WorldWideScience

Sample records for combustion force estimation

  1. Maximal combustion temperature estimation

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  2. Empirically Estimated Heats of Combustion of Oxygenated Hydrocarbon Bio-type Oils

    Dmitry A. Ponomarev

    2015-04-01

    Full Text Available An empirical method is proposed by which the heats of combustion of oxygenated hydrocarbon oils, typically found from wood pyrolysis, may be calculated additively from empirically predicted heats of combustion of individual compounds. The predicted values are in turn based on four types of energetically inequivalent carbon and four types of energetically inequivalent hydrogen atomic energy values. A method is also given to estimate the condensation heats of oil mixtures based on the presence of four types of intermolecular forces. Agreement between predicted and experimental values of combustion heats for a typical mixture of known compounds was ± 2% and < 1% for a freshly prepared mixture of known compounds.

  3. Dynamic estimator for determining operating conditions in an internal combustion engine

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  4. Numerical analysis on the combustion and emission characteristics of forced swirl combustion system for DI diesel engines

    Su, LiWang; Li, XiangRong; Zhang, Zheng; Liu, FuShui

    2014-01-01

    Highlights: • A new combustion system named FSCS for DI diesel engines was proposed. • Fuel/air mixture formation was improved for the application of FSCS. • The FSCS showed a good performance on emission characteristics. - Abstract: To optimize the fuel/air mixture formation and improve the environmental effect of direct injection (DI) diesel engines, a new forced swirl combustion system (FSCS) was proposed concerned on unique design of the geometric shape of the combustion chamber. Numerical simulation was conducted to verify the combustion and emission characteristics of the engines with FSCS. The fuel/air diffusion, in-cylinder velocity distribution, turbulent kinetic energy and in-cylinder temperature distribution were analyzed and the results shown that the FSCS can increase the area of fuel/air diffusion and improve the combustion. The diesel engine with FSCS also shown excellent performance on emission. At full load condition, the soot emission was significantly reduced for the improved fuel/air mixture formation. There are slightly difference for the soot and NO emission between the FSCS and the traditional omega combustion system at lower load for the short penetration of the fuel spray

  5. Influence of measurement errors and estimated parameters on combustion diagnosis

    Payri, F.; Molina, S.; Martin, J.; Armas, O.

    2006-01-01

    Thermodynamic diagnosis models are valuable tools for the study of Diesel combustion. Inputs required by such models comprise measured mean and instantaneous variables, together with suitable values for adjustable parameters used in different submodels. In the case of measured variables, one may estimate the uncertainty associated with measurement errors; however, the influence of errors in model parameter estimation may not be so easily established on an experimental basis. In this paper, a simulated pressure cycle has been used along with known input parameters, so that any uncertainty in the inputs is avoided. Then, the influence of errors in measured variables and geometric and heat transmission parameters on the results of a diagnosis combustion model for direct injection diesel engines have been studied. This procedure allowed to establish the relative importance of these parameters and to set limits to the maximal errors of the model, accounting for both the maximal expected errors in the input parameters and the sensitivity of the model to those errors

  6. Estimated contribution from wood combustion to air pollution in Hamar, Lillehammer and Gjoevik

    Schjoldager, J.

    1996-07-01

    The report analyses the level of air pollution from wood combustion in urban areas in Norway. From the analysis of potassium and soot in samples from January 1992, there were large uncertainties in the estimation of particle contributions from the combustion. Concentration estimates of formaldehyde from wood combustion were comparable to measurements, while estimated PAH (Polycyclic Aromatic Hydrocarbons) concentrations were lower than measurements. 18 refs., 1 fig., 6 tabs

  7. Internal combustion engines - Modelling, estimation and control issues

    Vigild, C.W.

    2001-12-01

    Alternative power-trains have become buzz words in the automotive industry in the recent past. New technologies like Lithium-Ion batteries or fuel cells combined with high efficient electrical motors show promising results. However both technologies are extremely expensive and important questions like 'How are we going to supply fuel-cells with hydrogen in an environmentally friendly way?', 'How are we going to improve the range - and recharging speed - of electrical vehicles?' and 'How will our existing infrastructure cope with such changes?' are still left unanswered. Hence, the internal combustion engine with all its shortcomings is to stay with us for the next many years. What the future will really bring in this area is uncertain, but one thing can be said for sure; the time of the pipe in - pipe out engine concept is over. Modem engines, Diesel or gasoline, have in the recent past been provided with many new technologies to improve both performance and handling and to cope with the tightening emission legislations. However, as new devices are included, the number of control inputs is also gradually increased. Hence, the control matrix dimension has grown to a considerably size, and the typical table and regression based engine calibration procedures currently in use today contain both challenging and time-consuming tasks. One way to improve understanding of engines and provide a more comprehensive picture of the control problem is by use of simplified physical modelling - one of the main thrusts of this dissertation. The application of simplified physical modelling as a foundation for engine estimation and control design is first motivated by two control applications. The control problem concerns Air/Fuel ratio control of Spark Ignition engines. Two different ways of control are presented; one based on. a model based Extended Kalman Filter updated predictor, and one based on robust H {infinity} techniques. Both controllers are

  8. Combustion

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  9. Combustion

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  10. Combustion

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  11. Estimation of Coriolis Force and Torque Acting on Ares-1

    Mackey, Ryan M.; Kulikov, Igor K.; Smelyanskiy, Vadim; Luchinsky, Dmitry; Orr, Jeb

    2011-01-01

    A document describes work on the origin of Coriolis force and estimating Coriolis force and torque applied to the Ares-1 vehicle during its ascent, based on an internal ballistics model for a multi-segmented solid rocket booster (SRB).

  12. ON ESTIMATING FORCE-FREENESS BASED ON OBSERVED MAGNETOGRAMS

    Zhang, X. M.; Zhang, M.; Su, J. T.

    2017-01-01

    It is a common practice in the solar physics community to test whether or not measured photospheric or chromospheric vector magnetograms are force-free, using the Maxwell stress as a measure. Some previous studies have suggested that magnetic fields of active regions in the solar chromosphere are close to being force-free whereas there is no consistency among previous studies on whether magnetic fields of active regions in the solar photosphere are force-free or not. Here we use three kinds of representative magnetic fields (analytical force-free solutions, modeled solar-like force-free fields, and observed non-force-free fields) to discuss how measurement issues such as limited field of view (FOV), instrument sensitivity, and measurement error could affect the estimation of force-freeness based on observed magnetograms. Unlike previous studies that focus on discussing the effect of limited FOV or instrument sensitivity, our calculation shows that just measurement error alone can significantly influence the results of estimates of force-freeness, due to the fact that measurement errors in horizontal magnetic fields are usually ten times larger than those in vertical fields. This property of measurement errors, interacting with the particular form of a formula for estimating force-freeness, would result in wrong judgments of the force-freeness: a truly force-free field may be mistakenly estimated as being non-force-free and a truly non-force-free field may be estimated as being force-free. Our analysis calls for caution when interpreting estimates of force-freeness based on measured magnetograms, and also suggests that the true photospheric magnetic field may be further away from being force-free than it currently appears to be.

  13. Calculation of combustible waste fraction (CWF) estimates used in organics safety issue screening

    Heasler, P.G.; Gao, F.; Toth, J.J.

    1998-08-01

    This report describes how in-tank measurements of moisture (H 2 O) and total organic carbon (TOC) are used to calculate combustible waste fractions (CWF) for 138 of the 149 Hanford single shell tanks. The combustible waste fraction of a tank is defined as that proportion of waste that is capable of burning when exposed to an ignition source. These CWF estimates are used to screen tanks for the organics complexant safety issue. Tanks with a suitably low fraction of combustible waste are classified as safe. The calculations in this report determine the combustible waste fractions in tanks under two different moisture conditions: under current moisture conditions, and after complete dry out. The first fraction is called the wet combustible waste fraction (wet CWF) and the second is called the dry combustible waste fraction (dry CWF). These two fractions are used to screen tanks into three categories: if the wet CWF is too high (above 5%), the tank is categorized as unsafe; if the wet CWF is low but the dry CWF is too high (again, above 5%), the tank is categorized as conditionally safe; finally, if both the wet and dry CWF are low, the tank is categorized as safe. Section 2 describes the data that was required for these calculations. Sections 3 and 4 describe the statistical model and resulting fit for dry combustible waste fractions. Sections 5 and 6 present the statistical model used to estimate wet CWF and the resulting fit. Section 7 describes two tests that were performed on the dry combustible waste fraction ANOVA model to validate it. Finally, Section 8 presents concluding remarks. Two Appendices present results on a tank-by-tank basis

  14. Observers for vehicle tyre/road forces estimation: experimental validation

    Doumiati, M.; Victorino, A.; Lechner, D.; Baffet, G.; Charara, A.

    2010-11-01

    The motion of a vehicle is governed by the forces generated between the tyres and the road. Knowledge of these vehicle dynamic variables is important for vehicle control systems that aim to enhance vehicle stability and passenger safety. This study introduces a new estimation process for tyre/road forces. It presents many benefits over the existing state-of-art works, within the dynamic estimation framework. One of these major contributions consists of discussing in detail the vertical and lateral tyre forces at each tyre. The proposed method is based on the dynamic response of a vehicle instrumented with potentially integrated sensors. The estimation process is separated into two principal blocks. The role of the first block is to estimate vertical tyre forces, whereas in the second block two observers are proposed and compared for the estimation of lateral tyre/road forces. The different observers are based on a prediction/estimation Kalman filter. The performance of this concept is tested and compared with real experimental data using a laboratory car. Experimental results show that the proposed approach is a promising technique to provide accurate estimation. Thus, it can be considered as a practical low-cost solution for calculating vertical and lateral tyre/road forces.

  15. Can shoulder joint reaction forces be estimated by neural networks?

    de Vries, W.H.K.; Veeger, H.E.J.; Baten, C.T.M.; van der Helm, F.C.T.

    2016-01-01

    To facilitate the development of future shoulder endoprostheses, a long term load profile of the shoulder joint is desired. A musculoskeletal model using 3D kinematics and external forces as input can estimate the mechanical load on the glenohumeral joint, in terms of joint reaction forces. For long

  16. Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain

    Bahadori, A. [Curtin University of Technology, Perth, WA (Australia)

    2011-06-15

    When cooling combustion flue gas for heat recovery and efficiency gain, the temperature must not be allowed to drop below the sulfur trioxide dew point. Below the SO{sub 3} dew point, very corrosive sulfuric acid forms and leads to operational hazards on metal surfaces. In the present work, simple-to-use predictive tool, which is easier than existing approaches, less complicated with fewer computations is formulated to arrive at an appropriate estimation of acid dew point during combustion flue gas cooling which depends on fuel type, sulfur content in fuel, and excess air levels. The resulting information can then be applied to estimate the acid dew point, for sulfur in various fuels up to 0.10 volume fraction in gas (0.10 mass fraction in liquid), excess air fractions up to 0.25, and elemental concentrations of carbon up to 3. The proposed predictive tool shows a very good agreement with the reported data wherein the average absolute deviation percent was found to be around 3.18%. This approach can be of immense practical value for engineers and scientists for a quick estimation of acid dew point during combustion flue gas cooling for heat recovery and efficiency gain for wide range of operating conditions without the necessity of any pilot plant setup and tedious experimental trials. In particular, process and combustion engineers would find the tool to be user friendly involving transparent calculations with no complex expressions for their applications.

  17. Force estimation from OCT volumes using 3D CNNs.

    Gessert, Nils; Beringhoff, Jens; Otte, Christoph; Schlaefer, Alexander

    2018-05-04

    Estimating the interaction forces of instruments and tissue is of interest, particularly to provide haptic feedback during robot-assisted minimally invasive interventions. Different approaches based on external and integrated force sensors have been proposed. These are hampered by friction, sensor size, and sterilizability. We investigate a novel approach to estimate the force vector directly from optical coherence tomography image volumes. We introduce a novel Siamese 3D CNN architecture. The network takes an undeformed reference volume and a deformed sample volume as an input and outputs the three components of the force vector. We employ a deep residual architecture with bottlenecks for increased efficiency. We compare the Siamese approach to methods using difference volumes and two-dimensional projections. Data were generated using a robotic setup to obtain ground-truth force vectors for silicon tissue phantoms as well as porcine tissue. Our method achieves a mean average error of [Formula: see text] when estimating the force vector. Our novel Siamese 3D CNN architecture outperforms single-path methods that achieve a mean average error of [Formula: see text]. Moreover, the use of volume data leads to significantly higher performance compared to processing only surface information which achieves a mean average error of [Formula: see text]. Based on the tissue dataset, our methods shows good generalization in between different subjects. We propose a novel image-based force estimation method using optical coherence tomography. We illustrate that capturing the deformation of subsurface structures substantially improves force estimation. Our approach can provide accurate force estimates in surgical setups when using intraoperative optical coherence tomography.

  18. Progress toward national estimates of police use of force

    Garner, Joel H.; Malega, Ronald W.; Maxwell, Christopher D.

    2018-01-01

    This research builds on three decades of effort to produce national estimates of the amount and rate of force used by law enforcement officers in the United States. Prior efforts to produce national estimates have suffered from poor and inconsistent measurements of force, small and unrepresentative samples, low survey and/or item response rates, and disparate reporting of rates of force. The present study employs data from a nationally representative survey of state and local law enforcement agencies that has a high survey response rate as well as a relatively high rate of reporting uses of force. Using data on arrests for violent offenses and the number of sworn officers to impute missing data on uses of force, we estimate a total of 337,590 use of physical force incidents among State and local law enforcement agencies during 2012 with a 95 percent confidence interval of +/- 10,470 incidents or +/- 3.1 percent. This article reports the extent to which the number and rate of force incidents vary by the type and size of law enforcement agencies. Our findings demonstrate the willingness of a large proportion of law enforcement agencies to voluntarily report the amount of force used by their officers and the relative strengths and weaknesses of the Law Enforcement Management and Administrative Statistics (LEMAS) program to produce nationally representative information about police behavior. PMID:29447295

  19. External Force Estimation for Teleoperation Based on Proprioceptive Sensors

    Enrique del Sol

    2014-03-01

    Full Text Available This paper establishes an approach to external force estimation for telerobotic control in radioactive environments by the use of an identified manipulator model and pressure sensors, without employing a force/torque sensor. The advantages of - and need for - force feedback have been well-established in the field of telerobotics, where electrical and back-drivable manipulators have traditionally been used. This research proposes a methodology employing hydraulic robots for telerobotics tasks based on a model identification scheme. Comparative results of a force sensor and the proposed approach using a hydraulic telemanipulator are presented under different conditions. This approach not only presents a cost effective solution but also a methodology for force estimation in radioactive environments, where the dose rates limit the use of electronic devices such as sensing equipment.

  20. Longitudinal tire force estimation based on sliding mode observer

    El Hadri, A.; Cadiou, J.C.; M' Sirdi, N.K. [Versailles Univ., Paris (France). Lab. de Robotique; Beurier, G.; Delanne, Y. [Lab. Central des Ponts, Centre de Nantes (France)

    2001-07-01

    This paper presents an estimation method for vehicle longitudinal dynamics, particularly the tractive/braking force. The estimation can be used to detect a critical driving situation to improve security. It can be used also in several vehicle control systems. The main characteristics of the vehicle longitudinal dynamics were taken into account in the model used to design an observer and computer simulations. The state variables are the angular wheel velocity, vehicle velocity and the longitudinal tire force. The proposed differential equation of the tractive/braking force is derived using the concept of relaxation length. The observer designed is based on the sliding mode approach using only the angular wheel velocity measurement. The proposed method of estimation is verified through a one-wheel simulation model with a ''Magic formula'' tire model. Simulations results show an excellent reconstruction of the tire force. (orig.)

  1. One-Channel Surface Electromyography Decomposition for Muscle Force Estimation

    Wentao Sun

    2018-05-01

    Full Text Available Estimating muscle force by surface electromyography (sEMG is a non-invasive and flexible way to diagnose biomechanical diseases and control assistive devices such as prosthetic hands. To estimate muscle force using sEMG, a supervised method is commonly adopted. This requires simultaneous recording of sEMG signals and muscle force measured by additional devices to tune the variables involved. However, recording the muscle force of the lost limb of an amputee is challenging, and the supervised method has limitations in this regard. Although the unsupervised method does not require muscle force recording, it suffers from low accuracy due to a lack of reference data. To achieve accurate and easy estimation of muscle force by the unsupervised method, we propose a decomposition of one-channel sEMG signals into constituent motor unit action potentials (MUAPs in two steps: (1 learning an orthogonal basis of sEMG signals through reconstruction independent component analysis; (2 extracting spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate the accuracy of the proposed approach in estimating muscle force of the biceps brachii. The results demonstrated that the proposed approach based on decomposed MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary force level, while the conventional amplitude-based approach explains only 62.3% of this variability. With the proposed approach, we were also able to achieve grip force control of a prosthetic hand, which is one of the most important clinical applications of the unsupervised method. Experiments on two trans-radial amputees indicated that the proposed approach improves the performance of the prosthetic hand in grasping everyday objects.

  2. Unsteady force estimation using a Lagrangian drift-volume approach

    McPhaden, Cameron J.; Rival, David E.

    2018-04-01

    A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.

  3. Separating Direct and Indirect Turbofan Engine Combustion Noise While Estimating Post-Combustion (Post-Flame) Residence Time Using the Correlation Function

    Miles, Jeffrey Hilton

    2011-01-01

    A previous investigation on the presence of direct and indirect combustion noise for a full-scale turbofan engine using a far-field microphone at 130 is extended by also examining signals obtained at two additional downstream directions using far-field microphones at 110 deg and 160 deg. A generalized cross-correlation function technique is used to study the change in propagation time to the far field of the combined direct and indirect combustion noise signal as a sequence of low-pass filters are applied. The filtering procedure used produces no phase distortion. As the low-pass filter frequency is decreased, the travel time increases because the relative amount of direct combustion noise is reduced. The indirect combustion noise signal travels more slowly because in the combustor entropy fluctuations move with the flow velocity, which is slow compared to the local speed of sound. The indirect combustion noise signal travels at acoustic velocities after reaching the turbine and being converted into an acoustic signal. The direct combustion noise is always propagating at acoustic velocities. The results show that the estimated indirect combustion noise time delay values (post-combustion residence times) measured at each angle are fairly consistent with one another for a relevant range of operating conditions and demonstrate source separation of a mixture of direct and indirect combustion noise. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting turbofan engine core noise.

  4. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  5. Perspective usage estimation of Volga region combustible shale as a power generating fuel alternative

    Korolev, E.; Barieva, E.; Eskin, A.

    2018-05-01

    A comprehensive study of combustible shale, common within Tatarstan and Ulyanovsk region, is carried out. The rocks physicochemical parameters are found to meet the power generating fuels requirements. The predictive estimate of ash products properties of combustible shale burning is held. Minding furnace process technology it is necessary to know mineral and organic components behavior when combustible shale is burnt. Since the first will determine slagging properties of energy raw materials, the second – its calorific value. In consideration of this the main research methods were X-ray, thermal and X-ray fluorescence analyses. Summing up the obtained results, we can draw to the following conclusions: 1. The combustible shale in Tatarstan and the Ulyanovsk region has predominantly low calorific value (Qb d = 5-9 MJ/kg). In order to enhance its efficiency and to reduce cost it is possible to conduct rocks burning together with some other organic or organic mineral power generating fuels. 2. High ash content (Ad = 60-80%) that causes a high external ballast content in shale implies the appropriateness of using this fuel resource next to its exploitation site. The acceptable distance to a consumer will reduce unproductive transportation charges for large ash and moisture masses. 3. The performed fuel ash components characteristics, as well as the yield and volatiles composition allow us to specify the basic parameters for boiler units, designed for the Volga combustible shale burning. 4. The noncombustible residual components composition shows that shale ash can be used in manufacture of materials of construction.

  6. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  7. Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment.

    Kirkinen, Johanna; Palosuo, Taru; Holmgren, Kristina; Savolainen, Ilkka

    2008-09-01

    Extensive information on the greenhouse impacts of various human actions is important in developing effective climate change mitigation strategies. The greenhouse impacts of combustible fuels consist not only of combustion emissions but also of emissions from the fuel production chain and possible effects on the ecosystem carbon storages. It is important to be able to assess the combined, total effect of these different emissions and to express the results in a comprehensive way. In this study, a new concept called relative radiative forcing commitment (RRFC) is presented and applied to depict the greenhouse impact of some combustible fuels currently used in Finland. RRFC is a ratio that accounts for the energy absorbed in the Earth system due to changes in greenhouse gas concentrations (production and combustion of fuel) compared to the energy released in the combustion of fuel. RRFC can also be expressed as a function of time in order to give a dynamic cumulative picture on the caused effect. Varying time horizons can be studied separately, as is the case when studying the effects of different climate policies on varying time scales. The RRFC for coal for 100 years is about 170, which means that in 100 years 170 times more energy is absorbed in the atmosphere due to the emissions of coal combustion activity than is released in combustion itself. RRFC values of the other studied fuel production chains varied from about 30 (forest residues fuel) to 190 (peat fuel) for the 100-year study period. The length of the studied time horizon had an impact on the RRFC values and, to some extent, on the relative positions of various fuels.

  8. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

    2008-08-13

    Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

  9. Using monosaccharide anhydrides to estimate the impact of wood combustion on fine particles in the Helsinki Metropolitan Area

    Saarnio, K.; Saarikoski, S. [Finnish Meteorological Institute, Helsinki (Finland); Niemi, J.V. [HSY Helsinki Region Environmental Services Authority, Helsinki (Finland)

    2012-11-01

    The spatiotemporal variation of ambient particles under the influence of biomass burning emissions was studied in the Helsinki Metropolitan Area (HMA) in selected periods during 2005-2009. Monosaccharide anhydrides (MAs; levoglucosan, mannosan and galactosan), commonly known biomass burning tracers, were used to estimate the wood combustion contribution to local particulate matter (PM) concentration levels at three urban background sites close to the city centre, and at three suburban sites influenced by local small-scale wood combustion. In the cold season (October-March), the mean MAs concentrations were 115-225 ng m{sup -3} and 83-98 ng m{sup -} {sup 3}at the suburban and urban sites, respectively. In the warm season, the mean MAs concentrations were low (19-78 ng m{sup -3}), excluding open land fire smoke episodes (222-378 ng m{sup -}3{sup )}. Regionally distributed wood combustion particles raised the levels over the whole HMA while particles from local wood combustion sources raised the level at suburban sites only. The estimated average contribution of wood combustion to fine particles (PM{sub 2.5}) ranged from 18% to 29% at the urban sites and from 31% to 66% at the suburban sites in the cold season. The PM measurements from ambient air and combustion experiments showed that the proportions of the three MAs can be utilised to separate the wildfire particles from residential wood combustion particles. (orig.)

  10. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  11. Estimation of fuel burning rate and heating value with highly variable properties for optimum combustion control

    Hsi, C.-L.; Kuo, J.-T.

    2008-01-01

    Estimating solid residue gross burning rate and heating value burning in a power plant furnace is essential for adequate manipulation to achieve energy conversion optimization and plant performance. A model based on conservation equations of mass and thermal energy is established in this work to calculate the instantaneous gross burning rate and lower heating value of solid residue fired in a combustion chamber. Comparing the model with incineration plant control room data indicates that satisfactory predictions of fuel burning rates and heating values can be obtained by assuming the moisture-to-carbon atomic ratio (f/a) within the typical range from 1.2 to 1.8. Agreement between mass and thermal analysis and the bed-chemistry model is acceptable. The model would be useful for furnace fuel and air control strategy programming to achieve optimum performance in energy conversion and pollutant emission reduction

  12. Improving Estimates of Cloud Radiative Forcing over Greenland

    Wang, W.; Zender, C. S.

    2014-12-01

    Multiple driving mechanisms conspire to increase melt extent and extreme melt events frequency in the Arctic: changing heat transport, shortwave radiation (SW), and longwave radiation (LW). Cloud Radiative Forcing (CRF) of Greenland's surface is amplified by a dry atmosphere and by albedo feedback, making its contribution to surface melt even more variable in time and space. Unfortunately accurate cloud observations and thus CRF estimates are hindered by Greenland's remoteness, harsh conditions, and low contrast between surface and cloud reflectance. In this study, cloud observations from satellites and reanalyses are ingested into and evaluated within a column radiative transfer model. An improved CRF dataset is obtained by correcting systematic discrepancies derived from sensitivity experiments. First, we compare the surface radiation budgets from the Column Radiation Model (CRM) driven by different cloud datasets, with surface observations from Greenland Climate Network (GC-Net). In clear skies, CRM-estimated surface radiation driven by water vapor profiles from both AIRS and MODIS during May-Sept 2010-2012 are similar, stable, and reliable. For example, although AIRS water vapor path exceeds MODIS by 1.4 kg/m2 on a daily average, the overall absolute difference in downwelling SW is CRM estimates are within 20 W/m2 range of GC-Net downwelling SW. After calibrating CRM in clear skies, the remaining differences between CRM and observed surface radiation are primarily attributable to differences in cloud observations. We estimate CRF using cloud products from MODIS and from MERRA. The SW radiative forcing of thin clouds is mainly controlled by cloud water path (CWP). As CWP increases from near 0 to 200 g/m2, the net surface SW drops from over 100 W/m2 to 30 W/m2 almost linearly, beyond which it becomes relatively insensitive to CWP. The LW is dominated by cloud height. For clouds at all altitudes, the lower the clouds, the greater the LW forcing. By applying

  13. Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)

    Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia

    2016-04-01

    Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is

  14. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN

    Changcheng Wu

    2017-06-01

    Full Text Available The estimation of the grip force and the 3D push-pull force (push and pull force in the three dimension space from the electromyogram (EMG signal is of great importance in the dexterous control of the EMG prosthetic hand. In this paper, an action force estimation method which is based on the eight channels of the surface EMG (sEMG and the Generalized Regression Neural Network (GRNN is proposed to meet the requirements of the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform, the acquisition of the sEMG, the feature extraction of the sEMG and the construction of GRNN are described. Then, the multi-channels of the sEMG when the hand is moving are captured by the EMG sensors attached on eight different positions of the arm skin surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted to measure the output force of the human's hand. The characteristic matrix of the sEMG and the force signals are used to construct the GRNN. The mean absolute value and the root mean square of the estimation errors, the correlation coefficients between the actual force and the estimated force are employed to assess the accuracy of the estimation. Analysis of variance (ANOVA is also employed to test the difference of the force estimation. The experiments are implemented to verify the effectiveness of the proposed estimation method and the results show that the output force of the human's hand can be correctly estimated by using sEMG and GRNN method.

  15. Estimating impact forces of tail club strikes by ankylosaurid dinosaurs.

    Victoria Megan Arbour

    Full Text Available BACKGROUND: It has been assumed that the unusual tail club of ankylosaurid dinosaurs was used actively as a weapon, but the biological feasibility of this behaviour has not been examined in detail. Ankylosaurid tail clubs are composed of interlocking vertebrae, which form the handle, and large terminal osteoderms, which form the knob. METHODOLOGY/PRINCIPAL FINDINGS: Computed tomographic (CT scans of several ankylosaurid tail clubs referred to Dyoplosaurus and Euoplocephalus, combined with measurements of free caudal vertebrae, provide information used to estimate the impact force of tail clubs of various sizes. Ankylosaurid tails are modeled as a series of segments for which mass, muscle cross-sectional area, torque, and angular acceleration are calculated. Free caudal vertebrae segments had limited vertical flexibility, but the tail could have swung through approximately 100 degrees laterally. Muscle scars on the pelvis record the presence of a large M. longissimus caudae, and ossified tendons alongside the handle represent M. spinalis. CT scans showed that knob osteoderms were predominantly cancellous, which would have lowered the rotational inertia of the tail club and made it easier to wield as a weapon. CONCLUSIONS/SIGNIFICANCE: Large knobs could generate sufficient force to break bone during impacts, but average and small knobs could not. Tail swinging behaviour is feasible in ankylosaurids, but it remains unknown whether the tail was used for interspecific defense, intraspecific combat, or both.

  16. The Impact of Complex Forcing on the Viscous Torsional Vibration Damper’s Work in the Crankshaft of the Rotating Combustion Engine

    Jagiełowicz-Ryznar C.

    2016-01-01

    The numerical calculations results of torsional vibration of the multi-cylinder crankshaft in the serial combustion engine (MC), including a viscous damper (VD), at complex forcing, were shown. In fact, in the MC case the crankshaft rotation forcings spectrum is the sum of harmonic forcing whose amplitude can be compared with the amplitude of the 1st harmonic. A significant impact, in the engine operational velocity, on the vibration damping process of MC, may be the amplitude of the 2nd harm...

  17. Theoretical and Experimental Investigation of Force Estimation Errors Using Active Magnetic Bearings with Embedded Hall Sensors

    Voigt, Andreas Jauernik; Santos, Ilmar

    2012-01-01

    to ∼ 20% of the nominal air gap the force estimation error is found to be reduced by the linearized force equation as compared to the quadratic force equation, which is supported by experimental results. Additionally the FE model is employed in a comparative study of the force estimation error behavior...... of AMBs by embedding Hall sensors instead of mounting these directly on the pole surfaces, force estimation errors are investigated both numerically and experimentally. A linearized version of the conventionally applied quadratic correspondence between measured Hall voltage and applied AMB force...

  18. Top-down estimate of a large source of atmospheric carbon monoxide associated with fuel combustion in Asia

    Kasibhatla, P.; Arellano, A.; Logan, J.A.; Palmer, P.I.; Novelli, P. [Duke University, Durham, NC (United States). Nicholas School of Environmental & Earth Science

    2002-10-01

    Deriving robust regional estimates of the sources of chemically and radiatively important gases and aerosols to the atmosphere is challenging. Using an inverse modeling methodology, it was found that the source of carbon monoxide from fossil-fuel and biofuel combustion in Asia during 1994 was 350-380 Tg yr{sup -1}, which is 110-140 Tg yr{sup -1} higher than bottom-up estimates derived using traditional inventory-based approaches. This discrepancy points to an important gap in our understanding of the human impact on atmospheric chemical composition.

  19. Estimating the Economic Benefits of Forward-Engaged Naval Forces

    Looney, Robert E; Schrady, David A; Brown, Ronald L

    2001-01-01

    In preparing for the 1997 quadrennial defense review, U.S. Navy leaders asked the Naval Postgraduate School to study the economic benefits of forward-engaged naval forces and communicate them to policy makers and the public...

  20. Force estimation from ensembles of Golgi tendon organs

    Mileusnic, M. P.; Loeb, G. E.

    2009-06-01

    Golgi tendon organs (GTOs) located in the skeletal muscles provide the central nervous system with information about muscle tension. The ensemble firing of all GTO receptors in the muscle has been hypothesized to represent a reliable measure of the whole muscle force but the precision and accuracy of that information are largely unknown because it is impossible to record activity simultaneously from all GTOs in a muscle. In this study, we combined a new mathematical model of force sampling and transduction in individual GTOs with various models of motor unit (MU) organization and recruitment simulating various normal, pathological and neural prosthetic conditions. Our study suggests that in the intact muscle the ensemble GTO activity accurately encodes force information according to a nonlinear, monotonic relationship that has its steepest slope for low force levels and tends to saturate at the highest force levels. The relationship between the aggregate GTO activity and whole muscle tension under some pathological conditions is similar to one seen in the intact muscle during rapidly modulated, phasic excitation of the motor pool (typical for many natural movements) but quite different when the muscle is activated slowly or held at a given force level. Substantial deviations were also observed during simulated functional electrical stimulation.

  1. Estimation of stochastic environment force for master–slave robotic ...

    Neelu Nagpal

    Subsequently, convergence analysis of error in the estimates is performed. Also, an expression of ... nonlinear and composite adaptive controller [7, 9] and disturbance ... block processing method and acts as an efficient estimator since this estimation ...... 0949-2. [32] Smith L 2006 Sequential Monte Carlo particle filtering for.

  2. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.

    Pai, C N; Shinshi, T; Shimokohbe, A

    2010-01-01

    Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.

  3. Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.

    Song, Xuegang; Zhang, Yuexin; Liang, Dakai

    2017-10-10

    This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

  4. Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter

    Xuegang Song

    2017-10-01

    Full Text Available This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

  5. The Impact of Complex Forcing on the Viscous Torsional Vibration Damper’s Work in the Crankshaft of the Rotating Combustion Engine

    Jagiełowicz-Ryznar C.

    2016-12-01

    Full Text Available The numerical calculations results of torsional vibration of the multi-cylinder crankshaft in the serial combustion engine (MC, including a viscous damper (VD, at complex forcing, were shown. In fact, in the MC case the crankshaft rotation forcings spectrum is the sum of harmonic forcing whose amplitude can be compared with the amplitude of the 1st harmonic. A significant impact, in the engine operational velocity, on the vibration damping process of MC, may be the amplitude of the 2nd harmonic of a forcing moment. The calculations results of MC vibration, depending on the amplitude of the 2nd harmonic of the forcing moment, for the first form of the torsional vibration, were shown. Higher forms of torsional vibrations have no practical significance. The calculations assume the optimum damping coefficient VD, when the simple harmonic forcing is equal to the base critical velocity of the MC crankshaft.

  6. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.

    Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum

    2016-03-01

    Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Estimation of Signal Coherence Threshold and Concealed Spectral Lines Applied to Detection of Turbofan Engine Combustion Noise

    Miles, Jeffrey Hilton

    2010-01-01

    Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise. Copyright 2011 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.

  8. Estimation of continuous thumb angle and force using electromyogram classification

    Abdul Rahman Siddiqi

    2016-09-01

    Full Text Available Human hand functions range from precise minute handling to heavy and robust movements. Remarkably, 50% of all hand functions are made possible by the thumb. Therefore, developing an artificial thumb that can mimic the actions of a real thumb precisely is a major achievement. Despite many efforts dedicated to this area of research, control of artificial thumb movements in resemblance to our natural movement still poses as a challenge. Most of the development in this area is based on discontinuous thumb position control, which makes it possible to recreate several of the most important functions of the thumb but does not result in total imitation. This work looks into the classification of electromyogram signals from thumb muscles for the prediction of thumb angle and force during flexion motion. For this purpose, an experimental setup is developed to measure the thumb angle and force throughout the range of flexion and simultaneously gather the electromyogram signals. Further, various features are extracted from these signals for classification and the most suitable feature set is determined and applied to different classifiers. A “piecewise discretization” approach is used for continuous angle prediction. Breaking away from previous research studies, the frequency-domain features performed better than the time-domain features, with the best feature combination turning out to be median frequency–mean frequency–mean power. As for the classifiers, the support vector machine proved to be the most accurate classifier giving about 70% accuracy for both angle and force classification and close to 50% for joint angle–force classification.

  9. Estimation of the forces acting on the tibiofemoral joint during knee extension exercises

    Rodrigo Rico Bini

    2008-02-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n1p35 The objectives of this study were to: (1 evaluate the resistive torque of an open kinetic chain strength-training machine for performing knee extensions, and (2 perform an analysis estimating internal forces in the tibiofemoral joint. During a fi rst phase of the study, measurements were taken of the machine under analysis (external forces, and then calculations were performed to estimate forces on the lower limb (internal forces. Equations were defi ned to calculate human force (HF, and the moment of muscular force (MMF. Perpendicular muscular force (MFp and joint force (JFp, axial muscular force (MF” and joint force (JF”, and total muscular force (MF and joint force (JF were all calculated. Five knee angles were analyzed (zero, 30, 45, 60, and 90 degrees. A reduction was observed in HF at higher knee angles, while MF and JF also increased at the same time. HF was always lower than the load selected on the machine, which indicates a reduced overload imposed by the machine. The reduction observed in MFp and JFp at higher knee angles indicates a lower tendency to shear the tibia in relation to the femur. At the same time, there was an increase in JF” due to higher MF”. The biomechanical model proposed in this study has shown itself adequate for the day-to-day needs of professionals who supervise orient strength training.

  10. Preliminary measurement of the drag force on a porous cylinder with fluid evolution under conditions relevant to pulverised-fuel combustion

    Dijan Supramono; Graham J. Nathan; Peter J. Ashman; Peter J. Mullinger [University of Adelaide, Adelaide, SA (Australia). Cooperative Research Centre for Clean Power from Lignite, Schools of Chemical Engineering and Mechanical Engineering

    2003-07-01

    The trajectories of the particles in pulverised coal combustion systems determine their residence times and reaction environments, and hence coal burnout and flame length. The trajectories, in turn, depend upon the drag coefficient of the particle. The effect of the evolution of fluid from the surface of the particle on this coefficient has never been measured before, particularly at the low particle Reynolds numbers that apply during coal combustion. Therefore mathematical models must rely on assumed sphere drag coefficients, which do not account for the effect of fluid evolving from the surface. A technique of using a porous cylinder mounted on a pendulum, instead of a sphere, through which fluid can be forced to evolve, simulating fluid evolution in coal devolatilisation and char burning, is used. The pendulum is capable of measuring drag forces of the order of 10-5 to 10-6 Newton, at Reynolds numbers similar to that experienced by coal particles. This paper presents preliminary measurements of drag force at relevant conditions. The working fluid is water in the first instance, although it will be extended to diluted glycerine in the future. The cross flow is provided by a water tunnel and the ejected fluid is induced by a separate pump. Both the Reynolds number and the ratio of evolution velocity to free-stream velocity are chosen to span conditions relevant to pulverised coal combustion. 16 refs., 5 figs., 2 tabs.

  11. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles

    Kanghyun Nam

    2015-11-01

    Full Text Available This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle’s cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data.

  12. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles.

    Nam, Kanghyun

    2015-11-11

    This article presents methods for estimating lateral vehicle velocity and tire cornering stiffness, which are key parameters in vehicle dynamics control, using lateral tire force measurements. Lateral tire forces acting on each tire are directly measured by load-sensing hub bearings that were invented and further developed by NSK Ltd. For estimating the lateral vehicle velocity, tire force models considering lateral load transfer effects are used, and a recursive least square algorithm is adapted to identify the lateral vehicle velocity as an unknown parameter. Using the estimated lateral vehicle velocity, tire cornering stiffness, which is an important tire parameter dominating the vehicle's cornering responses, is estimated. For the practical implementation, the cornering stiffness estimation algorithm based on a simple bicycle model is developed and discussed. Finally, proposed estimation algorithms were evaluated using experimental test data.

  13. Significance of relative velocity in drag force or drag power estimation for a tethered float

    Vethamony, P.; Sastry, J.S.

    There is difference in opinion regarding the use of relative velocity instead of particle velocity alone in the estimation of drag force or power. In the present study, a tethered spherical float which undergoes oscillatory motion in regular waves...

  14. Artificial force fields for multi-agent simulations of maritime traffic and risk estimation

    Xiao, F.; Ligteringen, H.; Van Gulijk, C.; Ale, B.J.M.

    2012-01-01

    A probabilistic risk model is designed to estimate probabilities of collisions for shipping accidents in busy waterways. We propose a method based on multi-agent simulation that uses an artificial force field to model ship maneuvers. The artificial force field is calibrated by AIS data (Automatic

  15. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung

    2017-07-01

    In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.

  16. Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique

    Shrivastava, Akash; Mohanty, A. R.

    2018-03-01

    This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.

  17. Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection.

    Wang, Kai; Zhang, Xianmin; Ota, Jun; Huang, Yanjiang

    2018-02-24

    This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.

  18. Plasma igniter for internal-combustion engines

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  19. Estimating Wind and Wave Induced Forces On a Floating Wind Turbine

    Henriksen, Lars Christian; Natarajan, Anand; Kim, Taeseong

    2013-01-01

    -principles derived state space model of the floating wind turbine. The ability to estimate aero- and hydrodynamic states could prove crucial for the performance of model-based control methods applied on floating wind turbines. Furthermore, two types of water kinematics have been compared two determine whether......In this work, the basic model for a spar buoy floating wind turbine [1], used by an extended Kalman filter, is presented and results concerning wind speed and wave force estimations are shown. The wind speed and aerodynamic forces are estimated using an extended Kalman filter based on a first...... or not linear and nonlinear water kinematics lead to significantly different loads....

  20. Estimating Tool-Tissue Forces Using a 3-Degree-of-Freedom Robotic Surgical Tool.

    Zhao, Baoliang; Nelson, Carl A

    2016-10-01

    Robot-assisted minimally invasive surgery (MIS) has gained popularity due to its high dexterity and reduced invasiveness to the patient; however, due to the loss of direct touch of the surgical site, surgeons may be prone to exert larger forces and cause tissue damage. To quantify tool-tissue interaction forces, researchers have tried to attach different kinds of sensors on the surgical tools. This sensor attachment generally makes the tools bulky and/or unduly expensive and may hinder the normal function of the tools; it is also unlikely that these sensors can survive harsh sterilization processes. This paper investigates an alternative method by estimating tool-tissue interaction forces using driving motors' current, and validates this sensorless force estimation method on a 3-degree-of-freedom (DOF) robotic surgical grasper prototype. The results show that the performance of this method is acceptable with regard to latency and accuracy. With this tool-tissue interaction force estimation method, it is possible to implement force feedback on existing robotic surgical systems without any sensors. This may allow a haptic surgical robot which is compatible with existing sterilization methods and surgical procedures, so that the surgeon can obtain tool-tissue interaction forces in real time, thereby increasing surgical efficiency and safety.

  1. Estimation of excitation forces for wave energy converters control using pressure measurements

    Abdelkhalik, O.; Zou, S.; Robinett, R.; Bacelli, G.; Wilson, D.

    2017-08-01

    Most control algorithms of wave energy converters require prediction of wave elevation or excitation force for a short future horizon, to compute the control in an optimal sense. This paper presents an approach that requires the estimation of the excitation force and its derivatives at present time with no need for prediction. An extended Kalman filter is implemented to estimate the excitation force. The measurements in this approach are selected to be the pressures at discrete points on the buoy surface, in addition to the buoy heave position. The pressures on the buoy surface are more directly related to the excitation force on the buoy as opposed to wave elevation in front of the buoy. These pressure measurements are also more accurate and easier to obtain. A singular arc control is implemented to compute the steady-state control using the estimated excitation force. The estimated excitation force is expressed in the Laplace domain and substituted in the control, before the latter is transformed to the time domain. Numerical simulations are presented for a Bretschneider wave case study.

  2. Using the modern CNC controllers capabilities for estimating the machining forces during the milling process

    Breaz Radu-Eugen

    2017-01-01

    Full Text Available Machining forces can nowadays be measured by using 3D dynamometers, which are usually very expensive devices and hardly available for most of the CNC machine-tools users. On the other hand, modern CNC controllers have nowadays the ability to display and save many outputs within the machining process, such as the currents or even the torques at the shaft's level for the feed motors on each axis. These outputs can be used for estimating the machining forces, but it is to be noticed that the above-mentioned currents and torques are proportional with the overall resistant forces, which includes not only technological forces, but also friction, inertial and pre-tensioning forces. This paper presents an approach for estimating the machining forces during a milling process, by using the outputs stored in the CNC controller and separating the effects of technological forces from the other forces involved in the process. The separation was made by running two sets of experiments, one set for dry-run regime and the other one for machining regime.

  3. African Anthropogenic Combustion Emissions: Estimate of Regional Mortality Attributable to Fine Particle Concentrations in 2030

    Liousse, C.; Roblou, L.; Assamoi, E.; Criqui, P.; Galy-Lacaux, C.; Rosset, R.

    2014-12-01

    Fossil fuel (traffic, industries) and biofuel (domestic fires) emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to rapid growth of African cities and megacities. In this study, we will present the most recent developments of African combustion emission inventories, including African specificities. Indeed, a regional fossil fuel and biofuel inventory for gases and particulates described in Liousse et al. (2014) has been developed for Africa at a resolution of 0.25° x 0.25° for the years 2005 and 2030. For 2005, the original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Two prospective inventories for 2030 are derived based on Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario (2030ref) with no emission controls and the second is for a "clean" scenario (2030ccc*) including Kyoto policy and African specific emission control. This inventory predicts very large increases of pollutant emissions in 2030 (e.g. contributing to 50% of global anthropogenic organic particles), if no emission regulations are implemented. These inventories have been introduced in RegCM4 model. In this paper we will focus on aerosol modelled concentrations in 2005, 2030ref and 2030ccc*. Spatial distribution of aerosol concentrations will be presented with a zoom at a few urban and rural sites. Finally mortality rates (respiratory, cardiovascular) caused by anthropogenic PM2.5 increase from 2005 to 2030, calculated following Lelieveld et al. (2013), will be shown for each scenarios. To conclude, this paper will discuss the effectiveness of scenarios to reduce emissions, aerosol concentrations and mortality rates, underlining the need for further measurements scheduled in the frame of the new DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions) program.

  4. Estimation of the radial force on the tokamak vessel wall during fast transient events

    Pustovitov, V. D., E-mail: pustovitov-vd@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    The radial force balance in a tokamak during fast transient events with a duration much shorter than the resistive time of the vacuum vessel wall is analyzed. The aim of the work is to analytically estimate the resulting integral radial force on the wall. In contrast to the preceding study [Plasma Phys. Rep. 41, 952 (2015)], where a similar problem was considered for thermal quench, simultaneous changes in the profiles and values of the pressure and plasma current are allowed here. Thereby, the current quench and various methods of disruption mitigation used in the existing tokamaks and considered for future applications are also covered. General formulas for the force at an arbitrary sequence or combination of events are derived, and estimates for the standard tokamak model are made. The earlier results and conclusions are confirmed, and it is shown that, in the disruption mitigation scenarios accepted for ITER, the radial forces can be as high as in uncontrolled disruptions.

  5. Aerodynamic forces estimation on jet vanes exposed to supersonic exhaust of a CD Nozzle

    Bukhari, S.B.H.; Jehan, I.; Zahir, S.; Khan, M.A.

    2003-01-01

    A comprehensive study has been made for the estimation of aerodynamic forces on the jet Vane placed in the supersonic exhaust of a Convergent Divergent, CD-Nozzle. Such a system is used to provide the control forces that consist of four orthogonal vanes mounted in the supersonic exhaust of the CD-Nozzles. The flow field parameters for a CD Nozzle were analyzed and validated earlier. In this paper the published experimental and CFD results from RAMPANT Code from Fluent Inc. were used to estimate the axial and normal forces by using PAK-3D, a Computational Fluid Dynamics (CFD) software based on Navier-Stokes Equations solver. Results got verified quantitatively with a maximum error of 8% between PAK-3D and experiment, while 4% between PAK-3D and a CFD code, RAMPANT for the axial force. (author)

  6. Estimation of Individual Muscular Forces of the Lower Limb during Walking Using a Wearable Sensor System

    Suin Kim; Kyongkwan Ro; Joonbum Bae

    2017-01-01

    Although various kinds of methodologies have been suggested to estimate individual muscular forces, many of them require a costly measurement system accompanied by complex preprocessing and postprocessing procedures. In this research, a simple wearable sensor system was developed, combined with the inverse dynamics-based static optimization method. The suggested method can be set up easily and can immediately convert motion information into muscular forces. The proposed sensor system consiste...

  7. Estimation of tensile force in the hamstring muscles during overground sprinting.

    Ono, T; Higashihara, A; Shinohara, J; Hirose, N; Fukubayashi, T

    2015-02-01

    The purpose of this study was to identify the period of the gait cycle during which the hamstring muscles were likely injured by estimating the magnitude of tensile force in each muscle during overground sprinting. We conducted three-dimensional motion analysis of 12 male athletes performing overground sprinting at their maximal speed and calculated the hamstring muscle-tendon length and joint angles of the right limb throughout a gait cycle during which the ground reaction force was measured. Electromyographic activity during sprinting was recorded for the biceps femoris long head, semitendinosus, and semimembranosus muscles of ipsilateral limb. We estimated the magnitude of tensile force in each muscle by using the length change occurred in the musculotendon and normalized electromyographic activity value. The study found a quick increase of estimated tensile force in the biceps femoris long head during the early stance phase of the gait cycle during which the increased hip flexion angle and ground reaction force occurred at the same time. This study provides quantitative data of tensile force in the hamstring muscles suggesting that the biceps femoris long head muscle is susceptible to a strain injury during the early stance phase of the sprinting gait cycle. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Estimating the Energy Content of Wastewater Using Combustion Calorimetry and Different Drying Processes

    Korth, Benjamin; Maskow, Thomas; Günther, Susanne; Harnisch, Falk, E-mail: falk.harnisch@ufz.de [Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig (Germany)

    2017-09-19

    The energy content of wastewater is routinely assessed by chemical oxygen demand (COD) measurements that only provide an incomplete picture and the data fundament of other energy parameters remains scarce. The volumetric heat of combustion (Δ{sub C}H) of raw wastewater from a municipal wastewater treatment plant (WWTP) was assessed using oven drying method (Δ{sub C}H{sub vol} = −6.8 ± 4.3 kJ L{sup −1}, n = 20) and freeze drying method (Δ{sub C}H{sub vol} = −20.2 ± 9.7 kJ L{sup −1}, n = 6) illustrating the substantial loss during the oven drying approach. Normalizing Δ{sub C}H to COD of raw wastewater yielded −6.2 ± 3.5 kJ gCOD{sup −1} for oven-dried samples (n = 14) and −13.0 ± 1.6 kJ gCOD{sup −1} for freeze-dried samples (n = 3). A subsequent correlation analysis with further chemical wastewater parameters revealed a dependency of Δ{sub C}H{sub vol} on COD, total organic carbon (TOC), C:N ratio, and total sulfur content. To verify these correlations, wastewater of a second WWTP was sampled and analyzed. Only COD and TOC were in accordance with the data set from the first WWTP representing potential predictors for the chemical energy stored in wastewater for comparable WWTPs. Unfortunately, during the most practical method (oven drying), a certain loss of volatile compounds is inevitable so that the derived Δ{sub C}H{sub vol} systematically underestimates the total energetic potential of wastewater. Nevertheless, this work expands the, so far, little data fundament on the energy resource wastewater and implies the requirement for further long-term studies on different sites and different wastewater types with a highly standardized sample treatment protocol.

  9. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.

    2016-01-01

    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study. Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2 /H 2 O binary mixtures are computationally studied here for the first time and their critical parameters are reported.

  10. Impact of coal combustion from thermal power plant: estimates on ambient SO2 levels

    Joshi, P.V.

    1991-01-01

    Using a Gaussian dispersion model, ambient Ground Levels Concentrations (GLC) of SO 2 due to Nashik Thermal Power Plant have been computed. Annual GLC in 16 cardinal sectors and concentration levels in 6 atmospheric stability classes have been estimated as a function of down wind distance. The values are compared with national ambient air quality standard and risk involved due to the release of SO 2 from power plant has been assessed. (author). 8 refs., 2 appendixes

  11. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-09

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000.

  12. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Garland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng

    2015-01-01

    This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nature14677 Nearly three-quarters of the growth in global carbon emission from burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 varied by 0.3 GtC, or 15 per cent. The primary sources of this uncertainty are c...

  13. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator.

    Ballesteros, Joaquin; Urdiales, Cristina; Martinez, Antonio B; van Dieën, Jaap H

    2016-11-10

    Gait analysis can provide valuable information on a person's condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i) there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars-related to the user condition-and the estimation error; and (ii) this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  14. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator

    Joaquin Ballesteros

    2016-11-01

    Full Text Available Gait analysis can provide valuable information on a person’s condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars—related to the user condition—and the estimation error; and (ii this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  15. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors

    Frank J. Wouda

    2018-03-01

    Full Text Available Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics in any environment. However, kinetic information could not be provided with such technology. Furthermore, numerous body-worn sensors are required for a full-body motion analysis. The aim of this study is to examine the validity of a method to estimate sagittal knee joint angles and vertical ground reaction forces during running using an ambulatory minimal body-worn sensor setup. Two concatenated artificial neural networks were trained (using data from eight healthy subjects to estimate the kinematics and kinetics of the runners. The first artificial neural network maps the information (orientation and acceleration of three inertial sensors (placed at the lower legs and pelvis to lower-body joint angles. The estimated joint angles in combination with measured vertical accelerations are input to a second artificial neural network that estimates vertical ground reaction forces. To validate our approach, estimated joint angles were compared to both inertial and optical references, while kinetic output was compared to measured vertical ground reaction forces from an instrumented treadmill. Performance was evaluated using two scenarios: training and evaluating on a single subject and training on multiple subjects and evaluating on a different subject. The estimated kinematics and kinetics of most subjects show excellent agreement (ρ>0.99 with the reference, for single subject training. Knee flexion/extension angles are estimated with a mean RMSE <5°. Ground reaction forces are estimated with a mean RMSE < 0.27 BW. Additionaly, peak vertical ground reaction force, loading rate and maximal knee flexion during stance were compared, however, no significant

  16. Gamma-point lattice free energy estimates from O(1) force calculations

    Voss, Johannes; Vegge, Tejs

    2008-01-01

    We present a new method for estimating the vibrational free energy of crystal (and molecular) structures employing only a single force calculation, for a particularly displaced configuration, in addition to the calculation of the ground state configuration. This displacement vector is the sum...

  17. Estimation of ground reaction forces and moments during gait using only inertial motion capture

    Karatsidis, Angelos; Bellusci, Giovanni; Schepers, H. Martin; de Zee, Mark; Andersen, Michael S.; Veltink, Petrus H.

    Ground reaction forces and moments (GRF&M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot

  18. Estimation of the in-cylinder air/fuel ratio of an internal combustion engine by the use of pressure sensors

    Tunestaal, Per

    2000-03-01

    This thesis investigates the use of cylinder pressure measurements for estimation of the in-cylinder air/fuel ratio in a spark ignited internal combustion engine. An estimation model which uses the net heat release profile for estimating the cylinder air/fuel ratio of a spark ignition engine is developed. The net heat release profile is computed from the cylinder pressure trace and quantifies the conversion of chemical energy of the reactants in the charge into thermal energy. The net heat release profile does not take heat- or mass transfer into account. Cycle-averaged air/fuel ratio estimates over a range of engine speeds and loads show an RMS error of 4.1% compared to measurements in the exhaust. A thermochemical model of the combustion process in an internal combustion engine is developed. It uses a simple chemical combustion reaction, polynominal fits of internal energy as function of temperature, and the first law of thermodynamics to derive a relationship between measured cylinder pressure and the progress of the combustion process. Simplifying assumptions are made to arrive at an equation which relates the net heat release to the cylinder pressure. Two methods for estimating the sensor offset of a cylinder pressure transducer are developed. Both methods fit the pressure data during the pre-combustion phase of the compression stroke to a polytropic curve. The first method assumes a known polytropic exponent, and the other estimates the polytropic exponent. The first method results in a linear least-squares problem, and the second method results in a nonlinear least-squares problem. The nonlinear least-squares problem is solved by separating out the nonlinear dependence and solving the single-variable minimization problem. For this, a finite difference Newton method is derived. Using this method, the cost of solving the nonlinear least-squares problem is only slightly higher than solving the linear least-squares problem. Both methods show good statistical

  19. Estimation of Tsunami Bore Forces on a Coastal Bridge Using an Extreme Learning Machine

    Iman Mazinani

    2016-04-01

    Full Text Available This paper proposes a procedure to estimate tsunami wave forces on coastal bridges through a novel method based on Extreme Learning Machine (ELM and laboratory experiments. This research included three water depths, ten wave heights, and four bridge models with a variety of girders providing a total of 120 cases. The research was designed and adapted to estimate tsunami bore forces including horizontal force, vertical uplift and overturning moment on a coastal bridge. The experiments were carried out on 1:40 scaled concrete bridge models in a wave flume with dimensions of 24 m × 1.5 m × 2 m. Two six-axis load cells and four pressure sensors were installed to the base plate to measure forces. In the numerical procedure, estimation and prediction results of the ELM model were compared with Genetic Programming (GP and Artificial Neural Networks (ANNs models. The experimental results showed an improvement in predictive accuracy, and capability of generalization could be achieved by the ELM approach in comparison with GP and ANN. Moreover, results indicated that the ELM models developed could be used with confidence for further work on formulating novel model predictive strategy for tsunami bore forces on a coastal bridge. The experimental results indicated that the new algorithm could produce good generalization performance in most cases and could learn thousands of times faster than conventional popular learning algorithms. Therefore, it can be conclusively obtained that utilization of ELM is certainly developing as an alternative approach to estimate the tsunami bore forces on a coastal bridge.

  20. Estimating particulate matter health impact related to the combustion of different fossil fuels

    Kuenen, Jeroen; Kranenburg, Richard; Hendriks, Carlijn; Schaap, Martijn; Gschwind, Benoit; Lefevre, Mireille; Blanc, Isabelle; Drebszok, Kamila; Wyrwa, Artur; Stetter, Daniel

    2013-01-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin of the modelled particulate matter distributions thoughout a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated for 2007-2009. These maps were combined with a health impact calculation to estimate Lost of Life Expectancy for each fuel categories. An user friendly web client was generated to access the results and use the web mapping service in an easy manner. (orig.)

  1. Validation of the iPhone app using the force platform to estimate vertical jump height.

    Carlos-Vivas, Jorge; Martin-Martinez, Juan P; Hernandez-Mocholi, Miguel A; Perez-Gomez, Jorge

    2018-03-01

    Vertical jump performance has been evaluated with several devices: force platforms, contact mats, Vertec, accelerometers, infrared cameras and high-velocity cameras; however, the force platform is considered the gold standard for measuring vertical jump height. The purpose of this study was to validate an iPhone app called My Jump, that measures vertical jump height by comparing it with other methods that use the force platform to estimate vertical jump height, namely, vertical velocity at take-off and time in the air. A total of 40 sport sciences students (age 21.4±1.9 years) completed five countermovement jumps (CMJs) over a force platform. Thus, 200 CMJ heights were evaluated from the vertical velocity at take-off and the time in the air using the force platform, and from the time in the air with the My Jump mobile application. The height obtained was compared using the intraclass correlation coefficient (ICC). Correlation between APP and force platform using the time in the air was perfect (ICC=1.000, PJump, is an appropriate method to evaluate the vertical jump performance; however, vertical jump height is slightly overestimated compared with that of the force platform.

  2. A Vision-Based Approach for Estimating Contact Forces: Applications to Robot-Assisted Surgery

    C. W. Kennedy

    2005-01-01

    Full Text Available The primary goal of this paper is to provide force feedback to the user using vision-based techniques. The approach presented in this paper can be used to provide force feedback to the surgeon for robot-assisted procedures. As proof of concept, we have developed a linear elastic finite element model (FEM of a rubber membrane whereby the nodal displacements of the membrane points are measured using vision. These nodal displacements are the input into our finite element model. In the first experiment, we track the deformation of the membrane in real-time through stereovision and compare it with the actual deformation computed through forward kinematics of the robot arm. On the basis of accurate deformation estimation through vision, we test the physical model of a membrane developed through finite element techniques. The FEM model accurately reflects the interaction forces on the user console when the interaction forces of the robot arm with the membrane are compared with those experienced by the surgeon on the console through the force feedback device. In the second experiment, the PHANToM haptic interface device is used to control the Mitsubishi PA-10 robot arm and interact with the membrane in real-time. Image data obtained through vision of the deformation of the membrane is used as the displacement input for the FEM model to compute the local interaction forces which are then displayed on the user console for providing force feedback and hence closing the loop.

  3. Development of Embedded EM Sensors for Estimating Tensile Forces of PSC Girder Bridges

    Kim, Ju-Won; Lee, Chaggil; Park, Seunghee

    2017-01-01

    The tensile force of pre-stressed concrete (PSC) girders is the most important factor for managing the stability of PSC bridges. The tensile force is induced using pre-stressing (PS) tendons of a PSC girder. Because the PS tendons are located inside of the PSC girder, the tensile force cannot be measured after construction using conventional NDT (non-destructive testing) methods. To monitor the induced tensile force of a PSC girder, an embedded EM (elasto-magnetic) sensor was proposed in this study. The PS tendons are made of carbon steel, a ferromagnetic material. The magnetic properties of the ferromagnetic specimen are changed according to the induced magnetic field, temperature, and induced stress. Thus, the tensile force of PS tendons can be estimated by measuring their magnetic properties. The EM sensor can measure the magnetic properties of ferromagnetic materials in the form of a B (magnetic density)-H (magnetic force) loop. To measure the B-H loop of a PS tendon in a PSC girder, the EM sensor should be embedded into the PSC girder. The proposed embedded EM sensor can be embedded into a PSC girder as a sheath joint by designing screw threads to connect with the sheath. To confirm the proposed embedded EM sensors, the experimental study was performed using a down-scaled PSC girder model. Two specimens were constructed with embedded EM sensors, and three sensors were installed in each specimen. The embedded EM sensor could measure the B-H loop of PS tendons even if it was located inside concrete, and the area of the B-H loop was proportionally decreased according to the increase in tensile force. According to the results, the proposed method can be used to estimate the tensile force of unrevealed PS tendons. PMID:28867790

  4. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor.

    Dai, Chenyun; Zheng, Yang; Hu, Xiaogang

    2018-01-01

    Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.

  5. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  6. Prediction of combustible waste generation and estimate of potential energy by applying waste to energy technologies in Korea

    Lee, Jang-Soo; Cho, Sung-Jin; Jung, Hae-Young; Lee, Ki-Bae; Seo, Yong-Chil

    2010-01-01

    In 2007 total waste generation rate in Korea was 318,670 ton,day. In general waste generation rate shows rising trend since 2000. Wastes are composed of municipal waste 14.9 % industrial waste 34.1 % and construction waste 51.0 %. Treatment of wastes by recycling was 81.1 % landfill 11.1 % incineration 5.3 % and ocean dumping 2.4 %. National waste energy policies have been influenced by various factors such as environmental problem economy technology level (could be made energy), and so on. Korea has the worlds third dense population density environmental pollution load per unit land area is the highest in OECD countries caused due to the fast development in economy, industrialization and urbanization in recent. Also, land area per person is just 2,072 m 2 . Landfill capacity reaches the upper limit, industrial waste generation is increasing. Searching new-renewable energy is vital to substitute fossil fuel considering its increasing price. Korea is the world's 10th biggest energy consuming country and 97% of energy depends on importing. Korea aims to increases supply of new-renewable energy by 5% until the 2011. In this study, we computed the amount of combustible waste from municipality generated by the multiple regression analysis. The existing technologies for converting waste to energy were surveyed and the technologies under development or utilizing in future were also investigated. Based on the technology utilization, the amount of energy using waste to energy technology could be estimated in future. (author)

  7. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.

    Hast, Michael W; Piazza, Stephen J

    2013-02-01

    Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

  8. Stabilizing impacts in force-reflecting teleoperation using distance-to-impact estimates

    McAree, P.R.; Daniel, R.W.

    2000-01-01

    The level of force that can be stably reflected to the human operator in a force-reflecting teleoperator is constrained by the dynamics of impact between the slave arm and its environment. This paper models the underlying dynamics of impact and describes how the impact effects can be minimized using estimates of the distance between the slave and objects in its workspace. The approach is based on stochastic variational principles and seeks to limit the momentum of the slave arm at impact. Preliminary experimental results show that the approach allows extension of the range of frequencies that can be stably reflected to the human operator

  9. Scoliosis corrective force estimation from the implanted rod deformation using 3D-FEM analysis.

    Abe, Yuichiro; Ito, Manabu; Abumi, Kuniyoshi; Sudo, Hideki; Salmingo, Remel; Tadano, Shigeru

    2015-01-01

    Improvement of material property in spinal instrumentation has brought better deformity correction in scoliosis surgery in recent years. The increase of mechanical strength in instruments directly means the increase of force, which acts on bone-implant interface during scoliosis surgery. However, the actual correction force during the correction maneuver and safety margin of pull out force on each screw were not well known. In the present study, estimated corrective forces and pull out forces were analyzed using a novel method based on Finite Element Analysis (FEA). Twenty adolescent idiopathic scoliosis patients (1 boy and 19 girls) who underwent reconstructive scoliosis surgery between June 2009 and Jun 2011 were included in this study. Scoliosis correction was performed with 6mm diameter titanium rod (Ti6Al7Nb) using the simultaneous double rod rotation technique (SDRRT) in all cases. The pre-maneuver and post-maneuver rod geometry was collected from intraoperative tracing and postoperative 3D-CT images, and 3D-FEA was performed with ANSYS. Cobb angle of major curve, correction rate and thoracic kyphosis were measured on X-ray images. Average age at surgery was 14.8, and average fusion length was 8.9 segments. Major curve was corrected from 63.1 to 18.1 degrees in average and correction rate was 71.4%. Rod geometry showed significant change on the concave side. Curvature of the rod on concave and convex sides decreased from 33.6 to 17.8 degrees, and from 25.9 to 23.8 degrees, respectively. Estimated pull out forces at apical vertebrae were 160.0N in the concave side screw and 35.6N in the convex side screw. Estimated push in force at LIV and UIV were 305.1N in the concave side screw and 86.4N in the convex side screw. Corrective force during scoliosis surgery was demonstrated to be about four times greater in the concave side than in convex side. Averaged pull out and push in force fell below previously reported safety margin. Therefore, the SDRRT maneuver was

  10. Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles

    Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong

    2018-02-01

    Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.

  11. A brute-force spectral approach for wave estimation using measured vessel motions

    Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.

    2018-01-01

    , and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...

  12. PERFORMANCE OF THE ZERO FORCING PRECODING MIMO BROADCAST SYSTEMS WITH CHANNEL ESTIMATION ERRORS

    Wang Jing; Liu Zhanli; Wang Yan; You Xiaohu

    2007-01-01

    In this paper, the effect of channel estimation errors upon the Zero Forcing (ZF) precoding Multiple Input Multiple Output Broadcast (MIMO BC) systems was studied. Based on the two kinds of Gaussian estimation error models, the performance analysis is conducted under different power allocation strategies. Analysis and simulation show that if the covariance of channel estimation errors is independent of the received Signal to Noise Ratio (SNR), imperfect channel knowledge deteriorates the sum capacity and the Bit Error Rate (BER) performance severely. However, under the situation of orthogonal training and the Minimum Mean Square Error (MMSE) channel estimation, the sum capacity and BER performance are consistent with those of the perfect Channel State Information (CSI)with only a performance degradation.

  13. Estimation of friction loss under forced flow pulsations in a channel with discrete roughness elements

    Davletshin, I. A.; Dushina, O. A.; Mikheev, N. I.; Kolchin, S. A.

    2017-11-01

    The pulsating flow in a circular channel with semicircular annular ribs as discrete roughness elements has been studied experimentally. Air flow under atmospheric conditions at the channel inlet has been considered. Steady and pulsating air flow has been studied under different frequencies and amplitudes of forced pulsations generated by periodic blockage of the channel cross section by a rotating flap. Flow resistance in pulsating regimes has been estimated from the average static pressure drop. The resistance values attained twice the steady flow ones.

  14. Estimation of vehicle’s vertical and lateral tire forces considering road angle and road irregularity

    JIANG , KUN; Pavelescu , Adina; Correa Victorino , Alessandro; Charara , Ali

    2014-01-01

    International audience; Vehicle dynamics is an essential topic in development of safety driving systems. These complex and integrated control units require precise information about vehicle dynamics, especially, tire/road contact forces. Nevertheless, it is lacking an effective and low-cost sensor to measure them directly. Therefore, this study presents a new method to estimate these parameters by using observer technologies and low-cost sensors which are available on the passenger cars in re...

  15. Estimating State-Specific Contributions to PM2.5- and O3-Related Health Burden from Residential Combustion and Electricity Generating Unit Emissions in the United States.

    Penn, Stefani L; Arunachalam, Saravanan; Woody, Matthew; Heiger-Bernays, Wendy; Tripodis, Yorghos; Levy, Jonathan I

    2017-03-01

    Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM 2.5 ) and ozone (O 3 ). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM 2.5 and O 3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration-response functions to calculate associated health impacts. We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM 2.5 . More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM 2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM 2.5 - and O 3 -related health burden from residential combustion and electricity generating unit emissions in the United States. Environ

  16. A guidance manual for estimating greenhouse gas emissions from fuel combustion and process-related sources for primary base metals smelting and refining

    NONE

    2004-03-01

    This technical guidance manual is a useful resource for helping the metals industry compile inventories of its greenhouse gas (GHG) emissions. The guidance is consistent with Canada's national GHG accounting methodologies. It provides information to smelters and refiners of base metals on how to estimate their GHG emissions from fuel combustion and specific process-related activities. The base metals group in this manual included copper, nickel, lead, zinc, and cobalt. Fuel combustion includes all stationary combustion activities for generating heat or work, and includes waste incineration if the waste heat is used for energy. It also includes mobile fuel combustion activities such as on-site transportation of raw materials from one process to another. Guidance is provided for carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O). Process-related activities include specific industrial processes that contribute to GHG emissions. For base metal smelting, this includes CO{sub 2} emissions from use of carbonate reagents, use of reducing agents, electrode consumption, and hydrofluorocarbons (HFC) emissions from use in refrigeration systems. This document also included sections on quality assurance; aspects of uncertainty assessment; verification; and, reporting of emissions information. refs., tabs., figs.

  17. Methods for estimating the labour force insured by the Ontario Workplace Safety and Insurance Board: 1990-2000.

    Smith, Peter M; Mustard, Cameron A; Payne, Jennifer I

    2004-01-01

    This paper presents a methodology for estimating the size and composition of the Ontario labour force eligible for coverage under the Ontario Workplace Safety & Insurance Act (WSIA). Using customized tabulations from Statistics Canada's Labour Force Survey (LFS), we made adjustments for self-employment, unemployment, part-time employment and employment in specific industrial sectors excluded from insurance coverage under the WSIA. Each adjustment to the LFS reduced the estimates of the insured labour force relative to the total Ontario labour force. These estimates were then developed for major occupational and industrial groups stratified by gender. Additional estimates created to test assumptions used in the methodology produced similar results. The methods described in this paper advance those previously used to estimate the insured labour force, providing researchers with a useful tool to describe trends in the rate of injury across differing occupational, industrial and gender groups in Ontario.

  18. An optimal pole-matching observer design for estimating tyre-road friction force

    Faraji, Mohammad; Johari Majd, Vahid; Saghafi, Behrooz; Sojoodi, Mahdi

    2010-10-01

    In this paper, considering the dynamical model of tyre-road contacts, we design a nonlinear observer for the on-line estimation of tyre-road friction force using the average lumped LuGre model without any simplification. The design is the extension of a previously offered observer to allow a muchmore realistic estimation by considering the effect of the rolling resistance and a term related to the relative velocity in the observer. Our aim is not to introduce a new friction model, but to present a more accurate nonlinear observer for the assumed model. We derive linear matrix equality conditions to obtain an observer gain with minimum pole mismatch for the desired observer error dynamic system. We prove the convergence of the observer for the non-simplified model. Finally, we compare the performance of the proposed observer with that of the previously mentioned nonlinear observer, which shows significant improvement in the accuracy of estimation.

  19. Estimating the thickness of hydrated ultrathin poly(o-phenylenediamine) film by atomic force microscopy

    Wu, C.-C.; Chang, H.-C.

    2004-01-01

    A novel method to measure ultrathin poly(o-phenylenediamine) (PPD) film electropolymerized on gold electrode in liquid was developed. It is based on the force versus distance curve (force curve) of atomic force microscopy (AFM). When 1-0.25 μm/s was chosen as the rising rate of the scanner, and 50% of the confidence interval (CI) as the qualifying threshold value, the thickness of the hydrated polymer film could be calculated. This result was compared with one obtained from an AFM image. A step-like electrode fabricated by a photolithographic process was used. The height difference of the electrode before and after the PPD coating was imaged in liquid, and then the real thickness, 19.6±5.2 nm, was obtained. The sample was also measured by estimating the transition range of the force curve of hydrated PPD film, and the thickness of the hydrated PPD film was determined to be 19.3±8.2 nm. However, the results calculated by integrating the electropolymerized charge for the oxidation process of o-phenylenediamine (o-PD) was only one-third as large as it was when using the two previously described methods. This indicated that the structure of hydrated PPD film might have been swollen

  20. Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis

    Yen, Chi-Fu; Sivasankar, Sanjeevi

    2018-03-01

    Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xβ, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.

  1. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  2. The Air Force Mobile Forward Surgical Team (MFST): Using the Estimating Supplies Program to Validate Clinical Requirement

    Nix, Ralph E; Onofrio, Kathleen; Konoske, Paula J; Galarneau, Mike R; Hill, Martin

    2004-01-01

    .... The primary objective of the study was to provide the Air Force with the ability to validate clinical requirements of the MFST assemblage, with the goal of using NHRC's Estimating Supplies Program (ESP...

  3. Statistical estimates of absenteeism attributable to seasonal and pandemic influenza from the Canadian Labour Force Survey.

    Schanzer, Dena L; Zheng, Hui; Gilmore, Jason

    2011-04-12

    As many respiratory viruses are responsible for influenza like symptoms, accurate measures of the disease burden are not available and estimates are generally based on statistical methods. The objective of this study was to estimate absenteeism rates and hours lost due to seasonal influenza and compare these estimates with estimates of absenteeism attributable to the two H1N1 pandemic waves that occurred in 2009. Key absenteeism variables were extracted from Statistics Canada's monthly labour force survey (LFS). Absenteeism and the proportion of hours lost due to own illness or disability were modelled as a function of trend, seasonality and proxy variables for influenza activity from 1998 to 2009. Hours lost due to the H1N1/09 pandemic strain were elevated compared to seasonal influenza, accounting for a loss of 0.2% of potential hours worked annually. In comparison, an estimated 0.08% of hours worked annually were lost due to seasonal influenza illnesses. Absenteeism rates due to influenza were estimated at 12% per year for seasonal influenza over the 1997/98 to 2008/09 seasons, and 13% for the two H1N1/09 pandemic waves. Employees who took time off due to a seasonal influenza infection took an average of 14 hours off. For the pandemic strain, the average absence was 25 hours. This study confirms that absenteeism due to seasonal influenza has typically ranged from 5% to 20%, with higher rates associated with multiple circulating strains. Absenteeism rates for the 2009 pandemic were similar to those occurring for seasonal influenza. Employees took more time off due to the pandemic strain than was typical for seasonal influenza.

  4. Statistical estimates of absenteeism attributable to seasonal and pandemic influenza from the Canadian Labour Force Survey

    Zheng Hui

    2011-04-01

    Full Text Available Abstract Background As many respiratory viruses are responsible for influenza like symptoms, accurate measures of the disease burden are not available and estimates are generally based on statistical methods. The objective of this study was to estimate absenteeism rates and hours lost due to seasonal influenza and compare these estimates with estimates of absenteeism attributable to the two H1N1 pandemic waves that occurred in 2009. Methods Key absenteeism variables were extracted from Statistics Canada's monthly labour force survey (LFS. Absenteeism and the proportion of hours lost due to own illness or disability were modelled as a function of trend, seasonality and proxy variables for influenza activity from 1998 to 2009. Results Hours lost due to the H1N1/09 pandemic strain were elevated compared to seasonal influenza, accounting for a loss of 0.2% of potential hours worked annually. In comparison, an estimated 0.08% of hours worked annually were lost due to seasonal influenza illnesses. Absenteeism rates due to influenza were estimated at 12% per year for seasonal influenza over the 1997/98 to 2008/09 seasons, and 13% for the two H1N1/09 pandemic waves. Employees who took time off due to a seasonal influenza infection took an average of 14 hours off. For the pandemic strain, the average absence was 25 hours. Conclusions This study confirms that absenteeism due to seasonal influenza has typically ranged from 5% to 20%, with higher rates associated with multiple circulating strains. Absenteeism rates for the 2009 pandemic were similar to those occurring for seasonal influenza. Employees took more time off due to the pandemic strain than was typical for seasonal influenza.

  5. Statistical estimates of absenteeism attributable to seasonal and pandemic influenza from the Canadian Labour Force Survey

    2011-01-01

    Background As many respiratory viruses are responsible for influenza like symptoms, accurate measures of the disease burden are not available and estimates are generally based on statistical methods. The objective of this study was to estimate absenteeism rates and hours lost due to seasonal influenza and compare these estimates with estimates of absenteeism attributable to the two H1N1 pandemic waves that occurred in 2009. Methods Key absenteeism variables were extracted from Statistics Canada's monthly labour force survey (LFS). Absenteeism and the proportion of hours lost due to own illness or disability were modelled as a function of trend, seasonality and proxy variables for influenza activity from 1998 to 2009. Results Hours lost due to the H1N1/09 pandemic strain were elevated compared to seasonal influenza, accounting for a loss of 0.2% of potential hours worked annually. In comparison, an estimated 0.08% of hours worked annually were lost due to seasonal influenza illnesses. Absenteeism rates due to influenza were estimated at 12% per year for seasonal influenza over the 1997/98 to 2008/09 seasons, and 13% for the two H1N1/09 pandemic waves. Employees who took time off due to a seasonal influenza infection took an average of 14 hours off. For the pandemic strain, the average absence was 25 hours. Conclusions This study confirms that absenteeism due to seasonal influenza has typically ranged from 5% to 20%, with higher rates associated with multiple circulating strains. Absenteeism rates for the 2009 pandemic were similar to those occurring for seasonal influenza. Employees took more time off due to the pandemic strain than was typical for seasonal influenza. PMID:21486453

  6. Estimation of a noise level using coarse-grained entropy of experimental time series of internal pressure in a combustion engine

    Litak, Grzegorz; Taccani, Rodolfo; Radu, Robert; Urbanowicz, Krzysztof; HoIyst, Janusz A.; Wendeker, MirosIaw; Giadrossi, Alessandro

    2005-01-01

    We report our results on non-periodic experimental time series of pressure in a single cylinder spark ignition engine. The experiments were performed for different levels of loading. We estimate the noise level in internal pressure calculating the coarse-grained entropy from variations of maximal pressures in successive cycles. The results show that the dynamics of the combustion is a non-linear multidimensional process mediated by noise. Our results show that so defined level of noise in internal pressure is not monotonous function of loading

  7. Ground reaction force estimates from ActiGraph GT3X+ hip accelerations.

    Jennifer M Neugebauer

    Full Text Available Simple methods to quantify ground reaction forces (GRFs outside a laboratory setting are needed to understand daily loading sustained by the body. Here, we present methods to estimate peak vertical GRF (pGRFvert and peak braking GRF (pGRFbrake in adults using raw hip activity monitor (AM acceleration data. The purpose of this study was to develop a statistically based model to estimate pGRFvert and pGRFbrake during walking and running from ActiGraph GT3X+ AM acceleration data. 19 males and 20 females (age 21.2 ± 1.3 years, height 1.73 ± 0.12 m, mass 67.6 ± 11.5 kg wore an ActiGraph GT3X+ AM over their right hip. Six walking and six running trials (0.95-2.19 and 2.20-4.10 m/s, respectively were completed. Average of the peak vertical and anterior/posterior AM acceleration (ACCvert and ACCbrake, respectively and pGRFvert and pGRFbrake during the stance phase of gait were determined. Thirty randomly selected subjects served as the training dataset to develop generalized equations to predict pGRFvert and pGRFbrake. Using a holdout approach, the remaining 9 subjects were used to test the accuracy of the models. Generalized equations to predict pGRFvert and pGRFbrake included ACCvert and ACCbrake, respectively, mass, type of locomotion (walk or run, and type of locomotion acceleration interaction. The average absolute percent differences between actual and predicted pGRFvert and pGRFbrake were 8.3% and 17.8%, respectively, when the models were applied to the test dataset. Repeated measures generalized regression equations were developed to predict pGRFvert and pGRFbrake from ActiGraph GT3X+ AM acceleration for young adults walking and running. These equations provide a means to estimate GRFs without a force plate.

  8. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture

    Angelos Karatsidis

    2016-12-01

    Full Text Available Ground reaction forces and moments (GRF&M are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&M during walking, using exclusively kinematic information from fully-ambulatory inertial motion capture (IMC. From the equations of motion, we derive the total external forces and moments. Then, we solve the indeterminacy problem during double stance using a distribution algorithm based on a smooth transition assumption. The agreement between the IMC-predicted and reference GRF&M was categorized over normal walking speed as excellent for the vertical (ρ = 0.992, rRMSE = 5.3%, anterior (ρ = 0.965, rRMSE = 9.4% and sagittal (ρ = 0.933, rRMSE = 12.4% GRF&M components and as strong for the lateral (ρ = 0.862, rRMSE = 13.1%, frontal (ρ = 0.710, rRMSE = 29.6%, and transverse GRF&M (ρ = 0.826, rRMSE = 18.2%. Sensitivity analysis was performed on the effect of the cut-off frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This approach enables applications that require estimation of the kinetics during walking outside the gait laboratory.

  9. A study of estimating cutting depth for multi-pass nanoscale cutting by using atomic force microscopy

    Lin, Zone-Ching; Hsu, Ying-Chih

    2012-01-01

    This paper studies two models for estimating cutting depth of multi-pass nanoscale cutting by using an atomic force microscopy (AFM) probe. One estimates cutting depth for multi-pass nanoscale cutting by using regression equations of nanoscale contact pressure factor (NCP factor) while the other uses equation of specific down force energy (SDFE). This paper proposes taking a diamond-coated probe of AFM as the cutting tool to carry out multi-pass nanoscale cutting experiments on the surface of sapphire substrate. In the process of experimentation, different down forces are set, and the probe shape of AFM is known, then using each down force to multi-pass cutting the sapphire substrate. From the measured experimental data of a central cutting depth of the machining groove by AFM, this paper calculates the specific down force energy of each down force. The experiment results reveal that the specific down force energy of each case of multi-pass nanoscale cutting for different down forces under a probe of AFM is close to a constant value. This paper also compares the nanoscale cutting results from estimating cutting depths for each pass of multi-pass among the experimental results and the calculating results obtained by the two theories models. It is found that the model of specific down force energy can calculate cutting depths for each nanoscale cutting pass by one equation. It is easier to use than the multi-regression equations of the nanoscale contact pressure factor. Besides, the estimations of cutting depth results obtained by the model of specific down force energy are closer to that of the experiment results. It shows that the proposed specific down force energy model in this paper is an acceptable model.

  10. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    Massof, Robert W; Schmidt, Karen M; Laby, Daniel M; Kirschen, David; Meadows, David

    2013-01-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model

  11. Estimating product-to-product variations in metal forming using force measurements

    Havinga, Jos; van den Boogaard, Ton

    2017-10-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final quality of each product. We propose to predict part of the product-to-product variations in multi-stage forming processes based on force measurements from previous process stages. The reasoning is that final product properties as well as process forces are expected to be correlated since they are both affected by material and process variation. In this study, an approach to construct a moving window process model based on historical data from the process is presented. These regression models can be built and updated in real-time during production. The approach is tested with data from a demonstrator process with cutting, deep drawing and bending stages. It is shown that part of the product-to-product variations in the process can be predicted with the developed process model.

  12. Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests

    Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama

    2005-01-01

    This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)

  13. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history.

    Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A

    2017-01-01

    To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (phistory of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.

  14. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab’s software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001) but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37). The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key points Some commercial devices allow to estimate 1 RM from the force-velocity relationship. These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription. Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations. PMID:24149641

  15. Combustion and kinetic parameters estimation of torrefied pine, acacia and Miscanthus giganteus using experimental and modelling techniques.

    Wilk, Małgorzata; Magdziarz, Aneta; Gajek, Marcin; Zajemska, Monika; Jayaraman, Kandasamy; Gokalp, Iskender

    2017-11-01

    A novel approach, linking both experiments and modelling, was applied to obtain a better understanding of combustion characteristics of torrefied biomass. Therefore, Pine, Acacia and Miscanthus giganteus have been investigated under 260°C, 1h residence time and argon atmosphere. A higher heating value and carbon content corresponding to a higher fixed carbon, lower volatile matter, moisture content, and ratio O/C were obtained for all torrefied biomass. TGA analysis was used in order to proceed with the kinetics study and Chemkin calculations. The kinetics analysis demonstrated that the torrefaction process led to a decrease in Ea compared to raw biomass. The average Ea of pine using the KAS method changed from 169.42 to 122.88kJ/mol. The changes in gaseous products of combustion were calculated by Chemkin, which corresponded with the TGA results. The general conclusion based on these investigations is that torrefaction improves the physical and chemical properties of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Estimates of dengue force of infection in children in Colombo, Sri Lanka.

    Clarence C Tam

    Full Text Available Dengue is the most important vector-borne viral disease worldwide and a major cause of childhood fever burden in Sri Lanka, which has experienced a number of large epidemics in the past decade. Despite this, data on the burden and transmission of dengue virus in the Indian Subcontinent are lacking. As part of a longitudinal fever surveillance study, we conducted a dengue seroprevalence survey among children aged <12 years in Colombo, Sri Lanka. We used a catalytic model to estimate the risk of primary infection among seronegative children. Over 50% of children had IgG antibodies to dengue virus and seroprevalence increased with age. The risk of primary infection was 14.1% per year (95% CI: 12.7%-15.6%, indicating that among initially seronegative children, approximately 1 in 7 experience their first infection within 12 months. There was weak evidence to suggest that the force of primary infection could be lower for children aged 6 years and above. We estimate that there are approximately 30 primary dengue infections among children <12 years in the community for every case notified to national surveillance, although this ratio is closer to 100:1 among infants. Dengue represents a considerable infection burden among children in urban Sri Lanka, with levels of transmission comparable to those in the more established epidemics of Southeast Asia.

  17. Importance of aerosol non-sphericity in estimating aerosol radiative forcing in Indo-Gangetic Basin.

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul Kumar; Singh, Sachchidanand; Mishra, S K; Tiwari, Suresh

    2017-12-01

    Aerosols are usually presumed spherical in shape while estimating the direct radiative forcing (DRF) using observations or in the models. In the Indo-Gangetic Basin (IGB), a regional aerosol hotspot where dust is a major aerosol species and has been observed to be non-spherical in shape, it is important to test the validity of this assumption. We address this issue using measured chemical composition at megacity Delhi, a representative site of the western IGB. Based on the observation, we choose three non-spherical shapes - spheroid, cylinder and chebyshev, and compute their optical properties. Non-spherical dust enhances aerosol extinction coefficient (β ext ) and single scattering albedo (SSA) at visible wavelengths by >0.05km -1 and >0.04 respectively, while it decreases asymmetry parameter (g) by ~0.1. Accounting non-sphericity leads top-of-the-atmosphere (TOA) dust DRF to more cooling due to enhanced backscattering and increases surface dimming due to enhanced β ext . Outgoing shortwave flux at TOA increases by up to 3.3% for composite aerosols with non-spherical dust externally mixed with other spherical species. Our results show that while non-sphericity needs to be accounted for, choice of shape may not be important in estimating aerosol DRF in the IGB. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Interaction forces model on a bubble growing for nuclear best estimate computer codes

    Espinosa-Paredes, Gilberto; Nunez-Carrera, Alejandro; Martinez-Mendez, Elizabeth J.

    2005-01-01

    This paper presents a mathematical model that takes into account the bubble radius variation that take place in a boiling water nuclear reactor during transients with changes in the pressure vessel, changes in the inlet core mass flow rate, density-wave phenomena or flow regime instability. The model with expansion effects was developed considering the interaction force between a dilute dispersion of gas bubbles and a continuous liquid phase. The closure relationships were formulated as an associated problem with the spatial deviation around averaging variables as a function of known variables. In order to solve the closure problem, a geometric model given by an eccentric unit cell was applied as an approach of heterogeneous structure of the two-phase flow. The closure relationship includes additional terms that represent combined effects between translation and pulsation due to displacement and size variation of the bubbles, respectively. This result can be implanted straightforward in best estimate thermo-hydraulics models. An example, the implementation of the closure relationships into TRAC best estimate computer code is presented

  19. Improvement of force-sensor-based heart rate estimation using multichannel data fusion.

    Bruser, Christoph; Kortelainen, Juha M; Winter, Stefan; Tenhunen, Mirja; Parkka, Juha; Leonhardt, Steffen

    2015-01-01

    The aim of this paper is to present and evaluate algorithms for heartbeat interval estimation from multiple spatially distributed force sensors integrated into a bed. Moreover, the benefit of using multichannel systems as opposed to a single sensor is investigated. While it might seem intuitive that multiple channels are superior to a single channel, the main challenge lies in finding suitable methods to actually leverage this potential. To this end, two algorithms for heart rate estimation from multichannel vibration signals are presented and compared against a single-channel sensing solution. The first method operates by analyzing the cepstrum computed from the average spectra of the individual channels, while the second method applies Bayesian fusion to three interval estimators, such as the autocorrelation, which are applied to each channel. This evaluation is based on 28 night-long sleep lab recordings during which an eight-channel polyvinylidene fluoride-based sensor array was used to acquire cardiac vibration signals. The recruited patients suffered from different sleep disorders of varying severity. From the sensor array data, a virtual single-channel signal was also derived for comparison by averaging the channels. The single-channel results achieved a beat-to-beat interval error of 2.2% with a coverage (i.e., percentage of the recording which could be analyzed) of 68.7%. In comparison, the best multichannel results attained a mean error and coverage of 1.0% and 81.0%, respectively. These results present statistically significant improvements of both metrics over the single-channel results (p < 0.05).

  20. Model-based stochastic-deterministic State and Force Estimation using Kalman filtering with Application to Hanko-1 Channel Marker

    Petersen, Øyvind Wiig

    2014-01-01

    Force identification in structural dynamics is an inverse problem concerned with finding loads from measured structural response. The main objective of this thesis is to perform and study state (displacement and velocity) and force estimation by Kalman filtering. Theory on optimal control and state-space models are presented, adapted to linear structural dynamics. Accommodation for measurement noise and model inaccuracies are attained by stochastic-deterministic coupling. Explicit requirem...

  1. Exploring the effects of dimensionality reduction in deep networks for force estimation in robotic-assisted surgery

    Aviles, Angelica I.; Alsaleh, Samar; Sobrevilla, Pilar; Casals, Alicia

    2016-03-01

    Robotic-Assisted Surgery approach overcomes the limitations of the traditional laparoscopic and open surgeries. However, one of its major limitations is the lack of force feedback. Since there is no direct interaction between the surgeon and the tissue, there is no way of knowing how much force the surgeon is applying which can result in irreversible injuries. The use of force sensors is not practical since they impose different constraints. Thus, we make use of a neuro-visual approach to estimate the applied forces, in which the 3D shape recovery together with the geometry of motion are used as input to a deep network based on LSTM-RNN architecture. When deep networks are used in real time, pre-processing of data is a key factor to reduce complexity and improve the network performance. A common pre-processing step is dimensionality reduction which attempts to eliminate redundant and insignificant information by selecting a subset of relevant features to use in model construction. In this work, we show the effects of dimensionality reduction in a real-time application: estimating the applied force in Robotic-Assisted Surgeries. According to the results, we demonstrated positive effects of doing dimensionality reduction on deep networks including: faster training, improved network performance, and overfitting prevention. We also show a significant accuracy improvement, ranging from about 33% to 86%, over existing approaches related to force estimation.

  2. Quantitative estimation of electro-osmosis force on charged particles inside a borosilicate resistive-pulse sensor.

    Ghobadi, Mostafa; Yuqian Zhang; Rana, Ankit; Esfahani, Ehsan T; Esfandiari, Leyla

    2016-08-01

    Nano and micron-scale pore sensors have been widely used for biomolecular sensing application due to its sensitive, label-free and potentially cost-effective criteria. Electrophoretic and electroosmosis are major forces which play significant roles on the sensor's performance. In this work, we have developed a mathematical model based on experimental and simulation results of negatively charged particles passing through a 2μm diameter solid-state borosilicate pore under a constant applied electric field. The mathematical model has estimated the ratio of electroosmosis force to electrophoretic force on particles to be 77.5%.

  3. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship.

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg), while 1 RM estimated by the Musclelab's software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg). Actual and estimated 1 RM were very highly correlated (r = 0.93, pvelocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level. Key pointsSome commercial devices allow to estimate 1 RM from the force-velocity relationship.These estimations are valid. However, their accuracy is not high enough to be of practical help for training intensity prescription.Day-to-day reliability of force and velocity measured by the linear encoder has been shown to be very high, but the specific reliability of 1 RM estimated from the force-velocity relationship has to be determined before concluding to the usefulness of this approach in the monitoring of training induced adaptations.

  4. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  5. Does fossil fuel combustion lead to global warming?

    Schwartz, S.E.

    1993-01-01

    Tropospheric sulfate aerosols produced by atmospheric oxidation of SO 2 emitted from fossil fuel combustion scatter solar radiation and enhance the reflectivity of clouds. Both effects decrease the absorption of solar radiation by the earth-atmosphere system. This cooling influence tends to offset the warming influence resulting from increased absorption of terrestrial infrared radiation by increased atmospheric concentrations of CO 2 . The sulfate forcing is estimated to be offsetting 70% of the forcing by CO 2 derived from fossil fuel combustion, although the uncertainty of this estimate is quite large--range 28-140%, the latter figure indicating that the present combined forcing is net cooling. Because of the vastly different atmospheric residence times of sulfate aerosol (about a week) and CO 2 (about 100 years), the cooling influence of sulfate aerosol is exerted immediately, whereas most of the warming influence of CO 2 is exerted over more than 100 years. Consequently the total forcing integrated over the entire time the materials reside in the atmosphere is net warming, with the total CO 2 forcing estimate to exceed the sulfate forcing by a factor of 4. The present situation in which the forcing by sulfate is comparable to that by CO 2 is shown to be a consequence of the steeply increasing rates of emission over the industrial era. (author)

  6. A Comprehensive Methodology for Development, Parameter Estimation, and Uncertainty Analysis of Group Contribution Based Property Models -An Application to the Heat of Combustion

    Frutiger, Jerome; Marcarie, Camille; Abildskov, Jens

    2016-01-01

    of the prediction. The methodology is evaluated through development of a GC method for the prediction of the heat of combustion (ΔHco) for pure components. The results showed that robust regression lead to best performance statistics for parameter estimation. The bootstrap method is found to be a valid alternative......A rigorous methodology is developed that addresses numerical and statistical issues when developing group contribution (GC) based property models such as regression methods, optimization algorithms, performance statistics, outlier treatment, parameter identifiability, and uncertainty...... identifiability issues, reporting of the 95% confidence intervals of the predicted property values should be mandatory as opposed to reporting only single value prediction, currently the norm in literature. Moreover, inclusion of higher order groups (additional parameters) does not always lead to improved...

  7. Experimental study of the aluminum droplet combustion under forced convection. Influence of the gaseous atmosphere; Etude experimentale de la combustion des gouttes d'aluminium en convection forcee. Influence de l'atmosphere gazeuse

    Sarou-Kanian, V.

    2003-12-15

    Because of its high energetic power, the combustion of aluminum particles in solid propellant rocket motors improves the efficiency of heavy-lift launcher as Ariane 5. Aluminum particles burn in a gaseous atmosphere essentially composed of H{sub 2}O, CO{sub 2}, N{sub 2}, HCl, H{sub 2}, and CO, at high pressure (P=60-70 atm) and high temperature (T>3000 K). In the present work, we have been particularly interested in the influence of the gaseous atmosphere on the different burning processes both in the gas-phase and at the aluminum droplet surface. An experimental set-up was developed in order to describe precisely, thanks to several analysis techniques (high-speed camera, pyrometry, spectrometry, SEM, nuclear activation) the combustion of aerodynamically levitated millimetric aluminum droplets in gas mixtures with compositions close to the propellant ones (H{sub 2}O, CO{sub 2}, N{sub 2}). The main result is that each species plays a different role in the aluminum combustion. The water vapor has the biggest influence in the gas-phase process due to the production of hydrogen facilitating the heat and mass diffusion between the flame and the droplet. Nitrogen is essentially acting in surface reactions with the formation of aluminum nitride (AlN) and oxynitride (AlON) which may completely cover the droplet and stop the gas-phase combustion. Carbon dioxide has a double effect. On the one hand, CO{sub 2} burns in the flame, but it is less efficient than H{sub 2}O because the heat and mass transfer properties are poorer for CO than for H{sub 2}. On the other hand, a carbon dissolution phenomenon occurs in the aluminum droplet during burning which may reach saturation (20-25% molar) and involves a carbon rejection at the surface leading to the end of the gas-phase combustion. (author)

  8. Estimation of uranium and cobalt-60 distribution coefficients and uranium-235 enrichment at the Combustion Engineering Company site in Windsor, Connecticut

    Wang, Y.; Orlandini, K.A.; Yu, C.

    1996-05-01

    Site-specific distribution coefficients for uranium isotopes and cobalt-60 (Co-60) and the fraction of uranium-235 (U-235) enrichment by mass were estimated for environmental samples collected from the Combustion Engineering Company site in Windsor, CT. This site has been identified for remedial action under the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program. The authority of DOE at the Combustion Engineering site is limited to (1) Building 3; (2) other activities or areas associated exclusively with Building 3 (such as sewer lines); or (3) contamination that is exclusively highly enriched uranium. In this study, 16 samples were collected from the Combustion Engineering site, including 8 soil, 4 sediment, 3 water, and 1 water plus sludge sample. These samples were analyzed for isotopic uranium by alpha spectrometry and for Co-60 by gamma spectrometry. The site-specific distribution coefficient for each isotope was estimated as the ratio of extractable radionuclide activity in the solid phase to the activity in the contact solution following a 19-day equilibration. The uranium activity measurements indicate that uranium-234 (U-234) and uranium-238 (U-238) were in secular equilibrium in two soil samples and that soil and sediment samples collected from other sampling locations had higher U-234 activity than U-238 activity in both the solid and solution phases. The site-specific distribution coefficient (Kd) ranged from 82 to 44,600 mL/g for U-238 and from 102 to 65,900 mL/g for U-234. Calculation of U-235 enrichment by mass indicated that four soil samples had values greater than 0.20; these values were 0.37, 0.38, 0.46, and 0.68. Cobalt-60 activity was detected in only three sediment samples. The measured Co-60 activity in the solid phase ranged from 0.15 to 0.45 pCi/g and that in the water phase of all three samples combined was 4 pCi/L. The Kd value for Co-60 in the site brook sediment was calculated to be 70 mL/g

  9. Combustion engineering

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  10. The MusIC method: a fast and quasi-optimal solution to the muscle forces estimation problem

    Muller , Antoine; Pontonnier , Charles; Dumont , Georges

    2018-01-01

    International audience; The present paper aims at presenting a fast and quasi-optimal method of muscle forces estimation: the MusIC method. It consists in interpolating a first estimation in a database generated offline thanks to a classical optimization problem, and then correcting it to respect the motion dynamics. Three different cost functions – two polynomial criteria and a min/max criterion – were tested on a planar musculoskeletal model. The MusIC method provides a computation frequenc...

  11. Estimation of the local response to a forcing in a high dimensional system using the fluctuation-dissipation theorem

    F. C. Cooper

    2013-04-01

    Full Text Available The fluctuation-dissipation theorem (FDT has been proposed as a method of calculating the response of the earth's atmosphere to a forcing. For this problem the high dimensionality of the relevant data sets makes truncation necessary. Here we propose a method of truncation based upon the assumption that the response to a localised forcing is spatially localised, as an alternative to the standard method of choosing a number of the leading empirical orthogonal functions. For systems where this assumption holds, the response to any sufficiently small non-localised forcing may be estimated using a set of truncations that are chosen algorithmically. We test our algorithm using 36 and 72 variable versions of a stochastic Lorenz 95 system of ordinary differential equations. We find that, for long integrations, the bias in the response estimated by the FDT is reduced from ~75% of the true response to ~30%.

  12. VALIDITY OF A COMMERCIAL LINEAR ENCODER TO ESTIMATE BENCH PRESS 1 RM FROM THE FORCE-VELOCITY RELATIONSHIP

    Laurent Bosquet

    2010-09-01

    Full Text Available The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway to estimate Bench press 1 repetition maximum (1RM from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15.3 kg (range: 34 to 100 kg, while 1 RM estimated by the Musclelab's software from the force-velocity relationship was 56.4 ± 14.0 kg (range: 33 to 91 kg. Actual and estimated 1 RM were very highly correlated (r = 0.93, p<0.001 but largely different (Bias: 5.4 ± 5.7 kg, p < 0.001, ES = 1.37. The 95% limits of agreement were ±11.2 kg, which represented ±18% of actual 1 RM. It was concluded that 1 RM estimated from the force-velocity relationship was a good measure for monitoring training induced adaptations, but also that it was not accurate enough to prescribe training intensities. Additional studies are required to determine whether accuracy is affected by age, sex or initial level.

  13. Estimation of Prestress Force Distribution in the Multi-Strand System of Prestressed Concrete Structures

    Keunhee Cho

    2015-06-01

    Full Text Available Prestressed concrete (PSC is one of the most reliable, durable and widely used construction materials, which overcomes the weakness of concrete in tension by the introduction of a prestress force. Smart strands enabling measurement of the prestress force have recently been developed to maintain PSC structures throughout their lifetime. However, the smart strand cannot give a representative indication of the whole prestress force when used in multi-strand systems since each strand sustains a different prestress force. In this paper, the actual distribution of the prestress force in a multi-strand system is examined using elastomagnetic (EM sensors to develop a method for tracking representative indicators of the prestress force using smart strands.

  14. Estimation of Prestress Force Distribution in the Multi-Strand System of Prestressed Concrete Structures.

    Cho, Keunhee; Park, Sung Yong; Cho, Jeong-Rae; Kim, Sung Tae; Park, Young-Hwan

    2015-06-15

    Prestressed concrete (PSC) is one of the most reliable, durable and widely used construction materials, which overcomes the weakness of concrete in tension by the introduction of a prestress force. Smart strands enabling measurement of the prestress force have recently been developed to maintain PSC structures throughout their lifetime. However, the smart strand cannot give a representative indication of the whole prestress force when used in multi-strand systems since each strand sustains a different prestress force. In this paper, the actual distribution of the prestress force in a multi-strand system is examined using elastomagnetic (EM) sensors to develop a method for tracking representative indicators of the prestress force using smart strands.

  15. Ambulatory measurement of ground reaction force and estimation of ankle and foot dynamics

    Schepers, H. Martin; Koopman, Hubertus F.J.M.; Baten, Christian T.M.; Veltink, Petrus H.

    INTRODUCTION Traditionally, human body movement analysis is done in so-called ‘gait laboratories’. In these laboratories, body movement is measured by a camera system using optical markers, the ground reaction force by a force plate fixed in the floor, and the muscle activity by EMG. From the body

  16. On the real-time estimation of the wheel-rail contact force by means of a new nonlinear estimator design model

    Strano, Salvatore; Terzo, Mario

    2018-05-01

    The dynamics of the railway vehicles is strongly influenced by the interaction between the wheel and the rail. This kind of contact is affected by several conditioning factors such as vehicle speed, wear, adhesion level and, moreover, it is nonlinear. As a consequence, the modelling and the observation of this kind of phenomenon are complex tasks but, at the same time, they constitute a fundamental step for the estimation of the adhesion level or for the vehicle condition monitoring. This paper presents a novel technique for the real time estimation of the wheel-rail contact forces based on an estimator design model that takes into account the nonlinearities of the interaction by means of a fitting model functional to reproduce the contact mechanics in a wide range of slip and to be easily integrated in a complete model based estimator for railway vehicle.

  17. Using the Estimating Supplies Program to Develop Materiel Solutions for the U.S. Air Force Aeromedical Evacuation In-Flight Kit (FFQDM)

    Hopkins, Curtis; Nix, Ralph; Pang, Gerry; Konoske, Paula

    2008-01-01

    ... NHRC's medical modeling tool the Estimating Supplies Program (ESP) for the development and management of Air Force medical Allowance Standards as a baseline for standardization throughout the services...

  18. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    P. Stier

    2013-03-01

    Full Text Available Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47 Wm−2 and the inter-model standard deviation is 0.55 Wm−2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm−2, and the standard deviation increases to 1.01 W−2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption is low, with absolute (relative standard deviations of 0.45 Wm−2 (8% clear-sky and 0.62 Wm−2 (11% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm−2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model

  19. Estimation of exhaust gas aerodynamic force on the variable geometry turbocharger actuator: 1D flow model approach

    Ahmed, Fayez Shakil; Laghrouche, Salah; Mehmood, Adeel; El Bagdouri, Mohammed

    2014-01-01

    Highlights: • Estimation of aerodynamic force on variable turbine geometry vanes and actuator. • Method based on exhaust gas flow modeling. • Simulation tool for integration of aerodynamic force in automotive simulation software. - Abstract: This paper provides a reliable tool for simulating the effects of exhaust gas flow through the variable turbine geometry section of a variable geometry turbocharger (VGT), on flow control mechanism. The main objective is to estimate the resistive aerodynamic force exerted by the flow upon the variable geometry vanes and the controlling actuator, in order to improve the control of vane angles. To achieve this, a 1D model of the exhaust flow is developed using Navier–Stokes equations. As the flow characteristics depend upon the volute geometry, impeller blade force and the existing viscous friction, the related source terms (losses) are also included in the model. In order to guarantee stability, an implicit numerical solver has been developed for the resolution of the Navier–Stokes problem. The resulting simulation tool has been validated through comparison with experimentally obtained values of turbine inlet pressure and the aerodynamic force as measured at the actuator shaft. The simulator shows good compliance with experimental results

  20. Decoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad

    Birznieks, Ingvars; Redmond, Stephen J.

    2015-01-01

    Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866

  1. Validity of a Commercial Linear Encoder to Estimate Bench Press 1 RM from the Force-Velocity Relationship

    Bosquet, Laurent; Porta-Benache, Jeremy; Blais, Jérôme

    2010-01-01

    The aim of this study was to assess the validity and accuracy of a commercial linear encoder (Musclelab, Ergotest, Norway) to estimate Bench press 1 repetition maximum (1RM) from the force - velocity relationship. Twenty seven physical education students and teachers (5 women and 22 men) with a heterogeneous history of strength training participated in this study. They performed a 1 RM test and a force - velocity test using a Bench press lifting task in a random order. Mean 1 RM was 61.8 ± 15...

  2. On estimation of stochastic forcing with application to El Niño

    Penland, C.

    2014-12-01

    Although Linear Inverse Modeling (LIM) provides skillful forecasts of tropical ocean sea surface temperatures, LIM's diagnostic properties are at least as useful as its prognostic properties. In this presentation, we discuss an updated method for using LIM to obtain time series representing stochastic forcing of El Niño and to quantify particular unpredictable contributions to LIM forecast error. Attention is paid to the proper stochastic calculus and to the time scale separation between the stochastic forcing and El Niño's signal. The method yields seldom-considered sources of El Niño's stochastic forcing.

  3. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  4. Surface roughness and cutting force estimation in the CNC turning using artificial neural networks

    Mohammad Ramezani

    2015-04-01

    Full Text Available Surface roughness and cutting forces are considered as important factors to determine machinability rate and the quality of product. A number of factors like cutting speed, feed rate, depth of cutting and tool noise radius influence the surface roughness and cutting forces in turning process. In this paper, an Artificial Neural Network (ANN model was used to forecast surface roughness and cutting forces with related inputs, including cutting speed, feed rate, depth of cut and tool noise radius. The machined surface roughness and cutting force parameters related to input parameters are the outputs of the ANN model. In this work, 24 samples of experimental data were used to train the network. Moreover, eight other experimental tests were implemented to test the network. The study concludes that ANN was a reliable and accurate method for predicting machining parameters in CNC turning operation.

  5. Statistical estimates of absenteeism attributable to seasonal and pandemic influenza from the Canadian Labour Force Survey

    Zheng Hui; Schanzer Dena L; Gilmore Jason

    2011-01-01

    Abstract Background As many respiratory viruses are responsible for influenza like symptoms, accurate measures of the disease burden are not available and estimates are generally based on statistical methods. The objective of this study was to estimate absenteeism rates and hours lost due to seasonal influenza and compare these estimates with estimates of absenteeism attributable to the two H1N1 pandemic waves that occurred in 2009. Methods Key absenteeism variables were extracted from Statis...

  6. Impact of the wood combustion in an open fireplace on the air quality of a living room: Estimation of the respirable fraction.

    Castro, A; Calvo, A I; Blanco-Alegre, C; Oduber, F; Alves, C; Coz, E; Amato, F; Querol, X; Fraile, R

    2018-07-01

    Presently, both in rural areas and in cities open fireplaces are still present and large quantities of wood are combusted every year. The present study aims to characterize aerosol size distribution, chemical composition and deposition in the human respiratory tract of particles emitted during the combustion of logs of oak in an open fireplace installed in the living room of a typical village house. CO 2 and CO levels and aerosol size distribution have been continuously monitored and a PM 10 sampler with two types of filters for chemical and microscopic analysis was also installed. The increment, between the operating periods and the indoor background, in the organic carbon and PM 10 concentration due to the use of the fireplace is 15.7±0.6 (mean±standard deviation) and 58.5±6.2μgm -3 , respectively. The two main polluting processes during the operation of the fireplace are the ignition with the subsequent refueling and the final cleaning of the residual ashes. In both phases mean values around 1800 particles cm -3 with CMD of 0.15μm were measured. However, while PM 10 levels of 130±120μgm -3 were estimated for the ignition stage, values of 200±200μgm -3 were obtained during the final cleaning step. Assessment conducted according to ISO standard 7708:1995, demonstrated that a person who stays in a living room when an open fireplace is lit will inhale, on average, 217μgm -3 and 283μgm -3 during the ignition and the refueling stages, respectively. Subsequent refueling proved to be much less polluting. The ashes removal can also be very polluting and dangerous to health if there are hidden small incandescent embers among the ashes (estimated PM 10 of 132μgm -3 ), reaching a CO 2 level of 1940ppm and a dangerous level of CO of 132ppm. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Fast Estimation of Strains for Cross-Beams Six-Axis Force/Torque Sensors by Mechanical Modeling

    Junqing Ma

    2013-05-01

    Full Text Available Strain distributions are crucial criteria of cross-beams six-axis force/torque sensors. The conventional method for calculating the criteria is to utilize Finite Element Analysis (FEA to get numerical solutions. This paper aims to obtain analytical solutions of strains under the effect of external force/torque in each dimension. Genetic mechanical models for cross-beams six-axis force/torque sensors are proposed, in which deformable cross elastic beams and compliant beams are modeled as quasi-static Timoshenko beam. A detailed description of model assumptions, model idealizations, application scope and model establishment is presented. The results are validated by both numerical FEA simulations and calibration experiments, and test results are found to be compatible with each other for a wide range of geometric properties. The proposed analytical solutions are demonstrated to be an accurate estimation algorithm with higher efficiency.

  8. Combustion physics

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  9. The MusIC method: a fast and quasi-optimal solution to the muscle forces estimation problem.

    Muller, A; Pontonnier, C; Dumont, G

    2018-02-01

    The present paper aims at presenting a fast and quasi-optimal method of muscle forces estimation: the MusIC method. It consists in interpolating a first estimation in a database generated offline thanks to a classical optimization problem, and then correcting it to respect the motion dynamics. Three different cost functions - two polynomial criteria and a min/max criterion - were tested on a planar musculoskeletal model. The MusIC method provides a computation frequency approximately 10 times higher compared to a classical optimization problem with a relative mean error of 4% on cost function evaluation.

  10. Improvement in thrust force estimation of solenoid valve considering minor hysteresis loop

    Myung-Hwan Yoon

    2017-05-01

    Full Text Available Solenoid valve is a very important hydraulic actuator for an automatic transmission in terms of shift quality. The same form of pressure for the clutch and the input current are required for an ideal control. However, the gap between a pressure and a current can occur which brings a delay in a transmission and a decrease in quality. This problem is caused by hysteresis phenomenon. As the ascending or descending magnetic field is applied to the solenoid, different thrust forces are generated. This paper suggests the calculation method of the thrust force considering the hysteresis phenomenon and consequently the accurate force can be obtained. Such hysteresis occurs in ferromagnetic materials, however the hysteresis phenomenon includes a minor hysteresis loop which begins with an initial magnetization curve and is generated by DC biased field density. As the core of the solenoid is ferromagnetic material, an accurate thrust force is obtained by applying the minor hysteresis loop compared to the force calculated by considering only the initial magnetization curve. An analytical background and the detailed explanation of measuring the minor hysteresis loop are presented. Furthermore experimental results and finite element analysis results are compared for the verification.

  11. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido

    2016-04-01

    In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.

  12. High Gravity (g) Combustion

    2006-02-01

    UNICORN (Unsteady Ignition and Combustion with Reactions) code10. Flame propagation in a tube that is 50-mm wide and 1000-mm long (similar to that...turbine engine manufacturers, estimating the primary zone space heating rate. Both combustion systems, from Company A and Company B, required a much...MBTU/atm-hr-ft3) Te m pe ra tu re R is e (K ) dP/P = 2% dP/P = 2.5% dP/P = 3% dP/P = 3.5% dP/P = 4% Company A Company B Figure 13: Heat Release Rate

  13. Virtual Control of Prosthetic Hand Based on Grasping Patterns and Estimated Force from Semg

    Zhu Gao-Ke

    2016-01-01

    Full Text Available Myoelectric prosthetic hands aim to serve upper limb amputees. The myoelectric control of the hand grasp action is a kind of real-time or online method. Thus it is of great necessity to carry on a study of online prosthetic hand electrical control. In this paper, the strategy of simultaneous EMG decoding of grasping patterns and grasping force was realized by controlling a virtual multi-degree-freedom prosthetic hand and a real one-degree-freedom prosthetic hand simultaneously. The former realized the grasping patterns from the recognition of the sEMG pattern. The other implemented the grasping force from sEMG force decoding. The results show that the control method is effective and feasible.

  14. Estimation of Tri-Axial Walking Ground Reaction Forces of Left and Right Foot from Total Forces in Real-Life Environments

    Erfan Shahabpoor

    2018-06-01

    Full Text Available Continuous monitoring of natural human gait in real-life environments is essential in many applications including disease monitoring, rehabilitation, and professional sports. Wearable inertial measurement units are successfully used to measure body kinematics in real-life environments and to estimate total walking ground reaction forces GRF(t using equations of motion. However, for inverse dynamics and clinical gait analysis, the GRF(t of each foot is required separately. Using an experimental dataset of 1243 tri-axial separate-foot GRF(t time histories measured by the authors across eight years, this study proposes the ‘Twin Polynomial Method’ (TPM to estimate the tri-axial left and right foot GRF(t signals from the total GRF(t signals. For each gait cycle, TPM fits polynomials of degree five, eight, and nine to the known single-support part of the left and right foot vertical, anterior-posterior, and medial-lateral GRF(t signals, respectively, to extrapolate the unknown double-support parts of the corresponding GRF(t signals. Validation of the proposed method both with force plate measurements (gold standard in the laboratory, and in real-life environment showed a peak-to-peak normalized root mean square error of less than 2.5%, 6.5% and 7.5% for the estimated GRF(t signals in the vertical, anterior-posterior and medial-lateral directions, respectively. These values show considerable improvement compared with the currently available GRF(t decomposition methods in the literature.

  15. Estimates of carbon dioxide emissions from fossil fuels combustion in the main sectors of selected countries 1971-1990

    Primio, J.C. di.

    1993-01-01

    Calculations of sectoral CO 2 emissions from fossil fuel burning in the period 1971-1990 were done for the 15 countries at the top of the list of nations ordered by decreasing contribution to global emissions, namely: United States of America, Soviet Union, People's Republic of China, Japan, Federal Republic of Germany, United Kingdom, India, Poland, Canada, France, Italy, German Democratic Republic, South Africa, Mexico and Czechoslovakia. In addition, the CO 2 emission of two groups of industrialized countries, namely the OECD and the European Economic Community (EEC) were calculated. The main recommendations of the IPCC/OECD current methodology have been adopted for the calculations, with the principal exception that CO 2 emissions from the use of bunker fuels have not been included in the national estimates. The sectors are: 1. Transformations. Total emissions and the part stemming from power plants 2. Industry (excluding Feedstocks) 3. Transportation 4. Agriculture 5. Residential 6. Commerce and Public Services 7. Non-specified Other 8. Non-Energy Use 9. Feedstocks (in Industry). Data are presented in tables and diagrams. (orig./KW)

  16. Bone-breaking bite force of Basilosaurus isis (Mammalia, Cetacea from the late Eocene of Egypt estimated by finite element analysis.

    Eric Snively

    Full Text Available Bite marks suggest that the late Eocence archaeocete whale Basilosaurus isis (Birket Qarun Formation, Egypt fed upon juveniles of the contemporary basilosaurid Dorudon atrox. Finite element analysis (FEA of a nearly complete adult cranium of B. isis enables estimates of its bite force and tests the animal's capabilities for crushing bone. Two loadcases reflect different biting scenarios: 1 an intitial closing phase, with all adductors active and a full condylar reaction force; and 2 a shearing phase, with the posterior temporalis active and minimized condylar force. The latter is considered probable when the jaws were nearly closed because the preserved jaws do not articulate as the molariform teeth come into occulusion. Reaction forces with all muscles active indicate that B. isis maintained relatively greater bite force anteriorly than seen in large crocodilians, and exerted a maximum bite force of at least 16,400 N at its upper P3. Under the shearing scenario with minimized condylar forces, tooth reaction forces could exceed 20,000 N despite lower magnitudes of muscle force. These bite forces at the teeth are consistent with bone indentations on Dorudon crania, reatract-and-shear hypotheses of Basilosaurus bite function, and seizure of prey by anterior teeth as proposed for other archaeocetes. The whale's bite forces match those estimated for pliosaurus when skull lengths are equalized, suggesting similar tradeoffs of bite function and hydrodynamics. Reaction forces in B. isis were lower than maxima estimated for large crocodylians and carnivorous dinosaurs. However, comparison of force estimates from FEA and regression data indicate that B. isis exerted the largest bite forces yet estimated for any mammal, and greater force than expected from its skull width. Cephalic feeding biomechanics of Basilosaurus isis are thus consistent with habitual predation.

  17. Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors

    Wouda, Frank J.; Giuberti, Matteo; Bellusci, Giovanni; Maartens, Erik; Reenalda, Jasper; van Beijnum, Bernhard J.F.; Veltink, Peter H.

    2018-01-01

    Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics

  18. Estimating bridge stiffness using a forced-vibration technique for timber bridge health monitoring

    James P. Wacker; Xiping Wang; Brian Brashaw; Robert J. Ross

    2006-01-01

    This paper describes an effort to refine a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the frequency response of several simple-span, sawn timber beam (with plank deck) bridges located in St. Louis County, Minnesota. Static load deflections were also measured to...

  19. Inverse problem of estimating transient heat transfer rate on external wall of forced convection pipe

    Chen, W.-L.; Yang, Y.-C.; Chang, W.-J.; Lee, H.-L.

    2008-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space and time dependent heat transfer rate on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat transfer rate; hence, the procedure is classified as function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space and time dependent heat transfer rate can be obtained for the test case considered in this study

  20. Anthropogenic combustion iron as a complex climate forcer.

    Matsui, Hitoshi; Mahowald, Natalie M; Moteki, Nobuhiro; Hamilton, Douglas S; Ohata, Sho; Yoshida, Atsushi; Koike, Makoto; Scanza, Rachel A; Flanner, Mark G

    2018-04-23

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m -2 globally and 0.22 W m -2 over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.

  1. Probabilistic estimates of 1.5-degree carbon budgets based on uncertainty in transient climate response and aerosol forcing

    Partanen, A. I.; Mengis, N.; Jalbert, J.; Matthews, D.

    2017-12-01

    Nations agreed to limit the increase in global mean surface temperature relative to the preindustrial era below 2 degrees Celsius and pursue efforts to a more ambitious goal of 1.5 degrees Celsius. To achieve these goals, it is necessary to assess the amount of cumulative carbon emissions compatible with these temperature targets, i.e. so called carbon budgets. In this work, we use the intermediate complexity University of Victoria Earth System Climate Model (UVic ESCM) to assess how uncertainty in aerosol forcing and transient climate response transfers to uncertainty in future carbon budgets for burning fossil fuels. We create a perturbed parameter ensemble of model simulations by scaling aerosol forcing and transient climate response, and assess the likelihood of each simulation by comparing the simulated historical cumulative carbon emissions, CO2 concentration and radiative balance to observations. By weighting the results of each simulation with the likelihood of the simulation, the preliminary results give a carbon budget of 48 Pg C to reach 1.5 degree Celsius temperature increase. The small weighted mean is due to large fraction of simulations with strong aerosol forcing and transient climate response giving negative carbon budgets for this time period. The probability of the carbon budget being over 100 Pg C was 38% and 23% for over 200 Pg carbon budget. The carbon budgets after temperature stabilization at 1.5 degrees are even smaller with a weighted mean of -100 Pg C until the year 2200. The main reason for the negative carbon budgets after temperature stabilization is an assumed strong decrease in aerosol forcing in the 21st century. Conversely, simulations with weak aerosol forcing and transient climate response give positive carbon budgets. Our results highlight both the importance of reducing uncertainty in aerosol forcing and transient climate response, and of taking the non-CO2 forcers into account when estimating carbon budgets.

  2. Force-Sensor-Based Estimation of Needle Tip Deflection in Brachytherapy

    Thomas Lehmann

    2013-01-01

    in real time during needle insertion is the main contribution of this paper. The proposed approach solely relies on the measured forces and torques without a need for any other invasive/noninvasive sensing devices. A few mechanical models have been introduced previously regarding the way the forces are composed along the needle during insertion; we will compare our model to those approaches in terms of accuracy. In order to conduct experiments to verify the deflection model, a custom-built, 2-DOF robotic system for needle insertion is developed and discussed. This system is a prototype of an intelligent, hand-held surgical assistant tool that incorporates the virtual sensor proposed in this paper.

  3. Method for Friction Force Estimation on the Flank of Cutting Tools

    Luis Huerta

    2017-01-01

    Full Text Available Friction forces are present in any machining process. These forces could play an important role in the dynamics of the system. In the cutting process, friction is mainly present in the rake face and the flank of the tool. Although the one that acts on the rake face has a major influence, the other one can become also important and could take part in the stability of the system. In this work, experimental identification of the friction on the flank is presented. The experimental determination was carried out by machining aluminum samples in a CNC lathe. As a result, two friction functions were obtained as a function of the cutting speed and the relative motion of the contact elements. Experiments using a worn and a new insert were carried out. Force and acceleration were recorded simultaneously and, from these results, different friction levels were observed depending on the cutting parameters, such as cutting speed, feed rate, and tool condition. Finally, a friction model for the flank friction is presented.

  4. Biofuels combustion.

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  5. Estimation of mechanical properties of gelatin using a microbubble under acoustic radiation force

    Shirota, Eriko; Ando, Keita

    2015-01-01

    This paper is concerned with observations of the translation of a microbubble (80 μm or 137 μm in radius) in a viscoelastic medium (3 w% gelatin), which is induced by acoustic radiation force originating from 1 MHz focused ultrasound. An optical system using a high-speed camera was designed to visualize the bubble translation and deformation. If the bubble remains its spherical shape under the sonication, the bubble translation we observed can be described by theory based on the Voigt model for linear viscoelastic solids; mechanical properties of the gelatin are calculated from measurements of the terminal displacement under the sonication. (paper)

  6. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.

    Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-04-20

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

  7. Brake force estimation for electromechanical vehicle brakes; Bremskraft-Rekonstruktion fuer elektromechanische Fahrzeugbremsen

    Schwarz, R. [Continental Teves (Germany)

    1999-06-01

    Due to the increasing safety and comfort demands of the customer, the functionality of modern brake systems has grown continuously in the last years. However, implementation of the extended functionality in conventional brake hydraulics makes active electronic intervention necessary and therefore requires a lot of technical effort. In recent years the automotive supplier industry has started to develop brake systems which have electromechanical brake actuators generating the brake forces at the individual wheels. Electromechanically actuated wheel brakes need to be operated in a closed control loop. This paper introduces a new method to reconstruct the needed feedback value brake force from easy to measure signals. (orig.) [Deutsch] Aufgrund des gestiegenen Sicherheits- und Komfortbewusstseins der Fahrzeugkaeufer ist die Funktionsvielfalt moderner Bremssysteme in den letzten Jahren staendig gewachsen. Die Umsetzung der erweiterten Funktionalitaet mittels konventioneller Bremsenhydraulik ist jedoch durch den elektronischen, aktiven Eingriff sehr aufwendig. In den letzten Jahren hat daher die Automobilzulieferindustrie begonnen, Bremssysteme zu entwickeln, bei denen die Bremskraft an den einzelnen Raedern von elektromechanischen Bremsaktuatoren aufgebracht wird. Elektromechanisch betaetigte Radbremsen muessen im geschlossenen Regelkreis betrieben werden. Der vorliegende Beitrag, der im Rahmen einer Forschungskooperation zwischen Continental Teves und dem Institut fuer Automatisierungstechnik der TU Darmstadt entstand stellt ein Verfahren vor, mit dem die dafuer benoetigte Rueckfuehrungsgroesse `Bremskraft` aus einfach messbaren Signalen rekonstruiert werden kann. (orig.)

  8. Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test

    Colombani, N.; Giambastiani, B. M. S.; Mastrocicco, M.

    2015-06-01

    Usually electrolytic tracers are employed for subsurface characterization, but the interpretation of tracer test data collected by low cost techniques, such as electrical conductivity logging, can be biased by cation exchange reactions. To characterize the aquifer transport properties a saline and heat forced gradient test was employed. The field site, located near Ferrara (Northern Italy), is a well characterized site, which covers an area of 200 m2 and is equipped with a grid of 13 monitoring wells. A two-well (injection and pumping) system was employed to perform the forced gradient test and a straddle packer was installed in the injection well to avoid in-well artificial mixing. The contemporary continuous monitor of hydraulic head, electrical conductivity and temperature within the wells permitted to obtain a robust dataset, which was then used to accurately simulate injection conditions, to calibrate a 3D transient flow and transport model and to obtain aquifer properties at small scale. The transient groundwater flow and solute-heat transport model was built using SEAWAT. The result significance was further investigated by comparing the results with already published column experiments and a natural gradient tracer test performed in the same field. The test procedure shown here can provide a fast and low cost technique to characterize coarse grain aquifer properties, although some limitations can be highlighted, such as the small value of the dispersion coefficient compared to values obtained by natural gradient tracer test, or the fast depletion of heat signal due to high thermal diffusivity.

  9. Estimation of Power Consumption in the Circular Sawing of Stone Based on Tangential Force Distribution

    Huang, Guoqin; Zhang, Meiqin; Huang, Hui; Guo, Hua; Xu, Xipeng

    2018-04-01

    Circular sawing is an important method for the processing of natural stone. The ability to predict sawing power is important in the optimisation, monitoring and control of the sawing process. In this paper, a predictive model (PFD) of sawing power, which is based on the tangential force distribution at the sawing contact zone, was proposed, experimentally validated and modified. With regard to the influence of sawing speed on tangential force distribution, the modified PFD (MPFD) performed with high predictive accuracy across a wide range of sawing parameters, including sawing speed. The mean maximum absolute error rate was within 6.78%, and the maximum absolute error rate was within 11.7%. The practicability of predicting sawing power by the MPFD with few initial experimental samples was proved in case studies. On the premise of high sample measurement accuracy, only two samples are required for a fixed sawing speed. The feasibility of applying the MPFD to optimise sawing parameters while lowering the energy consumption of the sawing system was validated. The case study shows that energy use was reduced 28% by optimising the sawing parameters. The MPFD model can be used to predict sawing power, optimise sawing parameters and control energy.

  10. Estimating product-to-product variations in metal forming using force measurements

    Havinga, Gosse Tjipke; Van Den Boogaard, Ton

    2017-01-01

    The limits of production accuracy of metal forming processes can be stretched by the development of control systems for compensation of product-to-product variations. Such systems require the use of measurements from each semi-finished product. These measurements must be used to estimate the final

  11. Work Plan for the Evaluation of Soil Vapor Extraction Using Internal Combustion Engine Technology at Site SS-42 Luke Air Force Base, Arizona

    1996-01-01

    ...). Luke AFB is one of several Air Force installations identified as prospective test sites to demonstrate the ICE system with advanced emission controls as part of a low-cost soil vapor extraction (SVE...

  12. EFFECT OF POLARIMETRIC NOISE ON THE ESTIMATION OF TWIST AND MAGNETIC ENERGY OF FORCE-FREE FIELDS

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay; Joshi, Jayant

    2009-01-01

    The force-free parameter α, also known as helicity parameter or twist parameter, bears the same sign as the magnetic helicity under some restrictive conditions. The single global value of α for a whole active region gives the degree of twist per unit axial length. We investigate the effect of polarimetric noise on the calculation of global α value and magnetic energy of an analytical bipole. The analytical bipole has been generated using the force-free field approximation with a known value of constant α and magnetic energy. The magnetic parameters obtained from the analytical bipole are used to generate Stokes profiles from the Unno-Rachkovsky solutions for polarized radiative transfer equations. Then we add random noise of the order of 10 -3 of the continuum intensity (I c ) in these profiles to simulate the real profiles obtained by modern spectropolarimeters such as Hinode (SOT/SP), SVM (USO), ASP, DLSP, POLIS, and SOLIS etc. These noisy profiles are then inverted using a Milne-Eddington inversion code to retrieve the magnetic parameters. Hundred realizations of this process of adding random noise and polarimetric inversion is repeated to study the distribution of error in global α and magnetic energy values. The results show that (1) the sign of α is not influenced by polarimetric noise and very accurate values of global twist can be calculated, and (2) accurate estimation of magnetic energy with uncertainty as low as 0.5% is possible under the force-free condition.

  13. Quantifying emissions from spontaneous combustion

    NONE

    2013-09-01

    Spontaneous combustion can be a significant problem in the coal industry, not only due to the obvious safety hazard and the potential loss of valuable assets, but also with respect to the release of gaseous pollutants, especially CO2, from uncontrolled coal fires. This report reviews methodologies for measuring emissions from spontaneous combustion and discusses methods for quantifying, estimating and accounting for the purpose of preparing emission inventories.

  14. Estimations of One Repetition Maximum and Isometric Peak Torque in Knee Extension Based on the Relationship Between Force and Velocity.

    Sugiura, Yoshito; Hatanaka, Yasuhiko; Arai, Tomoaki; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2016-04-01

    We aimed to investigate whether a linear regression formula based on the relationship between joint torque and angular velocity measured using a high-speed video camera and image measurement software is effective for estimating 1 repetition maximum (1RM) and isometric peak torque in knee extension. Subjects comprised 20 healthy men (mean ± SD; age, 27.4 ± 4.9 years; height, 170.3 ± 4.4 cm; and body weight, 66.1 ± 10.9 kg). The exercise load ranged from 40% to 150% 1RM. Peak angular velocity (PAV) and peak torque were used to estimate 1RM and isometric peak torque. To elucidate the relationship between force and velocity in knee extension, the relationship between the relative proportion of 1RM (% 1RM) and PAV was examined using simple regression analysis. The concordance rate between the estimated value and actual measurement of 1RM and isometric peak torque was examined using intraclass correlation coefficients (ICCs). Reliability of the regression line of PAV and % 1RM was 0.95. The concordance rate between the actual measurement and estimated value of 1RM resulted in an ICC(2,1) of 0.93 and that of isometric peak torque had an ICC(2,1) of 0.87 and 0.86 for 6 and 3 levels of load, respectively. Our method for estimating 1RM was effective for decreasing the measurement time and reducing patients' burden. Additionally, isometric peak torque can be estimated using 3 levels of load, as we obtained the same results as those reported previously. We plan to expand the range of subjects and examine the generalizability of our results.

  15. Tubular combustion

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  16. Cost and Savings Estimates the Air Force Used to Decide Against Relocating the Electromagnetic Compatibility Analysis Center from Annapolis, Maryland, to Duluth, Minnesota.

    1983-03-09

    that maximize electromagnetic compatibility potential. -- Providing direct assistance on an reimbursable basis to DOD and other Government agencies on...value, we estimated that reimburs - able real estate expenses would average about $6,458 rather than $4,260 included in the Air Force estimate. When the...of estimated reimbursement was assumed to be necessary to encourage the relocation of more professional employees and increase their estimated

  17. Advanced Combustion

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  18. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model.

    Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K

    2014-04-04

    This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.

  19. The combustion of sodium

    Newman, R.N.

    1978-01-01

    The burning rates of sodium in the form of vapour jets, droplets, sprays and unconfined and confined pools have been reviewed. Attention has been paid to assessing the value of models in the various combustion modes. Additional models have been constructed for the descriptions of laminar and turbulent vapour jets, stationary droplets, forced convection over ambient pool fires together with correlations for peak pressures in confined pool environments. Where appropriate experiments with sodium have not been conducted, the likely behaviour is predicted by comparison with the burning of other fuels, particularly in the field of large free ambient fires. Some areas where further knowledge is required are highlighted. (author)

  20. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Voigt, Aiko [Max Planck Institute for Meteorology, Bundesstr. 53, D-20146 Hamburg (Germany); Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu [Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2012-09-20

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A

  1. THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING

    Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S.

    2012-01-01

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3× the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer

  2. Method of estimating time management of safety control of combustion. Nensho anzen seigyo no tame no jikan kanri No hyoka hoho

    Moroboshi, M. (Yamatake-Honeywell Co. Ltd., Tokyo (Japan))

    1993-12-01

    The results of investigating time management (permissible value of ignition time and prepurge time) for safety control of combustion relating to a combustor is reported. It is shown that the heating value of hydrocarbon-based fuel is determined by molecular weight irrespective of molecular structure and constant (11200kcal/kg) per unit weight; the heating value of mixture gas of theoretical mixture ratio is constant (1000kcal/m[sup 3]) indifferently of the kind of fuel; and that the product of the heating value of a fuel and the lower limit of its explosion limit is approximately constant (400-600kcal/m[sup 3]). Succeedingly it is shown based on these values that allowable ignition time is determined by the combustion chamber load (ratio of the maximum amount, 10[sup 4]kcal/h, of combustion to the volume of combustion chamber); the effect of dilution by exhaust lengthens it by only about 50%; and that the conventional criterion that the frequency of ventilation of prepurge should be 4-5 or that the minimum time of prepurge should be 30 seconds is appropriate. 6 refs., 4 figs., 1 tab.

  3. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors.

    Guo, Yuzhu; Storm, Fabio; Zhao, Yifan; Billings, Stephen A; Pavic, Aleksandar; Mazzà, Claudia; Guo, Ling-Zhong

    2017-09-22

    Measurement of the ground reaction forces (GRF) during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF) from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR) is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0%) using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra). Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications.

  4. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  5. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.

    Horstmann, Jan T; Henningsson, Per; Thomas, Adrian L R; Bomphrey, Richard J

    2014-01-01

    Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV) of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body), angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals.

  6. Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates.

    Jan T Horstmann

    Full Text Available Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body, angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals.

  7. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  8. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor.

    Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan

    2016-08-18

    The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures.

  9. Feasibility design of a floating airport and estimation of environmental forces on it; Futaishiki kuko no sekkei to kankyo gairyoku no suitei ni kansuru kento

    Inoue, Y.; Tabeta, S.; Takei, Y. [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    1996-12-31

    A rough design was performed on a floating airport. On this floating structure, environmental external force was estimated, mooring design was carried out, and discussions was given on the position retaining performance important for airport functions and behavior of the floating structure. The discussion was given on cases that the airport is surrounded and not surrounded by floating breakwaters. A floating structure which becomes super-large in size requires considerations on force due to sea level gradient as a result of a tide. Deriving flow condition changes and force acting on the floating structure simultaneously by using numerical calculations makes it possible to estimate current force given with considerations on influence of the flow conditions created by installing the floating airport. Estimation was carried out by using a zone dividing method on wave drifting force acting upon the floating airport. As a result, it was found that installing floating and permeating type breakwaters can reduce the wave drifting force acting on the floating airport. The wave drifting force working on the floating airport can be reduced by installing the floating and permeating type breakwaters to lower levels than when no such breakwaters are installed. The airport may be moored with less number of fenders when the fenders of the same type are used. 18 refs., 10 figs., 5 tabs.

  10. A Synthetical Estimation of Northern Hemisphere Sea-ice Albedo Radiative Forcing and Feedback between 1982 and 2009

    Cao, Y.

    2014-12-01

    The decreasing surface albedo caused by continously vanishing sea ice over the Arctic plays a very important role in Arctic warming amplification. However, the quantification of the change of radiative forcing at top of atmosphere (TOA) introduced by the decreasing sea ice albedo and its generated feedback to the climate remain uncertain. Two recent representative studies showed a large difference with each other: Flanner et al. (2011) used a method of synthesis of surface albedo and radiative kernels and found that the change of sea ice radiative forcing (ΔSIRF) in Northern Hemisphere (NH) from 1979 to 2008 was 0.22 (0.15 - 0.32) W m-2, and the corresponding sea ice albedo feedback (SIAF) over NH was 0.28 (0.19 - 0.41) W m-2 K-1; while Pistone et al. (2014) directly used the observed planetary albedo to estimate the NH ΔSIRF and SIAF from 1979 to 2011 and draw a NH ΔSIRF of 0.43 ± 0.07 W m-2, which was nearly twice as larger as Flanner's result, and the estimated global SIAF was 0.31 ± 0.04 W m-2 K-1. Motivated by reconciling the difference between these two studies and obtaining a more accurate qualification of the NH ΔSIRF, we used a newly released satellite-retrieved surface albedo product CLARA-A1 and made an attempt in two steps: Firstly, based on synthesising the surface albedo and raditive kernels, we calcualted the ΔSIRF from 1982 to 2009 was 0.20 ± 0.05 W m-2, and the NH SIAF was 0.25 W m-2 K-1; After comparing with TOA observed radiative flux, we found it's quite likely the kernel methods yield an underestimation for the all-sky ΔSIRF. Then, we tried to use TOA observed broadband radiative flux to adjust the estimation with kernels. After an adjustment, the NH all-sky ΔSIRF was 0.34 ± 0.09 W m-2, and the corresponding SIAF was 0.43 W m-2 K-1 over NH and 0.31 W m-2 K-1 over the entire globe.

  11. A practical approach to estimate emission rates of indoor air pollutants due to the use of personal combustible products based on small-chamber studies.

    Szulejko, Jan E; Kim, Ki-Hyun

    2016-02-01

    As emission rates of airborne pollutants are commonly measured from combusting substances placed inside small chambers, those values need to be re-evaluated for the possible significance under practical conditions. Here, a simple numerical procedure is investigated to extrapolate the chamber-based emission rates of formaldehyde that can be released from various combustible sources including e-cigarettes, conventional cigarettes, or scented candles to their concentration levels in a small room with relatively poor ventilation. This simple procedure relies on a mass balance approach by considering the masses of pollutants emitted from source and lost through ventilation under the assumption that mixing occurs instantaneously in the room without chemical reactions or surface sorption. The results of our study provide valuable insights into re-evaluation procedure of chamber data to allow comparison between extrapolated and recommended values to judge the safe use of various combustible products in confined spaces. If two scented candles with a formaldehyde emission rate of 310 µg h(-1) each were lit for 4 h in a small 20 m(3) room with an air change rate of 0.5 h(-1), then the 4-h (candle lit) and 8-h (up to 8 h after candle lighting) TWA [FA] were determined to be 28.5 and 23.5 ppb, respectively. This is clearly above the 8-h NIOSH recommended exposure limit (REL) time weighted average of 16 ppb. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. High Combustion Research Facility

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  13. Combustion Research Laboratory

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  14. Combustion chemistry

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  15. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors

    Yuzhu Guo

    2017-09-01

    Full Text Available Measurement of the ground reaction forces (GRF during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0% using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra. Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications.

  16. Study on the estimation method of maneuvering hydrodynamic force in turning motion; Senkai undoji no soju ryutairyoku suiteiho ni kansuru kenkyu

    Kijima, K; Yukawa, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Maekawa, K [Hokkaido University, Sapporo (Japan). Faculty of Fisheries

    1996-04-10

    Estimation of the maneuvering performance of ships is very important from the viewpoint of safe navigation. Using three types of VLCCs (SR221A, B, C) with locally different stern frame lines as computational models, the estimation method of hull hydrodynamic force in turning motion was studied theoretically taking frame line shapes into account. The unstable behavior of courses was also studied using linear differential coefficients obtained from the estimation result on hull hydrodynamic force in oblique navigation and turning motion. As a result, the estimation result on hull hydrodynamic force was slightly different quantitatively from model test results in a range of large drift angle or turning angular velocity, while that was relatively well agreed with test results in a range of small such angle and velocity. As the study result on the unstable behavior of courses by using linear differential coefficients obtained from the estimation result on hull hydrodynamic force, determination of a course stability was possible by considering local difference in hull shape. 4 refs., 8 figs., 1 tab.

  17. Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

    Coelho, Flavio Codeço; Carvalho, Luiz Max De

    2015-12-01

    Quantifying the attack ratio of disease is key to epidemiological inference and public health planning. For multi-serotype pathogens, however, different levels of serotype-specific immunity make it difficult to assess the population at risk. In this paper we propose a Bayesian method for estimation of the attack ratio of an epidemic and the initial fraction of susceptibles using aggregated incidence data. We derive the probability distribution of the effective reproductive number, Rt, and use MCMC to obtain posterior distributions of the parameters of a single-strain SIR transmission model with time-varying force of infection. Our method is showcased in a data set consisting of 18 years of dengue incidence in the city of Rio de Janeiro, Brazil. We demonstrate that it is possible to learn about the initial fraction of susceptibles and the attack ratio even in the absence of serotype specific data. On the other hand, the information provided by this approach is limited, stressing the need for detailed serological surveys to characterise the distribution of serotype-specific immunity in the population.

  18. Rotary combustion device

    2008-01-01

    Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber.

  19. Experimental study on the estimation method of hydrodynamic force acting on floating offshore structures; Futaishiki kaiyo kozobutsu ni kuwawaru ryutairyoku no suiteiho ni kansuru jikkenteki kenkyu

    Hoshino, K; Kato, S [Ship Research Inst., Tokyo (Japan); Koterayama, W [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-10

    In the design of various floating offshore structures (FOS), the functionality, safety and amenity of FOSs were examined by estimating responses of FOSs to environmental external forces such as wave, wind and flow. In this paper, the estimation method of drag acting on the whole FOS was established by combining previous study results on hydrodynamic force acting on various bodies such as Reynolds number effect (RNE), 3-D effect (TDE) and interference effect (IE). This hydrodynamic force was also compared with that obtained from the experiment result on a FOS model for TLP to confirm the applicability of this estimation method. The estimation result on the drag coefficient in steady flow by considering RNE, TDE and IE well agreed with experimental one. The drag coefficient acting on FOSs in heaving could be estimated in practically sufficient accuracy by considering drag acting on not columns but only square columns. The estimation result on the drag coefficient acting on FOSs in surging by considering RNE, TDE and IE well agreed with experimental one. 12 refs., 10 figs., 1 tab.

  20. The estimated additional costs for combustion of agro fuel and the potential of farmers to influence fuel quality; Identifiering av energiverkens merkostnader vid foerbraenning av aakerbraenslen samt lantbrukarens moejlighet att paaverka braenslekvaliteten

    Myringer, Aase; Petersen, Martin; Olsson, Johanna; Roennbaeck, Marie; Bubholz, Monika; Forsberg, Maya

    2009-05-15

    The main objectives of this study were to identify and calculate the additional costs to energy plants of combustion of agro fuels instead of wood chips, and to determine the potential farmers have to influence fuel quality and thus identify parameters that could be used for pricing in the future. The overall aim is to increase the volume of agro fuels produced. Four agro fuels were considered in this study: willow, straw, husks and reed canary grass. These four were selected because data were available on their combustion at energy plants and because they are representative of different categories of agro fuels: short rotation coppice, crop by-products, seeds and grass. Data were obtained through literature surveys, telephone interviews with farmers, researchers, advisors and contractors, and visits to six energy plants. Combustion properties for each crop and data on combustion were compared. Measures that could be taken by farmers to improve fuel quality today and perhaps in the future were estimated. Although information and experience proved to be lacking in this area, it was possible to identify some potential measures, which are listed below for each fuel. To promote expansion of the agro fuel market, issues concerning business contacts and forms of organisation were examined. The choices and preferences of farmers as regards sale and delivery are influenced by a number of different factors, which were investigated here by studies of the literature and interviews with farmers. There was little documentary evidence available on combustion of agro fuels. Short-term trials have been carried out on small amounts of a number of crop species without specific documentation of emissions, maintenance costs, ash handling, etc. The additional costs to energy plants for combustion of agro fuels compared with wood chips were investigated on visits to energy plants by collecting data directly and by interviewing plant personnel. The additional costs were then calculated

  1. U.S. Air Force Operational Medicine: Using the Enterprise Estimating Supplies Program to Develop Materiel Solutions for the Aeromedical Evacuation In-Flight Kit (FFQDM)

    2011-05-04

    HEMORRHAGE 1 533.10 ACUTE PEPTIC ULCER WITH PERFORATION 1 346.90 MIGRAINE UNPSECIFIED 1 410.90 ACUTE MYOCARDIAL INFARCTION OF UNSPECIFIED SITE 1 451.90...Enterprise Estimating Supplies Program (EESP), for the development and management of Air Force medical Allowance Standards as a baseline for

  2. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  3. Combustion 2000

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  4. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches.

    Huang, Jing; Mei, Ye; König, Gerhard; Simmonett, Andrew C; Pickard, Frank C; Wu, Qin; Wang, Lee-Ping; MacKerell, Alexander D; Brooks, Bernard R; Shao, Yihan

    2017-02-14

    In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.

  5. Reduced NOX combustion method

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  6. Department of the Air Force Justification of Estimates for Fiscal Year 1986 Submitted to Congress February 1985. Aircraft Procurement, Air Force

    1985-02-01

    air-to-grurod cruise missile planned for use c-i the bomber force. IAs one of the zany i,,eapons iu the manned tmorer’s arsenal, t.L AO’ stresses the...29.4 78.4 SPX Cuminication Replacent 8.9 - - tIL OIR PRO•XUJfIN C&X4 ES 1413.3 1877.4 2683.7 3382.3 i ," / Justification for the various line items is...COntROL SYSTEMS DJE TO THE STRESS CORROSION CRACKING TiAT DEVELOPS. THI$ MODIFICATION REPLACES ThE MAGNESIUM COMPONENTS IN THE FLIGHT CONTROL SYSTEM WITH

  7. Coal combustion waste management study

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  8. Estimation of Joint Forces and Moments for the In-Run and Take-Off in Ski Jumping Based on Measurements with Wearable Inertial Sensors

    Grega Logar

    2015-05-01

    Full Text Available This study uses inertial sensors to measure ski jumper kinematics and joint dynamics, which was until now only a part of simulation studies. For subsequent calculation of dynamics in the joints, a link-segment model was developed. The model relies on the recursive Newton–Euler inverse dynamics. This approach allowed the calculation of the ground reaction force at take-off. For the model validation, four ski jumpers from the National Nordic center performed a simulated jump in a laboratory environment on a force platform; in total, 20 jumps were recorded. The results fit well to the reference system, presenting small errors in the mean and standard deviation and small root-mean-square errors. The error is under 12% of the reference value. For field tests, six jumpers participated in the study; in total, 28 jumps were recorded. All of the measured forces and moments were within the range of prior simulated studies. The proposed system was able to indirectly provide the values of forces and moments in the joints of the ski-jumpers’ body segments, as well as the ground reaction force during the in-run and take-off phases in comparison to the force platform installed on the table. Kinematics assessment and estimation of dynamics parameters can be applied to jumps from any ski jumping hill.

  9. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors.

    Logar, Grega; Munih, Marko

    2015-05-13

    This study uses inertial sensors to measure ski jumper kinematics and joint dynamics, which was until now only a part of simulation studies. For subsequent calculation of dynamics in the joints, a link-segment model was developed. The model relies on the recursive Newton-Euler inverse dynamics. This approach allowed the calculation of the ground reaction force at take-off. For the model validation, four ski jumpers from the National Nordic center performed a simulated jump in a laboratory environment on a force platform; in total, 20 jumps were recorded. The results fit well to the reference system, presenting small errors in the mean and standard deviation and small root-mean-square errors. The error is under 12% of the reference value. For field tests, six jumpers participated in the study; in total, 28 jumps were recorded. All of the measured forces and moments were within the range of prior simulated studies. The proposed system was able to indirectly provide the values of forces and moments in the joints of the ski-jumpers' body segments, as well as the ground reaction force during the in-run and take-off phases in comparison to the force platform installed on the table. Kinematics assessment and estimation of dynamics parameters can be applied to jumps from any ski jumping hill.

  10. Direct Aerosol Radiative Forcing from Combined A-Train Observations - Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-sky Estimates

    Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.

    2014-12-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  11. Study of Combustion Characteristics of Hydrocarbon Nanofuel Droplets

    2017-08-23

    NUMBER (Include area code) 23 August 2017 Briefing Charts 01 August 2017 - 31 August 2017 Study of Combustion Characteristics of Hydrocarbon...Douglas Talley N/A 1 Study of Combustion Characteristics of Hydrocarbon Nanofuel Droplets DISTRIBUTION STATEMENT A. Approved for public release...Angeles ϯAir Force Research Laboratory, Aerospace Systems Directorate, Combustion Devices Group, Edwards AFB, CA ONR/ARO/AFOSR Meeting, 23 Aug., 2017

  12. Combustion Research Facility

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  13. Alcohol combustion chemistry

    Sarathy, Mani; Oß wald, Patrick; Hansen, Nils; Kohse-Hö inghaus, Katharina

    2014-01-01

    . While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides

  14. Volume reduction by the incineration of the combustible radioactive solid samples from radioisotope usage at the utilization facility. Estimation of the distribution of low energy β-emitter using the imaging plate

    Yumoto, Yasuhiro; Hanafusa, Tadashi; Nagamatsu, Tomohiro; Okada, Shigeru

    1999-01-01

    We want to establish a system of volume reduction by the incineration of the combustible radioactive solid wastes from radioisotope usage at the utilization facility. We have been performing experiments using an experimental incineration system to examine the distribution of radionuclides during incineration and to collect basic data. To reproduce the realistic conditions of incineration of low-level radioactive wastes in an experimental system, we adopted new incineration methods in this study. Low level radioactive samples (LLRS) were set up in a mesh container of stainless steel and incinerated at high temperature (over 800 degC) generated by two sets of high calorie gas burners. Low energy β-emitters 35 S, 45 Ca, 33 P, and a high energy β-emitter 32 P were used for the experiment. Their translocation percentages in exhaust air and dust were estimated using the Imaging Plate. Distribution of radionuclides during the incineration was similar to that estimated by conventional methods by our study or to that reported in incineration of liquid scintillation cocktail waste. We concluded that the use of the Imaging Plates is a simple and reliable method for estimation of the distribution of low energy β-emitters in incineration gas and ash. (author)

  15. Importance of Preserving Cross-correlation in developing Statistically Downscaled Climate Forcings and in estimating Land-surface Fluxes and States

    Das Bhowmik, R.; Arumugam, S.

    2015-12-01

    Multivariate downscaling techniques exhibited superiority over univariate regression schemes in terms of preserving cross-correlations between multiple variables- precipitation and temperature - from GCMs. This study focuses on two aspects: (a) develop an analytical solutions on estimating biases in cross-correlations from univariate downscaling approaches and (b) quantify the uncertainty in land-surface states and fluxes due to biases in cross-correlations in downscaled climate forcings. Both these aspects are evaluated using climate forcings available from both historical climate simulations and CMIP5 hindcasts over the entire US. The analytical solution basically relates the univariate regression parameters, co-efficient of determination of regression and the co-variance ratio between GCM and downscaled values. The analytical solutions are compared with the downscaled univariate forcings by choosing the desired p-value (Type-1 error) in preserving the observed cross-correlation. . For quantifying the impacts of biases on cross-correlation on estimating streamflow and groundwater, we corrupt the downscaled climate forcings with different cross-correlation structure.

  16. Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination

    Waag, Wladislaw; Sauer, Dirk Uwe

    2013-01-01

    Highlights: • New adaptive approach for the EMF estimation. • The EMF is estimated by observing the voltage change after the current interruption. • The approach enables an accurate SoC and capacity determination. • Real-time capable algorithm. - Abstract: The online estimation of battery states and parameters is one of the challenging tasks when battery is used as a part of the pure electric or hybrid energy system. For the determination of the available energy stored in the battery, the knowledge of the present state-of-charge (SOC) and capacity of the battery is required. For SOC and capacity determination often the estimation of the battery electromotive force (EMF) is employed. The electromotive force can be measured as an open circuit voltage (OCV) of the battery when a significant time has elapsed since the current interruption. This time may take up to some hours for lithium-ion batteries and is needed to eliminate the influence of the diffusion overvoltages. This paper proposes a new approach to estimate the EMF by considering the OCV relaxation process within only some first minutes after the current interruption. The approach is based on an online fitting of an OCV relaxation model to the measured OCV relaxation curve. This model is based on an equivalent circuit consisting of a voltage source (represents the EMF) in series with the parallel connection of the resistance and a constant phase element (CPE). Based on this fitting the model parameters are determined and the EMF is estimated. The application of this method is exemplarily demonstrated for the state-of-charge and capacity estimation of the lithium-ion battery in an electrical vehicle. In the presented example the battery capacity is determined with the maximal inaccuracy of 2% using the EMF estimated at two different levels of state-of-charge. The real-time capability of the proposed algorithm is proven by its implementation on a low-cost 16-bit microcontroller (Infineon XC2287)

  17. Uncertainties in hydrogen combustion

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  18. Estimation of the influence of tool wear on force signals: A finite element approach in AISI 1045 orthogonal cutting

    Equeter, Lucas; Ducobu, François; Rivière-Lorphèvre, Edouard; Abouridouane, Mustapha; Klocke, Fritz; Dehombreux, Pierre

    2018-05-01

    Industrial concerns arise regarding the significant cost of cutting tools in machining process. In particular, their improper replacement policy can lead either to scraps, or to early tool replacements, which would waste fine tools. ISO 3685 provides the flank wear end-of-life criterion. Flank wear is also the nominal type of wear for longest tool lifetimes in optimal cutting conditions. Its consequences include bad surface roughness and dimensional discrepancies. In order to aid the replacement decision process, several tool condition monitoring techniques are suggested. Force signals were shown in the literature to be strongly linked with tools flank wear. It can therefore be assumed that force signals are highly relevant for monitoring the condition of cutting tools and providing decision-aid information in the framework of their maintenance and replacement. The objective of this work is to correlate tools flank wear with numerically computed force signals. The present work uses a Finite Element Model with a Coupled Eulerian-Lagrangian approach. The geometry of the tool is changed for different runs of the model, in order to obtain results that are specific to a certain level of wear. The model is assessed by comparison with experimental data gathered earlier on fresh tools. Using the model at constant cutting parameters, force signals under different tool wear states are computed and provide force signals for each studied tool geometry. These signals are qualitatively compared with relevant data from the literature. At this point, no quantitative comparison could be performed on worn tools because the reviewed literature failed to provide similar studies in this material, either numerical or experimental. Therefore, further development of this work should include experimental campaigns aiming at collecting cutting forces signals and assessing the numerical results that were achieved through this work.

  19. Estimation of shortwave direct aerosol radiative forcing at four locations on the Indo-Gangetic plains: Model results and ground measurement

    Bibi, Humera; Alam, Khan; Bibi, Samina

    2017-08-01

    This study provides observational results of aerosol optical and radiative characteristics over four locations in IGP. Spectral variation of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP) were analysed using AErosol RObotic NETwork (AERONET) data. The analysis revealed that coarse particles were dominant in summer and pre-monsoon, while fine particles were more pronounced in winter and post-monsoon. Furthermore, the spatio-temporal variations of Shortwave Direct Aerosol Radiative Forcing (SDARF) and Shortwave Direct Aerosol Radiative Forcing Efficiency (SDARFE) at the Top Of Atmosphere (TOA), SURface (SUR) and within ATMosphere (ATM) were calculated using SBDART model. The atmospheric Heating Rate (HR) associated with SDARFATM were also computed. It was observed that the monthly averaged SDARFTOA and SDARFSUR were found to be negative leading to positive SDARFATM during all the months over all sites. The increments in net atmospheric forcing lead to maximum HR in November-December and May. The seasonal analysis of SDARF revealed that SDARFTOA and SDARFSUR were negative during all seasons. The SW atmospheric absorption translates to highest atmospheric HR during summer over Karachi and during pre-monsoon over Lahore, Jaipur and Kanpur. Like SDARF, the monthly and seasonal variations of SDARFETOA and SDARFESUR were found to be negative, resulting in positive atmospheric forcing. Additionally, to compare the model estimated forcing against AERONET derived forcing, the regression analysis of AERONET-SBDART forcing were carried out. It was observed that SDARF at SUR and TOA showed relatively higher correlation over Lahore, moderate over Jaipur and Kanpur and lower over Karachi. Finally, the analysis of National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air masses were arriving from multiple source locations.

  20. New class of combustion processes

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  1. Technical Report Series on Global Modeling and Data Assimilation. Volume 31; Global Surface Ocean Carbon Estimates in a Model Forced by MERRA

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2013-01-01

    MERRA products were used to force an established ocean biogeochemical model to estimate surface carbon inventories and fluxes in the global oceans. The results were compared to public archives of in situ carbon data and estimates. The model exhibited skill for ocean dissolved inorganic carbon (DIC), partial pressure of ocean CO2 (pCO2) and air-sea fluxes (FCO2). The MERRA-forced model produced global mean differences of 0.02% (approximately 0.3 microns) for DIC, -0.3% (about -1.2 (micro) atm; model lower) for pCO2, and -2.3% (-0.003 mol C/sq m/y) for FCO2 compared to in situ estimates. Basin-scale distributions were significantly correlated with observations for all three variables (r=0.97, 0.76, and 0.73, P<0.05, respectively for DIC, pCO2, and FCO2). All major oceanographic basins were represented as sources to the atmosphere or sinks in agreement with in situ estimates. However, there were substantial basin-scale and local departures.

  2. NOx Emission Reduction by Oscillating Combustion

    None

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  3. Combustion modeling in internal combustion engines

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  4. Flameless Combustion Workshop

    2005-09-20

    Flame volume, and flame length during the HiTAC condition were further studied numerically and systematically. A simple HiTAC flame volume can be...oxygen concentration (stoichiometric ratio) is included, was derived to describe the local influence of buoyancy force along the chemical flame length . It...and low oxygen concentration oxidizer condition. Furthermore, the maximum entrainments along the flame length are estimated. 6. NO emission formed by

  5. Inverse estimation for the unknown frost geometry on the external wall of a forced-convection pipe

    Chen, W.-L.; Yang, Y.-C.

    2009-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown frost-layer boundary profile on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown profile; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation on boundary profile can be obtained for the test case considered in this study.

  6. Boiler using combustible fluid

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  7. The Air Force Critical Care Air Transport Team (CCATT): Using the Estimating Supplies Program (ESP) to Validate Clinical Requirements

    2005-04-05

    Disease, Severe. 0249 Peptic Ulcer , Gastric or Duodenal, Penetrating and/or Perforating . 0250 Peptic Ulcer , Gastric or Duodenal, Uncomplicated. 0251...in US Air Force (USAF) Allowance Standard (AS) development and management . The Critical Care Air Transport Team (CCATT) Unit Type Code (UTC) AS was...tasks enabling the management of the critically ill or injured en route to the appropriate level of care (LOC) or medical treatment facility (MTF

  8. A Bayesian analysis of sensible heat flux estimation: Quantifying uncertainty in meteorological forcing to improve model prediction

    Ershadi, Ali; McCabe, Matthew; Evans, Jason P.; Mariethoz, Gregoire; Kavetski, Dmitri

    2013-01-01

    The influence of uncertainty in land surface temperature, air temperature, and wind speed on the estimation of sensible heat flux is analyzed using a Bayesian inference technique applied to the Surface Energy Balance System (SEBS) model

  9. Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability

    C. Déandreis

    2012-06-01

    Full Text Available This paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate.

    The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m−2 for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m−2. The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8 μg (SO4 m−3 in our model.

    The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate

  10. Water exchange estimates derived from forcing for the hydraulically coupled basins surrounding Aespoe island and adjacent coastal water

    Engqvist, A.

    1997-08-01

    A numerical model study based on representative physical forcing data (statistically averaged from approximately 10 years) has been performed of the Aespoe area, subdivided into five separate basins, interconnected by four straits and connected to the Baltic coast through three straits. The water exchange of the shallow Borholmsfjaerden, with comparatively small section areas of its straits, is dominated by the sea level variations while the baroclinic exchange components (estuarine and intermediary circulation) also contribute. The average transit retention time (averaged over the basin volume for a full year cycle) is found to be a little over 40 days for exogenous water (i.e. coastal water and freshwater combined); this measure of the water exchange is comparable to the combined average of an ensemble consisting of 157 similarly analyzed basins distributed along the Swedish east and west coasts. The exchange mechanisms and model assumptions are discussed. The consequences for the retention times by short- and long-term variations of the forcing is also analyzed. The standard deviation (SD) of the retention time during an average year (intra-annual variation) is greater than the SD between years (interannual variation) for all basins except Borholmsfjaerden for which these two measures are in parity. The range of the retention times that results from an extreme combination of forcing factor variation between years is found to be greater the farther a particular basin is located from the coast, measured as the minimal number of separating straits. The results of an earlier investigation are also reviewed

  11. Numerical tools to estimate the flux of a gas across the air–water interface and assess the heterogeneity of its forcing functions

    V. M. N. C. S. Vieira

    2013-03-01

    Full Text Available A numerical tool was developed for the estimation of gas fluxes across the air–water interface. The primary objective is to use it to estimate CO2 fluxes. Nevertheless application to other gases is easily accomplished by changing the values of the parameters related to the physical properties of the gases. A user-friendly software was developed allowing to build upon a standard kernel a custom-made gas flux model with the preferred parameterizations. These include single or double layer models; several numerical schemes for the effects of wind in the air-side and water-side transfer velocities; the effects of atmospheric stability, surface roughness and turbulence from current drag with the bottom; and the effects on solubility of water temperature, salinity, air temperature and pressure. An analysis was also developed which decomposes the difference between the fluxes in a reference situation and in alternative situations into its several forcing functions. This analysis relies on the Taylor expansion of the gas flux model, requiring the numerical estimation of partial derivatives by a multivariate version of the collocation polynomial. Both the flux model and the difference decomposition analysis were tested with data taken from surveys done in the lagoon system of Ria Formosa, south Portugal, in which the CO2 fluxes were estimated using the infrared gas analyzer (IRGA and floating chamber method, whereas the CO2 concentrations were estimated using the IRGA and degasification chamber. Observations and estimations show a remarkable fit.

  12. Relative influences of the metocean forcings on the drifting ice pack and estimation of internal ice stress gradients in the Labrador Sea

    Turnbull, I. D.; Torbati, R. Z.; Taylor, R. S.

    2017-07-01

    Understanding the relative influences of the metocean forcings on the drift of sea ice floes is a crucial component to the overall characterization of an ice environment and to developing an understanding of the factors controlling the ice dynamics. In addition, estimating the magnitude of the internal stress gradients on drifting sea ice floes generated by surrounding ice cover is important for modeling operations, informing the design of offshore structures and vessels in ice environments, and for the proper calibration of Discrete Element Models (DEM) of fields of drifting ice floes. In the spring of 2015 and 2016, four sea ice floes offshore Makkovik, Labrador were tagged with satellite-linked ice tracking buoys along with one satellite-linked weather station on each floe to transmit wind speed and direction. Twenty satellite-linked Lagrangian surface ocean current tracking buoys were also deployed in the open water adjacent to the targeted ice floes. In this paper, the dynamics of the four ice floes are explored in terms of the relative proportions which were forced by the wind, current, sea surface topography, Coriolis, and internal stress gradients. The internal ice stress gradients are calculated as residuals between the observed accelerations of the floes as measured by the tracking buoys and the sums of the other metocean forcings. Results show that internal ice stress gradients accounted for up to 50% of the observed forcing on the floes, and may have reached up to around 0.19 kPa.

  13. Combustion in a High-Speed Compression-Ignition Engine

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  14. Lump wood combustion process

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  15. Study on estimating fluid force acting on a hull during maneuvering movement; Soju undoji no sentai ni sayosuru ryutairyoku no suitei ni kansuru kenkyu

    Yukawa, K; Kijima, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    With types of general cargo vessel and VLCC vessel as the object of discussion, a method was discussed to estimate fluid force acting theoretically on a hull during maneuvering movement, taking frame line shape into consideration. A vortex model was improved by giving consideration of time-based decay on intensity of discrete vortex lines based on the Rankine vortex. Modeling of flow fields around a hull was attempted to deal with movements in which width and draft are small as compared with the ship length, and turning angle speed and deviation angle are small. It was assumed that the ship speed is slow and effects of waves can be disregarded. Specular images of the hull were taken with regard to free surface, and handled as a double body model. Speed potential to express flow fields around a hull is required to satisfy the following five boundary conditions of Laplace, substance surface, free vortex layers, infinity and exfoliation. The potential may be handled as a two-dimensional problem in a field near the hull by using assumption of a slender and long body and conformal mapping. It was found possible to estimate hull fluid force with relatively good accuracy. Fine linear coefficients derived from the estimation were used to have performed highly accurate determination on course stabilization. 5 refs., 6 figs., 2 tabs.

  16. Flameless Combustion Workshop

    Gutmark, Ephraim

    2005-01-01

    .... "Flameless Combustion" is characterized by high stability levels with virtually no thermoacoustic instabilities, very low lean stability limits and therefore extremely low NOx production, efficient...

  17. Research Combustion Laboratory (RCL)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  18. Combustion Byproducts Recycling Consortium

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  19. Estimation of the Ultimate Tensile Strength of Steel from Its HB and HV Hardness Numbers and Coercive Force

    Sandomirskii, S. G.

    2017-11-01

    A formula is derived to accurately describe the tabulated relation between the Brinell ( HB) and Vickers ( HV) hardnesses of steel over the entire range of their possible variation. This formula and the formulas describing the relation between the HB hardness of chromium-molybdenum and chromium-nickel steels and their ultimate tensile strength σu are used to analyze the change in σu of 38KhNM steel upon quenching and tempering. The data that reveal a relation between σu of 38KhNM steel and its coercive force are obtained.

  20. A Bayesian analysis of sensible heat flux estimation: Quantifying uncertainty in meteorological forcing to improve model prediction

    Ershadi, Ali

    2013-05-01

    The influence of uncertainty in land surface temperature, air temperature, and wind speed on the estimation of sensible heat flux is analyzed using a Bayesian inference technique applied to the Surface Energy Balance System (SEBS) model. The Bayesian approach allows for an explicit quantification of the uncertainties in input variables: a source of error generally ignored in surface heat flux estimation. An application using field measurements from the Soil Moisture Experiment 2002 is presented. The spatial variability of selected input meteorological variables in a multitower site is used to formulate the prior estimates for the sampling uncertainties, and the likelihood function is formulated assuming Gaussian errors in the SEBS model. Land surface temperature, air temperature, and wind speed were estimated by sampling their posterior distribution using a Markov chain Monte Carlo algorithm. Results verify that Bayesian-inferred air temperature and wind speed were generally consistent with those observed at the towers, suggesting that local observations of these variables were spatially representative. Uncertainties in the land surface temperature appear to have the strongest effect on the estimated sensible heat flux, with Bayesian-inferred values differing by up to ±5°C from the observed data. These differences suggest that the footprint of the in situ measured land surface temperature is not representative of the larger-scale variability. As such, these measurements should be used with caution in the calculation of surface heat fluxes and highlight the importance of capturing the spatial variability in the land surface temperature: particularly, for remote sensing retrieval algorithms that use this variable for flux estimation.

  1. Mental health of a police force: estimating prevalence of work-related depression in Australia without a direct national measure.

    Lawson, Katrina J; Rodwell, John J; Noblet, Andrew J

    2012-06-01

    The risk of work-related depression in Australia was estimated based on a survey of 631 police officers. Psychological wellbeing and psychological distress items were mapped onto a measure of depression to identify optimal cutoff points. Based on a sample of police officers, Australian workers, in general, are at risk of depression when general psychological wellbeing is considerably compromised. Large-scale estimation of work-related depression in the broader population of employed persons in Australia is reasonable. The relatively high prevalence of depression among police officers emphasizes the need to examine prevalence rates of depression among Australian employees.

  2. Catalytic combustion in small wood burning appliances

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  3. Catalytic combustion in small wood burning appliances

    Oravainen, H [VTT Energy, Jyvaeskylae (Finland)

    1997-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  4. Combustion Stratification for Naphtha from CI Combustion to PPC

    Vallinayagam, R.; Vedharaj, S.; An, Yanzhao; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON

  5. Climate Forcing Datasets for Agricultural Modeling: Merged Products for Gap-Filling and Historical Climate Series Estimation

    Ruane, Alex C.; Goldberg, Richard; Chryssanthacopoulos, James

    2014-01-01

    The AgMERRA and AgCFSR climate forcing datasets provide daily, high-resolution, continuous, meteorological series over the 1980-2010 period designed for applications examining the agricultural impacts of climate variability and climate change. These datasets combine daily resolution data from retrospective analyses (the Modern-Era Retrospective Analysis for Research and Applications, MERRA, and the Climate Forecast System Reanalysis, CFSR) with in situ and remotely-sensed observational datasets for temperature, precipitation, and solar radiation, leading to substantial reductions in bias in comparison to a network of 2324 agricultural-region stations from the Hadley Integrated Surface Dataset (HadISD). Results compare favorably against the original reanalyses as well as the leading climate forcing datasets (Princeton, WFD, WFD-EI, and GRASP), and AgMERRA distinguishes itself with substantially improved representation of daily precipitation distributions and extreme events owing to its use of the MERRA-Land dataset. These datasets also peg relative humidity to the maximum temperature time of day, allowing for more accurate representation of the diurnal cycle of near-surface moisture in agricultural models. AgMERRA and AgCFSR enable a number of ongoing investigations in the Agricultural Model Intercomparison and Improvement Project (AgMIP) and related research networks, and may be used to fill gaps in historical observations as well as a basis for the generation of future climate scenarios.

  6. Plasma igniter for internal combustion engine

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  7. Strobes: An oscillatory combustion

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  8. Catalytically enhanced combustion process

    Rodriguez, C.

    1992-01-01

    This patent describes a fuel having improved combustion efficiency. It comprises a petroleum based liquid hydrocarbon; and a combustion catalyst comprising from about 18 to about 21 weight percent naphthalene, from about 75 to about 80 weight percent toluene, and from about 2.8 to about 3.2 weight percent benzyl alcohol

  9. Fifteenth combustion research conference

    1993-01-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers

  10. On the estimation method of hydrodynamic forces acting on a huge floating structure; Choogata futai ni hataraku haryoku ryutairyoku no suiteiho ni kansuru kenkyu

    Kagemoto, H.; Fujino, M.; Zhu, T. [The University of Tokyo, Tokyo (Japan)

    1996-12-31

    A floating structure such as an international airport is anticipated to have a length of about 5,000 m and a width of about 1,000 m. A singular point method may be used as a method to estimate force that such a floating body is subjected to from waves. In order to derive a solution with practically sufficient accuracy, 1250 elements are required in the length direction and 250 elements in the width direction, or a total of 312,500 elements. Calculating this number of elements should use finally a linear equation system handling complex coefficients comprising 312,500 elements, which would require a huge amount of calculation time. This paper proposes a method to derive solution on wave forces acting on a super-large floating structure or fluid force coefficients such as added mass coefficients and decay coefficients at a practically workable calculation amount and still without degrading the accuracy. The structure was assumed to be a box-shaped structure. Strengths of the singular points to be distributed on each element were assumed to be almost constant except for edges in lateral, oblique and longitudinal waves. Under this assumption, the interior of the floating structure excepting its edges was represented by several large elements to have reduced the number of elements. A calculation method proposed based on this conception was verified of its effectiveness. 2 refs., 25 figs., 3 tabs.

  11. Fuels and Combustion

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  12. Fuels and Combustion

    Johansson, Bengt

    2016-01-01

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  13. Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects

    Subba, T.; Gogoi, M. M.; Pathak, B.; Ajay, P.; Bhuyan, P. K.; Solmon, F.

    2018-05-01

    Ground reaching solar radiation flux was simulated using a 1-dimensional radiative transfer (SBDART) and a 3-dimensional regional climate (RegCM 4.4) model and their seasonality against simultaneous surface measurements carried out using a CNR4 net Radiometer over a sub-Himalayan foothill site of south-east Asia was assessed for the period from March 2013-January 2015. The model simulated incoming fluxes showed a very good correlation with the measured values with correlation coefficient R2 0.97. The mean bias errors between these two varied from -40 W m-2 to +7 W m-2 with an overestimation of 2-3% by SBDART and an underestimation of 2-9% by RegCM. Collocated measurements of the optical parameters of aerosols indicated a reduction in atmospheric transmission path by 20% due to aerosol load in the atmosphere when compared with the aerosol free atmospheric condition. Estimation of aerosol radiative forcing efficiency (ARFE) indicated that the presence of black carbon (BC, 10-15%) led to a surface dimming by -26.14 W m-2 τ-1 and a potential atmospheric forcing of +43.04 W m-2 τ-1. BC alone is responsible for >70% influence with a major role in building up of forcing efficiency of +55.69 W m-2 τ-1 (composite) in the atmosphere. On the other hand, the scattering due to aerosols enhance the outgoing radiation at the top of the atmosphere (ARFETOA -12.60 W m-2 ω-1), the absence of which would have resulted in ARFETOA of +16.91 W m-2 τ-1 (due to BC alone). As a result, 3/4 of the radiation absorption in the atmosphere is ascribed to the presence of BC. This translated to an atmospheric heating rate of 1.0 K day-1, with 0.3 K day-1 heating over the elevated regions (2-4 km) of the atmosphere, especially during pre-monsoon season. Comparison of the satellite (MODIS) derived and ground based estimates of surface albedo showed seasonal difference in their magnitudes (R2 0.98 during retreating monsoon and winter; 0.65 during pre-monsoon and monsoon), indicating that the

  14. PDF Modeling of Turbulent Combustion

    Pope, Stephen B

    2006-01-01

    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  15. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  16. Combustion char characterisation. Final report

    Rosenberg, P; Ingermann Petersen, H; Sund Soerensen, H; Thomsen, E; Guvad, C

    1996-06-01

    The aim was to correlate reactivity measures of raw coals and the maceral concentrates of the coals obtained in a previous project with the morphology of the produced chars by using a wire grid devolatilization method. Work involved determination of morphology, macroporosity and a detailed study by Scanning Electron Microscopy (SEM). Systematic variations in the texture of chars produced in different temperature domains and heating rates were demonstrated by using incident light microscopy on polished blocks and by SEM studies directly on the surfaces of untreated particles. Results suggest that work in the field of char reactivity estimates and correlations between char morphology and coal petrography can be accomplished only on chars produced under heating rates and temperatures comparable to those for the intended use of coal. A general correlation between the coals` petrography and the the morphology of high temperature chars was found. The SEM study of the chars revealed that during the devolatilization period the particles fuse and the macroporosity and thus the morphotypes are formed. After devolatilization ceases, secondary micropores are formed. These develop in number and size throughout the medium combustion interval. At the end of the combustion interval the macrostructure breaks down, caused by coalescence of the increased number of microspores. This can be observed as a change in the morphology and the macroporosity of the chars. Results indicate that char reactivity is a function of the macroporosity and thus the morphology of combustion chars. (AB) 34 refs.

  17. Management of coal combustion wastes

    NONE

    2014-02-01

    It has been estimated that 780 Mt of coal combustion products (CCPs) were produced worldwide in 2010. Only about 53.5% were utilised, the rest went to storage or disposal sites. Disposal of coal combustion waste (CCW) on-site at a power plant may involve decades-long accumulation of waste, with hundreds of thousands, if not millions, of tonnes of dry ash or wet ash slurry being stored. In December 2008, a coal combustion waste pond in Kingston, Tennessee, USA burst. Over 4 million cubic metres of ash sludge poured out, burying houses and rivers in tonnes of toxic waste. Clean-up is expected to continue into 2014 and will cost $1.2 billion. The incident drew worldwide attention to the risk of CCW disposal. This caused a number of countries to review CCW management methods and regulations. The report begins by outlining the physical and chemical characteristics of the different type of ashes generated in a coal-fired power plant. The amounts of CCPs produced and regulations on CCW management in selected countries have been compiled. The CCW disposal methods are then discussed. Finally, the potential environmental impacts and human health risks of CCW disposal, together with the methods used to prevent them, are reviewed.

  18. Processing of hydroxyapatite obtained by combustion synthesis

    Canillas, M.; Rivero, R.; García-Carrodeguas, R.; Barba, F.; Rodríguez, M.A.

    2017-01-01

    One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties. [es

  19. Processing of hydroxyapatite obtained by combustion synthesis

    M. Canillas

    2017-09-01

    Full Text Available One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties.

  20. A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis.

    Prinold, Joe A I; Mazzà, Claudia; Di Marco, Roberto; Hannah, Iain; Malattia, Clara; Magni-Manzoni, Silvia; Petrarca, Maurizio; Ronchetti, Anna B; Tanturri de Horatio, Laura; van Dijkhuizen, E H Pieter; Wesarg, Stefan; Viceconti, Marco

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important.

  1. Estimation of Sensory Pork Loin Tenderness Using Warner-Bratzler Shear Force and Texture Profile Analysis Measurements.

    Choe, Jee-Hwan; Choi, Mi-Hee; Rhee, Min-Suk; Kim, Byoung-Chul

    2016-07-01

    This study investigated the degree to which instrumental measurements explain the variation in pork loin tenderness as assessed by the sensory evaluation of trained panelists. Warner-Bratzler shear force (WBS) had a significant relationship with the sensory tenderness variables, such as softness, initial tenderness, chewiness, and rate of breakdown. In a regression analysis, WBS could account variations in these sensory variables, though only to a limited proportion of variation. On the other hand, three parameters from texture profile analysis (TPA)-hardness, gumminess, and chewiness-were significantly correlated with all sensory evaluation variables. In particular, from the result of stepwise regression analysis, TPA hardness alone explained over 15% of variation in all sensory evaluation variables, with the exception of perceptible residue. Based on these results, TPA analysis was found to be better than WBS measurement, with the TPA parameter hardness likely to prove particularly useful, in terms of predicting pork loin tenderness as rated by trained panelists. However, sensory evaluation should be conducted to investigate practical pork tenderness perceived by consumer, because both instrumental measurements could explain only a small portion (less than 20%) of the variability in sensory evaluation.

  2. Estimation of radiative forcing and chore length of shallow convective clouds (SCC) based on broadband pyranometer measurement network

    Shi, H.

    2017-12-01

    We presented a method to identify and calculate cloud radiative forcing (CRF) and horizontal chore length (L) of shallow convective clouds (SCC) using a network of 9 broadband pyranometers. The analyzing data was collected from the SCC campaign during two years summers (2015 2016) at Baiqi site over Inner Mongolia grassland. The network of pyranometers was operated across a spatial domain covering 42.16-42.30° N and 114.83-114.98° E. The SCC detection method was verified by observer reports and cameras, which showed that the detection method and human observations were in agreement about 75 %. The differences between the SCC detection method and human observations can be responsible for following factors: 1) small or dissipating clouds can be neglected for the value of 1 min of temporal resolution of pyranometer; 2) human observation recorded weather conditions four times every day; 3) SCC was indistinguishable from coexistence of SCC and Cirrus (Ci); 4) the SCC detection method is weighted toward clouds crossing the sun's path, while the human observer can view clouds over the entire sky. The deviation of L can be attributed to two factors: 1) the accuracy of wind speed at height of SCC and the ratio of horizontal and vertical length play a key role in determine values of L; 2) the effect of variance of solar zenith angle can be negligible. The downwelling shortwave CRF of SCC was -134.1 Wm-2. The average value of L of SCC was 1129 m. Besides, the distribution of normalized cloud chore length agreed well with power-law fit.

  3. Application of a simplified mathematical model to estimate the effect of forced aeration on composting in a closed system.

    Bari, Quazi H; Koenig, Albert

    2012-11-01

    The aeration rate is a key process control parameter in the forced aeration composting process because it greatly affects different physico-chemical parameters such as temperature and moisture content, and indirectly influences the biological degradation rate. In this study, the effect of a constant airflow rate on vertical temperature distribution and organic waste degradation in the composting mass is analyzed using a previously developed mathematical model of the composting process. The model was applied to analyze the effect of two different ambient conditions, namely, hot and cold ambient condition, and four different airflow rates such as 1.5, 3.0, 4.5, and 6.0 m(3) m(-2) h(-1), respectively, on the temperature distribution and organic waste degradation in a given waste mixture. The typical waste mixture had 59% moisture content and 96% volatile solids, however, the proportion could be varied as required. The results suggested that the model could be efficiently used to analyze composting under variable ambient and operating conditions. A lower airflow rate around 1.5-3.0 m(3) m(-2) h(-1) was found to be suitable for cold ambient condition while a higher airflow rate around 4.5-6.0 m(3) m(-2) h(-1) was preferable for hot ambient condition. The engineered way of application of this model is flexible which allows the changes in any input parameters within the realistic range. It can be widely used for conceptual process design, studies on the effect of ambient conditions, optimization studies in existing composting plants, and process control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Estimation of the state of health of students of the I course of build university attributed to task medical force.

    Kozlova A.Yu.

    2012-11-01

    Full Text Available The different approaches are considered near the estimation of the state of health of students. General description of the state of health and activity of students is resulted on its maintenance. It is marked that different rejections have 30% students in a state of health, disease of temporal or permanent character. The students of the first course of university took part in research. It is set that unsatisfactory physical preparation is observed 43% students, good - at 37,2%, excellent at 20%. On the whole there is a tendency to the decline of motive activity of students of the I course, frequent violations of the mode of sleep and feed. The system of recommendations is developed for employments by a physical culture and sport. It is marked that for maintenance and optimization of resources of organism of students of the I course the correctly organized athletic health work is needed.

  5. Estimation of mountain slope stability depending on ground consistency and slip-slide resistance changes on impact of dynamic forces

    Hayroyan, H. S.; Hayroyan, S. H.; Karapetyan, K. A.

    2018-04-01

    In this paper, three types of clayish soils with different consistency and humidity properties and slip-slide resistance indexes are considered on impact of different cyclic shear stresses. The side-surface deformation charts are constructed on the basis of experimental data obtained testing cylindrical soil samples. It is shown that the fluctuation amplitude depends on time and the consistency index depends on the humidity condition in the soil inner contact and the connectivity coefficients. Consequently, each experiment is interpreted. The main result of this research is that it is necessary to make corrections in the currently active schemes of slip-hazardous slopes stability estimation, which is a crucial problem requiring ASAP solution.

  6. Fuel Combustion Laboratory | Transportation Research | NREL

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  7. Testing fireproof materials in a combustion chamber

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time. Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results – i.e. thermal distribution inside and heat release rate that has gone through the sample.

  8. Sandia Combustion Research: Technical review

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  9. Shale oil combustion

    Al-dabbas, M.A.

    1992-05-01

    A 'coutant' carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs

  10. Shale oil combustion

    Al-dabbas, M A

    1992-05-01

    A `coutant` carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs.

  11. Indoor combustion and asthma.

    Belanger, Kathleen; Triche, Elizabeth W

    2008-08-01

    Indoor combustion produces both gases (eg, nitrogen dioxide, carbon monoxide) and particulate matter that may affect the development or exacerbation of asthma. Sources in the home include both heating devices (eg, fireplaces, woodstoves, kerosene heaters, flued [ie, vented] or nonflued gas heaters) and gas stoves for cooking. This article highlights the recent literature examining associations between exposure to indoor combustion and asthma development and severity. Since asthma is a chronic condition affecting both children and adults, both age groups are included in this article. Overall, there is some evidence of an association between exposure to indoor combustion and asthma, particularly asthma symptoms in children. Some sources of combustion such as coal stoves have been more consistently associated with these outcomes than other sources such as woodstoves.

  12. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  13. ESTIMATES OF CURRENT AND FUTURE DEVELOPMENT OF LABOUR FORCE AND MIGRATION RELATIONS OF RUSSIAN ARCTIC’S REGIONS

    A. G. Korovkin

    2015-01-01

    Full Text Available This article discusses the use of balance of labour resources and population and labour resources movements balance for the assessment of the current and future state of regional labor markets and migration linkages in the regions of the Russian Arctic. The purpose of this article is to obtain projections of the dynamics of the main indicators of balance of labour resources, structure and dynamics of population and labor resources of the Russian Arctic regions. The study was performed in the methodology of balance of labour resources and population and labour resources movements balance. The model of population and labor resources movement, taking into account the repeated displacement of people is used. With account of the historical period we forecast the main parameters of population movements structure. The results of calculations on the example for the regions of the Asian and European parts of the Russian Arctic is given. The main problems of the Arctic regions labor resources are identifi ed. The resulting estimates of prospective changes in the structure of balance of labour resources, the most signifi cant sources of additional labor resources, changes to the importance of these sources. The article considers the trends of inter-regional movement of population and labor resources. The analysis of the main areas of origin and regions of arrival is made. The main donor regions and the recipient regions for regions of the Russian Arctic are named. The analysis of structural imbalances on the regional labour markets is made. The contribution the Arctic regions in the magnitude of structural unemployment is measured. Its shown, which regions can be conventionally considered labor-surplus and-defi cient. The results of the study can be used in the development of regional employment programmes, the development and implementation of migration policy, the development of the forecast of labour resources balance sheet, and especially

  14. Mapping to Estimate Health-State Utility from Non-Preference-Based Outcome Measures: An ISPOR Good Practices for Outcomes Research Task Force Report.

    Wailoo, Allan J; Hernandez-Alava, Monica; Manca, Andrea; Mejia, Aurelio; Ray, Joshua; Crawford, Bruce; Botteman, Marc; Busschbach, Jan

    2017-01-01

    Economic evaluation conducted in terms of cost per quality-adjusted life-year (QALY) provides information that decision makers find useful in many parts of the world. Ideally, clinical studies designed to assess the effectiveness of health technologies would include outcome measures that are directly linked to health utility to calculate QALYs. Often this does not happen, and even when it does, clinical studies may be insufficient for a cost-utility assessment. Mapping can solve this problem. It uses an additional data set to estimate the relationship between outcomes measured in clinical studies and health utility. This bridges the evidence gap between available evidence on the effect of a health technology in one metric and the requirement for decision makers to express it in a different one (QALYs). In 2014, ISPOR established a Good Practices for Outcome Research Task Force for mapping studies. This task force report provides recommendations to analysts undertaking mapping studies, those that use the results in cost-utility analysis, and those that need to critically review such studies. The recommendations cover all areas of mapping practice: the selection of data sets for the mapping estimation, model selection and performance assessment, reporting standards, and the use of results including the appropriate reflection of variability and uncertainty. This report is unique because it takes an international perspective, is comprehensive in its coverage of the aspects of mapping practice, and reflects the current state of the art. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  15. Sandia Combustion Research Program

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  16. Physics of the fuel cycle. Evaluation of methods, uncertainties and estimation of the material balance for fuels UO{sub 2} and UO{sub 2}-PuO{sub 2}; Physique du cycle du combustible evaluation des methodes, incertitudes et estimation du bilan matiere pour les combustibles UO{sub 2} et UO{sub 2}-PuO{sub 2}

    Monier, C

    1997-09-01

    The research works of this thesis are aimed to evaluate the methods and the associated uncertainties for the material balances estimation of the burn-up UO{sub 2} and MOX fuels which intervene in the fuel cycle physics. The studies carried out are used to qualify the cycle `package` DARWIN for the PWRs material balances estimation. The elaboration and optimisation of the calculation routes are carried out following a very specific methodology, aimed at estimating the bias introduced by the modelizations simplification by a comparison with almost exact reference modelizations. Depending on the precision goals and the informations, the permissible approximation will be determined. Two calculation routes have been developed and the qualified by applying them to the used fuels isotopic analysis interpretation: one `industry-oriented` calculation route which can calculate full UO{sub 2} assemblies material balances with a 2 % precision on the main actinides, respecting the industrial specifications. This route must run with a reasonable calculation time and stay user-friendly; one reference calculation route for the precise interpretation of fuel samples made of pieces of burn-up MOX rods. Aiming to provide material balances with the best possible precision, this route does not have the same specifications concerning its use and its calculation time performance. (author)

  17. Diffusion Driven Combustion Waves in Porous Media

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  18. FY 1994 annual report. Advanced combustion science utilizing microgravity

    NONE

    1994-10-01

    Researches on combustion in microgravity were conducted to develop combustion devices for advanced combustion techniques, and thereby to cope with the requirements for diversification of energy sources and abatement of environmental pollution by exhaust gases. This project was implemented under the research cooperation agreement with US's NASA, and the Japanese experts visited NASA's test facilities. NASA's Lewis Research Center has drop test facilities, of which the 2.2-sec drop test facilities are useful for researches by Japan. The cooperative research themes for combustion in microgravity selected include interactions between fuel droplets, high-pressure combustion of binary fuel sprays, and ignition and subsequent flame propagation in microgravity. An ignition test equipment, density field measurement equipment and flame propagation test equipment were constructed in Japan to conduct the combustion tests in microgravity for, e.g., combustion and evaporation of fuel droplets, combustion characteristics of liquid fuels mixed with solid particles, combustion of coal/oil mixture droplets, and estimating flammability limits. (NEDO)

  19. A Novel Sensorless Control Strategy for Brushless Direct Current Motor Based on the Estimation of Line Back Electro-Motive Force

    Chengde Tong

    2017-09-01

    Full Text Available In this paper, a novel sensorless control strategy based on the estimation of line back electro-motive force (BEMF is proposed. According to the phase relationship between the ideal commutation points of the brushless direct current motor (BLDCM and the zero-crossing points (ZCPs of the line BEMF, the calculation formula of line BEMF is simplified properly and the commutation rule for different positions of the rotor is presented. The estimation error of line BEMF caused by the freewheeling current of silent phase is analyzed, and the solution is given. With the phase shift of the low-pass filter considered, a compensation method using “60°-α” and “120°-α” is studied in this paper to eliminate the error. Finally, the simulation and experimental results show that the rotor-position-detection error is reduced effectively and the motor driven by the accurate commutation signal can work well at low and high speed.

  20. Danish emission inventories for stationary combustion plants

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....

  1. Danish emission inventories for stationary combustion plants

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...

  2. [Estimation of the impact of risk factors control on non-communicable diseases mortality, life expectancy and the labor force lost in China in 2030].

    Zeng, X Y; Li, Y C; Liu, J M; Liu, Y N; Liu, S W; Qi, J L; Zhou, M G

    2017-12-06

    Objective: To estimate the impact of risk factors control on non-communicable diseases (NCDs) mortality, life expectancy and the numbers of labor force lost in China in 2030. Methods: We used the results of China from Global Burden of Disease Study 2013, according to the correlation between death of NCDs and exposure of risk factors and the comparative risk assessment theory, to calculate population attributable fraction (PAF) and disaggregate deaths of NCDs into parts attributable and un-attributable. We used proportional change model to project risk factors exposure and un-attributable deaths of NCDs in 2030, then to get deaths of NCDs in 2030. Simulated scenarios according to the goals of global main NCDs risk factors control proposed by WHO were constructed to calculate the impact of risk factors control on NCDs death, life expectancy and the numbers of labor force lost. Results: If the risk factors exposure changed according to the trend of 1990 to 2013, compared to the numbers (8.499 million) and mortality rate (613.5/100 000) of NCDs in 2013, the death number (12.161 million) and mortality rate (859.2/100 000) would increase by 43.1% and 40.0% respectively in 2030, among which, ischemic stroke (increasing by 103.3% for death number and 98.8% for mortality rate) and ischemic heart disease (increasing by 85.0% for death number and 81.0% for mortality rate) would increase most quickly. If the risk factors get the goals in 2030, the NCDs deaths would reduce 2 631 thousands. If only one risk factor gets the goal, blood pressure (1 484 thousands NCDs deaths reduction), smoking (717 thousands reduction) and BMI (274 thousands reduction) would be the most important factors affecting NCDs death. Blood pressure control would have greater impact on ischemic heart disease (662 thousands reduction) and hemorrhagic stroke (449 thousands reduction). Smoking control would have the greatest effect on lung cancer (251 thousands reduction) and chronic obstructive pulmonary

  3. Transient flow combustion

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  4. Combustion and regulation; Combustion et reglementation

    NONE

    1997-12-31

    This conference was organized after the publication of the French by-law no 2010 relative to combustion installations and to the abatement of atmospheric pollution. Five topics were discussed during the conference: the new regulations, their content, innovations and modalities of application; the means of energy suppliers to face the new provisions and their schedule; the manufacturers proposals for existing installations and the new equipments; the administration control; and the impact of the new measures on exploitation and engineering. Twenty papers and 2 journal articles are reported in these proceedings. (J.S.)

  5. Combustible structural composites and methods of forming combustible structural composites

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  6. NOx Emission Reduction by Oscillating Combustion

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  7. NOx Emission Reduction by Oscillating combustion

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  8. Optical Tomography in Combustion

    Evseev, Vadim

    spectral measurements at several line-of-sights with a view to applications for tomographic measurements on full-scale industrial combustion systems. The system was successfully applied on industrial scale for simultaneous fast exhaust gas temperature measurements in the three optical ports of the exhaust......D project, it was also important to investigate the spectral properties of major combustion species such as carbon dioxide and carbon monoxide in the infrared range at high temperatures to provide the theoretical background for the development of the optical tomography methods. The new software....... JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  9. Internal combustion engine

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  10. Fuel and combustion stratification study of Partially Premixed Combustion

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  11. The Heat of Combustion of Tobacco and Carbon Oxide Formation

    Norman AB

    2014-12-01

    Full Text Available Recent studies demonstrated a relationship between mass burn rates of straight-grade cigarettes and heats of combustion of the tobacco materials. In the present work, relationships between measured heats of combustion and elemental composition of the tobacco materials were further analyzed. Heats of combustion measured in oxygen were directly correlated with the carbon and hydrogen content of the tobacco materials tested. Ash content of the materials was inversely related to the heats of combustion. The water insoluble residues from exhaustively extracted tobacco materials showed higher heats of combustion and higher carbon content than the non-extracted materials, confirming a direct relationship between carbon content and heat of combustion. A value for the heat of formation of tobacco was estimated (1175 cal/g from the heat of combustion data and elemental analysis results. The estimated value for heat of formation of tobacco appears to be constant regardless of the material type. Heat values measured in air were uniformly lower than the combustion heats in oxygen, suggesting formation of CO and other reaction products. Gases produced during bomb calorimetry experiments with five tobacco materials were analyzed for CO and CO2 content. When the materials were burned in oxygen, no CO was found in the gases produced. Measured heats of combustion matched estimates based on CO2 found in the gas and conversion of the sample hydrogen content to water. Materials burned in air produced CO2 (56% to 77% of the sample carbon content and appreciable amounts of CO (7% to 16% of the sample carbon content. Unburned residue containing carbon and hydrogen was found in the air combustion experiments. Estimated heat values based on amounts of CO and CO2 found in the gas and water formed from the hydrogen lost during combustion in air were higher than the measured values. These observations indicate formation of products containing hydrogen when the materials

  12. Aerosols from biomass combustion

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  13. Alcohol combustion chemistry

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  14. Combustibility of tetraphenylborate solids

    Walker, D.D.

    1989-01-01

    Liquid slurries expected under normal in-tank processing (ITP) operations are not ignitible because of their high water content. However, deposits of dry solids from the slurries are combustible and produce dense, black smoke when burned. The dry solids burn similarly to Styrofoam and more easily than sawdust. It is the opinion of fire hazard experts that a benzene vapor deflagration could ignite the dry solids. A tetraphenylborate solids fire will rapidly plug the waste tank HEPA ventilation filters due to the nature of the smoke produced. To prevent ignition and combustion of these solids, the waste tanks have been equipped with a nitrogen inerting system

  15. Studies in combustion dynamics

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  16. Lateral hydraulic forces calculation on PWR fuel assemblies with computational fluid dynamics codes; Calculo de fuerzas laterales hidraulicas en elementos combustibles tipo PWR con codigos de dinamica de fluidos coputacional

    Corpa Masa, R.; Jimenez Varas, G.; Moreno Garcia, B.

    2016-08-01

    To be able to simulate the behavior of nuclear fuel under operating conditions, it is required to include all the representative loads, including the lateral hydraulic forces which were not included traditionally because of the difficulty of calculating them in a reliable way. Thanks to the advance in CFD codes, now it is possible to assess them. This study calculates the local lateral hydraulic forces, caused by the contraction and expansion of the flow due to the bow of the surrounding fuel assemblies, on of fuel assembly under typical operating conditions from a three loop Westinghouse PWR reactor. (Author)

  17. Combustion stratification for naphtha from CI combustion to PPC

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, L.M.T.; Johansson, B.H.

    2017-01-01

    This study demonstrated the change in combustion homogeneity from conventional diesel combustion via partially premixed combustion towards HCCI. Experiments are performed in an optical diesel engine at a speed of 1200 rpm with diesel fuel. Single injection strategy is employed and the fuel is

  18. Toxicology of Biodiesel Combustion products

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  19. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling

    Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, pforces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.

  20. Underground treatment of combustible minerals

    Sarapuu, E

    1954-10-14

    A process is described for treating oil underground, consisting in introducing several electrodes spaced one from the other in a bed of combustibles underground so that they come in electric contact with this bed of combustibles remaining insulated from the ground, and applying to the electrodes a voltage sufficient to produce an electric current across the bed of combustibles, so as to heat it and create an electric connection between the electrodes on traversing the bed of combustibles.

  1. Supersonic Combustion Ramjet Research

    2012-08-01

    was in collaboration with Prof. R. Bowersox (Texas A&M University) and Dr. K. Kobayashi ( Japanese Aerospace Exploration Agency, JAXA). 4.2 Ignition... cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” Paper B13, 5th US Combustion

  2. Infrared monitoring of combustion

    Bates, S.C.; Morrison, P.W. Jr.; Solomon, P.R.

    1991-01-01

    In this paper, the use of Fourier Transform Infrared (FT-IR) spectroscopy for combustion monitoring is described. A combination of emission, transmission, and reflection FT-IR spectroscopy yields data on the temperature and composition of the gases, surfaces and suspended particles in the combustion environment. Detection sensitivity of such trace exhaust gases as CO, CO 2 , SO 2 , NO x , and unburned hydrocarbons is at the ppm level. Tomographic reconstruction converts line-of-sight measurements into spatially resolved temperature and concentration data. Examples from various combustion processes are used to demonstrate the capabilities of the technique. Industrial measurements are described that have been performed directly in the combustion zone and in the exhaust duct of a large chemical recovery boiler. Other measurements of hot slag show how FT-IR spectroscopy can determine the temperature and optical properties of surfaces. In addition, experiments with water droplets show that transmission FT-IR data yield spectra that characterize particle size and number density

  3. Combustible dust tests

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  4. Method for conducting underground reverse combustion

    Craig, Jr, F F; Neil, J D; Parrish, D R; Scott, P H

    1965-05-25

    This is a procedure for conducting a reverse-combustion operation in a formation penetrated by an injection well and a producing well which have objectionable fluids between them. The procedure consists of shutting-in the injection well and injecting a sufficient quantity of oxygen-containing gas into the deposit by the producing well to force these undesirable fluids away from the vicinity of the wells. Next, the deposit is ignited in the vicinity of the producing well. In this manner, the producing well is opened to production. At substantially the same time, an oxygen-containing gas is injected into the deposit through the injection well, so that the resulting combustion-front travels countercurrently to the path of the gas. (4 claims)

  5. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    Løj, Lusi Hindiyarti

    2007-01-01

    Gas Phase Sulfur, Chlorine and Alkali Metal Chemistry in Biomass Combustion Concern about aerosols formation, deposits, corrosion, and gaseous emissions during biomass combustion, especially straw, continues to be a driving force for investigation on S, Cl, K-containing species under combustions...... conditions. These trace species contained in the biomass structure will be released to the gas phase during combustion and contribute to the problems generated during the process. The investigation during this PhD project is done to stepwise improve the understanding in the chemistry and reduce...... the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...

  6. Development of sodium droplet combustion analysis methodology using direct numerical simulation in 3-dimensional coordinate (COMET)

    Okano, Yasushi; Ohira, Hiroaki

    1998-08-01

    In the early stage of sodium leak event of liquid metal fast breeder reactor, LMFBR, liquid sodium flows out from a piping, and ignition and combustion of liquid sodium droplet might occur under certain environmental condition. Compressible forced air flow, diffusion of chemical species, liquid sodium droplet behavior, chemical reactions and thermodynamic properties should be evaluated with considering physical dependence and numerical connection among them for analyzing combustion of sodium liquid droplet. A direct numerical simulation code was developed for numerical analysis of sodium liquid droplet in forced convection air flow. The numerical code named COMET, 'Sodium Droplet COmbustion Analysis METhodology using Direct Numerical Simulation in 3-Dimensional Coordinate'. The extended MAC method was used to calculate compressible forced air flow. Counter diffusion among chemical species is also calculated. Transport models of mass and energy between droplet and surrounding atmospheric air were developed. Equation-solving methods were used for computing multiphase equilibrium between sodium and air. Thermodynamic properties of chemical species were evaluated using dynamic theory of gases. Combustion of single sphere liquid sodium droplet in forced convection, constant velocity, uniform air flow was numerically simulated using COMET. Change of droplet diameter with time was closely agree with d 2 -law of droplet combustion theory. Spatial distributions of combustion rate and heat generation and formation, decomposition and movement of chemical species were analyzed. Quantitative calculations of heat generation and chemical species formation in spray combustion are enabled for various kinds of environmental condition by simulating liquid sodium droplet combustion using COMET. (author)

  7. Modeling of combustion products composition of hydrogen-containing fuels

    Assad, M.S.

    2010-01-01

    Due to the usage of entropy maximum principal the algorithm and the program of chemical equilibrium calculation concerning hydrogen--containing fuels are devised. The program enables to estimate the composition of combustion products generated in the conditions similar to combustion conditions in heat engines. The program also enables to reveal the way hydrogen fraction in the conditional composition of the hydrocarbon-hydrogen-air mixture influences the harmful components content. It is proven that molecular hydrogen in the mixture is conductive to the decrease of CO, CO 2 and CH x concentration. NO outlet increases due to higher combustion temperature and N, O, OH concentrations in burnt gases. (authors)

  8. Combustion in microgravity: The French contribution

    Prud'homme, Roger; Legros, Guillaume; Torero, José L.

    2017-01-01

    Microgravity (drop towers, parabolic flights, sounding rockets and space stations) are particularly relevant to combustion problems given that they show high-density gradients and in many cases weak forced convection. For some configurations where buoyancy forces result in complex flow fields, microgravity leads to ideal conditions that correspond closely to canonical problems, e.g., combustion of a spherical droplet in a far-field still atmosphere, Emmons' problem for flame spreading over a solid flat plate, deflagration waves, etc. A comprehensive chronological review on the many combustion studies in microgravity was written first by Law and Faeth (1994) and then by F.A. Williams (1995). Later on, new recommendations for research directions have been delivered. In France, research has been managed and supported by CNES and CNRS since the creation of the microgravity research group in 1992. At this time, microgravity research and future activities contemplated the following: Droplets: the "D2 law" has been well verified and high-pressure behavior of droplet combustion has been assessed. The studies must be extended in two main directions: vaporization in mixtures near the critical line and collective effects in dense sprays. Flame spread: experiments observed blue flames governed by diffusion that are in accordance with Emmons' theory. Convection-dominated flames showed significant departures from the theory. Some theoretical assumptions appeared controversial and it was noted that radiation effects must be considered, especially when regarding the role of soot production in quenching. Heterogeneous flames: two studies are in progress, one in Poitiers and the other in Marseilles, about flame/suspension interactions. Premixed and triple flames: the knowledge still needs to be complemented. Triple flames must continue to be studied and understanding of "flame balls" still needs to be addressed.

  9. Low emission internal combustion engine

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  10. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  11. Hydrogen assisted diesel combustion

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NO{sub X} emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NO{sub X} emissions and a shift in NO/NO{sub 2} ratio in which NO emissions decreased and NO{sub 2} emissions increased, with NO{sub 2} becoming the dominant NO{sub X} component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NO{sub X} for some operating conditions. A model that explicitly accounts for turbulence-chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm

  12. Combustion strategy : United Kingdom

    Greenhalgh, D. [Heriot-Watt Univ., Edingburgh, Scotland (United Kingdom). School of Engineering and Physical Sciences

    2009-07-01

    The United Kingdom's combustion strategy was briefly presented. Government funding sources for universities were listed. The United Kingdom Research Councils that were listed included the Arts and Humanities Research Council (AHRC) and the Biotechnology and Biological Sciences Research Council (BBSRC); the Engineering and Physical Sciences Research Council (EPSRC); the Economic and Social Research Council; the Medical Research Council; the Natural Environment Research Council; and the Science and Technology Facilities Council. The EPSRC supported 65 grants worth 30.5 million pounds. The combustion industry was noted to be dominated by three main players of which one was by far the largest. The 3 key players were Rolls-Royce; Jaguar Land Rover; and Doosan Babcock. Industry and government involvement was also discussed for the BIS Technology Strategy Board, strategy technology areas, and strategy application areas.

  13. Aerosols from biomass combustion

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  14. Plasma Assisted Combustion

    2007-02-28

    Tracking an individual streamer branch among others in a pulsed induced discharge J. Phys. D: Appl. Phys. 35 2823--9 [29] van Veldhuizen E M and Rutgers...2005) AIAA–2005–0405. [99] E.M. Van Veldhuizen (ed) Electrical Discharges for Environmental Purposes: Fun- damentals and Applications (New York: Nova...Vandooren J, Van Tiggelen P J 1977 Reaction Mechanism and Rate Constants in Lean Hydrogen–Nitrous Oxide Flames Combust. Flame 28 165 [201] Dean A M, Steiner

  15. Fluid-bed combustion

    Hunt, G.; Schoebotham, N.

    1981-02-01

    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  16. Combustion science and engineering

    Annamalai, Kalyan

    2006-01-01

    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  17. Issues in waste combustion

    Gustavsson, Lennart; Robertson, Kerstin; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Sundquist, Lena; Wrangensten, Lars [AaF-Energikonsult AB, Stockholm (Sweden); Blom, Elisabet [AaF-Processdesign AB, Stockholm (Sweden)

    2003-05-01

    The main purpose of this review is to provide an overview of the state-of-the-art on research and development issues related to waste combustion with relevance for Swedish conditions. The review focuses on co-combustion in grate and fluidised bed furnaces. It is primarily literature searches in relevant databases of scientific publications with to material published after 1995. As a complement, findings published in different report series, have also been included. Since the area covered by this report is very wide, we do not claim to cover the issues included completely and it has not been possitile to evaluate the referred studies in depth. Basic knowledge about combustion issues is not included since such information can be found elsewhere in the literature. Rather, this review should be viewed as an overview of research and development in the waste-to-energy area and as such we hope that it will inspire scientists and others to further work in relevant areas.

  18. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  19. Internal combustion engine using premixed combustion of stratified charges

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  20. Development of flameless combustion; Desarrollo de la combustion sin flama

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  1. Modification of combustion aerosols in the atmosphere

    Weingartner, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-07-01

    Combustion aerosols particles are released on large scale into the atmosphere in the industrialized regions as well as in the tropics (by wood fires). The particles are subjected to various aging processes which depend on the size, morphology, and chemical composition of the particles. The interaction of combustion particles with sunlight and humidity as well as adsorption and desorption of volatile material to or from the particles considerably changes their physical and chemical properties and thus their residence time in the atmosphere. This is of importance because combustion particles are known to have a variety of health effects on people. Moreover, atmospheric aerosol particles have an influence on climate, directly through the reflection and absorption of solar radiation and indirectly through modifying the optical properties and lifetime of clouds. In a first step, a field experiment was carried out to study the sources and characteristics of combustion aerosols that are emitted from vehicles in a road tunnel. It was found that most of the fine particles were tail pipe emissions of diesel powered vehicles. The calculation shows that on an average these vehicles emit about 300 mg fine particulate matter per driven kilometer. This emission factor is at least 100 times higher than the mean emission factor estimated for gasoline powered vehicles. Furthermore, it is found that during their residence time in the tunnel, the particles undergo significant changes: The particles change towards a more compact structure. The conclusion is reached that this is mainly due to adsorption of volatile material from the gas phase to the particle surface. In the atmosphere, the life cycle as well as the radiative and chemical properties of an aerosol particle is strongly dependent on its response to humidity. Therefore the hygroscopic behavior of combustion particles emitted from single sources (i.e. from a gasoline and a diesel engine) were studied in laboratory experiments.

  2. Combustion's impact on the global atmosphere

    Prather, M.J.; Logan, J.A.

    1994-01-01

    The combustion of a hydrocarbon fuel removes molecular oxygen (O 2 ) from the atmosphere and releases equivalent amounts of water (H 2 ) and carbon dioxide (CO 2 ), almost always with trace amounts of numerous other compounds including hydrocarbon (CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 8 , C 6 H 6 , CH 3 CHO, etc.), carbon monoxide (CO), nitrogen oxides (NO, N 2 O) and reduced nitrogen (NH 3 and HCN), sulfur gases (SO 2 , OCS, CS 2 ), halocarbons (CH 3 Al and CH 3 Br), and particles. A review of the atmospheric budgets of these gases shows that burning of fossil fuels and recent biomass has led to global alterations in the composition of the atmosphere. Combustion is clearly responsible for most of the enhanced greenhouse forcing to date (through CO 2 , tropospheric O 3 , soot) and also some counteracting effects (through SO 2 ). It has had minimal impact on stratospheric O 3 (through CH 3 Cl, CH 3 Br, CH 4 ), but has likely changed the tropospheric oxidant levels (through CO, NO x , NMHC), at least over the northern hemisphere. Most of the important greenhouse gases and tropospheric oxidant gases have significant natural sources, which are not well defined today and may be changing; and thus, quantifying the role of combustion is difficult. 113 refs

  3. Estimation of the aerosol radiative forcing at ground level, over land, and in cloudless atmosphere, from METEOSAT-7 observation: method and case study

    T. Elias

    2008-02-01

    Full Text Available A new method is proposed to estimate the spatial and temporal variability of the solar radiative flux reaching the surface over land (DSSF, as well as the Aerosol Radiative Forcing (ARF, in cloud-free atmosphere. The objective of regional applications of the method is attainable by using the visible broadband of METEOSAT-7 satellite instrument which scans Europe and Africa on a half-hourly basis. The method relies on a selection of best correspondence between METEOSAT-7 radiance and radiative transfer computations.

    The validation of DSSF is performed comparing retrievals with ground-based measurements acquired in two contrasted environments: an urban site near Paris and a continental background site located South East of France. The study is concentrated on aerosol episodes occurring around the 2003 summer heat wave, providing 42 cases of comparison for variable solar zenith angle (from 59° to 69°, variable aerosol type (biomass burning emissions and urban pollution, and variable aerosol optical thickness (a factor 6 in magnitude. The method reproduces measurements of DSSF within an accuracy assessment of 20 W m−2 (5% in relative in 70% of the situations, and within 40 W m−2 in 90% of the situations, for the two case studies considered here.

    Considering aerosol is the main contributor in changing the measured radiance at the top of the atmosphere, DSSF temporal variability is assumed to be caused only by aerosols, and consequently ARF at ground level and over land is also retrieved: ARF is computed as the difference between DSSF and a parameterised aerosol-free reference level. Retrievals are linearly correlated with the ground-based measurements of the aerosol optical thickness (AOT: sensitivity is included between 120 and 160 W m−2 per unity of AOT at 440 nm. AOT being an instantaneous measure indicative of the aerosol columnar amount, we prove the feasibility to infer instantaneous

  4. Sulfur Chemistry in Combustion I

    Johnsson, Jan Erik; Glarborg, Peter

    2000-01-01

    of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...... process by reaction between SO2 and calcium containing sorbents and the influence on the NOx chemistry will be treated....

  5. Determination of combustion parameters using engine crankshaft speed

    Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.

    2013-07-01

    Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.

  6. Efeito da profundidade de trabalho das hastes sulcadoras de uma semeadora-adubadora na patinagem, na força de tração e no consumo de combustível de um trator agrícola Effects of work operation depth of shanks in a seeder-fertilizer on slip, traction force and fuel consumption of a tractor

    Marcos Antonio Zambillo Palma

    2010-10-01

    Full Text Available A consolidação do sistema de semeadura direta trás grandes benefícios ao meio ambiente e, também, é notável a redução dos custos de produção devido a desnecessidade das operações como aração, subsolagem, escarificação e gradagem. Porém, nesse sistema se têm muitos problemas relacionados a compactação das camadas superficiais em função do tráfego de máquinas e a consorciação lavoura-pecuária. A solução encontrada pelos agricultores tem sido a substituição, na semeadora-adubadora, do sulcador disco duplo pela haste sulcadora que atua em profundidades superiores. O presente estudo teve como objetivo avaliar diferentes profundidades de trabalho da haste sulcadora, analisando o consumo de combustível, força de tração, índice de patinagem, potência na barra de tração, consumo específico de combustível e capacidade de campo teórica de um trator agrícola tracionando uma semeadora-adubadora em solo compactado pela integração lavoura-pecuária. Os tratamentos foram 100, 150, 200 e 250 mm de profundidade de trabalho da haste sulcadora, sendo os ensaios desenvolvidos no Departamento de Engenharia da Universidade Federal de Lavras, utilizando delineamento experimental de blocos, casualisados, composto por quatro tratamentos e três repetições. Dessa forma, conclui-se que o aumento da profundidade de trabalho da haste sulcadora em semeadoras-adubadoras de semeadura direta de milho em solos compactados ocorre o aumento no consumo de combustível, no índice de patinagem e no esforço de tração dos tratores agrícolas. Porém, quando a ponteira da haste sulcadora trabalhou posicionada 50 mm abaixo da camada mais compactada se teve reduções nos parâmetros força de tração e índice de patinagem, aumentando a capacidade de campo teórica.The direct sowing system brings many benefits to the environment and also reduction in production costs, since operations such as plowing, subsoiling, chiseling and harrowing

  7. Using the Estimating Supplies Program to Develop Material Solutions for the U.S. Air Force Medical Gynecological Treatment Team (FFGYN)

    Hopkins, Curt; Nix, Ralph; Konoske, Paula; Pang, Gerry; Onofrio, Kathleen

    2007-01-01

    ...) conduct a proof of concept study to assess the validity and feasibility of using NHRC's medical modeling tool for the development and management of Air Force medical Allowance Standards as a baseline...

  8. Pulsating combustion - Combustion characteristics and reduction of emissions

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  9. Nitrogen Chemistry in Fluidized Bed Combustion of Coal

    Jensen, Anker Degn

    and reduction by homogeneous and heterogeneous reactions. The data for the estimation of kinetics of the heterogeneous reactions were measured by one of the partners in the project for char and bed material sampled from a pressurized FBC pilot plant burning Kiveton Park coal. Experimental data from the pilot...... plant were used for model verification. The simulations of the NO emission during staged combustion and NH3 injection for NO reduction were in qualitative agreement with the experimental data. A parametric study of the influence of operating conditions on the conversion of fuel-N to NO showed......, the gas interchange coefficient, the bubble size and the bubble rise velocity. The most important combustion parameters were the rate of CO and CH4 combustion and the fraction of CO produced from char combustion. By using a rate of production analysis, the important reactions in the NO model were...

  10. Advanced coal combustion technologies and their environmental impact

    Bozicevic, Maja; Feretic, Danilo; Tomsic, Zeljko

    1997-01-01

    Estimations of world energy reserves show that coal will remain the leading primary energy source for electricity production in the foreseeable future. In order to comply with ever stricter environmental regulations and to achieve efficient use of limited energy resources, advanced combustion technologies are being developed. The most promising are the pressurised fluidized bed combustion (PFBC) and the integrated gasification combined cycle (IGCC). By injecting sorbent in the furnace, PFBC removes more than 90 percent of SO 2 in flue gases without additional emission control device. In addition, due to lower combustion temperature, NO x emissions are around 90 percent lower than those from pulverised coal (PC) plant. IGCC plant performance is even more environmentally expectable and its high efficiency is a result of a combined cycle usage. Technical, economic and environmental characteristics of mentioned combustion technologies will be presented in this paper. Comparison of PFBC, IGCC and PC power plants economics and air impact will also be given. (Author)

  11. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik

    This report sums up the findings in PSO-project 010069, “Advanced Diagnostics in Oxy- Fuel Combustion Processes”. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory...... technique was an invaluable tool in the discussion of data obtained by gas analysis, and it allowed for estimation of combustion times in O2/CO2 where the high CO2 concentration prevents the use of the carbon mass balance for that purpose. During the project the data have been presented at a conference......, formed the basis of a publication and it is part of two PhD dissertations. The name of the conference the journal and the dissertations are listed below. - Joint Meeting of the Scandinavian-Nordic and French Sections of the Combustion Institute, Combustion of Char Particles under Oxy-Fuel Conditions...

  12. Combustion from basics to applications

    Lackner, Maximilian; Winter, Franz

    2013-01-01

    Combustion, the process of burning, is defined as a chemical reaction between a combustible reactant (the fuel) and an oxidizing agent (such as air) in order to produce heat and in most cases light while new chemical species (e.g., flue gas components) are formed. This book covers a gap on the market by providing a concise introduction to combustion. Most of the other books currently available are targeted towards the experienced users and contain too many details and/or contain knowledge at a fairly high level. This book provides a brief and clear overview of the combustion basics, suitable f

  13. Mathematical Modeling in Combustion Science

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  14. Combustible cigarettes cost less to use than e-cigarettes: global evidence and tax policy implications.

    Liber, Alex C; Drope, Jeffrey M; Stoklosa, Michal

    2017-03-01

    Some scholars suggest that price differences between combustible cigarettes and e-cigarettes could be effective in moving current combustible smokers to e-cigarettes, which could reduce tobacco-related death and disease. Currently, in most jurisdictions, e-cigarettes are not subject to the same excise taxes as combustible cigarettes, potentially providing the category with a price advantage over combustible cigarettes. This paper tests whether e-cigarettes tax advantage has translated into a price advantage. In a sample of 45 countries, the price of combustible cigarettes, disposable e-cigarettes and rechargeable cigarettes were compared. Comparable units of combustible cigarettes cost less than disposable e-cigarettes in almost every country in the sample. While the e-liquids consumed in rechargeable e-cigarettes might cost less per comparable unit than combustible cigarettes, the initial cost to purchase a rechargeable e-cigarette presents a significant cost barrier to switching from smoking to vaping. Existing prices of e-cigarettes are generally much higher than of combustible cigarettes. If policymakers wish to tax e-cigarettes less than combustibles, forceful policy action-almost certainly through excise taxation-must raise the price of combustible cigarettes beyond the price of using e-cigarettes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Combustion Byproducts Recycling Consortium

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  16. Alternate fuels; Combustibles alternos

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  17. Fluidised bed combustion system

    McKenzie, E.C.

    1976-01-01

    Fluidized bed combustion systems that facilitates the maintenance of the depth of the bed are described. A discharge pipe projects upwardly into the bed so that bed material can flow into its upper end and escape downwardly. The end of the pipe is surrounded by an enclosure and air is discharged into the enclosure so that material will enter the pipe from within the enclosure and have been cooled in the enclosure by the air discharged into it. The walls of the enclosure may themselves be cooled

  18. Fuel and combustion stratification study of Partially Premixed Combustion

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a

  19. Combustion Stratification for Naphtha from CI Combustion to PPC

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  20. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  1. Preliminary assessment of combustion modes for internal combustion wave rotors

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  2. Subatomic forces

    Sutton, C.

    1989-01-01

    Inside the atom, particles interact through two forces which are never felt in the everyday world. But they may hold the key to the Universe. These ideas on subatomic forces are discussed with respect to the strong force, the electromagnetic force and the electroweak force. (author)

  3. Path planning during combustion mode switch

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  4. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  5. Manifold methods for methane combustion

    Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

    1995-10-01

    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  6. Response to acoustic forcing of laminar coflow jet diffusion flames

    Chrystie, Robin; Chung, Suk-Ho

    2014-01-01

    Toward the goal of understanding and controlling instability in combustion systems, we present a fundamental characterization of the interaction of the buoyancy-induced instability in flickering flames with forced excitation of fuel supply. Laminar

  7. Combustion & Laser Diagnostics Research Complex (CLDRC)

    Federal Laboratory Consortium — Description: The Combustion and Laser Diagnostics Research Complex (CLRDC) supports the experimental and computational study of fundamental combustion phenomena to...

  8. DEVELOPMENT OF A HAZARDOUS WASTE INCINERATOR TARGET ANALYTE LIST OF PRODUCTS OF INCOMPLETE COMBUSTION

    The report gives results of pilot-scale incineration testing to develop a comprehensive list of products of incomplete combustion (PICs) from hazardous waste combustion (HWC) systems. Project goals were to: (1) identify the total mass of organic compounds sufficiently to estimate...

  9. Soil moisture dynamics and smoldering combustion limits of pocosin soils in North Carolina, USA

    James Reardon; Gary Curcio; Roberta Bartlette

    2009-01-01

    Smoldering combustion of wetland organic soils in the south-eastern USA is a serious management concern. Previous studies have reported smoldering was sensitive to a wide range of moisture contents, but studies of soil moisture dynamics and changing smoldering combustion potential in wetland communities are limited. Linking soil moisture measurements with estimates of...

  10. Combustion instability control in the model of combustion chamber

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A

    2013-01-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  11. A smoothed maximum score estimator for the binary choice panel data model with individual fixed effects and applications to labour force participation

    Charlier, G.W.P.

    1994-01-01

    In a binary choice panel data model with individual effects and two time periods, Manski proposed the maximum score estimator, based on a discontinuous objective function, and proved its consistency under weak distributional assumptions. However, the rate of convergence of this estimator is low (N)

  12. Solutions for the diurnally forced advection-diffusion equation to estimate bulk fluid velocity and diffusivity in streambeds from temperature time series

    Charles H. Luce; Daniele Tonina; Frank Gariglio; Ralph Applebee

    2013-01-01

    Work over the last decade has documented methods for estimating fluxes between streams and streambeds from time series of temperature at two depths in the streambed. We present substantial extension to the existing theory and practice of using temperature time series to estimate streambed water fluxes and thermal properties, including (1) a new explicit analytical...

  13. Investigation of combustion characteristics of methane-hydrogen fuels

    Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.

    2015-01-01

    Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.

  14. Space Station Freedom combustion research

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  15. Analyses and estimates of hydraulic conductivity from slug tests in alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Houston, Natalie A.; Braun, Christopher L.

    2004-01-01

    This report describes the collection, analyses, and distribution of hydraulic-conductivity data obtained from slug tests completed in the alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas, during October 2002 and August 2003 and summarizes previously available hydraulic-conductivity data. The U.S. Geological Survey, in cooperation with the U.S. Air Force, completed 30 slug tests in October 2002 and August 2003 to obtain estimates of horizontal hydraulic conductivity to use as initial values in a ground-water-flow model for the site. The tests were done by placing a polyvinyl-chloride slug of known volume beneath the water level in selected wells, removing the slug, and measuring the resulting water-level recovery over time. The water levels were measured with a pressure transducer and recorded with a data logger. Hydraulic-conductivity values were estimated from an analytical relation between the instantaneous displacement of water in a well bore and the resulting rate of head change. Although nearly two-thirds of the tested wells recovered 90 percent of their slug-induced head change in less than 2 minutes, 90-percent recovery times ranged from 3 seconds to 35 minutes. The estimates of hydraulic conductivity range from 0.2 to 200 feet per day. Eighty-three percent of the estimates are between 1 and 100 feet per day.

  16. Soot and radiation in combusting boundary layers

    Beier, R.A.

    1981-12-01

    In most fires thermal radiation is the dominant mode of heat transfer. Carbon particles within the fire are responsible for most of this emitted radiation and hence warrant quantification. As a first step toward understanding thermal radiation in full scale fires, an experimental and theoretical study is presented for a laminar combusting boundary layer. Carbon particulate volume fraction profiles and approximate particle size distributions are experimentally determined in both free and forced flow for several hydrocarbon fuels and PMMA (polymethylmethacrylate). A multiwavelength laser transmission technique determines a most probable radius and a total particle concentration which are two unknown parameters in an assumed Gauss size distribution. A sooting region is observed on the fuel rich side of the main reaction zone. For free flow, all the flames are in air, but the free stream ambient oxygen mass fraction is a variable in forced flow. To study the effects of radiation heat transfer, a model is developed for a laminar combusting boundary layer over a pyrolyzing fuel surface. An optically thin approximation simplifies the calculation of the radiant energy flux at the fuel surface. For the free flames in air, the liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v/ approx. 10/sup -7/ for toluene, an aromatic. The PMMA soot volume fractions, f/sub v/ approx. 5 x 10/sup -7/, are approximately the same as the values previously reported for pool fires. Soot volume fraction increases monotonically with ambient oxygen mass fraction in the forced flow flames. For all fuels tested, a most probable radius between 20 nm and 80 nm is obtained which varies only slightly with oxygen mass fraction, streamwise position, or distance normal to the fuel surface. The theoretical analysis yields nine dimensionless parameters, which control the mass flux rate at the pyrolyzing fuel surface.

  17. Catalytic Combustion of Gasified Waste

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  18. Department of the Air Force Supporting Data for Fiscal Year 1992/1993 Budget Estimates Submitted to Congress February 1991: Descriptive Summaries, Research, Development, Test and Evaluation

    1991-02-01

    concept consisting of an airborne portion called the Advanced Tactical Air Reconnaissance System ( ATARS ) and a ground portion called the Joint Services...The USAF portion of ATARS consists of two development projects: Project 3201, Tactical Air Reconnaissance System (TARS), and Project 3792, a...in alleviating some of the deleterious effects of stress in humans imposed by physiologically and psychologically demanding Air Force missions. - (U

  19. Department of the Air Force Supporting Data For Fiscal Year 1984 Budget Estimates Submitted to Congress, January 31, 1983. Descriptive Summaries, Research, Development, Test and Evaluation

    1983-01-01

    Advanced Tactical Air Reconnaissance System ( ATARS ) program, PE 63239F. All projects in this-program element are coordinated as appropriate with the Major...Advanced Tactical Air Reconnaissance System ( ATARS ) program. The Tactical Air Forces (TAF) have a requirement for near-real-time high quality...technical panels and working grops. Support AGARD meetings in the US to include French/ English interpretation. Support initiatives under the NATO Conference

  20. A Cost Estimation Model for Commander Naval Air Forces Paicifc's TACAIR F/A-18S Aviation Depot Level Repair Costs

    Duma, David

    2001-01-01

    .... The first section discusses the methodology used to create a cost estimation model. The second and third sections provide the results of the model's outcomes and compares and analyzes those results to the actual results...

  1. Producer for vegetal combustibles for internal-combustion motors

    1943-12-28

    A producer is described for internal-combustion motors fed with wood or agricultural byproducts characterized by the fact that its full operation is independent of the degree of wetness of the material used.

  2. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.

    Ostaszewski, Michal; Pauk, Jolanta

    2018-05-16

    Gait analysis is a useful tool medical staff use to support clinical decision making. There is still an urgent need to develop low-cost and unobtrusive mobile health monitoring systems. The goal of this study was twofold. Firstly, a wearable sensor system composed of plantar pressure insoles and wearable sensors for joint angle measurement was developed. Secondly, the accuracy of the system in the measurement of ground reaction forces and joint moments was examined. The measurements included joint angles and plantar pressure distribution. To validate the wearable sensor system and examine the effectiveness of the proposed method for gait analysis, an experimental study on ten volunteer subjects was conducted. The accuracy of measurement of ground reaction forces and joint moments was validated against the results obtained from a reference motion capture system. Ground reaction forces and joint moments measured by the wearable sensor system showed a root mean square error of 1% for min. GRF and 27.3% for knee extension moment. The correlation coefficient was over 0.9, in comparison with the stationary motion capture system. The study suggests that the wearable sensor system could be recommended both for research and clinical applications outside a typical gait laboratory.

  3. Reducing emissions from diesel combustion

    Anon.

    1992-01-01

    This paper contains information dealing with engine design to reduce emissions and improve or maintain fuel economy. Topics include: Observation of High Pressure Fuel Spray with Laser Light Sheet Method; Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations; Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results; Prediction of Diesel Engine Particulate Emission During Transient Cycles; Characteristics and Combustibility of Particulate Matter; Dual-Fuel Diesel Engine Using Butane; Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection: and Combustion in a Small DI Diesel Engine at Starting

  4. Computational Modeling of Turbulent Spray Combustion

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  5. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  6. Fuels and Combustion | Transportation Research | NREL

    Fuels and Combustion Fuels and Combustion This is the March 2015 issue of the Transportation and , combustion strategy, and engine design hold the potential to maximize vehicle energy efficiency and performance of low-carbon fuels in internal combustion engines with a whole-systems approach to fuel chemistry

  7. Combustion modeling in waste tanks

    Mueller, C.; Unal, C.; Travis, J.R.; Forschungszentrum Karlsruhe

    1997-01-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data

  8. Environmental sensing and combustion diagnostics

    Santoleri, J.J.

    1991-01-01

    This book contains proceedings of Environmental Sensing and Combustion Diagnostics. Topics covered include: Incineration Systems Applications, Permitting, And Monitoring Overview; Infrared Techniques Applied to Incineration Systems; Continuous Emission Monitors; Analyzers and Sensors for Process Control And Environmental Monitoring

  9. Sodium nitrate combustion limit tests

    Beitel, G.A.

    1976-04-01

    Sodium nitrate is a powerful solid oxidant. Energetically, it is capable of exothermically oxidizing almost any organic material. Rate-controlling variables such as temperature, concentration of oxidant, concentration of fuel, thermal conductivity, moisture content, size, and pressure severely limit the possibility of a self-supported exothermic reaction (combustion). The tests reported in this document were conducted on one-gram samples at atmospheric pressure. Below 380 0 C, NaNO 3 was stable and did not support combustion. At moisture concentrations above 22 wt percent, exothermic reactions did not propagate in even the most energetic and reactive compositions. Fresh resin and paraffin were too volatile to enable a NaNO 2 -supported combustion process to propagate. Concentrations of NaNO 3 above 95 wt percent or below 35 wt percent did not react with enough energy release to support combustion. The influence of sample size and confining pressure, both important factors, was not investigated in this study

  10. 75 FR 3881 - Combustible Dust

    2010-01-25

    ..., rubber, drugs, dried blood, dyes, certain textiles, and metals (such as aluminum and magnesium..., furniture manufacturing, metal processing, fabricated metal products and machinery manufacturing, pesticide... standard that will comprehensively address the fire and explosion hazards of combustible dust. The Agency...

  11. The role of primary and secondary air on wood combustion in cookstoves

    Kirch, Thomas; Birzer, Cristian H.; Medwell, Paul R.; Holden, Liam

    2018-03-01

    A two-stage solid fuel research furnace was used to examine the claim that through forced draught greater mixing and more complete combustion could be achieved. By varying the primary air (PA) and secondary air (SA) flow the influence on the combustion process was investigated. In the first part of the combustion, when the release of volatile compounds predominates, the variation of neither PA nor SA had a significant influence. In the second part when mainly char is oxidised an increase in both PA and SA lead to a rising nominal combustion efficiency (?)), with a greater impact observed with SA. Furthermore higher air flows caused the heat transfer, to a pot above the furnace, to decline. Therefore forced draught does lead to greater mixing and mitigation of emissions, but in the presented configuration a trade-off between a higher NCE and a lower heat transfer needs consideration.

  12. Modeling of microgravity combustion experiments

    Buckmaster, John

    1995-01-01

    This program started in February 1991, and is designed to improve our understanding of basic combustion phenomena by the modeling of various configurations undergoing experimental study by others. Results through 1992 were reported in the second workshop. Work since that time has examined the following topics: Flame-balls; Intrinsic and acoustic instabilities in multiphase mixtures; Radiation effects in premixed combustion; Smouldering, both forward and reverse, as well as two dimensional smoulder.

  13. CMS: CO2 Emissions from Fossil Fuels Combustion, ACES Inventory for Northeastern USA

    National Aeronautics and Space Administration — This dataset provides estimates of annual and hourly carbon dioxide (CO2) emissions from the combustion of fossil fuels (FF) for 13 states across the Northeastern...

  14. Combustion means for solid fuels

    Murase, D.

    1987-09-23

    A combustion device for solid fuel, suitable for coal, coke, charcoal, coal-dust briquettes etc., comprising:- a base stand with an opening therein, an imperforate heat resistant holding board locatable to close said opening; a combustion chamber standing on the base stand with the holding board forming the base of the combustion chamber; a wiper arm pivoted for horizontal wiping movement over the upper surface of the holding board; an inlet means at a lower edge of said chamber above the base stand, and/or in a surrounding wall of said chamber, whereby combustion air may enter as exhaust gases leave the combustion chamber; an exhaust pipe for the exhaust gases; generally tubular gas-flow heat-exchange ducting putting the combustion chamber and exhaust pipe into communication; and means capable of moving the holding board into and out of the opening for removal of ash or other residue. The invention can be used for a heating system in a house or in a greenhouse or for a boiler.

  15. Controlling Combustion-Source Emissions at Air Force Sites

    Nelson, S

    1997-01-01

    .... The research work involved gas-cleaning approaches and centered on exhaust gases from radiant tube heaters for paint drying, mobile diesel generators, stationary diesel generators, diesel buses...

  16. A Mixing Based Model for DME Combustion in Diesel Engines

    Bek, Bjarne H.; Sorenson, Spencer C.

    1998-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combus-tion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel......, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made...

  17. A mixing based model for DME combustion in diesel engines

    Bek, Bjarne Hjort; Sorenson, Spencer C

    2001-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combustion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel......, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made...

  18. Development and Validation of Stability-Indicating Method for Estimation of Chlorthalidone in Bulk and Tablets with the Use of Experimental Design in Forced Degradation Experiments

    Sandeep Sonawane

    2016-01-01

    Full Text Available Chlorthalidone was subjected to various forced degradation conditions. Substantial degradation of chlorthalidone was obtained in acid, alkali, and oxidative conditions. Further full factorial experimental design was applied for acid and alkali forced degradation conditions, in which strength of acid/alkali, temperature, and time of heating were considered as independent variables (factors and % degradation was considered as dependent variable (response. Factors responsible for acid and alkali degradation were statistically evaluated using Yates analysis and Pareto chart. Furthermore, using surface response curve, optimized 10% degradation was obtained. All chromatographic separation was carried out on Phenomenex HyperClone C 18 column (250 × 4.6 mm, 5 μ, using mobile phase comprising methanol : acetonitrile : phosphate buffer (20 mM (pH 3.0 adjusted with o-phosphoric acid: 30 : 10 : 60% v/v. The flow rate was kept constant at 1 mL/min and eluent was detected at 241 nm. In calibration curve experiments, linearity was found to be in the range of 2–12 μg/mL. Validation experiments proved good accuracy and precision of the method. Also there was no interference of excipients and degradation products at the retention time of chlorthalidone, indicating specificity of the method.

  19. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  20. Techniques de combustion Combustin Techniques

    Perthuis E.

    2006-11-01

    Full Text Available L'efficacité d'un processus de chauffage par flamme est étroitement liée à la maîtrise des techniques de combustion. Le brûleur, organe essentiel de l'équipement de chauffe, doit d'une part assurer une combustion complète pour utiliser au mieux l'énergie potentielle du combustible et, d'autre part, provoquer dans le foyer les conditions aérodynamiques les plus propices oux transferts de chaleur. En s'appuyant sur les études expérimentales effectuées à la Fondation de Recherches Internationales sur les Flammes (FRIF, au Groupe d'Étude des Flammes de Gaz Naturel (GEFGN et à l'Institut Français du Pétrole (IFP et sur des réalisations industrielles, on présente les propriétés essentielles des flammes de diffusion aux combustibles liquides et gazeux obtenues avec ou sans mise en rotation des fluides, et leurs répercussions sur les transferts thermiques. La recherche des températures de combustion élevées conduit à envisager la marche à excès d'air réduit, le réchauffage de l'air ou son enrichissement à l'oxygène. Par quelques exemples, on évoque l'influence de ces paramètres d'exploitation sur l'économie possible en combustible. The efficiency of a flame heating process is closely linked ta the mastery of, combustion techniques. The burner, an essential element in any heating equipment, must provide complete combustion sa as to make optimum use of the potential energy in the fuel while, at the same time, creating the most suitable conditions for heat transfers in the combustion chamber. On the basis of experimental research performed by FRIF, GEFGN and IFP and of industrial achievements, this article describesthe essential properties of diffusion flames fed by liquid and gaseous fuels and produced with or without fluid swirling, and the effects of such flames on heat transfers. The search for high combustion temperatures means that consideration must be given to operating with reduced excess air, heating the air or

  1. Particulate emissions from residential wood combustion

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    Residential wood combustion (RWC) in fireplaces and conventional appliances is the main contributor to fine particulate matter (PM2.5) emissions in Denmark and Portugal representing more than 30% of the total emissions [1;2]. Such estimations are uncertain concerning the wood consumption...... and official emission factors, not taking into account actual burning conditions in dwellings [3]. There is limited knowledge on the real-life performance and spatial distribution of existing appliance types. Few studies have been targeting to understand the influence of fuel operation habits on PM2...... the available estimations for Denmark and Portugal, suggesting a methodology to increase the accuracy of activity data and emission factors. This work is based on new studies carried out to quantify the PM2.5 emissions in daily life through field experiments in Danish dwellings and by considering typical...

  2. Combustion Byproducts Recycling Consortium

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  3. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen [Institute of Power and Energy Engineering, Harbin Engineering University, No. 145-1, Nantong Street, Nangang District, Harbin 150001 (China); Litak, Grzegorz [Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

    2015-01-15

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  4. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  5. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    Yang, Li-Ping; Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen; Litak, Grzegorz

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions

  6. Combustible and incombustible speciation of Cl and S in various components of municipal solid waste.

    Watanabe, Nobuhisa; Yamamoto, Osamu; Sakai, Mamoru; Fukuyama, Johji

    2004-01-01

    Chlorine (Cl) and sulfur (S) in municipal solid waste (MSW) are important reactive elements during combustion. They generate the acidic pollutants HCl and SOx, and, furthermore, produce and suppress organic chlorinated compounds. Nevertheless, few practical reports about Cl and S content in MSW have been published. In combustion and recycling processes, both combustible Cl and S, and incombustible Cl and S species are equally important. This paper presents the results of a comprehensive study about combustible and incombustible Cl and S in MSW components, including kitchen garbage, paper, textiles, wood and leaves, plastics and small chips. By integrating this collected data with data about MSW composition, not only the overall content of Cl and S in MSW, but also the origins of both combustible and incombustible Cl and S were estimated. The average Cl content in bulk MSW was 3.7 g/kg of raw MSW, of which 2.7 and 1.0 g/kg were combustible and incombustible, respectively. The Cl contribution from plastics was 76% and 27% with respect to combustible and incombustible states. The average S content in bulk MSW was 0.81 g/kg of raw MSW, of which 0.46 g/kg was combustible and 0.35 g/kg was incombustible. Combustible S was mainly due to synthetic textiles, while incombustible S was primarily from paper.

  7. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  8. Jet plume injection and combustion system for internal combustion engines

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  9. Labor Force

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  10. Comparison of Combustion properties of simulated biogas and methane

    Diaz Gonzalez, Carlos; Arrieta, Andres Amell; Suarez, Jose Luis

    2009-01-01

    The utilization of new renewable energy sources has been of special interest during the past years, seeking to decrease our dependence on fossil fuels and the corresponding environmental impact derived from their use. The combustion properties of a simulated gas composed of 60% methane and 40% carbon dioxide in volume are determined in this paper by means of calculation algorithms developed by the GASURE team, comparing them to pure methane properties. Furthermore, the effect of these properties on premixed flame characteristic phenomena is demonstrated. These properties were determined by theoretical estimations. The characteristic phenomena (laminar deflagration velocity, flame structure, radiation pattern) are determined experimentally. Results show a high effect of carbon dioxide in the combustion properties and characteristic parameters of a biogas premixed flame such as laminar deflagration velocity, flame structure and gas-methane exchangeability problems. The difference regarding flame structure and combustion properties lead to a difference in radiation pattern of the gases studied.

  11. Comparison of combustion properties of simulated biogas and methane

    Diaz G, Carlos; Amell, Andres; Suarez, Jose

    2010-01-01

    The utilization of new renewable energy sources has been of special interest during the past years, seeking to decrease our dependence on fossil fuels and the corresponding environmental impact derived from their use. The combustion properties of a simulated gas composed of 60% methane and 40% carbon dioxide in volume are determined in this paper by means of calculation algorithms developed by the GASURE team, comparing them to pure methane properties. Furthermore, the effect of these properties on premixed flame characteristic phenomena is demonstrated. These properties were determined by theoretical estimations. The characteristic phenomena (laminar deflagration velocity, flame structure, radiation pattern) are determined experimentally. Results show a high effect of carbon dioxide in the combustion properties and characteristic parameters of a biogas premixed flame such as laminar deflagration velocity, flame structure and gas-methane exchangeability problems. The difference regarding flame structure and combustion properties lead to a difference in radiation pattern of the gases studied.

  12. Department of the Air Force Supporting Data for Fiscal Year 1983, Budget Estimates Submitted to Congress February 1982. Descriptive Summaries. Research, Development, Test and Evaluation.

    1982-02-01

    TACTICAL riCHTH Advanced Tactical Fighter. Joint Engine Development•• ADVANCED TACTICAL AH REC0NKAISSANC2 SYSTEM ( ATARS ). AIRCRAFT NOKNUCLEAR...1981 FY 1982 Title Actual Estimate TDTC FOR PROGRAM ELEMENT 116,435’ 135,999 Physics 12,994 14,657 Chemistry 11,926 13,778 Mathematics 10,700...to improved, stable spacecraft with extended life, Chemistry and materials research will focus on new ’«ramie, polymeric, and caroon-caroon concepts

  13. Hybrid Combustion-Gasification Chemical Looping

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    } separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  14. Twenty-fifth symposium (international) on combustion

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  15. Dispersion Forces

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  16. Nature of macroeconomic equilibrium and driving force of economic cycles in the light of difference between money and exergy forms in cost estimations

    Bandura, A.V. [National Politechnical Univ., Kiev (Ukraine); Brodianskii, V.M. [Moscow Power Engineering Inst. Technical Univ. (Russian Federation)

    1996-11-01

    The main problem of exergy application directly in economic analysis is to find valid correlation between money-based cost and exergy based one (including exergy expenses of labour) and to define exergy cost as an economic category among the existing traditional economic ones. The present report is aimed to search the way for this macroeconomic problems` solution. It is demonstrated that exergy-based cost can be recalculated in a monetary form using a coefficient, defined as a ratio between money supply and the total exergy of all natural resources involved in production process, i.e. as a ratio between monetary and exergy bases. The difference between `natural` and current prices (P) can be used directly both for general quantitative characteristics of an economic cycles driving force and for control of market relationship imperfection. It is shown that for the period of time with the positive P, that is, current price is lower than a `natural` one, the recoveries in business cycles are observed. For the period of time with the negative P, that is, current price is higher than a natural one, economic recessions are observed. The moment of time when P = 0 corresponds to the turning point of a business cycle. In such a way the possibility to predict the turning points of business cycles is demonstrated. 14 refs, 2 figs, 2 tabs

  17. Characterisation of wood combustion ashes

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  18. Novel Active Combustion Control Valve

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  19. Combustion instability modeling and analysis

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  20. The Effects of Sooting and Radiation on Droplet Combustion

    Lee, Kyeong-Ook; Manzello, Samuel L.; Choi, Mun Young

    1997-01-01

    The burning of liquid hydrocarbon fuels accounts for a significant portion of global energy production. With predicted future increases in demand and limited reserves of hydrocarbon fuel, it is important to maximize the efficiency of all processes that involve conversion of fuel. With the exception of unwanted fires, most applications involve introduction of liquid fuels into an oxidizing environment in the form of sprays which are comprised of groups of individual droplets. Therefore, tremendous benefits can result from a better understanding of spray combustion processes. Yet, theoretical developments and experimental measurements of spray combustion remains a daunting task due to the complex coupling of a turbulent, two-phase flow with phase change and chemical reactions. However, it is recognized that individual droplet behavior (including ignition, evaporation and combustion) is a necessary component for laying the foundation for a better understanding of spray processes. Droplet combustion is also an ideal problem for gaining a better understanding of non-premixed flames. Under the idealized situation producing spherically-symmetric flames (produced under conditions of reduced natural and forced convection), it represents the simplest geometry in which to formulate and solve the governing equations of mass, species and heat transfer for a chemically reacting two phase flow with phase change. The importance of this topic has promoted extensive theoretical investigations for more than 40 years.

  1. Working group report: methane emissions from fuel combustion and industrial processes

    Berdowski, J.J.M.; Beck, L.; Piccot, S.; Olivier, J.G.J.; Veldt, C.

    1993-01-01

    This paper lists the source categories which are currently recognised as minor sources of methane. These fall into five broad groups: stationary fuel combustion (residential combustion of fuels, solid waste incineration at home sites, on-site agricultural waste burning, industrial and utility combustion of coal, wood, oil and gas, commercial and industrial waste incineration); mobile fuel combustion; non-combustion industrial processes (primary metals production, chemical manufacturing processes, petroleum refining, commercial charcoal manufacturing waste treatments); minor energy production sources (storage and distribution of automotive fuels, geothermal energy production; peat mining operations, oil shale mining operations); and miscellaneous sources. The paper also presents a preliminary estimate of global methane emissions from these minor sources and the results of the working group's discussion on recommendations for the IPCC/OECD methodology and specific research needs. A list of control options for emissions from minor sources is provided. 2 tabs

  2. Combustion synthesis and characterization of uranium and thorium tellurides

    Czechowicz, D.G.

    1985-10-01

    This report describes an investigation of the chemical systems uranium-tellurium and thorium-tellurium. A novel synthesis technique, combustion synthesis, which uses the exothermic heat of reaction rather than externally supplied heat, was utilized to form the phases UTe, U 3 Te 4 , and UTe 2 in the U-Te system and the phases ThTe, Th 2 Te 3 , and ThTe 2 in the Th-Te system from reactions of the type U/sub x/ + Te/sub y/ = U/sub x/Te/sub y/. With this synthetic method, U-Te and Th-Te products could be formed in a matter of seconds, and the purity of the products was often greater than that of the starting materials used. Control over final product stoichiometry was found to be very difficult. The product phase distribution observed in combustion products, as determined by x-ray diffraction, electron microprobe, and optical metallographic methods, was found to be spatially complex. Lattice constants were calculated from x-ray diffraction patterns for the compounds UTe, U 3 Te 4 , and ThTe. SOLGASMIX thermodynamic equilibrium calculations were performed using available and estimated thermodynamic data on the system U-Te-O in an attempt to understand the products formed by combustion. Adiabatic combustion reaction temperatures for specific U-Te and Th-Te reactions were also calculated utilizing available and estimated thermodynamic data. 71 refs., 31 figs., 15 tabs

  3. Explosive growth in African combustion emissions from 2005 to 2030

    Liousse, C; Rosset, R; Assamoi, E; Criqui, P; Granier, C

    2014-01-01

    Emissions of gases and particles from the combustion of fossil fuels and biofuels in Africa are expected to increase significantly in the near future due to the rapid growth of African cities and megacities. There is currently no regional emissions inventory that provides estimates of anthropogenic combustion for the African continent. This work provides a quantification of the evolution of African combustion emissions from 2005 to 2030, using a bottom-up method. This inventory predicts very large increases in black carbon, organic carbon, CO, NO x , SO 2 and non-methane hydrocarbon emissions if no emission regulations are implemented. This paper discusses the effectiveness of scenarios involving certain fuels, specific to Africa in each activity sector and each region (western, eastern, northern and southern Africa), to reduce the emissions. The estimated trends in African emissions are consistent with emissions provided by global inventories, but they display a larger range of values. African combustion emissions contributed significantly to global emissions in 2005. This contribution will increase more significantly by 2030: organic carbon emissions will for example make up 50% of the global emissions in 2030. Furthermore, we show that the magnitude of African anthropogenic emissions could be similar to African biomass burning emissions around 2030. (paper)

  4. Improvement of fuel combustion technologies

    Tumanovskii, A.G.; Babii, V.I.; Enyakin, Y.P.; Kotler, V.R.; Ryabov, G.V.; Verbovetskii, E.K.; Nadyrov, I.I. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The main problems encountered in the further development of fuel combustion technologies at thermal power stations in Russia are considered. Experience is generalized and results are presented on the efficiency with which nitrogen oxide emissions are reduced by means of technological methods when burning natural gas, fuel oil, and coal. The problems that arise in the introduction of new combustion technologies and in using more promising grades of coal are considered. The results studies are presented that show that low grade Russian coals can be burnt in circulating fluidized bed boilers. 14 refs., 5 figs., 4 tabs.

  5. Chemical kinetics and combustion modeling

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  6. Combustion pressure-based engine management system

    Mueller, R.; Hart, M. [DaimlerChrysler, Stuttart (Germany); Truscott, A.; Noble, A. [Ricardo, Shoreham-by-Sea (United Kingdom); Kroetz, G.; Richter, C. [DaimlerChrysler, Munchen (Germany); Cavalloni, C. [Kistler Instruments AG, Winterthur (Switzerland)

    2000-07-01

    In order to fulfill future emissions and OBD regulations, whilst meeting increasing demands for driveability and refinement, new technologies for SI engines have to be found in terms of sensors and algorithms for engine control units. One promising way, explored in the AENEAS collaborative project between DaimlerChrysler, Kistler, Ricardo and the European Commission, is to optimize the behavior of the system by using in-cylinder measurements and analysing them with modern control algorithms. In this paper a new engine management system based on combustion pressure sensing is presented. The pressure sensor is designed to give a reliable and accurate signal of the full pressure trace during a working cycle. With the application of new technologies low cost manufacturing appears to be achievable, so that an application in mass production can be considered. Furthermore, model-based algorithms were developed to allow optimal control of the engine based on the in-cylinder measurements. The algorithms incorporate physical principles to improve efficiency, emissions and to reduce the parameterisation effort. In the paper, applications of the combustion pressure signal for air mass estimation, knock detection, ignition control cam phase detection and diagnosis are discussed. (author)

  7. Application of the FIRST Combustion model to Spray Combustion

    de Jager, B.; Kok, Jacobus B.W.

    2004-01-01

    Liquid fuel is of interest to apply to gas turbines. The large advantage is that liquids are easily storable as compared to gaseous fuels. Disadvantage is that liquid fuel has to be sprayed, vaporized and mixed with air. Combustion occurs at some stage of mixing and ignition. Depending on the

  8. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  9. Interactive wood combustion for botanical tree models

    Pirk, Sö ren; Jarząbek, Michał; Hadrich, Torsten; Michels, Dominik L.; Palubicki, Wojciech

    2017-01-01

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical

  10. Free Energy and Internal Combustion Engine Cycles

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  11. Method for storing radioactive combustible waste

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  12. Scramjet Combustion Stability Behavior Modeling, Phase II

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the potential to predict the combustion stability of a scramjet. This capability is very...

  13. Scramjet Combustion Stability Behavior Modeling, Phase I

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the means to accurately predict the combustion stability of a scramjet. This capability is very...

  14. Publication sites productive uses of combustion ash

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used

  15. Combustion Research Facility | A Department of Energy Office of Science

    Collaborative Research Facility Back to Sandia National Laboratory Homepage Combustion Research Search the CRF Combustion Chemistry Flame Chemistry Research.Combustion_Chemistry.Flame_Chemistry Theory and Modeling Theory and Modeling Combustion Kinetics High Pressure Chemistry Chemistry of Autoignition

  16. Fuel Combustion and Engine Performance | Transportation Research | NREL

    Fuel Combustion and Engine Performance Fuel Combustion and Engine Performance Photo of a gasoline emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and combustion and engine research activities include: Developing experimental and simulation research platforms

  17. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  18. 20th-century industrial black carbon emissions altered Arctic climate forcing.

    McConnell, Joseph R; Edwards, Ross; Kok, Gregory L; Flanner, Mark G; Zender, Charles S; Saltzman, Eric S; Banta, J Ryan; Pasteris, Daniel R; Carter, Megan M; Kahl, Jonathan D W

    2007-09-07

    Black carbon (BC) from biomass and fossil fuel combustion alters chemical and physical properties of the atmosphere and snow albedo, yet little is known about its emission or deposition histories. Measurements of BC, vanillic acid, and non-sea-salt sulfur in ice cores indicate that sources and concentrations of BC in Greenland precipitation varied greatly since 1788 as a result of boreal forest fires and industrial activities. Beginning about 1850, industrial emissions resulted in a sevenfold increase in ice-core BC concentrations, with most change occurring in winter. BC concentrations after about 1951 were lower but increasing. At its maximum from 1906 to 1910, estimated surface climate forcing in early summer from BC in Arctic snow was about 3 watts per square meter, which is eight times the typical preindustrial forcing value.

  19. 40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?

    2010-07-01

    ... continuously estimate load level (for example, the feed rate of municipal solid waste or refuse-derived fuel... municipal waste combustion unit? 62.15265 Section 62.15265 Protection of Environment ENVIRONMENTAL... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units...

  20. Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions

    Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.

    1991-01-01

    After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.

  1. Severe Accident Analysis for Combustible Gas Risk Evaluation inside CFVS

    Lee, NaRae; Lee, JinYong; Bang, YoungSuk; Lee, DooYong; Kim, HyeongTaek

    2015-01-01

    The purpose of this study is to identify the composition of gases discharged into the containment filtered venting system by analyzing severe accidents. The accident scenarios which could be significant with respect to containment pressurization and hydrogen generation are derived and composition of containment atmosphere and possible discharged gas mixtures are estimated. In order to ensure the safety of the public and environment, the ventilation system should be designed properly by considering discharged gas flow rate, aerosol loads, radiation level, etc. One of considerations to be resolved is the risk due to combustible gas, especially hydrogen. Hydrogen can be generated largely by oxidation of cladding and decomposition of concrete. If the hydrogen concentration is high enough and other conditions like oxygen and steam concentration is met, the hydrogen can burn, deflagrate or detonate, which result in the damage the structural components. In particularly, after Fukushima accident, the hydrogen risk has been emphasized as an important contributor threatening the integrity of nuclear power plant during the severe accident. These results will be used to analyze the risk of hydrogen combustion inside the CFVS as boundary conditions. Severe accident simulation results are presented and discussed qualitatively with respect to hydrogen combustion. The hydrogen combustion risk inside of the CFVS has been examined qualitatively by investigating the discharge flow characteristics. Because the composition of the discharge flow to CFVS would be determined by the containment atmosphere, the severe accident progression and containment atmosphere composition have been investigated. Due to PAR operation, the hydrogen concentration in the containment would be decreased until the oxygen is depleted. After the oxygen is depleted, the hydrogen concentration would be increased. As a result, depending on the vent initiation timing (i.e. vent initiation pressure), the important

  2. Severe Accident Analysis for Combustible Gas Risk Evaluation inside CFVS

    Lee, NaRae; Lee, JinYong; Bang, YoungSuk; Lee, DooYong [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Kim, HyeongTaek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The purpose of this study is to identify the composition of gases discharged into the containment filtered venting system by analyzing severe accidents. The accident scenarios which could be significant with respect to containment pressurization and hydrogen generation are derived and composition of containment atmosphere and possible discharged gas mixtures are estimated. In order to ensure the safety of the public and environment, the ventilation system should be designed properly by considering discharged gas flow rate, aerosol loads, radiation level, etc. One of considerations to be resolved is the risk due to combustible gas, especially hydrogen. Hydrogen can be generated largely by oxidation of cladding and decomposition of concrete. If the hydrogen concentration is high enough and other conditions like oxygen and steam concentration is met, the hydrogen can burn, deflagrate or detonate, which result in the damage the structural components. In particularly, after Fukushima accident, the hydrogen risk has been emphasized as an important contributor threatening the integrity of nuclear power plant during the severe accident. These results will be used to analyze the risk of hydrogen combustion inside the CFVS as boundary conditions. Severe accident simulation results are presented and discussed qualitatively with respect to hydrogen combustion. The hydrogen combustion risk inside of the CFVS has been examined qualitatively by investigating the discharge flow characteristics. Because the composition of the discharge flow to CFVS would be determined by the containment atmosphere, the severe accident progression and containment atmosphere composition have been investigated. Due to PAR operation, the hydrogen concentration in the containment would be decreased until the oxygen is depleted. After the oxygen is depleted, the hydrogen concentration would be increased. As a result, depending on the vent initiation timing (i.e. vent initiation pressure), the important

  3. A Reduced Order Model for the Design of Oxy-Coal Combustion Systems

    Steven L. Rowan

    2015-01-01

    Full Text Available Oxy-coal combustion is one of the more promising technologies currently under development for addressing the issues associated with greenhouse gas emissions from coal-fired power plants. Oxy-coal combustion involves combusting the coal fuel in mixtures of pure oxygen and recycled flue gas (RFG consisting of mainly carbon dioxide (CO2. As a consequence, many researchers and power plant designers have turned to CFD simulations for the study and design of new oxy-coal combustion power plants, as well as refitting existing air-coal combustion facilities to oxy-coal combustion operations. While CFD is a powerful tool that can provide a vast amount of information, the simulations themselves can be quite expensive in terms of computational resources and time investment. As a remedy, a reduced order model (ROM for oxy-coal combustion has been developed to supplement the CFD simulations. With this model, it is possible to quickly estimate the average outlet temperature of combustion flue gases given a known set of mass flow rates of fuel and oxidant entering the power plant boiler as well as determine the required reactor inlet mass flow rates for a desired outlet temperature. Several cases have been examined with this model. The results compare quite favorably to full CFD simulation results.

  4. Leaching from biomass combustion ash

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  5. An incinerator for combustable radwastes

    Li Jingquan; Jiang Yun; Zhang Yinsheng; Chen Boling; Zhang Shihang

    1989-01-01

    An incinerator has been built up in Shanghai. In this paper, the devices of the incinerator, main parameters of the process, and the results of non-radioactive waste and simulated radwaste combustion tests were contributed. That provides reference information for radwaste treatment with incineration process

  6. 75 FR 32142 - Combustible Dust

    2010-06-07

    .... Contact Mat Chibbaro, P.E., Fire Protection Engineer, Office of Safety Systems, OSHA Directorate of..., and metals (such as aluminum and magnesium). Industries that may have combustible dust hazards include..., chemical manufacturing, textile manufacturing, furniture manufacturing, metal processing, fabricated metal...

  7. Sulfur Chemistry in Combustion II

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...

  8. Multi-zone modelling of PCCI combustion

    Egüz, U.; Somers, L.M.T.; Leermakers, C.A.J.; Goey, de L.P.H.

    2011-01-01

    Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) combustion is a promising concept for the diesel combustion. Although EDI PCCI assures very low soot and NO xemission levels, the injection is uncoupled from combustion, which narrows down the operating conditions. The main

  9. Different forces

    1982-01-01

    The different forces, together with a pictorial analogy of how the exchange of particles works. The table lists the relative strength of the couplings, the quanta associated with the force fields and the bodies or phenomena in which they have a dominant role.

  10. Labor Force

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  11. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  12. Environmental optimisation of waste combustion

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  13. Particulate Matter Emission Factors for Biomass Combustion

    Simone Simões Amaral

    2016-10-01

    Full Text Available Emission factor is a relative measure and can be used to estimate emissions from multiple sources of air pollution. For this reason, data from literature on particulate matter emission factors from different types of biomass were evaluated in this paper. Initially, the main sources of particles were described, as well as relevant concepts associated with particle measurements. In addition, articles about particle emissions were classified and described in relation to the sampling environment (open or closed and type of burned biomass (agricultural, garden, forest, and dung. Based on this analysis, a set of emission factors was presented and discussed. Important observations were made about the main emission sources of particulate matter. Combustion of compacted biomass resulted in lower particulate emission factors. PM2.5 emissions were predominant in the burning of forest biomass. Emission factors were more elevated in laboratory burning, followed by burns in the field, residences and combustors.

  14. Combustor nozzle for a fuel-flexible combustion system

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  15. Modeling of Plasma Assisted Combustion

    Akashi, Haruaki

    2012-10-01

    Recently, many experimental study of plasma-assisted combustion has been done. However, numerous complex reactions in combustion of hydrocarbons are preventing from theoritical study for clarifying inside the plasma-assisted combustion, and the effect of plasma-assist is still not understood. Shinohara and Sasaki [1,2] have reported that the shortening of flame length by irradiating microwave without increase of gas temperature. And they also reported that the same phenomena would occur when applying dielectric barrier discharges to the flame using simple hydrocarbon, methane. It is suggested that these phenomena may result by the electron heating. To clarify this phenomena, electron behavior under microwave and DBD was examined. For the first step of DBD plasma-assisted combustion simulation, electron Monte Carlo simulation in methane, oxygen and argon mixture gas(0.05:0.14:0.81) [2] has been done. Electron swarm parameters are sampled and electron energy distribution function (EEDF)s are also determined. In the combustion, gas temperature is higher(>1700K), so reduced electric field E/N becomes relatively high(>10V/cm/Torr). The electrons are accelerated to around 14 eV. This result agree with the optical emission from argon obtained by the experiment of reference [2]. Dissociation frequency of methane and oxygens are obtained in high. This might be one of the effect of plasma-assist. And it is suggested that the electrons should be high enough to dissociate methane, but plasma is not needed.[4pt] [1] K. Shinohara et al, J. Phys. D:Appl. Phys., 42, 182008 (1-7) (2009).[0pt] [2] K. Sasaki, 64th Annual Gaseous Electronic Conference, 56, 15 CT3.00001(2011).

  16. Combustive management of oil spills

    1992-01-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris

  17. Basic study on the generation of RF plasmas in premixed oxy-combustion with methane

    Osaka, Yugo; Razzak, M.A.; Kobayashi, Noriyuki; Ohno, Noriyasu; Takamura, Shuichi; Uesugi, Yoshihiko

    2010-01-01

    Oxy-combustion generates a high temperature field (above 3000 K), which is applied to next generation power plants and high temperature industrial technologies because of N 2 free processes. However, the combustion temperature is so high that the furnace wall may be fatally damaged. In addition, it is very difficult to control the heat flux and chemical species' concentrations because of rapid chemical reactions. We have developed a new method for controlling the flame by electromagnetic force on this field. In this paper, we experimentally investigated the power coupling between the premixed oxy-combustion with methane and radio frequency (RF) power through the induction coil. By optimizing the power coupling, we observed that the flame can absorb RF power up to 1.5 kW. Spectroscopic measurements also showed an increase in the emission intensity from OH radicals in the flame, indicating improved combustibility. (author)

  18. Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste.

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun

    2017-07-11

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.

  19. Emissions from small scale combustion of pelletized wood fuels

    Bachs, A.

    1998-01-01

    Combustion of wood pellets in small scale heating systems with an effect below 20 kW has increased. During the winter season 1995/96 1500 small plants for heating houses are estimated to be in operation. Stack emissions from three pellet burners and two pellet stoves have been studied at laboratory. Different pellet qualities were tested. When the fraction of fines increased also the NO x emissions increased with about 10 %. As reference fuel 8 mm pellets was used. Tests with 6 mm pellets gave, in most cases, significant lower emissions of CO and THC. Eleven stoves, burners and boilers were studied in a field test. The results show that all the plants generally have higher emissions in the field than during conditions when the plants are adjusted with a stack gas monitoring instrument. A conclusion is that it is difficult for the operator to adjust the plant without a monitoring instrument. The emissions from the tested plants give an estimation of stack gas emissions from small scale pellet plants. The difference between the 'best' and 'worst' technologies is big. The span of emissions with the best technology to the worst is given below. The interval is concerning normal combustion . During abnormal conditions the emissions are on a significant higher level: * CO 80-1 000 mg/MJ; * Tar 0,3-19 mg/MJ; * THC (as methane equivalents) 2-100 mg/MJ; * NO x 50-70 mg/W;, and * Dust emissions 20-40 mg/MJ. Emissions from pellets heating are lower than from wood combustion and the best technology is close to the emission from oil burners. Wood and pellets have the same origin but the conditions to burn them in an environmental friendly way differ. Combustion of pellets could be improved through improved control of the air and fuel ratio that will create more stable conditions for the combustion

  20. Use of combustible wastes as fuel

    Kotler, V.R.; Salamov, A.A.

    1983-01-01

    Achievements of science and technology in creating and using units for combustion of wastes with recovery of heat of the escaping gases has been systematized and generalized. Scales and outlooks are examined for the use of general, industrial and agricultural waste as fuel, composition of the waste, questions of planning and operating units for combustion of solid refuse, settling of waste water and industrial and agricultural waste. Questions are covered for preparing them for combustion use in special units with recovery of heat and at ES, aspects of environmental protection during combustion of waste, cost indicators of the employed methods of recovering the combustible waste.

  1. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    2016-09-07

    behaviour as compared to ethanol. The latter fuel has also been considered along with methane. Work has also been performed on the further assessment of... behaviour as compared to ethanol. The latter fuel has also been considered along with methane. Work has also been performed on the further assess- ment of...identification of various combustion gas states. A range of Damköhler numbers (Da) from the conventional propagating flamelet regime well into the distributed

  2. Molten salt combustion of radioactive wastes

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  3. Drying wood waste with a pulse combustion dryer

    Buchkowski, A.G. [Spectrum Engineering Corp., Ltd., Peterborough, Ontario (Canada); Kitchen, J.A. [John A. Kitchen, Ltd., Hastings, Ontario (Canada)

    1993-12-31

    There is a vast amount of wood waste available to be used as an alternate fuel if its moisture could be reduced efficiently. Tests have been conducted to assess an industrial dryer using pulse combustion as a heating source for drying wood waste; specifically sawdust and pulverized wet hog fuel. Pulse combustion offers the advantage of high heat transfer, efficient combustion, and low NO{sub x} emissions. The material is injected into the exhaust gases in the tailpipe of the combustor which uses natural gas or propane as a fuel. The turbulence created by the pulsations enhance the drying process by reducing the boundary layer thicknesses. The materials is further dried in a rotary drum. The material has been dried without scorching or burning in tests where the inlet moisture content has been as high as 60% on a wet basis. The outlet moisture contents achieved have typically been 10%. Analysis of the test data and cost estimates of the equipment indicate that the pulse combustion drying system is at least comparable to existing systems in terms of operating costs, and offers very significant savings in capital costs. Testing with various other materials such as wood pulp, sludges and peat is continuing to further assess the equipment`s performance.

  4. Modeling of a bioethanol combustion engine under different operating conditions

    Hedfi, Hachem; Jedli, Hedi; Jbara, Abdessalem; Slimi, Khalifa

    2014-01-01

    Highlights: • Bioethanol/gasoline blends’ fuel effects on engine’s efficiency, CO and NOx emissions. • Fuel consumption and EGR optimizations with respect to estimated engine’s work. • Ignition timing and blends’ effects on engine’s efficiency. • Rich mixture, gasoline/bioethanol blends and EGR effects on engine’s efficiency. - Abstract: A physical model based on a thermodynamic analysis was designed to characterize the combustion reaction parameters. The time-variations of pressure and temperature required for the calculation of specific heat ratio are obtained from the solution of energy conservation equation. The chemical combustion of biofuel is modeled by an overall reaction in two-steps. The rich mixture and EGR were varied to obtain the optimum operating conditions for the engine. The NOx formation is modeled by using an eight-species six-step mechanism. The effect of various formation steps of NOx in combustion is considered via a phenomenological model of combustion speed. This simplified model, which has been validated by the most available published results, is used to characterize and control, in real time, the impact of biofuel on engine performances and NOx emissions as well. It has been demonstrated that a delay of the ignition timing leads to an increase of the gas mixture temperature and cylinder pressure. Furthermore, it has been found that the CO is lower near the stoichiometry. Nevertheless, we notice that lower rich mixture values result in small NOx emission rates

  5. Force on an Asymmetric Capacitor

    Bahder, Thomas

    2003-01-01

    .... At present, the physical basis for the Biefeld-Brown effect is not understood. The order of magnitude of the net force on the asymmetric capacitor is estimated assuming two different mechanisms of charge conduction between its electrodes...

  6. Adhesive forces at bimetallic interfaces

    Das, M.P.; Nafari, N.; Ziesche, P.; Kaschner, H.R.

    1987-03-01

    Force concepts in condensed systems have progressed significantly in recent years. In the context of bimetallic interfaces we consider the Pauli-Hellman-Feynman theorem, use it to check the variational calculations of interfacial energies and estimate the force constants. (author). 13 refs, 2 figs, 2 tabs

  7. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  8. Microscale combustion and power generation

    Cadou, Christopher; Ju, Yiguang

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of these devices to realize their full potential. Engineers and scientists working in energy-related fields will find: An overview of the fundamental physics and phenomena of microscale combustion; Presentations of the latest modeling and simulation techniques for gasphase and catalytic micro-reactors; The latest results from experiments in small-scale liquid film, microtube, and porous combustors, micro-thrusters, a...

  9. Combustion process science and technology

    Hale, Robert R.

    1989-01-01

    An important and substantial area of technical work in which noncontact temperature measurement (NCTM) is desired is that involving combustion process research. In the planning for this workshop, it was hoped that W. Serignano would provide a briefing regarding the experimental requirements for thermal measurements to support such research. The particular features of thermal measurement requirements included those describing the timeline for combustion experiments, the requirements for thermal control and diagnostics of temperature and other related thermal measurements and the criticality to the involved science to parametric features of measurement capability including precision, repeatability, stability, and resolution. In addition, it was hoped that definitions could be provided which characterize the needs for concurrent imaging as it relates to science observations during the conduct of experimentation.

  10. Dynamical issues in combustion theory

    Fife, P.C.; Williams, F.

    1991-01-01

    This book looks at the world of combustion phenomena covering the following topics: modeling, which involves the elucidation of the essential features of a given phenomenon through physical insight and knowledge of experimental results, devising appropriate asymptotic and computational methods, and developing sound mathematical theories. Papers in this book describe how all of these challenges have been met for particular examples within a number of common combustion scenarios: reactive shocks, low Mach number premixed reactive flow, nonpremixed phenomena, and solid propellants. The types of phenomena examined are also diverse: the stability and other properties of steady structures, the long time dynamics of evolving solutions, properties of interfaces and shocks, including curvature effects, and spatio-temporal patterns

  11. SPECIFIC EMISSIONS FROM BIOMASS COMBUSTION

    Pavel Skopec

    2014-02-01

    Full Text Available This paper deals with determining the specific emissions from the combustion of two kinds of biomass fuels in a small-scale boiler. The tested fuels were pellets made of wood and pellets made of rape plant straw. In order to evaluate the specific emissions, several combustion experiments were carried out using a commercial 25 kW pellet-fired boiler. The specific emissions of CO, SO2 and NOx were evaluated in relation to a unit of burned fuel, a unit of calorific value and a unit of produced heat. The specific emissions were compared with some data acquired from the reference literature, with relatively different results. The differences depend mainly on the procedure used for determining the values, and references provide no information about this. Although some of our experimental results may fit with one of the reference sources, they do not fit with the other. The reliability of the references is therefore disputable.

  12. Steady state HNG combustion modeling

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  13. Oxy-coal Combustion Studies

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  14. Modeling and simulation of combustion chamber and propellant dynamics and issues in active control of combustion instabilities

    Isella, Giorgio Carlo

    form of pulsed secondary fuel. We show the capability of forcing the transition from unstable to stable burning, hence extending the stable operating regime of the combustor. The transition, characterized by the use of a shadowgraph movie sequence, is attributed to a combined fluid-mechanic and combustion mechanism.

  15. Coal combustion technology in China

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  16. Example Problems in LES Combustion

    2016-09-26

    Lesieur, M., Turbulence in Fluids , 2nd Revised Ed., Fluid Mechanics and Its Applications, Vol. 1, Kluwer Academic Publishers, Boston, Massachusetts, 1990...34, Journal of Fluid Mechanics , Vol. 238, 1992, pp. 155-185. 5. Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2, Computational...reaction mechanisms for the oxidation of hydrocarbon fuels in flames", Combustion Science and Technology, Vol. 27, 1981, pp. 31-43. 14. Spalding, D.B

  17. Combustion instability modeling and analysis

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  18. Modeling the internal combustion engine

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  19. Exhaust gas recirculation for advanced diesel combustion cycles

    Asad, Usman; Zheng, Ming

    2014-01-01

    Highlights: • Analysis of the incremental (cycle-by-cycle) build-up of EGR. • Proposed one-step equations for transient/steady-state gas concentration estimation. • Defined an in-cylinder excess-air ratio to account for the recycled oxygen with EGR. • Demonstrated the use of intake oxygen as a reliable measure of EGR effectiveness. • Demonstrated the impact of engine load and intake pressure on EGR effectiveness. - Abstract: Modern diesel engines tend to utilize significantly large quantities of exhaust gas recirculation (EGR) and high intake pressures across the engine load range to meet NOx targets. At such high EGR rates, the combustion process and exhaust emissions tend to exhibit a marked sensitivity to small changes in the EGR quantity, resulting in unintended deviations from the desired engine performance characteristics (energy efficiency, emissions, stability). An accurate estimation of EGR and its effect on the intake dilution are, therefore, necessary to enable its application during transient engine operation or unstable combustion regimes. In this research, a detailed analysis that includes estimation of the transient (cycle-by-cycle) build-up of EGR and the time (engine cycles) required to reach the steady-state EGR operation has been carried out. One-step global equations to calculate the transient and steady-state gas concentrations in the intake and exhaust are proposed. The effects of engine load and intake pressure on EGR have been examined and explained in terms of intake charge dilution and in-cylinder excess-air ratio. The EGR analysis is validated against a wide range of empirical data that include low temperature combustion cycles, intake pressure and load sweeps. This research intends to not only formulate a clear understanding of EGR application for advanced diesel combustion but also to set forth guidelines for transient analysis of EGR

  20. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  1. Particle Emissions from Biomass Combustion

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  2. Nuclear forces

    Holinde, K.

    1990-01-01

    In this paper the present status of the meson theory of nuclear forces is reviewed. After some introductory remarks about the relevance of the meson exchange concept in the era of QCD and the empirical features of the NN interaction, the exciting history of nuclear forces is briefly outlined. In the main part, the author gives the basic physical ideas and sketch the derivation of the one-boson-exchange model of the nuclear force, in the Feynman approach. Secondly we describe, in a qualitative way, various necessary extensions, leading to the Bonn model of the N interaction. Finally, points to some interesting pen questions connected with the extended quark structure of the hadrons, which are topics of current research activity

  3. Setting up experimental incineration system for low-level radioactive samples and combustion experiments

    Yumoto, Yasuhiro; Hanafusa, Tadashi; Nagamatsu, Tomohiro; Okada, Shigeru

    1997-01-01

    An incineration system was constructed which were composed of a combustion furnace (AP-150R), a cyclone dust collector, radioisotope trapping and measurement apparatus and a radioisotope storage room built in the first basement of the Radioisotope Center. Low level radioactive samples (LLRS) used for the combustion experiment were composed of combustible material or semi-combustible material containing 500 kBq of 99m TcO 4 or 23.25 kBq of 131 INa. The distribution of radioisotopes both in the inside and outside of combustion furnace were estimated. We measured radioactivity of a smoke duct gas in terminal exit of the exhaust port. In case of combustion of LLRS containing 99m TcO 4 or 131 INa, concentration of radioisotopes at the exhaust port showed less than legal concentration limit of these radioisotopes. In cases of combustion of LLRS containing 99m TcO 4 or 131 INa, decontamination factors of the incineration system were 120 and 1.1, respectively. (author)

  4. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  5. Combustion of Solid Propellants (La Combustion des Propergols Solides)

    1991-07-01

    the of ether and ethyl alcohol and removing objective of these lectures to give a this solvent. Instead of having a fibrous comprehensive understanding...do cetto esrne do Les propergols composites, A matrice confifrences une description tout A fait A polymarique charg~o pst, un oxydant at un jour des...rusa., De nouveaux souvant suppos6 qua la vitesa des gaz de oxydes de for ultrafirts mont aujourd’hui combustion est n~gligeable at qua d~velopps pour

  6. Future combustion methods for biomethane powered tractor engines

    Prehn, Sascha; Harndorf, Horst; Wichmann, Volker; Beberdick, Wolfgang

    2016-01-01

    Biomethane represents an alternative to fossil fuels (petrol, diesel), not only in the on-road sector. Methane-based fuels come in focus of farmers in the agriculture sector, due to cost constraints, increasing regulation of pollutant emissions and reduction of carbondioxid. To represent a monovalent gas operation, a functional model is derived from a series diesel engine for agricultural use. On the test engine, systematic studies on the combustion process are carried out by cylinder pressure indication and exhaust-emission measurement. Combustion under stoichiometric conditions (with or without exhaust gas recirculation) as well as the conversion of fuel from excess air is observed. The study shows that with a natural-gas engine, a complex post-treatment system of exhaust gas (DOC + DPF + SCR) that is typically for diesel engines can be dispensed with. The exhaust gas limits in force since 2014 and a limitation of methane on 0,5 g/kWh can be met with a stoichiometric combustion concept and a three way catalytic converter optimized for the methane oxidation.

  7. Straw combustion on slow-moving grates

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  8. Oxy-fuel combustion of solid fuels

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  9. Numerical investigation of biogas flameless combustion

    Hosseini, Seyed Ehsan; Bagheri, Ghobad; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Fuel consumption decreases from 3.24 g/s in biogas conventional combustion to 1.07 g/s in flameless mode. • The differences between reactants and products temperature intensifies irreversibility in traditional combustion. • The temperature inside the chamber is uniform in biogas flameless mode and exergy loss decreases in this technique. • Low O 2 concentration in the flameless mode confirms a complete and quick combustion process in flameless regime. - Abstract: The purpose of this investigation is to analyze combustion characteristics of biogas flameless mode based on clean technology development strategies. A three dimensional (3D) computational fluid dynamic (CFD) study has been performed to illustrate various priorities of biogas flameless combustion compared to the conventional mode. The effects of preheated temperature and wall temperature, reaction zone and pollutant formation are observed and the impacts of combustion and turbulence models on numerical results are discussed. Although preheated conventional combustion could be effective in terms of fuel consumption reduction, NO x formation increases. It has been found that biogas is not eligible to be applied in furnace heat up due to its low calorific value (LCV) and it is necessary to utilize a high calorific value fuel to preheat the furnace. The required enthalpy for biogas auto-ignition temperature is supplied by enthalpy of preheated oxidizer. In biogas flameless combustion, the mean temperature of the furnace is lower than traditional combustion throughout the chamber. Compared to the biogas flameless combustion with uniform temperature, very high and fluctuated temperatures are recorded in conventional combustion. Since high entropy generation intensifies irreversibility, exergy loss is higher in biogas conventional combustion compared to the biogas flameless regime. Entropy generation minimization in flameless mode is attributed to the uniform temperature inside the chamber

  10. Materials for High-Temperature Catalytic Combustion

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  11. Impact on the greenhouse effect of peat mining and combustion

    Rodhe, H.; Svensson, Bo

    1995-01-01

    Combustion of peat leads to emission of carbon dioxide (CO 2 ) in the atmosphere. In addition, mining of the peat alters the environment such that the natural fluxes of CO 2 and other greenhouse gases are modified. Of particular interest is a reduction in the emission of methane (CH 4 ) in the drained parts of the mires. We estimate the total impact on the greenhouse effect of these processes. The results indicate that the decreased emission of methane from the drained mires compensates for about 15% of the CO 2 emission during the combustion of the peat. It follows that, in a time perspective of less than several hundred years, peat is comparable to a fossil fuel, as far as the contribution to the greenhouse effect is concerned. 39 refs, 1 fig, 4 tabs

  12. Experimental kinetic parameters in the thermo-fluid-dynamic modelling of coal combustion

    Migliavacca, G.; Perini, M.; Parodi, E.

    2001-01-01

    The designing and the optimisation of modern and efficient combustion systems are nowadays frequently based on calculation tools for mathematical modelling, which are able to predict the evolution of the process starting from the first principles of physics. Otherwise, in many cases, specific experimental parameters are needed to describe the specific nature of the materials considered in the calculations. It is especially true in the modelling of coal combustion, which is a complex process strongly dependent on the chemical and physical features of the fuel. This paper describes some experimental techniques used to estimate the fundamental kinetic parameters of coal combustion and shows how this data may be introduced in a model calculation to predict the pollutant emissions from a real scale combustion plant [it

  13. Turbulent combustion and DDT events as an upper bound for hydrogen mitigation techniques

    Dorofeev, S.B.

    1997-01-01

    A brief review is presented on the limiting conditions for fast combustion regimes (accelerated flames, fast turbulent deflagrations, and DDT events), and on their effect on confining structures. Main attention is given to hydrogen-air-steam mixtures typical for severe accidents in nuclear power plants. Comparison is made of the pressure loads resulting from different combustion regimes. Transient wave processes are shown to be very important for description of the pressure loads. Different limiting conditions are discussed for DDT being the most dangerous combustion event. Possibility of DDT is shown to be limited by the geometrical scale. Detailed description is presented for DDT criterion based on the minimum scale requirement for detonation formation. This criterion gives a conservative estimate that DDT is impossible, if characteristic size of combustible mixture is less than 7 detonation cell widths of the mixture. Conditions limiting possibility of flame acceleration are also discussed. (author)

  14. Turbine Burners: Turbulent Combustion of Liquid Fuels

    Sirignano, William A; Liu, Feng; Dunn-Rankin, Derek

    2006-01-01

    The proposed theoretical/computational and experimental study addresses the vital two-way coupling between combustion processes and fluid dynamic phenomena associated with schemes for burning liquid...

  15. Pulsed atmospheric fluidized bed combustion

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  16. COMBUSTION PROPERTIES OF EUCALYPTUS WOOD

    Yalçın ÖRS

    1999-03-01

    Full Text Available In this study, the combustion properties of some impregnation materials (abiotic and biotic factors used for eucalyptus wood in interior or exterior environments were investigated. The experimental samples were prepared from Eucalyptus wood based on ASTM-D-1413-76 Tanalith-CBC, boric acid, borax, vacsol-WR, immersol-WR, polyethylen glycole-400 and ammonium sulphate were used as an impregnation material. The results indicated that, vacuum treatment on Eucalyptus gave the lowest retention value of salts. Compounds containing boron+salt increased fire resistance however water repellents decreased the wood flammability.

  17. Theoretical studies of combustion dynamics

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  18. Modeling nitrogen chemistry in combustion

    Glarborg, Peter; Miller, James A.; Ruscic, Branko

    2018-01-01

    the accuracy of engineering calculations and thereby the potential of primary measures for NOx control. In this review our current understanding of the mechanisms that are responsible for combustion-generated nitrogen-containing air pollutants is discussed. The thermochemistry of the relevant nitrogen...... via NNH or N2O are discussed, along with the chemistry of NO removal processes such as reburning and Selective Non-Catalytic Reduction of NO. Each subset of the mechanism is evaluated against experimental data and the accuracy of modeling predictions is discussed....

  19. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

    Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

    2002-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

  20. Engine combustion network (Ecn) : characterization and comparison of boundary conditions for different combustion vessels

    Meijer, M.; Somers, L.M.T.; Johnson, J.; Naber, J.; Lee, S.Y.; Malbec, L.M.; Bruneaux, G.; Pickett, L.M.; Bardi, M.; Payri, R.; Bazyn, T.

    2012-01-01

    The Engine Combustion Network (ECN) is a worldwide group of institutions using combustion vessels and/or performing computational fluid dynamics (CFD) simulation, whose aim is to advance the state of spray and combustion knowledge at engine-relevant conditions. A key activity is the use of spray

  1. The dynamic interaction between combustible renewables and waste consumption and international tourism: the case of Tunisia.

    Ben Jebli, Mehdi; Ben Youssef, Slim; Apergis, Nicholas

    2015-08-01

    This paper employs the autoregressive distributed lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO2) emissions, and international tourism for the case of Tunisia spanning the period 1990-2010. The results from the Fisher statistic of both the Wald test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of estimated parameters has been tested, while Granger causality tests recommend a short-run unidirectional causality running from economic growth and combustible renewables and waste consumption to CO2 emissions, a bidirectional causality between economic growth and combustible renewables and waste consumption and unidirectional causality running from economic growth and combustible renewables and waste consumption to international tourism. In the long-run, the error correction terms confirm the presence of bidirectional causality relationships between economic growth, CO2 emissions, combustible renewables and waste consumption, and international tourism. Our long-run estimates show that combustible renewables and waste consumption increases international tourism, and both renewables and waste consumption and international tourism increase CO2 emissions and output. We recommend that (i) Tunisia should use more combustible renewables and waste energy as this eliminates wastes from touristic zones and increases the number of tourist arrivals, leading to economic growth, and (ii) a fraction of this economic growth generated by the increase in combustible renewables and waste consumption should be invested in clean renewable energy production (i.e., solar, wind, geothermal) and energy efficiency projects.

  2. The role of chlorine and additives of PVC-plastic in combustion

    Mattila, H.

    1991-01-01

    The PVC differs from other common plastics due to the chlorine content. As the PVC is combusted, the chlorine is released mainly as hydrogen chloride. The content of chlorinated hydrocarbons is small, but these can also contain polychlorinated dibenzofuranes and dibenzodioxines, which are extremely poisonous. The aim of this study was to find out, what is the portion of PVC combustion in total emission of chlorinated hydrocarbons. Additionally, the amounts chlorine coming into combustion process with ordinary fuels have been estimated, and they are compared with the amounts of PVC. The chloride content of municipal wastes vary in between 0.4-0.9 %. The portion of plastics is about 30 % of the total, and the rest being from paper, food , wood and garden wastes an textiles. Both organic and inorganic chlorine form gaseous hydrogen chlorid in combustion processes. HCl can then react with oxygen and produce caseous chlorine. This can react with unreacted carbon of the smoke and produce different kinds of chlorinated hydrocarbons. The portion of PVC of the chlorine going into combustion in Finland has been estimated to be about 1-2 %. Combustion tests were made using coal and bark and plastic waste as additional fuel. It was noticed that addition of plastic decreased the amount of polyaromatic hydrocarbons in the smoke. Chlorinated dioxins and furans occurred a little less in the gases of combustion of plastic mixtures not containing PVC than in reference tests, but they increased when PVC containing plastic mixture was combusted, but more chlorinated dioxins and furans were absorbed into fly ash, so the emissions remained almost the same

  3. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  4. Combustion Sensors: Gas Turbine Applications

    Human, Mel

    2002-01-01

    This report documents efforts to survey the current research directions in sensor technology for gas turbine systems. The work is driven by the current and future requirements on system performance and optimization. Accurate real time measurements of velocities, pressure, temperatures, and species concentrations will be required for objectives such as combustion instability attenuation, pollutant reduction, engine health management, exhaust profile control via active control, etc. Changing combustor conditions - engine aging, flow path slagging, or rapid maneuvering - will require adaptive responses; the effectiveness of such will be only as good as the dynamic information available for processing. All of these issues point toward the importance of continued sensor development. For adequate control of the combustion process, sensor data must include information about the above mentioned quantities along with equivalence ratios and radical concentrations, and also include both temporal and spatial velocity resolution. Ultimately these devices must transfer from the laboratory to field installations, and thus must become low weight and cost, reliable and maintainable. A primary conclusion from this study is that the optics-based sensor science will be the primary diagnostic in future gas turbine technologies.

  5. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    NONE

    1996-12-31

    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  6. Low NOx combustion technologies for high-temperature natural gas combustion

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  7. E25 stratified torch ignition engine performance, CO_2 emission and combustion analysis

    Rodrigues Filho, Fernando Antonio; Moreira, Thiago Augusto Araujo; Valle, Ramon Molina; Baêta, José Guilherme Coelho; Pontoppidan, Michael; Teixeira, Alysson Fernandes

    2016-01-01

    Highlights: • A torch ignition engine prototype was built and tested. • Significant reduction of BSFC was achieved due to the use of the torch ignition system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine prototype. • The torch ignition system allowed an average reduction of 8.21% at the CO_2 specific emissions. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and the greenhouse effect. This fact associated with the fast growth of the global motor vehicle fleet demands technological solutions from the scientific community in order to achieve a decrease in fuel consumption and CO_2 emission, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition engine was designed from a commercial baseline engine. In this system, the combustion starts in a pre-combustion chamber where the pressure increase pushes the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy being able to promote a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for low fuel flow rate. During the compression stroke, lean mixture coming from the main chamber is forced into the pre-combustion chamber and, a few degrees before the spark timing, fuel is injected into the pre-combustion chamber aiming at forming a slightly rich mixture cloud around the spark plug which is suitable for the ignition and kernel development. The performance of the torch ignition engine running with E25 is presented for different mixture stratification levels, engine speed and load. The performance data such as combustion phasing

  8. Study of mechanically activated coal combustion

    Burdukov Anatolij P.

    2009-01-01

    Full Text Available Combustion and air gasification of mechanically activated micro-ground coals in the flux have been studied. Influence of mechanically activated methods at coals grinding on their chemical activeness at combustion and gasification has been determined. Intense mechanical activation of coals increases their chemical activeness that enables development of new highly boosted processing methods for coals with various levels of metamorphism.

  9. Internal combustion engines in hybrid vehicles

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  10. Flue Gas Emissions from Fluidized Bed Combustion

    Bramer, E.A.; Valk, M.

    1995-01-01

    During the past decades fluidized bed coal combustion was developed as a technology for burning coal in an effective way meeting the standards for pollution control. During the earlier years of research on fluidized bed combustion, the potential for limiting the S02 emission by adding limestone to

  11. Combustion and extinction of magnesium fires

    Malet, J.C.; Duverger de Cuy, G.

    1988-01-01

    The studies made in France on magnesium combustion and extinguishing means are associated at the nuclear fuel of the graphite-gas reactor. Safety studies are made for ameliorate our knowledge on: - magnesium combustion - magnesium fire propagation - magnesium fire extinguishing [fr

  12. Coal combustion ashes: A radioactive Waste?

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  13. Coal slurry combustion and technology. Volume 2

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  14. 30 CFR 57.4104 - Combustible waste.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Combustible waste. 57.4104 Section 57.4104... Control Prohibitions/precautions/housekeeping § 57.4104 Combustible waste. (a) Waste materials, including liquids, shall not accumulate in quantities that could create a fire hazard. (b) Waste or rags containing...

  15. Injector tip for an internal combustion engine

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  16. Ultra-low pollutant emission combustion method and apparatus

    Khinkis, M.J.

    1992-01-01

    This patent describes a method for ultra-low pollutant emission combustion of fossil fuel. It comprises: introducing into a primary combustion chamber a first fuel portion of about 1 percent to about 20 percent of a total fuel to be combusted; introducing primary combustion air into the primary combustion chamber; introducing a first portion of water into the primary combustion chamber, having a first water heat capacity equivalent to a primary combustion air heat capacity of one of a primary combustion air amount of about 10 percent to about 60 percent of the first stoichiometirc requirement for complete combustion of the first fuel portion and an excess primary combustion air amount of about 20 percent to about 150 percent of the first stoichiometric requirement for complete combustion of the first fuel portion; burning the first fuel portion with the primary combustion air in the primary combustion chamber at a temperature abut 2000 degrees F to about 2700 degrees F producing initial combustion products; passing the initial combustion products into a secondary combustion chamber; introducing into the secondary combustion chamber a second fuel portion of about 80 percent to about 99 percent of the total fuel to be combusted; introducing secondary combustion air into the secondary combustion chamber in an amount of about 105 percent to about 130 percent of a second stoichiometric requirement for complete combustion of the second fuel portion; introducing a second portion of water into the secondary combustion chamber; burning the second fuel portion and any remaining fuel in the initial combustion products; passing the final combustion products into a dilution chamber; introducing dilution air into the dilution chamber; discharging the ultra-low pollutant emission vitiated air form the dilution chamber

  17. Internal and surface phenomena in metal combustion

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  18. A predictive model of natural gas mixture combustion in internal combustion engines

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  19. Interactive wood combustion for botanical tree models

    Pirk, Sören

    2017-11-22

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  20. Solid waste combustion for alpha waste incineration

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials