely, CuO, NiO, CaSO4, CoO, Fe2O3, Mn3O4, and FeTiO3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers (CuO, NiO, Fe2O3, and FeTiO3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste. Copyright © 2015. Published by Elsevier B.V.

  18. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  19. 2002 Chemical Engineering Division annual report

    International Nuclear Information System (INIS)

    Lewis, D.; Graziano, D.; Miller, J. F.

    2003-01-01

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  20. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  1. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit

    2014-01-01

    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  2. Tecnologie dell’informazione e della comunicazione, terziarizzazione e nuova divisione del lavoro digitale (Information and Communication Technologies, Tertiarization and the New Digital Division of Labour

    Directory of Open Access Journals (Sweden)

    Nicola De Liso

    2012-04-01

    Full Text Available The process of tertiarisation of our economies is taking place along with the ever-increasing pervasiveness of information and communication technologies (ICTs. ICTs, in turn, are becoming "convergent" as they share a common basis, namely digital technology. This common basis is becoming so important that it has engendered the need to add a new dimension to the original Smithian idea of the division of labour, i.e. we have to take into account the new forms of the digital division of labour. This work therefore considers the broad process of structural economic dynamics which is engendered by the processes of digitization of our economies, taking the 1960s as a starting point.     JEL Codes: O33, L86, L80Keywords: Technology, Technologies

  3. Direct sulfation of limestone based on oxy-fuel combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.M.; Zhao, C.S.; Liu, S.T.; Wang, C.B. [North China Electric Power University, Baoding (China)

    2009-10-15

    With limestone as the sorbent, the sulfation reaction can proceed via two different routes depending on whether calcination of the limestone takes place under the given reaction conditions. The direct sulfation reaction is defined as the sulfation reaction between sulfur dioxide (SO{sub 2}) and limestone in an uncalcined state. This reaction, based on oxyfuel combustion technology, was studied by thermogravimetric analysis. Surface morphologies of the limestone particles after sulfation were examined by a scanning electron microscope. Results show that there are more pores or gaps in the product layer formed by direct sulfation of limestone than by indirect sulfation, which can be attributed to the generation of carbon dioxide (CO{sub 2}) at a reaction interface. Compared with indirect sulfation, direct sulfation of limestone can yield much higher conversion and has a much higher reaction rate. For direct sulfation, the greater porosity in the product layer greatly reduces the solid-state ion diffusion distance, resulting in a higher reaction rate and higher conversion.

  4. Energy Division annual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, P.P. [ed.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society`s understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division`s expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination.

  5. Next-generation coal utilization technology development study. Environmentally-friendly coal combustion technology; O2/CO2 combustion technology; Sekitan riyo jisedai gijutsu kaihatsu chosa. Kankyo chowagata sekitan nensho gijutsu (sanso nensho gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    For the purpose of developing combustion systems in which environmental pollutants are less emitted from coal-fired boilers, conducted in fiscal 1994 were a study of load followability of oxygen producing equipment, and element and basic tests on oxygen combustion systems. Dynamic simulations were made to confirm load followability of low-purity oxygen producing equipment. Further, a test was made on starting time of oxygen producing equipment. As a result of the simulation, favorable load followability was confirmed except for some of the process. The width of variation of the product oxygen purity was {plus_minus} 0.7% at maximum. In the element test on oxygen combustion systems, an experiment on the oxygen combustion using pulverized coal was conducted to study heat collection characteristics of furnace and response to multi-kind of coal. A study of balance of S content, experiments on characteristics of crushing/transporting pulverized coal, etc. were added. There were seen no peculiar differences in CO2 transport and air transport. 216 figs., 31 tabs.

  6. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  7. System catalytic neutralization control of combustion engines waste gases in mining technologies

    Science.gov (United States)

    Korshunov, G. I.; Solnitsev, R. I.

    2017-10-01

    The paper presents the problems solution of the atmospheric air pollution with the exhaust gases of the internal combustion engines, used in mining technologies. Such engines are used in excavators, bulldozers, dump trucks, diesel locomotives in loading and unloading processes and during transportation of minerals. NOx, CO, CH emissions as the waste gases occur during engine operation, the concentration of which must be reduced to the standard limits. The various methods and means are used for the problem solution, one of which is neutralization based on platinum catalysts. A mathematical model of a controlled catalytic neutralization system is proposed. The simulation results confirm the increase in efficiency at start-up and low engine load and the increase in the catalyst lifetime.

  8. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Gao, Shan; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2014-01-01

    Highlights: • Superfine pulverized coal combustion in O 2 /CO 2 atmosphere is a new promising technology. • NO emissions of superfine pulverized coal combustion in O 2 /CO 2 mixture were focused. • Coal particle sizes have significant effects on NO emissions in O 2 /CO 2 combustion. - Abstract: The combination of O 2 /CO 2 combustion and superfine pulverized coal combustion technology can make full use of their respective merits, and solve certain inherent disadvantages of each technology. The technology of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere is easy and feasible to be retrofitted with few reconstructions on the existing devices. It will become a useful and promising method in the future. In this paper, a one-dimensional drop-tube furnace system was adopted to study the NO emission characteristics of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere. The effects of coal particle size, coal quality, furnace temperature, stoichiometric ratio, etc. were analyzed. It is important to note that coal particle sizes have significant influence on NO emissions in the O 2 /CO 2 combustion. For the homogeneous NO reduction, smaller coal particles can inhibit the homogeneous NO formations under fuel-rich combustion conditions, while it becomes disadvantageous for fuel-lean combustion. However, under any conditions, heterogeneous reduction is always more significant for smaller coal particle sizes, which have smoother pore surfaces and simpler pore structures. The results from this fundamental research will provide technical support for better understanding and developing this new combustion process

  9. Novel approaches in advanced combustion characterization of fuels for advanced pressurized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J. [VTT Energy (Finland); Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    This project is a part of the EU Joule 2 (extension) programme. The objective of the research of Technical Research Centre of Finland (VTT) is to produce experimental results of the effects of pressure and other important parameters on the combustion of pulverized coals and their char derivates. The results can be utilized in modelling of pressurized combustion and in planning pilot-scale reactors. The coals to be studied are Polish hvb coal, French lignite (Gardanne), German anthracite (Niederberg) and German (Goettelbom) hvb coal. The samples are combusted in an electrically heated, pressurized entrained flow reactor (PEFR), where the experimental conditions are controlled with a high precision. The particle size of the fuel can vary between 100 and 300 {mu}m. The studied things are combustion rates, temperatures and sizes of burning single coal and char particles. The latter measurements are performed with a method developed by Tampere University of Technology, Finland. In some of the experiments, mass loss and elemental composition of the char residue are studied in more details as the function of time to find out the combustion mechanism. Combustion rate of pulverized (140-180 {mu}m) Gardanne lignite and Niederberg anthracite were measured and compared with the data obtained earlier with Polish hvb coal at various pressures, gas temperatures, oxygen partial pressures and partial pressures of carbon dioxide in the second working period. In addition, particle temperatures were measured with anthracite. The experimental results were treated with multivariable partial least squares (PLS) method to find regression equation between the measured things and the experimental variables. (author)

  10. Development of pre-combustion decarbonization technologies for zero-CO{sub 2} power generation

    Energy Technology Data Exchange (ETDEWEB)

    Werner Renzenbrink; Karl-Josef Wolf; Frank Hannemann; Gerhard Zimmermann; Erik Wolf [RWE Power AG, Essen (Germany)

    2006-07-01

    The drastic rise in power generation that is expected on a global scale will also lead to a strong increase in CO{sub 2} emissions due to the high share of fossil energy sources used, which is quite contrary to the objectives of climate protection. In this dilemma, zero-CO{sub 2} power generation technologies might permit to make a decisive step on the road toward a necessary CO{sub 2} reduction. In the integrated ENCAP project (EU FP 6), a consortium of engineering companies, power plant manufacturers and research institutes lead-managed by RWE Power is drawing up technical IGCC/IRCC concepts including CO{sub 2} capture and spurring the necessary development of new gas turbine burners for the combustion of hydrogen-rich gases. Based on the working structure within ENCAP, this paper is divided into two parts. In the first part, the results of the process development for the different concepts based on hard coal, lignite and natural gas including CO{sub 2} capture is presented giving the technical and economic key figures of the processes. In the second part, the current status of burner development for the combustion of H{sub 2}-rich gases within ENCAP is given. 1 ref., 9 figs., 2 tabs.

  11. FY1996 annual report on the advanced combustion science in microgravity field

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research was implemented continuously from the previous year on combustion equipment enabling advanced combustion technologies, by studying combustion in a microgravity field, for the purpose of preventing environmental pollution caused by diversification of energy sources and exhaust gasses. In joint studies with NASA, the themes of the previous year were continued, for which tests were conducted 37 times using Japanese drop test equipment and 131 times using NASA's. The evaluation and analysis of the experiments and test data by the microgravity test equipment were, in addition to the themes of the previous year, such that micro observation for ignition/combustion mechanism of fuel spray droplets was made, as well as studies on fuel droplets combustion by a laser diagnostic device, concerning combustion of fuel droplets and vaporization process, that flame spread on solid substances was researched in relation to combustion characteristics of high density fuels, and that mixed gas combustion on a solid surface was studied in connection with the research on flammability limits. Furthermore, a study on combustion technology for gas turbines was added for the purpose of studying an advanced combustor. (NEDO)

  12. Energy Division annual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Selden, R.H. (ed.)

    1991-06-01

    The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

  13. 2003 Chemical Engineering Division annual technical report

    International Nuclear Information System (INIS)

    Lewis, D.; Graziano, D.; Miller, J. F.; Vandegrift, G.

    2004-01-01

    The Chemical Engineering Division is one of six divisions within the Engineering Research Directorate at Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, to promote national security, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training in chemistry; physics; materials science; and electrical, mechanical, chemical, and nuclear engineering. They are specialists in electrochemistry, ceramics, metallurgy, catalysis, materials characterization, nuclear magnetic resonance, repository science, and the nuclear fuel cycle. Our staff have experience working in and collaborating with university, industry and government research and development laboratories throughout the world. Our wide-ranging expertise finds ready application in solving energy, national security, and environmental problems. Division personnel are frequently called on by governmental and industrial organizations for advice and contributions to problem solving in areas that intersect present and past Division programs and activities. Currently, we are engaged in the development of several technologies of

  14. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  15. Numerical investigation of biogas flameless combustion

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Bagheri, Ghobad; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Fuel consumption decreases from 3.24 g/s in biogas conventional combustion to 1.07 g/s in flameless mode. • The differences between reactants and products temperature intensifies irreversibility in traditional combustion. • The temperature inside the chamber is uniform in biogas flameless mode and exergy loss decreases in this technique. • Low O 2 concentration in the flameless mode confirms a complete and quick combustion process in flameless regime. - Abstract: The purpose of this investigation is to analyze combustion characteristics of biogas flameless mode based on clean technology development strategies. A three dimensional (3D) computational fluid dynamic (CFD) study has been performed to illustrate various priorities of biogas flameless combustion compared to the conventional mode. The effects of preheated temperature and wall temperature, reaction zone and pollutant formation are observed and the impacts of combustion and turbulence models on numerical results are discussed. Although preheated conventional combustion could be effective in terms of fuel consumption reduction, NO x formation increases. It has been found that biogas is not eligible to be applied in furnace heat up due to its low calorific value (LCV) and it is necessary to utilize a high calorific value fuel to preheat the furnace. The required enthalpy for biogas auto-ignition temperature is supplied by enthalpy of preheated oxidizer. In biogas flameless combustion, the mean temperature of the furnace is lower than traditional combustion throughout the chamber. Compared to the biogas flameless combustion with uniform temperature, very high and fluctuated temperatures are recorded in conventional combustion. Since high entropy generation intensifies irreversibility, exergy loss is higher in biogas conventional combustion compared to the biogas flameless regime. Entropy generation minimization in flameless mode is attributed to the uniform temperature inside the chamber

  16. Packed Bed Reactor Technology for Chemical-Looping Combustion

    NARCIS (Netherlands)

    Noorman, S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    Chemical-looping combustion (CLC) has emerged as an alternative for conventional power production processes to intrinsically integrate power production and CO2 capture. In this work a new reactor concept for CLC is proposed, based on dynamically operated packed bed reactors. With analytical

  17. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

    1998-12-01

    Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

  18. Life Sciences Division progress report for CYs 1997-1998[Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mann, Reinhold C.

    1999-01-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R and D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R and D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  19. Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Reinhold C.

    1999-06-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  20. Analyzing a low NO[sub x] concentric combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Eremeev, A.V.

    1992-05-01

    Discusses concentric combustion technology developed by Combustion Engineering, Inc. (USA) to reduce NO[sub x] emissions from pulverized coal-fired boilers. The major innovation consists in arranging existing independent secondary air burners into three pairs of concentric combustion burners. Using high-deflection angle concentric combustion burners, higher oxygen concentration near the boiler walls, reduced erosion and lower probability of slag deposition on the heat shield are achieved. The technology was tested at the 165 MW Valmont power plant and 350 MW Cherokee power plant. Reduction of 55.7% (to 0.294 kg/GJ) in NO[sub x] emissions with a boiler efficiency of 86.35% was achieved. Highest NO[sub x] reduction efficiency was observed at full load (highest tertiary air supply). Burner design, performance, relations of NO[sub x] emissions and tertiary air blast as well as fuel entrainment prior to and after upgrading are given. Methods of reducing slag deposition in boilers are considered. 2 refs.

  1. High temperature combustion facility: present capabilities and future prospects

    International Nuclear Information System (INIS)

    Boccio, J.L.; Ginsberg, T.; Ciccarelli, G.

    1995-01-01

    The high-temperature combustion facility constructed and operated by the Department of Advanced Technology of Brookhaven National Laboratory to support and promote research in the area of hydrogen combustion phenomena in mixtures prototypical to light-water reactor containment atmospheres under potential severe accident conditions is reported. The facility can accommodate combustion research activities encompassing the fields of detonation physics, flame acceleration, and low-speed deflagration in a wide range of combustible gas mixtures at initial temperatures up to 700 K and post-combustion pressures up to 100 atmospheres. Some preliminary test results are presented that provide further evidence that the effect of temperature is to increase the sensitivity of hydrogen-air-steam mixtures to undergo detonation [ru

  2. Fuel Chemistry Division: progress report for 1985

    International Nuclear Information System (INIS)

    1988-01-01

    Fuel Chemistry Division was formed in May 1985 to give a larger emphasis on the research and development in chemistry of the nuclear fuel cycle. The areas of research in Fuel Chemistry Division are fuel development and its chemical quality control, understanding of the fuel behaviour and post irradiation examinations, chemistry of reprocessing and waste management processes as also the basic aspects of actinide and relevant fission product elements. This report summarises the work by the staff of the Division during 1985 and also some work from the previous periods which was not reported in the progress reports of the Radiochemistry Division. The work related to the FBTR fuel was one of the highlights during this period. In the area of process chemistry useful work has been carried out for processing of plutonium bearing solutions. In the area of mass spectrometry, the determination of trace constituents by spark source mass spectrometry has been a major area of research. Significant progress has also been made in the use of alpha spectromet ry techniques for the determination of plutonium in dissolver solution and other samples. The technology of plutonium utilisation is quite complex and the Division would continue to look into the chemical aspects of this technology and provide the necessary base for future developments in this area. (author)

  3. Report on research achievement in relation with developing fundamental combustion control technologies in fiscal 1998. Research and development of high-performance industrial furnaces; 1998 nendo nensho seigyo kiban gijutsu no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is intended to be made on fundamental combustion control technologies applicable to high-performance industrial furnaces that can reduce energy consumption and respond to environment preservation requirements. With an intention to achieve reduction in combustion exhaust gases such as carbon dioxide and nitrogen oxides, fundamental studies will be made on factors to decide flame shapes as represented by high-temperature combustion and flame shape control by utilizing microgravity environment, and researches will be made on combustion systems. Devices required for the experiments were fabricated to evaluate critical combustion characteristics of flames in furnaces including industrial furnaces, analyze and evaluate flame control parameters, and study low-pollution combustion technologies. Experimental methods acquired by 1997 were used for the experiments under the microgravity environment. Evaluation experiments were performed on flame shape control technologies and flame radiation characteristics, and basic experiments on the low-pollution combustion technologies. With these experiments, elucidation of the combustion mechanisms was launched by analyzing and evaluating the acquired data. A flame experimenting device for high-temperature preheated air completed by fiscal 1997 was used to acquire such combustion characteristics data as NOx discharge characteristics when the high-temperature preheated air is used. Based on the result thereof, verification was carried out on simulation models. (NEDO)

  4. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1978-10-01

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  5. Reaction and diffusion in turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)

    1993-12-01

    The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

  6. Identification and quantification of priority species from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Zheng, L.; Hlavacek, T. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada). Energy Research Laboratories

    1996-07-01

    The objective is to quantify and characterize emissions from pulverized coal combustion of seven coals and the circulating fluidized bed combustion of four coals. The species of particular interest are sulphur, nitrogen, chlorine, arsenic, mercury, lead, cadmium, potassium, and sodium. The Facility for Analysis of Chemical Thermodynamics (F{asterisk}A{asterisk}C{asterisk}T) method is used to predict type and amount of priority species. Prediction is made for combustion with and without the presence of limestone. The results show that the combustion technology used influences the amount of priority species emitted. 16 tabs., 3 apps.

  7. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

  8. Progress report for 1975-1977 of the Biochemistry and Food Technology Division

    International Nuclear Information System (INIS)

    1978-01-01

    Research and development work carried out during the period 1975-77 in the Biochemistry and Food Technology Division of the Bhabha Atomic Research Centre, is reported. In addition to the studies on macromolecular aspects of structure and function of chemical components e.g. proteins and enzymes of living systems and food microbiology, major studies relate to: (1) safe storage of wheat irradiated for disinfestation, (2) compositional changes in wheat exposed to high dose of radiation, (3) sprout inhibition of irradiated potatoes during storage under tropical conditions, (4) induction of phenylalanine ammonium lyase in irradiated potatoes, (5) preservation of mangoes and bananas by heat-radiation combination, (6) extension of shelf-life of fish by radurization, (7) wholesomeness of irradiated fish and (8) genetic toxicological evaluation of irradiated foods. (M.G.B.)

  9. Religious Support in the Division XXI Heavy Brigade

    National Research Council Canada - National Science Library

    Keller, Eric

    2001-01-01

    Force XXI technology changes the war-fighting doctrine of the US Army. The new digital technology combined with changes in the design of the force structure created a new mechanized infantry or armor division...

  10. Energy Division annual progress report for period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Counce, D.M.; Wolff, P.P. [eds.

    1993-04-01

    Energy Division`s mission is to provide innovative solutions to energy and related Issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY 1992. Energy Division`s total expenditures in FY 1992 were $42.8 million. The work is supported by the US Department of Energy, the US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 116.5 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on waste management, technology transfer, analysis of energy and environmental needs in developing countries, and civilian transportation analysis. Energy conservation technologies focus on electric power systems, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Military transportation systems conduct research for sponsors within the US military to improve the efficiency of military deployment, scheduling, and transportation coordination. Much of Energy Division`s research is valuable to other organizations as well as to sponsors. This information is disseminated by the staff`s involvement in professional and trade organizations and workshops; joint research with universities and private-sector firms; collaboration with state and local governments; presentation of work at conferences; and publication of research results in journals, reports, and conference proceedings.

  11. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  12. PSO 7171 - Oxyfuel Combustion for below zero CO2 emissions

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Hansen, Brian Brun

    for the continuous utilisation of the existing energy producing system in the transformation period. Oxyfuel combustion is one of the possible CCS technologies which show promising perspectives for implementation in industrial scale within a relatively short period of time. Oxyfuel combustion deviates from...

  13. Experimental investigation of the oxy-fuel combustion of hard coal in a circulating fluidized-bed combustion; Experimentelle Untersuchung der Oxy-Fuel-Verbrennung von Steinkohle in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Gerrit Arne

    2017-03-16

    The United Nations Framework Convention on Climate Change (UNFCCC) in 1992 first illustrated the social, economic and politic focus being placed on combating climate change caused by anthropogenic greenhouse gases. From there onwards research and development efforts have particularly centred on the reduction of CO{sub 2} emissions in the production of electrical power through the use of carbonaceous fossil fuels. The long-term goal is a conversion to sustainable and CO{sub 2} free means of producing power, utilizing in the main part renewable forms of energy such as solar, wind and hydro power. Currently, such renewable ways of creating electricity only represent a small percentage of global energy production. The technological and economic hurdles that are associated with a substantial increase of renewable energy production have greatly slowed their increased implementation. However, the goal of keeping the atmospheric CO{sub 2} concentration below 450 ppm requires a significantly faster reduction in the amount of greenhouse gas emissions. Therefore, considerations are being given to bridge technologies which would be able to capture and store the CO{sub 2} emissions from fossil fired power plants. These technologies are referred to as CCS (carbon capture and storage). Oxy-fuel combustion, combustion with pure oxygen instead of air, is one of those technologies and forms the focus of investigation of this work. The Institute of Combustion and Power Plant Technology in Stuttgart, Germany, have researched this matter, carrying out combustion experiments in its 150 kW{sub th} circulating fluidized bed pilot facility. The experiments were aimed at investigating the influence of excess oxygen, combustion temperature and inlet oxygen concentration on the combustion process and comparing air to oxy-fuel combustion. These results were compared to the results of fundamental investigations and combustion experiments carried out by other research groups. The relationship

  14. Design and experimental investigation of an oxy-fuel combustion system for magnetohydrodynamic power extraction

    Science.gov (United States)

    Hernandez, Manuel Johannes

    A general consensus in the scientific and research community is the need to restrict carbon emissions in energy systems. Therefore, extensive research efforts are underway to develop the next generation of energy systems. In the field of power generation, researchers are actively investigating novel methods to produce electricity in a cleaner, efficient form. Recently, Oxy-Combustion for magnetohydrodynamic power extraction has generated significant interest, since the idea was proposed as a method for clean power generation in coal and natural gas power plants. Oxy-combustion technologies have been proposed to provide high enthalpy, electrically conductive flows for direct conversion of electricity. Direct power extraction via magnetohydrodynamics (MHD) can occur as a consequence of the motion of "seeded" combustion products in the presence of magnetic fields. However, oxy-combustion technologies for MHD power extraction has not been demonstrated in the available literature. Furthermore, there are still fundamental unexplored questions remaining, associated with this technology, for MHD power extraction. In this present study, previous magnetohydrodynamic combustion technologies and technical issues in this field were assessed to develop a new combustion system for electrically conductive flows. The research aims were to fully understand the current-state-of-the-art of open-cycle magnetohydrodynamic technologies and present new future directions and concepts. The design criteria, methodology, and technical specifications of an advanced cooled oxy-combustion technology are presented in this dissertation. The design was based on a combined analytical, empirical, and numerical approach. Analytical one-dimensional (1D) design tools initiated design construction. Design variants were analyzed and vetted against performance criteria through the application of computational fluid dynamics modeling. CFD-generated flow fields permitted insightful visualization of the

  15. Successful design and application of SNCR parallel to combustion modification

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongxian; Tang, Leping; Shao, Xiaozhen; Meng, Derun; Li, Hongjian [Tongfang Environment CO., LTD., Beijing (China); Zhou, Wei; Xu, Guang [GE Energy, Anaheim, CA (United States)

    2013-07-01

    Various De-NOx methods have been recently adopted in China to control NOx emissions including Selective Non-Catalytic Reaction (SNCR) technology. Usually, the design of SNCR system is carried out after the combustion modification technologies, such as low NOx burner (LNB) and over fire air (OFA), have already been installed and in operation. This article discusses how to design the SNCR system parallel to the combustion modification. The SNCR process design consists of three steps: (1) boiler baseline test, (2) computational fluid dynamics simulation (CFD) facilitated design and (3) SNCR system performance predictions and optimizations. The first step is to conduct boiler baseline test to characterize the boiler operating conditions at a load range. The test data can also be used to calibrate the CFD model. The second step is to develop a three-dimensional boiler coal combustion CFD model to simulate the operation of the boilers at both baseline and post combustion modification conditions. The simulation reveals velocity, temperature and combustible distributions in the furnace. The last step is to determine the position and numbers of the injectors for SNCR reagent. The final field tests upon the project completion have shown that the average SNCR De-NOx efficiency has reached 35.1% with the maximum removal efficiency of 45% on full load. The project also couples the SNCR and SCR (Selective Catalytic Reduction) technologies. The combined removal efficiency of combustion modifications, SNCR and SCR is higher than 82%. This paper shows a successful example for retrofitting aged power-generating units with limited space.

  16. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  17. Metals and Ceramics Division progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report provides a brief overview of the activities and accomplishments of the Metals and Ceramics (M C) Division during fiscal year (FY) 1991. The division is organized to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by the US Department of Energy (DOE). Activities span the range from basic research (through applied research and engineering development) to industrial interactions (through cooperative research and a strong technology transfer program). The division is organized in functional groups that encompass nearly all of the disciplines needed to develop and to apply materials in high-temperature applications. Sections I through 5 describe the different functional groups; Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines; and Sect. 7 summarizes external interactions including cooperative research and development programs, educational activities, and technology transfer functions. Appendices describe the organizational structure, note personnel changes, present honors and awards received by division members, and contain listings of publications completed and presentations made at technical meetings.

  18. Metals and Ceramics Division progress report for period ending September 30, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    This report provides a brief overview of the activities and accomplishments of the Metals and Ceramics (M ampersand C) Division during fiscal year (FY) 1991. The division is organized to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by the US Department of Energy (DOE). Activities span the range from basic research (through applied research and engineering development) to industrial interactions (through cooperative research and a strong technology transfer program). The division is organized in functional groups that encompass nearly all of the disciplines needed to develop and to apply materials in high-temperature applications. Sections I through 5 describe the different functional groups; Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines; and Sect. 7 summarizes external interactions including cooperative research and development programs, educational activities, and technology transfer functions. Appendices describe the organizational structure, note personnel changes, present honors and awards received by division members, and contain listings of publications completed and presentations made at technical meetings

  19. Space Station Freedom combustion research

    Science.gov (United States)

    Faeth, G. M.

    1992-01-01

    spread of liquids, drop combustion, and quenching of panicle-air flames. Unfortunately, the same features that make microgravity attractive for fundamental combustion experiments, introduce new fire and explosion hazards that have no counterpart on earth. For example, microgravity can cause broader flammability limits, novel regimes of flame spread, enhanced effects of flame radiation, slower fire detector response, and enhanced combustion upon injecting fire extinguishing agents, among others. On the other hand, spacecraft provide an opportunity to use 'fire-safe' atmospheres due to their controlled environment. Investigation of these problems is just beginning, with specific fire safety experiments supplementing the space based fundamental experiments listed earlier; thus, much remains to be done to develop an adequate technology base for fire and explosion safety considerations for spacecraft.

  20. Progress report: Plasma Physics Division (July 1985 to March 1990)

    International Nuclear Information System (INIS)

    Venkatramani, N.; Thakur, A.V.; Viswanadam, C.

    1991-01-01

    The report summarizes the research and development (R and D) activities carried out by Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Bombay during the period July 1985 to March 1990. The R and D activites are reported under the headings: 1) Thermal Plasma, 2) Electron Beam Technology, and 3) Industrial Design Section. A list of scientific and technical staff working in the different sections of the Division is also given. (author)

  1. Lean-burn stratified combustion at gasoline engines; Magere Schichtverbrennung beim Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Breitbach, Hermann [Daimler AG, Stuttgart (Germany). Entwicklung Einspritzung und Betriebsstoffe; Waltner, Anton [Daimler AG, Stuttgart (Germany). Verbrennungsentwicklung Pkw-Ottomotoren; Landenfeld, Tilo [Robert Bosch GmbH, Schwieberdingen (Germany). Hochdruckeinspritzung Piezo; Porten, Guido [Robert Bosch GmbH, Schwieberdingen (Germany). Systementwicklung Benzindirekteinspritzung

    2013-05-01

    Spray-guided lean-burn combustion is an integral part of the Mercedes-Benz technology strategy for highly efficient and clean gasoline engines. With regard to the excellent fuel efficiency combined with outstanding specific power, a good combustion system robustness and the low particulate emissions, the concept offers a very good cost/benefit ratio especially for the Euro 6 emission legislation. Thus, Mercedes-Benz believes, that the sprayguided lean-burn combustion offers the by far highest future viability of gasoline engine combustion systems.

  2. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  3. Energy Division annual progress report for period ending September 30, 1988: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    The goals and accomplishments of the Energy Division of Oak Ridge National Laboratory are described in this annual progress report for Fiscal Year (FY) 1988. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of the way society makes choices in energy use and energy-using technologies, (2) improving society's understanding of the environmental implications of changes in energy technology, and (3) improving and developing new energy-efficient technologies. The Energy Division's programmatic activities focus on four major areas: (1) analysis and assessment, (2) transportation and decision systems research, (3) technology research and development for improving the efficiency of energy and end-use technologies, and (4) electric power systems. The Division's total expenditures in FY 1988 were $44.3 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 139 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics.

  4. Clean coal technologies: A business report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  5. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  6. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  7. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Asaoka, Takumi; Suzuki, Tomoo; Mitani, Hiroshi; Akino, Fujiyoshi

    1977-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1976 are described. Works of the division concern mainly the development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and the development of Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and activities of the Committee on Reactor Physics. (auth.)

  8. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1976-09-01

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  9. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-11-01

    Research activities in fiscal 1974 in Reactor Engineering Division of eight laboratories and computing center are described. Works in the division are closely related with the development of a multi-purpose High-temperature Gas Cooled Reactor, the development of a Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation, and engineering of thermonuclear fusion reactors. They cover nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and aspects of the computing center. (auth.)

  10. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Nakahara, Yasuaki; Takano, Hideki

    1982-09-01

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  11. Physics division annual report - 1999

    International Nuclear Information System (INIS)

    Thayer, K.

    2000-01-01

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R and D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design

  12. Proceedings of the 2006 Combustion Institute Canadian Section spring technical meeting

    International Nuclear Information System (INIS)

    Devaud, C.; Weckman, E.; Lam, C.; Spike, E.

    2006-01-01

    This conference provided a networking opportunity for academic, government and industrial combustion researchers from across Canada. All aspects of combustion were discussed, particularly those related to new engine technologies that reduce exhaust gas emissions while maintaining performance. Major engine operating and fuelling control parameters that improve combustion efficiency were identified. The conference was divided into several sessions dealing with combustion emissions and pollutants such as soot and particulates; alternative fuels including biofuels and fuel cells; chemical kinetics; droplet and spray combustion; combustion synthesis of materials; detonations, explosions, fires, flammability, flares and incineration; environmental issues and hazard analysis; and, numerical modeling and simulation. The conference featured 61 presentations, of which 39 have been catalogued separately for inclusion in this database

  13. Residential wood combustion technology review: Volume 1. Final technical report, July 1997--July 1998

    International Nuclear Information System (INIS)

    Houck, J.E.; Tiegs, P.E.

    1998-12-01

    The report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories--cordwood stoves, fireplaces, masonry heaters, pettel stoves, and wood-fired central heating furnaces--was reviewed. Advances in technology achieved since the mid-1980s were the primary focus. Key findings of the review included: (1) the new source performance standard (NSPS) certification procedure only qualitatively predicts the level of emissions from wood heaters under actual use in homes; (2) woodstove durability varies with model, and a method to assess the durability problem is controversial; (3) nationally, the overwhelming majority of RWC air emissions are from noncertified devices (primarily from older noncertified woodstoves); (4) new technology appliances and fuels can reduce emissions significantly; (5) the International Organization for Standardization and EPA NSPS test procedures are quite dissimilar, and data generated by the two procedures would not be comparable; and (6) the effect of wood moisture and wood type on particulate emission appears to be real but less than an order of magnitude

  14. Residential wood combustion technology review: Volume 2 -- Appendices. Final report, July 1997--July 1998

    International Nuclear Information System (INIS)

    Houck, J.E.; Tiegs, P.E.

    1998-12-01

    The report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories--cordwood stoves, fireplaces, masonry heaters, pettel stoves, and wood-fired central heating furnaces--was reviewed. Advances in technology achieved since the mid-1980s were the primary focus. Key findings of the review included: (1) the new source performance standard (NSPS) certification procedure only qualitatively predicts the level of emissions from wood heaters under actual use in homes; (2) woodstove durability varies with model, and a method to assess the durability problem is controversial; (3) nationally, the overwhelming majority of RWC air emissions are from noncertified devices (primarily from older noncertified woodstoves); (4) new technology appliances and fuels can reduce emissions significantly; (5) the International Organization for Standardization and EPA NSPS test procedures are quite dissimilar, and data generated by the two procedures would not be comparable; and (6) the effect of wood moisture and wood type on particulate emission appears to be real but less than an order of magnitude

  15. Fiscal 1998 research report. R and D on advanced combustion technology under microgravity environment; 1998 nendo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research was made on explication of a combustion phenomenon by using a microgravity facility, and a combustor possible to realize advanced combustion technology. In the basic research composed of 5 themes by the international joint research with NASA, 52 drop experiments using JAMIC's facility and 100 drop experiments using NASA's 2.2s drop tower were carried out. The themes are composed of an interaction in droplet arrays combustion, combustion of binary fuel sprays, combustion characteristics of solid fuel, flame dynamics around a lean flammability limit, and mass transfer around a combustion field. In the experiment using the microgravity experiment facility and analysis evaluation of the experimental data, studies were made on combustion and evaporation of fuel droplets, combustion characteristics of dense fuel, flammability limit, formation mechanism of NO{sub x} and an advanced combustor. For applying a pre-evaporating/pre- mixing combustion system to a combustor for aircraft engines, studies were made on some issues such as improvement of a combustion stability, NO{sub x} discharge characteristics, and optimum fuel atomizing. (NEDO)

  16. Fiscal 1998 research report. R and D on advanced combustion technology under microgravity environment; 1998 nendo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research was made on explication of a combustion phenomenon by using a microgravity facility, and a combustor possible to realize advanced combustion technology. In the basic research composed of 5 themes by the international joint research with NASA, 52 drop experiments using JAMIC's facility and 100 drop experiments using NASA's 2.2s drop tower were carried out. The themes are composed of an interaction in droplet arrays combustion, combustion of binary fuel sprays, combustion characteristics of solid fuel, flame dynamics around a lean flammability limit, and mass transfer around a combustion field. In the experiment using the microgravity experiment facility and analysis evaluation of the experimental data, studies were made on combustion and evaporation of fuel droplets, combustion characteristics of dense fuel, flammability limit, formation mechanism of NO{sub x} and an advanced combustor. For applying a pre-evaporating/pre- mixing combustion system to a combustor for aircraft engines, studies were made on some issues such as improvement of a combustion stability, NO{sub x} discharge characteristics, and optimum fuel atomizing. (NEDO)

  17. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  18. Proceedings of IEA combustion 2009 : IEA 31. task leaders meeting on energy conservation and emissions reduction in combustion

    International Nuclear Information System (INIS)

    2009-01-01

    The International Energy Agency (IEA) supports research and development in energy technology. This meeting provided a forum to discuss combustion processes, which is fundamental to achieving further improvements in fuel use efficiency, reducing the production of pollutants such as nitrogen oxides, and facilitating the transition to alternative fuels. The presentations demonstrated recent studies in improving the efficiency and fuel flexibility of automotive engines; improving the performance of industrial furnaces; emissions formation and control mechanisms; and fuel injection and fuel/air mixing. The conference also highlighted studies involving hydrogen combustion, alternative fuels, particulate diagnostics, fuel sprays, gas turbines, and advanced combustion processes such as homogeneous charge compression ignition (HCCI). The sessions were entitled: HCCI fuels; sprays; nanoparticle diagnostics; alternative fuels; hydrogen internal combustion engines; turbines; energy security; and collaborative task planning. All 45 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  19. Simulation of lean premixed turbulent combustion

    International Nuclear Information System (INIS)

    Bell, J; Day, M; Almgren, A; Lijewski, M; Rendleman, C; Cheng, R; Shepherd, I

    2006-01-01

    There is considerable technological interest in developing new fuel-flexible combustion systems that can burn fuels such as hydrogen or syngas. Lean premixed systems have the potential to burn these types of fuels with high efficiency and low NOx emissions due to reduced burnt gas temperatures. Although traditional Scientific approaches based on theory and laboratory experiment have played essential roles in developing our current understanding of premixed combustion, they are unable to meet the challenges of designing fuel-flexible lean premixed combustion devices. Computation, with its ability to deal with complexity and its unlimited access to data, has the potential for addressing these challenges. Realizing this potential requires the ability to perform high fidelity simulations of turbulent lean premixed flames under realistic conditions. In this paper, we examine the specialized mathematical structure of these combustion problems and discuss simulation approaches that exploit this structure. Using these ideas we can dramatically reduce computational cost, making it possible to perform high-fidelity simulations of realistic flames. We illustrate this methodology by considering ultra-lean hydrogen flames and discuss how this type of simulation is changing the way researchers study combustion

  20. Physics division. Progress report, January 1, 1995--December 31, 1996

    International Nuclear Information System (INIS)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations

  1. Physics division. Progress report, January 1, 1995--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R. [eds.] [comps.] [and others

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  2. Turbulent Combustion Modeling Advances, New Trends and Perspectives

    CERN Document Server

    Echekki, Tarek

    2011-01-01

    Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book ...

  3. Emissions from small scale biomass combustion - Research needs

    International Nuclear Information System (INIS)

    Gustavsson, L.; Karlsson, M.L.; Larfeldt, J.; Leckner, B.

    1994-01-01

    Earlier investigations have shown that small scale biomass combustion leads to unacceptable emissions in the air. The most important problem is high levels of unburnt hydrocarbons. This report analyzes which are the most important reasons to these emissions and which research efforts that are necessary to increase the knowledge about the combustion processes, thereby promoting the development of environmentally feasible equipment. The following factors are defined as most crucial to emission levels: size of combustion chamber, air excess ratio, means of combustion air supply, mixing between air and fuel, transient events, and fuel quality. It is concluded that both basic and research within the area is needed. More specific, research in the form of systematic analysis of best available technology, reactor experiments, compilation of knowledge about relevant basic combustion processes, mathematical modelling as well as development of measurement techniques are called for. 15 refs, 11 figs, 1 tab

  4. E-Division semiannual report. Progress report, June 1--December 31, 1977. [Electronics and Instrumentation Division, LASL

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1978-03-01

    The status of the programs and projects of the Electronics Division is reported for the period of June through December 1977. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support branch is to apply advanced technology to laboratory and material problems. The primary goal of the Technical Services branch is to provide a technical base and support for Laboratory programs. These goals are reflected in this report. Among the subject areas included are the following: radiation detectors, temperature monitoring, electromagnetic probing, Josephson junction switching devices, fiber optics, high-temperature electronics, HVAC systems, microprocessors, fuel cell-powered vehicles, laser fusion.

  5. ERA-Net Evaluation of technology status for small-scale combustion of pellets from new ash rich biomasses - combustion tests in residential burners

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Johansson, Mathias; Frida Claesson

    2008-07-01

    In this project, pellets with higher ash content compared to the wood pellets used today on the Swedish market were tested in three domestic-scale burners. The tests were carried out based on EN 303-5. In the flue gas, combustion parameters as carbon monoxide, carbon dioxide, oxygen and hydro carbons were measured, and also more fuel specific parameters such as nitrogen oxides, sulphur dioxide, hydrogen chloride, total dust and particle mass- and number concentration. The dust (fly ash) and bottom ash were characterized chemically. The implications of high ash content on combustion performance are discussed in the report. Altogether five pellets with 8 mm diameter were tested: oilseed straw pellet, reed canary grass pellet (RCG), barley straw pellet, bark pellet and wood pellet. All fuels were dry ranging from 6.5-12 % moisture. The ash content varied from 0.3 weight-% dm in wood to 7.9 % in RCG. Barley straw has a noticeable low ash melting temperature, < 980 deg C, and could not be combusted in any of the burners. The nitrogen content varied nine times and sulphur more than 10 times. The chlorine content was very low in wood and bark and more than 20 times higher in oilseed and barley. The composition of inorganic species in the fuel ash was dominated by calcium, potassium and silica in wood, bark and oilseed pellet, while RCG and barley straw were dominated by silica. The three burners used were commercial and known to fulfil high quality requirements. Burner A is a pellet burner where fuel is supplied on top of the grate with no mechanical mean for moving bottom ash on the grate during combustion. Bottom ash is blown away, and any slag remaining on the grate is removed with a scrape before ignition. Burner B is an upward burning pellet burner where fuel and ash is pushed upwards and the glow bed is exposed to the surrounding combustion department. Burner C is a forward burning grain burner that pushes fuel and ash forwards, inside a cylinder. From the

  6. Field study of wastes from fluidized-bed combustion technologies

    International Nuclear Information System (INIS)

    Weinberg, A.; Holcombe, L.; Butler, R.

    1991-01-01

    The Department of Energy (DOE) has undertaken a research project to monitor advanced coal process wastes placed in natural geologic settings. The overall objective of the study is to gather field data on the engineering and environmental performance of disposed solid waste from various advanced coal processes. The coal ash from a fluidized-bed combustion unit is being studied as part of the DOE program. The unit is a 110-MW circulating fluidized bed (CFB) at Colorado Ute Electric Association's Nucla Steam Electric Station, which is being demonstrated with the support of the DOE Clean Coal Technology Program. The Electric Power Research Institute is cofunding the study. In June of 1989, a test cell approximately 100 feet square and 8 feet deep was constructed and filled with ash from the Colorado Ute CFB unit. The cell was instrumented with lysimeters and neutron probe access tubes to monitor water flow and leachate chemistry in the ash; groundwater wells and runoff collection devices were installed to determine the effects on groundwater and surface water quality, and a meteorological station was installed to determine the water balance. Additionally, tests are being performed to evaluate the chemical, physical, and mineralogical properties of the solid waste and geologic materials. Results from the first year of monitoring are presented

  7. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  8. Combustion and utilization of low calorific value gases (LCVG)

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, Puneet; Ray, Anjan

    2010-09-15

    Combustion becomes increasingly difficult / inefficient / impossible with decrease in hydrocarbon content / calorific value of gas with available technologies. Through analysis it was postulated that Low Calorific Value Gas would be combustible with Oxygen in existing burner equipment with minor changes, and experimentally tested in the laboratory. The broad conclusion is that LCVG (with 8% or more Hydrocarbon content) could be combusted as efficiently as a normal High CV natural gas. This creates opportunity to translate significant promise and potential of LCVG from a variety of un-conventional sources globally into reliable long term energy resources.

  9. Research Award: Communications Division Deadline: 12 ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Jean-Claude Dumais

    2012-09-12

    Sep 12, 2012 ... IDRC's Communications Division has undertaken a number of initiatives to promote research results to key ... How are new technologies changing the face of publishing and how can development agencies benefit? • How can ...

  10. 1998 annual report of advanced combustion science utilizing microgravity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the purpose of stabilizing energy supply, diversifying energy supply sources and reducing the worsening of global environment caused by combustion exhaust gases, advanced combustion technology was studied and the FY 1998 results were summarized. Following the previous year, the following were conducted: international research jointly with NASA, experiments using microgravity test facilities of Japan Space Utilization Promotion Center (JSUP), evaluation studies made by universities/national research institutes/private companies, etc. In the FY 1998 joint study, a total of 52 drop experiments were carried out on 4 themes using test facilities of Japan Microgravity Center (JAMIC), and 100 experiments were conducted on one theme using test facilities of NASA. In the study using microgravity test facilities, the following were carried out: study of combustion and evaporation of fuel droplets, study of ignition/combustion of fuel droplets in the suspending state, study of combustion of spherical/cylinder state liquid fuels, study of high pressure combustion of binary fuel spray, study of interaction combustion of fuel droplets in the microgravity field, etc. (NEDO)

  11. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  12. Energy Division annual progress report for period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.N. (ed.)

    1992-04-01

    The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division's total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

  13. Progress report of Technical Physics Division: April 1980 - March 1982

    International Nuclear Information System (INIS)

    Chaudhry, Ramesh; Vijendran, P.

    1983-01-01

    Activities, with an individual summary of each, of the Technical Physics Division (TPD) of the Bhabha Atomic Research Centre (BARC), Bombay are reported for the period April 1980 - March 1982. The major thrust of the TPD's work has been in: (i) design and fabrication of instruments, devices and equipment and (ii) development of techniques in the frontline research and technology areas like vacuum science, surface analysis, cryogenics and crystal growing. The Division also provided custombuilt electronics equipment, vacuum systems and glass components and devices to the various Divisions of BARC and other units of the DAE. Training and manpower development activities and technology transfer activities are also reported. Lists of seminars, colloquia, publications during the period of the report are given. (M.G.B.)

  14. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  15. Chemical Pollution from Combustion of Modern Spacecraft Materials

    Science.gov (United States)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  16. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1980-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1979 are described. The work of the Division is closely related to development of multi-purpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committees on Reactor Physics and on Decomissioning of Nuclear Facilities. (author)

  17. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  18. Metals and Ceramics Division progress report for period ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  19. Organization structure. Main activities of the Division

    International Nuclear Information System (INIS)

    2008-01-01

    In this chapter the organization structure as well as main activities of the Division for radiation safety, NPP decommissioning and radioactive waste management are presented. This Division of the VUJE, a.s. consists of the following sections and departments: Section for economic and technical services; Section for radiation protection of employees; Department for management of emergency situations and risk assessment; Department for implementation of nuclear power facilities decommissioning and RAW management; Department for personnel and environmental dosimetry; Department for preparation of NPP decommissioning; Department for RAW treatment technologies; Department for chemical regimes and physico-chemical analyses; Department for management of nuclear power facilities decommissioning and RAW management. Main activities of this Division are presented.

  20. A Review of Heavy-Fueled Rotary Engine Combustion Technologies

    Science.gov (United States)

    2011-05-01

    Triangle Park, NC, 2009. 17. Shimizu, R.; Tadokoro, T.; Nakanishi, T.; Funamoto, J. Mazda 4-Rotor Rotary Engine for the Le Mans 24-Hour Endurance...2000. 102. Schock, H.; Hamady, F.; Somerton , C. Stratified Charge Rotary Engine Combustion Studies; NASA-CR-197985; National Aeronautics and

  1. Combustion: an oil spill mitigation tool

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    The technical feasibility of using combustion as an oil spill mitigation tool was studied. Part I of the two-part report is a practical guide oriented toward the needs of potential users, while Part II is the research or resource document from which the practical guidance was drawn. The study included theoretical evaluations of combustion of petroleum pool fires under the effects of weathering and an oil classification system related to combustion potential. The theoretical analysis of combustion is balanced by practical experience of oil burning and case history information. Decision elements are provided which can be used as a guide for technical evaluations of a particular oil spill situation. The rationale for assessing technical feasibility is given in the context of other alternatives available for response to an oil spill. A series of research and technology development concepts are included for future research. The ethics of using oil burning are discussed as issues, concerns, and tradeoffs. A detailed annotated bibliography is appended along with a capsule review of a decade of oil burning studies and other support information.

  2. CloudFlame: Cyberinfrastructure for combustion research

    KAUST Repository

    Goteng, Gokop

    2013-12-01

    Combustion experiments and chemical kinetics simulations generate huge data that is computationally and data intensive. A cloud-based cyber infrastructure known as Cloud Flame is implemented to improve the computational efficiency, scalability and availability of data for combustion research. The architecture consists of an application layer, a communication layer and distributed cloud servers running in a mix environment of Windows, Macintosh and Linux systems. The application layer runs software such as CHEMKIN modeling application. The communication layer provides secure transfer/archive of kinetic, thermodynamic, transport and gas surface data using private/public keys between clients and cloud servers. A robust XML schema based on the Process Informatics Model (Prime) combined with a workflow methodology for digitizing, verifying and uploading data from scientific graphs/tables to Prime is implemented for chemical molecular structures of compounds. The outcome of using this system by combustion researchers at King Abdullah University of Science and Technology (KAUST) Clean Combustion Research Center and its collaborating partners indicated a significant improvement in efficiency in terms of speed of chemical kinetics and accuracy in searching for the right chemical kinetic data.

  3. Quantitative Detection of Combustion Species using Ultra-Violet Diode Lasers

    Science.gov (United States)

    Pilgrim, J. S.; Peterson, K. A.

    2001-01-01

    Southwest Sciences is developing a new microgravity combustion diagnostic based on UV diode lasers. The instrument will allow absolute concentration measurements of combustion species on a variety of microgravity combustion platforms including the Space Station. Our approach uses newly available room temperature UV diode lasers, thereby keeping the instrument compact, rugged and energy efficient. The feasibility of the technique was demonstrated by measurement of CH radicals in laboratory flames. Further progress in fabrication technology of UV diode lasers at shorter wavelengths and higher power will result in detection of transient species in the deeper UV. High sensitivity detection of combustion radicals is provided with wavelength modulation absorption spectroscopy.

  4. Fiscal 1993-1998 integrated research report. R and D on advanced combustion technology under microgravity environment; 1993 - 1998 nendo sogo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For developing advanced combustion technology by using JAMIC's facility, the advanced combustion technology research committee supported by researchers of universities, national institutes and industries was prepared in JSUP, and R and D using a microgravity experiment facility and the international joint research with NASA were carried out. By using the advanced experimental equipment and measuring instrument developed for microgravity experiments, studies were made on combustion and evaporation of fuel droplets, combustion characteristics of dense fuel, flammability limit and NO{sub x} generation mechanism, and such precious results were obtained as storage of abundant experimental data, explication of a combustion mechanism, preparation of a database and find of new phenomena. In the ground verification experiment using the newly fabricated advanced combustor test equipment, various data effective for developing high-efficiency low-pollution combustors were obtained. Through the joint research with NASA including 5 themes, various results and the real relationship between the researchers were also obtained. (NEDO)

  5. Achievement report for fiscal 1998. Development of control system technologies such as combustion with energy consumption rationalized; 1998 nendo seika hokokusho. Energy shiyo gorkika nensho nado seigyo system gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    To improve and optimize fuel control systems, basic technologies were studied for building SiC devices capable of high-temperature operation. The technologies involved the construction of single-crystal SiC substrates, development of element technologies such as conduction control, experimental production of SiC devices, and systems incorporating SiC devices for controlling, for example, combustion. The subjects of research and development for fiscal 1998 included the technologies related to common SiC semiconductor substrates (SiC substrate crystallinity evaluation by X-ray topography, thermal oxidation acceleration by ion irradiation, and annealing of ion-implanted SiC by excimer laser ), technologies of forming an SiC single crystal into a substrate, technologies related to SiC sensors, technologies related to SiC devices capable of operation at high temperature and high speed, technologies related to SiC devices for controlling, and technologies for controlling, for example, combustion. The subjects of basic researches at universities and research institutes included new crystal growing methods, ion beam-aided SiC synthesis, effect of irradiation of SiC with neutrons, and nuclear conversion implantation. (NEDO)

  6. Mechanisms and kinetics of granulated sewage sludge combustion.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics

    International Nuclear Information System (INIS)

    Bělohradský, Petr; Skryja, Pavel; Hudák, Igor

    2014-01-01

    This study was focused on the experimental investigation of the very promising combustion technology called as the oxygen-enhanced combustion (OEC), which uses the oxidant containing higher proportion of oxygen than in the atmospheric air, i.e. more than 21%. The work investigated and compared the characteristics of two OEC methods, namely the premix enrichment and air-oxy/fuel combustion, when the overall oxygen concentration was varied from 21% to 46%. The combustion tests were performed with the experimental two-gas-staged burner of low-NO x type at the burner thermal input of 750 kW for two combustion regimes – one-staged and two-staged combustion. The oxygen concentration in the flue gas was maintained in the neighborhood of 3% vol. (on dry basis). The aim of tests was to assess the impact of the oxidant composition, type of OEC method and fuel-staging on the characteristic combustion parameters in detail. The investigated parameters included the concentration of nitrogen oxides (NO x ) in the flue gas, flue gas temperature, heat flux to the combustion chamber wall, and lastly the stability, shape and dimensions of flame. It was observed that NO x emission is significantly lower when the air-oxy/fuel method is used compared to the premix enrichment method. Moreover, when the fuel was staged, NO x emission was below 120 mg/Nm 3 at all investigated oxygen flow rates. Increasing oxygen concentration resulted in higher heating intensity due to higher concentrations of CO 2 and H 2 O. The available heat at 46% O 2 was higher by 20% compared with that at 21% O 2 . - Highlights: • Premix-enrichment and air-oxy/fuel combustion methods were experimentally studied. • NO x increased sharply as oxygen concentration increased during PE tests. • NO x was below 120 mg/Nm 3 for all investigated oxygen flow rates in AO tests. • Radiative heat transfer was enhanced ca. 20% as O 2 concentration was increased. • OEC flames were observed stable, more luminous and

  8. US-Japan Seminar on Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1995-01-01

    The articles in this volume treat various problems in combustion science that are of importance in applications to technology and to environmental sciences. The authors treat turbulence in premixed and non-premixed flames as well as pressure interactions and wave phenomena. Also supersonic flows and detonations are discussed. The main emphasis, however, is on the modelling and numerical treatment of combustion phenomena. The book addresses researchers in physics and engineering, and mathematicians from scientific computing.

  9. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  10. Construction of a power plant with prototype DLN combustion turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M.L. [CSW Energy, Dallas, TX (United States); Drummond, L.J. [Zurn NEPCO, Redmond, WA (United States)

    1996-12-31

    Design and construction of a power plant is always a difficult process and this is especially true when the main keystone, the combustion turbine engine, is being modified by the manufacturer resulting in numerous changes in the design interfaces. The development of the design and construction of the Orange Cogeneration Facility has been in parallel with major modification of the LM6000 to DLE technology (a Dry Low NO{sub x} combustion system). The Dry Low NO{sub x} Combustion System for a combustion turbine offered a means to reduce water usage, lower Zero Liquid Discharge System operating costs and reduce emissions to meet Florida Department of Environmental Protection requirements. This development was successfully accomplished by Owner, EPC contractor and Combustion Turbine Manufacturer by maintaining flexibility in the design and construction while the design interfaces and performance of the combustion turbines were being finalized.

  11. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov

    2014-07-01

    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  12. New Metamaterials with Combined Subnano - and Mesoscale Topology for High-efficiency Catalytic Combustion Chambers of Innovative Gas Turbine Engines

    Science.gov (United States)

    Knysh, Yu A.; Xanthopoulou, G. G.

    2018-01-01

    The object of the study is a catalytic combustion chamber that provides a highly efficient combustion process through the use of effects: heat recovery from combustion, microvortex heat transfer, catalytic reaction and acoustic resonance. High efficiency is provided by a complex of related technologies: technologies for combustion products heat transfer (recuperation) to initial mixture, catalytic processes technology, technology for calculating effective combustion processes based on microvortex matrices, technology for designing metamaterials structures and technology for obtaining the required topology product by laser fusion of metal powder compositions. The mesoscale level structure provides combustion process with the use of a microvortex effect with a high intensity of heat and mass transfer. High surface area (extremely high area-to-volume ratio) created due to nanoscale periodic structure and ensures catalytic reactions efficiency. Produced metamaterial is the first multiscale product of new concept which due to combination of different scale level periodic topologies provides qualitatively new set of product properties. This research is aimed at solving simultaneously two global problems of the present: ensure environmental safety of transport systems and power industry, as well as the economy and rational use of energy resources, providing humanity with energy now and in the foreseeable future.

  13. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    Science.gov (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  14. Energy Division annual progress report for period ending September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-01

    This report describes work done by staff of the Energy Division of Oak Ridge National Laboratory during FY 1986. The work of the Division is quite diversified, but it can be divided into four research themes: (1) technology for improving the productivity of energy use; (2) technology for electric power systems; (3) analysis and assessment of energy and environmental issues, policies, and technologies; and (4) data systems research and development (R and D). The research is supported by the US Department of Energy (DOE), numerous other federal agencies, and some private organizations. 190 refs., 60 figs., 23 tabs.

  15. Energy Division annual progress report for period ending September 30, 1986

    International Nuclear Information System (INIS)

    1987-06-01

    This report describes work done by staff of the Energy Division of Oak Ridge National Laboratory during FY 1986. The work of the Division is quite diversified, but it can be divided into four research themes: (1) technology for improving the productivity of energy use; (2) technology for electric power systems; (3) analysis and assessment of energy and environmental issues, policies, and technologies; and (4) data systems research and development (R and D). The research is supported by the US Department of Energy (DOE), numerous other federal agencies, and some private organizations. 190 refs., 60 figs., 23 tabs

  16. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  17. MODELING SEGREGATED INSITU COMBUSTION PROCESSES THROUGH A VERTICAL DISPLACEMENT MODEL APPLIED TO A COLOMBIAN FIELD

    OpenAIRE

    Guerra Aristizábal, José-Julián; Grosso Vargas, Jorge-Luis

    2005-01-01

    Recently it has been proposed the incorporation of horizontal well technologies in thermal EOR processes like the in situ combustion process (ISC). This has taken to the conception of new recovery mechanisms named here as Segregated In-Situ Combustion processes which are conventional in-situ combustion process with a segregated flow component. Top/Down combustion, Combustion Override Splitproduction Horizontal-well and Toe-to-Heel Air Injection are three of these processes, which incorporate ...

  18. FY 1995 result report. Research/development on the creation of high-grade combustion technology using a microgravity environment; 1995 nendo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report summarized the results of the research survey carried out by Japan Space Utilization Promotion Center (JSUP) under the contract with NEDO's industrial technology research and development department. This research survey is aimed at creating high-grade combustion technology which can respond to the decrease in environmental pollutant in combustion exhaust gas from viewpoints of energy diversification and global environmental preservation in consideration of the stabilized energy supply. Established inside JSUP is a research/development committee on high-grade combustion technology which is organized by men of learning and experience from universities, national institutes, private companies, etc. Following FY 1994, the following were continuously conducted: (1) joint research with NASA as an international research cooperation; (2) test using microgravity test facilities and analysis/evaluation of the test data. The experiment was conducted using facilities, etc. of the underground gravity-free test center established as a part of the national research base arrangement project. A lot of experimental data were obtained and stored which are useful for elucidation of the combustion mechanism and the development of ground combustor. (NEDO)

  19. LIEKKI 2 - Combustion and gasification research programme 1993- 1998. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M [ed.

    1999-12-31

    The six-year Combustion and Gasification Research Programme LIEKKI 2 (1993-1998) was oriented towards research serving the development of energy production technologies based on combustion and gasification. The programme was divided into six research areas: 1. Modelling of the furnace processes (39 projects); 2. Chemistry of gaseous emission components (28); 3. Particle behaviour, ash, aerosols (42); 4. New combustion and gasification technologies (27); 5. Black liquor (33) and 6. Conventional combustion technologies, waste incineration (19). The main aim of the research has been to develop new, more efficient and environmentally friendly techniques. The development of conventional combustion technology has also been an important part of the programme. Another important goal has been to maintain and develop maintain the competence of the research organisations in the combustion area and to intensify their collaboration. Concerning its research contents and its objectives LIEKKI 2, like its forerunner, has not been fuel-specific. The programme has investigated the thermal conversion of oil, gas, black liquor, and coal as well as that of peat, biofuels, and various waste materials, and it has further advanced the know-how concerning the utilisation of these fuels. This approach differs from the usual fuel-specific differentiation, which, for instance, IEA (International Energy Agency) and EU have applied in their research activities. This approach seems in retrospect to have been the right choice. It has been appropriate to stimulate co-operation between parties who would not seek co-operation spontaneously. One example of this is the development of a steelmaking process by a Finnish steel manufacturer under the LIEKKI programme. The programme has also provided synergetic advantages to the development of the recovery boiler processes of the pulp industry. Assessing the impact of the programme is a matter of many facets. The six-year research work and a total

  20. LIEKKI 2 - Combustion and gasification research programme 1993- 1998. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. [ed.

    1998-12-31

    The six-year Combustion and Gasification Research Programme LIEKKI 2 (1993-1998) was oriented towards research serving the development of energy production technologies based on combustion and gasification. The programme was divided into six research areas: 1. Modelling of the furnace processes (39 projects); 2. Chemistry of gaseous emission components (28); 3. Particle behaviour, ash, aerosols (42); 4. New combustion and gasification technologies (27); 5. Black liquor (33) and 6. Conventional combustion technologies, waste incineration (19). The main aim of the research has been to develop new, more efficient and environmentally friendly techniques. The development of conventional combustion technology has also been an important part of the programme. Another important goal has been to maintain and develop maintain the competence of the research organisations in the combustion area and to intensify their collaboration. Concerning its research contents and its objectives LIEKKI 2, like its forerunner, has not been fuel-specific. The programme has investigated the thermal conversion of oil, gas, black liquor, and coal as well as that of peat, biofuels, and various waste materials, and it has further advanced the know-how concerning the utilisation of these fuels. This approach differs from the usual fuel-specific differentiation, which, for instance, IEA (International Energy Agency) and EU have applied in their research activities. This approach seems in retrospect to have been the right choice. It has been appropriate to stimulate co-operation between parties who would not seek co-operation spontaneously. One example of this is the development of a steelmaking process by a Finnish steel manufacturer under the LIEKKI programme. The programme has also provided synergetic advantages to the development of the recovery boiler processes of the pulp industry. Assessing the impact of the programme is a matter of many facets. The six-year research work and a total

  1. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  2. NOx Emission Reduction by Oscillating combustion

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  3. Miniaturization limitations of rotary internal combustion engines

    International Nuclear Information System (INIS)

    Wang, Wei; Zuo, Zhengxing; Liu, Jinxiang

    2016-01-01

    Highlights: • Developed a phenomenological model for rotary internal combustion engines. • Presented scaling laws for the performance of micro rotary engines. • Adiabatic walls can improve the cycle efficiency but result in higher charge leakage. • A lower compression ratio can increase the efficiency due to lower mass losses. • Presented possible minimum engine size of rotary internal combustion engines. - Abstract: With the rapid development of micro electro-mechanical devices, the demands for micro power generation systems have significantly increased in recent years. Traditional chemical batteries have energy densities much lower than hydrocarbon fuels, which makes internal-combustion-engine an attractive technological alternative to batteries. Micro rotary internal combustion engine has drawn great attractions due to its planar design, which is well-suited for fabrication in MEMS. In this paper, a phenomenological model considering heat transfer and mass leakage has been developed to investigate effects of engine speed, compression ratio, blow-by and heat transfer on the performance of micro rotary engine, which provide the guidelines for preliminary design of rotary engine. The lower possible miniaturization limits of rotary combustion engines are proposed.

  4. Combustion-derived substances in deep basins of Puget Sound: Historical inputs from fossil fuel and biomass combustion

    International Nuclear Information System (INIS)

    Kuo, Li-Jung; Louchouarn, Patrick; Herbert, Bruce E.; Brandenberger, Jill M.; Wade, Terry L.; Crecelius, Eric

    2011-01-01

    Reconstructions of 250 years historical inputs of two distinct types of black carbon (soot/graphitic black carbon (GBC) and char-BC) were conducted on sediment cores from two basins of the Puget Sound, WA. Signatures of polycyclic aromatic hydrocarbons (PAHs) were also used to support the historical reconstructions of BC to this system. Down-core maxima in GBC and combustion-derived PAHs occurred in the 1940s in the cores from the Puget Sound Main Basin, whereas in Hood Canal such peak was observed in the 1970s, showing basin-specific differences in inputs of combustion byproducts. This system showed relatively higher inputs from softwood combustion than the northeastern U.S. The historical variations in char-BC concentrations were consistent with shifts in climate indices, suggesting an influence of climate oscillations on wildfire events. Environmental loading of combustion byproducts thus appears as a complex function of urbanization, fuel usage, combustion technology, environmental policies, and climate conditions. - Research highlights: → We reconstructed the historical inputs of GBC and char-BC in Puget Sound, WA, USA. → Temporal trend of GBC was linked to human activities (urbanization, fuel usage). → Temporal trend of char-BC was more likely driven by regional climate oscillations. → Historical trends of combustion byproducts show the geographical heterogeneities. - Temporal trend of GBC was directly linked to human activities, while the input of char-BC in Puget Sound was more likely driven by regional climate oscillations.

  5. International evaluation of the programme on engine-related combustion

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, D [Imperial College, London (United Kingdom); Greenhalgh, D [Cranfield Univ. (United Kingdom); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Peters, N [Institut fuer Technische Mechanik, RWTH Aachen (Germany)

    1996-11-01

    The 12 projects in the engine related combustion programme cover the entire range from fundamental and theoretical aspects of combustion to more applied subjects such as engine control. The common denominator in the programme clearly is the internal combustion engine, both the reciprocating as well as the gas turbine engine. Such a large coverage by a relatively small number of projects necessarily leads to an isolation of some of the projects in terms of their subject as well as the methodology that is used. On the other hand, all the research areas of interest in combustion technology are represented by at least one of the projects. These are: mathematical and numerical methods in combustion; modelling of turbulent combustion; laser diagnostics of flows with combustion; studies of engine performance and their control; semi-empirical model development for practical applications. As a conclusion, the evaluation committee believes that the programme is well balanced between fundamental and applied projects. It covers the entire range of modern methodologies that are used on the international level and thereby contributes to the application and further development of these research tools in Sweden

  6. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    West, D.; Cookson, J.A.; Findlay, D.J.S.

    1984-06-01

    The 1983 progress report of the Nuclear Physics Division, UKAEA Harwell, is divided into four main topics. These are a) nuclear data and technology for nuclear power; b) nuclear studies; c) applications of nuclear and associated techniques, including ion beam techniques and moessbauer spectroscopy; and d) accelerator operation, maintenance and development. (U.K.)

  7. Physics division annual report - October 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K. [ed.

    2000-10-16

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design.

  8. Multi-Point Combustion System: Final Report

    Science.gov (United States)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison

  9. Energy balance of a wood biomass combustion process

    International Nuclear Information System (INIS)

    Baggio, P.; Cemin, A.; Grigiante, M.; Ragazzi, M.

    2001-01-01

    This article reports the results of a project developed at the University of Trent dealing with some wood biomass combustion processes. The project has been particularly dedicated to the study of the energetic analysis of the combustion processes that occur on a gasified wood stove of advanced combustion technologies. A considerable number of experimental tests has been carried out making use of different type of wood widely in use in Trentino region. The wood stove is a part of a pilot plant providing an hydraulic circuit equipped with a specific apparatus to measure all the necessary data to determine the energy balance required and specifically the thermal efficiency of the plant [it

  10. Emissions from small scale combustion of pelletized wood fuels

    International Nuclear Information System (INIS)

    Bachs, A.

    1998-01-01

    Combustion of wood pellets in small scale heating systems with an effect below 20 kW has increased. During the winter season 1995/96 1500 small plants for heating houses are estimated to be in operation. Stack emissions from three pellet burners and two pellet stoves have been studied at laboratory. Different pellet qualities were tested. When the fraction of fines increased also the NO x emissions increased with about 10 %. As reference fuel 8 mm pellets was used. Tests with 6 mm pellets gave, in most cases, significant lower emissions of CO and THC. Eleven stoves, burners and boilers were studied in a field test. The results show that all the plants generally have higher emissions in the field than during conditions when the plants are adjusted with a stack gas monitoring instrument. A conclusion is that it is difficult for the operator to adjust the plant without a monitoring instrument. The emissions from the tested plants give an estimation of stack gas emissions from small scale pellet plants. The difference between the 'best' and 'worst' technologies is big. The span of emissions with the best technology to the worst is given below. The interval is concerning normal combustion . During abnormal conditions the emissions are on a significant higher level: * CO 80-1 000 mg/MJ; * Tar 0,3-19 mg/MJ; * THC (as methane equivalents) 2-100 mg/MJ; * NO x 50-70 mg/W;, and * Dust emissions 20-40 mg/MJ. Emissions from pellets heating are lower than from wood combustion and the best technology is close to the emission from oil burners. Wood and pellets have the same origin but the conditions to burn them in an environmental friendly way differ. Combustion of pellets could be improved through improved control of the air and fuel ratio that will create more stable conditions for the combustion

  11. Activities of the All-Union Institute for Heat Technology in suppression of nitrogen oxide emission by technological methods

    Energy Technology Data Exchange (ETDEWEB)

    Enyakin, Yu.P.; Kotler, V.R.; Babii, V.I.; Shtal' man, S.G.; Shcherbachenko, S.I. (Vsesoyuznyi Teplotekhnicheskii Institut (USSR))

    1991-06-01

    Evaluates research programs of the All-Union Institute for Heat Technology in the USSR from 1970 to 1991. Research and development programs, developed technologies or equipment types, their tests and use on a commercial scale are discussed. Power plants in the USSR which use the technologies are listed. The following technologies are comparatively evaluated: recirculation of flue gases to a combustion system (reduces emission of nitrogen oxides by about 2 times), two-stage coal combustion (reduces emission by 40-50%), three-stage combustion (reduces emission by 40-50%), use of special types of burners (reduces emission by 25-30%), adapting temperature of air supplied to the combustion zone (reduces emission by 20-30%). 10 refs.

  12. Student research activities in the Technology Assessments Section of the Health and Safety Research Division, Summer 1980

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Roberts, D.A.

    1981-08-01

    Reports summarizing activities of students assigned to the Technology Assessments Section of the Health and Safety Research Division for the summer 1980 are presented. Unless indicated otherwise, each report was written by the student whose work is being described. For each student, the student's supervisor, the name of the program under which the student was brought to ORNL, the academic level of the student, and the name of the ORNL project to which the student was assigned are tabulated. The reports are presented in alphabetical order of the students' last names.

  13. Student research activities in the Technology Assessments Section of the Health and Safety Research Division, Summer 1980

    International Nuclear Information System (INIS)

    Chester, R.O.; Roberts, D.A.

    1981-08-01

    Reports summarizing activities of students assigned to the Technology Assessments Section of the Health and Safety Research Division for the summer 1980 are presented. Unless indicated otherwise, each report was written by the student whose work is being described. For each student, the student's supervisor, the name of the program under which the student was brought to ORNL, the academic level of the student, and the name of the ORNL project to which the student was assigned are tabulated. The reports are presented in alphabetical order of the students' last names

  14. Fluidized bed combustion with the use of Greek solid fuels

    Directory of Open Access Journals (Sweden)

    Kakaras Emmanuel

    2003-01-01

    Full Text Available The paper is an overview of the results obtained up to date from the combustion and co-combustion activities with Greek brown coal in different installations, both in semi-industrial and laboratory scale. Combustion tests with Greek lignite were realized in three different Circulating Fluidized Bed Combustion (CFBC facilities. Low rank lignite was burned in a pilot scale facility of approx. 100kW thermal capacity, located in Athens (NTUA and a semi-industrial scale of 1.2 MW thermal capacity, located at RWE's power station Niederaussem in Germany. Co-combustion tests with Greek xylitic lignite and waste wood were carried out in the 1 MWth CFBC installation of AE&E, in Austria. Lab-scale co-combustion tests of Greek pre-dried lignite with biomass were accomplished in a bubbling fluidized bed in order to investigate ash melting problems. The obtained results of all aforementioned activities showed that fluidized bed is the appropriate combustion technology to efficiently exploit the low quality Greek brown coal either alone or in conjunction with biomass species.

  15. Technology-enabled division of labour: the use of handhelds

    NARCIS (Netherlands)

    Benders, J.G.J.M.; Schouteten, R.L.J.; Ruijsscher, C. de

    2012-01-01

    Using the task pool model and data from 15 establishments in the Dutch hospitality industry, this study shows how and why applying handhelds affects the division of labour. These devices allow to split the waiters' jobs into separate tasks which tend to be combined into two separate "sub jobs": the

  16. Technology-enabled division of labour : The use of handhelds

    NARCIS (Netherlands)

    Benders, J.G.J.M.; Schouteten, R.; de Ruijsscher, C.

    2012-01-01

    Using the task pool model and data from 15 establishments in the Dutch hospitality industry, this study shows how and why applying handhelds affects the division of labour. These devices allow to split the waiters' jobs into separate tasks which tend to be combined into two separate "sub jobs": the

  17. Oxy combustion with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    An update for oxyfuel-combustion carbon capture in the power industry is provided. The report was developed by the Electric Power Research Institute (EPRI) on behalf of the Global CCS Institute. In the oxyfuel-combustion processes, the bulk nitrogen is removed from the air before combustion. The resulting combustion products will have CO2 content up to about 90 per cent (dry basis). The flue gas impurities (predominantly O2, N2, and Ar) may be removed by reducing the flue gas (at moderate pressure) to a temperature at which the CO2 condenses and the impurities do not. Oxyfuel-combustion may be employed with solid fuels such as coal, petroleum coke, and biomass, as well as liquid and gaseous fuels. Some key points raised in the oxyfuel-combustion carbon capture report are: The oxyfuel-combustion/CO2 capture power plant designs being developed and deployed for service in the next four or five years are based on individual component technologies and arrangements which have demonstrated sufficient maturity, with the greatest remaining technical challenge being integrating the systems into a complete steam-electric power plant; By its nature, an oxyfuel-coal power plant is likely to be a 'near zero' emitter of all criteria pollutants; Existing air-fired power plants might be retrofitted with an air separation unit, oxyfuel-fired burners, flue gas recycle, and a CO2 processing unit, with the large fleet of air-fired power plants in service calling for more study of this option; and, Future efficiency improvements to the oxyfuel-combustion process for power generation point toward an oxyfuel-combustion plant with near zero emissions of conventional pollutants, up to 98 per cent CO2 capture, and efficiency comparable to the best power plants currently being built.

  18. Industry-identified combustion research needs: Special study

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.G.; Soelberg, N.R.; Kessinger, G.F.

    1995-11-01

    This report discusses the development and demonstration of innovative combustion technologies that improve energy conservation and environmental practices in the US industrial sector. The report includes recommendations by industry on R&D needed to resolve current combustion-related problems. Both fundamental and applied R&D needs are presented. The report assesses combustion needs and suggests research ideas for seven major industries, which consume about 78% of all energy used by industry. Included are the glass, pulp and paper, refinery, steel, metal casting, chemicals, and aluminum industries. Information has been collected from manufacturers, industrial operators, trade organizations, and various funding organizations and has been supplemented with expertise at the Idaho National Engineering Laboratory to develop a list of suggested research and development needed for each of the seven industries.

  19. Combustion optimization and HCCI modeling for ultra low emission

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the coming shortage of fossil fuels and the rising concerns over the environment it is important to develop new technologies both to reduce energy consumption and pollution at the same time. In the transportation sector, new combustion processes are under development to provide clean diesel combustion with no particulate or NOx emissions. However, these processes have issues such as limited power output, high levels of unburned hydrocarbons, and carbon monoxide emissions. The aim of this paper is to present a methodology for optimizing combustion performance. The methodology consists of the use of a multi-objective genetic algorithm optimization tool; homogeneous charge compression ignition engine cases were studied with the ECFM-3Z combustion model. Results showed that injected fuel mass led to a decrease in power output, a finding which is in keeping with previous research. This paper presented on optimization tool which can be useful in improving the combustion process.

  20. NEN Division Funding Gap Analysis

    International Nuclear Information System (INIS)

    Esch, Ernst I.; Goettee, Jeffrey D.; Desimone, David J.; Lakis, Rollin E.; Miko, David K.

    2012-01-01

    The work in NEN Division revolves around proliferation detection. The sponsor funding model seems to have shifted over the last decades. For the past three lustra, sponsors are mainly interested in funding ideas and detection systems that are already at a technical readiness level 6 (TRL 6 -- one step below an industrial prototype) or higher. Once this level is reached, the sponsoring agency is willing to fund the commercialization, implementation, and training for the systems (TRL 8, 9). These sponsors are looking for a fast turnaround (1-2 years) technology development efforts to implement technology. To support the critical national and international needs for nonprolifertion solutions, we have to maintain a fluent stream of subject matter expertise from the fundamental principals of radiation detection through prototype development all the way to the implementation and training of others. NEN Division has large funding gaps in the Valley of Death region. In the current competitive climate for nuclear nonproliferation projects, it is imminent to increase our lead in this field.

  1. Energy Division annual progress report for period ending September 30, 1993

    International Nuclear Information System (INIS)

    Wolff, P.P.

    1994-07-01

    One of 17 research divisions at Oak Ridge National Laboratory, Energy Division's mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division's expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division's programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination

  2. Nuclear Chemistry Division annual report FY83

    International Nuclear Information System (INIS)

    Struble, G.

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2)

  3. New technologies for the reduction of the use of fossil fuels in automobiles; Nuevas tecnologias para la reduccion del uso de combustibles fosiles en automoviles

    Energy Technology Data Exchange (ETDEWEB)

    Maya Violante, A.; Dorantes Rodriguez, R. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Departamento de Energia, Mexico D. F. (Mexico)

    1995-12-31

    The new technologies developed for the reduction of the use of fossil fuels in automobiles can be classified by the way these try to reduce the use of energy. In the search for the technologies for the conservation of it the environmental problem is added, that although it is not the subject of this presentation results decisive for the evaluation of the performance of type of technology. The development of technologies in this field has followed three basic tendencies. First: The efficient improvement of internal combustion motors, which consist in the control and constant monitoring the functioning of these motors in order to determine the strictly necessary consumption for the motor operation in accordance with its load conditions. Second, the development of a system that utilizes alternate fuels, as is the case of hybrid vehicles, that utilize gas turbines that can burn these fuels. Third the development of electric driven and energy regeneration systems avoiding the use of fossil fuels. A fourth tendency could be considered, which consists in determining the best way of controlling and using the transportation time, with all the implicit benefits. The purpose of this paper is to answer all these questions beginning with a detailed revision of the main technological innovations developed by the leading car manufacturers at world level, such as BMW, Mercedes Benz, Ford, etc. concerned in bringing to the market the best vehicles that burn less or none fossil fuels and at the same time comply with the every day more strict standards on the environmental pollution subject. Through these innovations the advantages and disadvantages of each one of them are set forth, with special emphasis in the technologies that, to our concern, will be the most convenient to promote in the years to come. [Espanol] Las nuevas tecnologias desarrolladas para la reduccion del uso de combustibles fosiles en automoviles se pueden caracterizar por la manera en que estas tratan de reducir

  4. New technologies for the reduction of the use of fossil fuels in automobiles; Nuevas tecnologias para la reduccion del uso de combustibles fosiles en automoviles

    Energy Technology Data Exchange (ETDEWEB)

    Maya Violante, A; Dorantes Rodriguez, R [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Departamento de Energia, Mexico D. F. (Mexico)

    1996-12-31

    The new technologies developed for the reduction of the use of fossil fuels in automobiles can be classified by the way these try to reduce the use of energy. In the search for the technologies for the conservation of it the environmental problem is added, that although it is not the subject of this presentation results decisive for the evaluation of the performance of type of technology. The development of technologies in this field has followed three basic tendencies. First: The efficient improvement of internal combustion motors, which consist in the control and constant monitoring the functioning of these motors in order to determine the strictly necessary consumption for the motor operation in accordance with its load conditions. Second, the development of a system that utilizes alternate fuels, as is the case of hybrid vehicles, that utilize gas turbines that can burn these fuels. Third the development of electric driven and energy regeneration systems avoiding the use of fossil fuels. A fourth tendency could be considered, which consists in determining the best way of controlling and using the transportation time, with all the implicit benefits. The purpose of this paper is to answer all these questions beginning with a detailed revision of the main technological innovations developed by the leading car manufacturers at world level, such as BMW, Mercedes Benz, Ford, etc. concerned in bringing to the market the best vehicles that burn less or none fossil fuels and at the same time comply with the every day more strict standards on the environmental pollution subject. Through these innovations the advantages and disadvantages of each one of them are set forth, with special emphasis in the technologies that, to our concern, will be the most convenient to promote in the years to come. [Espanol] Las nuevas tecnologias desarrolladas para la reduccion del uso de combustibles fosiles en automoviles se pueden caracterizar por la manera en que estas tratan de reducir

  5. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  6. Control and reduction of NOx emissions on light hydrocarbons combustion in fluidized bed combustors: a technological prospection surveys; Controle e reducao de emissoes de NOx durante queima de hidrocarbonetos leves em combustores a leito fluidizado: um estudo de prospeccao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas Alves; Winter, Eduardo [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The present paper aims a technological prospecting study of the main technological agents involved in industrial light hydrocarbons combustion process. More specifically, the work approaches technologies applied to nitrogen oxides emissions control and reduction. Nitrogen oxides are typically known as 'NOx' (NO, N{sub 2}O, NO{sub 2}). 'NOx' are byproducts from fuel burning in combustion systems, including also in fluidized bed combustion systems. The technological prospecting study employed 'technology foresight' as tool for evaluating the technological perspectives of the thermal generation, basis on environment protection. Such technological perspectives of the thermal generation were evaluated through invention patent documents. The query methodology for obtaining of patent documents employed a free patent base, known as ESPACENET. Additionally, the documents obtained were evaluated, considering beyond the countries and the publication dates, technological perspectives employed to 'NOx' emissions control and reduction. It is very important to highlight around 70% of the industrial technological information are just found in invention patent documents. (author)

  7. Nuclear Physics division progress report

    International Nuclear Information System (INIS)

    Lees, E.W.; Longworth, G.; Scofield, C.J.

    1981-07-01

    Work undertaken by the Nuclear Physics Division of AERE, Harwell during 1980 is presented under the headings: (1) Nuclear Data and Technology for Nuclear Power. (2) Nuclear Studies. (3) Applications of Nuclear and Associated Techniques. (4) Accelerator Operation, Maintenance and Development. Reports, publications and conference papers presented during the period are given and members of staff listed. (U.K.)

  8. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  9. Oxyfuel combustion for below zero CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Boeg Toftegaard, M; Hansen, Kim G; Fisker, D [DONG Energy Power, Hvidovre (Denmark); Brix, J; Brun Hansen, B; Putluru, S S.R.; Jensen, Peter Arendt; Glarborg, Peter; Degn Jensen, A [Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark); Montgomery, M [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark)

    2011-07-01

    The reduction of CO{sub 2} emissions is of highest concern in relation to limiting the anthropogenic impacts on the environment. Primary focus has gathered on the large point sources of CO{sub 2} emissions constituted by large heat and power stations and other heavy, energy-consuming industry. Solutions are sought which will enable a significant reduction of the anthropogenic CO{sub 2} emissions during the transformation period from the use of fossil fuels to renewable sources of energy. Carbon capture and storage (CCS) has the potential to significantly reduce CO{sub 2} emissions from power stations while allowing for the continuous utilisation of the existing energy producing system in the transformation period. Oxyfuel combustion is one of the possible CCS technologies which show promising perspectives for implementation in industrial scale within a relatively short period of time. Oxyfuel combustion deviates from conventional combustion in air by using a mixture of pure oxygen and recirculated flue gas as the combustion medium thereby creating a flue gas highly concentrated in CO{sub 2} making the capture process economically more feasible compared to technologies with capture from more dilute CO{sub 2} streams. This project has investigated a number of the fundamental and practical issues of the oxyfuel combustion process by experimental, theoretical, and modelling investigations in order to improve the knowledge of the technology. The subjects investigated cover: general combustion characteristics of coal and biomass (straw) and mixtures thereof, formation and emission of pollutants, ash characteristics, flue gas cleaning for SO{sub 2} by wet scrubbing with limestone and for NO{sub x} by selective catalytic reduction (SCR), corrosion of boiler heat transfer surfaces, operation and control of large suspension-fired boilers, and the perspectives for the implementation of oxyfuel combustion s a CO{sub 2} sequestration solution in the Danish power production

  10. The release of nitrogen in coal combustion and pyrolysis

    International Nuclear Information System (INIS)

    Varey, J.E.; Hindmarsh, C.J.; Thomas, K.M.

    1994-01-01

    Environmental aspects of coal utilization are a major concern. Recent advances in the development of low NO x burners and the emerging technologies of fluidized bed combustion have led to the identification of coal char nitrogen as the major contributor to the nitrogen oxides released during combustion. The temperature programmed combustion and pyrolysis of a series of coals covering a wide range of rank have been investigated. In addition, maceral concentrates have been investigated to assess the variation in the combustion behavior and the release of nitrogen in the pyrolysis and combustion of macerals. This investigation has involved the use of thermogravimetric analysis - mass spectrometry (TG-MS) with two sampling options: (1) ∼1cm from the sample and (2) at the exit of the TG. The former allows reactive species to be identified in the combustion of the coals. These temperature programmed combustion results have been compared with similar measurements carried out at the exit of the TG where the products are at equilibrium. In addition, pyrolysis studies have been carried out under similar conditions. The results show that reactive intermediate species such as HCN, (CN) 2 , COS etc. can be detected in the combustion products. The evolution of these species during combustion are compared with the pyrolysis products of the coal. The results are discussed in relation to the structure of the coals and the conversion of volatile species and char nitrogen to nitrogen oxides

  11. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated

  12. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  13. Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle

    Science.gov (United States)

    Romero Gómez, Manuel; Romero Gómez, Javier; Ferreiro Garcia, Ramón; Baaliña Insua, Álvaro

    2014-08-01

    This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with turbo-blower (TB). The power plant comprises an external combustion system for natural gas, where the combustion gases yield their thermal energy, through a heat exchanger, to a carbon dioxide Rankine cycle operating under supercritical conditions and with quasi-critical condensation. The TB exploits the energy from the pressurised exhaust gases for compressing the combustion air. The study is focused on the comparison of the combustion system's conventional technology with that of the proposed. An energy analysis is carried out and the effect of the flue gas pressure on the efficiency and on the heat transfer in the heat exchanger is studied. The coupling of the TB results in an increase in efficiency and of the convection coefficient of the flue gas with pressure, favouring a reduced volume of the heat exchanger. The proposed innovative system achieves increases in efficiency of around 12 % as well as a decrease in the heat exchanger volume of 3/5 compared with the conventional technology without TB.

  14. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-02-01

    This report summarizes main research achievements in the 48th fiscal year which were made by Reactor Engineering Division consisted of eight laboratories and Computing Center. The major research and development projects, with which the research programmes in the Division are associated, are development of High Temperature Gas Cooled Reactor for multi-purpose use, development of Liquid Metal Fast Breeder Reactor conducted by Power Reactor and Nuclear Fuel Development Corporation, and Engineering Research Programme for Thermonuclear Fusion Reactor. Many achievements are reported in various research items such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of Computing Center. (auth.)

  15. Goddard's Astrophysics Science Division Annual Report 2013

    Science.gov (United States)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  16. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    OpenAIRE

    Gazzino, Marco; Hong, Jongsup; Chaudhry, Gunaranjan; Brisson II, John G; Field, Randall; Ghoniem, Ahmed F

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases...

  17. Comparison of pre and post-combustion CO{sub 2} adsorbent technologies

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Drage; A. Arenillas; K. Smith; C.E. Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2006-07-01

    Adsorption is considered to be one of the most promising techniques for the capture of CO{sub 2} from flue gases. The application of adsorption to both post-combustion capture at pressures close to ambient and for high pressure pre-combustion capture applications, for example IGCC, are explored. Adsorption capacities as a function of adsorbent properties as well as strategies for regeneration, both thermal swing and pressure swing are described. Adsorption at both low and high pressures requires chemical and physical adsorbents respectively. Adsorption at high pressure has the advantage of potential temperature swing regeneration whilst maintaining CO{sub 2} pressure, reducing the overall costs associated with re-compression of the gas for transportation.

  18. Direct Numerical Simulations for Combustion Science: Past, Present, and Future

    KAUST Repository

    Im, Hong G.

    2017-01-01

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. This chapter attempts to provide a brief historical review of the progress in DNS of turbulent combustion during the past decades. Major scientific accomplishments and contributions towards fundamental understanding of turbulent combustion will be summarized and future challenges and research needs will be proposed.

  19. Direct Numerical Simulations for Combustion Science: Past, Present, and Future

    KAUST Repository

    Im, Hong G.

    2017-12-12

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. This chapter attempts to provide a brief historical review of the progress in DNS of turbulent combustion during the past decades. Major scientific accomplishments and contributions towards fundamental understanding of turbulent combustion will be summarized and future challenges and research needs will be proposed.

  20. Modeling segregated in- situ combustion processes through a vertical displacement model applied to a Colombian field

    International Nuclear Information System (INIS)

    Guerra Aristizabal, Jose Julian; Grosso Vargas, Jorge Luis

    2005-01-01

    Recently it has been proposed the incorporation of horizontal well technologies in thermal EOR processes like the in situ combustion process (ISC). This has taken to the conception of new recovery mechanisms named here as segregated in-situ combustion processes, which are conventional in-situ combustion process with a segregated flow component. Top/Down combustion, Combustion Override Split-production Horizontal-well and Toe-to-Heel Air Injection are three of these processes, which incorporate horizontal producers and gravity drainage phenomena. When applied to thick reservoirs a process of this nature could be reasonably modeled under concepts of conventional in-situ combustion and Crestal Gas injection, especially for heavy oils mobile at reservoir conditions. A process of this nature has been studied through an analytic model conceived for the particular conditions of the Castilla field, a homogeneous thick anticline structure containing high mobility heavy oil, which seems to be an excellent candidate for the application of these technologies

  1. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  2. Development of rapid mixing fuel nozzle for premixed combustion

    International Nuclear Information System (INIS)

    Katsuki, Masashi; Chung, Jin Do; Kim, Jang Woo; Hwang, Seung Min; Kim, Seung Mo; Ahn, Chul Ju

    2009-01-01

    Combustion in high-preheat and low oxygen concentration atmosphere is one of the attractive measures to reduce nitric oxide emission as well as greenhouse gases from combustion devices, and it is expected to be a key technology for the industrial applications in heating devices and furnaces. Before proceeding to the practical applications, we need to elucidate combustion characteristics of non-premixed and premixed flames in high-preheat and low oxygen concentration conditions from scientific point of view. For the purpose, we have developed a special mixing nozzle to create a homogeneous mixture of fuel and air by rapid mixing, and applied this rapidmixing nozzle to a Bunsen-type burner to observe combustion characteristics of the rapid-mixture. As a result, the combustion of rapid-mixture exhibited the same flame structure and combustion characteristics as the perfectly prepared premixed flame, even though the mixing time of the rapid-mixing nozzle was extremely short as a few milliseconds. Therefore, the rapid-mixing nozzle in this paper can be used to create preheated premixed flames as far as the mixing time is shorter than the ignition delay time of the fuel

  3. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  4. Emissions of hydrocarbons from combustion of biofuels

    International Nuclear Information System (INIS)

    Olsson, Mona; Persson, Eva Marie.

    1991-10-01

    Evaluations and measurements of emissions of hydrocarbons from power plants with a capacity exceeding 1 MW using biofuels (wood fuels and peat) have been studied in order to identify and quantify the emissions of incompletely combusted hydrocarbons. The influence of the type of fuel and the combustion technology applied were also studied, using literature references. The report summarizes monitoring results from a number of plants using biofuels. The reported emissions from the different plants can not be compared as they are relatively few and the test results have been obtained under various conditions using different methods of testing and analysis. The methods used are often poorly documented in the studied reports. Few investigations of emissions of hydrocarbons from plants in the range of 1 to 10 MW have been carried out. The plant and the technology used are important factors determining the amount and type of emissions of hydrocarbons. Larger temporary emissions can occur during start up, operational disturbances or when using fuel of inhomogeneous quality. In order to minimize the emissions the combustion process must be efficiently controlled, and a fuel of a hohogeneous quality must be used. The report also summarizes sampling and analysis methods used for monitoring emissions of hydrocarbons. (29 refs., 17 figs.)

  5. Combustion Synthesis Of Ultralow-density Nanoporous Gold Foams

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Bruce C [Los Alamos National Laboratory; Mueller, Alex H [Los Alamos National Laboratory; Steiner, Stephen A [Los Alamos National Laboratory; Luther, Erik P [Los Alamos National Laboratory

    2008-01-01

    A new synthetic pathway for producing nanoporous gold monoliths through combustion synthesis from Au bistetrazoJeamine complexes has been demonstrated. Applications of interest for Au nanofoams include new substrates for nanoparticle-mediated catalysis, embedded antennas, and spectroscopy. Integrated support-and-catalystin-one nanocomposites prepared through combustion synthesis of mixed AuBTA/metal oxide pellets would also be an interesting technology approach for low-cost in-line catalytic conversion media. Furthermore, we envision preparation of ultrahigh surface area gold electrodes for application in electrochemical devices through this method.

  6. Solid State Division progress report for period ending March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Hinton, L.W. [eds.

    1997-12-01

    This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

  7. IMPROVED COMBUSTION PROCESSES IN MEDICAL WASTES ...

    African Journals Online (AJOL)

    A small rig was designed for conducting tests on the incineration of rural clinical wastes in Botswana. Experimental results showed that if proper combustion conditions are applied to low technology rural clinical waste incinerators, the operating temperatures could increase from around 400 to above 850oC. It was ...

  8. Division of solid state physics

    International Nuclear Information System (INIS)

    Beckman, O.

    1983-09-01

    This report gives a survey of the present research projects at the division of solid state physics, Inst. of Technology, Uppsala University. The projects fall within the fields of magnetism, i.e. spin glasses, ordered magnetic structures and itinerant electron magnetism, and optics, i.e. properties of crystalline and amorphous materials for selective transmission and absorption in connection with energy-related research. (author)

  9. Advanced Fuels and Combustion Processes for Propulsion

    Science.gov (United States)

    2010-09-01

    production from biomass steam reforming – Conduct a feasibility analysis of the proposed integrated process Energia Technologies - D. Nguyen & K. Parimi...strength foam material development by Ultramet – Combustion experiments performed U. Of Alabama – End-user input provided by Solar Turbines Major

  10. Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions

    International Nuclear Information System (INIS)

    Gómez, M.; Fernández, A.; Llavona, I.; Kuivalainen, R.

    2014-01-01

    CO 2 and SO 2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO 2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO 2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO 2 Capture and Transport (es.CO 2 ) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO 2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO 2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: •Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  11. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  12. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances.

    Science.gov (United States)

    Czech, Hendryk; Miersch, Toni; Orasche, Jürgen; Abbaszade, Gülcin; Sippula, Olli; Tissari, Jarkko; Michalke, Bernhard; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Jokiniemi, Jorma; Zimmermann, Ralf

    2018-01-15

    Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.

    1998-07-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  14. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  15. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  16. Nuclear Chemistry Division annual report FY83

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G. (ed.)

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  17. FY 1996 result report. Research/development on the creation of high-grade combustion technology using a microgravity environment; 1996 nendo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    With the aim of creating high-grade combustion technology which can respond to the decrease in environmental pollutant in combustion exhaust gas, the high-grade combustion technology research development committee was established inside JSUP (Japan Space Utilization Promotion Center), using the underground gravity-free test center. Following FY 1995, the following were conducted: (1) international joint research with NASA, and (2) tests using microgravity test facilities, etc. and analysis/evaluation of the test data. As to the international joint research, a lot of new information was obtained through the adjustment conference with NASA. Further, there were a lot of results obtained from joint tests and researches. Moreover, the leading experimental device and measuring device which are usable in the microgravity field were developed/prepared. Conducted were combustion/evaporation evaluation experiments on fuel droplet and groups of droplet, combustion characteristics elucidation evaluation experiments on high-density fuels, evaluation experiment on flammability limits, and elucidation evaluation experiments on emission mechanism of NOx, etc. Through those, abundant experimental data were able to be accumulated, and a lot of precious knowledge/information were obtained. Besides, the fabrication of high-class combustor test equipment for ground demonstration was started. (NEDO)

  18. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  19. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1998-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  20. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P. [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1997-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  1. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; An, Yanzhao; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON

  2. Fuel and combustion stratification study of Partially Premixed Combustion

    OpenAIRE

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  3. Politics for emissions reduction at large combustion plants

    International Nuclear Information System (INIS)

    Dragos, L.; Persu, I.; Predescu, I.

    2005-01-01

    This article presents the harmonization process of Romanian national legislation with EU directives for the establishment of measures for the emission reduction of air pollutants from large combustion plants. The quantity of SO 2 , NO x and dust emissions from big combustion installation during the period 1980 - 2003 is given. The characteristics of the native fuels are also presented. Recently a reorganization and restructuring of the electricity production from lignite are accomplished. It is emphasised in the paper that the use of lignite for energy production is necessary even if the additional costs implied by the compliance with Directive 2001/80/EC are high. Clean combustion technologies and equipment promoted by the OVM-ICCPET, Bucharest will be applied for the improvement of the burning process and reduction of the emissions

  4. Fuel cycle comparison of distributed power generation technologies

    International Nuclear Information System (INIS)

    Elgowainy, A.; Wang, M.Q.

    2008-01-01

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions

  5. Chemistry Division: progress report (1983-84)

    International Nuclear Information System (INIS)

    Shastri, L.V.; George, A.M.

    1985-01-01

    This is the seventh progress report of the Chemistry Division covering the two years 1983 and 1984. The main emphasis of the Division continues to be on basic research though spin offs in high technology areas are closely pursued. Laboratory facilities have been considerably augmented during this period. Besides the design and fabrication of a crossed molecular beam chemiluminescence apparatus, a 80 MHz FTNMR and a 5nsec. excimer laser kinetic spectrometer were acquired; a 5nsec. pulsed electron accelerator would be installed in 1985. The research and development projects taken up during the VI Five Year Plan have achieved considerable progress. Only brief accounts of investigations are presented in the report. (author)

  6. Combustion Sensors: Gas Turbine Applications

    Science.gov (United States)

    Human, Mel

    2002-01-01

    This report documents efforts to survey the current research directions in sensor technology for gas turbine systems. The work is driven by the current and future requirements on system performance and optimization. Accurate real time measurements of velocities, pressure, temperatures, and species concentrations will be required for objectives such as combustion instability attenuation, pollutant reduction, engine health management, exhaust profile control via active control, etc. Changing combustor conditions - engine aging, flow path slagging, or rapid maneuvering - will require adaptive responses; the effectiveness of such will be only as good as the dynamic information available for processing. All of these issues point toward the importance of continued sensor development. For adequate control of the combustion process, sensor data must include information about the above mentioned quantities along with equivalence ratios and radical concentrations, and also include both temporal and spatial velocity resolution. Ultimately these devices must transfer from the laboratory to field installations, and thus must become low weight and cost, reliable and maintainable. A primary conclusion from this study is that the optics-based sensor science will be the primary diagnostic in future gas turbine technologies.

  7. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  8. Physics Division activities report, 1986--1987

    International Nuclear Information System (INIS)

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e + e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC

  9. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author)

  10. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M [ed.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author).

  11. The scaling of performance and losses in miniature internal combustion engines

    Science.gov (United States)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate

  12. The lean-combustion gasoline engine. A concept with global application; Der magerbetriebene Ottomotor. Ein Konzept fuer den weltweiten Einsatz

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler, Roland; Enderle, Christian; Waltner, Anton; Vent, Guido [Daimler AG, Stuttgart (Germany)

    2013-08-01

    After Mercedes-Benz launched the first lean-combustion gasoline engines with spray-guided combustion in 2006, it rolled out this technology on a broad level based on the engine model series featuring the BlueDIRECT combustion system. Although these engines raise the bar among competitors in terms of fuel consumption, they are currently available only in countries that offer sulfur-free fuel. This leads to the question of what technical measures or altered constraints would be necessary to allow this environmentally-friendly technology to enjoy more widespread use. The following paper discusses how the accessibility of the lean-combustion technology can be improved by focusing primarily on the USA and China as potential markets. Challenges are involved, of course, in particular with respect to fuel quality and emissions as well as the market-specific implications for on-board diagnostics. By working to further reduce fuel sulfur content, however, lean-combustion gasoline engines could also be offered in the aforementioned regions in the mid-term. (orig.)

  13. Global programme to demonstrate the viability and removal of barriers that impede adoption and successful implementation of available, non-combustion technologies for destroying persistent organic pollutants (POPs)

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the Global Programme, in line with the strategic priorities of GEF Business Plan FY04-06, is to demonstrate the viability and removal of barriers that impede adoption and successful implementation of available non-combustion technologies for use in the destruction of obsolete Persistent Organic Pollutants (POPs) stockpiles and wastes, more specifically PCBs wastes in developing countries and countries with economies in transition. This specific Project (Slovakia Project), part of the Global Programme, will introduce and apply such technologies to destroy significant obsolete PCBs wastes in Slovakia, and will help remove barriers to the further adoption and effective implementation of available non-combustion technologies and meet the Stockholm Convention requirement to ensure the use of Best Available Techniques (BAT) and Best Environmental Practices (BEP). The [final draft of the] National Implementation Plan (NIP) in Slovakia favors the application of non-combustion technologies to destroy POPs. The Project will make available all technical, economic and financial parameters of the selected technology in a comparative, open and transparent way that would facilitate and provide further incentive to the global diffusion of innovative alternative non-combustion technologies. The GEF Council has approved (May 2004) a Project Brief for a similar activity in the Philippines. The GEF Slovakia Project will last 70 months. The first twenty-four months will be committed to parallel activities of a tendering process, obtaining necessary operating permits, including conducting necessary environmental impact analyses; designing, constructing and testing of the non-combustion technology to be deployed; and generally planning and organizing, among other things, such activities as a comprehensive public participation and involvement plan, and a comprehensive, participatory monitoring and evaluation plan. The next eighteen months of Project time would involve the

  14. New fossil fuel combustion technologies

    International Nuclear Information System (INIS)

    Minghetti, E.; Palazzi, G.

    1995-01-01

    The aim of the present article is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our Planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this efforts are: 1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; 2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this article the international and national energy situations and trends are shown. After some brief notes on environmental problems and alternative fuels, such as bio masses and municipal wastes, technological aspects, mainly relevant to increase fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (Italian Agency for New Technologies, Energy and Environment) Engineering Branch, in order to improve fossil fuels energy and environmental use are presented

  15. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Robert W. Carling; Gurpreet Singh

    2000-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work

  16. Combining solid biomass combustion and stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    Siemers, W.; Senkel, N. [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany)], e-mail: werner.siemers@cutec.de

    2012-11-01

    Decentralised electricity production in combination with and based on biomass still finds some difficulties in real applications. One concept favoured in a recent project is the connection of a wood chip furmace with a Stirling engine. Because the direct exposure of the Stirling head causes numerous problems, the solution is sought in designing an indirect heat transfer system. The main challenge is the temperature level, which should be reached for high electrical efficiencies. Temperatures above 1000 deg C at the biomass combustion side are needed for an efficient heat transfer at some 850 deg C at the Stirling engine in theory. Measurements on both installations have been conducted and analyzed. After this, the design phase is started. However, no final choice on the design has been taken.

  17. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  18. Nordic seminar on biomass gasification and combustion

    International Nuclear Information System (INIS)

    1993-01-01

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs

  19. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  20. Combustion stratification for naphtha from CI combustion to PPC

    NARCIS (Netherlands)

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, L.M.T.; Johansson, B.H.

    2017-01-01

    This study demonstrated the change in combustion homogeneity from conventional diesel combustion via partially premixed combustion towards HCCI. Experiments are performed in an optical diesel engine at a speed of 1200 rpm with diesel fuel. Single injection strategy is employed and the fuel is

  1. The Astrophysics Science Division Annual Report 2009

    Science.gov (United States)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  2. Goddard's Astrophysics Science Division Annual Report 2011

    Science.gov (United States)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  3. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    International Nuclear Information System (INIS)

    Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko

    2012-01-01

    Highlights: ► Significant GHG reductions are possible by efficient WtE technologies. ► CHP and high power-to-heat ratio provide significant GHG savings. ► N 2 O and coal mine type are important in LCA GHG emissions of FBC co-combustion. ► Substituting coal and fuel oil by waste is beneficial in electricity and heat production. ► Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO 2 -eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  4. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  5. Health physics division annual progress report for period ending June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.

  6. Combustion instability control in the model of combustion chamber

    International Nuclear Information System (INIS)

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A

    2013-01-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  7. Do factors related to combustion-based sources explain ...

    Science.gov (United States)

    Introduction: Spatial heterogeneity of effect estimates in associations between PM2.5 and total non-accidental mortality (TNA) in the United States (US), is an issue in epidemiology. This study uses rate ratios generated from the Multi-City/Multi-Pollutant study (1999-2005) for 313 core-based statistical areas (CBSA) and their metropolitan divisions (MD) to examine combustion-based sources of heterogeneity.Methods: For CBSA/MDs, area-specific log rate ratios (betas) were derived from a model adjusting for time, an interaction with age-group, day of week, and natural splines of current temperature, current dew point, and unconstrained temperature at lags 1, 2, and 3. We assessed the heterogeneity in the betas by linear regression with inverse variance weights, using average NO2, SO2, and CO, which may act as a combustion source proxy, and these pollutants’ correlations with PM2.5. Results: We found that weighted mean PM2.5 association (0.96 percent increase in total non-accidental mortality for a 10 µg/m3 increment in PM2.5) increased by 0.26 (95% confidence interval 0.08 , 0.44) for an interquartile change (0.2) in the correlation of SO2 and PM2.5., but betas showed less dependence on the annual averages of SO2 or NO2. Spline analyses suggest departures from linearity, particularly in a model that examined correlations between PM2.5 and CO.Conclusions: We conclude that correlations between SO2 and PM2.5 as an indicator of combustion sources explains some hete

  8. Physics Division activities report, 1986--1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e/sup +/e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC.

  9. Oxy-fuel combustion of pulverized fuels

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  10. Lead from the center. How to manage divisions dynamically.

    Science.gov (United States)

    Raynor, M E; Bower, J L

    2001-05-01

    Conventional wisdom holds that a company's divisions should be given almost total autonomy--especially under conditions of uncertainty--because they are closer to emerging technologies, customers, and competitors than corporate headquarters could ever be. But research from Michael Raynor and Joseph Bower suggests that the corporate office should be more, not less, directive in turbulent markets. Rapid changes in an industry make it difficult to predict where and when synergies among divisions might emerge. With so many possibilities and such uncertainty, companies can't afford to sacrifice their ability to flexibly execute business strategy. Corporate headquarters must play an active role in defining the scope of division-level strategy, the authors say, so that divisions do not act in ways that undermine opportunities to collaborate in the future. But neither can companies afford to sacrifice the competitiveness of their divisions as stand-alone businesses. In creating corporate-level strategic flexibility, a corporate office must balance the need for divisional autonomy now with the potential need for cooperation in the future. Through an examination of four corporations--Sprint, WPP, Teradyne, and Viacom--the authors challenge traditional approaches to diversification in which a company's divisions are either related (they share resources and collaborate) or unrelated (they compete for resources and operate as stand-alone businesses). They argue that companies should adopt a dynamic approach to cooperation among divisions, enabling varying degrees of relatedness between divisions depending on strategic circumstances. The authors offer four tactics to help executives manage divisions dynamically.

  11. Decommissioning Combustible Waste Treatment using Oxygen-Enriched Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byungyoun; Lee, Yoonji; Yun, Gyoungsu; Lee, Kiwon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The aim of the paper is current status of treatment for the decommissioning combustible waste in KAERI and for the purpose of the volume reduction and clearance for decommissioning combustible wastes generated by the decommissioning projects. The incineration technology has been selected for the treatment of combustible wastes. About 34 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. Temperature, pressure of major components, stack gas concentration, i. e., SOx, NOx, CO, CO{sub 2} and HCl, and the residual oxygen were measured. Measured major parameters during normal operation were sustained on a stable status within a criteria operation condition. Oxygen enriched air, 22vol. % (dry basis) was used for stable incineration. The volume reduction ratio has achieved about 1/117. The incineration with decommissioning radioactive combustible waste is possible with moderate oxygen enrichment of 22 vol.% (dry basis) into the supply air. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas. The pressure, off-gas flow and temperature of major components remained constant within the range specified. The measures gases and particulate materials in stack were considerably below the regulatory limits. The achieved volume reduction ratio through incineration is about 1/117.

  12. Getting the measure of particles in combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Measuring particles in combustion gases has never been entirely simple: optical systems do not measure particle mass directly and with sampling systems you have to wait for the results. A novel sensor that can give reliable, real-time information about the amount and size of particles in conventional and advanced combustion systems has now been developed by Sandia National Laboratories in Livermore, California. The work was funded by the Energy Technology Centre in Morgantown, West Virginia, of the United States Department of Energy. The heart of the sensor is a tapered element, oscillating microbalance (TEOM). Made of glass, it looks a bit like a hollow champagne glass. Where the base of the glass would be, a filter is fitted, and the mouth of the glass is fitted firmly to a base plate. This system was developed in support of the DOE's hot gas cleanup program, and operates at temperatures as high as 970/sup 0/C and pressures up to 10 bar in combustion chambers where is samples particles produced during combustion. Sandia's engineers believe the device has wide applications, for anywhere where information about combustion effluents or airborne particles is needed, from hospitals and clean rooms to foundries and kilns.

  13. FY1994 annual report on the advanced combustion science in microgravity field

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Researches were implemented continuously from the previous year on combustion equipment which enables advanced combustion technologies by studying combustion in a microgravity field, for the purpose of preventing environmental pollution caused by diversification of energy sources and exhaust gasses. In joint studies with NASA, research was conducted at both ends concerning the interaction of fuel droplets in a microgravity field; namely, high pressure combustion of binary fuel sprays at NASA against interaction in high pressure spray combustion of binary fuel at Japan side, and ignition and flame spread in microgravity field at NASA against combustion characteristics of organic solid fuels at Japan side. In fiscal 1994, in addition to the test equipment built in the previous year, a fuel droplet combustion test device was manufactured, as were a gas sampling and analyzing device, particle speed measuring device, and laser induced fluorescence measuring device. The tests using these measuring devices and microgravity test equipment were carried out 112 times, thereby establishing the measuring method of flame structure which was an objective of the present year. (NEDO)

  14. A practical approach in porous medium combustion for domestic application: A review

    Science.gov (United States)

    Ismail, A. K.; Ibrahim, N. H.; Shamsuddin, K. A.; Abdullah, M. Z.; Zubair, M.

    2018-05-01

    Combustion in porous media has been widely studied. Many application involving the combustion of porous media has been reported in various way with most consider on numerical works and industrial application. Besides, recent application of porous medium combustion for domestic is the topic of interest among researchers. In this paper, a review was conducted on the combustion of porous media in term of practical application for domestic consumers. Details on the type of fuel used including bio fuel and their system have been search thoroughly. Most of the system have utilized compressed air system to provide lean combustion in domestic application. Some self-aspirating system of porous medium burner was also reported. The application of new technology such as cogeneration by using thermoelectric cells in tandem with porous medium combustion is also revised according to recent work which have already been published. Besides, the recent advances which include coating of porous material is also considered at the end of this paper.

  15. Effects of biomass on dynamics of combustion in circulating fluidized beds

    Directory of Open Access Journals (Sweden)

    Tourunen Antti

    2004-01-01

    Full Text Available Fluidized bed technology is very suitable for the combustion of biomass Nevertheless substitution of coal with biomass affects boiler operation and especially dynamics and controllability. Non-homogeneity of biomass and fuel feeding disturbances cause process instability, such as variations in temperatures and pressures, which reduce lifetime of equipment and structures. Because of process instability higher air coefficient must be used in order to avoid CO emissions, which is not economical. Combustion profiles for coal, wood and peat, measured at the VTT Processes Pilot circulating fluidized bed reactor, have been compared. Process stability and char inventories have been studied by the measurements and the model. Biofuel are usually very reactive and their combustion profiles are quite different compared to coals. Because of high reactivity and low char content combustion process with biofuel is very sensitive for fuel feeding. Also low char inventory effect on load changes combined with combustion profile that differs from coals. Because of different combustion profile heat transfer can be a limiting factor in load changes despite the high reactivity and fast oxygen response.

  16. FY1995 annual report on the advanced combustion science in microgravity field

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research was implemented continuously from the previous year on combustion equipment enabling advanced combustion technologies, by studying combustion in a microgravity field, for the purpose of preventing environmental pollution caused by diversification of energy sources and exhaust gasses. In joint studies with NASA, the 1995 themes were continued, for which tests were conducted 34 times using Japanese drop test equipment. Further, studies were added for flammability limits and flame dynamics of spherical flames in homogeneous and heterogeneous mixed fuels. The evaluation and analysis of the experiments and test data by the microgravity test equipment were such that laser ignitions of floating or fuel-oozing droplets, spherical/cylindrical combustion of liquid fuels, for example, were studied in regards to the combustion and vaporization process of fuel droplets, that high calorie fuel combustion in microgravitation field for example was investigated in relation to the combustion characteristics of high density fuels, that flame stability of lean premixed gasses for example was researched concerning flammability limit, and that NOx generation mechanism in liquid fuel combustion was looked into in connection with emission mechanisms of pollutant gaseous materials. (NEDO)

  17. Rotary combustion device

    NARCIS (Netherlands)

    2008-01-01

    Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber.

  18. Experimental study of slight temperature rise combustion in trapped vortex combustors for gas turbines

    International Nuclear Information System (INIS)

    Zhang, R.C.; Fan, W.J.; Xing, F.; Song, S.W.; Shi, Q.; Tian, G.H.; Tan, W.L.

    2015-01-01

    Interstage turbine combustion used for improving efficiency of gas turbine was a new type of combustion mode. Operating conditions and technical requirements for this type of combustor were different from those of traditional combustor. It was expected to achieve engineering application in both ground-based and aviation gas turbine in the near future. In this study, a number of modifications in a base design were applied and examined experimentally. The trapped-vortex combustion technology was adopted for flame stability under high velocity conditions, and the preheating-fuel injection technology was used to improve the atomization and evaporation performance of liquid fuel. The experimental results indicated that stable and efficient combustion with slight temperature-rise can be achieved under the high velocity conditions of combustor inlet. Under all experimental conditions, the excess air coefficients of ignition and lean blow-out were larger than 7 and 20, respectively; pollutant emission index of NO x and the maximum wall temperature were below 2.5 g/(kg fuel) and 1050 K, respectively. Moreover, the effects of fuel injection and overall configuration on the combustion characteristics were analyzed in detail. The number increase, area increase and depth increase of fuel injectors had different influences on the stability, combustion characteristic and temperature distribution. - Highlights: • The combustion mode of slight temperature-rise (200 K) was achieved. • Effect of fuel and air injection on stability characteristic was investigated. • Impact of overall configuration on combustion performance was analyzed. • The feasibility of scheme was determined.

  19. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  20. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    International Nuclear Information System (INIS)

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department

  1. Chemical sciences, annual report 1993

    International Nuclear Information System (INIS)

    1994-10-01

    The Chemical Sciences Division (CSD) is one of eleven research Divisions of the Lawrence Berkeley Laboratory, a DOE National Laboratory. In FY 1993, the Division made considerable progress on developing two end-stations and a beamline to advance combustion dynamics at the Advanced Light Source (ALS). In support of DOE's national role in combustion research and chemical science, the beamline effort will enable researchers from around the world to make fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients, and in understanding the dynamics of elementary chemical reactions. The Division has continued to place a strong emphasis on full compliance with environmental health and safety guidelines and regulations and has made progress in technology transfer to industry. Finally, the Division has begun a new program in advanced battery research and development that should help strengthen industrial competitiveness both at home and abroad

  2. Chemical sciences, annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    The Chemical Sciences Division (CSD) is one of eleven research Divisions of the Lawrence Berkeley Laboratory, a DOE National Laboratory. In FY 1993, the Division made considerable progress on developing two end-stations and a beamline to advance combustion dynamics at the Advanced Light Source (ALS). In support of DOE`s national role in combustion research and chemical science, the beamline effort will enable researchers from around the world to make fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients, and in understanding the dynamics of elementary chemical reactions. The Division has continued to place a strong emphasis on full compliance with environmental health and safety guidelines and regulations and has made progress in technology transfer to industry. Finally, the Division has begun a new program in advanced battery research and development that should help strengthen industrial competitiveness both at home and abroad.

  3. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R; Haeyrinen, V [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  4. Example Problems in LES Combustion

    Science.gov (United States)

    2016-09-26

    Lesieur, M., Turbulence in Fluids , 2nd Revised Ed., Fluid Mechanics and Its Applications, Vol. 1, Kluwer Academic Publishers, Boston, Massachusetts, 1990...34, Journal of Fluid Mechanics , Vol. 238, 1992, pp. 155-185. 5. Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2, Computational...reaction mechanisms for the oxidation of hydrocarbon fuels in flames", Combustion Science and Technology, Vol. 27, 1981, pp. 31-43. 14. Spalding, D.B

  5. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  6. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    , the transient demonstration was performed in Phase IV. The project demonstrated the achievement of meeting US10 emissions without NOx aftertreatment. The successful execution of the project has served to highlight the effectiveness of closely matched combustion predictive tools to engine testing. It has further served to highlight the importance of key technologies and future areas of research and development. In this regard, recommendations are made towards further improvements in the areas of engine hardware, fuel injection systems, controls and fuels.

  7. E-Division semiannual report, January 1--June 30, 1978

    International Nuclear Information System (INIS)

    Kelley, P.A.

    1978-10-01

    The status of the programs and projects of the Electronics Division is reported for the period of January through June 1978. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support branch is to apply advanced technology to Los Alamos Scientific Laboratory (LASL) and material problems. The primary goal of the Technical Services branch is to provide a technical base and support for LASL programs. Most of the individual reports are quite short; however, significant amounts of information are given in the area of detector research and development. 52 figures, 7 tables

  8. Analytical Chemistry Division : annual report (for) 1985

    International Nuclear Information System (INIS)

    Mahadevan, N.

    1986-01-01

    An account of the various activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1985 is presented. The main function of the Division is to provide chemical analysis support to India's atomic energy programme. In addition, the Division also offers its analytical services, mostly for measurement of concentrations at trace levels to Indian industries and other research organization in the country. A list of these determinations is given. The report also describes the research and development (R and D) activities - both completed and in progress, in the form of individual summaries. During the year an ultra trace analytical laboratory for analysis of critical samples without contamination was set up using indigenous material and technology. Publications and training activities of the staff, training of the staff from other institution, guidance by the staff for post-graduate degree and invited talks by the staff are listed in the appendices at the end of the report. (M.G.B.)

  9. E-Division semiannual report. Progress report, July 1--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, P.A. (comp.)

    1979-01-01

    The status of the programs and projects of the Electronics Division for the period July through December 1978 is reported. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support Branch is to apply advanced technology to Laboratory and material problems. The primary goal of the Technical Services Branch is to provide a technical base and support for Laboratory programs. Most of the individual reports are quite short.

  10. E-Division semiannual report. Progress report, July 1--December 31, 1978

    International Nuclear Information System (INIS)

    Kelley, P.A.

    1979-01-01

    The status of the programs and projects of the Electronics Division for the period July through December 1978 is reported. The presentation is divided into three sections: Research, Engineering Support, and Technical Services. Each of these sections presents the activities and accomplishments of the corresponding branch within the Division. The primary goal of the Research and Development branch is to advance technology for future applications. The primary goal of the Engineering Support Branch is to apply advanced technology to Laboratory and material problems. The primary goal of the Technical Services Branch is to provide a technical base and support for Laboratory programs. Most of the individual reports are quite short

  11. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo

    2015-10-27

    C5 alcohols are considered alternative fuels because they emit less greenhouse gases and fewer harmful pollutants. In this study, the combustion characteristics of 2-methylbutanol (2-methyl-1-butanol) and isopentanol (3-methyl-1-butanol) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction path analyses were conducted at intermediate and high temperatures to identify the most influential reactions controlling ignition of C5 alcohols. The direct relation graph with expert knowledge methodology was used to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was tested at various homogeneous charge compression ignition (HCCI) engine combustion conditions. These simulations were used to investigate the heat release characteristics of the methyl-substituted C5 alcohols, and the results show relatively strong reactions at intermediate temperatures prior to hot ignition. C5 alcohol blending in PRF75 in HCCI combustion leads to a significant decrease of low-temperature heat release (LTHR) and a delay of the main combustion. The heat release features demonstrated by C5 alcohols can be used to improve the design and operation of advanced engine technologies.

  12. Atmospheric fluidized bed coal combustion research, development and application

    CERN Document Server

    Valk, M

    1994-01-01

    The use of fluidized bed coal combustion technology has been developed in the past decade in The Netherlands with a view to expanding the industrial use of coal as an energy supply. Various research groups from universities, institutes for applied science and from boiler industries participated and contributed to this research area. Comprehensive results of such recent experimentation and development work on atmospheric fluidized bed combustion of coal are covered in this volume. Each chapter, written by an expert, treats one specific subject and gives both the theoretical background as well a

  13. Accelerator & Fusion Research Division: 1993 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  14. Internal combustion engines history - a review

    International Nuclear Information System (INIS)

    Gaviria Rios, Jorge Enrique; Mora Guzman, Jorge Hernan; Agudelo, John Ramiro

    2002-01-01

    In this article, a chronological analysis of the technologies and events that any way influenced in the evolution of the internal combustion engine is done everything it through the observation of the works carried out for scientific empiric and engineers whose technical and conceptual value meant the motivation of other people for the search of a better development in this engineering field

  15. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-01-01

    This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

  16. International Technology Exchange Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES`s goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM`s policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM`s training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. International Technology Exchange Division: 1993 Annual report

    International Nuclear Information System (INIS)

    1993-01-01

    The Office of Technology Development (OTD) was established to ensure that reliable and acceptable technologies are available for implementation at DOE sites and that a technically trained work force is available to complete the EM mission by 2019. OTD established the International Technology Exchange Staff (ITES) to identify, evaluate, and acquire international technologies which can accelerate US DOE cleanup operations. ITES's goal is to pursue international collaboration among government organizations, educational institutions, and private industry to identify world-wide needs and available technologies that will meet US environmental needs in general, and EM cleanup needs in particular; and establish mechanisms by which US government ER/WM technologies will be transferred to the US private sector for commercialization and export to international markets. ITES has developed the following strategic objectives to implement its international goals: develop and implement EM's policy for international programs in accordance with DOE and US Government policies and regulations; establish efficient and predictable international technology transfer mechanisms; assist the US private sector in the commercialization and deployment of federally funded EM technologies and related knowledge in international markets; leverage US and non-US resources to accelerate international development and regulatory acceptance of EM technologies; contribute to the improvement of EM's training of US students, scientists, and managers on international environmental issues. A summary and descriptions of program activities and accomplishments are given for 17 programs which comprise the four main areas of the ITES program: Activities with the Former Soviet Union, International Technology Transfer, International Cooperation, and Information Systems and Publications. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  18. Developments in the technology for the combustion of water emulsions in Mexican fuel oil; Desarrollos en la tecnologia para la combustion de emulsiones agua en combustoleo mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Diego, Antonio Marin; Martinez Flores, Marco A.; Tamayo Flores, Gustavo; Alarcon Quiroz, Ernesto; Melendez Cervantes, Carlos [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    The residual petroleum oil (fuel oil) is the most used fuel in boilers of electrical and industrial power stations. Nevertheless, the use of this fuel can generate diverse problems such as the elevated particle emissions, that affect the boiler efficiency, darken the visibility by the smoke that leaves the chimneys and is emitted to the Environment. In addition, sulfur trioxide is produced, which reacts with the water present in the combustion gases, forming sulfuric acid that, when emitted, also affects the visibility of the plume and can be condensed, originating corrosion and increased accumulation of deposits in the boilers. The experimental research was made in a comparative base, between combustion tests of fuel oil, with emulsions where the water concentration and the size of the drops of this one was varied. A diagram of the supply of fuel and preparation of emulsions in a pilot furnace is shown. The article contains graphs of the effect of the water concentration of the emulsions in the particulate emission. The article contains figures of the cenospheres produced by the fuel oil combustion (500 x) and the ones produced by the combustion with 5% of water (500 x). Also shows graphs of the effect of the water drop size of emulsions in the particulate emission, of the reduction of the sulfur trioxide with soluble magnesium products in the water of emulsions, and of the free particle acidity with neutralizers of water emulsions of soluble magnesium. [Spanish] El aceite residual de petroleo (combustoleo) es el combustible mas utilizado en calderas de centrales electricas e industriales. Sin embargo, el uso de este combustible puede generar diverso problemas como las emisiones elevadas de particulas, que afectan la eficiencia de una caldera, obscurecen la visibilidad pero el humo que sale de las chimeneas y se emiten al medio ambiente. Ademas se produce trioxido de azufre, el cual reacciona con el vapor de agua presente en los gases de combustion, formado acido

  19. Next-generation coal utilization technology development study. Environmentally-friendly coal combustion technology; topping cycles; Sekitan riyo jisedai gijutsu kaihatsu chosa. Kankyo chowagata sekitan nensho gijutsu bun`ya (topping nensho gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    As a realistic measure to reduce environmental pollutants emitted from coal-fueled boilers, a developmental study was conducted of high-efficient combustion systems. In fiscal 1994, four types of topping cycles which are different in system structure and gasifier type were selected, and topping cycles assuming a 300MW-class power plant were trially designed. Further, an evaluation of adaptability of these systems was made, and an selection of the optimum system for the early development was made among the systems. As a result, the evaluation was obtained that `a system using air blown gasifier` is most suitable for conducting the next-stage research. In the element test on the topping combustion technology, collection was made of data of desulfurization activity, desulfurization oxidation mechanism and alkali metal behavior at the laboratory level, data of temperatures and gas concentration distribution in coal gasification, data of simulation of the gasifier reaction, and the other data. 262 figs., 66 tabs.

  20. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  1. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  2. Catalytic Unmixed Combustion of Coal with Zero Pollution

    Energy Technology Data Exchange (ETDEWEB)

    George Rizeq; Parag Kulkarni; Raul Subia; Wei Wei

    2005-12-01

    GE Global Research is developing an innovative energy-based technology for coal combustion with high efficiency and near-zero pollution. This Unmixed Combustion of coal (UMC-Coal) technology simultaneously converts coal, steam and air into two separate streams of high pressure CO{sub 2}-rich gas for sequestration, and high-temperature, high-pressure vitiated air for producing electricity in gas turbine expanders. The UMC process utilizes an oxygen transfer material (OTM) and eliminates the need for an air separation unit (ASU) and a CO{sub 2} separation unit as compared to conventional gasification based processes. This is the final report for the two-year DOE-funded program (DE-FC26-03NT41842) on this technology that ended in September 30, 2005. The UMC technology development program encompassed lab- and pilot-scale studies to demonstrate the UMC concept. The chemical feasibility of the individual UMC steps was established via lab-scale testing. A pilot plant, designed in a related DOE funded program (DE-FC26-00FT40974), was reconstructed and operated to demonstrate the chemistry of UMC process in a pilot-scale system. The risks associated with this promising technology including cost, lifetime and durability OTM and the impact of contaminants on turbine performance are currently being addressed in detail in a related ongoing DOE funded program (DE-FC26-00FT40974, Phase II). Results obtained to date suggest that this technology has the potential to economically meet future efficiency and environmental performance goals.

  3. Recycling of impregnated wood and impregnating agents - combustion plant technology; Kyllaestetyn puutavaran ja kyllaestysaineiden kierraetys - polttolaitostekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Syrjaenen, T.; Kangas, E. [Kestopuu Oy, Helsinki (Finland)

    2000-07-01

    purification systems cause extra investments. The emissions limits for combustion of impregnated wood are given in EU's Waste Incineration Directive. The amount of collected impregnated wood is sufficient for a 25 MW plant. Solid fuels fired gasification, grate firing and fluidized bed boilers suit best fir combustion of impregnated wood waste, gasification and fluidized beds being the best, because of the efficient combustion and low ash formation. Flue gas purification system is essential for incineration of impregnated wood. Chromium and copper, released in combustion, remain mainly in ash, but 60-90% of arsenic migrates in flue gases as small particles. By combining different technologies it is possible to obtain better recovery of impurities. One of the best methods is based on spraying of fluid in pre-cooling system into flue gases in order to cool the gases rapidly and to stop the reactions in the flue gases. After this the flue gases are pre-cleaned and cooled in a venturi scrubber. Fiber filters are recommended for dedusting of the flue gases. The formed ashes are recycled in Outokumpu Harjavalta metals copper smelter as raw material, which requires that the sintered material content of ash is low. The condensing waters of flue gas scrubbing can be used for preparation of copper/chromium/arsenic (CCA) concentrate.

  4. Emission of toxic air pollutants from biomass combustion

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.; Rock, M.E.

    1991-01-01

    Combustion of biomass for power generation, home heating, process steam generation, and waste disposal constitutes a major source of air pollutants nationwide. Emissions from hog-fueled boilers, demolition wood-fired power plants, municipal waste incinerators, woodstoves, fireplaces, pellet stoves, agricultural burning, and forestry burning have been characterized for a variety of purposes. These have included risk assessment, permitting, emission inventory development, source profiling for receptor modeling, and control technology evaluations. From the results of the source characterization studies a compilation of emission factors for criteria and non-criteria pollutants are presented here. Key among these pollutants are polycyclic aromatic hydrocarbons, priority pollutant metals, carbon monoxide, sulfur dioxide, nitrous oxides, and PM 10 particles. The emission factors from the biomass combustion processes are compared and contrasted with other pollutant sources. In addition, sampling and analysis procedures most appropriate for characterizing emissions from the biomass combustion sources are also discussed

  5. A conditioned level-set method with block-division strategy to flame front extraction based on OH-PLIF measurements

    International Nuclear Information System (INIS)

    Han Yue; Cai Guo-Biao; Xu Xu; Bruno Renou; Abdelkrim Boukhalfa

    2014-01-01

    A novel approach to extract flame fronts, which is called the conditioned level-set method with block division (CLSB), has been developed. Based on a two-phase level-set formulation, the conditioned initialization and region-lock optimization appear to be beneficial to improve the efficiency and accuracy of the flame contour identification. The original block-division strategy enables the approach to be unsupervised by calculating local self-adaptive threshold values autonomously before binarization. The CLSB approach has been applied to deal with a large set of experimental data involving swirl-stabilized premixed combustion in diluted regimes operating at atmospheric pressures. The OH-PLIF measurements have been carried out in this framework. The resulting images are, thus, featured by lower signal-to-noise ratios (SNRs) than the ideal image; relatively complex flame structures lead to significant non-uniformity in the OH signal intensity; and, the magnitude of the maximum OH gradient observed along the flame front can also vary depending on flow or local stoichiometry. Compared with other conventional edge detection operators, the CLSB method demonstrates a good ability to deal with the OH-PLIF images at low SNR and with the presence of a multiple scales of both OH intensity and OH gradient. The robustness to noise sensitivity and intensity inhomogeneity has been evaluated throughout a range of experimental images of diluted flames, as well as against a circle test as Ground Truth (GT). (interdisciplinary physics and related areas of science and technology)

  6. Role of technology in the U. K. gas industry. past, present, future

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J W

    1979-06-01

    A discussion covers the beginning of public gas supply in the U.K.; the production of gas during coal combustion and the oil era; the development of LNG transport technology; the development of the Dent processes for producing gases from hydrocarbon feedstocks including the Catalytic Rich Gas and the Gas Recycle Hydrogenation processes; the growth of the natural gas transmission and distribution industry; the organization and functions of the British Gas Corp. Research and Development Division and Scientific Services; the various technological innovations being used in the transmission, distribution, domestic and industrial utilization sectors of the gas industry; the various efforts leading to the development of a commercial SNG process, based on the Lurgi coal gasifier operated under slagging conditions, that can handle a wide range of coals; and the outlook for future gas supply and demand, a hydrogen economy-based gas industry, and new developments affecting gas transmission and distribution, conservation and utilization.

  7. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  8. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  9. Involvement of the ORNL Chemical Technology Division in contaminated air and water handling at the Three Mile Island Nuclear Power Station

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; King, L.J.

    1979-08-01

    The President's Commission on the Accident at Three Mile Island requested that Oak Ridge National Laboratory (ORNL) generate documents concerning two areas in which ORNL personnel provided on-site assistance following the accident on March 28, 1979. These are: instrumentation diagnostics, and the treatment of radioactive wastes and liquid effluents stemming from the accident. This report describes the involvement of the ORNL Chemical Technology Division (CTD) in contaminated air and water handling at Three Mile Island

  10. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    Science.gov (United States)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  11. R and E: Communications and Intelligent Systems Division (LC)

    Science.gov (United States)

    Emerson, Dawn C.; Miranda, Felix A.

    2015-01-01

    This presentation is intended for the Ohio Federal Research Network's Centers of Excellence. The presentation provides an overview of the Communications and Intelligent Systems Division including current research and engineering work as well as future technology needs.

  12. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090

    International Nuclear Information System (INIS)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology

  13. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher; Ju, Yiguang

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of these devices to realize their full potential. Engineers and scientists working in energy-related fields will find: An overview of the fundamental physics and phenomena of microscale combustion; Presentations of the latest modeling and simulation techniques for gasphase and catalytic micro-reactors; The latest results from experiments in small-scale liquid film, microtube, and porous combustors, micro-thrusters, a...

  14. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1985. Volume 4

    International Nuclear Information System (INIS)

    1986-03-01

    The compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research, concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators and for non-destructive examination of primary system components. This report, covering research conducted during Fiscal Year 1985, is the fourth volume of the series of NUREG-0975, Compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering Technology

  15. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1984. Volume 3

    International Nuclear Information System (INIS)

    1985-04-01

    This compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research, concentrates on achievments in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators and for non-destructive examination of primary system components. This report, covering research conducted during Fiscal Year 1984, is the third volume of the series of NUREG-0975, compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering Technology

  16. Co-combustion of risk husk with coal in a fluidized bed

    International Nuclear Information System (INIS)

    Ghani, A.K.; Alias, A.B.; Savory, R.M.; Cliffe, K.R.

    2006-01-01

    Power generation from biomass is an attractive technology which utilizes agricultural residue waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk) was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and CO emissions were studied and compared with those for pure coal combustion. Biomass waste with up to 70% mass fraction can be co-combusted in a fluidized bed combustor designed for coal combustion with a maximum drop of efficiency of 20% depending upon excess air levels. CO levels fluctuated between 200-700 ppm were observed when coal is added. It is evident from this research that efficient co-firing of rice husk with coal can be achieved with minimum modification of existing coal-fired boilers. (Author)

  17. A Reduced Order Model for the Design of Oxy-Coal Combustion Systems

    Directory of Open Access Journals (Sweden)

    Steven L. Rowan

    2015-01-01

    Full Text Available Oxy-coal combustion is one of the more promising technologies currently under development for addressing the issues associated with greenhouse gas emissions from coal-fired power plants. Oxy-coal combustion involves combusting the coal fuel in mixtures of pure oxygen and recycled flue gas (RFG consisting of mainly carbon dioxide (CO2. As a consequence, many researchers and power plant designers have turned to CFD simulations for the study and design of new oxy-coal combustion power plants, as well as refitting existing air-coal combustion facilities to oxy-coal combustion operations. While CFD is a powerful tool that can provide a vast amount of information, the simulations themselves can be quite expensive in terms of computational resources and time investment. As a remedy, a reduced order model (ROM for oxy-coal combustion has been developed to supplement the CFD simulations. With this model, it is possible to quickly estimate the average outlet temperature of combustion flue gases given a known set of mass flow rates of fuel and oxidant entering the power plant boiler as well as determine the required reactor inlet mass flow rates for a desired outlet temperature. Several cases have been examined with this model. The results compare quite favorably to full CFD simulation results.

  18. Development of correlations for combustion modelling with supercritical surrogate jet fuels

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Dondapati

    2017-12-01

    Full Text Available Supercritical fluid technology finds its application in almost all engineering aspects in one or other way. Technology of clean jet fuel combustion is also seeing supercritical fluids as one of their contender in order to mitigate the challenges related to global warming and health issues occurred due to unwanted emissions which are found to be the by-products in conventional jet engine combustion. As jet fuel is a blend of hundred of hydrocarbons, thus estimation of chemical kinetics and emission characteristics while simulation become much complex. Advancement in supercritical jet fuel combustion technology demands reliable property statistics of jet fuel as a function temperature and pressure. Therefore, in the present work one jet fuel surrogate (n-dodecane which has been recognized as the constituent of real jet fuel is studied and thermophysical properties of each is evaluated in the supercritical regime. Correlation has been developed for two transport properties namely density and viscosity at the critical pressure and over a wide range of temperatures (TC + 100 K. Further, to endorse the reliability of the developed correlation, two arithmetical parameters have been evaluated which illustrates an outstanding agreement between the data obtained from online NIST Web-Book and the developed correlation.

  19. Combustion pressure-based engine management system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R.; Hart, M. [DaimlerChrysler, Stuttart (Germany); Truscott, A.; Noble, A. [Ricardo, Shoreham-by-Sea (United Kingdom); Kroetz, G.; Richter, C. [DaimlerChrysler, Munchen (Germany); Cavalloni, C. [Kistler Instruments AG, Winterthur (Switzerland)

    2000-07-01

    In order to fulfill future emissions and OBD regulations, whilst meeting increasing demands for driveability and refinement, new technologies for SI engines have to be found in terms of sensors and algorithms for engine control units. One promising way, explored in the AENEAS collaborative project between DaimlerChrysler, Kistler, Ricardo and the European Commission, is to optimize the behavior of the system by using in-cylinder measurements and analysing them with modern control algorithms. In this paper a new engine management system based on combustion pressure sensing is presented. The pressure sensor is designed to give a reliable and accurate signal of the full pressure trace during a working cycle. With the application of new technologies low cost manufacturing appears to be achievable, so that an application in mass production can be considered. Furthermore, model-based algorithms were developed to allow optimal control of the engine based on the in-cylinder measurements. The algorithms incorporate physical principles to improve efficiency, emissions and to reduce the parameterisation effort. In the paper, applications of the combustion pressure signal for air mass estimation, knock detection, ignition control cam phase detection and diagnosis are discussed. (author)

  20. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    International Nuclear Information System (INIS)

    Hayes, R.E.; Wanke, S.E.

    2008-01-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs

  1. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.E.; Wanke, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2008-07-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs.

  2. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Confer, Keith [Delphi Automotive Systems, LLC, Troy, MI (United States)

    2014-12-18

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  3. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  4. 18 MArch 2008 - Director, Basic and Generic Research Division, Research Promotion Bureau, Japanese Ministry of Education, Culture, Sports, Science and Technology Prof.Ohtake visiting ATLAS cavern with Spokesperson P. Jenni.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    18 MArch 2008 - Director, Basic and Generic Research Division, Research Promotion Bureau, Japanese Ministry of Education, Culture, Sports, Science and Technology Prof.Ohtake visiting ATLAS cavern with Spokesperson P. Jenni.

  5. Signal correlations in biomass combustion. An information theoretic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M.

    2013-09-01

    Increasing environmental and economic awareness are driving the development of combustion technologies to efficient biomass use and clean burning. To accomplish these goals, quantitative information about combustion variables is needed. However, for small-scale combustion units the existing monitoring methods are often expensive or complex. This study aimed to quantify correlations between flue gas temperatures and combustion variables, namely typical emission components, heat output, and efficiency. For this, data acquired from four small-scale combustion units and a large circulating fluidised bed boiler was studied. The fuel range varied from wood logs, wood chips, and wood pellets to biomass residue. Original signals and a defined set of their mathematical transformations were applied to data analysis. In order to evaluate the strength of the correlations, a multivariate distance measure based on information theory was derived. The analysis further assessed time-varying signal correlations and relative time delays. Ranking of the analysis results was based on the distance measure. The uniformity of the correlations in the different data sets was studied by comparing the 10-quantiles of the measured signal. The method was validated with two benchmark data sets. The flue gas temperatures and the combustion variables measured carried similar information. The strongest correlations were mainly linear with the transformed signal combinations and explicable by the combustion theory. Remarkably, the results showed uniformity of the correlations across the data sets with several signal transformations. This was also indicated by simulations using a linear model with constant structure to monitor carbon dioxide in flue gas. Acceptable performance was observed according to three validation criteria used to quantify modelling error in each data set. In general, the findings demonstrate that the presented signal transformations enable real-time approximation of the studied

  6. Pilot-scale incineration testing of an oxygen-enhanced combustion system

    International Nuclear Information System (INIS)

    Waterland, L.R.; Lee, J.W.; Staley, L.J.

    1989-01-01

    This paper discusses a series of demonstration tests of the American Combustion, Inc., Thermal Destruction System performed under the Superfund innovative technology evaluation (SITE) program. This oxygen-enhanced combustion system was retrofit to the pilot-scale rotary kiln incinerator at EPA's Combustion Research Facility. This system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a hazardous coal tar waste (decanter tank tar sludge form coking operations - K087). Comparative performance with conventional incinerator operation was tested. Test results show that compliance with the hazardous waste incinerator performance standards of 99.99 percent principal organic hazardous constituent (POHC) destruction and removal efficiency (DRE) and particulate emissions of less than 180 mg/dscm at 7 percent O 2 was achieved for all tests. The Pyretron oxygen-enhanced combustion system allowed in-compliance operation at double the mixed waste feedrate possible with conventional incineration, and with a 60 percent increase in charge weight than possible with conventional incineration

  7. Reprint of “Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions”

    International Nuclear Information System (INIS)

    Gómez, M.; Fernández, A.; Llavona, I.; Kuivalainen, R.

    2015-01-01

    CO 2 and SO 2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO 2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO 2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO 2 Capture and Transport (es.CO 2 ) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO 2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO 2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: • Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  8. Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology

    International Nuclear Information System (INIS)

    Skorek-Osikowska, Anna; Bartela, Lukasz; Kotowicz, Janusz; Job, Marcin

    2013-01-01

    Highlights: • Mathematical models of an integrated oxy-combustion power plant. • Thermodynamic analysis of the modeled different cases of the plant. • Analysis of the methods of increasing the net efficiency of the plant. • Economic comparative analysis of the air-type and oxy-type plants. - Abstract: In the face of existing international provisions limiting the emissions of greenhouse gases, primarily carbon dioxide, it is necessary to introduce solutions that will allow the production of electricity from coal with high efficiency and low emissions. Oxy-combustion systems integrated with carbon capture and storage (CCS) installations may prove to be such a solution. This paper presents the main results from a thermodynamic analysis of a supercritical unit operating in oxy-combustion technology, fueled with pulverized coal with a power output of 460 MW. The parameters of the live steam in the analyzed system are 600 °C/30 MPa. To perform the numerical analyses, models of the individual components were built, including an oxygen production installation (ASU), a boiler, a steam cycle and a flue gas conditioning system (CPU). The models were built in the commercial programs GateCycle and Aspen and then integrated into the Excel environment. In this paper, different structures for an integrated oxy-type system were analyzed and compared. The auxiliary power rates were determined for individual technological installations of the oxy-combustion power plant. The highest value of this indicator, in the range between 15.65% and 19.10% was calculated for the cryogenic ASU. The total value of this index for the whole installation reaches as high as 35% for the base case. The use of waste heat from the interstage cooling of compressors in the air separation installation and flue gas conditioning system was considered as the methods of counteracting the efficiency decrease resulting from the introduction of ASU and CPU. The proposed configurations and optimization

  9. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  10. Furnace devices aerodynamics optimization for fuel combustion efficiency improvement and nitrogen oxide emission reduction

    Science.gov (United States)

    Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.

    2017-11-01

    MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.

  11. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

    International Nuclear Information System (INIS)

    Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

    2002-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

  12. BNFL Springfields Fuel Division

    International Nuclear Information System (INIS)

    Tarkiainen, S.; Plit, H.

    1998-01-01

    The Fuel Division of British Nuclear Fuels Ltd (BNFL) manufactures nuclear fuel elements for British Magnox and AGR power plants as well as for LWR plants. The new fuel factory - Oxide Fuel Complex (OFC), located in Springfields, is equipped with modern technology and the automation level of the factory is very high. With their quality products, BNFL aims for the new business areas. A recent example of this expansion was shown, when BNFL signed a contract to design and license new VVER-440 fuel for Finnish Loviisa and Hungarian Paks power plants. (author)

  13. Danish emission inventories for stationary combustion plants. Inventories until year 2002

    International Nuclear Information System (INIS)

    Nielsen, M.; Boll Illerup, J.

    2004-01-01

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO 2 , NO X , NMVOC, CH 4 , CO, CO 2 , N 2 O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable decrease of the SO 2 , NO X and heavy metal emissions is mainly a result of decreased emissions from large power plants and waste incineration plants. The greenhouse gas emission has decreased 1,3% since 1990. The emission of CH 4 , however, has increased due to increased use of lean-burn gas engines in CHP plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated. (au)

  14. Fossil fuel power plant combustion control: Research in Italy

    International Nuclear Information System (INIS)

    Pasini, S.; Trebbi, G.

    1991-01-01

    Electric power demand forecasts for Italy to the year 2000 indicate an increase of about 50% which, due to the current moratorium on nuclear energy, should be met entirely by fossil fuel power plants. Now, there is growing public concern about possible negative health impacts due to the air pollution produced through the combustion of fossil fuels. In response to these concerns, ENEL (Italian National Electricity Board) is investing heavily in air pollution abatement technology R ampersand D. The first phase involves the investigation of pollution mechanisms in order to develop suitable mathematical models and diagnostic techniques. The validity of the models is being tested through through measurements made by sophisticated instrumentation placed directly inside the combustion chambers of steam generator systems. These are allowing engineers to develop improved combustion control methods designed to reduce air pollution at source

  15. Achievement report on research and development in the Sunshine Project in fiscal 1976. Research related to hydrogen combustion technologies; 1976 nendo suiso nensho gijutsu ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    Regarding the Sunshine Project, this paper describes characteristics and technologies of hydrogen combustion, problems in developing combustion devices and conceptual design thereof, catalytic combustion, hydrogen energy systems, and economic evaluation on hydrogen fuel as a heating energy. Hydrogen combustion could emit small amount of NOx if it is sufficiently pre-mixed with air, but at the same time could cause reverse ignition very easily making its practical use difficult. Abolishing the air pre-mixture would cause no fear of reverse ignition, but generate much more NOx than from hydrocarbon fuels. Even if attempting to apply conventional methods such as two-stage combustion, partial stack gas recirculation, water addition, and lean burn systems, many of them cannot be applied as they are, requiring research and development efforts. Discussions on hydrogen energy as a system included those on thermo-chemical hydrogen manufacturing using heat from high temperature gas reactors (using water as the raw material), and electrolytic hydrogen gas manufacturing utilizing surplus electric power from high speed breeder reactors. Whether these methods could be used in markets economically will depend on manufacturing efficiency and cost of hydrogen gas. As the economic evaluation on hydrogen as fuel, discussions and considerations were given on introduction priority in the industrial heating furnace field. (NEDO)

  16. Chemical-looping combustion - status of development

    Energy Technology Data Exchange (ETDEWEB)

    Lyngfelt, Anders; Johansson, Marcus; Mattisson, Tobias

    2008-05-15

    Chemical-looping combustion (CLC) is a combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, a fuel reactor and an air reactor, are used in the process. In the fuel reactor, the metal oxide is reduced by the reaction with the fuel and in the air reactor; the reduced metal oxide is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, and almost pure stream of CO{sub 2} is obtained when water is condensed. Considerable research has been conducted on CLC in the last years with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. In 2002 the process was a paper concept, albeit with some important but limited laboratory work on oxygen carrier particles. Today more than 600 materials have been tested and the technique has been successfully demonstrated in chemical-looping combustors in the size range 0.3 - 50 kW, using different types of oxygen carriers based on the metals Ni, Co, Fe, Cu and Mn. The total time of operational experience is more than a thousand hours. From these tests it can be established that almost complete conversion of the fuel can be obtained and 100% CO{sub 2} capture is possible. Most work so far has been focused on gaseous fuels, but the direct application to solid fuels is also being studied. Moreover, the same principle of oxygen transfer is used in chemical-looping reforming (CLR), which involves technologies to produce hydrogen with inherent CO{sub 2} capture. This paper presents an overview of the research performed on CLC and CLR highlights the current status of the technology

  17. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    Energy Technology Data Exchange (ETDEWEB)

    George Rizeq; Janice West; Arnaldo Frydman; Vladimir Zamansky; Linda Denton; Hana Loreth; Tomasz Wiltowski

    2001-07-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program

  18. SPECIFIC FEATURES OF THE OXYFUEL COMBUSTION CONDITIONS IN A BUBBLING FLUIDIZED BED

    Directory of Open Access Journals (Sweden)

    Pavel Skopec

    2016-08-01

    Full Text Available Oxyfuel combustion is a promising approach for capturing CO2 from power plants. This technology produces a flue gas with a high concentration of CO2. Our paper presents a verification of the oxyfuel combustion conditions in a bubbling fluidized bed combustor. It presents a theoretical analysis of oxyfuel combustion and makes a comparison with combustion using air. It is important to establish a proper methodology for stoichiometric calculations and for computing the basic characteristic fluidization properties. The methodology presented here has been developed for general purposes, and can be applied to calculations for combustion with air and with oxygen-enriched air, and also for full oxyfuel conditions. With this methodology, we can include any water vapour condensation during recirculation of the flue gas when dry flue gas recirculation is used. The paper contains calculations for a lignite coal, which is taken as a reference fuel for future research and for the experiments.

  19. Research and development of hydrogen and fuel cells technology at the IIE; Investigacion y desarrollo de tecnologia de hidrogeno y celdas de combustible en el IIE

    Energy Technology Data Exchange (ETDEWEB)

    Cano C, Ulises; Arriaga H, Gerardo; Romero C, T; Medrano V, M. Consolacion; Gonzalez, A. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-07-01

    In April, 2001, a fuel cells project was initiated at the Instituto de Investigaciones Electricas (IIE) as a part of the interest of this institution for such a technology. Towards end of that same year, a group dedicated to research and development (R and D) activities was implemented and efforts were initiated for the assembly of a laboratory with specialized infrastructure that would support these activities. Thus, in the last two years, the hydrogen and fuel cells group has taken under its responsibility the task of renewing and conditioning a space to receive specialized instrumentation and to initiate its operation, as well as to develop its own knowledge on the technology of fuel cells. The R and D work related to fuel cells was initiated from basic electrochemical studies of platinum electrodes on vitreous coal in acid solutions, to determine kinetic parameters and structural properties. Since the main components of PEM cells to a great extent define the cost of the technology, other additional efforts related to basic studies for the development of components as bipolar plates, are described by the same author in 2001. Other work on basic research is bound to the response of fuel monocells under different operation conditions, and that also will be reviewed in this article. [Spanish] En abril del 2001, se inicio un proyecto de celdas de combustible en el IIE como parte del interes de esta institucion por tal tecnologia. Hacia finales de ese mismo ano, se conformo un grupo dedicado a actividades de investigacion y desarrollo (I y D) y se iniciaron esfuerzos para el montaje de un laboratorio con infraestructura especializada que apoyara estas actividades. Asi, en los ultimos dos anos, el grupo de hidrogeno y celdas de combustible se ha dado a la tarea de renovar y acondicionar un espacio para recibir instrumentacion especializada e iniciar su operacion, asi como a desarrollar su propio conocimiento de tecnologia de celdas de combustible. Los trabajos de I y

  20. Treatment of Decommissioning Combustible Wastes with Incineration Technology

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y. Min; Yang, D. S.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The aim of the paper is current status of management for the decommissioning radioactive combustible and metal waste in KAERI. In Korea, two decommissioning projects were carried out for nuclear research facilities (KRR-1 and KRR-2) and a uranium conversion plant (UCP). Through the two decommissioning projects, lots of decommissioning wastes were generated. Decommissioning waste can be divided into radioactive waste and releasable waste. The negative pressure of the incineration chamber remained constant within the specified range. Off-gas flow and temperature were maintained constant or within the desired range. The measures gases and particulate materials in the stack were considerably below the regulatory limits. The achieved average volume reduction ratio during facility operation is about 1/65.