WorldWideScience

Sample records for combustion environments appendix

  1. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...

  2. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  3. 14 CFR Appendix J to Part 23 - HIRF Environments and Equipment HIRF Test Levels

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false HIRF Environments and Equipment HIRF Test Levels J Appendix J to Part 23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF.... 23, App. J Appendix J to Part 23—HIRF Environments and Equipment HIRF Test Levels This appendix...

  4. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  5. New combustion, environment regulations: the answers for natural gas; Nouvelles reglementations, combustion, environnement: les reponses pour le gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Le Peltier-Marc, A. [Gaz de France (GDF), 75 - Paris (France)

    1997-12-31

    This paper reports on the point of view from Gaz de France (GdF) company concerning the potential consequences of the use of natural gas in combustion systems with respect to the new regulations about combustion and environment. Details concerning the measures relative to the limitation of pollutants in small combustion installations (2 - 20 MW) are given (chimney height, SO{sub x}, NO{sub x} and dusts content in exhaust gases). (J.S.)

  6. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  7. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  8. Ignition Delay of Combustible Materials in Normoxic Equivalent Environments

    Science.gov (United States)

    McAllister, Sara; Fernandez-Pello, Carlos; Ruff, Gary; Urban, David

    2009-01-01

    Material flammability is an important factor in determining the pressure and composition (fraction of oxygen and nitrogen) of the atmosphere in the habitable volume of exploration vehicles and habitats. The method chosen in this work to quantify the flammability of a material is by its ease of ignition. The ignition delay time was defined as the time it takes a combustible material to ignite after it has been exposed to an external heat flux. Previous work in the Forced Ignition and Spread Test (FIST) apparatus has shown that the ignition delay in the currently proposed space exploration atmosphere (approximately 58.6 kPa and32% oxygen concentration) is reduced by 27% compared to the standard atmosphere used in the Space Shuttle and Space Station. In order to determine whether there is a safer environment in terms of material flammability, a series of piloted ignition delay tests using polymethylmethacrylate (PMMA) was conducted in the FIST apparatus to extend the work over a range of possible exploration atmospheres. The exploration atmospheres considered were the normoxic equivalents, i.e. reduced pressure conditions with a constant partial pressure of oxygen. The ignition delay time was seen to decrease as the pressure was reduced along the normoxic curve. The minimum ignition delay observed in the normoxic equivalent environments was nearly 30% lower than in standard atmospheric conditions. The ignition delay in the proposed exploration atmosphere is only slightly larger than this minimum. Interms of material flammability, normoxic environments with a higher pressure relative to the proposed pressure would be desired.

  9. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to

  10. Combustion of Metals in Reduced-Gravity and Extraterrestrial Environment

    Science.gov (United States)

    Abbud-Madrid, A.; Omaly, P.; Branch, M. C.; Daily, J. W.

    1999-01-01

    As a result of the ongoing exploration of Mars and the several unmanned and manned missions planned for the future, increased attention has been given to the use of the natural resources of the planet for rocket propellant production and energy generation. Since the atmosphere of Mars consists of approximately 95% carbon dioxide (CO2), this gas is the resource of choice to be employed for these purposes. Unfortunately, CO2 is also a final product in most combustion reactions, requiring further processing to extract useful reactants such as carbon monoxide (CO), oxygen (O2), and hydrocarbons. An exception is the use Of CO2 as an oxidizer reacting directly with metal fuel. Since many metals burn vigorously with CO2, these may be used as an energy source and as propellants for an ascent/descent vehicle in sample-collection missions on Mars. In response to NASA's Human Exploration and Development of Space (HEDS) Enterprise to search for appropriate in-situ resource utilization techniques, this investigation will study the burning characteristics of promising metal/CO2 combinations. The use of reduced gravity is essential to eliminate the intrusive buoyant flows that plague the high-temperature metal reactions, to remove the destructive effect of gravity on the shape of molten metal samples, and to study the influence of radiative heat transfer from solid oxides undisturbed by natural convection. In studies with large metal specimens, the burning process is invariably influenced by strong convective currents that accelerate the reaction and shorten the burning times. Although these currents are nearly absent from small burning particles, the high emissivity of the flames, rapid reaction, small length scales, and intermittent explosions make the gathering of any useful information on burning rates and flame structure very difficult. This investigation has the ultimate goal of providing a careful probing of flame structure and dynamics by taking advantage of large, free

  11. Combustion and environment. A regulation in full evolution; Combustion et environnement. Une reglementation en pleine evolution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This paper is a reprint of an article published in `Energie Plus` magazine which gives a synthesis of the different topics discussed during the conference. Two aspects are discussed: the energy regulations and the environmental regulations. The energy regulations concern the energy efficiency required for central heating plants of small (40 kW < P < 400 kW), medium and large (400 kW < P < 50 MW) size and the periodical control of these installations. The environmental regulations concern the combustion systems with a power comprised between 2 and 20 MW (design and siting, operation and maintenance, water effluents, atmospheric effluents), the turbines and engines with a power of 20 to 50 MW, and the big installations of combustion (P > 50 MW). The principal motivation of these regulations is the abatement of ecosystems acidification. (J.S.)

  12. Real time programming environment for Windows, Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-05

    This appendix contains all source code for the RTProE system. The following file contents are included: pdb.h; hgen.l; hgen.y; igen.l; igen.y; pdm.l; pdm.y; rtdata.l; rtdata.y; framegen.c; librt.c; librt.h; rtsched.c; build.tsh; sde.tcl; rtsched.def.

  13. 49 CFR Appendix H to Part 173 - Method of Testing for Sustained Combustibility

    Science.gov (United States)

    2010-10-01

    ... standard manner sustains combustion. 2. Principle of the method A metal block with a concave depression... consisting of a block of aluminum alloy or other corrosion-resistant metal of high thermal conductivity is... is 2.2 mm (see Figure 32.5.2.1); (b) Thermometer, mercury in glass, for horizontal operation, with a...

  14. Co-combustion for fossil fuel replacement and better environment

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Gulyurtlu, Ibrahim; Abelha, Pedro; Teixeira, P.; Crujeira, Teresa; Boavida, Dulce; Marques, F.; Cabrita, Isabel [INETI/DER, Lisboa (Portugal)

    2006-07-01

    The growing demand for energy and the requirements regarding CO{sub 2} emissions to comply with the Kyoto targets, together with crisis associated with the fuel supply, can be, to some degree, met by the use of renewable fuel sources, such as biomass. Although the use of biomass, originating from forests, could be beneficial, particularly in preventing fires, there are obstacles to achieve a sustainable supply of biomass in most European countries. In addition, there are also technical barriers as biomass combustion conditions may differ from those of coal, which could mean significant retrofitting of existing installations. The significance of this problem was recognized in the EU and a Project is being financed by the 6th Framework Programme, INETI from Portugal being the coordinator. Five EU countries plus Turkey participate in the project which aims at evaluating both the sustainable chain supply in the several countries, taking profit of the experience of northern European countries and the technical issues related with the co-combustion process, pollutant emission control and operational problems, such as fouling and slagging inside the boilers. At INETI, experimental work is being carried out, involving the characterization of several types of biomass and non-toxic residues. These materials are being burned on a pilot fluidized bed combustor, in order to evaluate combustion performance and improve conditions and synergies of fuel blends to control pollutant emissions and slagging tendency. Ashes produced are also being characterized, for composition and leachability, in order to evaluate possibilities of reutilization and compliance with landfilling regulations. In this paper a description of the project is presented, along with some of the results already obtained.

  15. Co-combustion for fossil fuel replacement and better environment

    Energy Technology Data Exchange (ETDEWEB)

    M. Helena Lopes; I. Gulyurtlu; P. Abelha; P. Teixeira; T. Crujeira; D. Boavida; F. Marques; I. Cabrita [INETI, Lisbon (Portugal)

    2006-07-01

    The growing demand for energy and the requirement regarding CO{sub 2} emissions, to comply with the Kyoto targets, together with crisis associated with the fuel supply, can be, to some degree, met by the use of renewable fuel sources, such as biomass. Although the use of biomass, originating from forests, could be beneficial, there are obstacles to achieve a sustainable supply of biomass in most European countries. In addition, there are also technical barriers as biomass combustion conditions may differ from those of coal, which could mean significant retrofitting of existing installations. The significance of this problem was recognized in the EU and a Project is being financed by the 6th Framework Programme, INETI from Portugal being the coordinator. Five EU countries plus Turkey participate in the project which aims at evaluating both the sustainable chain supply in the several countries, taking profit of the experience of northern European countries and the technical issues related with the co-combustion process, pollutant emission control and operational problems, such as fouling and slagging inside the boilers. At INETI, experimental work is being carried out, involving the characterization of several types of biomass and non-toxic residues. These materials are being burned on a pilot fluidized bed combustor, in order to evaluate combustion performance and improve conditions and synergies of fuel blends to control pollutant emissions and slagging tendency. Ashes produced are also being characterized, for composition and leachability, in order to evaluate possibilities of reutilization and compliance with landfilling regulations. In this paper a description of the project is presented, along with some of the results already obtained. 19 refs., 5 figs., 7 tabs.

  16. Soot Reactivity in Conventional Combustion and Oxy-fuel Combustion Environments

    DEFF Research Database (Denmark)

    Abián, María; Jensen, Anker D.; Glarborg, Peter

    2012-01-01

    A study of the reactivity of soot produced from ethylene pyrolysis at different temperatures and CO2 atmospheres toward O2 and CO2 has been carried out using a thermogravimetric analyzer. The purpose was to quantify how soot reactivity is affected by the gas environment and temperature history of...

  17. Ignition and Combustion of Bulk Metals in a Microgravity Environment

    Science.gov (United States)

    Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel

    1999-01-01

    Results of a study of heterogeneous and homogeneous combustion of metals in reduced gravity are presented. Cylindrical titanium and magnesium samples are radiatively ignited in pure-oxygen at 1 atm. Qualitative observations, propagation rates, and burning times are extracted from high-speed cinematography. Time-resolved emission spectra of gas-phase reactions are acquired with an imaging spectrograph. Lower propagation rates of the reacting mass on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from fire-spread analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical propagation rates indicates the strong influence of natural-convection-enhanced oxygen transp6rt on burning rates. Lower oxygen flux and lack of condensed product removal appear to be responsible for longer burning times of magnesium gas-phase diffusion flames in reduced gravity. Spherically symmetric explosions in magnesium flames at reduced gravity (termed radiation-induced metal explosions, or RIME) may be driven by increased radiation heat transfer from accumulated condensed products to an evaporating metal core covered by a porous, flexible oxide coating. In titanium specimens, predominantly heterogeneous burning characterizes the initial steady propagation of the molten mass, while homogeneous gas-phase reactions are detected around particles ejected from the molten mixture. In magnesium specimens, band and line reversal of all the UV spectral systems of Mg and MgO are attributed to the interaction between small oxide particles and the principal gaseous emitters.

  18. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    Science.gov (United States)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  19. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    Science.gov (United States)

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  20. Combustion of Metals in Reduced-Gravity and Extra Terrestrial Environments

    Science.gov (United States)

    Branch, M.C.; Abbud-Madrid, A.; Daily, J. W.

    1999-01-01

    The combustion of metals is a field with important practical applications in rocket propellants, high-temperature flames, and material synthesis. Also, the safe operation of metal containers in high-pressure oxygen systems and with cryogenic fuels and oxidizers remains an important concern in industry. The increasing use of metallic components in spacecraft and space structures has also raised concerns about their flammability properties and fire suppression mechanisms. In addition, recent efforts to embark on unmanned and manned planetary exploration, such as on Mars, have also renewed the interest in metal/carbon-dioxide combustion as an effective in situ resource utilization technology. In spite of these practical applications, the understanding of the combustion properties of metals remains far behind that of the most commonly used fuels such as hydrocarbons. The lack of understanding is due to the many problems unique to metal- oxidizer reactions such as: low-temperature surface oxidation prior to ignition, heterogeneous reactions, very high combustion temperatures, product condensation, high emissivity of products, and multi-phase interactions. Very few analytical models (all neglecting the influence of gravity) have been developed to predict the burning characteristics and the flame structure details. Several experimental studies attempting to validate these models have used small metal particles to recreate gravity-free conditions. The high emissivity of the flames, rapid reaction, and intermittent explosions experienced by these particles have made the gathering of any useful information on burning rates and flame structure very difficult. The use of a reduced gravity environment is needed to clarify some of the complex interactions among the phenomena described above. First, the elimination of the intrusive buoyant flows that plague all combustion phenomena is of paramount importance in metal reactions due to the much higher temperatures reached during

  1. Strength and corrosion behavior of SiC - based ceramics in hot coal combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Breder, K.; Parten, R.J. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    As part of an effort to evaluate the use of advanced ceramics in a new generation of coal-fired power plants, four SiC-based ceramics have been exposed to corrosive coal slag in a laboratory furnace and two pilot scale combustors. Initial results indicate that the laboratory experiments are valuable additions to more expensive pilot plant experiments. The results show increased corrosive attack with increased temperature, and that only slight changes in temperature may significantly alter the degree of strength degradation due to corrosive attack. The present results are part of a larger experimental matrix evaluating the behavior of ceramics in the coal combustion environment.

  2. New regulations, combustion, environment: responses for natural gas; Nouvelles reglementations, combustion, environnement: les reponses pour le gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Le Peltier-Marc, A. [Gaz de France (GDF), 75 - Paris (France). Direction Commerciale

    1997-12-31

    The impacts of the new French regulations concerning low- to medium-power combustion equipment with regards to their energy sources, energy efficiency and pollution control, on natural gas fired boilers, are discussed: lower pollutant emission limits are set for SO{sub 2}, NO{sub x} and ashes. The decree gives new regulations concerning plant location, combustion control systems, plant monitoring and maintenance, and air pollution control measures such as chimney stack height and emission limits. The French national gas utility promotes environmental high performance boilers

  3. Contributions of fuel combustion to pollution by airborne particles in urban and non-urban environments

    International Nuclear Information System (INIS)

    1995-06-01

    The application of ion beam analysis (IBA) techniques to aerosol pollution problems has been used in a number of countries since the late 1970's and early 1980's. The technique, however, had not been tested in Australia. This document is the final report of a project which aimed to establish a fine particle monitoring network covering the greater Wollongong/Sydney/ Newcastle ares, investigate the relationships between fuel combustion and fine particle aerosols in urban and non urban environments, add to the limited database of baseline information on concentrations of fine particles resulting from such processes as fossil fuel burning and industrial manufacturing, identify and quantify sources of fine particles in New South Wales, and introduce into Australia accelerator based IBA techniques for the analysis of filter papers obtained from large scale monitoring networks. These objectives were addressed by the project which identified and quantified some sources of fine particles and established some relationships between fuel combustion and fine aerosols. More work is required to fully quantify relationships between natural and anthropogenic fine particle sources. 24 tabs., 44 figs., 83 refs

  4. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A11 to A14

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard Madsen, O.; Boejer, M.; Jensen, Peter A.; Dam-Johansen, K.; Lundtorp, K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with electrical efficiency by dividing the combustion products; release of potentially corrosive constituents from the grate; CFD modeling of grate with and without vertical divider. (Author)

  5. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A1 to A3

    Energy Technology Data Exchange (ETDEWEB)

    Nesterov, I.; Jensen, Peter A.; Dam-Johansen, K.; Kloeft, H.; Boejer, M. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Esbjerg (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with incineration bottom ash leaching properties; design and construction of rotary kiln facility; manual to rotary kiln experiments. (Author)

  6. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A7 to A10

    Energy Technology Data Exchange (ETDEWEB)

    Hyks, J.; Astrup, T.; Jensen, Peter A.; Nesterov, I.; Boejer, M.; Frandsen, F.; Dam-Johansen, K.; Hedegaard Madsen, O.; Lundtorp, K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with the influence of kiln treatment on incineration bottom ash leaching; the influence of kiln treatment on corrosive species in deposits; operational strategy for rotary kiln; alkali/chloride release during refuse incineration on a grate. (Author)

  7. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A4 to A6

    Energy Technology Data Exchange (ETDEWEB)

    Kloeft, H.; Jensen, Peter A.; Nesterov, I.; Hyks, J.; Astrup, T. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with collection of slags for the rotary kiln experiments; overview of the thermal treatment experiments - phase 1; a journal paper with the title ''Quantification of leaching from waste incineration bottom ash treated in a rotary kiln

  8. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

    Energy Technology Data Exchange (ETDEWEB)

    VonDrasek, William; Melsio-Pubill, Anna

    2006-05-30

    This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance

  9. Entropy Analyses of Droplet Combustion in Convective Environment with Small Reynolds Number

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaobin; ZHANG Wei; ZHANG Xuejun

    2013-01-01

    This paper analyzes the entropy generation rate of simple pure droplet combustion in a temperature-elevated air convective environment based on the solutions of flow,and heat and mass transfer between the two phases.The flow-field calculations are carried out by solving the respective conservation equations for each phase,accounting for the droplet deformation with the axisymmetric model.The effects of the temperature,velocity and oxygen fraction of the free stream air on the total entropy generation rate in the process of the droplet combustion are investigated.Special attention is given to analyze the quantitative effects of droplet deformation.The results reveal that the entropy generation rate due to chemical reaction occupies a large fraction of the total entropy generated,as a result of the large areas covered by the flame.Although,the magnitude of the entropy generation rate per volume due to heat transfer and combined mass and heat transfer has a magnitude of one order greater than that due to chemical reaction,they cover a very limited area,leading to a small fraction of the total entropy generated.The entropy generation rate due to mass transfer is negligible.High temperature and high velocity of the free stream are advantageous to increase the exergy efficiency in the range of small Reynolds number (<1) from the viewpoint of the second-law analysis over the droplet lifetime.The effect of droplet deformation on the total entropy generation is the modest.

  10. Effect of Simulated High Hydrogen Content Combustion Environments on Abradable Properties of Ceramic Turbine Coatings

    Science.gov (United States)

    Basu Majumder, Madhura

    Air plasma sprayed (APS) abradable coatings are used in the turbine hot section to reduce the stator-rotor gap, minimizing gas leakage. These coatings are designed to exhibit controlled removal of material in thin layers when the turbine blades sweep through the coating, which protects the mechanical integrity of the turbine blade. In an effort to lower CO2 emissions, high H2 content fuel is being explored. This change in chemical composition of the fuel may affect the microstructure, abradability and durability of the coatings at turbine operational temperatures. The presence of high water vapor in the combustion chamber leads to accelerated degradation of the sacrificial coating materials. In this work, zirconia based composite materials with a machinable phase and varied porosity have been used to study microstructural evolution, thermal and chemical stability of the phases and abradable characteristics of baseline coating systems in both humid and dry environments. Investigation of the mechanisms that control the removal of materials and performance of abradable coatings through thermo-mechanical tests will be discussed.

  11. RESULTS OF THE DIESEL COMBUSTION CHAMBER OPTIMIZED DESIGN IN THE MULTICRITERIAL TASK ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    A. Wrublewski

    2015-12-01

    Full Text Available The results of optimized designing of the higi-speed vehicle diesel engine combustion chamber based on application of the method of parameters space investingation are given. The optimal form of the combustion chamber and the direction of fuel jets at adjusted pressure rate and other functional resrictions are determined according to three criteria of quality – fuel consumption, hard particles and nitric oxide emissions.

  12. Determination of surface temperatures in combustion environments using thermographic phosphors; Wandtemperaturmessungen in Verbrennungsumgebungen mithilfe thermographischer Phosphore

    Energy Technology Data Exchange (ETDEWEB)

    Bruebach, J.; Kissel, T. [TU Darmstadt (Germany). FG Energie- und Kraftwerkstechnik; Dreizler, A. [TU Darmstadt (Germany). FG Reaktive Stroemungen und Messtechnik

    2009-07-01

    A phosphor thermometry system was characterised with regard to all sources of systematic errors. Exemplary, the point measurement of a surface temperature and the determination of wall-normal temperature gradients within an optically accessible combustion chamber are outlined. Furthermore, the temporal temperature characteristic at the quartz ring of an optically accessible engine is presented. (orig.)

  13. Polymethylmethacrylate combustion in a narrow channel apparatus simulating a microgravity environment

    Science.gov (United States)

    Bornand, Garrett Randall

    Fire safety is an important part of engineering when human lives are at stake. From everyday homes to spacecraft that can cost hundreds of millions of dollars. The research in this thesis attempts to provide scientific evidence that the apparatus in question successfully simulates microgravity and can possibly replace NASA's current test method for spacecraft fire safety. Flame spread tests were conducted with thermally thick and thermally thin polymethylmethacrylate (PMMA) samples to study flame spread behavior in response to environmental changes. The tests were conducted using the San Diego State University Narrow Channel Apparatus (SDSU NCA) as well as within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS). The SDSU NCA can suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression attained in the NCA allows tests to be conducted in a simulated microgravity environment-a characteristic that NASA's Test 1 lacks since flames present in Test 1 are driven by buoyant flows. The SDSU NCA allows for tests to be conducted at various opposed flow oxidizer velocities, oxygen percent by volume, and total pressure to mimic various spacecraft and habitat atmospheres. Tests were conducted at 1 atm pressure, thin fuel thickness of 50 and 75 microns, thick fuel thickness ranging from 3 mm to 5.6 mm, opposed oxidizer velocity ranging from 10 to 25 cm/s, and oxygen concentration by volume at 21, 30, and 50 percent. The simulated microgravity flame spread results were then compared to true microgravity experiments including; testing conducted on the International Space Station (ISS) under the Burning and Suppression of Solids (BASS) research, NASA's 5.2 second Drop Tower, and Micro-Gravity Laboratory's (MGLAB) 4.5 second Drop Tower. Data was also

  14. Combustion of Methanol Droplets in Air-Diluent Environments with Reduced and Normal Gravity

    Directory of Open Access Journals (Sweden)

    Benjamin Shaw

    2012-01-01

    Full Text Available Reduced and normal gravity combustion experiments were performed with fiber-supported methanol droplets with initial diameters in the 1 mm size range. Experiments were performed with air-diluent mixtures at about 0.101 MPa and 298 K, where carbon dioxide, helium, or xenon was separately used as the diluent gas. Results indicate that ambient gas transport properties play an important role in determining flammability and combustion behaviors including burning rates and radiant heat output histories of the droplets. Droplets would burn with significantly higher mole fractions of xenon than helium or carbon dioxide. In reduced gravity, droplets would burn steadily with a xenon mole fraction of 0.50 but would not burn steadily if helium or carbon dioxide mole fractions were 0.50. Comparison with previous experimental data shows that ignitability and combustion characteristics of droplets are influenced by the fuel type and also the gravitational level. Burning rates were about 40% to 70% higher in normal gravity than in reduced gravity. Methanol droplets also had burning rates that were typically larger than 1-propanol burning rates by about 20% in reduced gravity. In normal gravity, however, burning rate differences between the two fuels were significantly smaller.

  15. Biomass utilization for green environment: Co-combustion of diesel fuel and producer gas in thermal application

    International Nuclear Information System (INIS)

    Hussain, A.; Ani, F.N.; Mehamed, A.F.

    2007-01-01

    Study of co-combustion of diesel oil and producer gas from a gasifier, individually as well as combined, in an experimental combustion chamber revealed that the producer gas can be co-combusted with liquid fuel. The process produced more CO, NO/sub x/, SO/sub 2/ and CO/sub 2/ as compared to the combustion of diesel oil alone; the exhaust temperature for the process was higher than the diesel combustion alone. (author)

  16. Screening of candidate corrosion resistant materials for coal combustion environments -- Volume 4. Final report, January 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Boss, D.E.

    1997-12-31

    The development of a silicon carbide heat exchanger is a critical step in the development of the Externally-Fired Combined Cycle (EFCC) power system. SiC is the only material that provides the necessary combination of resistance to creep, thermal shock, and oxidation. While the SiC structural materials provide the thermomechanical and thermophysical properties needed for an efficient system, the mechanical properties of the SiC tubes are severely degraded through corrosion by the coal combustion products. To obtain the necessary service life of thousands of hours at temperature, a protective coating is needed that is stable with both the SiC tube and the coal combustion products, resists erosion from the particle laden gas stream, is thermal-shock resistant, adheres to SiC during repeated thermal shocks (start-up, process upsets, shut-down), and allows the EFCC system to be cost competitive. The candidate protective materials identified in a previous effort were screened for their stability to the EFCC combustion environment. Bulk samples of each of the eleven candidate materials were prepared, and exposed to coal slag for 100 hours at 1,370 C under flowing air. After exposure the samples were mounted, polished, and examined via x-ray diffraction, energy dispersive spectroscopy, and scanning electron microscopy. In general, the alumina-based materials behaved well, with comparable corrosion depths in all five samples. Magnesium chromite formed a series of reaction products with the slag, which included an alumina-rich region. These reaction products may act as a diffusion barrier to slow further reaction between the magnesium chromite and the slag and prove to be a protective coating. As for the other materials; calcium titanate failed catastrophically, the CS-50 exhibited extension microstructural and compositional changes, and zirconium titanate, barium zironate, and yttrium chromite all showed evidence of dissolution with the slag.

  17. Combustion plans. Nordrhein-Westfalen opts for environment-friendly disposal of sewage sludge; Aktion Ofen. NRW plant umweltvertraegliche Klaerschlammverwertung

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbach, H.; Giegrich, J.; Knappe, F. [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany)

    2001-06-01

    According to the plans of the Nordrhein-Westfalen minister of the environment, sewage sludge will be banned as a fertiliser. Instead, it is to be disposed in accordance with the specifications of the Act on Recycling and Waste Management and the requirements of the recycling industry. This is the result of a study carried out on behalf of the Ministry which is summarised here. Combustion capacities will be required. [German] Auf die Verbrennungskapazitaeten in NRW rollt eine Klaerschlammlawine zu. Nach den Plaenen des Duesseldorfer Umweltministeriums soll die sogenannte landwirtschaftliche Verwertung kuenftig eingeschraenkt werden. Die Verwertung soll den gesetzlichen Vorgaben des Kreislaufwirtschaftsgesetzes und den Anforderungen der Kreislaufwirtschaft entsprechen. Dies ergibt sich aus einer Studie des Ministeriums, die hier zusammengefasst ist. (orig.)

  18. Combustion and environment. The answers from the energy and equipment suppliers; Combustion et environnement. Les reponses des fournisseurs d`energie et d`equipements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This paper is a reprint of an article published in `Energie Plus` magazine which questions the capability of commercial fuels and combustion equipments (central heating plants, burners, turbines and engines) available today of respecting the limit values of pollutant emissions (SO{sub x}, NO{sub x}, CO, dusts) of forthcoming regulations. An analysis of the situation is given separately for the fuels (natural gas, coal, heavy fuels) with a stress on the competition aspects, and for the combustion systems (turbines, diesel and gas engines, central heating plants). (J.S.)

  19. Combustion science and engineering

    CERN Document Server

    Annamalai, Kalyan

    2006-01-01

    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  20. The analysis of results received from the programme for calculating the concentration of pollutants from vehicles with internal combustion engines on the crossroads in urban environments

    International Nuclear Information System (INIS)

    Tashevski, Done; Dimitrovski, Mile

    1995-01-01

    The analysis of results and influence of specified factors on the concentration of pollutants on the crossroads with chosen characteristic conditions has been made, on the basis of the programme for calculating the concentration of pollutants from vehicles with internal combustion engines on the crossroads in urban environments. (author)

  1. Experimental study of reduce of nitrogen oxides emission in the Environment at the Ekibastuz coal combustion

    International Nuclear Information System (INIS)

    Korabejnikova, V.K.

    2004-01-01

    For revealing conditions decrease in emissions of nitrogen oxide in an environment at three-stage burning of coal dust Ekibastuz coal with use two-line burners (on were the experimental research of test on fiery the stand as a result of which acknowledgement of theoretical results is received. (author)

  2. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  3. LITGS: a new technique for single shot temperature and fuel concentration measurements in turbulent combusting environments

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, Roberta; Giorgi, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Dipt. Innovazione; De Risi, A.; Laforgia, D. [Lecce Univ., Lecce (Italy). Dipt. di Ingegneria dell' Innovazione

    1999-07-01

    In the present study the possibility to apply time resolved Laser Induced Thermal Grating Spectroscopy (LITGS) to detect fuel concentration and temperature in mixtures and flames at atmospheric pressure or higher is investigated. The resonant IR single photon absorption of two short pulse pump beams is used to initially generate a population grating, decaying into a thermal grating due to relaxation processes in the gas mixture. The thermal grating evolution is followed by monitoring the scattered signal of a cw visible probe beam after the end of the pump pulse. The use of the IR optical transition of diesel fuel assured a high species selectivity and a negligible influence of the visible emission background due to the presence of electronically excited species in flames. Fuel concentration and temperature measurements in a pressurized cell, with pressure ranging between 0.1 an 1.5 MPa, and in a diffusion turbulent flame generated by a burner feed with diesel fuel operating at atmospheric pressure are presented. The experimental investigation shows that LITGS signal increase linearly with gas density. This characteristic makes LITGS a very interesting technique for fuel distribution and temperature measurements in hostile (high-pressure and turbulent flow) environments. Detection limit for diesel fuel at atmospheric pressure is found to be about 40 ppm and it decreases with the increase of the pressure. The low detection limit which can be reached makes this technique suitable also for monitoring minor species and radicals. [Italian] Nel presente studio si investiga la possibilita' di applicare la tecnica LITGS (Laser Induced Thermal Grating Spectroscopy) per misurare la concentrazione e la temperatura di carburante in miscele e fiamme a pressiona atmosferica o superiore. L'assorbimento risonante di un singolo fotone IR proveniente da uno dei due laser impulsati di pompa e' utilizzato per generare inizialmente un reticolo di popolazione, che decade

  4. Skylab experiments. Volume 3: Materials science. [Skylab experiments on metallurgy, crystal growth, semiconductors, and combustion physics in weightless environment for high school level education

    Science.gov (United States)

    1973-01-01

    The materials science and technology investigation conducted on the Skylab vehicle are discussed. The thirteen experiments that support these investigations have been planned to evaluate the effect of a weightless environment on melting and resolidification of a variety of metals and semiconductor crystals, and on combustion of solid flammable materials. A glossary of terms which define the space activities and a bibliography of related data are presented.

  5. Subsurface characterization of an oxidation-induced phase transformation and twinning in nickel-based superalloy exposed to oxy-combustion environments

    International Nuclear Information System (INIS)

    Zhu Jingxi; Holcomb, Gordon R.; Jablonski, Paul D.; Wise, Adam; Li Jia; Laughlin, David E.; Sridhar, Seetharaman

    2012-01-01

    Highlights: ►Oxidation products of Ni-based superalloy were studied in oxy-fuel combustion conditions. ► An oxidation-induced phase transformation occurred in the subsurface region. ► One of the two product phases was not in the Ni database of Thermo-Calc. ► This unknown phase is an ordered derivative of FCC structure of Ni–Ti(–Ta) system. ► This phase is likely detrimental to the mechanical integrity of the alloy in use. - Abstract: In the integration of oxy-fuel combustion to turbine power generation system, turbine alloys are exposed to high temperature and an atmosphere comprised of steam, CO 2 and O 2 . While surface and internal oxidation of the alloy takes place, the microstructure in the subsurface region also changes due to oxidation. In this study, bare metal coupons of Ni-base superalloys were exposed in oxy-fuel combustion environment for up to 1000 h and the oxidation-related microstructures were examined. Phase transformation occurred in the subsurface region in Ni-based superalloy and led to twinning. The transformation product phases were analyzed through thermodynamic equilibrium calculations and various electron microscopy techniques, including scanning electron microscopy (SEM), orientation imaging microscopy (OIM) and transmission electron microscopy (TEM). The mechanism by which the phase transformation and the formation of the microstructure occurred was also discussed. The possible effects of the product phases on the performance of the alloy in service were discussed.

  6. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  7. Development of a Raman spectroscopy technique to detect alternate transportation fuel hydrocarbon intermediates in complex combustion environments.

    Energy Technology Data Exchange (ETDEWEB)

    Ekoto, Isaac W.; Barlow, Robert S.

    2012-12-01

    Spontaneous Raman spectra for important hydrocarbon fuels and combustion intermediates were recorded over a range of low-to-moderate flame temperatures using the multiscalar measurement facility located at Sandia/CA. Recorded spectra were extrapolated to higher flame temperatures and then converted into empirical spectral libraries that can readily be incorporated into existing post-processing analysis models that account for crosstalk from overlapping hydrocarbon channel signal. Performance testing of the developed libraries and reduction methods was conducted through an examination of results from well-characterized laminar reference flames, and was found to provide good agreement. The diagnostic development allows for temporally and spatially resolved flame measurements of speciated hydrocarbon concentrations whose parent is more chemically complex than methane. Such data are needed to validate increasingly complex flame simulations.

  8. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  9. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    Science.gov (United States)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  10. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  11. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  12. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  13. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  14. Appendix C

    DEFF Research Database (Denmark)

    Christensen, F. A.; Henriksen, M. S.; Brincker, Rune

    1999-01-01

    In this appendix a model is formulated for the rotational capacity of reinforced concrete beams assuming rebar tension failure. The model is based on a classical approach and establishes the load-deflection curve of a reinforced concrete beam. The rotational capacity is then obtained as the area ...

  15. Appendix A

    DEFF Research Database (Denmark)

    Henriksen, M. S.; Brincker, Rune; Heshe, Gert

    1999-01-01

    In this appendix a brief summary of experiments on reinforced concrete beams in three-point bending performed at Aalborg University is given. The aim of the investigation is to determine the full load-deflection curves for different beam sizes, different types of concrete and different amounts...

  16. Appendix B

    DEFF Research Database (Denmark)

    Christensen, F. A.; Brincker, Rune

    1999-01-01

    In this appendix the failure behaviour of lightly reinforced concrete beams is investigated. A numerical model based on the fictitious crack approach according to Hillerborg [1] is established in order to estimate the load-deflection curve for lightly reinforced concrete beams. The debonding...

  17. Influence of forest biomass grown in fertilized soils on combustion and gasification processes as well as on the environment with integrated bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Jaanu, K. [VTT Energy, Jyvaeskylae (Finland)

    1999-07-01

    Project has started 1995 by determination of fertilized areas in Finland, Portugal and Spain. According to the results obtained from the analysis proper amount of pine and eucalyptus samples were selected for combustion and gasification tests. After that atmospheric and pressurized combustion and gasifications tests, including few series of gas clean up tests, have been performed by INETI and VTT. The 1 MW-scale long term test, were conducted by CIEMAT. The results are indicating that fertilization increases the potassium content in trees up to 50% or more depending upon the climate and conditions in soil. Alkali release seems to be an inverse function of the pressure indicating that the highest alkali release take place under atmospheric conditions corresponding to 111 mg/Nm{sup 3} which is over 25 wt.-% of total potassium in pine and 214 mg/Nm{sup 3} which is 32 wt.-% of total potassium in eucalyptus as received in the 1 MW ABFBC-tests. The potassium release is higher than allowed for the gas turbine process. Therefore the flue gas need to be cleaned up before it enters the gas turbine. For alkali removal at the operation conditions in oxidizing environment, the sorbent technology looks promising. According to the gasification tests the alkali release seems to be somewhat lower. Using for example filter system such as ceramic cancel filter the alkali emissions can be kept below requirements for gas turbine process using temperatures between 460-480 deg C. The research conducted here shows that fertilized biomass accumulate nutrients such potassium more than the non fertilized biomasses. Also the soil conditions has an effect to that. Due to the fact that alkalies in biomass are bonded differently than that of coal, the release is also higher. It could be shown that in combined gas turbine process the release of potassium is too high and need to be removed from the flue gas. It could also be shown that alkalies can be captured between 95-100 % at high temperature

  18. Infrared monitoring of combustion

    International Nuclear Information System (INIS)

    Bates, S.C.; Morrison, P.W. Jr.; Solomon, P.R.

    1991-01-01

    In this paper, the use of Fourier Transform Infrared (FT-IR) spectroscopy for combustion monitoring is described. A combination of emission, transmission, and reflection FT-IR spectroscopy yields data on the temperature and composition of the gases, surfaces and suspended particles in the combustion environment. Detection sensitivity of such trace exhaust gases as CO, CO 2 , SO 2 , NO x , and unburned hydrocarbons is at the ppm level. Tomographic reconstruction converts line-of-sight measurements into spatially resolved temperature and concentration data. Examples from various combustion processes are used to demonstrate the capabilities of the technique. Industrial measurements are described that have been performed directly in the combustion zone and in the exhaust duct of a large chemical recovery boiler. Other measurements of hot slag show how FT-IR spectroscopy can determine the temperature and optical properties of surfaces. In addition, experiments with water droplets show that transmission FT-IR data yield spectra that characterize particle size and number density

  19. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  20. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  1. Space Station Freedom combustion research

    Science.gov (United States)

    Faeth, G. M.

    1992-01-01

    spread of liquids, drop combustion, and quenching of panicle-air flames. Unfortunately, the same features that make microgravity attractive for fundamental combustion experiments, introduce new fire and explosion hazards that have no counterpart on earth. For example, microgravity can cause broader flammability limits, novel regimes of flame spread, enhanced effects of flame radiation, slower fire detector response, and enhanced combustion upon injecting fire extinguishing agents, among others. On the other hand, spacecraft provide an opportunity to use 'fire-safe' atmospheres due to their controlled environment. Investigation of these problems is just beginning, with specific fire safety experiments supplementing the space based fundamental experiments listed earlier; thus, much remains to be done to develop an adequate technology base for fire and explosion safety considerations for spacecraft.

  2. Combustion strategy : United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, D. [Heriot-Watt Univ., Edingburgh, Scotland (United Kingdom). School of Engineering and Physical Sciences

    2009-07-01

    The United Kingdom's combustion strategy was briefly presented. Government funding sources for universities were listed. The United Kingdom Research Councils that were listed included the Arts and Humanities Research Council (AHRC) and the Biotechnology and Biological Sciences Research Council (BBSRC); the Engineering and Physical Sciences Research Council (EPSRC); the Economic and Social Research Council; the Medical Research Council; the Natural Environment Research Council; and the Science and Technology Facilities Council. The EPSRC supported 65 grants worth 30.5 million pounds. The combustion industry was noted to be dominated by three main players of which one was by far the largest. The 3 key players were Rolls-Royce; Jaguar Land Rover; and Doosan Babcock. Industry and government involvement was also discussed for the BIS Technology Strategy Board, strategy technology areas, and strategy application areas.

  3. Influence of forest biomass grown in fertilised soils on combustion and gasification processes as well as on the environment with integrated bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Jaanu, K; Orjala, M [VTT Energy, Jyvaeskylae (Finland). Fuel Production

    1997-12-01

    This presentation describes research carried out by VTT Energy and METLA during 1996, as part of the collaborative EU project involving Finland, Portugal and Spain. The main objectives of this project are to carry out experimental studies of both combustion and gasification under atmospheric (Portugal and Spain) and pressurised conditions (Finland) using biomass from different countries, namely Finland, Portugal and Spain. This was to determine the influence of biomass fertilising conditions on the process itself and the impact on the integrated energy production facilities, such as gas turbines. The aim of the research was carried out during 1996: (1) To complete the biomass collection, analyses and selection of the samples for combustion and gasification tests. This task has been carried out in co-operation with VTT and METLA, (2) To start the combustion and gasification tests under pressurised and atmospheric conditions. The combustion research in Finland is being performed in pressurised entrained flow reactor at VTT in Jyvaeskylae and the gasification research is being conducted at VTT in Espoo. The collection of biomass samples has been completed. The analyses of the samples show that for instance potassium and phosphorus content will be increased by about 30-50 % due to fertilisation. In the ash fusion tests, the ash from fertilised bark and branches and needles may start to soften already at 900 deg C under reducing conditions depending on the composition of the ash. In oxidising atmospheres the ash softening seems to occur at higher temperatures. Preliminary results indicate that the fertilisation may have an influence on the combustion process

  4. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  5. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  6. Appendix A : literature review.

    Science.gov (United States)

    2013-03-01

    This appendix contains a review of the literature and other background information : germane to the experimental and analytical research presented in subsequent appendices. Table : 1 lists the sections and topics contained in this appendix and those ...

  7. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  8. The combustion of sodium

    International Nuclear Information System (INIS)

    Newman, R.N.

    1978-01-01

    The burning rates of sodium in the form of vapour jets, droplets, sprays and unconfined and confined pools have been reviewed. Attention has been paid to assessing the value of models in the various combustion modes. Additional models have been constructed for the descriptions of laminar and turbulent vapour jets, stationary droplets, forced convection over ambient pool fires together with correlations for peak pressures in confined pool environments. Where appropriate experiments with sodium have not been conducted, the likely behaviour is predicted by comparison with the burning of other fuels, particularly in the field of large free ambient fires. Some areas where further knowledge is required are highlighted. (author)

  9. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    International Nuclear Information System (INIS)

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.

    2016-01-01

    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study. Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2 /H 2 O binary mixtures are computationally studied here for the first time and their critical parameters are reported.

  10. 40 CFR 74.16 - Application requirements for combustion sources.

    Science.gov (United States)

    2010-07-01

    ... combustion sources. 74.16 Section 74.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for combustion sources. (a) Opt-in permit application. Each complete opt-in permit application for a combustion source shall contain the following elements in a format prescribed by the Administrator: (1...

  11. New technologies reducing emissions from combustion of biofuels

    International Nuclear Information System (INIS)

    Oravainen, H.

    1997-01-01

    In reducing CO 2 emissions, bioenergy will be the most important source of renewable energy in the next few decades. In principle, combustion of biomass is friendly to the environment because CO 2 released during combustion is recycled back into natural circulation. Biofuels normally contain little nitrogen and sulphur. However, depending on the combustion technology used, emissions may be quite high. This is true of combustion of biomass fuels in small appliances like wood stoves, fireplaces, small boilers etc. When fuels having high content of volatile matter are burnt in appliances using batch type combustion, the process is rather an unsteady-state combustion. Emissions of carbon monoxide, other combustible gases and particulates are quite difficult to avoid. With continuous combustion processes this is not normally a problem. This conference paper presents some means of reducing emissions from combustion of biofuels. 5 refs., 4 figs

  12. Rotary combustion device

    NARCIS (Netherlands)

    2008-01-01

    Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber.

  13. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  14. Fundamentals of Turbulent and Multi-Phase Combustion

    CERN Document Server

    Kuo, Kenneth Kuan-yun

    2012-01-01

    Detailed coverage of advanced combustion topics from the author of Principles of Combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form-until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence

  15. Annual Report: Advanced Combustion (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey [NETL; Richards, George

    2012-09-30

    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  16. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  17. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  18. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    Science.gov (United States)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  19. Environment

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    IGT's efforts in environmental protection are primarily concerned with reducing the level of undesirable emissions from combustion, treating solid and liquid waste materials, and producing cleaner fuels. Projects being funded include: an ultra-low-emission gas-fired cyclonic burner for firetube boiler retrofit; a combination of IGT's de-NOX technology for municipal solid waste combustors with the injection of sorbents to reduce pollutants; second-generation NOx reduction techniques for regenerative glass melting furnaces; investigation of the applicability of electric DC field flame stabilization; development of a slagging cyclonic combustor for a class of industrial solid wastes; remediation research of various biological, chemical, and thermal technologies for cleaning and/or immobilizing contaminants in soils and sludges; and fuel cell research on molten carbonate and solid oxide fuel cells

  20. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  1. 40 CFR Appendix H to Part 122 - Counties With Unincorporated Urbanized Areas With a Population of 250,000 or More According to...

    Science.gov (United States)

    2010-07-01

    ... Census H Appendix H to Part 122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.... 122, App. H Appendix H to Part 122—Counties With Unincorporated Urbanized Areas With a Population of...

  2. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  3. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani; Oß wald, Patrick; Hansen, Nils; Kohse-Hö inghaus, Katharina

    2014-01-01

    . While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides

  4. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  5. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  6. 40 CFR Appendix B to Part 425 - Modified Monier-Williams Method

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Modified Monier-Williams Method B Appendix B to Part 425 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE CATEGORY Pt. 425, App. B Appendix B to...

  7. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Science.gov (United States)

    2010-07-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES Pt. 191, App. B Appendix B to Part 191... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Calculation of Annual Committed Effective Dose B Appendix B to Part 191 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  8. 40 CFR Appendix L to Part 51 - Example Regulations for Prevention of Air Pollution Emergency Episodes

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Example Regulations for Prevention of Air Pollution Emergency Episodes L Appendix L to Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Pt. 51, App. L Appendix L to Par...

  9. 40 CFR Appendix E to Subpart A of... - Article 5 Parties

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Article 5 Parties E Appendix E to Subpart A of Part 82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Appendix E to Subpart A of Part 82—Article 5 Parties Afghanistan, Albania, Algeria, Angola, Antigua...

  10. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  11. Stratified charge rotary engine critical technology enablement. Volume 2: Appendixes

    Science.gov (United States)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This second volume of appendixes is a companion to Volume 1 of this report which summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation; and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems. A family of four-stage third-order explicit Runge-Kutta schemes is derived that required only two locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.

  12. The John Zink Hamworthy combustion handbook

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Despite the length of time it has been around, its importance, and vast amounts of research, combustion is still far from being completely understood. Issues regarding the environment, cost, and fuel consumption add further complexity, particularly in the process and power generation industries. Dedicated to advancing the art and science of industrial combustion, The John Zink Hamworthy Combustion Handbook, Second Edition: Volume 3 - Applications offers comprehensive, up-to-date coverage of equipment used in the process and power generation industries. Under the leadership of Charles E. Baukal

  13. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  14. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  15. Combustion of environmentally altered molybdenum trioxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin; Pantoya, Michelle L. [Mechanical Engineering Department, Texas Tech University, 2500 Broadway, Lubbock, TX 79409 (United States)

    2006-06-15

    Nanocomposite thermite mixtures are currently under development for many primer applications due to their high energy densities, high ignition sensitivity, and low release of toxins into the environment. However, variability and inconsistencies in combustion performance have not been sufficiently investigated. Environmental interactions with the reactants are thought to be a contributing factor to these variabilities. Combustion velocity experiments were conducted on aluminum (Al) and molybdenum trioxide (MoO{sub 3}) mixtures to investigate the role of environmental interactions such as light exposure and humidity. While the Al particles were maintained in an ambient, constant environment, the MoO{sub 3} particles were exposed to UV or fluorescent light, and highly humid environments. Results show that UV and fluorescent lighting over a period of days does not significantly contribute to performance deterioration. However, a humid environment severely decreases combustion performance if the oxidizer particles are not heat-treated. Heat treatment of the MoO{sub 3} greatly increases the material's ability to resist water absorption, yielding more repeatable combustion performance. This work further quantifies the role of the environment in the decrease of combustion performance of nanocomposites over time. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. Fiscal 1998 research report. R and D on advanced combustion technology under microgravity environment; 1998 nendo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research was made on explication of a combustion phenomenon by using a microgravity facility, and a combustor possible to realize advanced combustion technology. In the basic research composed of 5 themes by the international joint research with NASA, 52 drop experiments using JAMIC's facility and 100 drop experiments using NASA's 2.2s drop tower were carried out. The themes are composed of an interaction in droplet arrays combustion, combustion of binary fuel sprays, combustion characteristics of solid fuel, flame dynamics around a lean flammability limit, and mass transfer around a combustion field. In the experiment using the microgravity experiment facility and analysis evaluation of the experimental data, studies were made on combustion and evaporation of fuel droplets, combustion characteristics of dense fuel, flammability limit, formation mechanism of NO{sub x} and an advanced combustor. For applying a pre-evaporating/pre- mixing combustion system to a combustor for aircraft engines, studies were made on some issues such as improvement of a combustion stability, NO{sub x} discharge characteristics, and optimum fuel atomizing. (NEDO)

  17. Fiscal 1998 research report. R and D on advanced combustion technology under microgravity environment; 1998 nendo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research was made on explication of a combustion phenomenon by using a microgravity facility, and a combustor possible to realize advanced combustion technology. In the basic research composed of 5 themes by the international joint research with NASA, 52 drop experiments using JAMIC's facility and 100 drop experiments using NASA's 2.2s drop tower were carried out. The themes are composed of an interaction in droplet arrays combustion, combustion of binary fuel sprays, combustion characteristics of solid fuel, flame dynamics around a lean flammability limit, and mass transfer around a combustion field. In the experiment using the microgravity experiment facility and analysis evaluation of the experimental data, studies were made on combustion and evaporation of fuel droplets, combustion characteristics of dense fuel, flammability limit, formation mechanism of NO{sub x} and an advanced combustor. For applying a pre-evaporating/pre- mixing combustion system to a combustor for aircraft engines, studies were made on some issues such as improvement of a combustion stability, NO{sub x} discharge characteristics, and optimum fuel atomizing. (NEDO)

  18. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  19. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  20. The California Central Coast Research Partnership: Building Relationships, Partnerships and Paradigms for University-Industry Research Collaboration. Appendix A. Telecommunications Asset Management in A Global Environment

    National Research Council Canada - National Science Library

    Griggs, Ken

    2003-01-01

    .... The mission of this project is threefold: To develop a blueprint or design concept for a telecommunications asset management environment that identifies, tracks, and codes global communications assets, brings them into services, and makes...

  1. Lump wood combustion process

    Science.gov (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  2. Research and development achievement report for fiscal 1994 concerning the creation of advanced combustion technologies utilizing the microgravity environment; 1994 nendo bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The development committee concluded an agreement about on-site researches with NASA (National Aeronautics and Space Administration) for an international joint study, and the joint study was started at the underground microgravity center. Experiments were conducted at microgravity experimenting facilities and the data obtained were subjected to analysis and evaluation, which eventually contributed to the accumulation of useful data. In this fiscal year, microgravity experimenting facilities were utilized for experiments and tests for (1) the evaluation of the combustion and vaporization of fuel droplets and fuel droplet arrays, (2) analysis and evaluation of high-density fuel combustion characteristics, (3) evaluation of flammability limits, and (4) elucidation of the mechanism of the generation of NOx and the like. A total of 112 drop tests were conducted, and the acquired data were subjected to analysis and evaluation for the elucidation of the combustion mechanism, and findings were collected as mentioned below. Learned were the combustion behavior of fuel droplets such as ignition and flame propagation under item (1), combustion behavior such as ignition and combustion of high-density fuel under item (2), combustion behavior and combustion limits of premixed fuel under (3), and measurement of distribution of combustion products such as OH in the droplet fuel flaming zone under item (4). (NEDO)

  3. Flameless Combustion Workshop

    National Research Council Canada - National Science Library

    Gutmark, Ephraim

    2005-01-01

    .... "Flameless Combustion" is characterized by high stability levels with virtually no thermoacoustic instabilities, very low lean stability limits and therefore extremely low NOx production, efficient...

  4. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  5. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  6. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  7. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H [VTT Energy, Jyvaeskylae (Finland)

    1997-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  8. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  9. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; An, Yanzhao; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON

  10. 40 CFR Table 1 to Subpart Kkkk of... - Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines

    Science.gov (United States)

    2010-07-01

    ... Stationary Combustion Turbines 1 Table 1 to Subpart KKKK of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Pt. 60, Subpt. KKKK, Table 1 Table 1 to Subpart KKKK of Part 60—Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines Combustion...

  11. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  12. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  13. 40 CFR Appendix A to Subpart E of... - Plans for Selective Enforcement Auditing

    Science.gov (United States)

    2010-07-01

    ... Auditing A Appendix A to Subpart E of Part 1068 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Auditing Pt. 1068, Subpt. E, App. A Appendix A to Subpart E of Part 1068—Plans for Selective Enforcement Auditing The following tables describe sampling plans for selective enforcement audits, as described in...

  14. Hydropower and Water Framework Directive. Appendix 1; Wasserkraftnutzung und Wasserrahmenrichtlinien. Anhang 1

    Energy Technology Data Exchange (ETDEWEB)

    Keuneke, Rita; Dumont, Ulrich [Ingenieurbuero Floecksmuehle, Aachen (Germany)

    2011-11-15

    The contribution under consideration is the first appendix to the environmental research plan of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Berlin, Federal Republic of Germany) on ''Hydropower and Water Framework Directive''. This appendix contains a description of the locations in the tributaries of the German river Weser.

  15. 40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix..., App. II Appendix II to Part 1042—Steady-State Duty Cycles (a) The following duty cycles apply as specified in § 1042.505(b)(1): (1) The following duty cycle applies for discrete-mode testing: E3 mode No...

  16. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...

  17. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  18. Catalytically enhanced combustion process

    International Nuclear Information System (INIS)

    Rodriguez, C.

    1992-01-01

    This patent describes a fuel having improved combustion efficiency. It comprises a petroleum based liquid hydrocarbon; and a combustion catalyst comprising from about 18 to about 21 weight percent naphthalene, from about 75 to about 80 weight percent toluene, and from about 2.8 to about 3.2 weight percent benzyl alcohol

  19. Fifteenth combustion research conference

    International Nuclear Information System (INIS)

    1993-01-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers

  20. Fiscal 1993-1998 integrated research report. R and D on advanced combustion technology under microgravity environment; 1993 - 1998 nendo sogo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For developing advanced combustion technology by using JAMIC's facility, the advanced combustion technology research committee supported by researchers of universities, national institutes and industries was prepared in JSUP, and R and D using a microgravity experiment facility and the international joint research with NASA were carried out. By using the advanced experimental equipment and measuring instrument developed for microgravity experiments, studies were made on combustion and evaporation of fuel droplets, combustion characteristics of dense fuel, flammability limit and NO{sub x} generation mechanism, and such precious results were obtained as storage of abundant experimental data, explication of a combustion mechanism, preparation of a database and find of new phenomena. In the ground verification experiment using the newly fabricated advanced combustor test equipment, various data effective for developing high-efficiency low-pollution combustors were obtained. Through the joint research with NASA including 5 themes, various results and the real relationship between the researchers were also obtained. (NEDO)

  1. Environment

    International Nuclear Information System (INIS)

    McIntyre, A.D.; Turnbull, R.G.H.

    1992-01-01

    The development of the hydrocarbon resources of the North Sea has resulted in both offshore and onshore environmental repercussions, involving the existing physical attributes of the sea and seabed, the coastline and adjoining land. The social and economic repercussions of the industry were equally widespread. The dramatic and speedy impact of the exploration and exploitation of the northern North Sea resources in the early 1970s, on the physical resources of Scotland was quickly realised together with the concern that any environmental and social damage to the physical and social fabric should be kept to a minimum. To this end, a wide range of research and other activities by central and local government, and other interested agencies was undertaken to extend existing knowledge on the marine and terrestrial environments that might be affected by the oil and gas industry. The outcome of these activities is summarized in this paper. The topics covered include a survey of the marine ecosystems of the North Sea, the fishing industry, the impact of oil pollution on seabirds and fish stocks, the ecology of the Scottish coastline and the impact of the petroleum industry on a selection of particular sites. (author)

  2. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  3. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-01-01

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  4. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B

    2006-01-01

    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  5. 40 CFR Appendix A to Subpart L of... - Operating Coke Oven Batteries as of April 1, 1992

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Operating Coke Oven Batteries as of April 1, 1992 A Appendix A to Subpart L of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries Pt. 63, Subpt. L, App. A Appendix A...

  6. 40 CFR Appendix R to Part 50 - Interpretation of the National Ambient Air Quality Standards for Lead

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Interpretation of the National Ambient Air Quality Standards for Lead R Appendix R to Part 50 Protection of Environment ENVIRONMENTAL.... 50, App. R Appendix R to Part 50—Interpretation of the National Ambient Air Quality Standards for...

  7. COMBUSTION PROPERTIES OF EUCALYPTUS WOOD

    Directory of Open Access Journals (Sweden)

    Yalçın ÖRS

    1999-03-01

    Full Text Available In this study, the combustion properties of some impregnation materials (abiotic and biotic factors used for eucalyptus wood in interior or exterior environments were investigated. The experimental samples were prepared from Eucalyptus wood based on ASTM-D-1413-76 Tanalith-CBC, boric acid, borax, vacsol-WR, immersol-WR, polyethylen glycole-400 and ammonium sulphate were used as an impregnation material. The results indicated that, vacuum treatment on Eucalyptus gave the lowest retention value of salts. Compounds containing boron+salt increased fire resistance however water repellents decreased the wood flammability.

  8. Study of combustion in microgravity environments and application of the findings to combustors for industrial use; Bisho juryoku kankyoka ni okeru nensho kenkyu oyobi sangyoyo nensho kiki eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, J. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-09-10

    Natural convection is one of the factors that make the elucidation of the combustion phenomenon difficult. Such being the case, it is necessary to utilize microgravity enviroments to learn fuel combustion characteristics and parameters governing the combustion phenomenon for the development of optimal burning appliances. The free-fall facility of JAMIC (Japan Micro Gravity Center) creates a microgravity field that lasts for 10 seconds, and helps perform various combustion-related researches. This report outlines the findings obtained thanks to the use of this facility. In a `study concerning the creation of sophisticated combustion technology,` the combustion of 50{mu}m fuel droplets (too small to involve natural convetion) in a jet engine combustor is simulated in a microgravity field using experimentally producible 1mm drops, and the relationship between the droplet burn time and pressure is disclosed. In addition, using a small combustion furnace, the behavior of a natural-size flame is estimated and the propagation speed of a carbon powder flame is studied. 6 figs.

  9. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  10. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  11. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  12. Shale oil combustion

    International Nuclear Information System (INIS)

    Al-dabbas, M.A.

    1992-05-01

    A 'coutant' carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs

  13. Shale oil combustion

    Energy Technology Data Exchange (ETDEWEB)

    Al-dabbas, M A

    1992-05-01

    A `coutant` carbon steel combustion chamber cooled by water jacket was conslructed to burn diesel fuel and mixlure of shale oil and diesel fuels. During experimental work nir fuel ratio was determined, temperaturces were measured using Chromel/ Almel thermocouple, finally the gasous combustion product analysis was carricd out using gas chromatograph technique. The constructed combustion chamber was operating salisfactory for several hours of continous work. According to the measurements it was found that: the flame temperature of a mixture of diesel and shale oil fuels was greater than the flame temperature of diesel fuel. and the sulfer emissious of a mixture of diesel and shale oil fuels was higher than that of diesel fuel. Calculation indicated that the dry gas energy loss was very high and the incomplete combustion energy loss very small. (author). 23 refs., 35 figs.

  14. Indoor combustion and asthma.

    Science.gov (United States)

    Belanger, Kathleen; Triche, Elizabeth W

    2008-08-01

    Indoor combustion produces both gases (eg, nitrogen dioxide, carbon monoxide) and particulate matter that may affect the development or exacerbation of asthma. Sources in the home include both heating devices (eg, fireplaces, woodstoves, kerosene heaters, flued [ie, vented] or nonflued gas heaters) and gas stoves for cooking. This article highlights the recent literature examining associations between exposure to indoor combustion and asthma development and severity. Since asthma is a chronic condition affecting both children and adults, both age groups are included in this article. Overall, there is some evidence of an association between exposure to indoor combustion and asthma, particularly asthma symptoms in children. Some sources of combustion such as coal stoves have been more consistently associated with these outcomes than other sources such as woodstoves.

  15. Abatement of emissions from small-scale combustion of biofuels

    International Nuclear Information System (INIS)

    Cowburn, D.A.; Holtham, R.D.

    1999-01-01

    This report summarises the findings of a study examining the feasibility of designing a free-standing stove for heating a room using a downburning combustion system with air introduced above the bed of the fire to minimise the deposition of tar on the glass door of the stove. Details of the construction and operation of the appliance and the testing methods are given. Emission measurements, modeling, and work on pre-production of the prototype and production model stoves are reported. A paper on the development of low smoke stoves for domestic wood use is presented in an appendix. (UK)

  16. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  17. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  18. Nordic seminar on biomass gasification and combustion

    International Nuclear Information System (INIS)

    1993-01-01

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs

  19. Gas Emissions in Combustion of Biofuel

    Directory of Open Access Journals (Sweden)

    Vitázek Ivan

    2014-10-01

    Full Text Available Nowadays, biomass or more precisely biofuel is more and more being exploited as a substitute for fossil fuels for heating as well as for example for heating a drying environment. This contribution focuses on assessing a heat source by combusting various types of solid biofuels. It is a boiler VIGAS 25 with AK 2000 regulation for heating a family house. Gaseous emissions were measured using a device TESTO 330-2LL. Firewood, peat briquettes, bark briquettes and hardwood briquettes were burnt. Results of experimental measurements concerning the production of gaseous emissions are processed in tables and graphs depending on boiler performance and combustion time.

  20. Practical Multi-Disciplinary Analysis Tools for Combustion Devices, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of multidisciplinary analysis (MDA) techniques for combustion device environment prediction, including complex fluid mixing phenomena, is now becoming...

  1. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  2. Mechanisms and kinetics of granulated sewage sludge combustion.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mixing and combustion enhancement of Turbocharged Solid Propellant Ramjet

    Science.gov (United States)

    Liu, Shichang; Li, Jiang; Zhu, Gen; Wang, Wei; Liu, Yang

    2018-02-01

    Turbocharged Solid Propellant Ramjet is a new concept engine that combines the advantages of both solid rocket ramjet and Air Turbo Rocket, with a wide operation envelope and high performance. There are three streams of the air, turbine-driving gas and augment gas to mix and combust in the afterburner, and the coaxial intake mode of the afterburner is disadvantageous to the mixing and combustion. Therefore, it is necessary to carry out mixing and combustion enhancement research. In this study, the numerical model of Turbocharged Solid Propellant Ramjet three-dimensional combustion flow field is established, and the numerical simulation of the mixing and combustion enhancement scheme is conducted from the aspects of head region intake mode to injection method in afterburner. The results show that by driving the compressed air to deflect inward and the turbine-driving gas to maintain strong rotation, radial and tangential momentum exchange of the two streams can be enhanced, thereby improving the efficiency of mixing and combustion in the afterburner. The method of injecting augment gas in the transverse direction and making sure the injection location is as close as possible to the head region is beneficial to improve the combustion efficiency. The outer combustion flow field of the afterburner is an oxidizer-rich environment, while the inner is a fuel-rich environment. To improve the efficiency of mixing and combustion, it is necessary to control the injection velocity of the augment gas to keep it in the oxygen-rich zone of the outer region. The numerical simulation for different flight conditions shows that the optimal mixing and combustion enhancement scheme can obtain high combustion efficiency and have excellent applicability in a wide working range.

  4. FY 1996 result report. Research/development on the creation of high-grade combustion technology using a microgravity environment; 1996 nendo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    With the aim of creating high-grade combustion technology which can respond to the decrease in environmental pollutant in combustion exhaust gas, the high-grade combustion technology research development committee was established inside JSUP (Japan Space Utilization Promotion Center), using the underground gravity-free test center. Following FY 1995, the following were conducted: (1) international joint research with NASA, and (2) tests using microgravity test facilities, etc. and analysis/evaluation of the test data. As to the international joint research, a lot of new information was obtained through the adjustment conference with NASA. Further, there were a lot of results obtained from joint tests and researches. Moreover, the leading experimental device and measuring device which are usable in the microgravity field were developed/prepared. Conducted were combustion/evaporation evaluation experiments on fuel droplet and groups of droplet, combustion characteristics elucidation evaluation experiments on high-density fuels, evaluation experiment on flammability limits, and elucidation evaluation experiments on emission mechanism of NOx, etc. Through those, abundant experimental data were able to be accumulated, and a lot of precious knowledge/information were obtained. Besides, the fabrication of high-class combustor test equipment for ground demonstration was started. (NEDO)

  5. Transient flow combustion

    Science.gov (United States)

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  6. Combustion and regulation; Combustion et reglementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference was organized after the publication of the French by-law no 2010 relative to combustion installations and to the abatement of atmospheric pollution. Five topics were discussed during the conference: the new regulations, their content, innovations and modalities of application; the means of energy suppliers to face the new provisions and their schedule; the manufacturers proposals for existing installations and the new equipments; the administration control; and the impact of the new measures on exploitation and engineering. Twenty papers and 2 journal articles are reported in these proceedings. (J.S.)

  7. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  8. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    spectral measurements at several line-of-sights with a view to applications for tomographic measurements on full-scale industrial combustion systems. The system was successfully applied on industrial scale for simultaneous fast exhaust gas temperature measurements in the three optical ports of the exhaust......D project, it was also important to investigate the spectral properties of major combustion species such as carbon dioxide and carbon monoxide in the infrared range at high temperatures to provide the theoretical background for the development of the optical tomography methods. The new software....... JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  9. Internal combustion engine

    Science.gov (United States)

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  10. Combustion optimization and HCCI modeling for ultra low emission

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the coming shortage of fossil fuels and the rising concerns over the environment it is important to develop new technologies both to reduce energy consumption and pollution at the same time. In the transportation sector, new combustion processes are under development to provide clean diesel combustion with no particulate or NOx emissions. However, these processes have issues such as limited power output, high levels of unburned hydrocarbons, and carbon monoxide emissions. The aim of this paper is to present a methodology for optimizing combustion performance. The methodology consists of the use of a multi-objective genetic algorithm optimization tool; homogeneous charge compression ignition engine cases were studied with the ECFM-3Z combustion model. Results showed that injected fuel mass led to a decrease in power output, a finding which is in keeping with previous research. This paper presented on optimization tool which can be useful in improving the combustion process.

  11. Diffusion Driven Combustion Waves in Porous Media

    Science.gov (United States)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  12. Fuel and combustion stratification study of Partially Premixed Combustion

    OpenAIRE

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  13. 40 CFR Appendix H to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes, Effective May 28, 1999

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Substitutes Subject to Use Restrictions and Unacceptable Substitutes, Effective May 28, 1999 H Appendix H to Subpart G of Part 82... STRATOSPHERIC OZONE Significant New Alternatives Policy Program Pt. 82, Subpt. G, App. H Appendix H to Subpart G...

  14. 40 CFR Appendix A to Subpart F of... - Sampling Plans for Selective Enforcement Auditing of Nonroad Engines

    Science.gov (United States)

    2010-07-01

    ... Enforcement Auditing of Nonroad Engines A Appendix A to Subpart F of Part 89 Protection of Environment... NONROAD COMPRESSION-IGNITION ENGINES Selective Enforcement Auditing Pt. 89, Subpt. F, App. A Appendix A to Subpart F of Part 89—Sampling Plans for Selective Enforcement Auditing of Nonroad Engines Table 1—Sampling...

  15. 40 CFR Appendix A to Subpart F of... - Sampling Plans for Selective Enforcement Auditing of Small Nonroad Engines

    Science.gov (United States)

    2010-07-01

    ... Enforcement Auditing of Small Nonroad Engines A Appendix A to Subpart F of Part 90 Protection of Environment...-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Selective Enforcement Auditing Pt. 90, Subpt. F, App. A Appendix A to Subpart F of Part 90—Sampling Plans for Selective Enforcement Auditing of Small Nonroad Engines...

  16. 40 CFR Appendix A to Subpart G of... - Sampling Plans for Selective Enforcement Auditing of Marine Engines

    Science.gov (United States)

    2010-07-01

    ... Enforcement Auditing of Marine Engines A Appendix A to Subpart G of Part 91 Protection of Environment...-IGNITION ENGINES Selective Enforcement Auditing Regulations Pt. 91, Subpt. G, App. A Appendix A to Subpart G of Part 91—Sampling Plans for Selective Enforcement Auditing of Marine Engines Table 1—Sampling...

  17. 40 CFR Appendix D to Part 132 - Great Lakes Water Quality Initiative Methodology for the Development of Wildlife Criteria

    Science.gov (United States)

    2010-07-01

    ... Methodology for the Development of Wildlife Criteria D Appendix D to Part 132 Protection of Environment... Development of Wildlife Criteria Great Lakes States and Tribes shall adopt provisions consistent with (as protective as) this appendix. I. Introduction A. A Great Lakes Water Quality Wildlife Criterion (GLWC) is the...

  18. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Science.gov (United States)

    2010-07-01

    ... Waste-Derived Residues* VII Appendix VII to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Pt. 266, App. VII Appendix VII to Part 266—Health...

  19. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  20. High Gravity (g) Combustion

    Science.gov (United States)

    2006-02-01

    UNICORN (Unsteady Ignition and Combustion with Reactions) code10. Flame propagation in a tube that is 50-mm wide and 1000-mm long (similar to that...turbine engine manufacturers, estimating the primary zone space heating rate. Both combustion systems, from Company A and Company B, required a much...MBTU/atm-hr-ft3) Te m pe ra tu re R is e (K ) dP/P = 2% dP/P = 2.5% dP/P = 3% dP/P = 3.5% dP/P = 4% Company A Company B Figure 13: Heat Release Rate

  1. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  2. Combustibility of tetraphenylborate solids

    International Nuclear Information System (INIS)

    Walker, D.D.

    1989-01-01

    Liquid slurries expected under normal in-tank processing (ITP) operations are not ignitible because of their high water content. However, deposits of dry solids from the slurries are combustible and produce dense, black smoke when burned. The dry solids burn similarly to Styrofoam and more easily than sawdust. It is the opinion of fire hazard experts that a benzene vapor deflagration could ignite the dry solids. A tetraphenylborate solids fire will rapidly plug the waste tank HEPA ventilation filters due to the nature of the smoke produced. To prevent ignition and combustion of these solids, the waste tanks have been equipped with a nitrogen inerting system

  3. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  4. 40 CFR Appendix C to Part 61 - Quality Assurance Procedures

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Quality Assurance Procedures C Appendix...—Quality Assurance Procedures Procedure 1—Determination of Adequate Chromatographic Peak Resolution In this....” Procedure 2—Procedure for Field Auditing GC Analysis Responsibilities of audit supervisor and analyst at the...

  5. 40 CFR Appendix C to Part 112 - Substantial Harm Criteria

    Science.gov (United States)

    2010-07-01

    ... to Part 112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION Pt. 112, App. C Appendix C to Part 112—Substantial Harm Criteria 1.0Introduction The..., except in the Gulf of Mexico. In the Gulf of Mexico, it means the area shoreward of the lines of...

  6. 40 CFR Appendix A to Part 63 - Test Methods

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Test Methods A Appendix A to Part 63... to Part 63—Test Methods Method 301—Field Validation of Pollutant Measurement Methods from Various Waste Media 1. Applicability and principle 1.1Applicability. This method, as specified in the applicable...

  7. Combustion stratification for naphtha from CI combustion to PPC

    NARCIS (Netherlands)

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, L.M.T.; Johansson, B.H.

    2017-01-01

    This study demonstrated the change in combustion homogeneity from conventional diesel combustion via partially premixed combustion towards HCCI. Experiments are performed in an optical diesel engine at a speed of 1200 rpm with diesel fuel. Single injection strategy is employed and the fuel is

  8. Burning Questions in Gravity-Dependent Combustion Science

    Science.gov (United States)

    Urban, David; Chiaramonte, Francis P.

    2012-01-01

    Building upon a long history of spaceflight and ground based research, NASA's Combustion Science program has accumulated a significant body of accomplishments on the ISS. Historically, NASAs low-gravity combustion research program has sought: to provide a more complete understanding of the fundamental controlling processes in combustion by identifying simpler one-dimensional systems to eliminate the complex interactions between the buoyant flow and the energy feedback to the reaction zone to provide realistic simulation of the fire risk in manned spacecraft and to enable practical simulation of the gravitational environment experienced by reacting systems in future spacecraft. Over the past two decades, low-gravity combustion research has focused primarily on increasing our understanding of fundamental combustion processes (e.g. droplet combustion, soot, flame spread, smoldering, and gas-jet flames). This research program was highly successful and was aided by synergistic programs in Europe and in Japan. Overall improvements were made in our ability to model droplet combustion in spray combustors (e.g. jet engines), predict flame spread, predict soot production, and detect and prevent spacecraft fires. These results provided a unique dataset that supports both an active research discipline and also spacecraft fire safety for current and future spacecraft. These experiments have been conducted using the Combustion Integrated Rack (CIR), the Microgravity Science Glovebox and the Express Rack. In this paper, we provide an overview of the earlier space shuttle experiments, the recent ISS combustion experiments in addition to the studies planned for the future. Experiments in combustion include topics such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes.

  9. Toxicology of Biodiesel Combustion products

    Science.gov (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  10. 40 CFR Appendix J to Subpart G of... - Substitutes listed in the January 29, 2002 Final Rule, effective April 1, 2002

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Substitutes listed in the January 29, 2002 Final Rule, effective April 1, 2002 J Appendix J to Subpart G of Part 82 Protection of Environment... Significant New Alternatives Policy Program Pt. 82, Subpt. G, App. J Appendix J to Subpart G of Part 82...

  11. Underground treatment of combustible minerals

    Energy Technology Data Exchange (ETDEWEB)

    Sarapuu, E

    1954-10-14

    A process is described for treating oil underground, consisting in introducing several electrodes spaced one from the other in a bed of combustibles underground so that they come in electric contact with this bed of combustibles remaining insulated from the ground, and applying to the electrodes a voltage sufficient to produce an electric current across the bed of combustibles, so as to heat it and create an electric connection between the electrodes on traversing the bed of combustibles.

  12. FY 1995 result report. Research/development on the creation of high-grade combustion technology using a microgravity environment; 1995 nendo seika hokokusho. Bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report summarized the results of the research survey carried out by Japan Space Utilization Promotion Center (JSUP) under the contract with NEDO's industrial technology research and development department. This research survey is aimed at creating high-grade combustion technology which can respond to the decrease in environmental pollutant in combustion exhaust gas from viewpoints of energy diversification and global environmental preservation in consideration of the stabilized energy supply. Established inside JSUP is a research/development committee on high-grade combustion technology which is organized by men of learning and experience from universities, national institutes, private companies, etc. Following FY 1994, the following were continuously conducted: (1) joint research with NASA as an international research cooperation; (2) test using microgravity test facilities and analysis/evaluation of the test data. The experiment was conducted using facilities, etc. of the underground gravity-free test center established as a part of the national research base arrangement project. A lot of experimental data were obtained and stored which are useful for elucidation of the combustion mechanism and the development of ground combustor. (NEDO)

  13. Supersonic Combustion Ramjet Research

    Science.gov (United States)

    2012-08-01

    was in collaboration with Prof. R. Bowersox (Texas A&M University) and Dr. K. Kobayashi ( Japanese Aerospace Exploration Agency, JAXA). 4.2 Ignition... cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” Paper B13, 5th US Combustion

  14. Combustible dust tests

    Science.gov (United States)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  15. Investigation of the submodels for combustion; Polton osamallien kaeytettaevyys

    Energy Technology Data Exchange (ETDEWEB)

    Kjaeldman, L.; Huttunen, M.; Kyttaelae, J. [VTT Energy, Espoo (Finland)

    1997-10-01

    The capability for numerical analysis of flow, combustion and heat transfer in furnaces has been developed by improving the knowledge of the sensitivity of computed results on submodels recently implemented to the computational environment Ardemus owned by VTT Energy and Imatran Voima Oy. The submodels studied include models for combustion of gaseous (pyrolysed) fuel and for nitric oxide. The cases investigated included a gas flame and pulverized coal and peat combustion in single burner furnaces. The effect of grid refinement on the results was investigated for a corner fired power station furnace. (orig.)

  16. The Appendix on CT

    Energy Technology Data Exchange (ETDEWEB)

    Whitley, S. [Sunnybrook Health Sciences Center, Toronto, Ontario (Canada); Barts and the Royal London, Royal London Hospital, Whitechapel, London (United Kingdom)], E-mail: siobhanwhitley@yahoo.co.uk; Sookur, P.; McLean, A.; Power, N. [Barts and the Royal London, Royal London Hospital, Whitechapel, London (United Kingdom)

    2009-02-15

    Appendicitis can be a difficult clinical diagnosis to make. A negative appendicectomy rate of 20% has traditionally been accepted as the consequences of appendiceal perforation can be grave. Cross-sectional imaging is increasingly being employed in the investigation of adults with suspected appendicitis. This review will demonstrate the appearance of the normal appendix on computed tomography (CT) and its appearance in a range of inflammatory and neoplastic processes including appendicitis, Crohn's disease, infections, and benign and malignant tumour000.

  17. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  18. The Relation between Gas Flow and Combustibility using Actual Engine (Basic Experiment of Gas Flow and Combustibility under Low Load Condition)

    OpenAIRE

    田坂, 英紀; 泉, 立哉; 木村, 正寿

    2003-01-01

    Abstract ###Consideration of the global environment problems by exhaust gas is becoming important in recent years. ###Especially about internal combustion engine, social demand has been increasing about low pollution, high ###efficiency and so on. Controlling gas flow in cylinder becomes the key getting good combustion state in ###various driving states. ###The purpose of the research is analysis about the relation between gas flow and combustibility in the cylinder. ###So we measured gas flo...

  19. Low emission internal combustion engine

    Science.gov (United States)

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  20. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Science.gov (United States)

    2010-07-01

    ... waste combustion unit at your plant. Include supporting calculations. (b) Records of low carbon feed... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is...

  1. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Science.gov (United States)

    2010-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  2. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Science.gov (United States)

    2010-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  3. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  4. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  5. 40 CFR Table 1 to Subpart Aaaa of... - Emission Limits for New Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...

  6. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  7. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Science.gov (United States)

    2010-07-01

    ... content of the turbine's combustion fuel? 60.4360 Section 60.4360 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Monitoring § 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel? You must monitor the total sulfur content of the...

  8. Hydropower and Water Framework Directive. Appendix 2 to 4; Wasserkraftnutzung und Wasserrahmenrichtlinien. Anhang 2 bis 4

    Energy Technology Data Exchange (ETDEWEB)

    Keuneke, Rita; Dumont, Ulrich [Ingenieurbuero Floecksmuehle, Aachen (Germany)

    2011-11-15

    The contribution under consideration contains the appendices 2 to 4 to the environmental research plan of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Berlin, Federal Republic of Germany) on ''Hydropower and Water Framework Directive''. Appendix 2 reports on the fundamentals for the design of fish bypass facilities, fish protection and fish migration facilities, minimum outflow in discharge lines, water ecologic evaluation, determination of less generation of hydroelectric power plants. Appendix 3 contains illustrations. Appendix 4 presents an extract from the final report.

  9. CloudFlame: Cyberinfrastructure for combustion research

    KAUST Repository

    Goteng, Gokop

    2013-12-01

    Combustion experiments and chemical kinetics simulations generate huge data that is computationally and data intensive. A cloud-based cyber infrastructure known as Cloud Flame is implemented to improve the computational efficiency, scalability and availability of data for combustion research. The architecture consists of an application layer, a communication layer and distributed cloud servers running in a mix environment of Windows, Macintosh and Linux systems. The application layer runs software such as CHEMKIN modeling application. The communication layer provides secure transfer/archive of kinetic, thermodynamic, transport and gas surface data using private/public keys between clients and cloud servers. A robust XML schema based on the Process Informatics Model (Prime) combined with a workflow methodology for digitizing, verifying and uploading data from scientific graphs/tables to Prime is implemented for chemical molecular structures of compounds. The outcome of using this system by combustion researchers at King Abdullah University of Science and Technology (KAUST) Clean Combustion Research Center and its collaborating partners indicated a significant improvement in efficiency in terms of speed of chemical kinetics and accuracy in searching for the right chemical kinetic data.

  10. Hydrogen assisted diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilik, Gregory K.; Boehman, Andre L. [The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Hedan; Haworth, Daniel C. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Herreros, Jose Martin [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla La-Mancha, Avda. Camilo Jose Cela s/n, 13071 Ciudad Real (Spain)

    2010-05-15

    Hydrogen assisted diesel combustion was investigated on a DDC/VM Motori 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine, with a focus on exhaust emissions. Hydrogen was substituted for diesel fuel on an energy basis of 0%, 2.5%, 5%, 7.5%, 10% and 15% by aspiration of hydrogen into the engine's intake air. Four speed and load conditions were investigated (1800 rpm at 25% and 75% of maximum output and 3600 rpm at 25% and 75% of maximum output). A significant retarding of injection timing by the engine's electronic control unit (ECU) was observed during the increased aspiration of hydrogen. The retarding of injection timing resulted in significant NO{sub X} emission reductions, however, the same emission reductions were achieved without aspirated hydrogen by manually retarding the injection timing. Subsequently, hydrogen assisted diesel combustion was examined, with the pilot and main injection timings locked, to study the effects caused directly by hydrogen addition. Hydrogen assisted diesel combustion resulted in a modest increase of NO{sub X} emissions and a shift in NO/NO{sub 2} ratio in which NO emissions decreased and NO{sub 2} emissions increased, with NO{sub 2} becoming the dominant NO{sub X} component in some combustion modes. Computational fluid dynamics analysis (CFD) of the hydrogen assisted diesel combustion process captured this trend and reproduced the experimentally observed trends of hydrogen's effect on the composition of NO{sub X} for some operating conditions. A model that explicitly accounts for turbulence-chemistry interactions using a transported probability density function (PDF) method was better able to reproduce the experimental trends, compared to a model that ignores the influence of turbulent fluctuations on mean chemical production rates, although the importance of the fluctuations is not as strong as has been reported in some other recent modeling studies. The CFD results confirm

  11. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  12. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  13. Plasma Assisted Combustion

    Science.gov (United States)

    2007-02-28

    Tracking an individual streamer branch among others in a pulsed induced discharge J. Phys. D: Appl. Phys. 35 2823--9 [29] van Veldhuizen E M and Rutgers...2005) AIAA–2005–0405. [99] E.M. Van Veldhuizen (ed) Electrical Discharges for Environmental Purposes: Fun- damentals and Applications (New York: Nova...Vandooren J, Van Tiggelen P J 1977 Reaction Mechanism and Rate Constants in Lean Hydrogen–Nitrous Oxide Flames Combust. Flame 28 165 [201] Dean A M, Steiner

  14. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.

    1981-02-01

    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  15. Issues in waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Robertson, Kerstin; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Sundquist, Lena; Wrangensten, Lars [AaF-Energikonsult AB, Stockholm (Sweden); Blom, Elisabet [AaF-Processdesign AB, Stockholm (Sweden)

    2003-05-01

    The main purpose of this review is to provide an overview of the state-of-the-art on research and development issues related to waste combustion with relevance for Swedish conditions. The review focuses on co-combustion in grate and fluidised bed furnaces. It is primarily literature searches in relevant databases of scientific publications with to material published after 1995. As a complement, findings published in different report series, have also been included. Since the area covered by this report is very wide, we do not claim to cover the issues included completely and it has not been possitile to evaluate the referred studies in depth. Basic knowledge about combustion issues is not included since such information can be found elsewhere in the literature. Rather, this review should be viewed as an overview of research and development in the waste-to-energy area and as such we hope that it will inspire scientists and others to further work in relevant areas.

  16. The Multi-User Droplet Combustion Apparatus: the Development and Integration Concept for Droplet Combustion Payloads in the Fluids and Combustion Facility Combustion Integrated Rack

    Science.gov (United States)

    Myhre, C. A.

    2002-01-01

    The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user facility designed to accommodate four different droplet combustion science experiments. The MDCA will conduct experiments using the Combustion Integrated Rack (CIR) of the NASA Glenn Research Center's Fluids and Combustion Facility (FCF). The payload is planned for the International Space Station. The MDCA, in conjunction with the CIR, will allow for cost effective extended access to the microgravity environment, not possible on previous space flights. It is currently in the Engineering Model build phase with a planned flight launch with CIR in 2004. This paper provides an overview of the capabilities and development status of the MDCA. The MDCA contains the hardware and software required to conduct unique droplet combustion experiments in space. It consists of a Chamber Insert Assembly, an Avionics Package, and a multiple array of diagnostics. Its modular approach permits on-orbit changes for accommodating different fuels, fuel flow rates, soot sampling mechanisms, and varying droplet support and translation mechanisms to accommodate multiple investigations. Unique diagnostic measurement capabilities for each investigation are also provided. Additional hardware provided by the CIR facility includes the structural support, a combustion chamber, utilities for the avionics and diagnostic packages, and the fuel mixing capability for PI specific combustion chamber environments. Common diagnostics provided by the CIR will also be utilized by the MDCA. Single combustible fuel droplets of varying sizes, freely deployed or supported by a tether are planned for study using the MDCA. Such research supports how liquid-fuel-droplets ignite, spread, and extinguish under quiescent microgravity conditions. This understanding will help us develop more efficient energy production and propulsion systems on Earth and in space, deal better with combustion generated pollution, and address fire hazards associated with

  17. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  18. 1998 annual report of advanced combustion science utilizing microgravity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the purpose of stabilizing energy supply, diversifying energy supply sources and reducing the worsening of global environment caused by combustion exhaust gases, advanced combustion technology was studied and the FY 1998 results were summarized. Following the previous year, the following were conducted: international research jointly with NASA, experiments using microgravity test facilities of Japan Space Utilization Promotion Center (JSUP), evaluation studies made by universities/national research institutes/private companies, etc. In the FY 1998 joint study, a total of 52 drop experiments were carried out on 4 themes using test facilities of Japan Microgravity Center (JAMIC), and 100 experiments were conducted on one theme using test facilities of NASA. In the study using microgravity test facilities, the following were carried out: study of combustion and evaporation of fuel droplets, study of ignition/combustion of fuel droplets in the suspending state, study of combustion of spherical/cylinder state liquid fuels, study of high pressure combustion of binary fuel spray, study of interaction combustion of fuel droplets in the microgravity field, etc. (NEDO)

  19. Combustion control and sensors: a review

    International Nuclear Information System (INIS)

    Docquier, N.; Candel, S.

    2002-01-01

    reviewed and their applicability is evaluated. Research efforts in combustion diagnostics are to a certain extent devoted to the development of sensors for control applications. The objective of such developments differs from that which is pursued when one wishes to perform detailed measurements on a laboratory scale experiment. The sensor system should not necessarily provide quantitative measurements because relative data are already useful for control purposes. This change of orientation will be discussed and illustrated by examples of current interest. It is concluded that development in control will depend critically on the availability of sensors and on their reliability, robustness, immunity to noise and capacity to operate in a harsh environment. Research is needed on the fundamentals of ACC and OPC but it should also address the more technical aspects of the problem. (author)

  20. Internal and Surface Phenomena in Heterogenous Metal Combustion

    Science.gov (United States)

    Dreizin, Edward L.

    1997-01-01

    The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.

  1. Experimental Study of Liquid Fuel Spray Combustion

    DEFF Research Database (Denmark)

    Westlye, Fredrik Ree

    the specific physical quantities needed in CFD validation of these types of flames. This work is a testament to that fact. The first part of this thesis is an extensive study of optical combustion diagnostics applied to complex transient sprayflames in a high temperature and pressure environment...... by the Danish Council for Strategic Research. Other supporters of the project have been MAN Diesel & Turbo A/S, DTU Mechanical Engineering, DTU Chemical Engineering, Sandia National Laboratories USA, Norwegian University of Science & Technology (NTNU) and University of Nottingham, Malaysia Campus.......The physiochemical properties and electromagnetic interactions in flames, of which various optical combustion diagnostics are based, have been reviewed. Key diagnostics have been presented with practical examples of their application which, together with a comprehensive review of fuel spray flames, form...

  2. Managing ash from the combustion of solid waste

    International Nuclear Information System (INIS)

    Hauser, R.

    1992-01-01

    This paper reports that with millions of tons of refuse being combusted each year, increasing concern over the environment impact of the residue produced has caused both regulators and the resource recovery industry to address the technical and regulatory issues relating to the safe handling and disposal of ash. The basic issue concerning solid waste combustion ash management in this country is how, based on past, recent, and ongoing scientific research, solid waste combustion ash should be handled. Typically, refuse contains approximately 20 to 25 percent residue, which is collected either on grates at the bottom of the combustion chamber or filtered from the exhaust gases by the air pollution control equipment. The fly ash component of the total residue stream is between 10 and 30 percent of the total residue while the bottom ash content ranges from 70 to 90 percent of the total weight, depending upon the air pollution control equipment utilized, especially acid gas scrubbing equipment

  3. Combustion Characterization of Bio-derived Fuels and Additives

    DEFF Research Database (Denmark)

    Hashemi, Hamid

    Climate change has become a serious concern nowadays. The main reason is believed to be the high emission of greenhouse gases, namely CO2 which is mainly produced from the combustion of fossil fuels. At the same time, energy demand has increased exponentially while the energy supply mainly depends...... on fossil fuels, especially for transportation. The practical strategy to address such problems in medium term is to increase the efficiency of combustion-propelled energy-production systems, as well as to reduce the net release of CO2 and other harmful pollutants, likely by using nonconventional fuels....... Modern internal combustion engines such as Homogeneous Charge Compression Ignition (HCCI) engines are more efficient and fuel-flexible compared to the conventional engines, making opportunities to reduce the release of greenhouse and other polluting gases to the environment. Combustion temperature...

  4. Sulfur Chemistry in Combustion I

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Glarborg, Peter

    2000-01-01

    of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...... process by reaction between SO2 and calcium containing sorbents and the influence on the NOx chemistry will be treated....

  5. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    OpenAIRE

    Gazzino, Marco; Hong, Jongsup; Chaudhry, Gunaranjan; Brisson II, John G; Field, Randall; Ghoniem, Ahmed F

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases...

  6. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  7. Combustion from basics to applications

    CERN Document Server

    Lackner, Maximilian; Winter, Franz

    2013-01-01

    Combustion, the process of burning, is defined as a chemical reaction between a combustible reactant (the fuel) and an oxidizing agent (such as air) in order to produce heat and in most cases light while new chemical species (e.g., flue gas components) are formed. This book covers a gap on the market by providing a concise introduction to combustion. Most of the other books currently available are targeted towards the experienced users and contain too many details and/or contain knowledge at a fairly high level. This book provides a brief and clear overview of the combustion basics, suitable f

  8. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  9. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  10. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  11. Fluidised bed combustion system

    International Nuclear Information System (INIS)

    McKenzie, E.C.

    1976-01-01

    Fluidized bed combustion systems that facilitates the maintenance of the depth of the bed are described. A discharge pipe projects upwardly into the bed so that bed material can flow into its upper end and escape downwardly. The end of the pipe is surrounded by an enclosure and air is discharged into the enclosure so that material will enter the pipe from within the enclosure and have been cooled in the enclosure by the air discharged into it. The walls of the enclosure may themselves be cooled

  12. Appendix F - Sample Contingency Plan

    Science.gov (United States)

    This sample Contingency Plan in Appendix F is intended to provide examples of contingency planning as a reference when a facility determines that the required secondary containment is impracticable, pursuant to 40 CFR §112.7(d).

  13. Fuel and combustion stratification study of Partially Premixed Combustion

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a

  14. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  15. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  16. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  17. 40 CFR Appendix J to Part 122 - NPDES Permit Testing Requirements for Publicly Owned Treatment Works (§ 122.21(j))

    Science.gov (United States)

    2010-07-01

    ... Publicly Owned Treatment Works (§ 122.21(j)) J Appendix J to Part 122 Protection of Environment... POLLUTANT DISCHARGE ELIMINATION SYSTEM Pt. 122, App. J Appendix J to Part 122—NPDES Permit Testing Requirements for Publicly Owned Treatment Works (§ 122.21(j)) Table 1A—Effluent Parameters for All POTWS...

  18. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part...

  19. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery Furnaces XII Appendix XII to Part 266... FACILITIES Pt. 266, App. XII Appendix XII to Part 266—Nickel or Chromium-Bearing Materials that may be...

  20. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to... Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty...

  1. Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.

  2. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  3. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  4. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  5. Manifold methods for methane combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

    1995-10-01

    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  6. Technique for in-place welding of aluminum backed up by a combustible material

    Science.gov (United States)

    Spagnuolo, A. C.

    1971-01-01

    Welding external aluminum jacket, tightly wrapped around inner layer of wood composition fiberboard, in oxygen free environment prevents combustion and subsequent damage to underlying fiberboard. Technique also applies to metal cutting in similar assemblies without disassembly to remove combustible materials from welding heat proximity.

  7. 40 CFR 60.2020 - What combustion units are exempt from this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What combustion units are exempt from..., 2001 Applicability § 60.2020 What combustion units are exempt from this subpart? This subpart exempts... byproduct streams/residues containing catalyst metals which are reclaimed and reused as catalysts or used to...

  8. 40 CFR 60.2555 - What combustion units are exempt from my State plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What combustion units are exempt from... Construction On or Before November 30, 1999 Applicability of State Plans § 60.2555 What combustion units are... metals which are reclaimed and reused as catalysts or used to produce commercial grade catalysts. (5...

  9. 40 CFR Appendix: Table 1 to... - List of Hazardous Air Pollutants (HAP) for Subpart HHH

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true List of Hazardous Air Pollutants (HAP) for Subpart HHH Table Appendix: Table 1 to Subpart HHH of Part 63 Protection of Environment... HHH of Part 63—List of Hazardous Air Pollutants (HAP) for Subpart HHH CAS Number a Chemical name 75070...

  10. 40 CFR Appendix A to Part 211 - Compliance Audit Testing Report

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Compliance Audit Testing Report A Appendix A to Part 211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... name) and (test laboratory name) knowledge, true and accurate. I am aware of the penalties associated...

  11. 40 CFR Appendix A to Part 434 - Alternate Storm Limitations for Acid or Ferruginous Mine Drainage

    Science.gov (United States)

    2010-07-01

    ... Storm Limitations for Acid or Ferruginous Mine Drainage EC01MY92.113 ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Alternate Storm Limitations for Acid or Ferruginous Mine Drainage A Appendix A to Part 434 Protection of Environment ENVIRONMENTAL...

  12. 40 CFR Appendix Vii to Part 268 - LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes VII Appendix VII to Part 268 Protection of Environment ENVIRONMENTAL... VII to Part 268—LDR Effective Dates of Surface Disposed Prohibited Hazardous Wastes Table 1—Effective...

  13. 40 CFR Appendix Viii to Part 268 - LDR Effective Dates of Injected Prohibited Hazardous Wastes

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false LDR Effective Dates of Injected Prohibited Hazardous Wastes VIII Appendix VIII to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION... to Part 268—LDR Effective Dates of Injected Prohibited Hazardous Wastes National Capacity LDR...

  14. 40 CFR Appendix B to Part 132 - Great Lakes Water Quality Initiative

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative B Appendix B to Part 132 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Water Quality Initiative Methodology for Deriving Bioaccumulation Factors Great Lakes States and Tribes...

  15. Combustion & Laser Diagnostics Research Complex (CLDRC)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Combustion and Laser Diagnostics Research Complex (CLRDC) supports the experimental and computational study of fundamental combustion phenomena to...

  16. Combustion instability control in the model of combustion chamber

    International Nuclear Information System (INIS)

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A

    2013-01-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  17. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Kuritsyn, Yu.A.; Romanovskii, Yu.V.

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review. - Highlights: • Overview of modern TDL-based sensors for combustion • TDL systems, methods of absorption detection and algorithms of data processing • Prominent examples of TDLAS diagnostics of the combustion facilities • Extension of the TDLAS on the tomographic imaging of combustion processes

  18. TEM investigations of microstructures of combustion aerosols

    International Nuclear Information System (INIS)

    Marquardt, A.; Hackfort, H.; Borchardt, J.; Schober, T.; Friedrich, J.

    1992-12-01

    In the incineration of organic material, apart from a series of gaseous pollutants, particulate pollutants or combustion aerosols also arise. The latter frequently consist of particles with a solid core of carbon to which a large number of inorganic and organic compounds are attached. These primarily include the polycyclic aromatic hydrocarbons (PAH) and their nitro-derivatives (NPAH), whose mutagenic or carcinogenic effect is known. The invisible particle sizes in the nanometer range, whose retention in the incineration off-gas is not state of the art, are of increasing significance for man and environment. On the one hand, they are deposited almost completely in the human lung. On the other hand, due to their fine dispersity they have along residence time in the atmosphere where they participate in chemical reactions and climatically significant processes. Important insights about the formation process of combustion aerosols are to be expected from the imaging of their microstructures in the transmission electron microscope (TEM). The present contribution describes the development and application of a representative sampling procedure for aerosols from a partial flow of flue gas from a fluidized-bed furnace. The method developed consists of electrically charging aerosol particles in situ and subsequently selectively precipitating them onto a microscope slide in an electric field. TEM studies of aerosol microstructures on the microscope slides revealed that in the combustion of petrol and heating oil under different combustion conditions in principle the same particle structures result, whereas in the incineration of used lubricating oil quite different particle structures were found. Results from the literature on aerosol microstructures in exhaust gases from petrol and diesel engines demonstrate agreement with the results of this study in the basic structure of the particles. (orig.) [de

  19. Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-07

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M - List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.

  20. Risk of dust explosions of combustible nanomaterials

    International Nuclear Information System (INIS)

    Dobashi, Ritsu

    2009-01-01

    Nanomaterials have several valuable properties and are widely used for various practical applications. However, safety matters are suspected such as the influence on health and environment, and fire and explosion hazards. To minimize the risk of nanomaterials, appropriate understanding of these hazards is indispensable. Nanoparticles of combustible materials have potential hazard of dust explosion accidents. However, the explosion risk of nanomaterials has not yet been understood adequately because of the lack of data for nanomaterials. In this presentation, the risk of dust explosions of nanomaterials is discussed.

  1. Multi-User Hardware Solutions to Combustion Science ISS Research

    Science.gov (United States)

    Otero, Angel M.

    2001-01-01

    In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time

  2. Hydrogen combustion modelling in large-scale geometries

    International Nuclear Information System (INIS)

    Studer, E.; Beccantini, A.; Kudriakov, S.; Velikorodny, A.

    2014-01-01

    Hydrogen risk mitigation issues based on catalytic recombiners cannot exclude flammable clouds to be formed during the course of a severe accident in a Nuclear Power Plant. Consequences of combustion processes have to be assessed based on existing knowledge and state of the art in CFD combustion modelling. The Fukushima accidents have also revealed the need for taking into account the hydrogen explosion phenomena in risk management. Thus combustion modelling in a large-scale geometry is one of the remaining severe accident safety issues. At present day there doesn't exist a combustion model which can accurately describe a combustion process inside a geometrical configuration typical of the Nuclear Power Plant (NPP) environment. Therefore the major attention in model development has to be paid on the adoption of existing approaches or creation of the new ones capable of reliably predicting the possibility of the flame acceleration in the geometries of that type. A set of experiments performed previously in RUT facility and Heiss Dampf Reactor (HDR) facility is used as a validation database for development of three-dimensional gas dynamic model for the simulation of hydrogen-air-steam combustion in large-scale geometries. The combustion regimes include slow deflagration, fast deflagration, and detonation. Modelling is based on Reactive Discrete Equation Method (RDEM) where flame is represented as an interface separating reactants and combustion products. The transport of the progress variable is governed by different flame surface wrinkling factors. The results of numerical simulation are presented together with the comparisons, critical discussions and conclusions. (authors)

  3. Chemical Pollution from Combustion of Modern Spacecraft Materials

    Science.gov (United States)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  4. Indoor air quality environmental information handbook: Combustion sources

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This environmental information handbook was prepared to assist both the non-technical reader (i.e., homeowner) and technical persons (such as researchers, policy analysts, and builders/designers) in understanding the current state of knowledge regarding combustion sources of indoor air pollution. Quantitative and descriptive data addressing the emissions, indoor concentrations, factors influencing indoor concentrations, and health effects of combustion-generated pollutants are provided. In addition, a review of the models, controls, and standards applicable to indoor air pollution from combustion sources is presented. The emphasis is on the residential environment. The data presented here have been compiled from government and privately-funded research results, conference proceedings, technical journals, and recent publications. It is intended to provide the technical reader with a comprehensive overview and reference source on the major indoor air quality aspects relating to indoor combustion activities, including tobacco smoking. In addition, techniques for determining potential concentrations of pollutants in residential settings are presented. This is an update of a 1985 study documenting the state of knowledge of combustion-generated pollutants in the indoor environment. 191 refs., 51 figs., 71 tabs.

  5. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  6. EDWARDS' REFERENCE CYCLE FOR INTERNAL AND EXTERNAL COMBUSTION ENGINES

    OpenAIRE

    A. E. Piir

    2014-01-01

    Useful physical regularities of a reversible thermodynamic cycle for heat engines have been established in the paper. The engines are using fuel combustion products as a heat source, and the environment - as a heat sink that surpasses Carnot cycle according to efficiency factor.

  7. Producer for vegetal combustibles for internal-combustion motors

    Energy Technology Data Exchange (ETDEWEB)

    1943-12-28

    A producer is described for internal-combustion motors fed with wood or agricultural byproducts characterized by the fact that its full operation is independent of the degree of wetness of the material used.

  8. Reducing emissions from diesel combustion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper contains information dealing with engine design to reduce emissions and improve or maintain fuel economy. Topics include: Observation of High Pressure Fuel Spray with Laser Light Sheet Method; Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations; Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results; Prediction of Diesel Engine Particulate Emission During Transient Cycles; Characteristics and Combustibility of Particulate Matter; Dual-Fuel Diesel Engine Using Butane; Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection: and Combustion in a Small DI Diesel Engine at Starting

  9. NEOPLASTIC LESIONS OF THE APPENDIX

    Directory of Open Access Journals (Sweden)

    Piotr Bryk

    2013-11-01

    Full Text Available The aim of the research was to present the clinical observations of neoplastic lesions of the appendix (one carcinoid and two mucous cysts and to discuss various manners of treatment and prognosis. Material and methods: The authors of the following paper present a description of three cases of appendix tumours, two patients with a mucous cyst and a patient with carcinoid, against the background of all the appendectomies performed at the Clinical Department of General, Endocrine and Oncological Surgery of the Provincial Polyclinical Hospital in Kielce in the years 2005–2011. Results : Within the 7-year period, a total of 11 719 surgical operations have been performed, where 834 (7.1% were that of appendectomy. Among all of the removed vermiform appendixes, neoplastic lesions occurred in three cases constituting a mere 0.3% of all of the appendectomies performed within that period. In two of the cases there was a suspicion of mucous cysts before the surgical operation. In none of the above-mentioned cases was is possible to ultimately establish the diagnosis before the operation. The patients were subjected to a simple appendectomy. The patients are in good clinical health, with no signs of relapse. Conclusions : The presented cases of patients with appendix tumours illustrate the difficulty of preoperative detection of a neoplastic lesion. This is mainly due to a scantily symptomatic course or symptoms typical of appendicitis. In light of this, histopathological examination of each appendix should be treated as obligatory.

  10. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  11. Fuels and Combustion | Transportation Research | NREL

    Science.gov (United States)

    Fuels and Combustion Fuels and Combustion This is the March 2015 issue of the Transportation and , combustion strategy, and engine design hold the potential to maximize vehicle energy efficiency and performance of low-carbon fuels in internal combustion engines with a whole-systems approach to fuel chemistry

  12. Combustion modeling in waste tanks

    International Nuclear Information System (INIS)

    Mueller, C.; Unal, C.; Travis, J.R.; Forschungszentrum Karlsruhe

    1997-01-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data

  13. Environmental sensing and combustion diagnostics

    International Nuclear Information System (INIS)

    Santoleri, J.J.

    1991-01-01

    This book contains proceedings of Environmental Sensing and Combustion Diagnostics. Topics covered include: Incineration Systems Applications, Permitting, And Monitoring Overview; Infrared Techniques Applied to Incineration Systems; Continuous Emission Monitors; Analyzers and Sensors for Process Control And Environmental Monitoring

  14. Sodium nitrate combustion limit tests

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1976-04-01

    Sodium nitrate is a powerful solid oxidant. Energetically, it is capable of exothermically oxidizing almost any organic material. Rate-controlling variables such as temperature, concentration of oxidant, concentration of fuel, thermal conductivity, moisture content, size, and pressure severely limit the possibility of a self-supported exothermic reaction (combustion). The tests reported in this document were conducted on one-gram samples at atmospheric pressure. Below 380 0 C, NaNO 3 was stable and did not support combustion. At moisture concentrations above 22 wt percent, exothermic reactions did not propagate in even the most energetic and reactive compositions. Fresh resin and paraffin were too volatile to enable a NaNO 2 -supported combustion process to propagate. Concentrations of NaNO 3 above 95 wt percent or below 35 wt percent did not react with enough energy release to support combustion. The influence of sample size and confining pressure, both important factors, was not investigated in this study

  15. 75 FR 3881 - Combustible Dust

    Science.gov (United States)

    2010-01-25

    ..., rubber, drugs, dried blood, dyes, certain textiles, and metals (such as aluminum and magnesium..., furniture manufacturing, metal processing, fabricated metal products and machinery manufacturing, pesticide... standard that will comprehensively address the fire and explosion hazards of combustible dust. The Agency...

  16. Combustion Dynamics Facility: April 1990 workshop working group reports

    Energy Technology Data Exchange (ETDEWEB)

    Kung, A.H.; Lee, Y.T.

    1990-04-01

    This document summarizes results from a workshop held April 5--7, 1990, on the proposed Combustion Dynamics Facility (CDF). The workshop was hosted by the Lawrence Berkeley Laboratory (LBL) and Sandia National Laboratories (SNL) to provide an opportunity for potential users to learn about the proposed experimental and computational facilities, to discuss the science that could be conducted with such facilities, and to offer suggestions as to how the specifications and design of the proposed facilities might be further refined to address the most visionary scientific opportunities. Some 130 chemical physicists, combustion chemists, and specialists in UV synchrotron radiation sources and free-electron lasers (more than half of whom were from institutions other than LBL and SNL) attended the five plenary sessions and participated in one or more of the nine parallel working group sessions. Seven of these sessions were devoted to broadening and strengthening the scope of CDF scientific opportunities and to detail the experimental facilities required to realize these opportunities. Two technical working group sessions addressed the design and proposed performance of two of the major CDF experimental facilities. These working groups and their chairpersons are listed below. A full listing of the attendees of the workshop is given in Appendix A. 1 tab.

  17. Modeling of microgravity combustion experiments

    Science.gov (United States)

    Buckmaster, John

    1995-01-01

    This program started in February 1991, and is designed to improve our understanding of basic combustion phenomena by the modeling of various configurations undergoing experimental study by others. Results through 1992 were reported in the second workshop. Work since that time has examined the following topics: Flame-balls; Intrinsic and acoustic instabilities in multiphase mixtures; Radiation effects in premixed combustion; Smouldering, both forward and reverse, as well as two dimensional smoulder.

  18. Quantifying emissions from spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    Spontaneous combustion can be a significant problem in the coal industry, not only due to the obvious safety hazard and the potential loss of valuable assets, but also with respect to the release of gaseous pollutants, especially CO2, from uncontrolled coal fires. This report reviews methodologies for measuring emissions from spontaneous combustion and discusses methods for quantifying, estimating and accounting for the purpose of preparing emission inventories.

  19. Emission of nanoparticles during combustion of waste biomass in fireplace

    Science.gov (United States)

    Drastichová, Vendula; Krpec, Kamil; Horák, Jiří; Hopan, František; Kubesa, Petr; Martiník, Lubomír; Koloničný, Jan; Ochodek, Tadeáš; Holubčík, Michal

    2014-08-01

    Contamination of air by solid particles is serious problem for human health and also environment. Small particles in nano-sizes are more dangerous than same weight of larger size. Negative effect namely of the solid particles depends on (i) number, (ii) specific surface area (iii) respirability and (iv) bonding of others substances (e.g. PAHs, As, Cd, Zn, Cu etc.) which are higher for smaller (nano-sizes) particles compared to larger one. For this reason mentioned above this contribution deals with measuring of amount, and distribution of nanoparticles produced form combustion of waste city biomass in small combustion unit with impactor DLPI.

  20. Combustion means for solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Murase, D.

    1987-09-23

    A combustion device for solid fuel, suitable for coal, coke, charcoal, coal-dust briquettes etc., comprising:- a base stand with an opening therein, an imperforate heat resistant holding board locatable to close said opening; a combustion chamber standing on the base stand with the holding board forming the base of the combustion chamber; a wiper arm pivoted for horizontal wiping movement over the upper surface of the holding board; an inlet means at a lower edge of said chamber above the base stand, and/or in a surrounding wall of said chamber, whereby combustion air may enter as exhaust gases leave the combustion chamber; an exhaust pipe for the exhaust gases; generally tubular gas-flow heat-exchange ducting putting the combustion chamber and exhaust pipe into communication; and means capable of moving the holding board into and out of the opening for removal of ash or other residue. The invention can be used for a heating system in a house or in a greenhouse or for a boiler.

  1. Electrical Aspects of Flames in Microgravity Combustion

    Science.gov (United States)

    Dunn-Rankin, D.; Strayer, B.; Weinberg, F.; Carleton, F.

    1999-01-01

    A principal characteristic of combustion in microgravity is the absence of buoyancy driven flows. In some cases, such as for spherically symmetrical droplet burning, the absence of buoyancy is desirable for matching analytical treatments with experiments. In other cases, however, it can be more valuable to arbitrarily control the flame's convective environment independent of the environmental gravitational condition. To accomplish this, we propose the use of ion generated winds driven by electric fields to control local convection of flames. Such control can produce reduced buoyancy (effectively zero buoyancy) conditions in the laboratory in 1-g facilitating a wide range of laser diagnostics that can probe the system without special packaging required for drop tower or flight tests. In addition, the electric field generated ionic winds allow varying gravitational convection equivalents even if the test occurs in reduced gravity environments.

  2. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  3. Techniques de combustion Combustin Techniques

    Directory of Open Access Journals (Sweden)

    Perthuis E.

    2006-11-01

    Full Text Available L'efficacité d'un processus de chauffage par flamme est étroitement liée à la maîtrise des techniques de combustion. Le brûleur, organe essentiel de l'équipement de chauffe, doit d'une part assurer une combustion complète pour utiliser au mieux l'énergie potentielle du combustible et, d'autre part, provoquer dans le foyer les conditions aérodynamiques les plus propices oux transferts de chaleur. En s'appuyant sur les études expérimentales effectuées à la Fondation de Recherches Internationales sur les Flammes (FRIF, au Groupe d'Étude des Flammes de Gaz Naturel (GEFGN et à l'Institut Français du Pétrole (IFP et sur des réalisations industrielles, on présente les propriétés essentielles des flammes de diffusion aux combustibles liquides et gazeux obtenues avec ou sans mise en rotation des fluides, et leurs répercussions sur les transferts thermiques. La recherche des températures de combustion élevées conduit à envisager la marche à excès d'air réduit, le réchauffage de l'air ou son enrichissement à l'oxygène. Par quelques exemples, on évoque l'influence de ces paramètres d'exploitation sur l'économie possible en combustible. The efficiency of a flame heating process is closely linked ta the mastery of, combustion techniques. The burner, an essential element in any heating equipment, must provide complete combustion sa as to make optimum use of the potential energy in the fuel while, at the same time, creating the most suitable conditions for heat transfers in the combustion chamber. On the basis of experimental research performed by FRIF, GEFGN and IFP and of industrial achievements, this article describesthe essential properties of diffusion flames fed by liquid and gaseous fuels and produced with or without fluid swirling, and the effects of such flames on heat transfers. The search for high combustion temperatures means that consideration must be given to operating with reduced excess air, heating the air or

  4. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  5. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  6. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  7. Quantitative Measurement of Oxygen in Microgravity Combustion

    Science.gov (United States)

    Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Due to restrictions associated with performing measurements in reduced gravity, diagnostic methods which have been applied to microgravity combustion studies have generally been limited to capture of flame emissions on film or video, laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the models. When the demands of space flight are considered, the need for improved diagnostic systems which are rugged, compact, reliable, and operate at low power becomes apparent. The objective of this research is twofold. First, we want to develop a better understanding of the relative roles of diffusion and reaction of oxygen in microgravity combustion. As the primary oxidizer species, oxygen plays a major role in controlling the observed properties of flames, including flame front speed (in solid or liquid flames), extinguishment characteristics, flame size and flame temperature. The second objective is to develop better diagnostics based on diode laser absorption which can be of real value in both microgravity combustion research and as a sensor on-board Spacelab as either an air quality monitor or as part of a fire detection system. In our prior microgravity work, an eight line-of-sight fiber optic system measured

  8. Nanosafety by design: risks from nanocomposite/nanowaste combustion

    Science.gov (United States)

    Bouillard, Jacques X.; R'Mili, Badr; Moranviller, Daniel; Vignes, Alexis; Le Bihan, Olivier; Ustache, Aurelien; Bomfim, Joao A. S.; Frejafon, Emeric; Fleury, Dominique

    2013-04-01

    Risks associated with the end-of-life of nanomaterials are an issue that needs to be addressed so that the public perception and opinion, with regard to these emerging technological products, can effectively be supported by experimental evidences. In order to find new ecological ways to treat nanoproducts at their end-of-life, a new home-made demonstrator system was setup at INERIS, specifically designed to perform burning tests, coupled to a differential thermal analyzer to monitor the combustion kinetics. To assess nanoobject release during combustion, a high-performance nanocomposite polymer commonly used in the automotive industry, namely the polymeric compound acrylonitrile butadiene styrene matrix mixed with 3 wt% of multiwalled carbon nanotubes (MWCNTs) was tested. To assess the potential release of carbon nanotubes (CNTs) during the combustion with this tool, the particle size distribution in the fumes was measured using an electrical low pressure impactor, and CNTs were collected using an aspiration-based transmission electron microscopy grid sampler. One of primary objective of these preliminary tests described in this study consisted in validating whether CNT fibers can be released in the gas phase during the combustion of a polymeric matrix filled with CNTs. It was found indeed that MWCNT of about 12-nm diameter and 600-nm length can be released in the ambient environment during combustion of 3 % MWCNT ABS. Such information is critical to assess whether a nanoproduct can be deemed to be considered as "nanosafe by design" in its risk assessment.

  9. Nanosafety by design: risks from nanocomposite/nanowaste combustion

    International Nuclear Information System (INIS)

    Bouillard, Jacques X.; R’Mili, Badr; Moranviller, Daniel; Vignes, Alexis; Le Bihan, Olivier; Ustache, Aurelien; Bomfim, Joao A. S.; Frejafon, Emeric; Fleury, Dominique

    2013-01-01

    Risks associated with the end-of-life of nanomaterials are an issue that needs to be addressed so that the public perception and opinion, with regard to these emerging technological products, can effectively be supported by experimental evidences. In order to find new ecological ways to treat nanoproducts at their end-of-life, a new home-made demonstrator system was setup at INERIS, specifically designed to perform burning tests, coupled to a differential thermal analyzer to monitor the combustion kinetics. To assess nanoobject release during combustion, a high-performance nanocomposite polymer commonly used in the automotive industry, namely the polymeric compound acrylonitrile butadiene styrene matrix mixed with 3 wt% of multiwalled carbon nanotubes (MWCNTs) was tested. To assess the potential release of carbon nanotubes (CNTs) during the combustion with this tool, the particle size distribution in the fumes was measured using an electrical low pressure impactor, and CNTs were collected using an aspiration-based transmission electron microscopy grid sampler. One of primary objective of these preliminary tests described in this study consisted in validating whether CNT fibers can be released in the gas phase during the combustion of a polymeric matrix filled with CNTs. It was found indeed that MWCNT of about 12-nm diameter and 600-nm length can be released in the ambient environment during combustion of 3 % MWCNT ABS. Such information is critical to assess whether a nanoproduct can be deemed to be considered as “nanosafe by design” in its risk assessment.

  10. Appendix C: safety design rationale

    International Nuclear Information System (INIS)

    Ghose, S.

    1985-01-01

    A brief discussion of the rationale for safety design of fusion plants is presented in the main text. Further detail safety considerations are presented in this appendix in the form of charts and tables. The author present some of the major safety criteria and other criteria used in blanket selection here

  11. Twenty-fifth symposium (international) on combustion

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  12. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  13. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist

  14. Indoor Environment Program

    International Nuclear Information System (INIS)

    Daisey, J.M.

    1993-06-01

    This paper reports progress during the year 1992 in the Indoor Environment Program in the Energy and Environment Division of Lawrence Berkeley Laboratory. Studies in the following areas are reported: energy performance and ventilation in buildings; physical and chemical characterization of indoor air pollutants; indoor radon; indoor air quality; exposure to indoor air pollutants and risk analysis. Pollutants of particular interest include: radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions including environmental tobacco smoke, carbon monoxide, and nitrogen oxides

  15. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  16. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  17. Modelling combustion reactions for gas flaring and its resulting emissions

    Directory of Open Access Journals (Sweden)

    O. Saheed Ismail

    2016-07-01

    Full Text Available Flaring of associated petroleum gas is an age long environmental concern which remains unabated. Flaring of gas maybe a very efficient combustion process especially steam/air assisted flare and more economical than utilization in some oil fields. However, it has serious implications for the environment. This study considered different reaction types and operating conditions for gas flaring. Six combustion equations were generated using the mass balance concept with varying air and combustion efficiency. These equations were coded with a computer program using 12 natural gas samples of different chemical composition and origin to predict the pattern of emission species from gas flaring. The effect of key parameters on the emission output is also shown. CO2, CO, NO, NO2 and SO2 are the anticipated non-hydrocarbon emissions of environmental concern. Results show that the quantity and pattern of these chemical species depended on percentage excess/deficiency of stoichiometric air, natural gas type, reaction type, carbon mass content, impurities, combustion efficiency of the flare system etc. These emissions degrade the environment and human life, so knowing the emission types, pattern and flaring conditions that this study predicts is of paramount importance to governments, environmental agencies and the oil and gas industry.

  18. Formation of dioxins and furans during combustion of treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Tame, Nigel W.; Dlugogorski, Bogdan Z.; Kennedy, Eric M. [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2007-08-15

    Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F, dioxin) are produced in combustion of wood treated with copper-based preservatives. This review summarises and analyses the pertinent literature on the role of preservatives in the formation of dioxin in the low-temperature, vitiated environment that exists in the domestic combustion of wood, and in large-scale fires. Until recently, the role of preservatives was not thoroughly examined in the literature with respect to fires, as incineration attracted most of the research focus. However, latest studies have demonstrated that some current and emerging wood preservatives significantly increase dioxin formation during combustion in domestic stoves and in fires. The following pathways are identified: (i) copper, a common biocide that is chemically bound to the wood, is an important dioxin catalyst, (ii) preservative metals promote smouldering of wood char following cessation of flaming, providing the required temperature environment for dioxin formation, and (iii) chlorinated organics added as secondary preservative components yield dioxin precursors upon thermal decomposition. These conclusions indicate that it remains hazardous to dispose of preservative impregnated timber via domestic combustion even if arsenic is not present. (author)

  19. 40 CFR Appendix I to Subparts D and E - Motorcycle Noise Emission Test Procedures [Note

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Motorcycle Noise Emission Test... (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles Recall of noncomplying motorcycles; relabeling of mislabeled motorcycles. Appendix I to Subparts D and E—Motorcycle Noise...

  20. 40 CFR Appendix Y to Part 51 - Guidelines for BART Determinations Under the Regional Haze Rule

    Science.gov (United States)

    2010-07-01

    ... Under the Regional Haze Rule Y Appendix Y to Part 51 Protection of Environment ENVIRONMENTAL PROTECTION... improve visibility in certain scenic areas of national importance. The scenic areas protected by section... Organizations, for adoption within each SIP or TIP. 2. The preamble to the 1999 regional haze rule discussed at...

  1. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Label Calculation...) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. III Appendix III to Part 600—Sample Fuel Economy Label Calculation Suppose that a manufacturer called Mizer...

  2. 10 CFR Appendix I to Part 960 - NRC and EPA Requirements for Postclosure Repository Performance

    Science.gov (United States)

    2010-01-01

    ... SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Pt. 960, App. I Appendix I to Part 960—NRC and... after disposal (a) releases of radioactive materials to the accessible environment that are estimated to...,000 years for a repository containing wastes generated from 100,000 metric tons of heavy metal of...

  3. 40 CFR Appendix C to Part 97 - Final Section 126 Rule: Trading Budget

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Final Section 126 Rule: Trading Budget... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Pt. 97, App. C Appendix C to Part 97—Final Section 126 Rule: Trading Budget ST F126-EGU F126-NEGU Total DC 207 26...

  4. 40 CFR Appendix A to Part 31 - Audit Requirements for State and Local Government Recipients

    Science.gov (United States)

    2010-07-01

    ... that a single audit provides Federal agencies with information and assurance they need to carry out... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Audit Requirements for State and Local... AGREEMENTS TO STATE AND LOCAL GOVERNMENTS Pt. 31, App. A Appendix A to Part 31—Audit Requirements for State...

  5. 40 CFR Appendix E to Subpart E of... - Innovative and Alternative Technology Guidelines

    Science.gov (United States)

    2010-07-01

    ... risk which is necessary to initially demonstrate a method on a full, operational scale under the... Guidelines E Appendix E to Subpart E of Part 35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY.... Alternative waste water treatment processes and techniques are proven methods which provide for the reclaiming...

  6. 40 CFR Appendix Viii to Part 266 - Organic Compounds for Which Residues Must Be Analyzed

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Pt. 266, App. VIII Appendix VIII to Part 266... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Organic Compounds for Which Residues...

  7. 40 CFR Appendix E to Subpart S of... - Transient Test Driving Cycle

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Transient Test Driving Cycle E Appendix... Driving Cycle (I) Driver's trace. All excursions in the transient driving cycle shall be evaluated by the... shall cause a test to be void. In addition, provisions shall be available to utilize cycle validation...

  8. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Duty Cycles for Propulsion Marine... Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The following duty cycle applies for discrete-mode testing: E4 Mode No. Enginespeed 1 Torque(percent) 2...

  9. 40 CFR Appendix II to Part 1054 - Duty Cycles for Laboratory Testing

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Duty Cycles for Laboratory Testing II.... 1054, App. II Appendix II to Part 1054—Duty Cycles for Laboratory Testing (a) Test handheld engines with the following steady-state duty cycle: G3 mode No. Engine speed a Torque(percent) b Weighting...

  10. 40 CFR Appendix V to Part 264 - Examples of Potentially Incompatible Waste

    Science.gov (United States)

    2010-07-01

    ... corrosive alkalies Lime wastewater Lime and water Spent caustic Group 1-B Acid sludge Acid and water Battery...Cl3 Other water-reactive waste Potential consequences: Fire, explosion, or heat generation; generation... Waste V Appendix V to Part 264 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  11. 40 CFR Appendix A to Subpart T of... - Test of Solvent Cleaning Procedures

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Test of Solvent Cleaning Procedures A... CATEGORIES National Emission Standards for Halogenated Solvent Cleaning Pt. 63, Subpt. T, App. A Appendix A to Subpart T of Part 63—Test of Solvent Cleaning Procedures General Questions ___ 1. What is the...

  12. 40 CFR Appendix II to Part 600 - Sample Fuel Economy Calculations

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Calculations II... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. II Appendix II to Part 600—Sample Fuel Economy Calculations (a) This sample fuel economy calculation is applicable to...

  13. An Application of Multi-Criteria Shortest Path to a Customizable Hex-Map Environment

    Science.gov (United States)

    2015-03-26

    47 Appendix A. Shortest Path Code ( VBA ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Appendix B. Quad Chart...efficient shortest path algorithm into the modeling environment, namely Excel VBA . While various algorithms offer the potential for more efficiency in...graphical interface is extremely intuitive and easily accessible to a user with no prior knowledge of the system. Since the Metz model is based on the

  14. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  15. Improvement of fuel combustion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A.G.; Babii, V.I.; Enyakin, Y.P.; Kotler, V.R.; Ryabov, G.V.; Verbovetskii, E.K.; Nadyrov, I.I. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The main problems encountered in the further development of fuel combustion technologies at thermal power stations in Russia are considered. Experience is generalized and results are presented on the efficiency with which nitrogen oxide emissions are reduced by means of technological methods when burning natural gas, fuel oil, and coal. The problems that arise in the introduction of new combustion technologies and in using more promising grades of coal are considered. The results studies are presented that show that low grade Russian coals can be burnt in circulating fluidized bed boilers. 14 refs., 5 figs., 4 tabs.

  16. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  17. Application of the FIRST Combustion model to Spray Combustion

    NARCIS (Netherlands)

    de Jager, B.; Kok, Jacobus B.W.

    2004-01-01

    Liquid fuel is of interest to apply to gas turbines. The large advantage is that liquids are easily storable as compared to gaseous fuels. Disadvantage is that liquid fuel has to be sprayed, vaporized and mixed with air. Combustion occurs at some stage of mixing and ignition. Depending on the

  18. General Electric Company analytical model for loss-of-coolant analysis in accordance with 10CFR50 appendix K, amendment No. 3: effect of steam environment on BWR core spray distribution

    International Nuclear Information System (INIS)

    1977-04-01

    The core spray sparger designs of the BWR/2 through BWR/5 product lines were verified by means of full-scale mock-ups tested in air at various flow conditions. In 1974, an overseas technical partner of General Electric reported that a steam environment changed the individual core spray nozzle patterns when compared to patterns measured in air. This document describes preliminary findings of how a steam environment alters the core spray nozzle pattern, and the actions which General Electric is pursuing to quantify the steam effects

  19. Appendices 1-3 - the effects of combustion on ash and deposits from low rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Ledger, R.C.; Ottrey, A.L.; Mackay, G.H.

    1985-12-01

    Thermomechanical analyses (TMA) of ashes derived from combustion of fourteen coal samples from Victorian and South Australian coalfields are presented in the results volumes of this report (Volume 2-4). This appendix describes the analytical equipment used, the modifications that were incorporated and the technique developed for analysis and interpretation of the data. To aid identification, limited numbers of analyses were performed on reference materials, the results of which are presented in this appendix. Analyses were performed on a modified Stanton Redcroft 790 series thermomechanical analyser. The aim was to identify components in the ashes and to gain an understanding of the sintering and fusion behaviour of the ashes up to temperatures encountered in large scale boilers. As part of the main project, ashes were also submitted to simultaneous Differential Thermal Analysis and Thermogravimetry (DTA-TG). For each coal burnt in this investigation the Test Bank 1 and precipitator ashes produced at a flame temperature of 1200/sup o/C and 3% excess oxygen were examined by TMA, as were ashes from tests at other flame temperatures and at 3% excess oxygen for four of the coals. This was to investigate the effects of variation in combustion conditions on ash properties. The results are presented in Volume 2-4 of this report as tables, giving details of events and assignments and as a formalised TMA pattern for each ash tested.

  20. 40 CFR Appendix Xi to Part 86 - Sampling Plans for Selective Enforcement Auditing of Light-Duty Vehicles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sampling Plans for Selective Enforcement Auditing of Light-Duty Vehicles XI Appendix XI to Part 86 Protection of Environment ENVIRONMENTAL... Enforcement Auditing of Light-Duty Vehicles 40% AQL Table 1—Sampling Plan Code Letter Annual sales of...

  1. 40 CFR Appendix C to Part 425 - Definition and Procedure for the Determination of the Method Detection Limit 1

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Definition and Procedure for the Determination of the Method Detection Limit 1 C Appendix C to Part 425 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS LEATHER TANNING AND FINISHING POINT SOURCE...

  2. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of Environment... XIII to Part 266—Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units These...

  3. 40 CFR Appendix III to Part 266 - Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride III Appendix III to Part 266 Protection of Environment... to Part 266—Tier II Emission Rate Screening Limits for Free Chlorine and Hydrogen Chloride Terrain...

  4. 40 CFR 62.15265 - How do I monitor the load of my municipal waste combustion unit?

    Science.gov (United States)

    2010-07-01

    ... continuously estimate load level (for example, the feed rate of municipal solid waste or refuse-derived fuel... municipal waste combustion unit? 62.15265 Section 62.15265 Protection of Environment ENVIRONMENTAL... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units...

  5. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  6. 40 CFR 74.47 - Transfer of allowances from the replacement of thermal energy-combustion sources.

    Science.gov (United States)

    2010-07-01

    ... replacement of thermal energy-combustion sources. 74.47 Section 74.47 Protection of Environment ENVIRONMENTAL...—combustion sources. (a) Thermal energy plan—(1) General provisions. The designated representative of an opt... quarter the replacement unit(s) will replace thermal energy of the opt-in source; (ii) The name...

  7. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sö ren; Jarząbek, Michał; Hadrich, Torsten; Michels, Dominik L.; Palubicki, Wojciech

    2017-01-01

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical

  8. Free Energy and Internal Combustion Engine Cycles

    OpenAIRE

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  9. Method for storing radioactive combustible waste

    Science.gov (United States)

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  10. Scramjet Combustion Stability Behavior Modeling, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the potential to predict the combustion stability of a scramjet. This capability is very...

  11. Scramjet Combustion Stability Behavior Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the means to accurately predict the combustion stability of a scramjet. This capability is very...

  12. Publication sites productive uses of combustion ash

    Science.gov (United States)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used

  13. Combustion Research Facility | A Department of Energy Office of Science

    Science.gov (United States)

    Collaborative Research Facility Back to Sandia National Laboratory Homepage Combustion Research Search the CRF Combustion Chemistry Flame Chemistry Research.Combustion_Chemistry.Flame_Chemistry Theory and Modeling Theory and Modeling Combustion Kinetics High Pressure Chemistry Chemistry of Autoignition

  14. Fuel Combustion and Engine Performance | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion and Engine Performance Fuel Combustion and Engine Performance Photo of a gasoline emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and combustion and engine research activities include: Developing experimental and simulation research platforms

  15. Severe Accident Analysis for Combustible Gas Risk Evaluation inside CFVS

    International Nuclear Information System (INIS)

    Lee, NaRae; Lee, JinYong; Bang, YoungSuk; Lee, DooYong; Kim, HyeongTaek

    2015-01-01

    The purpose of this study is to identify the composition of gases discharged into the containment filtered venting system by analyzing severe accidents. The accident scenarios which could be significant with respect to containment pressurization and hydrogen generation are derived and composition of containment atmosphere and possible discharged gas mixtures are estimated. In order to ensure the safety of the public and environment, the ventilation system should be designed properly by considering discharged gas flow rate, aerosol loads, radiation level, etc. One of considerations to be resolved is the risk due to combustible gas, especially hydrogen. Hydrogen can be generated largely by oxidation of cladding and decomposition of concrete. If the hydrogen concentration is high enough and other conditions like oxygen and steam concentration is met, the hydrogen can burn, deflagrate or detonate, which result in the damage the structural components. In particularly, after Fukushima accident, the hydrogen risk has been emphasized as an important contributor threatening the integrity of nuclear power plant during the severe accident. These results will be used to analyze the risk of hydrogen combustion inside the CFVS as boundary conditions. Severe accident simulation results are presented and discussed qualitatively with respect to hydrogen combustion. The hydrogen combustion risk inside of the CFVS has been examined qualitatively by investigating the discharge flow characteristics. Because the composition of the discharge flow to CFVS would be determined by the containment atmosphere, the severe accident progression and containment atmosphere composition have been investigated. Due to PAR operation, the hydrogen concentration in the containment would be decreased until the oxygen is depleted. After the oxygen is depleted, the hydrogen concentration would be increased. As a result, depending on the vent initiation timing (i.e. vent initiation pressure), the important

  16. Severe Accident Analysis for Combustible Gas Risk Evaluation inside CFVS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, NaRae; Lee, JinYong; Bang, YoungSuk; Lee, DooYong [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Kim, HyeongTaek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The purpose of this study is to identify the composition of gases discharged into the containment filtered venting system by analyzing severe accidents. The accident scenarios which could be significant with respect to containment pressurization and hydrogen generation are derived and composition of containment atmosphere and possible discharged gas mixtures are estimated. In order to ensure the safety of the public and environment, the ventilation system should be designed properly by considering discharged gas flow rate, aerosol loads, radiation level, etc. One of considerations to be resolved is the risk due to combustible gas, especially hydrogen. Hydrogen can be generated largely by oxidation of cladding and decomposition of concrete. If the hydrogen concentration is high enough and other conditions like oxygen and steam concentration is met, the hydrogen can burn, deflagrate or detonate, which result in the damage the structural components. In particularly, after Fukushima accident, the hydrogen risk has been emphasized as an important contributor threatening the integrity of nuclear power plant during the severe accident. These results will be used to analyze the risk of hydrogen combustion inside the CFVS as boundary conditions. Severe accident simulation results are presented and discussed qualitatively with respect to hydrogen combustion. The hydrogen combustion risk inside of the CFVS has been examined qualitatively by investigating the discharge flow characteristics. Because the composition of the discharge flow to CFVS would be determined by the containment atmosphere, the severe accident progression and containment atmosphere composition have been investigated. Due to PAR operation, the hydrogen concentration in the containment would be decreased until the oxygen is depleted. After the oxygen is depleted, the hydrogen concentration would be increased. As a result, depending on the vent initiation timing (i.e. vent initiation pressure), the important

  17. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  18. Hallmarks of the Professional Nursing Practice Environment. AACN White Paper.

    Science.gov (United States)

    Journal of Professional Nursing, 2002

    2002-01-01

    This white paper from the American Association of Colleges of Nursing depicts the current environment of nursing practice, including supply and demand. It describes work environments that support professional practice and outlines eight indicators for the practice environment. Contains 48 references and an appendix with suggested questions for…

  19. Particulate Matter Emission Factors for Biomass Combustion

    Directory of Open Access Journals (Sweden)

    Simone Simões Amaral

    2016-10-01

    Full Text Available Emission factor is a relative measure and can be used to estimate emissions from multiple sources of air pollution. For this reason, data from literature on particulate matter emission factors from different types of biomass were evaluated in this paper. Initially, the main sources of particles were described, as well as relevant concepts associated with particle measurements. In addition, articles about particle emissions were classified and described in relation to the sampling environment (open or closed and type of burned biomass (agricultural, garden, forest, and dung. Based on this analysis, a set of emission factors was presented and discussed. Important observations were made about the main emission sources of particulate matter. Combustion of compacted biomass resulted in lower particulate emission factors. PM2.5 emissions were predominant in the burning of forest biomass. Emission factors were more elevated in laboratory burning, followed by burns in the field, residences and combustors.

  20. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  1. An incinerator for combustable radwastes

    International Nuclear Information System (INIS)

    Li Jingquan; Jiang Yun; Zhang Yinsheng; Chen Boling; Zhang Shihang

    1989-01-01

    An incinerator has been built up in Shanghai. In this paper, the devices of the incinerator, main parameters of the process, and the results of non-radioactive waste and simulated radwaste combustion tests were contributed. That provides reference information for radwaste treatment with incineration process

  2. 75 FR 32142 - Combustible Dust

    Science.gov (United States)

    2010-06-07

    .... Contact Mat Chibbaro, P.E., Fire Protection Engineer, Office of Safety Systems, OSHA Directorate of..., and metals (such as aluminum and magnesium). Industries that may have combustible dust hazards include..., chemical manufacturing, textile manufacturing, furniture manufacturing, metal processing, fabricated metal...

  3. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...

  4. Multi-zone modelling of PCCI combustion

    NARCIS (Netherlands)

    Egüz, U.; Somers, L.M.T.; Leermakers, C.A.J.; Goey, de L.P.H.

    2011-01-01

    Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) combustion is a promising concept for the diesel combustion. Although EDI PCCI assures very low soot and NO xemission levels, the injection is uncoupled from combustion, which narrows down the operating conditions. The main

  5. Mucinous adenocarcinona of the appendix

    Directory of Open Access Journals (Sweden)

    Milton Roberto Furst Crenitte

    2013-06-01

    Full Text Available Diagnosis of malignancy in the vermiform appendix is quite rare. The most common histological malignant neoplasia found in this tiny portion of the gastrointestinal tract is represented by the mucinous adenocarcinoma. This entity predominates in males around 50 years of age, and clinical presentation usually mimics or occurs along with an acute appendicitis. Early diagnosis is outside the rule since most cases at this stage are symptomless. The authors present the case of a 59-year-old female patient who looked for medical attention complaining of abdominal pain. Physical examination and laboratory workup were poor in diagnostic findings. The computed tomography images were compatible with the diagnosis of appendicitis and/or appendiceal neoplasia. The patient underwent a laparotomy and right hemicolectomy. The histological examination disclosed a moderately differentiated mucinous adenocarcinoma of the appendix stage T4a, N0, M0. The patient outcome was uneventful and was referred to an oncological center.

  6. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  7. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  8. Environmental aspects of the combustion of sulfur-bearing fuels

    International Nuclear Information System (INIS)

    Manowitz, B.; Lipfert, F.W.

    1990-01-01

    This paper describes the origins of sulfur in fossil fuels and the consequences of its release into the environment after combustion, with emphasis on the United States. Typical sulfur contents of fuels are given, together with fuel uses and the resulting air concentrations of sulfur air pollutants. Atmospheric transformation and pollutant removal processes are described, as they affect the pathways of sulfur through the environment. The environmental effects discussed include impacts on human health, degradation of materials, acidification of ecosystems, and effects on vegetation and atmospheric visibility. The paper concludes with a recommendation for the use of risk assessment to assess the need for regulations which may require the removal of sulfur from fuels or their combustion products

  9. Hydrogen Generation, Combustibility and Mitigation in Nuclear Power Plant Systems

    International Nuclear Information System (INIS)

    Talha, K.A.; El-Sheikh, B.M.; Gad El-Mawla, A.S.

    2003-01-01

    The nuclear power plant is provided with features to insure safety. The engineered safety features (ESFs) are devoted to set operating conditions under accident conditions. If ESFs fail to apply in some accidents, this would lead to what called severe accidents, and core damage. In this case hydrogen will be generated from different sources particularly from metal-water reactions. Since the containment is the final barrier to protect the environment from the release of radioactive materials; its integrity should not be threatened. In recent years, hydrogen concentration represents a real problem if it exceeds the combustibility limits. This work is devoted to calculate the amount of hydrogen to be generated, indelicate its combustibility and how to inertize the containment using different gases to maintain its integrity and protect the environment from the release of radioactive materials

  10. Fiscal 1997 report on the results of the R and D on the invention of high-level combustion technology using the microgravity environment; 1997 nendo seika hokokusho (bisho juryoku kankyo wo riyoshita kodo nensho gijutsu soshutsu ni kansuru kenkyu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the purpose of achieving both the diversification of energy resources and the reduction in environmental pollutants in fuel exhaust gases, the paper conducted elucidation of combustion phenomena using microgravity facilities and research on combustors which make high-level combustion possible. In the experimental study using microgravity experimental facilities, conducted were evaluation experiments on combustion/evaporation of fuel droplets and droplet groups, elucidation/evaluation experiments of combustion characteristics of high-density fuels, evaluation experiments of flammability limit, and elucidation/evaluation experiments of emission mechanisms of NOx, etc. Analysis/evaluation of the data obtained and elucidation of the combustion mechanism were conducted. Further, by applying the results of the microgravity experiment, the high-level combustor experimental facilities were fabricated, and validation tests were started. In the international joint research with US`s NASA, the following were conducted using JAMIC`s facilities and NASA`s 2.2 second drop tower: study of mutual interference of droplet series combustion, study of binary system fuel droplet series combustion, study of combustion characteristics of solid fuels, study of behavior of flames around the lean flammable limit, etc. 151 refs., 253 figs., 7 tabs.

  11. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  12. Effect of urea on PCDD/F formation during combustion of coal and olive kernels in a pilot scale boiler

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G. [Laboratory of Environmental and Energy Processes, Thermi-Thessaloniki (Greece). Chemical Process Engineering Research Institute]|[Institute for Solid Fuels Technology and Applications, Center for Research and Technology Hellas, Ptolemais (Greece)]|[Aristotle Univ. of Thessaloniki (Greece). Dept. of Chemical Engineering; Palladas, A.; Sakellaropoulos, G.P. [Laboratory of Environmental and Energy Processes, Thermi-Thessaloniki (Greece). Chemical Process Engineering Research Institute]|[Institute for Solid Fuels Technology and Applications, Center for Research and Technology Hellas, Ptolemais (Greece)

    2004-09-15

    Solid fuel combustion is a major source of Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) that are highly toxic compounds even in trace amounts. In addition, the complex conditions of the flue gases could favor, in same cases, PCDD/F formation. Thus, the presence of chlorine and metal catalysts (i.e. copper) in the flue gases, could lead, through heterogeneous reactions, to PCDD/F formation between 250-400 C. Three major theories have been established to elucidate the formation of PCDD/Fs in combustion systems: PCDD/Fs are already present in the incoming feed and are incompletely destroyed or transformed during combustion PCDD/Fs can be formed during combustion and PCDD/Fs can be formed by de novo mechanism that is in the low-temperature post-combustion zone of incinerators through some heterogeneous catalytic reactions that occur in the flue gas-fly ash environment. Post-combustion and precombustion techniques have been elaborated to minimize the PCDD/F emissions. Post combustion techniques utilize gas-cleaning devices to capture or destroy them after formation, while certain compounds could be added in the raw, prior the combustion zone, to inhibit PCDD/Fs formation (pre-combustion measures). In his work the PCDD/F emissions during the combustion of lignite, olive kernel and blends were measured and the efficiency of urea to act as potential inhibitor in PCDD/F formation was investigated also.

  13. Thermal effects from the release of selenium from a coal combustion during high-temperature processing: a review.

    Science.gov (United States)

    Hu, Jianjun; Sun, Qiang; He, Huan

    2018-04-11

    The release of selenium (Se) during coal combustion can have serious impacts on the ecological environment and human health. Therefore, it is very important to study the factors that concern the release of Se from coal combustion. In this paper, the characteristics of the release of Se from coal combustion, pyrolysis, and gasification of different coal species under different conditions are studied. The results show that the amount of released Se increases at higher combustion temperatures. There are obvious increases in the amount of released Se especially in the temperature range of 300 to 800 °C. In addition, more Se is released from the coal gasification than coal combustion process, but more Se is released from coal combustion than pyrolysis. The type of coal, rate of heating, type of mineral ions, and combustion atmosphere have different effects on the released percentage of Se. Therefore, having a good understanding of the factors that surround the release of Se during coal combustion, and then establishing the combustion conditions can reduce the impacts of this toxic element to humans and the environment.

  14. Coal combustion waste management study

    International Nuclear Information System (INIS)

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  15. Modeling of Plasma Assisted Combustion

    Science.gov (United States)

    Akashi, Haruaki

    2012-10-01

    Recently, many experimental study of plasma-assisted combustion has been done. However, numerous complex reactions in combustion of hydrocarbons are preventing from theoritical study for clarifying inside the plasma-assisted combustion, and the effect of plasma-assist is still not understood. Shinohara and Sasaki [1,2] have reported that the shortening of flame length by irradiating microwave without increase of gas temperature. And they also reported that the same phenomena would occur when applying dielectric barrier discharges to the flame using simple hydrocarbon, methane. It is suggested that these phenomena may result by the electron heating. To clarify this phenomena, electron behavior under microwave and DBD was examined. For the first step of DBD plasma-assisted combustion simulation, electron Monte Carlo simulation in methane, oxygen and argon mixture gas(0.05:0.14:0.81) [2] has been done. Electron swarm parameters are sampled and electron energy distribution function (EEDF)s are also determined. In the combustion, gas temperature is higher(>1700K), so reduced electric field E/N becomes relatively high(>10V/cm/Torr). The electrons are accelerated to around 14 eV. This result agree with the optical emission from argon obtained by the experiment of reference [2]. Dissociation frequency of methane and oxygens are obtained in high. This might be one of the effect of plasma-assist. And it is suggested that the electrons should be high enough to dissociate methane, but plasma is not needed.[4pt] [1] K. Shinohara et al, J. Phys. D:Appl. Phys., 42, 182008 (1-7) (2009).[0pt] [2] K. Sasaki, 64th Annual Gaseous Electronic Conference, 56, 15 CT3.00001(2011).

  16. Combustive management of oil spills

    International Nuclear Information System (INIS)

    1992-01-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris

  17. Combustion Kinetic Studies of Gasolines and Surrogates

    KAUST Repository

    Javed, Tamour

    2016-11-01

    Future thrusts for gasoline engine development can be broadly summarized into two categories: (i) efficiency improvements in conventional spark ignition engines, and (ii) development of advance compression ignition (ACI) concepts. Efficiency improvements in conventional spark ignition engines requires downsizing (and turbocharging) which may be achieved by using high octane gasolines, whereas, low octane gasolines fuels are anticipated for ACI concepts. The current work provides the essential combustion kinetic data, targeting both thrusts, that is needed to develop high fidelity gasoline surrogate mechanisms and surrogate complexity guidelines. Ignition delay times of a wide range of certified gasolines and surrogates are reported here. These measurements were performed in shock tubes and rapid compression machines over a wide range of experimental conditions (650 – 1250 K, 10 – 40 bar) relevant to internal combustion engines. Using the measured the data and chemical kinetic analyses, the surrogate complexity requirements for these gasolines in homogeneous environments are specified. For the discussions presented here, gasolines are classified into three categories: (i)\\tLow octane gasolines including Saudi Aramco’s light naphtha fuel (anti-knock index, AKI = (RON + MON)/2 = 64; Sensitivity (S) = RON – MON = 1), certified FACE (Fuels for Advanced Combustion Engines) gasoline I and J (AKI ~ 70, S = 0.7 and 3 respectively), and their Primary Reference Fuels (PRF, mixtures of n-heptane and iso-octane) and multi-component surrogates. (ii)\\t Mid octane gasolines including FACE A and C (AKI ~ 84, S ~ 0 and 1 respectively) and their PRF surrogates. Laser absorption measurements of intermediate and product species formed during gasoline/surrogate oxidation are also reported. (iii)\\t A wide range of n-heptane/iso-octane/toluene (TPRF) blends to adequately represent the octane and sensitivity requirements of high octane gasolines including FACE gasoline F and G

  18. Leiomyoma of the appendix: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Hoon; Cho, Hyun Cheol; Son, Mi Young [Dae-Gu Veterans Hospital, Daegu (Korea, Republic of)

    2007-05-15

    Leiomyomas of the appendix are rare and most are encountered incidentally during exploration of the abdomen for some other disease, during postmortem examination, or in the course of routine pathologic examinations of surgical specimens. We report here the findings of ultrasonography, CT and surgery of a case of leiomyoma that arose from the appendix; this lesion was pathologically confirmed.

  19. Interval Appendicectomy and Management of Appendix Mass ...

    African Journals Online (AJOL)

    A wholly conservative management without interval appendicectomy was instituted for 13 patients diagnosed as having appendix mass between 1998 and 2002 in the University of Benin Teaching Hospital, Benin City, Nigeria. Within three days of admission, one patient developed clinical features of ruptured appendix and ...

  20. Analysis and control of harmful emissions from combustion processes

    OpenAIRE

    Jafari, Ahmad

    2000-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The harmful effects of air pollutants on human beings and environment have been the major reason for efforts in sampling, analysis and control of their sources. The major pollutants emitted to atmosphere from stationary combustion processes are nitrogen oxides, inorganic acids, carbon dioxide, carbon monoxide, hydrocarbon and soot. In the current work two methods are developed for sampl...

  1. Use of combustible wastes as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Salamov, A.A.

    1983-01-01

    Achievements of science and technology in creating and using units for combustion of wastes with recovery of heat of the escaping gases has been systematized and generalized. Scales and outlooks are examined for the use of general, industrial and agricultural waste as fuel, composition of the waste, questions of planning and operating units for combustion of solid refuse, settling of waste water and industrial and agricultural waste. Questions are covered for preparing them for combustion use in special units with recovery of heat and at ES, aspects of environmental protection during combustion of waste, cost indicators of the employed methods of recovering the combustible waste.

  2. Oxyfuel combustion for below zero CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Boeg Toftegaard, M; Hansen, Kim G; Fisker, D [DONG Energy Power, Hvidovre (Denmark); Brix, J; Brun Hansen, B; Putluru, S S.R.; Jensen, Peter Arendt; Glarborg, Peter; Degn Jensen, A [Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark); Montgomery, M [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark)

    2011-07-01

    The reduction of CO{sub 2} emissions is of highest concern in relation to limiting the anthropogenic impacts on the environment. Primary focus has gathered on the large point sources of CO{sub 2} emissions constituted by large heat and power stations and other heavy, energy-consuming industry. Solutions are sought which will enable a significant reduction of the anthropogenic CO{sub 2} emissions during the transformation period from the use of fossil fuels to renewable sources of energy. Carbon capture and storage (CCS) has the potential to significantly reduce CO{sub 2} emissions from power stations while allowing for the continuous utilisation of the existing energy producing system in the transformation period. Oxyfuel combustion is one of the possible CCS technologies which show promising perspectives for implementation in industrial scale within a relatively short period of time. Oxyfuel combustion deviates from conventional combustion in air by using a mixture of pure oxygen and recirculated flue gas as the combustion medium thereby creating a flue gas highly concentrated in CO{sub 2} making the capture process economically more feasible compared to technologies with capture from more dilute CO{sub 2} streams. This project has investigated a number of the fundamental and practical issues of the oxyfuel combustion process by experimental, theoretical, and modelling investigations in order to improve the knowledge of the technology. The subjects investigated cover: general combustion characteristics of coal and biomass (straw) and mixtures thereof, formation and emission of pollutants, ash characteristics, flue gas cleaning for SO{sub 2} by wet scrubbing with limestone and for NO{sub x} by selective catalytic reduction (SCR), corrosion of boiler heat transfer surfaces, operation and control of large suspension-fired boilers, and the perspectives for the implementation of oxyfuel combustion s a CO{sub 2} sequestration solution in the Danish power production

  3. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  4. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    Science.gov (United States)

    2016-09-07

    behaviour as compared to ethanol. The latter fuel has also been considered along with methane. Work has also been performed on the further assessment of... behaviour as compared to ethanol. The latter fuel has also been considered along with methane. Work has also been performed on the further assess- ment of...identification of various combustion gas states. A range of Damköhler numbers (Da) from the conventional propagating flamelet regime well into the distributed

  5. Molten salt combustion of radioactive wastes

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  6. Modelling of NO formation in the combustion of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Backreedy, R.I.; Jones, J.M.; Pis, J.J.; Pourkashanian, M.; Rubiera, F.; Williams, A. [CSIC, Instituto Nacional del Carbon, Oviedo (Spain)

    2002-03-01

    Coal blending is becoming of increasing importance in power stations firing pulverised coal as a result of increasing competition, stricter emission legislation and is an attractive way of improving plant economic and combustion performance. Presently, the two general methods used by power station operators to assess or predict the performance of an unknown coal blend to be fired in power station boilers are by the use of experimental large scale rig tests or correlation indices derived from experience of firing other coal blends in the power station environment. The first is expensive and the second is of doubtful accuracy in some cases. This paper evaluates the application of mathematical modelling of the combustion of a series of binary coal blends in the test situation of a drop tube reactor to predict the NO emissions and degree of char burnout. Its applicability to low NOx burners used in power stations is discussed and it is concluded that present mathematical coal combustion models are not developed sufficiently to enable an adequate description of the binary blends and the physical and chemical processes, which may include interactions, during combustion of the blend. This means that accurate predictions cannot be made. 20 refs., 4 figs., 5 tabs.

  7. Heat transfer and combustion in microgravity; Mujuryokuka deno netsukogaku

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K [Hokkaido University, Sapporo (Japan). Faculty of Engineering

    1994-09-05

    Examples of thermal engineering under gravity free state are introduced. When making semiconductor crystals, the thermal conductivity of the molten substance becomes important but in a microgravity environment where the thermal convection is suppressed, this value can be accurately measured. Although there are many unknown points regarding the thermal conductive mechanism of thermal control equipment elements under microgravity, theoretical analysis is being advanced. It is anticipated that the verification of this theory using liquid droplets will be made. The conveying of boiling heat under microgravity is suppressed because the bubbles stick to the heat source. When a non-azeotropic composition is used, Marangoni convection occurs, and the conveying is promoted. Since there is no thermal convection in microgravity combustion, diffusion dominates. In order to make the phenomenon clear, the free-fall tower can be utilized. A liquid droplet flame will become a complete, integrated, spherical flame. Vaporization coefficient and combustion velocity which are impossible to measure on the ground can be measured. In the case of metal fires occuring in space, the movement of metal dominates the combustion. In microgravity, dust coal will float in a stationary state so the process of combustion can be observed. It is believed that the diffusion flame of hydrocarbons will be thicker than the flame on the ground. 11 refs., 4 figs.

  8. Heat release rate from the combustion of uranium

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1995-01-01

    Fuel treatment is planned at the Argonne National Laboratory on EBR-II spent fuel. The electrochemical treatment process is carried out in a cell with an argon atmosphere to prevent any reaction. The amount of fuel processed at any time is limited by the amount of energy which could be released by metal combustion if air is inadvertently allowed into the cell since the heat release would increase the cell pressure. The cell pressure is required to be below atmospheric even if combustion occurs to ensure no cell gas/aerosol is released to the environment. Metal fires can release large amounts of heat. In certain configurations such as fine particulate, metal can be pyrophoric at room temperature. When the metal is a nuclear fuel, it is important to be able to predict the reaction/heat release rate if the metal is inadvertently exposed to air. A realistic combustion model is needed to predict heat release rates for the many different flow and transport configurations which exist in the various fuel processing steps. A model for the combustion of uranium is developed here which compares satisfactorily to experimental data

  9. The Effects of Sooting and Radiation on Droplet Combustion

    Science.gov (United States)

    Lee, Kyeong-Ook; Manzello, Samuel L.; Choi, Mun Young

    1997-01-01

    The burning of liquid hydrocarbon fuels accounts for a significant portion of global energy production. With predicted future increases in demand and limited reserves of hydrocarbon fuel, it is important to maximize the efficiency of all processes that involve conversion of fuel. With the exception of unwanted fires, most applications involve introduction of liquid fuels into an oxidizing environment in the form of sprays which are comprised of groups of individual droplets. Therefore, tremendous benefits can result from a better understanding of spray combustion processes. Yet, theoretical developments and experimental measurements of spray combustion remains a daunting task due to the complex coupling of a turbulent, two-phase flow with phase change and chemical reactions. However, it is recognized that individual droplet behavior (including ignition, evaporation and combustion) is a necessary component for laying the foundation for a better understanding of spray processes. Droplet combustion is also an ideal problem for gaining a better understanding of non-premixed flames. Under the idealized situation producing spherically-symmetric flames (produced under conditions of reduced natural and forced convection), it represents the simplest geometry in which to formulate and solve the governing equations of mass, species and heat transfer for a chemically reacting two phase flow with phase change. The importance of this topic has promoted extensive theoretical investigations for more than 40 years.

  10. FY 1999 report on the result for research and development of instantaneously effective and innovative energy and environment technology. Development of technology to use combustible wastes as resources and fuels; 1999 nendo sokkoteki kakushinteki energy kankyo gijutsu kenkyu kaihatsu kanengomi saishigen nenryoka gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Manufacturing compressed fuel, or refuse paper and plastic fuel (RPF) from combustible wastes such as used papers and waste plastics to utilize them effectively as a fuel to substitute fossil fuels is regarded as a promising engagement. However, this process indispensably requires removal of chlorine contained in used papers and waste plastics to a degree that they do not impede the combustion. The present research and development is intended to develop a PRF pretreatment technology and a dechlorination technology, and establish a technology to utilize the materials as resources and fuels as thermal recycling of combustible wastes. The current fiscal year has performed research and development on the following themes: development of a sorting system and a crushing system in developing the pretreatment technology, whereas for the former system, sorting tests were carried out by using a vibration type wind power sorting machine and an inertia force wind power sorting machine, and for the latter system, data were obtained on the crushing characteristics; dechlorination tests, in which it was discovered that the mixing ratio of used paper in the material affects the chlorine concentration; research on combustion characteristics, in which fundamental combustion tests using a small fluidized bed, combustion tests using a bench scale fluidized bed, and stoker fired furnace combustion tests were performed; and demonstrative operation researches. (NEDO)

  11. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  12. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher; Ju, Yiguang

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of these devices to realize their full potential. Engineers and scientists working in energy-related fields will find: An overview of the fundamental physics and phenomena of microscale combustion; Presentations of the latest modeling and simulation techniques for gasphase and catalytic micro-reactors; The latest results from experiments in small-scale liquid film, microtube, and porous combustors, micro-thrusters, a...

  13. Combustion process science and technology

    Science.gov (United States)

    Hale, Robert R.

    1989-01-01

    An important and substantial area of technical work in which noncontact temperature measurement (NCTM) is desired is that involving combustion process research. In the planning for this workshop, it was hoped that W. Serignano would provide a briefing regarding the experimental requirements for thermal measurements to support such research. The particular features of thermal measurement requirements included those describing the timeline for combustion experiments, the requirements for thermal control and diagnostics of temperature and other related thermal measurements and the criticality to the involved science to parametric features of measurement capability including precision, repeatability, stability, and resolution. In addition, it was hoped that definitions could be provided which characterize the needs for concurrent imaging as it relates to science observations during the conduct of experimentation.

  14. Dynamical issues in combustion theory

    International Nuclear Information System (INIS)

    Fife, P.C.; Williams, F.

    1991-01-01

    This book looks at the world of combustion phenomena covering the following topics: modeling, which involves the elucidation of the essential features of a given phenomenon through physical insight and knowledge of experimental results, devising appropriate asymptotic and computational methods, and developing sound mathematical theories. Papers in this book describe how all of these challenges have been met for particular examples within a number of common combustion scenarios: reactive shocks, low Mach number premixed reactive flow, nonpremixed phenomena, and solid propellants. The types of phenomena examined are also diverse: the stability and other properties of steady structures, the long time dynamics of evolving solutions, properties of interfaces and shocks, including curvature effects, and spatio-temporal patterns

  15. SPECIFIC EMISSIONS FROM BIOMASS COMBUSTION

    Directory of Open Access Journals (Sweden)

    Pavel Skopec

    2014-02-01

    Full Text Available This paper deals with determining the specific emissions from the combustion of two kinds of biomass fuels in a small-scale boiler. The tested fuels were pellets made of wood and pellets made of rape plant straw. In order to evaluate the specific emissions, several combustion experiments were carried out using a commercial 25 kW pellet-fired boiler. The specific emissions of CO, SO2 and NOx were evaluated in relation to a unit of burned fuel, a unit of calorific value and a unit of produced heat. The specific emissions were compared with some data acquired from the reference literature, with relatively different results. The differences depend mainly on the procedure used for determining the values, and references provide no information about this. Although some of our experimental results may fit with one of the reference sources, they do not fit with the other. The reliability of the references is therefore disputable.

  16. Steady state HNG combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  17. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  18. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  19. Example Problems in LES Combustion

    Science.gov (United States)

    2016-09-26

    Lesieur, M., Turbulence in Fluids , 2nd Revised Ed., Fluid Mechanics and Its Applications, Vol. 1, Kluwer Academic Publishers, Boston, Massachusetts, 1990...34, Journal of Fluid Mechanics , Vol. 238, 1992, pp. 155-185. 5. Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2, Computational...reaction mechanisms for the oxidation of hydrocarbon fuels in flames", Combustion Science and Technology, Vol. 27, 1981, pp. 31-43. 14. Spalding, D.B

  20. C60 fullerenes from combustion of common fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Andrea J., E-mail: ajtiwari@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States); Ashraf-Khorassani, Mehdi, E-mail: mashraf@vt.edu [Department of Chemistry, Virginia Tech, 480 Davidson Hall, 900 West Campus Drive, Virginia Tech, Blacksburg, VA 24061 (United States); Marr, Linsey C., E-mail: lmarr@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States)

    2016-03-15

    Releases of C{sub 60} fullerenes to the environment will increase with the growth of nanotechnology. Assessing the potential risks of manufactured C{sub 60} requires an understanding of how its prevalence in the environment compares to that of natural and incidental C{sub 60}. This work describes the characterization of incidental C{sub 60} present in aerosols generated by combustion of five common fuels: coal, firewood, diesel, gasoline, and propane. C{sub 60} was found in exhaust generated by all five fuels; the highest concentrations in terms of mass of C{sub 60} per mass of particulate matter were associated with diesel and coal. Individual aerosols from these combustion processes were examined by transmission electron microscopy. No relationship was found between C{sub 60} content and either the separation of graphitic layers (lamellae) within the particles, nor the curvature of those lamellae. Estimated global emissions of incidental C{sub 60} to the atmosphere from coal and diesel combustion range from 1.6 to 6.3 t yr{sup −1}, depending upon combustion conditions. These emissions may be similar in magnitude to the total amount of manufactured C{sub 60} produced on an annual basis. Consequent loading of incidental C{sub 60} to the environment may be several orders of magnitude higher than has previously been modeled for manufactured C{sub 60}. - Highlights: • Exhaust of common fuels (coal, diesel, etc.) analyzed via chromatography for C{sub 60.} • All five fuels tested produced C{sub 60} in aerosols in mass fractions up to several ppm. • Emissions of incidental C{sub 60} may be comparable to the total amount manufactured.

  1. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  2. Combustion char characterisation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P; Ingermann Petersen, H; Sund Soerensen, H; Thomsen, E; Guvad, C

    1996-06-01

    The aim was to correlate reactivity measures of raw coals and the maceral concentrates of the coals obtained in a previous project with the morphology of the produced chars by using a wire grid devolatilization method. Work involved determination of morphology, macroporosity and a detailed study by Scanning Electron Microscopy (SEM). Systematic variations in the texture of chars produced in different temperature domains and heating rates were demonstrated by using incident light microscopy on polished blocks and by SEM studies directly on the surfaces of untreated particles. Results suggest that work in the field of char reactivity estimates and correlations between char morphology and coal petrography can be accomplished only on chars produced under heating rates and temperatures comparable to those for the intended use of coal. A general correlation between the coals` petrography and the the morphology of high temperature chars was found. The SEM study of the chars revealed that during the devolatilization period the particles fuse and the macroporosity and thus the morphotypes are formed. After devolatilization ceases, secondary micropores are formed. These develop in number and size throughout the medium combustion interval. At the end of the combustion interval the macrostructure breaks down, caused by coalescence of the increased number of microspores. This can be observed as a change in the morphology and the macroporosity of the chars. Results indicate that char reactivity is a function of the macroporosity and thus the morphology of combustion chars. (AB) 34 refs.

  3. Management of coal combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    It has been estimated that 780 Mt of coal combustion products (CCPs) were produced worldwide in 2010. Only about 53.5% were utilised, the rest went to storage or disposal sites. Disposal of coal combustion waste (CCW) on-site at a power plant may involve decades-long accumulation of waste, with hundreds of thousands, if not millions, of tonnes of dry ash or wet ash slurry being stored. In December 2008, a coal combustion waste pond in Kingston, Tennessee, USA burst. Over 4 million cubic metres of ash sludge poured out, burying houses and rivers in tonnes of toxic waste. Clean-up is expected to continue into 2014 and will cost $1.2 billion. The incident drew worldwide attention to the risk of CCW disposal. This caused a number of countries to review CCW management methods and regulations. The report begins by outlining the physical and chemical characteristics of the different type of ashes generated in a coal-fired power plant. The amounts of CCPs produced and regulations on CCW management in selected countries have been compiled. The CCW disposal methods are then discussed. Finally, the potential environmental impacts and human health risks of CCW disposal, together with the methods used to prevent them, are reviewed.

  4. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  5. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  6. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    Science.gov (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  7. Effect of automatic control technologies on emission reduction in small-scale combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M. [Control Engineering Laboratory, University of Oulu (Finland)

    2007-07-01

    Automatic control can be regarded as a primary measure for preventing combustion emissions. In this view, the control technology covers broadly the control methods, sensors and actuators for monitoring and controlling combustion. In addition to direct control of combustion process, it can also give tools for condition monitoring and optimisation of total heat consumption by system integration thus reducing the need for excess conversion of energy. Automatic control has already shown its potential in small-scale combustion. The potential, but still unrealised advantages of automatic control in this scale are the adaptation to changes in combustion conditions (fuel, environment, device, user) and the continuous optimisation of the air/fuel ratio. Modem control technology also covers combustion condition monitoring, diagnostics, and the higher level optimisation of the energy consumption with system integration. In theory, these primary measures maximise the overall efficiency, enabling a significant reduction in fuel consumption and thus total emissions per small-scale combustion unit, specifically at the annual level.

  8. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  9. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano

    Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  10. Environmental effects of fossil fuel combustion

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1999-01-01

    Fossil fuel which include natural gas, petroleum, shale oil and bitumen are the main source of heat and electrical energy. All these fuels contain beside major constituents (carbon, hydrogen, oxygen) other materials as metal, sulfur and nitrogen compounds. During the combustion process different pollutants as fly ash, sulfur oxides (SO 2 and SO 3 ), nitrogen oxides (NO x NO + NO 2 ) and volatile organic compounds are emitted. Fly ash contain different trace elements (heavy metals). Gross emission of pollutants is tremendous all over the world. These pollutants are present in the atmosphere in such conditions that they can affect man and his environment. Air pollution caused by the particulate matter and other pollutants not only acts directly on environment but by contamination of water and soil leads to their degradation. Wet and dry deposition of inorganic pollutants leads to acidification of environment. These phenomena affect health of the people, increase corrosion, destroy cultivated soil and forests. Most of the plants, especially coniferous trees are not resistant to sulfur and nitrogen oxides. Following longer exposure leaves wither and fall. Widespread forest damage has been reported in Europe and North America regions. Many cultivated plants are not resistant to these pollutants either especially in the early period vegetation. The mechanisms of pollutants transformation in atmosphere are described by environmental chemistry. An important role in these transformations plays photochemistry. SO 2 and NO x are oxidized and sulfuric and nitric acids are formed in presence of water vapours, fog and droplets. Other problem discussed connected with human activities is emission of volatile organic compounds to the atmosphere. These emissions cause stratospheric ozone depletion, ground level photochemical ozone formation, toxic or carcinogenic human health effects, enhancing the global greenhouse effect, accumulation and persistence in environment. Wet flue gas

  11. Environmental effects of fossil fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G

    1999-07-01

    Fossil fuel which include natural gas, petroleum, shale oil and bitumen are the main source of heat and electrical energy. All these fuels contain beside major constituents (carbon, hydrogen, oxygen) other materials as metal, sulfur and nitrogen compounds. During the combustion process different pollutants as fly ash, sulfur oxides (SO{sub 2} and SO{sub 3}), nitrogen oxides (NO{sub x} NO + NO{sub 2}) and volatile organic compounds are emitted. Fly ash contain different trace elements (heavy metals). Gross emission of pollutants is tremendous all over the world. These pollutants are present in the atmosphere in such conditions that they can affect man and his environment. Air pollution caused by the particulate matter and other pollutants not only acts directly on environment but by contamination of water and soil leads to their degradation. Wet and dry deposition of inorganic pollutants leads to acidification of environment. These phenomena affect health of the people, increase corrosion, destroy cultivated soil and forests. Most of the plants, especially coniferous trees are not resistant to sulfur and nitrogen oxides. Following longer exposure leaves wither and fall. Widespread forest damage has been reported in Europe and North America regions. Many cultivated plants are not resistant to these pollutants either especially in the early period vegetation. The mechanisms of pollutants transformation in atmosphere are described by environmental chemistry. An important role in these transformations plays photochemistry. SO{sub 2} and NO{sub x} are oxidized and sulfuric and nitric acids are formed in presence of water vapours, fog and droplets. Other problem discussed connected with human activities is emission of volatile organic compounds to the atmosphere. These emissions cause stratospheric ozone depletion, ground level photochemical ozone formation, toxic or carcinogenic human health effects, enhancing the global greenhouse effect, accumulation and persistence in

  12. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  13. Pyrolysis and combustion kinetics of lycopodium particles in thermogravimetric analysis

    Institute of Scientific and Technical Information of China (English)

    Seyed Alireza Mostafavi; Sadjad Salavati; Hossein Beidaghy Dizaji; Mehdi Bidabadi

    2015-01-01

    Biomass is a kind of renewable energy which is used increasingly in different types of combustion systems or in the production of fuels like bio-oil. Lycopodium is a cellulosic particle, with good combustion properties, of which microscopic images show that these particles have spherical shapes with identical diameters of 31 μm. The measured density of these particles is 1.0779 g/cm2. Lycopodium particles contain 64.06% carbon, 25.56% oxygen, 8.55% hydrogen and 1.83% nitrogen, and no sulfur. Thermogravimetric analysis in the nitrogen environment indicates that the maximum of particle mass reduction occurs in the temperature range of 250−550 °C where the maximum mass reduction in the DTG diagrams also occurs in. In the oxygen environment, an additional peak can also be observed in the temperature range of 500−600 °C, which points to solid phase combustion and ignition temperature of lycopodium particles. The kinetics of reactions is determined by curve fitting and minimization of error.

  14. Combustion of Solid Propellants (La Combustion des Propergols Solides)

    Science.gov (United States)

    1991-07-01

    the of ether and ethyl alcohol and removing objective of these lectures to give a this solvent. Instead of having a fibrous comprehensive understanding...do cetto esrne do Les propergols composites, A matrice confifrences une description tout A fait A polymarique charg~o pst, un oxydant at un jour des...rusa., De nouveaux souvant suppos6 qua la vitesa des gaz de oxydes de for ultrafirts mont aujourd’hui combustion est n~gligeable at qua d~velopps pour

  15. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking......-column’’ approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions...... indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared...

  16. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  17. Chemistry and combustion of fit-for-purpose biofuels.

    Science.gov (United States)

    Rothamer, David A; Donohue, Timothy J

    2013-06-01

    From the inception of internal combustion engines, biologically derived fuels (biofuels) have played a role. Nicolaus Otto ran a predecessor to today's spark-ignition engine with an ethanol fuel blend in 1860. At the 1900 Paris world's fair, Rudolf Diesel ran his engine on peanut oil. Over 100 years of petroleum production has led to consistency and reliability of engines that demand standardized fuels. New biofuels can displace petroleum-based fuels and produce positive impacts on the environment, the economy, and the use of local energy sources. This review discusses the combustion, performance and other requirements of biofuels that will impact their near-term and long-term ability to replace petroleum fuels in transportation applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.

    2016-07-06

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used with a presumed joint probability density function (PDF). The jet, in hot and diluted coflow experimental set-up under MILD conditions, is simulated using this reactor model for two oxygen dilution levels. The computed results for mean temperature, major and minor species mass fractions are compared with the experimental data and simulation results obtained recently using a multi-environment transported PDF approach. Overall, a good agreement is observed at three different axial locations for these comparisons despite the over-predicted peak value of CO formation. This suggests that MILD combustion can be effectively modelled by the proposed PSR model with lower computational cost.

  19. Impact on the greenhouse effect of peat mining and combustion

    International Nuclear Information System (INIS)

    Rodhe, H.; Svensson, Bo

    1995-01-01

    Combustion of peat leads to emission of carbon dioxide (CO 2 ) in the atmosphere. In addition, mining of the peat alters the environment such that the natural fluxes of CO 2 and other greenhouse gases are modified. Of particular interest is a reduction in the emission of methane (CH 4 ) in the drained parts of the mires. We estimate the total impact on the greenhouse effect of these processes. The results indicate that the decreased emission of methane from the drained mires compensates for about 15% of the CO 2 emission during the combustion of the peat. It follows that, in a time perspective of less than several hundred years, peat is comparable to a fossil fuel, as far as the contribution to the greenhouse effect is concerned. 39 refs, 1 fig, 4 tabs

  20. Fluidized combustion of beds of large, dense particles in reprocessing HTGR fuel

    International Nuclear Information System (INIS)

    Young, D.T.

    1977-03-01

    Fluidized bed combustion of graphite fuel elements and carbon external to fuel particles is required in reprocessing high-temperature gas-cooled reactor (HTGR) cores for recovery of uranium. This burning process requires combustion of beds containing both large particles and very dense particles as well as combustion of fine graphite particles which elutriate from the bed. Equipment must be designed for optimum simplicity and reliability as ultimate operation will occur in a limited access ''hot cell'' environment. Results reported in this paper indicate that successful long-term operation of fuel element burning with complete combustion of all graphite fines leading to a fuel particle product containing <1% external carbon can be performed on equipment developed in this program

  1. Design Considerations for Remote High-Speed Pressure Measurements of Dynamic Combustion Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Straub, D.L.; Ferguson, D.H.; Rohrssen, Robert (West Virginia University, Morgantown, WV); Perez, Eduardo (West Virginia University, Morgantown, WV)

    2007-01-01

    As gas turbine combustion systems evolve to achieve ultra-low emission targets, monitoring and controlling dynamic combustion processes becomes increasingly important. These dynamic processes may include flame extinction, combustion-driven instabilities, or other dynamic combustion phenomena. Pressure sensors can be incorporated into the combustor liner design, but this approach is complicated by the harsh operating environment. One practical solution involves locating the sensor in a more remote location, such as outside the pressure casing. The sensor can be connected to the measurement point by small diameter tubing. Although this is a practical approach, the dynamics of the tubing can introduce significant errors into the pressure measurement. This paper addresses measurement errors associated with semi-infinite coil remote sensing setups and proposes an approach to improve the accuracy of these types of measurements.

  2. Numerical investigation of biogas flameless combustion

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Bagheri, Ghobad; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Fuel consumption decreases from 3.24 g/s in biogas conventional combustion to 1.07 g/s in flameless mode. • The differences between reactants and products temperature intensifies irreversibility in traditional combustion. • The temperature inside the chamber is uniform in biogas flameless mode and exergy loss decreases in this technique. • Low O 2 concentration in the flameless mode confirms a complete and quick combustion process in flameless regime. - Abstract: The purpose of this investigation is to analyze combustion characteristics of biogas flameless mode based on clean technology development strategies. A three dimensional (3D) computational fluid dynamic (CFD) study has been performed to illustrate various priorities of biogas flameless combustion compared to the conventional mode. The effects of preheated temperature and wall temperature, reaction zone and pollutant formation are observed and the impacts of combustion and turbulence models on numerical results are discussed. Although preheated conventional combustion could be effective in terms of fuel consumption reduction, NO x formation increases. It has been found that biogas is not eligible to be applied in furnace heat up due to its low calorific value (LCV) and it is necessary to utilize a high calorific value fuel to preheat the furnace. The required enthalpy for biogas auto-ignition temperature is supplied by enthalpy of preheated oxidizer. In biogas flameless combustion, the mean temperature of the furnace is lower than traditional combustion throughout the chamber. Compared to the biogas flameless combustion with uniform temperature, very high and fluctuated temperatures are recorded in conventional combustion. Since high entropy generation intensifies irreversibility, exergy loss is higher in biogas conventional combustion compared to the biogas flameless regime. Entropy generation minimization in flameless mode is attributed to the uniform temperature inside the chamber

  3. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  4. Turbine Burners: Turbulent Combustion of Liquid Fuels

    National Research Council Canada - National Science Library

    Sirignano, William A; Liu, Feng; Dunn-Rankin, Derek

    2006-01-01

    The proposed theoretical/computational and experimental study addresses the vital two-way coupling between combustion processes and fluid dynamic phenomena associated with schemes for burning liquid...

  5. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Science.gov (United States)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  6. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  7. Appendectomy: Surgical Removal of the Appendix

    Science.gov (United States)

    ... blocked opening can be from an illness, thick mucus, hard stool, or a tumor. Appendix Large intestine ... any thing over 10 pounds. A gallon of milk weighs 9 pounds. 6 Your Recovery and Discharge ...

  8. Appendix E - Sample Production Facility Plan

    Science.gov (United States)

    This sample Spill Prevention, Control and Countermeasure (SPCC) Plan in Appendix E is intended to provide examples and illustrations of how a production facility could address a variety of scenarios in its SPCC Plan.

  9. Air pollution emission reduction techniques in combustion plants; Technique de reduction des emissions de polluants atmospheriques dans les installations de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bouscaren, R. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1996-12-31

    Separating techniques offer a large choice between various procedures for air pollution reduction in combustion plants: mechanical, electrical, filtering, hydraulic, chemical, physical, catalytic, thermal and biological processes. Many environment-friendly equipment use such separating techniques, particularly for dust cleaning and fume desulfurizing and more recently for the abatement of volatile organic pollutants or dioxins and furans. These processes are briefly described

  10. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  11. Modeling nitrogen chemistry in combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Miller, James A.; Ruscic, Branko

    2018-01-01

    the accuracy of engineering calculations and thereby the potential of primary measures for NOx control. In this review our current understanding of the mechanisms that are responsible for combustion-generated nitrogen-containing air pollutants is discussed. The thermochemistry of the relevant nitrogen...... via NNH or N2O are discussed, along with the chemistry of NO removal processes such as reburning and Selective Non-Catalytic Reduction of NO. Each subset of the mechanism is evaluated against experimental data and the accuracy of modeling predictions is discussed....

  12. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

    International Nuclear Information System (INIS)

    Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

    2002-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

  13. Engine combustion network (Ecn) : characterization and comparison of boundary conditions for different combustion vessels

    NARCIS (Netherlands)

    Meijer, M.; Somers, L.M.T.; Johnson, J.; Naber, J.; Lee, S.Y.; Malbec, L.M.; Bruneaux, G.; Pickett, L.M.; Bardi, M.; Payri, R.; Bazyn, T.

    2012-01-01

    The Engine Combustion Network (ECN) is a worldwide group of institutions using combustion vessels and/or performing computational fluid dynamics (CFD) simulation, whose aim is to advance the state of spray and combustion knowledge at engine-relevant conditions. A key activity is the use of spray

  14. Ignition delay of combustible materials in normoxic equivalent environments

    Science.gov (United States)

    Sara McAllister; Carlos Fernandez-Pello; Gary Ruff; David Urban

    2009-01-01

    Material flammability is an important factor in determining the pressure and composition (fraction of oxygen and nitrogen) of the atmosphere in the habitable volume of exploration vehicles and habitats. The method chosen in this work to quantify the flammability of a material is by its ease of ignition. The ignition delay time was defined as the time it takes a...

  15. 18 CFR Appendix B to Subpart H of... - Appendix B to Subpart H of Part 35

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Appendix B to Subpart H of Part 35 B Appendix B to Subpart H of Part 35 Conservation of Power and Water Resources FEDERAL... SCHEDULES AND TARIFFS Wholesale Sales of Electric Energy, Capacity and Ancillary Services at Market-Based...

  16. 18 CFR Appendix A to Subpart H of... - Appendix A to Subpart H of Part 35

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Appendix A to Subpart H of Part 35 A Appendix A to Subpart H of Part 35 Conservation of Power and Water Resources FEDERAL... SCHEDULES AND TARIFFS Wholesale Sales of Electric Energy, Capacity and Ancillary Services at Market-Based...

  17. 33 CFR Appendix D to Part 157 - Example of a Procedure for Dedicated Clean Ballast Tanks Operations

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Example of a Procedure for... ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Pt. 157, App. D Appendix D to Part 157—Example of a Procedure for Dedicated Clean Ballast Tanks Operations 1. Source. The example procedure for dedicated clean...

  18. 40 CFR Appendix IV to Part 264 - Cochran's Approximation to the Behrens-Fisher Students' t-test

    Science.gov (United States)

    2010-07-01

    ...-Fisher Students' t-test IV Appendix IV to Part 264 Protection of Environment ENVIRONMENTAL PROTECTION... to the Behrens-Fisher Students' t-test Using all the available background data (nb readings... Table III of “Statistical Tables for Biological, Agricultural, and Medical Research” (1947, R. A. Fisher...

  19. 33 CFR Appendix B to Part 155 - Determining and Evaluating Required Response Resources for Vessel Response Plans

    Science.gov (United States)

    2010-07-01

    ... Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Pt. 155, App. B Appendix B to Part 155—Determining and... environment. For example, vessels moving from the ocean to a river port must identify appropriate equipment...

  20. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-07-01

    ... the data handling procedures for the reported data). 2.3Comparisons with the Primary and Secondary... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY...

  1. 40 CFR Appendix B1 to Subpart F of... - Performance of Refrigerant Recovery, Recycling and/or Reclaim Equipment

    Science.gov (United States)

    2010-07-01

    ... Refrigeration Institute Standard 740-1993. Refrigerant Recovery/Recycling Equipment Section 1. Purpose 1..., Recycling and/or Reclaim Equipment B1 Appendix B1 to Subpart F of Part 82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Recycling...

  2. 40 CFR Appendix A to Part 503 - Procedure To Determine the Annual Whole Sludge Application Rate for a Sewage Sludge

    Science.gov (United States)

    2010-07-01

    ... Whole Sludge Application Rate for a Sewage Sludge A Appendix A to Part 503 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Pt... a Sewage Sludge Section 503.13(a)(4)(ii) requires that the product of the concentration for each...

  3. 40 CFR Appendix C to Subpart F of... - Method for Testing Recovery Devices for Use With Small Appliances

    Science.gov (United States)

    2010-07-01

    ... for Use With Small Appliances C Appendix C to Subpart F of Part 82 Protection of Environment... Recovery Devices for Use With Small Appliances Recovery Efficiency Test Procedure for Refrigerant Recovery Equipment Used on Small Appliances The following test procedure is utilized to evaluate the efficiency of...

  4. Combustion Sensors: Gas Turbine Applications

    Science.gov (United States)

    Human, Mel

    2002-01-01

    This report documents efforts to survey the current research directions in sensor technology for gas turbine systems. The work is driven by the current and future requirements on system performance and optimization. Accurate real time measurements of velocities, pressure, temperatures, and species concentrations will be required for objectives such as combustion instability attenuation, pollutant reduction, engine health management, exhaust profile control via active control, etc. Changing combustor conditions - engine aging, flow path slagging, or rapid maneuvering - will require adaptive responses; the effectiveness of such will be only as good as the dynamic information available for processing. All of these issues point toward the importance of continued sensor development. For adequate control of the combustion process, sensor data must include information about the above mentioned quantities along with equivalence ratios and radical concentrations, and also include both temporal and spatial velocity resolution. Ultimately these devices must transfer from the laboratory to field installations, and thus must become low weight and cost, reliable and maintainable. A primary conclusion from this study is that the optics-based sensor science will be the primary diagnostic in future gas turbine technologies.

  5. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    Science.gov (United States)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air

  6. ONE OF THE LONGEST APPENDIX: A RARE CASE REPORT

    Directory of Open Access Journals (Sweden)

    Venkat Rao

    2015-03-01

    Full Text Available The vermiform appendix is an organ that can have variable sizes. We are prompted to report here one of the longest appendix removed, measuring about 16cm in length. INTRODUCTION : The vermiform appendix is an organ that can vary in size, site, and presence, as well as in other clinical and functional aspects. We describe here one of the longest appendix removed, measuring about 16cm in length in a case of acute appendicitis

  7. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  8. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  9. 40 CFR Appendix B to Part 76 - Procedures and Methods for Estimating Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Procedures and Methods for Estimating Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers B Appendix B to Part 76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES...

  10. Revised data book for evaluation of combustion and gasification models: Final report, Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, K.R.; Rasband, M.W.; Smoot, L.D.

    1987-10-01

    During the previous contract (DE-AC21-81MC16518) a major task was to identify, collect and publish detailed experimental data for evaluation of comprehensive gasification/combustion codes. A review of the literature was completed and prospective data were identified for inclusion in this data book in five categories of increasing complexity: (1) non-reacting, gaseous flows (58 cases); (2) non-reacting, particle-laden flows (43 cases); (3) gaseous combustion (34 cases); (4) pulverized coal combustion (57 cases); (5) entrained coal gasification (6 cases). Selection of these data was based on a set of criteria which included data completeness, availability of detailed, digital profiles for several properties (e.g., species concentrations, velocity, temperature) and data accuracy. From these 198 cases, which were referenced in the final report (Vol. III), the data base was reduced to a total of 35 sets of data from 8 laboratories, with at least 3 cases in each category above. For these 35 cases, the measured data, together with geometrical dimensions and test conditions were documented in a uniform tabular format. These data were also stored on a magnetic tape for distribution. During this follow-on contract (DE-AC21-85MC22059), the accuracy of the data was checked and several additional corrections were made. The format for reporting the data (Appendix B) was simplified. Also, a review of additional data sets available from the Combustion Laboratory and other sources was completed. In all, 213 cases from 52 investigators at 18 laboratories were considered and 37 cases are included in this data book from 22 different investigations at 8 independent laboratories. 81 refs.

  11. Study of mechanically activated coal combustion

    Directory of Open Access Journals (Sweden)

    Burdukov Anatolij P.

    2009-01-01

    Full Text Available Combustion and air gasification of mechanically activated micro-ground coals in the flux have been studied. Influence of mechanically activated methods at coals grinding on their chemical activeness at combustion and gasification has been determined. Intense mechanical activation of coals increases their chemical activeness that enables development of new highly boosted processing methods for coals with various levels of metamorphism.

  12. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  13. Flue Gas Emissions from Fluidized Bed Combustion

    NARCIS (Netherlands)

    Bramer, E.A.; Valk, M.

    1995-01-01

    During the past decades fluidized bed coal combustion was developed as a technology for burning coal in an effective way meeting the standards for pollution control. During the earlier years of research on fluidized bed combustion, the potential for limiting the S02 emission by adding limestone to

  14. Combustion and extinction of magnesium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Duverger de Cuy, G.

    1988-01-01

    The studies made in France on magnesium combustion and extinguishing means are associated at the nuclear fuel of the graphite-gas reactor. Safety studies are made for ameliorate our knowledge on: - magnesium combustion - magnesium fire propagation - magnesium fire extinguishing [fr

  15. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  16. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  17. 30 CFR 57.4104 - Combustible waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Combustible waste. 57.4104 Section 57.4104... Control Prohibitions/precautions/housekeeping § 57.4104 Combustible waste. (a) Waste materials, including liquids, shall not accumulate in quantities that could create a fire hazard. (b) Waste or rags containing...

  18. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  19. Ultra-low pollutant emission combustion method and apparatus

    International Nuclear Information System (INIS)

    Khinkis, M.J.

    1992-01-01

    This patent describes a method for ultra-low pollutant emission combustion of fossil fuel. It comprises: introducing into a primary combustion chamber a first fuel portion of about 1 percent to about 20 percent of a total fuel to be combusted; introducing primary combustion air into the primary combustion chamber; introducing a first portion of water into the primary combustion chamber, having a first water heat capacity equivalent to a primary combustion air heat capacity of one of a primary combustion air amount of about 10 percent to about 60 percent of the first stoichiometirc requirement for complete combustion of the first fuel portion and an excess primary combustion air amount of about 20 percent to about 150 percent of the first stoichiometric requirement for complete combustion of the first fuel portion; burning the first fuel portion with the primary combustion air in the primary combustion chamber at a temperature abut 2000 degrees F to about 2700 degrees F producing initial combustion products; passing the initial combustion products into a secondary combustion chamber; introducing into the secondary combustion chamber a second fuel portion of about 80 percent to about 99 percent of the total fuel to be combusted; introducing secondary combustion air into the secondary combustion chamber in an amount of about 105 percent to about 130 percent of a second stoichiometric requirement for complete combustion of the second fuel portion; introducing a second portion of water into the secondary combustion chamber; burning the second fuel portion and any remaining fuel in the initial combustion products; passing the final combustion products into a dilution chamber; introducing dilution air into the dilution chamber; discharging the ultra-low pollutant emission vitiated air form the dilution chamber

  20. 32 CFR Appendix B to Part 275 - Obtaining Customer Authorization

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Obtaining Customer Authorization B Appendix B to... OF 1978 Pt. 275, App. B Appendix B to Part 275—Obtaining Customer Authorization A. A DoD law... feasible, obtain the customer's consent. B. Any authorization obtained under paragraph A. of this appendix...

  1. Emergency Victim Care. A Training Manual for Emergency Medical Technicians. Module 14. Appendix I: Communicating with Deaf and Hearing Impaired Patients. Appendix II: Medical Terminology. Appendix III: EMS Organizations. Appendix IV: Legislation (Ohio). Glossary of Terms. Index. Revised.

    Science.gov (United States)

    Ohio State Dept. of Education, Columbus. Div. of Vocational Education.

    This training manual for emergency medical technicians, one of 14 modules that comprise the Emergency Victim Care textbook, contains appendixes, a glossary, and an index. The first appendix is an article on communicating with deaf and hearing-impaired patients. Appendix 2, the largest section in this manual, is an introduction to medical…

  2. 49 CFR Appendix B to Part 172 - Trefoil Symbol

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Trefoil Symbol B Appendix B to Part 172... SECURITY PLANS Pt. 172, App. B Appendix B to Part 172—Trefoil Symbol 1. Except as provided in paragraph 2 of this appendix, the trefoil symbol required for RADIOACTIVE labels and placards and required to be...

  3. 49 CFR Appendix F to Part 240 - Medical Standards Guidelines

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Medical Standards Guidelines F Appendix F to Part 240 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD.... F Appendix F to Part 240—Medical Standards Guidelines (1) The purpose of this appendix is to provide...

  4. 14 CFR Appendix C to Part 420 - Risk Analysis

    Science.gov (United States)

    2010-01-01

    .... Downrange from 100 nm beyond the launch point, world population data are available from: Total landmass area... appendix B. This appendix also provides an applicant options to simplify the method where population at... and, for an appendix B flight corridor, trajectory information. (2) Population data. Total population...

  5. Mucinous cystadenoma of the appendix: a case report | Alese ...

    African Journals Online (AJOL)

    Tumours of the appendix are emerging as diseases of increasing concern due to a rising incidence1. We present a case of mucinous cystadenoma of the appendix in an elderly patient. To our knowledge, this is the first report of mucinous cystadenoma of the appendix from Nigeria. Key Words: Appendiceal tumour, ...

  6. Management of appendix mass in a Nigerian rural district | Umunna ...

    African Journals Online (AJOL)

    Background: The traditional management of an appendix mass is conservative, followed by interval appendicectomy. Interval appendicectomy is now controversial. Aim: To present an experience with the management of appendix mass among a rural people in Nigeria. Methods: Patients presenting with appendix masses ...

  7. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  8. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sören

    2017-11-22

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  9. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  10. Final report: Prototyping a combustion corridor; FINAL

    International Nuclear Information System (INIS)

    Rutland, Christopher J.; Leach, Joshua

    2001-01-01

    The Combustion Corridor is a concept in which researchers in combustion and thermal sciences have unimpeded access to large volumes of remote computational results. This will enable remote, collaborative analysis and visualization of state-of-the-art combustion science results. The Engine Research Center (ERC) at the University of Wisconsin - Madison partnered with Lawrence Berkeley National Laboratory, Argonne National Laboratory, Sandia National Laboratory, and several other universities to build and test the first stages of a combustion corridor. The ERC served two important functions in this partnership. First, we work extensively with combustion simulations so we were able to provide real world research data sets for testing the Corridor concepts. Second, the ERC was part of an extension of the high bandwidth based DOE National Laboratory connections to universities

  11. Benzpyrene in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C

    1977-09-01

    Benzpyrene is a coal-tar chemical compound which is believed to be one of the major causes of cancer. Laboratory tests show that animals treated with benzpyrene and croton oil tend to develop cancerous cells on the skin. Benzpyrene may be produced either from the combustion of petroleum fuels, automobile exhaust, cigarette smoke, and other combustion processes, or from biological interactions. Decomposition of benzpyrene can also be accomplished by two different mechanisms: physical oxidation process or biological reduction process. Under natural conditions, the formation and decomposition processes are in a state of equilibrium and the level of benzpyrene in the environment is quite low. However, with the rapid industrial development, the concentration of benzpyrene and other pollutants near urban areas has reached dangerously high levels; this is correlated with the high incidence of lung cancer in urban regions.

  12. 40 CFR Appendix Viii to Part 600 - Fuel Economy Label Formats

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel Economy Label Formats VIII... POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. VIII Appendix VIII to Part 600—Fuel Economy Label Formats EC01MY92.117 EC01MY92.118 EC01MY92.119 EC01MY92.120...

  13. Radioactive wastes. Management prospects. Appendixes

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2003-01-01

    These appendixes complete the article BN3661 entitled 'Radioactive wastes. Management prospects'. They develop the principles of the different separation processes under study and make a status of the conditioning matrices that are envisaged: 1 - principles of advanced separation (separation of U, Np, Pu, Tc and I; separation of Am and Cm in two extraction steps (Diamex and Sanex processes); separation of Am and Cm in a single extraction step (Paladin process); separation of Am and Cm (Sesame process); separation of Cs (Calixarene process); 2 - principles of separation in pyro-chemistry: separation under inert atmosphere (non-oxidizing); separation in oxidizing conditions; 3 - conditioning matrices under study for separate elements: objectives and methodology, matrices for iodine, for cesium and for actinides. (J.S.)

  14. Modeling and simulating combustion and generation of NOx

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    2007-01-01

    This paper deals with the modeling and simulation of combustion processes and generation of NO x in a combustion chamber and boiler, with supplementary combustion in a gas turbine installation. The fuel burned in the combustion chamber was rich gas with a chemical composition more complex than natural gas. Pitcoal was used in the regenerative boiler. From the resulting combustion products, 17 compounds were retained, including nitrogen and sulphur compounds. Using the developed model, the simulation resulted in excess air for a temperature imposed at the combustion chamber exhaust. These simulations made it possible to determine the concentrations of combustion compounds with a variation in excess combustion. (author)

  15. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  16. The new energy processes and the new approaches of the combustion. The environmental impact decrease; Nouveaux procedes energetiques et nouvelles approches de la combustion. Reduction de l'impact environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Cabot, G. [CORIA, 76 - Mont Saint Aignan (France); Caillat, S. [Ecole des Mines de Douai, Dept. Energetique, 59 (France); Guillet, R. [Gaz de France, GDF DR, 93 - La Plaine Saint-Denis (France)] [and others

    2001-07-01

    During this day organized by the french society of the science of heat (SFT), seven papers have been presented. They deal with new processes of combustion leading to a better air quality for the environment. The first process concerns the wet combustion, an energy efficient and environmentally friendly technique, its properties and the DHC (hygrometric diagram of combustion) analysis. The flames mechanisms and the swirl process are presented in a second part with the analysis of the radiant heat transfers and the nitrogen oxides emissions. (A.L.B.)

  17. Large-scale hydrogen combustion experiments: Volume 2, Data plots: Final report

    International Nuclear Information System (INIS)

    Thompson, R.T.; Torok, R.C.; Randall, D.S.; Sullivan, J.S.; Thompson, L.B.; Haugh, J.J.

    1988-10-01

    Forty large-scale experiments to investigate the combustion behavior of hydrogen during postulated degraded core accidents were conducted in a 16 m (52 ft) diameter sphere. The performance of safety related equipment and cable also was examined. Combustion was initiated by thermal igniters in both premixed hydrogen air-steam atmospheres and during the continuous injection of hydrogen and steam. The effects of steam, igniter location, water sprays, fans and injection rates were studied. Measurements were made of gas concentrations, combustion pressures, temperatures and heat fluxes. Burn fractions and flame speeds also were determined. Near-infrared seeing cameras permitted direct observation of the hydrogen burns. Combustion pressures and temperatures in premixed atmospheres with hydrogen concentrations up to 13 vol% (steam saturated) were less than the theoretical maximum values. Multiple deflagrations were not encountered during continuous hydrogen injection with pre-activated igniters. Moderate pressure rises resulted from diffusion flames. These flames generally were found above the source. Combustion results have been compared to smaller scale experiments. Several safety related equipment items exhibited degraded performance after a number of tests. Most cable samples passed their electrical checks at the end of the test series. These experiments confirm the effectiveness of the deliberate ignition approach to controlling hydrogen. They also provide data for validating computer codes used to predict hydrogen combustion during degraded core accidents, and for assessing the performance of safety related equipment in such environments

  18. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  19. Nanoparticle emissions from combustion engines

    CERN Document Server

    Merkisz, Jerzy

    2015-01-01

     This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected metho...

  20. Radiation treatment of combustion gases

    International Nuclear Information System (INIS)

    Machi, S.; Tokunaga, O.; Nishimura, K.; Hasimoto, S.; Kawakami, W.; Washino, M.; Kawamura, K.; Aoki, S.; Adachi, K.

    1977-01-01

    A pilot plant for the radiation treatment of combustion gas in a flow-system was planned and completed in 1974 at the Abara Mfg. Co. Ltd., Central Laboratory in Fujisawa. The plant has been successfully operated for more than one year. The capacity of the pilot plant is 1000 Nm 3 per hour of the gas with the use of an electron accelerator of 60 mA and 0.75 MeV. The objective of this paper is to review a series of the researches including recent unpublished results, and to discuss the characteristics of the process. The outline and typical results of the pilot plant are first reported here. (author)

  1. Ignition circuit for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H W

    1977-05-26

    The invention refers to the ignition circuit for combustion engines, which are battery fed. The circuit contains a transistor and an oscillator to produce an output voltage on the secondary winding of an output transformer to supply an ignition current. The plant is controlled by an interrupter. The purpose of the invention is to form such a circuit that improved sparks for ignition are produced, on the one hand, and that on the other hand, the plant can continue to function after loss of the oscillator. The problem is solved by the battery and the secondary winding of the output transformers of the oscillator are connected via a rectifier circuit to produce a resultant total voltage with the ignition coil from the battery voltage and the rectified pulsating oscillator output.

  2. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  3. Trace emissions from gaseous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States)

    2000-07-01

    The U.S. Clean Air Act (CAA) was amended in 1990 to include the development of maximum achievable control technology (MACT) emission standards for hazardous air pollutants (HAPs) for certain stationary sources by November 2000. MACT emissions standards would affect process heaters and industrial boilers since combustion processes are a potential source for many air toxins. The author noted that one of the problems with MACT is the lack of a clear solid scientific footing which is needed to develop environmentally responsible regulations. In order to amend some of these deficiencies, a 4-year, $7 million research project on the origin and fate of trace emissions in the external combustion of gaseous hydrocarbons was undertaken in a collaborative effort between government, universities and industry. This collaborative project entitled the Petroleum Environmental Research Forum (PERF) Project 92-19 produced basic information and phenomenological understanding in two important areas, one basic and one applied. The specific objectives of the project were to measure emissions while operating different full-scale burners under various operating conditions and then to analyze the emission data to identify which operating conditions lead to low air toxic emissions. Another objective was to develop new chemical kinetic mechanisms and predictive models for the formation of air toxic species which would explain the origin and fate of these species in process heaters and industrial boilers. It was determined that a flame is a very effective reactor and that trace emissions from a typical gas-fired industry burner are very small. An unexpected finding was that trace emissions are not affected by hydrocarbon gaseous fuel composition, nor by the use of ultra low nitrous oxide burners. 2 refs., 8 figs.

  4. Ignition and combustion characteristics of metallized propellants

    Science.gov (United States)

    Turns, Stephen R.; Mueller, D. C.

    1993-01-01

    Experimental and analytical investigations focusing on secondary atomization and ignition characteristics of aluminum/liquid hydrocarbon slurry propellants were conducted. Experimental efforts included the application of a laser-based, two-color, forward-scatter technique to simultaneously measure free-flying slurry droplet diameters and velocities for droplet diameters in the range of 10-200 microns. A multi-diffusion flame burner was used to create a high-temperature environment into which a dilute stream of slurry droplets could be introduced. Narrowband measurements of radiant emission were used to determine if ignition of the aluminum in the slurry droplet had occurred. Models of slurry droplet shell formation were applied to aluminum/liquid hydrocarbon propellants and used to ascertain the effects of solids loading and ultimate particle size on the minimum droplet diameter that will permit secondary atomization. For a 60 weight-percent Al slurry, the limiting critical diameter was predicted to be 34.7 microns which is somewhat greater than the 20-25 micron limiting diameters determined in the experiments. A previously developed model of aluminum ignition in a slurry droplet was applied to the present experiments and found to predict ignition times in reasonable agreement with experimental measurements. A model was also developed that predicts the mechanical stress in the droplet shell and a parametric study was conducted. A one-dimensional model of a slurry-fueled rocket combustion chamber was developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization, aluminum ignition, and aluminum combustion. Also included is a model for radiant heat transfer from the hot aluminum oxide particles to the chamber walls. Exercising this model shows that only a modest amount of secondary atomization is required to reduce residence times for aluminum burnout, and thereby maintain relatively short chamber lengths. The model also predicts

  5. Energetic study of combustion instabilities and genetic optimisation of chemical kinetics; Etude energetique des instabilites thermo-acoustiques et optimisation genetique des cinetiques reduites

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ch.E.

    2005-12-15

    Gas turbine burners are now widely operated in lean premixed combustion mode. This technology has been introduced in order to limit pollutants emissions (especially the NO{sub x}), and thus comply with environment norms. Nevertheless, the use of lean premixed combustion decreases the stability margin of the flames. The flames are then more prone to be disturbed by flow disturbances. Combustion instabilities are then a major problem of concern for modern gas turbine conception. Some active control systems have been used to ensure stability of gas turbines retro-fitted to lean premixed combustion. The current generation of gas turbines aims to get rid of these control devices getting stability by a proper design. To do so, precise and adapted numerical tools are needed even it is impossible at the moment to guarantee the absolute stability of a combustion chamber at the design stage. Simulation tools for unsteady combustion are now able to compute the whole combustion chamber. Its intrinsic precision, allows the Large Eddy Simulation (LES) to take into account numerous phenomena involved in combustion instabilities. Chemical modelling is an important element for the precision of reactive LES. This study includes the description of an optimisation tools for the reduced chemical kinetics. The capacity of the LES to capture combustion instabilities in gas turbine chamber is also demonstrated. The acoustic energy analysis points out that the boundary impedances of the combustion systems are of prime importance for their stability. (author)

  6. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    On behalf of the Ministry of the Environment DCE at Aarhus University annually reports heavy metals (HM) emissions to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution). This report presents updated heavy metal emission factors......-2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...

  7. A test device for premixed gas turbine combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-09-01

    This paper discusses the design and operation of a test combustor suitable for studying combustion oscillations caused by a commercial-scale gas turbine fuel nozzle. Aside from the need to be conducted at elevated pressures and temperatures, it is desirable for the experimental device to be flexible in its geometry so as to provide an acoustic environment representative of the commercial device. The combustor design, capabilities, and relevant instrumentation for such a device are presented, along with initial operating experience and preliminary data that suggests the importance of nozzle reference velocity and air temperature.

  8. A CFD model for biomass combustion in a packed bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Md. Rezwanul [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia); Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Ovi, Ifat Rabbil Qudrat [Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Naser, Jamal, E-mail: jnaser@swin.edu.au [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia)

    2016-07-12

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  9. Combustion Characteristics in a Non-Premixed Cool-Flame Regime of n-Heptane in Microgravity

    Science.gov (United States)

    Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.

    2015-01-01

    A series of distinct phenomena have recently been observed in single-fuel-droplet combustion tests performed on the International Space Station (ISS). This study attempts to simulate the observed flame behavior numerically using a gaseous n-heptane fuel source in zero gravity and a time-dependent axisymmetric (2D) code, which includes a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a radiation model (for CH4, CO, CO2, H2O, and soot). The calculated combustion characteristics depend strongly on the air velocity around the fuel source. In a near-quiescent air environment (combustion experiments.

  10. Effect of Variant End of Injection Period on Combustion Process of Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2016-01-01

    Full Text Available Biodiesel is an alternative fuel as a replacement to the standard diesel fuel in combustion diesel engine. The biodiesel fuel has a significantly influences throughout the combustion process and exhaust emission. The purpose of this research is to investigate the combustion process behavior during the End of Injection (EOI period and operates under variant conditions using Rapid Compression Machine (RCM. Experimental of RCM is used to simulate a combustion process and combustion characteristics of diesel engine combustion. Three types of biodiesel blend which are B5, B10 and B15 were tested at several injection pressures of 80 MPa, 90 MPa and 130 MPa under different ambient temperatures, 750 K to 1100 K. The results of this study showed that the ignition delay slightly reduced with increasing the content of biodiesel blends from B5, B10 and B15 and became more shorten as the injection pressure been enhanced. As the injection pressure increased, the behavior of combustion pressure at end of injection is reduced, radically increased the NOX emission. It is noted that the process of combustion at the end of injection increased as the ambient temperature is rising. In fact, higher initial ambient temperature improved the fuel atomization and mixing process. Under the biodiesel combustion with higher ambient temperature condition, the exhaust emission of CO, O2, and HC became less but increased in NOX emission. Besides, increased in blends of biodiesel ratio are found to enhance the combustion process, resulted a decreased in HC emissions.

  11. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  12. Bifurcation, pattern formation and chaos in combustion

    International Nuclear Information System (INIS)

    Bayliss, A.; Matkowsky, B.J.

    1991-01-01

    In this paper problems in gaseous combustion and in gasless condensed phase combustion are studied both analytically and numerically. In gaseous combustion we consider the problem of a flame stabilized on a line source of fuel. The authors find both stationary and pulsating axisymmetric solutions as well as stationary and pulsating cellular solutions. The pulsating cellular solutions take the form of either traveling waves or standing waves. Transitions between these patterns occur as parameters related to the curvature of the flame front and the Lewis number are varied. In gasless condensed phase combustion both planar and nonplanar problems are studied. For planar condensed phase combustion we consider two models: accounts for melting and does not. Both models are shown to exhibit a transition from uniformly to pulsating propagating combustion when a parameter related to the activation energy is increased. Upon further increasing this parameter both models undergo a transition to chaos: by intermittency and by a period doubling sequence. In nonplanar condensed phase combustion the nonlinear development of a branch of standing wave solutions is studied and is shown to lead to relaxation oscillations and subsequently to a transition to quasi-periodicity

  13. Thermogravimetric analysis of biowastes during combustion

    International Nuclear Information System (INIS)

    Otero, M.; Sanchez, M.E.; Gomez, X.; Moran, A.

    2010-01-01

    The combustion of sewage sludge (SS), animal manure (AM) and the organic fraction of municipal solid waste (OFMSW) was assessed and compared with that of a semianthracite coal (SC) and of a PET waste by thermogravimetric (TG) analysis. Differences were found in the TG curves obtained for the combustion of these materials accordingly to their respective proximate analysis. Non-isothermal thermogravimetric data were used to assess the kinetics of the combustion of these biowastes. The present paper reports on the application of the Vyazovkin model-free isoconversional method for the evaluation of the activation energy necessary for the combustion of these biowastes. The activation energy related to SS combustion (129.1 kJ/mol) was similar to that corresponding to AM (132.5 kJ/mol) while the OFMSW showed a higher value (159.3 kJ/mol). These values are quite higher than the one determined in the same way for the combustion of SC (49.2 kJ/mol) but lower than that for the combustion of a PET waste (165.6 kJ/mol).

  14. Dynamics of Water Absorption and Evaporation During Methanol Droplet Combustion in Microgravity

    Science.gov (United States)

    Hicks, Michael C.; Dietrich, Daniel L.; Nayagam, Vedha; Williams, Forman A.

    2012-01-01

    The combustion of methanol droplets is profoundly influenced by the absorption and evaporation of water, generated in the gas phase as a part of the combustion products. Initially there is a water-absorption period of combustion during which the latent heat of condensation of water vapor, released into the droplet, enhances its burning rate, whereas later there is a water-evaporation period, during which the water vapor reduces the flame temperature suffciently to extinguish the flame. Recent methanol droplet-combustion experiments in ambient environments diluted with carbon dioxide, conducted in the Combustion Integrated Rack on the International Space Station (ISS), as a part of the FLEX project, provided a method to delineate the water-absorption period from the water-evaporation period using video images of flame intensity. These were obtained using an ultra-violet camera that captures the OH* radical emission at 310 nm wavelength and a color camera that captures visible flame emission. These results are compared with results of ground-based tests in the Zero Gravity Facility at the NASA Glenn Research Center which employed smaller droplets in argon-diluted environments. A simplified theoretical model developed earlier correlates the transition time at which water absorption ends and evaporation starts. The model results are shown to agree reasonably well with experiment.

  15. Development of a 2D temperature measurement technique for combustion diagnostics using 2-line atomic fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Johan

    2001-01-01

    The present thesis is concerned with the development and application of a novel planar laser-induced fluorescence (PLIF) technique for temperature measurements in a variety of combusting flows. Accurate measurement of temperature is an essential task in combustion diagnostics, since temperature is one of the most fundamental quantities for the characterization of combustion processes. The technique is based on two-line atomic fluorescence (TLAF) from small quantities of atomic indium (In) seeded into the fuel. It has been developed from small-scale experiments in laboratory flames to the point where practical combustion systems can be studied. The technique is conceptually simple and reveals temperature information in the post-flame regions. The viability of the technique has been tested in three extreme measurement situations: in spark ignition engine combustion, in ultra-lean combustion situations such as lean burning aero-engine concepts and, finally, in fuel-rich combustion. TLAF was successfully applied in an optical Sl engine using isooctane as fuel. The wide temperature sensitivity, 700 - 3000 K, of the technique using indium atoms allowed measurements over the entire combustion cycle in the engine to be performed. In applications in lean combustion a potential problem caused by the strong oxidation processes of indium atoms was encountered. This limits measurement times due to deposits of absorbing indium oxide on measurement windows. The seeding requirement is a disadvantage of the technique and can be a limitation in some applications. The results from experiments performed in sooting flames are very promising for thermometry measurements in such environments. Absorption by hydrocarbons and other native species was found to be negligible. Since low laser energies and low seeding concentrations could be used, the technique did not, unlike most other incoherent optical thermometry techniques, suffer interferences from LII of soot particles or LIF from PAH

  16. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Science.gov (United States)

    2010-07-01

    ... or less. In the case of a liquefied petroleum gas (LPG) product specification in the pressurized liquid state, the gas phase sulfur content should be evaluated assuming complete vaporization of the LPG... for fuel gas combustion devices. 60.107a Section 60.107a Protection of Environment ENVIRONMENTAL...

  17. The analysis of mechanical integrity in gas turbine engines subjected to combustion instabilities

    NARCIS (Netherlands)

    Altunlu, A.C.

    2013-01-01

    Stringent regulations have been introduced towards reducing pollutant emissions and preserving our environment. Lowering NOx emissions is one of the main targets of industrial gas turbine engines for power generation. The combustion zone temperature is one of the critical parameters, which is

  18. IN-SITU Optical Diagnostics Of Diesel Spray Injection And Combustion For Engine-Like Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bougie, B.; Tulej, M.; Dreier, T.; Gerber, T.

    2004-03-01

    A combination of shadowgraphy, laser elastic scattering, laser-induced incandescence and chemiluminescence imaging was conducted to characterize the propagation, vaporization and soot formation due to combustion of Diesel fuel injection into a hot (550-850 K), high pressure (4-6 MPa) gaseous environment as provided by the PSI high temperature pressure vessel (HTDZ). (author)

  19. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit

    2014-01-01

    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  20. Characteristic of combustion of Colombian gases

    International Nuclear Information System (INIS)

    Gil B, Edison; Maya, Ruben; Andres, Amel A.

    1996-01-01

    The variety of gas locations in the country, makes that the gas that will be distributed by the net of present gas pipeline a very different composition, what bears to that these they behave in a different way during its use. In this work the main characteristics of the combustion are calculated for the Colombian gases, basically the properties of the combustion and the characteristics of the smoke, as basic information for the design and operation of the gas teams and their certification. These properties were calculated with the special help software for combustion developed by the authors

  1. Combustion of fuels with low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1950-08-16

    A furnace for the combustion of low sintering temperature fuel consists of a vertical fuel shaft arranged to be charged from above and supplied with combustion air from below and containing a system of tube coils extending through the fuel bed and serving the circulation of a heat-absorbing fluid, such as water or steam. The tube-coil system has portions of different heat-absorbing capacity which are so related to the intensity of combustion in the zones of the fuel shaft in which they are located as to keep all parts of the fuel charge below sintering temperature.

  2. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)

    1964-05-01

    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  3. 3rd International Conference on Numerical Combustion

    CERN Document Server

    Larrouturou, Bernard; Numerical Combustion

    1989-01-01

    Interest in numerical combustion is growing among applied mathematicians, physicists, chemists, engine manufacturers and many industrialists. This proceedings volume contains nine invited lectures and twenty seven contributions carefully selected by the editors. The major themes are numerical simulation of transsonic and supersonic combustion phenomena, the study of supersonic reacting mixing layers, and turbulent combustion. Emphasis is laid on hyperbolic models and on numerical simulations of hydrocarbon planes with a complete set of chemical reactions carried out in two-dimensional geometries as well as on complex reactive flow simulations.

  4. Plasma assisted combustion of parafin mixture

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya.; Martysh, E.V.; Lisitchenko, T.E.; Vergun, O.Yu.; Orlovska, S.G.

    2013-01-01

    In this work the results of solid paraffin combustion with the aid of the plasma of transverse and rotational gliding arc studies are represented. The question of the additional activation of paraffin based solid fuels is examined. The mixture of n-paraffin and stearin in the solid state as the model of the solid paraffin based fuel is used. The plasma assisted combustion of this model is experimentally investigated. The voltage-current characteristics of discharge at the different regimes are measured. The population temperatures of excited rotational levels are determined. The flame temperature during the combustion of solid paraffin containing mixture is calculated

  5. Chaotic combustion in spark ignition engines

    International Nuclear Information System (INIS)

    Wendeker, Miroslaw; Czarnigowski, Jacek; Litak, Grzegorz; Szabelski, Kazimierz

    2003-01-01

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process

  6. Appendix

    DEFF Research Database (Denmark)

    Friis, Ib; Thulin, Mats

    2009-01-01

    A taxonomic and floristic account of all the additional or new species in Etyhiopia and/or Eritrea that have been discovered while Vols 2 - 7 of the Flora of Ethiopia and Eritrea were being published.......A taxonomic and floristic account of all the additional or new species in Etyhiopia and/or Eritrea that have been discovered while Vols 2 - 7 of the Flora of Ethiopia and Eritrea were being published....

  7. Appendix.

    Science.gov (United States)

    NatureScope, 1988

    1988-01-01

    Provides a glossary and bibliography which includes a listing of the following: general reference books, field guides, children's books, films, filmstrips, slides, videos, coloring books, games, posters, software, activity sources, where to get more information, Ranger Rick Ocean Index, and a metric conversion chart. (RT)

  8. Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model

    International Nuclear Information System (INIS)

    Yin, Chungen

    2017-01-01

    Highlights: • A gas radiation model for general combustion CFD presented, programmed & verified. • Its general applicability/practical accuracy demonstrated in air-fuel and oxy-fuel. • Useful guidelines for air-fuel and oxy-fuel combustion CFD suggested. • Important to include the impact of CO in gas radiation for oxy-fuel combustion CFD. - Abstract: Thermal radiation plays an important role in heat transfer in combustion furnaces. The weighted-sum-of-gray-gases model (WSGGM), representing a good compromise between computational efficiency and accuracy, is commonly used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gaseous radiative properties. However, the WSGGMs still have some limitations in practical use, e.g., unable to naturally accommodate different combustion environments, difficult to accurately address the variations in species concentrations in a flame, and inconvenient to account for the impacts of participating species other than H_2O and CO_2. As a result, WSGGMs with different coefficients have been published for specific applications. In this paper, a reliable generic model for gaseous radiation property calculation, which is a computationally efficient exponential wide band model (E-EWBM) applicable to combustion CFD and able to naturally solve all the practical limitations of the WSGGMs, is presented, programmed and verified. The model is then implemented to CFD simulation of a 300 kW air-fuel and a 0.8 MW oxy-fuel combustion furnace, respectively, to demonstrate its computational applicability to general combustion CFD and its capability in producing reliable CFD results for different combustion environments. It is found that the usefulness of the WSGGMs in oxy-fuel combustion CFD is compromised if the important impacts of high levels of CO under oxy-fuel combustion cannot be accounted for. The E-EWBM that appropriately takes the impacts of H_2O, CO_2, CO and CH_4 into account is a good replacement

  9. Columbia River System Operation Review final environmental impact statement. Appendix I: Power

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix discusses the work performed by the SOR Power Work Group. The Power Work Group (PWG) had several major responsibilities: first, to determine the effects of each of the various system operating strategies (SOS) on the Northwest regional power system; second, given these effects, to determine what, if any, actions are required to meet forecasted regional energy consumption; and finally, to estimate the cost for serving the forecasted regional energy consumption. The Northwest regional power system consists of Federal and non-Federal hydroelectric power projects (hydropower or hydro projects) on the main stem of the Columbia and Snake Rivers, numerous smaller hydro projects on other river reaches, and a number of thermal plants (coal, nuclear and combustion turbines)

  10. Gradual combustion - method for nitrogen oxide suppression during brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.P.; Verzakov, V.N.; Lobov, T.V.

    1990-10-01

    Discusses combustion of brown coal in BKZ-500-140-1 boilers and factors that influence emission of nitrogen oxides. Temperature distribution in the furnace was evaluated. Effects of burner position, burner number and burner type as well as air excess ratio on chemical reactions during brown coal combustion, formation of nitrogen oxides and their emission were comparatively evaluated. Analyses showed that by optimum arrangement of burners and selecting the optimum air excess ratio a part of nitrogen oxides formed during the initial phase of combustion was reduced to molecular nitrogen in the second phase. On the basis of evaluations the following recommendations for furnace design are made: use of straight-flow burners characterized by a reduced mixing ratio with secondary air, parallel arrangement of burners which guarantees mixing of the combustion products from the burners with stable and unstable combustion (products of incomplete coal combustion), reducing the air excess ratio to below 1.0. 5 refs.

  11. Crohn's disease limited to the vermiform appendix

    DEFF Research Database (Denmark)

    Bak, Martin; Andersen, J C

    1987-01-01

    Thirteen cases of Crohn's disease confined to the vermiform appendix were seen during a 12-year period. They constituted 16.9% of patients with primary resection of the bowel for Crohn's disease in the same period, but only 0.4% of the cases of acute appendicitis. In 10 of the 13 cases there was ......Thirteen cases of Crohn's disease confined to the vermiform appendix were seen during a 12-year period. They constituted 16.9% of patients with primary resection of the bowel for Crohn's disease in the same period, but only 0.4% of the cases of acute appendicitis. In 10 of the 13 cases...... to approach that of recurrence after resection in other parts of the intestines. Collective review of this and three other relatively large case series gave an estimated recurrence rate of 3.5%. We conclude that in Crohn's disease initially confined to the appendix the course appears to be indolent....

  12. Key factors of combustion from kinetics to gas dynamics

    CERN Document Server

    Rubtsov, Nikolai M

    2017-01-01

    This book summarizes the main advances in the mechanisms of combustion processes. It focuses on the analysis of kinetic mechanisms of gas combustion processes and experimental investigation into the interrelation of kinetics and gas dynamics in gas combustion. The book is complimentary to the one previously published, The Modes of Gaseous Combustion.

  13. Comparison of different chemical kinetic mechanisms of methane combustion in an internal combustion engine configuration

    OpenAIRE

    Ennetta Ridha; Hamdi Mohamed; Said Rachid

    2008-01-01

    Three chemical kinetic mechanisms of methane combustion were tested and compared using the internal combustion engine model of Chemkin 4.02 [1]: one-step global reaction mechanism, four-step mechanism, and the standard detailed scheme GRIMECH 3.0. This study shows good concordances, especially between the four-step and the detailed mechanisms in the prediction of temperature and main species profiles. But reduced schemes were incapables to predict pollutant emissions in an internal combustion...

  14. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to

  15. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik

    2015-11-19

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating value and highly corrosive combustion products. A potential alternative is to use the gas directly in a gas turbine process employing oxy-fuel combustion, which could eliminate the need for gas cleanup while also enabling the application of carbon capture and sequestration, possibly combined with enhanced oil recovery (EOR). However, the exact influence of an oxy-fuel environment on the combustion products of sour gas has not been quantified yet. In this work, we used a reactor network model for the combustor and the gas turbine together with our recently assembled and validated detailed chemical reaction mechanism for sour gas combustion to investigate the influence of some basic design parameters on the combustion products of natural gas and sour gas in CO2 or H2O diluted oxy-fuel combustion as well as in conventional air combustion. Our calculations show that oxy-fuel combustion produces up to 2 orders of magnitude less of the highly corrosive product sulfur trioxide (SO3) than air combustion, which clearly demonstrates its potential in handling sulfur containing fuels. Unlike in air combustion, in oxy-fuel combustion, SO3 is mainly formed in the flame zone of the combustor and is then consumed as the combustion products are cooled in the dilution zone of the combustor and the turbine. In oxy-fuel combustion, H2O dilution leads to a higher combustion efficiency than CO2 dilution. However, if the process is to be combined with EOR, CO2 dilution makes it easier to comply with the very low levels of oxygen (O2) required in the EOR stream. Our calculations also show that it might even be beneficial to operate slightly fuel-rich because this simultaneously decreases the O2 and SO3 concentration further. The flame zone

  16. Partitioning of elements during coal combustion and leaching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wen-feng; Qin Yong; Song Dang-yu; Wang Jun-yi [China University of Mining & Technology, Xuzhou (China). School of Resources and Earth Science

    2009-04-15

    The mineral component and content of sulfur and 42 major and trace elements of the feed coal, fly and bottom ashes collected from Shizuishan coal-fired power plant, Ningxia, China were analyzed using AFS, INAA, ICP-MS, ICP-AES, XRD. Based on the coal combustion and leaching experiments, the partitioning of these elements during coal combustion and the leaching behavior of the 11 potentially hazardous elements, including As, Cd, Co, Cr, Hg, Mo, Ni, Pb, Se, Th and U were investigated. The results show that the distribution of elements in the fly and bottom ashes is controlled by their volatilities and modes of occurrence in the coal. The degree of volatilization of elements may be mainly associated with boiling/melting points of these elements and their compounds. The elements easily volatilized, organically bound or associated with sub-micrometer and nano minerals (e.g. Al and Na) tend to be enriched in the fine fractions of fly ash, and most elements do not vaporize which are approximately equally partitioned in the fly and bottom ashes. The emission rates of As, Cr, K, Mg, Mn, Mo, Pb, Sb, and Zn are notably influenced by the temperature ranging from 877 to 1300{sup o}C. The leaching behavior of elements depend significantly on their geochemical properties and modes of occurrence. The elements with a low degree of volatilization are not easily leached, while volatile elements easily leached under the acid conditions. Arsenic, B Br, Cd, Cu, Hg, Pb, S, Sb and Se show a higher emission rate during coal combustion, and the leached concentrations of Cd, Co, Mo, Ni and U in the acid media exceed their limited concentrations recommended in relevant environment quality standards for water, which will harm the environment. 32 refs., 4 figs., 4 tabs.

  17. A study of the current group evaporation/combustion theories

    Science.gov (United States)

    Shen, Hayley H.

    1990-01-01

    Liquid fuel combustion can be greatly enhanced by disintegrating the liquid fuel into droplets, an effect achieved by various configurations. A number of experiments carried out in the seventies showed that combustion of droplet arrays and sprays do not form individual flames. Moreover, the rate of burning in spray combustion greatly deviates from that of the single combustion rate. Such observations naturally challenge its applicability to spray combustion. A number of mathematical models were developed to evaluate 'group combustion' and the related 'group evaporation' phenomena. This study investigates the similarity and difference of these models and their applicability to spray combustion. Future work that should be carried out in this area is indicated.

  18. Distillation of combustibles at temperatures below fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1946-09-26

    A process is described for combustion and distillation for dry fuels, such as bituminous shales, below the temperature of fusion of the ash, for the production of heat, in which the temperature in the charge of fuel forming a vertical column is maintained beneath the temperature of fusion of the ash by a withdrawal of the heat from the combustible charge by means of a fluid absorbing this heat. This fluid being constituted, for example, by water in a suitable form, so that it can be circulated through a convenient cooling system, extending through the different parts of the charge. The fluid circulating also through the desired parts of the charge and absorbing the heat, the quantity of fluid or the surface of absorption increasing with the intensity of the combustion in the part of the combustible charge traversed by the fluid.

  19. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  20. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  1. CloudFlame: Cyberinfrastructure for combustion research

    KAUST Repository

    Goteng, Gokop; Nettyam, Naveena; Sarathy, Mani

    2013-01-01

    Combustion experiments and chemical kinetics simulations generate huge data that is computationally and data intensive. A cloud-based cyber infrastructure known as Cloud Flame is implemented to improve the computational efficiency, scalability

  2. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  3. System and method for engine combustion

    Science.gov (United States)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.

    2018-03-13

    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the condition of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.

  4. Engine combustion control via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  5. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  6. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  7. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  8. DIAGNOSIS OF FAILURE OF COMBUSTION IN THE COMBUSTION CHAMBER WITH A THERMOVISION EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. V. Vorobiev

    2014-01-01

    Full Text Available The use of thermovision technology to diagnose failure of the combustion flame test tube of the main combustion chamber gas turbine engine is deal with in the article. Join the thermal radiation of the jet of combustion products and the internal elements was carried out using short-wave thermovision system AGA-782 with spectral spectral filters in several ranges from 3.2 to 5.6 microns. Thermovision is mounted on the axis of the flame tube. The output signal was recorded and processed on a computer in real time, allowing monitor the combustion process and the thermal state of the object during the experiment.

  9. 14 CFR Appendix D to Part 25 - Appendix D to Part 25

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Pt. 25, App. D Appendix D to Part 25 Criteria for... any compartment. (7) The degree of automation provided in the aircraft systems to afford (after...

  10. 36 CFR Appendix A to Part 14 - Appendix A to Part 14

    Science.gov (United States)

    2010-07-01

    ... obtain the benefits of _____(Cite statute); and I further certify that the right-of-way herein described... RIGHTS-OF-WAY Pt. 14, App. A Appendix A to Part 14 Where necessary, these forms should be modified so as...

  11. Appendix to Power Dissipation in Division

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    This document is an appendix to the paper: Wei Liu and Alberto Nannarelli, ”Power Dissipation in Division”, Proc. of 42nd Asilomar Conference on Signals, Systems, and Computers, October 2008. The purpose of the document is to provide the necessary information for the implementation of the archite......This document is an appendix to the paper: Wei Liu and Alberto Nannarelli, ”Power Dissipation in Division”, Proc. of 42nd Asilomar Conference on Signals, Systems, and Computers, October 2008. The purpose of the document is to provide the necessary information for the implementation...

  12. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  13. Building America Expert Meeting. Combustion Safety

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Larry [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2013-03-01

    This is an overview of "The Best Approach to Combustion Safety in a Direct Vent World," held June 28, 2012, in San Antonio, TX. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  14. Building America Expert Meeting: Combustion Safety

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.

    2013-03-01

    This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  15. COMBUSTION OPTIMIZATION IN SPARK IGNITION ENGINES

    OpenAIRE

    Barhm Mohamad; Gabor Szebesi; Betti Bollo

    2017-01-01

    The blending technique used in internal combustion engines can reduce emission of toxic exhaust components and noises, enhance overall energy efficiency and reduce fuel costs. The aim of the study was to compare the effects of dual alcohols (methanol and ethanol) blended in gasoline fuel (GF) against performance, combustion and emission characteristics. Problems arise in the fuel delivery system when using the highly volatile methanol - gasoline blends. This problem is reduced by using specia...

  16. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  17. Carburetor for internal combustion engines

    Science.gov (United States)

    Csonka, John J.; Csonka, Albert B.

    1978-01-01

    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  18. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  19. Advisable alternative fuels for Mexico; Combustibles alternativos convenientes para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Gonzalez, Jorge Luis [ICA Fluor (Mexico)

    2007-07-15

    The alternative fuels are born with the goal of not damaging the environment; biodiesel, electricity, ethanol, hydrogen, methanol, natural gas, LP gas, are the main alternative fuels. However, the biodiesel and bioetanol are the only completely renewable ones, this makes them ideal to be developed in Mexico, since the agricultural sector could be fortified, the technological independence be favored, improve the conservation of the oil resources and by all means not to affect the environment. On the other hand, also efficient cultivation techniques should be developed to guarantee the economy of the process. [Spanish] Los combustibles alternativos nacen con la meta de no danar el medio ambiente; el biodiesel, electricidad, etanol, hidrogeno, metanol, gas natural, gas LP, son los principales combustibles alternativos. No obstante, el biodiesel y el bioetanol son los unicos completamente renovables, esto los hace ideales para desarrollarse en Mexico, ya que se podria fortalecer el sector agricola, favorecer la independencia tecnologica, mejorar la administracion de los recursos petroleros y por supuesto no afectar al medio ambiente. Por otro lado tambien se tendrian que desarrollar tecnicas de cultivo eficientes para garantizar la economia del proceso.

  20. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)