Sample records for combustibles nucleaires irradies

  1. Non-destructive determination of the burn-up of a nuclear fuel using {gamma} spectrometry; Determination non destructive du taux de combustion d'un combustible nucleaire par spectrometrie {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Engelman, Ch.; Petit, J.F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    A non-destructive method has been developed for measuring the burn-up of a nuclear fuel. The principle of the method is based on the quantitative determination of a fission product using {gamma} spectrometry. For fuel elements containing uranium 235, the measurements concern the photoelectric peak at 2.18 MeV of {sup 144}Ce which has a half-life of 290 days. The same method could be applied under certain conditions: a) to the measurement of the number of fissions due to {sup 239}Pu, by dosing the {sup 106}Rh deriving from the {sup 106}Ru and having a half-life of 370 days. b) and therefore possibly to the non-destructive determination of the quantity of {sup 239}Pu present in a fuel element. If the operational programme of the reactor is known as a function of time, the possible field of application of the method is extended to times of irradiation of from two to three years. (authors) [French] Nous avons mis au point une methode de mesure non destructive du taux de combustion d'un combustible nucleaire. Son principe repose sur la determination quantitative d'un produit de fission par spectrometrie {gamma}. Pour les elements combustibles utilisant l'uranium 235, les mesures portent sur le pic photoelectrique a 2,18 MeV du {sup 144}Pr fils du {sup 144}Ce de periode 290 jours. La meme methode pourrait etre appliquee sous certaines conditions : a) a la mesure du nombre de fissions dues au {sup 239}Pu en faisant le dosage du {sup 106}Rh fils du {sup 106}Ru de periode 370 jours. b) donc eventuellement a la determination non destructive de la quantite du {sup 239}Pu contenue dans un element combustible. Si le programme de fonctionnement dans le temps du reacteur est connu, le domaine d'application de la methode s'etend a des durees d'irradiation pouvant atteindre deux a trois ans. (auteurs)

  2. Investigating the irradiation behavior of nuclear materials: the contribution of the JANNUS platform; Etude du comportement sous irradiation des materiaux nucleaires: apport de la plateforme JANNUS

    Energy Technology Data Exchange (ETDEWEB)

    Trocellier, P.; Miro, S.; Serruys, Y. [Departement des materiaux pour le nucleaire, Direction de l' energie nucleaire, CEA Centre de Saclay, 91191 Gif-sur-Yvette (France)


    The JANNUS platform (Joint Accelerators for Nano-sciences and Nuclear Simulation) comprises two experimental facilities, one located at Saclay, the other nearby at Orsay. The Saclay facility brings together 3 electrostatic particle accelerators: a single-ended, 3-MV Pelletron-accelerator (EPIMETHEE), a tandem 2-MV Pelletron (JAPET), and a single-ended 2.5-MV Van de Graaff accelerator (YVETTE), set up around a common experiment chamber. The Orsay facility features a mixed-mode 2-MV accelerator (ARAMIS), and a 190-kV ion implanter (IRMA), both being coupled to a 200-kV transmission electron microscope. This setup allows the evolution of the sample's microstructure to be observed in situ, while it is undergoing irradiation, in single- or dual-beam configuration. A typical irradiation experiment, in triple-beam configuration, matches the conditions required, e.g., by applications in the area of fusion. The multicharged heavy-ion beam delivered by EPIMETHEE serves to simulate the atomic displacements caused, within the material, by neutrons. YVETTE provides helium ({sup 4}He), and JAPET hydrogen ({sup 1}H), as yielded by nuclear reactions (n, {alpha}) and (n, p). This characterization - whether structural, chemical, or mechanical - may be carried out during irradiation (in situ), or immediately subsequent to it (ex situ). Materials science can now avail itself of an altogether comprehensive panoply of physicochemical analysis techniques, e.g. electron microscopy, atom-probe tomography, X-ray diffraction and absorption... 2 examples illustrate the contribution made by the JANNUS platform to our understanding of the irradiation behavior of nuclear materials. The first example concerns hexagonal silicon carbide (6H-SiC), the second one an ODS (Oxide Dispersion Strengthened) ferritic-martensitic alloy. (A.C.)

  3. Nanoparticle production by UV irradiation of combustion generated soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Stipe, Christopher B.; Choi, Jong Hyun; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.


    Laser ablation of surfaces normally produce high temperature plasmas that are difficult to control. By irradiating small particles in the gas phase, we can better control the size and concentration of the resulting particles when different materials are photofragmented. Here, we irradiate soot with 193 nm light from an ArF excimer laser. Irradiating the original agglomerated particles at fluences ranging from 0.07 to 0.26 J/cm{sup 2} with repetition rates of 20 and 100 Hz produces a large number of small, unagglomerated particles, and a smaller number of spherical agglomerated particles. Mean particle diameters from 20 to 50 nm are produced from soot originally having a mean electric mobility diameter of 265nm. We use a non-dimensional parameter, called the photon/atom ratio (PAR), to aid in understanding the photofragmentation process. This parameter is the ratio of the number of photons striking the soot particles to the number of the carbon atoms contained in the soot particles, and is a better metric than the laser fluence for analyzing laser-particle interactions. These results suggest that UV photofragmentation can be effective in controlling particle size and morphology, and can be a useful diagnostic for studying elements of the laser ablation process.

  4. Report on the possibilities of long-term storage of irradiated nuclear fuels; Rapport sur les possibilites d'entreposage a long terme de combustibles nucleaires irradies

    Energy Technology Data Exchange (ETDEWEB)



    This report aims at giving a legislative aspect to the many rules that govern the activities of the back-end of the fuel cycle in France. These activities concern the unloading of spent nuclear fuels, their reprocessing, storage, recycling and definitive disposal. The following points are reviewed and commented: the management of non-immediately reprocessed fuels (historical reasons of the 'all wastes reprocessing' initial choice, evolution of the economic and political context, the future reprocessing or the definitive disposal of spent fuels in excess); the inevitable long-term storage of part of the spent fuels (quantities and required properties of long-term stored fuels, the eventuality of a definitive disposal of spent fuels); the criteria that long-term storage facilities must fulfill (confinement measures, reversibility, surveillance and control during the whole duration of the storage); storage concept to be retained (increase of storage pools capacity, long-term storage in pools of reprocessing plants, centralized storage in pools, surface dry-storage on power plant sites, reversible underground storage, subsurface storage and storage/disposal in galleries, surface dry-storage facilities); the preliminary studies for the creation of long-term storage facilities (public information, management by a public French organization, clarifying of the conditions of international circulation of spent fuels); problems linked with the presence of foreign spent fuels in France (downstream of the reprocessing cycle, foreign plutonium and wastes re-shipment); conclusions and recommendations. (J.S.)

  5. Use of tri-laurylamine during the retreatment of irradiated fuels; Utilisation de la trilaurylamine au retraitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Bathellier, A.; Koehly, G.; Perez, J.J.; Chesne, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires


    The purification of aqueous solutions of plutonium can be made by extraction of the Pu (IV) nitrate complex using trilaurylamine in dodecane. The principal physical properties of this solution are considered along with its extractive properties and the influence of foreign ions on the extraction. The application of this method of extraction in a processing cycle for irradiated material is proposed: either for a final purification process or for auxiliary cycles for recovering plutonium from metal production wastes, oxalate precipitation supernatants, or any general aqueous plutonium waste solution. Also proposed are clean-up procedures for regeneration of an extractive solution which has undergone chemical or radiolytic degradation. (authors) [French] La purification du plutonium contenu dans des solutions aqueuses peut etre effectuee par extraction du nitrate de l'ion tetravalent par la trilaurylamine diluee dans du dodecane. Les principales proprietes physiques de ce solvant sont passees en revue ainsi que ses proprietes extractives et l'influence des ions etrangers sur celles-ci. L'application de cette methode d'extraction dans le cycle de traitement des combustibles irradies est envisagee: soit dans le traitement de purification finale, soit dans les cycles annexes ayant trait a la recuperation de plutonium a partir des scories d'elaboration du metal, des eaux-meres oxaliques et d'une facon generale des solutions aqueuses contenant du plutonium. Des traitements de regeneration du solvant ayant subi des degradations chimique ou radiolytique, sont proposes. (auteurs)

  6. Combustion

    CERN Document Server

    Glassman, Irvin


    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  7. Physicochemical state of the spent fuel leaving the reactors; Le combustible nucleaire et son etat physico-chimique a la sortie des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Dehaut, Ph


    This report focuses on the current knowledge, updated at the end of 1999, about the physicochemical state of the fuels leaving light water reactors, and particularly pressurized water reactors. Lessons are withdrawn from it making it possible to determine the points which require a necessary deepening of the data and coherence of interpretations. Lastly, evolution of the sailed fuel rod as well as the potential availability of gases and volatile fission products, during a secular storage or of a multi-millennium disposal, are the subject of an attempt at forecast. Accessible data in the scientific literature, or those acquired at the CEA, are particularly numerous. Their analysis and their synthesis are joined together to constitute a collection of references intended to the specialists in nuclear fuel and for all those which contribute to the reflexion on the storage or final disposal of the irradiated fuel. This memory is structured in ten chapters. The last chapter makes it possible to retain on some pages, the essential lessons of this study. Chapter I: Introduction; Chapter II: Characteristics of assemblies and fuels before irradiation; Chapter III: Transformations in reactor; Chapter IV: State of rods leaving the reactor; Chapter V: State of pellets; Chapter VI: Chemical and structural composition of the fuel; Chapter VII: Fuel fragmentation and density; Chapter VIII: Phenomena at the pellet periphery. Formation, characteristics and structure of the rim.Chemical interaction between pellet and cladding; Chapter IX: Location of fission gases and volatile fission products; Chapter X: Review, lessons and predictions. (authors)

  8. Doping influence by some transition elements on the irradiation effects in nuclear waste glasses; Influence du dopage par certains elements de transition sur les effets d'irradiation dans des verres d'interet nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Florent, Olivier


    High-level waste glasses are submitted to auto-irradiation. Modelling it using external irradiations on simple glasses revealed defects production and non negligible structural changes. This thesis aims at determining the impact of a more complex composition on these effects, especially the influence of adding polyvalent transition metals. Silicate, soda-lime and alumino-borosilicate glasses are doped with different iron, chromium and manganese concentrations then {beta} irradiated at different doses up to 10{sup 9} Gy. Non doped glasses show an increase of their density and polymerisation coupled with a molecular oxygen and point defects production. Adding 0.16 mol% Fe decreases the amount of defects by 85 % and all irradiation effects. A Fe{sup 3+} reduction is also observed by EPR, optical absorption and indirectly by Raman spectroscopy. A higher than 0.32 mol% Fe concentration causes complete blockage of the evolution of polymerisation, density and defect production. The same results are obtained on chromium or manganese doped glasses. An original in situ optical absorption device shows the quick decrease of Fe{sup 3+} amount to a 25 % lower level during irradiation. Stopping irradiation causes a lower decrease of 65 %, suggesting a dynamic (h{sup 0}/e-) consuming equilibrium. He{sup +} and Kr{sup 3+} ions and {gamma} irradiated glasses tend to confirm these phenomena for all kind of irradiation with electronic excitations. (author)

  9. Contribution to the study of the effects of {alpha}-irradiation in nuclear glasses; Contribution a l'etude des effets de l'irradiation {alpha} sur les verres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A


    The main topic of this work is to characterise the effects of {alpha}-disintegration in nuclear waste glasses. Experimental and numerical approaches have been considered. The structure of the French nuclear waste glass (R7T7) has been simulated using four- and six-oxides simplified glasses which contain the main elements of the R7T7 glass: SiO{sub 2}, B{sub 2}O{sub 3}, Na{sub 2}O, ZrO{sub 2}, Al{sub 2}O{sub 3} and CaO. Four- and six-oxides glasses have been irradiated with 1 MeV-He{sup +} (ionisation) and 2.1 MeV-Kr{sup 3+} (ionisation and atomic collisions) ions in order to reproduce the effects of the {alpha}-particle and of the recoil nucleus emitted during {alpha}-disintegration of actinides, and also to differentiate electronic and ballistic effects. Irradiated glasses have been characterised using several techniques, which have been adapted to the peculiarities of our samples (isolated material, small irradiated depth). The results point out the salient role of sodium in the observed modifications: depth concentration profiles obtained with RBS show an accumulation of sodium at the irradiated surface. We found a apparent acceleration of sodium release in leaching experiments which confirm that point. Modifications observed in Raman spectra of irradiated glasses show an increase of the polymerisation (increase of Q{sub 3}/Q{sub 2} ratio) due to sodium migration. In simplified glasses we have found that the modifications of mechanical properties by external irradiations reproduce the modifications observed in actinide doped nuclear glass (decrease of hardness and increase of fracture toughness). At the same time, we performed Molecular Dynamics simulations of a six-oxides glass. We have shown that the surface modifies the glass structure down to a depth of 10 Angstrom: modification of depth concentration profiles, decrease of the atomic coordination number (A1, B and Si). During cascades, we found that atomic displacements are easier near the surface. This

  10. Fission product determination in irradiated fuel processing waste (electrophoresis); Dosage des produits de fission dans les effluents de traitement des combustibles irradies (electrophorese)

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, J.M.; Tret, J. [Commissariat a l' Energie Atomique, Centre de Marcoule, 30 - Bagnols-sur-Ceze (France). Centre de Production de Plutonium de Marcoule. Services d' Extraction du Plutonium


    This dosage method concerns fission products present in the waste produced from the processing of cooled irradiated fuels. - Sr, Cs, Ce, Y, Ru by quantitative analysis; - Zr, Nb by qualitative analysis. It includes electrophoresis on paper strips one meter long which is then analysed between two window-less Geiger counters. For an activity of 10{sup -2} {mu}Ci of any cation in a 10 {mu}l spot, the standard error {sigma} if 3 to 4 per cent. complete analysis lasts about 5 hours. (authors) [French] Cette methode de dosage concerne les produits de fission presents dans les effluents de traitement des combustibles irradies refroidis: - Sr, Cs, Ce, Y, Ru en analyse quantitative; - Zr, Nb en analyse qualitative. Elle comporte une electrophorese sur bande de papier de un metre de longueur suivie d'un depouillement entre deux compteurs Geiger sans fenetre. Pour une activite de 10{sup -2} {mu}Ci d'un cation quelconque dans une tache de 10 {mu}l l'erreur standard {sigma} est de 3 a 4 pour cent. L'analyse complete demande environ 5 heures. (auteurs)

  11. TL/OSL properties of beta irradiated Al2O3 Nanophosphor synthesized by microwave combustion method (United States)

    Reddy, S. Satyanarayana; Nagabhushana, K. R.; Chauhan, Naveen; Singh, Fouran


    Stable α-phase of Al2O3 is synthesized by combustion method usingtemperature controlled microwave oven. Crystalline phase is analyzed by X-ray diffraction (XRD)and average crystallite size is found to be 75 nm. Thermoluminescence (TL) glow curve of Al2O3 is studied in UV, blue and open (visible) windows after beta irradiation. A prominent TL glow with peak at 472 K along with shoulders at 416 and 513 K are observed in all three windows. These peaks may be ascribed to F, F2 and F+- centers. Highest TL intensity isobserved inopen window. Optically stimulated luminescence (OSL) studies in UV and blue windows shows highest intensityin UV window. TL/OSL of phosphor shows linearresponse with beta dose upto 6.16 Gy.TL/OSL properties viz fading,repeatabilityand MDDare studied. TL kinetic parameters are estimated by deconvolution with computerized glow curve deconvolution (CGCD) techniques.

  12. Preparation of Pd supported on La(Sr)-Mn-O Perovskite by microwave Irradiation Method and Its Catalytic Performances for the Methane Combustion. (United States)

    Wang, Wei; Yuan, Fulong; Niu, Xiaoyu; Zhu, Yujun


    In this work, a series of palladium supported on the La0.8Sr0.2MnO3.15 perovskite catalysts (Pd/LSM-x) with different Pd loading were prepared by microwave irradiation processing plus incipient wetness impregnation method and characterized by XRD, TEM, H2-TPR and XPS. These catalysts were evaluated on the lean CH4 combustion. The results show that the Pd/LSM-x samples prepared by microwave irradiation processing possess relative higher surface areas than LSM catalyst. The addition of Pd to the LSM leads to the increase in the oxygen vacancy content and the enhancement in the mobility of lattice oxygen which play an important role on the methane combustion. The Pd/LSM-3 catalysts with 4.2wt% Pd loading exhibited the best performance for CH4 combustion that temperature for 10% and 90% of CH4 conversion is 315 and 520 °C.

  13. Evolution of nuclear chemical industry in France; Evolution de l'industrie chimique nucleaire en France

    Energy Technology Data Exchange (ETDEWEB)

    Fould, M.H. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires


    'impulsion du CEA, mais aussi de maitres d'oeuvres tels qu'Electricite de France et la Marine Marchande, l'effort nucleaire fran is atteint pour les annees 1957-1961, environ 600 milliards de francs: plus de la moitie de cette somme sera depensee par l'industrie chimique en recherches, installations pilotes, constructions d'usines et livraisons. Faire bien, vite et rentable sont les buts recherches. Ces objectifs sont atteints grace a une collaboration intime des grands services de l'etat et de l'industrie privee. Ce gros effort s'exerce principalement dans les voies suivantes: - Un traitement chimique pousse de tonnages croissants des minerais de l'Union fran ise, visant a produire un uranium pur, abondant et bon marche. - Une preparation soigneuse de combustibles nucleaires economiques et parfaitement adaptes aux divers types de reacteurs en fonctionnement ou en construction. - Un retraitement des combustibles irradies pour en extraire le plutonium de facon complete ainsi que l'uranium et certains produits de fission. - Une fabrication industrielle des materiaux nucleairement purs ou resistants a la corrosion exiges par la technologie des reacteurs producteurs d'energie et de recherches. - La fourniture aux multiples utilisateurs etrangers et fran is d'isotopes et de traceurs radioactifs reclames par la medecine, l'industrie et l'agriculture en nombre toujours croissant. - Un traitement chimique meticuleux des effluents gazeux ou liquides dans des stations au controle rigoureux afin de rendre les reacteurs et leurs annexes parfaitement surs d'emploi. Cet expose aura montre l'ampleur de l'effort deploye par une industrie chimique nucleaire jeune, dynamique et en plein essor. Ayant assure ses techniques, realise de nombreuses installations, elle est largement en etat de faire face au programme atomique fran is. En outre, elle est capable et desireuse d'etre associee aux developpements de l

  14. System of leak inspection of irradiated fuel; Sistema de inspeccion de fuga de combustible irradiado

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Castaneda J, G.; Mazon R, R.; Aguilar H, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail:


    The International Atomic Energy Agency (IAEA) through the project RLA/04/18 Irradiated Fuel Management in Research reactors, recommended among other that the participant countries (Brazil, Argentina, Chile, Peru and Mexico), develop the sipping tool to generate registrations of the state that keep the irradiated fuels in the facilities of each country. The TRIGA Mark lll Reactor (RTMIII) Department, generated a project that it is based on the dimensions of the used fuel by the RTMIII, for design and to build an inspection system of irradiated fuel well known as SIPPING. This technique, provides a high grade of accuracy in the detection of gassy fission products or liquids that escape from the enveloping of fuels that have flaws or flights. The operation process of the SIPPING is carried out generating the migration of fission products through the creation of a pressure differential gas or vacuum to identify fuel assemblies failed by means of the detection of the xenon and/or krypton presence. The SIPPING system, is a device in revolver form with 4 tangential nozzles, which will discharge the fluid between the external surface of the enveloping of the fuel and the interior surface of the encircling one; the device was designed with independent pieces, with threaded joining and with stamps to impede flights of the fluid toward the exterior of the system. The System homogenizes and it distributes the fluid pressure so that the 4 nozzles work to equality of conditions, for what the device was designed in 3 pieces, an internal that is denominated revolver, one external that calls cover, and a joining called mamelon that will unite with the main encircling of the system. The detection of fission products in failed fuels, its require that inside the encircling one where the irradiated fuel element is introduced, be generated a pressure differential of gas or vacuum, and that it allows the samples extraction of water. For what generated a top for the encircling with the

  15. Safety reassessment of nuclear installations: consequences for the 900 MWe-PWR type reactors. Safety reassessment of laboratories and nuclear industrial plant, application to a nuclear laboratory; Les reexamens de la surete des installations nucleaires: conclusions des reexamens de surete des tranches de 900 MWE. Le reexamen de surete des laboratoires et usines nucleaires, application au laboratoire d'examen des combustibles actifs

    Energy Technology Data Exchange (ETDEWEB)

    Dousson, D.; Guillard, M.; Charles, Th


    In 1987 EDF (Electricite de France) launched the first campaign of the reassessment of safety of 6 operating nuclear reactors (2 Fessenheim units and the 4 reactors of the Bugey plant). This reassessment was requested by the Safety Authority in order to: - check that the safety studies led by EDF are consistent with the real state of the reactors and - be sure that the feedback experience cumulated over years of operating life has been profitable. This work ended in 1995. In 1990 EDF launched the second campaign involving the remaining 28 units of the 900 MWe-PWR type reactors. The aim was the same as previously but this time the procedure has included the use of probabilistic studies of safety. This second campaign has now entered its final stage and has led to several measures concerning fire protection, seismic resistance, and protection against deep cold weather. The probabilistic studies have shown that the reliability of some systems important for safety might be improved, so some modifications have been proposed. These modifications concern the emergency feedwater supply of steam generators, the ventilation systems and the emergency turbine generator set. The second part of the document presents the reassessment of safety that has been performed on a CEA laboratory dedicated to the study of irradiated fuel rods. (A.C.)

  16. Oxidation of nuclear fuel below 400 deg. Consequence on long-term dry storage; L'oxydation du combustible nucleaire au-dessous de 400 deg. Consequences sur l'entreposage a sec de longue duree

    Energy Technology Data Exchange (ETDEWEB)

    Dehaudt, Ph


    This document reviews the status of the knowledge on the oxidation of fuels below 400 deg C, in all its forms, including fuel rods, by examining the consequences of this reaction on the strength or ruin of the fuel rods during dry storage in air for a hundred years. The data available in the scientific literature, and the data acquired by CEA, are abundant on irradiated powders and pellets, but sparser for irradiated fuel fragments and for rods or sections of fuel rods. A bibliographic review is made to identify the morphological and structural changes, as well as the kinetic laws. An analysis and a summary is made with a concern to evaluate the risks of rod ruin by oxidation. The final section, in a few pages, addresses the essential lessons from this study. It presents: first, a summary of the main results of this review and its analysis, recommendations and remedies for storage; proposed research guidelines as well as precise topics, in order to fill out our knowledge and, even better, to identify the acceptable limits for storage. (author)

  17. Studies of neo-formed phases occurring during spent nuclear fuel dissolution in geological repository: influence of silicate ions; Etude des phases neoformees lors de la dissolution du combustible nucleaire en condition de stockage geologique: influence des ions silicate

    Energy Technology Data Exchange (ETDEWEB)

    Robit-Pointeau, V


    Spent nuclear fuel alteration in deep storage conditions may proceed by local oxidising conditions at the fuel / water interface under influence of alpha irradiation. However, due to the strong redox buffer capacity of the near-field materials (especially the canister and the geological media), most of the near-field environment will remain reducing. Due to the relative high concentration in silica in such system, coffinite USiO{sub 4}.n(H{sub 2}O) may be a relevant phase to consider as it has been suggested from the natural analogues observations (Oklo). The aim of this work was to assess the relevance of coffinitisation of the spent fuel phenomena. The results of the experimental work contest the thermodynamic predictions. Instead of coffinite, a new U(IV)-Si phase has been observed in water simulating storage conditions. The thermodynamic data on coffinite validated by OECD are based on the average concentration of dissolved silica present in natural system containing uraninite and quartz. As the silica concentration in natural groundwaters is more probably controlled by minerals like chalcedony or silica gel, the coffinite present with uraninite in such systems, is probably not in equilibrium even in 2-billion years- old geological sites. Based on the results of this study, coffinitisation of the spent nuclear fuel in deep geological disposal is not anticipated to be a dominant short term process. (author)

  18. Simulation par irradiation aux ions des dégâts d'irradiation dans le combustible nucléaire usé en situation de stockage géologique : Apport des études par DRX


    PALANCHER, Hervé; Castelier, Étienne; Ibrahim, Marcelle; Boulle, Alexandre; RICHARD, Axel; Goudeau, Philippe; Bornert, Michel; CARE, Sabine; Belin, Renaud; Rieutord, François; Micha, Jean-Sébastien; Blanc, Nils; Boudet, Nathalie; AMBARD, Antoine


    Dans un scénario de stockage à sec du combustible usé en couche géologiques profondes, le comportement de l?He, produit par décroissance ? des radionucléides créés lors de l?irradiation en réacteur, doit être étudié. Un programme CEA-EDF a été développé dans les années 2000, aboutissant à la définition d?un modèle opérationnel. Une problématique reste cependant à investiguer, celle de la stabilité mécanique du combustible et notamment de ses joints de grains sur de très longues durées de stoc...

  19. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems; Congres sur les reacteurs a sels fondus (RSF) pyrochimie et cycles des combustibles nucleaires du futur

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, Ph. [GEDEON, Groupement de Recherche CEA CNRS EDF FRAMATOME (France); Garzenne, C.; Mouney, H. [and others


    precipitation processes); cold salt: potentiality and preliminary results; TOPIC: redox control of MSR fuel (MSR: nominal operating conditions for the reprocessing process and redox control); technical aspects of R and D of some advanced non-aqueous reprocessing technologies for MSR systems (promising innovative separation and partitioning processes for the MSR fuel cycle); nominal operating conditions for MSR reprocessing process - data base needed and experiments for reprocessing validation; corrosion and materials for MSR and for pyro-chemistry processes; MSR reactor physics - dynamic behaviour; what safety principles for MSR? (MSR and integrated cycle (IFR) safety approach); experimental programmes in the frame of the SPHINX project of MS transmuter (programme of irradiated probes BLANKA, experimental facilities (MSR)); ISTC 1606 status - experimental study of molten salt technology for safe, low-waste and proliferation resistant treatment of radioactive waste and plutonium in accelerator-driven and critical systems. (J.S.)

  20. French research in the field of nuclear agronomy; Les recherches francaises en agronomie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Guerin De Montgareuil, P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires


    , industrial firms, university laboratories scientific institutes. The role of the Commissariat a l'Energie Atomique is defined: on the one hand it supplies information and support, and on the other hand it takes charge of specifically nuclear aspects of the work. Its part in the field has recently found expression in the creation, within the Biology Department, of a Radio-agronomy Section; its objective are described,, as well as the, means placed att its disposal at the Centre d'etudes Nucleaires, Cadarache. (author) [French] On propose un bilan des travaux les plus significatifs effectues en France depuis la deuxieme conference internationale en matiere d'agronomie nucleaire et qui vont d'une recherche apparemment desinteressee a l'application la plus directe. Une telle differenciation recouvre de moins en moins, au fur et a mesure de l'evolution des programmes, la distinction qui est faite dans l'expose entre l'action biologique des rayonnements et les autres emplois des techniques nucleaires. C'est ainsi que les recherches do radiogenetique agricole sont poursuivies dans deux directions: d'un point de vue theorique et methodologique avec l'etude comparative de l'action des divers types de rayonnements, l'influence du debit de dose et de la temperature, l'action des agents mutagenes chimiques, la production de chimeres sous irradiation gamma; et d'autre part, sous un aspect pratique aboutissant a la creation de varietes nouvelles plus resistantes ou plus precoces (riz, mil, arachide). Les problemes de destruction des insectes (eradication) et de conservation des denrees sous irradiation se trouvent egalement abordes par des voies et avec des objectifs tres divers. A la demarche globale representee par une irradiation pure et simple (grains humides, pommes de terre...) sont parfois associees des etudes souvent originales, d'ordre biochimique ou microbiologique (par exemple: alteration de l

  1. A mathematical model for cost of maritime transport. Application to competitiveness of nuclear vessels; Modele mathematique du cout de transport maritime application a la competitivite du navire nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Dorval, C. [Commissariat a l' Energie Atomique, 75 - Paris (France)


    recherche de la competitivite, nous considerons deux cas: 1) le tonnage a transporter annuellement est limite; 2) le tonnage a transporter annuellement n'est pas limite. Dans les deux cas, nous recherchons les optima du navire classique et du navire nucleaire, et nous les comparons. Nous construisons les courbes de competitivite en fonction des rapports des couts de combustible nucleaire et classique, et des couts marginaux de la puissance nucleaire et classique. Ces courbes traduisent les valeurs limites des deux rapports ci-dessus pour lesquelles les couts de transport du navire nucleaire et du navire classique sont egaux. Suivant les hypotheses adoptees pour le marche du fret et pour la limite du tonnage transporte annuellement, nous avons des courbes de competitivite tres differentes. De toute facon, c'est l'augmentation de puissance qui favorise le nucleaire. On peut obtenir cette augmentation en accroissant le deplacement ce qui est toujours interessant dans la mesure ou le fret le justifie, et en accroissant la vitesse, mais dans ce cas le modele met en evidence l'existence d'une limite. Le sous-marin peut presenter certains avantages (moindre resistance hydrodynamique de l'eau, possibilite de vitesse plus reguliere, et eventuellement reduction de trajet) qui rendent la competitivite du nucleaire plus aisee. (auteur)

  2. Castor and Pollux - shielded cells for studying fuel treatment processes; Castor et Pollux chaines blindees d'etudes de procedes de traitement de combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Faudot, G.; Bathellier, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires


    CASTOR and POLLUX, two alpha, beta, gamma cells are described in the present paper. They are located in the CEN at Fontenay-aux-Roses (France). They are designed for improvement studies of the various aqueous separation processes used in irradiated fuels reprocessing plants. Located in the same air-tight steel encasement, they arc inter-connected by a pneumatic transfer. These two cells have a similar in-line conception and they include: a gamma shielding in lead of 10 cm of thickness; an inner air-tight box, made with stainless steel and plexiglas, is maintained in lowering in comparison to room pressure. Eleven Hobson model seven master-slave manipulators allow inner manipulations. Then the inner equipment is described briefly. (author) [French] Le present document decrit les cellules alpha, beta, gamma CASTOR et POLLUX edifiees au Centre d'Etudes Nucleaires de Fontenay-aux-Roses. Elles sont destinees aux etudes visant a l'amelioration des procedes de separation par voie aqueuse utilises dans les usines de retraitement des combustibles irradies. Ces deux chaines, implantees dans le meme caisson et reliees par convoyeur pneumatique, sont de conception identique et comprennent: une protection biologique constituee par 10 cm d'epaisseur de plomb; une enceinte interieure etanche alpha, en acier inoxidable et plexiglas, maintenue en depression. Des telemanipulateurs Hobson, modele 7, permettent les manipulations interieures. On decrit ensuite brievement les installations annexes. (auteur)

  3. (Alpha, gamma) irradiation effect on the alteration of high-level radioactive wastes matrices (UO{sub 2}, hollandite, glass SON68); Effet de l'irradiation (alpha, gamma) sur l'alteration des matrices de dechets nucleaires de hautes activites (UO{sub 2}, hollandite, verre SON68)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T


    The aim of this work is to determine the effect of irradiation on the alteration of high level nuclear waste forms matrices. The matrices investigated are UO{sub 2} to simulate the spent fuel, the hollandite for the specific conditioning of Cs, and the inactive glass SON68 representing the nuclear glass R7T7) The alpha irradiation experiments on UO{sub 2} colloids in aqueous carbonate media have enabled to distinguish between the oxidation of UO{sub 2} matrix as initial and dissolution as subsequent step. The simultaneous presence of carbonate and H{sub 2}O{sub 2} (product resulting from water radiolysis) increased the dissolution rate of UO{sub 2} to its maximum value governed by the oxidation rate. ii) The study of hollandite alteration under gamma irradiation confirmed the good retention capacity for Cs and Ba. Gamma irradiation had brought only a little influence on releasing of Cs and Ba in solution. Electronic irradiation had conducted to the amorphization of the hollandite only for a dose 1000 times higher than the auto-induced dose of Ba over millions of years. iii) The experiences of glass irradiation under alpha beam and of helium implantation in the glass SON68 were analyzed by positon annihilation spectroscopy. No effect has been observed on the solid surface for an irradiation dose equal to 1000 years of storage. (author)

  4. Modelling the cracking of pressurised water reactor fuel pellets and its consequences on the mechanical behaviour of the fuel rod; Etude de l'impact de la fissuration des combustibles nucleaires oxyde sur le comportement normal et incidentel des crayons combustible

    Energy Technology Data Exchange (ETDEWEB)

    Helfer, Th


    This thesis aims to model the cracking of pressurised water reactor fuel pellets and its consequences on the mechanical behaviour of the fuel rod. Fuel cracking has two main consequences. It relieves the stress in the pellet, upon which the majority of the mechanical and physico-chemical phenomena are dependent. It also leads to pellet fragmentation. Taking fuel cracking into account is therefore necessary to adequately predict the mechanical loading of the cladding during the course of an irradiation. The local approach to fracture was chosen to describe fuel pellet cracking. Practical considerations brought us to favour a quasi-static description of fuel cracking by means of a local damage models. These models describe the appearance of cracks by a local loss of rigidity of the material. Such a description leads to numerical difficulties, such as mesh dependency of the results and abrupt changes in the equilibrium state of the mechanical structure during unstable crack propagations. A particular attention was paid to these difficulties because they condition the use of such models in engineering studies. This work was performed within the framework of the ALCYONE fuel performance package developed at CEA/DEC/SESC which relies on the PLEIADES software platform. ALCYONE provides users with various approaches for modelling nuclear fuel behaviour, which differ in terms of the type geometry considered for the fuel rod. A specific model was developed and implemented to describe fuel cracking for each of these approaches. The 2D axisymmetric fuel rod model is the most innovative and was particularly studied. We show that it is able to assess, thanks to an appropriate description of fuel cracking, the main geometrical changes of the fuel rod occurring under normal and off-normal operating conditions. (author)

  5. V-79 Chinese Hamster Cells irradiated with antiprotons, a study of peripheral damage due to medium and long range components of the annihilation radiation

    DEFF Research Database (Denmark)

    Kovacevic, Sandra; Bassler, Niels; Hartley, Oliver


    produce a significant background dose and reverse any benefits of higher biological dose in the target area. Materials and methods: Using the Antiproton Decelerator (AD) at CERN (Conseil Europeen pour la Recherche Nucleaire) we irradiated V-79 Chinese Hamster cells embedded in gelatine using an antiproton...

  6. Molten salts in nuclear reactors; Les sels fondus dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Dirian, J.; Saint-James [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires


    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author) [French] Bibliographie regroupant l'etude physico-chimique des sels fondus, en particulier des halogenures alcalins et alcalino-terreux. On etudie de nombreux systemes binaires, ternaires et quaternaires de ces halogenures avec des halogenures d'uranium, et de thorium. On etudie egalement les proprietes physiques des halogenures ou des melanges d'halogenures (densite, viscosite, tension de vapeur, etc...). On donne egalement des references quant a la corrosion des materiaux par ces sels, et le traitement de ceux-ci en vue de recuperation, apres irradiation dans un reacteur nucleaire. (auteur)

  7. Cells for the examination of irradiated plutonium fuel elements - two years operation - may 1961/may 1963 (1963); Cellules pour examen d'elements combustibles au plutonium irradies - deux ans d'exploitation - mai 1961/mai 1963 (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires


    Within the framework of the 'Rapsodie' fast reactor program, prototype plutonium fuel elements are irradiated and then examined in an {alpha} {beta} {gamma} laboratory at Saclay. This laboratory consists of five in line cells and a lead enclosure microscope. Each cell contains an {alpha} sealed removable box 4 ft 3 in. high, 4 ft 11 in. wide and 5 ft 1 in. deep, fitted with one or two magnetic transmission indirect manipulators. The boxes are contained in an {beta} {gamma} shielded enclosure whose front face is constructed of cast iron panels 21-2/3 in. thick. Nitrogen circulating in a closed loop forms the atmosphere of the boxes. This laboratory is essentially intended for metallurgical research. The functions of the various cells are as follows: transferring and packing, cutting, density measurement and cathodic etching, storage and metallography. Work on radioactive materials began in April 1961. Operational incidents have always been of a material nature only. (author) [French] Dans le cadre du projet de reacteur rapide Rapsodie, des elements combustibles prototypes au plutonium sont, apres irradiation, examines a Saclay dans un laboratoire {alpha} {beta} {gamma}. Celui-ci comprend cinq cellules en ligne et une enceinte en plomb contenant un microscope telecommande. Chaque cellule est constituee d'un caisson etanche (1, 3 m x 1, 5 m x 1, 56m) equipee d'un ou deux manipulateurs indirects a transmissions magnetiques. Les caissons sont places, dans une enceinte {beta} {gamma} dont la face avant est formee de blocs en fonte ayant 55 cm d'epaisseur. L'atmosphere des caissons est de l'azote, circulant en circuit ferme. Ce laboratoire est destine essentiellement a des recherches metallurgiques. Les fonctions des differentes cellules sont: conditionnement et transferts, tronconnage, mesure de densite et polissage ionique, stockage, metallographie. Le travail sur materiaux radioactifs a commence en avril 1961. Les incidents d

  8. Boosting Electrical Performance of High-κ Nanomultilayer Dielectrics and Electronic Devices by Combining Solution Combustion Synthesis and UV Irradiation. (United States)

    Carlos, Emanuel; Branquinho, Rita; Kiazadeh, Asal; Martins, Jorge; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira


    In the past decade, solution-based dielectric oxides have been widely studied in electronic applications enabling the use of low-cost processing technologies and device improvement. The most promising are the high-κ dielectrics, like aluminum (AlOx) and hafnium oxide (HfOx), that allow an easier trap filling in the semiconductor and the use of low operation voltage. However, in the case of HfOx, a high temperature usually is needed to induce a uniform and condensed film, which limits its applications in flexible electronics. This paper describes how to obtain HfOx dielectric thin films and the effect of their implementation in multilayer dielectrics (MLD) at low temperatures (150 °C) to apply in thin film transistors (TFTs) using the combination of solution combustion synthesis (SCS) and ultraviolet (UV) treatment. The single layers and multilayers did not show any trace of residual organics and exhibited a small surface roughness (2.7 MV·cm-1). The resulting TFTs presented a high performance at a low operation voltage (<3 V), with high saturation mobility (43.9 ± 1.1 cm2·V-1·s-1), a small subthreshold slope (0.066 ± 0.010 V·dec-1), current ratio of 1 × 106 and a good idle shelf life stability after 2 months. To our knowledge, the results achieved surpass the actual state-of-the-art. Finally, we demonstrated a low-voltage diode-connected inverter using MLD/IGZO TFTs working with a maximum gain of 1 at 2 V.

  9. Development and validation of calculation schemes dedicated to the interpretation of small reactivity effects for nuclear data improvement; Developpement et validation de schemas de calcul dedies a l'interpretation des mesures par oscillation pour l'amelioration des donnees nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Gruel, A.


    Reactivity measurements by the oscillation technique, as those performed in the Minerve reactor, enable to access various neutronic parameters on materials, fuels or specific isotopes. Usually, expected reactivity effects are small, about ten pcm at maximum. Then, the modeling of these experiments should be very precise, to obtain reliable feedback on the pointed parameters. Especially, calculation biases should be precisely identified, quantified and reduced to get precise information on nuclear data. The goal of this thesis is to develop a reference calculation scheme, with well quantified uncertainties, for in-pile oscillation experiments. In this work are presented several small reactivity calculation methods, based on deterministic and/or stochastic calculation codes. Those method are compared thanks to a numerical benchmark, against a reference calculation. Three applications of these methods are presented here: a purely deterministic calculation with exact perturbation theory formalism is used for the experimental validation of fission product cross sections, in the frame of reactivity loss studies for irradiated fuel; an hybrid method, based on a stochastic calculation and the exact perturbation theory is used for the readjustment of nuclear data, here {sup 241}Am; and a third method, based on a perturbative Monte Carlo calculation, is used in a conception study. (author) [French] Les mesures de reactivite par la technique d'oscillation, comme celles effectuees dans le reacteur Minerve, permettent de tester de nombreux parametres neutroniques sur des materiaux, des combustibles ou des isotopes specifiques. Generalement, les effets attendus sont tres faibles, tout au plus de l'ordre de la dizaine de pcm. La modelisation de ces experiences doit donc etre particulierement precise, afin d'obtenir un retour fiable et precis sur les parametres cibles. En particulier, les biais de calcul doivent etre clairement identifies, quantifies et maitrises

  10. The Cyrano program. 1 - description and operation of an irradiation device 'Cyrano'. 2 - results of the experiments Cyrano 1 and 2 (study of the EL 4 first-bach pencil); measurement of the thermal conductivity integral for UO{sub 2} sintered up to 2300 deg C; evolution of fission gases at constant power; Programme Cyrano. 1 - description et exploitation d'un dispositif d'irradiation ''cyrano''. 2 - resultats des experiences cyrano 1 et 2 (etude du crayon EL4 1. jeu). Mesure de l'integrale de conductibilite thermique d'UO{sub 2} fritte jusqu'a 2300 deg C. Evolution des gaz de fission a puissance constante

    Energy Technology Data Exchange (ETDEWEB)

    Stora, J.P.; Chenebault, P. [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires


    Two rods of the type 'EL 4 first score' have been irradiated in 'Cyrano' capsules which are suited for continuous measurement of the nuclear power evolved and equipped with thermocouples. The variations of the integral of conductivity of sintered 96 per cent theoretical dense UO{sub 2} has been established until 2300 deg. C; these variations are coherent with those previously measured out-of-pile. The released fission gases have been recovered at different times during the irradiation: the kinetics of release of stable gases is such that, in the experimental conditions (T{sub surface} = 610 deg. C, {integral}{sub T{sub s}}{sup T{sub c}} kdT = 34.7 W cm{sup -1}) the fraction of released gases is still widely increasing after 12 days of irradiation. Numerous observations have been made on concentrations of rare gases locally present in the irradiated fuel. (authors) [French] L'irradiation de deux crayons combustibles type EL 4, 1er jeu, a ete menee a bien dans des capsules 'Cyrano' equipees de dispositifs de mesure continue de la puissance nucleaire et de plusieurs reperes de temperatures; la variation de l'integrale de conductibilite thermique de l'oxyde d'uranium fritte (96 pour cent d. th.) a ete tracee jusqu'a 2300 deg. C; la courbe representative de ces variations est coherente avec celle obtenue precedemment hors pile. Les gaz de fission apparus hors du combustible ont ete extraits du crayon a plusieurs reprises pendant l'experience: la cinetique d'accumulation des gaz stables est telle que dans les conditions etudiees (T{sub surface} = 610 deg. C, {integral}{sub T{sub s}}{sup T{sub c}} kdT = 34.7 W cm{sup -1}) la fraction des gaz degages est encore largement croissante apres 12 jours d'irradiation. De nombreuses observations ont ete recueillies sur la nature et la concentration des gaz rares presents en differents points du combustible irradie. (auteurs)

  11. Smoldering Combustion


    Rein, G


    Smoldering combustion is the slow, low temperature, flameless burning of porous fuels and is the most persistent type of combustion phenomena. It is especially common in porous fuels which form a char on heating, like cellulosic insulation, polyurethane foam or peat. Smoldering combustion is among the leading causes of residential fires, and it is a source of safety concerns in industrial premises as well as in commercial and space flights. Smoldering is also the dominant combustion phenomena...

  12. Design of an experiment to measure the decay heat of an irradiated PWR fuel: MERCI experiment; Conception d'une experience de mesure de la puissance residuelle d'un combustible irradie: l'experience MERCI

    Energy Technology Data Exchange (ETDEWEB)

    Bourganel, St


    After a reactor shutdown, a significant quantity of energy known as 'decay heat' continues to be generated from the irradiated fuel. This heat source is due to the disintegration energy of fission products and actinides. Decay heat determination of an irradiated fuel is of the utmost importance for safety analysis as the design cooling systems, spent fuel transport, or handling. Furthermore, the uncertainty on decay heat has a straight economic impact. The unloading fuel spent time is an example. The purpose of MERCI experiment (irradiated fuel decay heat measurement) consists in qualifying computer codes, particularly the DARWIN code system developed by the CEA in relation to industrial organizations, as EDF, FRAMATOME and COGEMA. To achieve this goal, a UOX fuel is irradiated in the vicinity of the OSIRIS research reactor, and then the decay heat is measured by using a calorimeter. The objective is to reduce the decay heat uncertainties from 8% to 3 or 4% at short cooling times. A full simulation on computer of the MERCI experiment has been achieved: fuel irradiation analysis is performed using transport code TRIPOLI4 and evolution code DARWIN/PEPIN2, and heat transfer with CASTEM2000 code. The results obtained are used for the design of this experiment. Moreover, we propose a calibration procedure decreasing the influence of uncertainty measurements and an interpretation method of the experimental results and evaluation of associated uncertainties. (author)

  13. Radiotoxicity, dose and nuclear alchemy; Radiotoxiciteit, dosis en nucleaire alchemie

    Energy Technology Data Exchange (ETDEWEB)

    Schram, R. [Nuclear Research and Consultancy Group NRG, Petten (Netherlands)


    An outline is given of the nuclear fuel cycle and related products, focusing on the radiotoxicity and radioactive waste dose. Also, it is explained how those subjects form the basis of research on transmutation and recycling of radioactive waste. Finally, attention will be paid to nuclear alchemy, i.e. the steps to be taken for transmutation and recycling, based on current developments in research at NRG. [Dutch] In dit artikel zal een toelichting worden gegeven op de splijtstofcyclus en de producten die daarbij vrijkomen. Hierbij zal worden ingegaan op de radiotoxiciteit en dosis van het radioactief anal. Tevens zal worden uitgelegd hoe deze begrippen de basis vormen voor keuzes binnen het onderzoek naar transmutatie en recycling van radioactief afval. Ook zal de nucleaire alchemie, de benodigde stappen voor transmutatie en recycling, worden behandeld aan de hand van de actuele ontwikkelingen in het onderzoek zoals onder meer uitgevoerd bij NRG.

  14. Soins Aux Brules Apres Un Accident Nucleaire (United States)

    Bargues, L.; Donat, N.; Jault, P.; Leclerc, T.


    Summary Les lésions radiques sont dues le plus souvent à des radio-isotopes utilisés dans l’industrie. L’explosion d’un réacteur nucléaire, les armes nucléaires ou une attaque terroriste constituent un risque d’afflux massif de victimes brûlées. Les radiations ionisantes occasionnent des brûlures thermiques, des syndromes d’irradiation aiguë avec pancytopénie et des signes cutanés retardés. Après une période de latence, des symptômes cutanés apparaissent et leur profondeur est proportionnelle à la dose reçue. Les protocoles habituels de réanimation des brûlés s’appliquent ici. Les soins aux irradiés nécessitent aussi une mesure de l’irradiation et une décontamination par des personnels entraînés. En cas de catastrophe nucléaire, la priorité est d’optimiser les structures existantes et de préserver les moyens pour les patients ayant la plus forte probabilité de survie. Après un accident nucléaire isolé, les difficultés dans les centres de brûlés sont l’évaluation de la profondeur et les techniques chirurgicales de couverture cutanée. La préparation des moyens médicaux et des centres de brûlés est nécessaire pour faire face à la prise en charge de ces brûlures différentes et complexes. PMID:21991218

  15. Study of physico-chemical release of uranium and plutonium oxides during the combustion of polycarbonate and of ruthenium during the combustion of solvents used in the reprocessing of nuclear fuel; Etude de la mise en suspension physico-chimique des oxydes de plutonium et d'uranium lors de la combustion de polycarbonate et de ruthenium lors de la combustion des solvants de retraitement du combustible irradie

    Energy Technology Data Exchange (ETDEWEB)

    Bouilloux, L


    The level of consequences concerning a fire in a nuclear facility is in part estimated by the quantities and the physico-chemical forms of radioactive compounds that may be emitted out of the facility. It is therefore necessary to study the contaminant release from the fire. Because of the multiplicity of the scenarios, two research subjects were retained. The first one concerns the study of the uranium or plutonium oxides chemical release during the combustion of the polycarbonate glove box sides. The second one is about the physico chemical characterisation of the ruthenium release during the combustion of an organic solvent mixture (tributyl phosphate-dodecane) used for the nuclear fuel reprocessing. Concerning the two research subjects, the chemical release, i.e. means the generation of contaminant compounds gaseous in the fire, was modelled using thermodynamical simulations. Experiments were done in order to determine the ruthenium release factor during solvent combustion. A cone calorimeter was used for small scale experiments. These results were then validated by large scale tests under conditions close to the industrial process. Thermodynamical simulations, for the two scenarios studied. Furthermore, the experiments on solvent combustion allowed the determination of a suitable ruthenium release factor. Finally, the mechanism responsible of the ruthenium release has been found. (author)

  16. Soins Aux Brules Apres Un Accident Nucleaire


    Bargues, L; Donat, N.; Jault, P; Leclerc, T.


    Les lésions radiques sont dues le plus souvent à des radio-isotopes utilisés dans l’industrie. L’explosion d’un réacteur nucléaire, les armes nucléaires ou une attaque terroriste constituent un risque d’afflux massif de victimes brûlées. Les radiations ionisantes occasionnent des brûlures thermiques, des syndromes d’irradiation aiguë avec pancytopénie et des signes cutanés retardés. Après une période de latence, des symptômes cutanés apparaissent et leur profondeur est proportionnelle à la do...

  17. Computational Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J


    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  18. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W


    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  19. Characterization and heading of irradiated fuels and their chemical analogs; Caracterizacion y lixiviacion de combustibles nucleares irradiados y de sus analogos quimicos

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J. A. [Ciemat.Madrid (Spain)


    This work presents results of leaching experiments under deionized water and under synthetic granite at room temperature in air using spent fuel (UO{sub 2} and MOX LWR fuels) and the chemical analogues, natural UO{sub 2} and SIMFUEL. The experimental conditions and procedure for irradiated and non-irradiated materials were kept similar as much as possible. Also dissolution behaviour studies of preoxidised LWR UO{sub 2} and MOX spent fuel up to different on the oxidation degree. For both fuel types, UO{sub 2} and MOX, the fission products considered showed a fractional release normalised to uranium higher than 1, due to either the larger inventory at preferential leaching zones, such as, grain boundaries or to the inherent higher solubility of some of these elements. In contrast to fission products, the fractional release of PU from the UO{sub 2} fuel was not affected by the oxidation level. Finally a thermodynamic study of the experimental leaching results obtained in this work was performed. (Author)

  20. Micromechanical simulation of Uranium dioxide polycrystalline aggregate behaviour under irradiation; Modele numerique micro-mecanique d'agregat polycristallin pour le comportement des combustibles oxydes

    Energy Technology Data Exchange (ETDEWEB)

    Pacull, J.


    In pressurized water nuclear power reactor (PWR), the fuel rod is made of dioxide of uranium (UO{sub 2}) pellet stacked in a metallic cladding. A multi scale and multi-physic approaches are needed for the simulation of fuel behavior under irradiation. The main phenomena to take into account are thermomechanical behavior of the fuel rod and chemical-physic behavior of the fission products. These last years one of the scientific issue to improve the simulation is to take into account the multi-physic coupling problem at the microscopic scale. The objective of this ph-D study is to contribute to this multi-scale approach. The present work concerns the micro-mechanical behavior of a polycrystalline aggregate of UO{sub 2}. Mean field and full field approaches are considered. For the former and the later a self consistent homogenization technique and a periodic Finite Element model base on the 3D Voronoi pattern are respectively used. Fuel visco-plasticity is introduced in the model at the scale of a single grain by taking into account specific dislocation slip systems of UO{sub 2}. A cohesive zone model has also been developed and implemented to simulate grain boundary sliding and intergranular crack opening. The effective homogenous behaviour of a Representative Volume Element (RVE) is fitted with experimental data coming from mechanical tests on a single pellet. Local behavior is also analyzed in order to evaluate the model capacity to assess micro-mechanical state. In particular, intra and inter granular stress gradient are discussed. A first validation of the local behavior assessment is proposed through the simulation of intergranular crack opening measured in a compressive creep test of a single fuel pellet. Concerning the impact of the microstructure on the fuel behavior under irradiation, a RVE simulation with a representative transient loading of a fuel rod during a power ramp test is achieved. The impact of local stress and strain heterogeneities on the multi

  1. Dosimetric impact of an accident in a laboratory treating irradiated fuels. Analysis of the doses sensitivity to the fuel characteristics; Impact dosimetrique d'un accident dans un laboratoire traitant des combustibles irradies. Analyse de la sensibilite des doses aux caracteristiques du combustible

    Energy Technology Data Exchange (ETDEWEB)

    Vermuse, M


    The objective of this study is to determine the sensitivity of dosimetric impact of a dimensioning accident to the characteristics (combustion rate, cooling time, enrichment) of spent fuels treated in the facility. The study has to allow to define the most penalizing characteristics of the fuel in regard of dosimetric consequences during a dimensioning accident and to display the most preponderant radionuclides for the considered ways of attack. (N.C.)

  2. Study of irradiation damages in MgAl{sub 2}O{sub 4} and ZnAl{sub 2}O{sub 4} spinels in the framework of nuclear waste transmutation; Dommages d'irradiation dans des ceramiques de structure spinelle MgAl{sub 2}O{sub 4} et ZnAl{sub 2}O{sub 4} application a la transmutation des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Thiriet-Dodane, C


    The transmutation of minor actinides in-reactor is one solution currently being studied for the long time management of nuclear waste. In the heterogeneous concept the radionuclides are incorporating in an inert ceramic matrix. The support material must be insensitive to radiation damage. Fission product damage is the main radiation damage source during the transmutation process and therefore it is of the utmost importance to study their effects. We irradiated spinels MgAl{sub 2}O{sub 4} (matrix of reference) and ZnAl{sub 2}O{sub 4} by fast ions (by example: {sup 86}Kr of approximately 400 MeV) simulating the fission products. Under these conditions, the damage is primarily due to the electronic energy losses (S{sub e}). One of the structural features of spinel AB{sub 2}O{sub 4} is that the two cations (A{sup 2+} and B{sup 3+}) can exchange their site. This phenomenon is quantified by the inversion parameter. We highlight by XRD in grazing incidence that the structural changes observed in MgAl{sub 2}O{sub 4} correspond to an order-disorder transition from the cation sub-networks and not to a phase shift as described in the literature. Using other techniques characterizing the space group (Raman spectroscopy) as well as the local order (NMR 27Al, spectroscopy of absorption X with the thresholds K of Al and Zn), we confirm this interpretation. Moreover, for a fluence of 10{sup 14} ions/cm{sup 2}, the loss of the order at long distance is observed thus meaning a beginning of amorphization of material. The ZnAl{sub 2}O{sub 4} spinel presents the same behaviour. For this last spinel, an evolution of the inversion parameter according to the stopping power 2 was highlighted after irradiation by ions {sup 86}Kr from approximately 20 MeV. We illustrate our study by the analysis of the results obtained in XRD of an irradiation out of composite fuel (MgAl{sub 2}O{sub 4} + UO{sub 2}) called THERMHET. (authors)

  3. Front end of the nuclear fuel cycle; Amont du cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, S.; Gueneau, C.; Le Ny, J.; Camel, D.; Drevet, B.; Granier, J.; Doneddo, F.; Roblin, P.; Van Wambeke, C.; Bouty, O.; Michel, N.; Thro, P.U.; Dupuy, P.; Farcage, D.; Schildknecht, J.; Lompre, L.A.; L' Hermite, D.; Comte, M.; Gobert, O.; De Lamare, J


    In this chapter of the DCC 1999 scientific report, the following theoretical studies are detailed: condensation and flow of a binary metallic alloy in a two phase domain, a model of gas centrifuge separative performance called TRYPHON, an estimation of electron gun cathodes erosion. It also provides technological developments and instrumentation studies: a power improvement of diode-pumped solid state lasers, measurement using intracavity near resonant propagation in atomic vapours. (A.L.B.)

  4. Back end of the nuclear fuel cycle; Aval du cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Dognon, J.P.; Rabbe, C.; Beudaert, Ph.; Lamare, V.; Wipff, G.; Moisy, Ph.; Charrin, N.; Blanc, P.; Den Auwer, Ch.; Revel, R.; Charbonnel, M.C.; Presson, M.T.; Cau Dit Coumes, C.; Chopin-Dumas, J.; Devisme, F.; Rat, B.; Hill, C.; Guillaneux, D.; Madic, C.; Carrera, A.; Dozol, J.F.; Rouquette, H.; Allain, F.; Virelizier, H.; Moulin, Ch.; Lemort, F.; Orlhac, X.; Fillet, C.; Carpena, J.; Advocat, T.; Leturcq, G.; Lacombe, J.; Bonnetier, A.; Ribet, I.; Poitou, S.; Richaud, D.; Fiquet, O.; Gramondi, P.; Massit, H.; Meyer, D.; Conocar, O.; Pettier, J.L.; Raphael, T.; Bouniol, P.; Sercombe, J.; Badouix, P.; Adenot, F.; Le Bescop, P.; Mazoin, C.; Motellier, S.; Charles, Y.; Richet, C.; Ayache, R.; Pitsch, H.; Ly, J.; Beaucaire, C.; Devol-Brown, I.; Libert, M.F.; Besnainou, B


    In this chapter of the DCC 1999 scientific report, the following theoretical studies are detailed: electronic structure of lanthanides or actinides complexes, forecasting of the stoichiometry of europium nitrate complexes, actinides aqueous solutions analytical and thermodynamical chemistry, actinides complexes structural determination. It also provides experimental studies: actinides and lanthanides separation, radioactive wastes processing and conditioning, plasma torch vitrification process, simulation of the wastes packages characterization, wastes storage with concrete behaviour and biodegradation. (A.L.B.)

  5. The nuclear power stations of the French atomic energy programme (1960); Les centrales nucleaires de puissance du programme francais (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Leduc, C. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Roux, J.P. [Electricite de France (EDF), 75 - Paris (France)


    After recalling the entry of nuclear energy into energy production in France, the paper emphasizes the evolution of techniques applied in the designing of French nuclear power plants and describes the means employed for reducing costs per kWh of EDF2 and EDF3 compared with EDF1: the electric power per ton of uranium varies from 493 kW/t for EDF1 to 970 kW/t for EDF3. For this purpose the thermal power and electric power of units are changed respectively from 290 MWt for EDF1 to 1200 or 1600 MWt for EDF3 and from 28 to 250 MW. The results are obtained by an improvement in neutronic characteristics, developments in nuclear fuel technology, and simplification of the system of charging the reactor, whose means of maintenance are increased; the EDF2 heat-exchangers have been so designed as to increase the unit power of the elements, which will attain 9 MWt, as against 3 for EDF1. For EDF3 an advance project forecasts a thermodynamic layout with only one pressure stage. The paper ends with a description of the burst-slug detection systems, and an appendix gives a detailed comparative table of EDF1, EDF2 and EDF3 plant characteristics. (author) [French] Apres avoir rappele l'integration de l'energie nucleaire parmi les moyens de production de l'energie en France, les auteurs se penchent surtout sur l'evolution des techniques appliquees dans l'equipement des centrales nucleaires francaises et decrivent les moyens mis en oeuvre pour reduire les prix de revient du kWh d'EDF2 et d'EDF3 par rapport a EDF1: la puissance electrique par tonne d'uranium varie de 493 kW/t pour EDF1 a 970 kW/t pour EDF3. C'est dans ce but que les puissances thermiques et la puissance unitaire des groupes turbo-alternateurs passent respectivement de 290 MWt pour EDF1 a 1200 ou 1600 MWt pour EDF3 et de 82 a 250 MW. Les resultats sont obtenus par une amelioration des caracteristiques neutroniques, des progres realises sur la technologie des elements

  6. Persistent luminescence, TL and OSL characterization of beta irradiated SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} combustion synthesized phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Zúñiga-Rivera, N.J. [Departamento de Física, Posgrado en Nanotecnología, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); García, R.; Rodríguez-Mijangos, R.; Chernov, V.; Meléndrez, R.; Pedroza-Montero, M. [Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Barboza-Flores, M., E-mail: [Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico)


    The persistent luminescence (PLUM), thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of strontium aluminates co-doped with Eu{sup +2} and Dy{sup +3} exposed to beta radiation is reported. The phosphor was synthesized by the combustion synthesis method employing a highly exothermic redox reaction between the metal nitrates [Al(NO{sub 3}){sub 3}, Sr(NO{sub 3}){sub 2}, Eu(NO{sub 3}){sub 3} and Dy(NO{sub 3}){sub 3}] and organic fuel carbohydrazide (CH{sub 6}N{sub 4}O). The long decay PLUM emission, TL and OSL were measured as a function of beta radiation dose. A wide emission band centered at 510 nm (green) related to Eu{sup 2+} ions and lattice defects were observed for the synthesized samples. The presence of a variety of defects and aggregates were responsible for the observed broad 100 °C peaked TL glow curve of the irradiated sample which is composed of several overlapped TL peaks. The existence of multiple trapping levels, with different trapping/detrapping probabilities, is behind the particular features for the PLUM, TL and OSL emissions. We conclude that in the SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} phosphors, the low temperature TL peaked around 30–75 °C is responsible for the PLUM emission and those around 100 °C were related to very stable trapping states which provide suitable radiation storage properties to be used as a PLUM/TL/OSL radiation phosphor.

  7. Bubble Combustion (United States)

    Corrigan, Jackie


    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  8. Biofuels combustion. (United States)

    Westbrook, Charles K


    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  9. Nuclear program of Iran. Towards de-escalation of a nuclear crisis. Advisory letter; Nucleair programma van Iran. Naar de-escalatie van een nucleaire crisis. Briefadvies

    Energy Technology Data Exchange (ETDEWEB)



    The Dutch government, partly at the request of the House of Representatives (Second Chamber), the AIV asked to give an opinion about the position of Iran in the region and the role of the nuclear program of Iran in the geopolitical relations, in view of the most recent developments [Dutch] De Nederlandse regering heeft, mede op verzoek van de Tweede Kamer der Staten-Generaal, de AIV gevraagd advies uit te brengen over de positie van Iran in de regio en de rol van het nucleaire programma van Iran in de geopolitieke verhoudingen hierin, mede gelet op de meest recente ontwikkelingen.

  10. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)


    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  11. Study of molybdenum (VI) complexation and precipitation by zirconium (IV) in strongly acid medium. Application to nuclear spent fuel dissolution; Etude de la complexation et de la precipitation du molybdene (VI) par le zirconium (IV) en milieu tres acide. Application a la dissolution du combustible nucleaire irradie

    Energy Technology Data Exchange (ETDEWEB)

    Esbelin, E


    These last years the formation of solid deposits has been observed in the dissolution workshops of the La Hague plant. A sample of the solid was withdrawn for expertise: molybdenum and zirconium are the two major components of the solid, identified as zirconium molybdate. This thesis consisted in the approach of the mechanisms in solution liable to induce precipitate formation. After a bibliographical overview on the chemistry of Mo(VI) in highly acidic solution, this system was studied by absorption spectrophotometry in perchloric medium. The implication of two major forms of Mo(VI) in a dimerization equilibrium was confirmed by this way and by {sup 95}Mo NMR. The principal parameters governing this equilibrium were identified. It is thus shown that the molybdenum dimerization reaction is exothermic. Disturbance of the Mo(VI) system in highly acidic solution by Zr(IV) was also studied. In a restricted experimental field, for which 'conventional' exploitation methodologies had to be adapted to the system, a main complex of stoichiometry 1:1 between Mo(VI) and Zr(IV) was found. The precipitation study of Mo(VI) by Zr(IV) under conditions close to those of the dissolution medium of nuclear spent fuel was undertaken. The main parameters which control precipitation kinetics were identified. The results obtained reveal that precipitation is controlled by a single macroscopic process and therefore can be described by a single equation. The solid obtained is composed of only one phase presenting a Mo:Zr non-stoichiometry when compared to the theoretical formula ZrMo{sub 2}O{sub 7}(OH){sub 2},2H{sub 2}O. At last, on the basis of the research results, a descriptive mechanism of the system is proposed in which intervenes a 1:1 intermediate complex, much more soluble than a probable 2:1 precipitation precursor. (author)

  12. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru


    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  13. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL


    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  14. Combustion Research Laboratory (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  15. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)


    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  16. Nuclear biological studies in France; Les etudes de biologie nucleaires en France

    Energy Technology Data Exchange (ETDEWEB)

    Coursaget, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires


    On the occasion of a colloquium on radiobiological research programmes, a number of documents dealing with French accomplishments and projects in this field were collected together. We felt that it would be useful to assemble these papers in one report; although they are brief and leave gaps to be filled in, they provide certain data, give an overall view of the situation, and can also suggest a rough plan for the general policy to adopt in the field of 'nuclear' biological research; i.e. research based on the nuclear tracer method or devoted to the action of ionising radiations. (author) [French] Un colloque sur les programmes de recherche en radiobiologie nous a donne l'occasion de reunir des documents sur les realisations et les projets francais dans ce domaine. Il nous a semble utile de reunir en un rapport l'ensemble de ces documents, qui, malgre leur brievete et malgre les lacunes qu'ils comportent, donnent un certain nombre d'informations, permettent une vue d'ensemble et peuvent dessiner aussi l'ebauche d'une politique coherente en matiere de recherches biologiques 'nucleaires', c'est-a-dire de recherches basees sur la methode des indicateurs nucleaires ou consacrees a l'action des rayonnements ionisants. (auteur)

  17. Analytic index for nuclear physicians uses; Repertoire analytique a l'usage des physiciens nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Ballini, R.; Barloutaud, R.; Bernas, R.; Bretonneau, P.; Chaminade, R.; Cohen, R.; Conjeaud, M.; Cotton, E.; Faraggi, H.; Grjebine, T.; Joffre, H.; Laboulaye, H. de; Lesueur, C.; Leveque, A.; Moreau, J.; Naggiar, V.; Papineau, L.; Prugne, P.; Schuhl, C.; Studinowski, FJ.; Netter, F.; Raievski, V.; Valladas, G. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires; Marty, N.; Renard, G. [College de France, Lab. de Chimie Nucleaire (France)

    The problem of the documentation in nuclear physics becomes constantly more complex. Every week brings its share of new publications, always more numerous and more varied. To remedy to this facts that we tried, in the service of Nuclear Physics of the CEA, to give to the documentation a character of a collective and systematized work. The present report covers the literature appeared between first January 1950 and first July 1951. (Volume 1: CEA report number 120; Volume 2: CEA report number 184). (M.B.) [French] Le probleme de la documentation en physique nucleaire devient sans cesse plus complexe. Chaque semaine apporte son lot de publications, toujours plus nombreuses et plus diversifiees. C'est pour essayer de porter remede a cet etat de choses que nous avons essaye, au service de Physique Nucleaire du C.E.A., de donner a la documentation le caractere d'un travail collectif systematise. Le present rapport couvre la litterature parue entre le premier Janvier 1950 et le premier Juillet 1951. (Tome 1: Rapport CEA numero 120; Tome 2: Rapport CEA numero 184). (M.B.)

  18. Health problems raised by the elimination of radioactive wastes and nuclear accidents; Problemes sanitaires poses par l'elimination des dechets radioactifs et par les accidents nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Jammet, H.; Mechali, D.; Dousset, M. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires


    The rapid development of nuclear energy demands an urgent solution to the health problems arising from the discharge into the environment of radioactive residues produced by nuclear installations. - To be able to evaluate the risks run by the population and to fix tolerance limits for waste discharge, it is necessary to possess an exact knowledge of the course taken by the radioelements discharged, from their source until they reach man. The incorporation of radioelements in food cycles is the first risk to take into consideration. The factors involved in all stages of this transmission must be foreseen, whether they concern physical or biological media, because of their continuity and their interdependence. Finally, socio-economic and dietetic data must be collected in order that the risks and tolerance levels estimated are based on concrete and experimental rather than theoretical knowledge. The risk of nuclear accidents in the atomic industry, although very improbable, must be taken into consideration because of the seriousness of their consequences. The health problems arise in the field of professional hygiene on the one hand and in that of public hygiene on the other. In the first field the risk is two-fold and involves irradiation and contamination. The public sphere is reduced essentially to the risk of contamination by radioactive substances accidentally released in the surrounding medium. The health studies to be conducted in this field therefore include research not only on irradiation or contamination therapeutics but also on the transfer of radioelements from the accident site to man, mainly through food cycles, in their physical and in their biological components. Studies of this kind form the basis of decisions in the health field which would have to be taken in the case of an accident. (authors) [French] Le developpement rapide de l'energie nucleaire rend urgente la solution des problemes sanitaires poses par le rejet dans le milieu ambiant des

  19. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E


    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  20. Food irradiation

    Energy Technology Data Exchange (ETDEWEB)


    A brief article examines the controversy over food irradiation regarding the wholesomeness of irradiated food, its microbiological safety, loss of vitamins and changes in flavour. The benefits of food irradiation are also outlined including the destruction of certain food-borne pathogens and the prolongation of the shelf-life of food by killing pests and delaying the deterioration process.

  1. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap


    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  2. Characterization program, management and isotopic inventory calculation, radiological and fuel thermal irradiated in nuclear power Cofrentes; Programa Caracterizacion Gestion y calculo del inventario isotopico, radiologico y termico del combustible irradiado en la Central Nuclear de Cofrentes

    Energy Technology Data Exchange (ETDEWEB)

    Albendea, M.; Diego, J. L. de; Urrea, M.


    Characterization is a very detailed and user-friendly program takes into account the history of irradiation individualized and real all the fuel, even taking into account the interim periods are periods of discharge and recharge cycles and which have not been used.

  3. Combustion Research Facility (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  4. Simulation of the heat transfer of a irradiated fuel storage container with code CFD STAR- CCM+; Simulacion de la transferencia de calor de un contenedor de almacenamiento de combustible irradiado con el codigo CFD STAR-CCM+

    Energy Technology Data Exchange (ETDEWEB)

    Barrera matalla, J. E.; Hernandez Gomez, J.; Riverala Gurruchaga, J.


    Irradiated fuel has become an object of interest in the industry by the importance of ensuring its safety during long periods of storage time. New containers, stores, methods and codes will be used to ensure a suitable cooling and residual heat removal, and secure the safety of fuel elements in dry storage. The codes CFD (Computational Fluid Dynamics) have great potential to help in design of containers and stores, improving thermal-hydraulic performance and the extraction of heat generated.

  5. Flue gas cleaning by multiple irradiation with electron beam (United States)

    Paur, H.-R.; Baumann, W.; Mätzing, H.; Lindner, W.


    By electron beam treatment, NOx and SO2 can be reduced simultaneously from combustion flue gas. The efficiency of the process has been shown to improve by multiple irradiation. It appears most promising to perform the multiple irradiation with an intermediate gas scrubber. This paper reports experimental investigations on the efficiency of the intermediate filter.

  6. Experimental and theoretical study of metal combustion in oxygen flows

    CERN Document Server

    El-Rabii, Hazem; Muller, Maryse


    The effects of oxygen flow speed and pressure on the iron and mild steel combustion are investigated experimentally and theoretically. The studied specimens are vertical cylindrical rods subjected to an axial oxygen flow and ignited at the upper end by laser irradiation. Three main stages of the combustion process have been identified experimentally: (1) Induction period, during which the rod is heated until an intensive metal oxidation begins at its upper end; (2) Static combustion, during which a laminar liquid "cap" slowly grows on the upper rod end; and, after the liquid cap detachment from the sample, (3) Dynamic combustion, which is characterized by a rapid metal consumption and turbulent liquid motions. An analytical description of these stages is given. In particular, a model of the dynamic combustion is constructed based on the turbulent oxygen transport through the liquid metal-oxide flow. This model yields a simple expression for the fraction of metal burned in the process, and allows one to calcul...

  7. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M


    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  8. Contribution to the study of nuclear resonance in magnetic media (1963); Contribution a l'etude de la resonance nucleaire dans les milieux magnetique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann-Boutron, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    An attempt is made to interpret the results of nuclear magnetic resonance experiments made by various workers on ferro and ferrimagnetic compounds of the iron group. The problems encountered are the following: effects of the dipolar fields and the hyperfine structure anisotropy; signal intensity; frequency pulling due to the Suhl-Nakamura interaction between nuclear spins ; nuclear relaxation and ferrimagnetic resonance in single domain samples of impure YIG; nuclear relaxation in the Bloch walls of insulators. The results of our calculations are generally in good agreement with experiment. (author) [French] On se propose d'interpreter les resultats d'experiences de resonance magnetique nucleaire fates par divers auteurs sur des composes ferro et ferrimagnetiques du groupe du fer. Les problemes abordes sont les suivants: effets des champs dipolaires et de l'anisotropie de structure hyperfine; intensite des signaux; deplacement de frequence du a l'interaction de Suhl-Nakamura entre spins nucleaires; relaxation nucleaire et resonance ferrimagnetique dans les echantillons monodomaines de grenat de fer et d'yttrium impur; relaxation nucleaire dans les parois de Bloch des isolants. Les resultats des calculs sont generalement en bon accord avec l'experience. (auteur)

  9. Automatic classification process and device for nuclear fuel pellets; Procede et dispositif de tri automatique de pastilles de combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, M.; Bouvet, P.; Wache, C.


    The device arranges the fuel pellets in several parallel files. The end pellet of each file are then removed and aligned. These pellets are then simultaneously transferred on an optical inspection arrangement and are turned simultaneously for examination. The light signal is analysed to determine if each pellet is correct, acceptable or reject. The pellets are then held by individual grabs which displace to a separation system where the individual grabs are controlled to open in response to the result of the signal analysis. 13 figs.

  10. Combustion modeling in internal combustion engines (United States)

    Zeleznik, F. J.


    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  11. Boiler using combustible fluid (United States)

    Baumgartner, H.; Meier, J.G.


    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  12. Lump wood combustion process (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan


    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  13. Point defects and irradiation in oxides: simulations at the atomic scale; Defauts ponctuels et irradiation dans les oxydes: simulation a l'echelle atomique

    Energy Technology Data Exchange (ETDEWEB)

    Crocombette, J.P


    The studies done by Jean-Paul Crocombette between 1996 and 2005 in the Service de Recherches de Metallurgie Physique of the Direction de l'Energie Nucleaire in Saclay are presented in this Habilitation thesis. These works were part of the material science researches on the ageing, especially under irradiation, of oxides of interest for the nuclear industry. In this context simulation studies at the atomic scale were performed on two elementary components of ageing under irradiation : point defects and displacement cascades ; using two complementary simulation techniques : ab initio electronic structure calculations and empirical potential molecular dynamics. The first part deals with point defects : self defects (vacancies or interstitials) or hetero-atomic dopants. One first recalls the energetics of such defects in oxides, the specific features of defects calculations and the expected accuracy of these calculations. Then one presents the results obtained on uranium dioxide, oxygen in silver and amorphous silica. The second part tackles the modelling of disintegration recoil nuclei in various?displacement cascades created by crystalline matrices for actinide waste disposal. Cascade calculations give access to the amorphization mechanisms under irradiation of these materials. One thus predicts that the amorphization in zircon takes place directly in the tracks whereas in lanthanum zirconate, the amorphization proceeds through the accumulation of point defects. Finally the prospects of these studies are discussed. (author)

  14. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower


    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  15. Study of thick, nuclear-compensated silicon detectors; Etude des detecteurs epais au silicium compense nucleairement

    Energy Technology Data Exchange (ETDEWEB)

    Le Coroller, Y. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    A study is made here, from the point of view of the realization and the performance, of thick nuclear-compensated silicon detectors. After recalling the need for compensation and reviewing the existing methods, the author describes in detail the controlled realization of thick detectors by nuclear compensation from the theoretical and experimental points of view. The practical precautions which should be observed are given: control of the homogeneity of the starting material, control of the evolution of the compensation, elimination of parasitic processes. The performances of the detectors obtained are then studied: electrical characteristics (current, life-time) on the one hand, detection and spectrometry of penetrating radiations on the other hand. The results show, that the compensated diodes having an effective thickness of two millimeters operate satisfactorily as detectors for applied voltages of about 500 volts. The resolutions observed are then about 2 per cent for mono-energetic electrons and about 4 per cent for the gamma; they can be improved by the use of a pre-amplifier of very low background noise. (author) [French] Les detecteurs epais au silicium compense nucleairement sont etudies ici du double point de vue realisation et performances. Apres un rappel sur la necessite de la compensation et les procedes existants, la realisation controlee des detecteurs epais par compensation nucleaire est decrite en detail sous l'aspect theorique et l'aspect experimental. On met en evidence les precautions a prendre dans la pratique: controle de l'homogeneite du materiau de base, controle de l'evolution de la compensation, elimination des processus parasites. On etudie ensuite les performances de detecteurs obtenus : caracteristiques electriques (courant, duree de vie) d'une part, d'autre part detection et spectrometrie des rayonnements penetrants. Les resultats montrent que les diodes compensees ayant une epaisseur utile de deux

  16. Lectures on combustion theory

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, S.Z.; Lax, P.D.; Sod, G.A. (eds.)


    Eleven lectures are presented on mathematical aspects of combustion: fluid dynamics, deflagrations and detonations, chemical kinetics, gas flows, combustion instability, flame spread above solids, spark ignition engines, burning rate of coal particles and hydrocarbon oxidation. Separate abstracts were prepared for three of the lectures. (DLC)

  17. Strobes: An Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.|info:eu-repo/dai/nl/341356034; van Lingen, J.N.J.|info:eu-repo/dai/nl/311441769; Zevenbergen, J.F.; Gijzeman, O.L.J.|info:eu-repo/dai/nl/073464708; Meijerink, A.|info:eu-repo/dai/nl/075044986


    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  18. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.


    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  19. Rocket Combustion Chamber Coating (United States)

    Holmes, Richard R. (Inventor); McKechnie, Timothy N. (Inventor)


    A coating with the ability to protect (1) the inside wall (i.e., lining) of a rocket engine combustion chamber and (2) parts of other apparatuses that utilize or are exposed to combustive or high temperature environments. The novelty of this invention lies in the manner a protective coating is embedded into the lining.

  20. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B


    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  1. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt


    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  2. Modeling of the PWR fuel mechanical behaviour and particularly study of the pellet-cladding interaction in a fuel rod; Contribution a la modelisation du comportement mecanique des combustibles REP sous irradiation, avec en particulier le traitement de l`interaction pastille-gaine dans un crayon combustible

    Energy Technology Data Exchange (ETDEWEB)

    Hourdequin, N.


    In Pressurized Water Reactor (PWR) power plants, fuel cladding constitutes the first containment barrier against radioactive contamination. Computer codes, developed with the help of a large experimental knowledge, try to predict cladding failures which must be limited in order to maintain a maximal safety level. Until now, fuel rod design calculus with unidimensional codes were adequate to prevent cladding failures in standard PWR`s operating conditions. But now, the need of nuclear power plant availability increases. That leads to more constraining operating condition in which cladding failures are strongly influenced by the fuel rod mechanical behaviour, mainly at high power level. Then, the pellet-cladding interaction (PCI) becomes important, and is characterized by local effects which description expects a multidimensional modelization. This is the aim of the TOUTATIS 2D-3D code, that this thesis contributes to develop. This code allows to predict non-axisymmetric behaviour too, as rod buckling which has been observed in some irradiation experiments and identified with the help of TOUTATIS. By another way, PCI is influenced by under irradiation experiments and identified with the help of TOUTATIS which includes a densification model and a swelling model. The latter can only be used in standard operating conditions. However, the processing structure of this modulus provides the possibility to include any type of model corresponding with other operating conditions. In last, we show the result of these fuel volume variations on the cladding mechanical conditions. (author). 25 refs., 89 figs., 2 tabs., 12 photos., 5 appends.

  3. Irradiation subassembly (United States)

    Seim, O.S.; Filewicz, E.C.; Hutter, E.


    An irradiation subassembly for use in a nuclear reactor is described which includes a bundle of slender elongated irradiation -capsules or fuel elements enclosed by a coolant tube and having yieldable retaining liner between the irradiation capsules and the coolant tube. For a hexagonal bundle surrounded by a hexagonal tube the yieldable retaining liner may consist either of six segments corresponding to the six sides of the tube or three angular segments each corresponding in two adjacent sides of the tube. The sides of adjacent segments abut and are so cut that metal-tometal contact is retained when the volume enclosed by the retaining liner is varied and Springs are provided for urging the segments toward the center of the tube to hold the capsules in a closely packed configuration. (Official Gazette)

  4. Control of the neutronic and thermohydraulic conditions of power ramps in an irradiation loop for PWR fuel rod; Controle des conditions neutroniques et thermohydrauliques des rampes de puissance dans une boucle d`irradiation de combustibles de reacteur a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, D.J.F.


    In order to study the power transients effects on PWR fuel rod clad, ramp tests in a pressurized water loop, are carried out at OSIRIS reactor. The present thesis deals with the on-line control of the device, during power ramp and conditioning irradiation. Based on a convolution-type resolution of the kinetics equations, a dynamic compensation of the Silver self-powered neutron detector was developed. With this method, the uncertainty of the ramp end-point is lower than 1%, thus it is very suited for monitoring both transient, as well as steady state conditions. Furthermore, a thermohydraulic model of the irradiation device is described: heat transfer equations, including gamma heating in materials, are solved to obtain temperatures and thermal fluxes of steady states. Results from the model and temperature measurements of the coolant are used together for fuel power determination, in real time. The clad external temperature profile is also calculated and displayed, to improve the irradiation monitoring. (author), 51 refs., 12 annexes, 66 figs.

  5. Analytic catalog for the use of the nuclear physicists; Repertoire analytique a l'usage des physiciens nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Ballini, R.; Barloutaud, R.; Bernas, R.; Chaminade, R.; Cohen, R.; Conjeaud, M.; Cotton, E.; Faraggi, H.; Grjebine, T.; Laboulaye, H. de; Lehmann, P.; Leveque, A.; Levi, C.; Moreau, J.; Naggiar, V.; Olkowsky, J.; Papineau, L.; Papineau, L.; Prugne, P.; Schuhl, C.; Szteinsznaider, D.; Tzara, C.; Valladas, G. [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires; Marty, N.; Renard, G. [College de France, Lab. de Chimie Nucleaire (France)


    The problem of the documentation in nuclear physics becomes constantly more complex. Every week brings its share of publications, always more numerous and more varied. To remedy to this problem, we tried, at the Nuclear Physics Services of the CEA, to give to the documentation the character of a collective and systematized work. The present report covers the literature appeared between January 1, 1950 and July 1, 1951. (Volume 1: CEA report number 120; Volume 2: CEA report number 184). (M.B.) [French] Le probleme de la documentation en physique nucleaire devient sans cesse plus complexe. Chaque semaine apporte son lot de publications, toujours plus nombreuses et plus diversifiees. C'est pour essayer de porter remede a cet etat de choses que nous avons essaye, au service de Physique Nucleaire du C.E.A., de donner a la documentation le caractere d'un travail collectif systematise. Le present rapport couvre la litterature parue entre le 1 Janvier 1950 et le 1 Juillet 1951. (Tome 1: Rapport CEA numero 120; Tome 2: Rapport CEA numero 184). (M.B.)

  6. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)



    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  7. Combustion Technology Outreach (United States)


    Lewis' High Speed Research (HSR) Propulsion Project Office initiated a targeted outreach effort to market combustion-related technologies developed at Lewis for the next generation of supersonic civil transport vehicles. These combustion-related innovations range from emissions measurement and reduction technologies, to diagnostics, spray technologies, NOx and SOx reduction of burners, noise reduction, sensors, and fuel-injection technologies. The Ohio Aerospace Institute and the Great Lakes Industrial Technology Center joined forces to assist Lewis' HSR Office in this outreach activity. From a database of thousands of nonaerospace firms considered likely to be interested in Lewis' combustion and emission-related technologies, the outreach team selected 41 companies to contact. The selected companies represent oil-gas refineries, vehicle/parts suppliers, and manufacturers of residential furnaces, power turbines, nonautomobile engines, and diesel internal combustion engines.

  8. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)


    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  9. Environmentally conscious coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hickmott, D.D.; Brown, L.F.; Currier, R.P. [and others


    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  10. Combustion and regulation; Combustion et reglementation

    Energy Technology Data Exchange (ETDEWEB)



    This conference was organized after the publication of the French by-law no 2010 relative to combustion installations and to the abatement of atmospheric pollution. Five topics were discussed during the conference: the new regulations, their content, innovations and modalities of application; the means of energy suppliers to face the new provisions and their schedule; the manufacturers proposals for existing installations and the new equipments; the administration control; and the impact of the new measures on exploitation and engineering. Twenty papers and 2 journal articles are reported in these proceedings. (J.S.)

  11. Combustible structural composites and methods of forming combustible structural composites (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David


    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  12. Internal combustion engine (United States)

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.


    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  13. Fluidised Bed Combustion: A Novel Technology for the Combustion ...

    African Journals Online (AJOL)

    A firing technology, which is increasingly becoming popular for the combustion of fuels with difficult combustion properties, is fluidised bed combustion (FBC). In the current paper, the special features of FBC have been reviewed and their advantages as compared to conventional firing systems highlighted. This has been ...

  14. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani


    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  15. Scramjet Combustion Processes (United States)


    Propulsion a vitesse elevee : Conception du moteur - integration et gestion thermique ) 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF...entrance to the combustion duct, where the production of the chemical radicals, which are a first stage in Scramjet Combustion Processes RTO-EN-AVT-185...314KM) Nosecone Eject (47SEC,73KM,M7.7) Orion Burnout (39SEC,56KM,M7.1) Orion Ignition (12SEC,9.4KM,M3.2) Terrier Ignition (0SEC,0KM,M0) Stage

  16. Radiative Augmented Combustion. (United States)


    86-0085 In 00I to RADIATIVE AUGMENTED COMBUSTION MOSHE LAVID M.L. ENERGIA , INC. P.O. BOX 1468 1 PRINCETON, NEW JERSEY 08542 AUGUST 1985 *.. plo...Combustion conducted at M.L. ENERGIA . It is funded by the Air Force Office of Scientific Research under Contract No. F49620-83-C-0133, with Dr. J.M...reported. It covers the second year of the contract, from July 15, 1984 through July 14, 1985. The work was performed at ENERGIA , Princeton, New Jersey

  17. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)


    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  18. Toxicology of Biodiesel Combustion products (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  19. The irradiated of the Republic. The victims of french nuclear tests speak; Les irradies de la Republique. Les victimes des essais nucleaires francais prennent la parole

    Energy Technology Data Exchange (ETDEWEB)

    Barrillot, B


    This work is devoted to the sanitary consequences of the French nuclear tests on the young soldiers low or not informed on the biological effects of radiations. It is separated in two parts: the first one concern the tests in Algeria ( with the underground explosions at In Eker and the Beryl accident) the second part is relative to the nuclear tests in Polynesia ( the low protected activities and the Meknes accident). (N.C.)

  20. Fuel-Rich Catalytic Combustion (United States)

    Brabbs, Theodore A.; Olson, Sandra L.


    Two-stage combustion system reduces particulate emissions. Program on catalytic oxidation of iso-octane demonstrates feasibility of two-stage combustion system for reducing particulate emissions. With fuel-rich (fuel/air equivalence ratios of 4.8 to 7.8) catalytic-combustion preburner as first stage, combustion process free of soot at reactor-outlet temperatures of 1,200 K or less.

  1. Dual-Pump CARS Development and Application to Supersonic Combustion (United States)

    Magnotti, Gaetano; Cutler, Andrew D.


    A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  2. Coal combustion research

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C.S.


    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  3. Nonlinear Combustion Instability Prediction (United States)

    Flandro, Gary


    The liquid rocket engine stability prediction software (LCI) predicts combustion stability of systems using LOX-LH2 propellants. Both longitudinal and transverse mode stability characteristics are calculated. This software has the unique feature of being able to predict system limit amplitude.

  4. Supersonic Combustion Ramjet Research (United States)


    engine). As noted above in USAF scramjet flight scenarios , high vehicle heat loads will ensure that the fuel (initially a liquid hydrocarbon such as a... cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” Paper B13, 5th US Combustion

  5. Phytosanitary Irradiation

    Directory of Open Access Journals (Sweden)

    Guy J. Hallman


    Full Text Available Phytosanitary treatments disinfest traded commodities of potential quarantine pests. Phytosanitary irradiation (PI treatments use ionizing radiation to accomplish this, and, since their international commercial debut in 2004, the use of this technology has increased by ~10% annually. Generic PI treatments (one dose is used for a group of pests and/or commodities, although not all have been tested for efficacy are used in virtually all commercial PI treatments, and new generic PI doses are proposed, such as 300 Gy, for all insects except pupae and adult Lepidoptera (moths. Fresh fruits and vegetables tolerate PI better than any other broadly used treatment. Advances that would help facilitate the use of PI include streamlining the approval process, making the technology more accessible to potential users, lowering doses and broadening their coverage, and solving potential issues related to factors that might affect efficacy.

  6. Sulfur Chemistry in Combustion I

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Glarborg, Peter


    Most fossil fuels contain sulphur and also biofuels and household waste have a sulphur content. As a consequence sulphur species will often be present in combustion processes. In this paper the fate and influence of fuel sulphur species in combustion will be treated. First a description...... of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...

  7. Low emission internal combustion engine (United States)

    Karaba, Albert M.


    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  8. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.


    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  9. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.


    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  10. Premixed Supersonic Combustion (Rev) (United States)


    lean and low temperature flameout points). Figure 11. Chemiluminescence image (0.6 ms capture) at global φ = 0.41 (cavity-side = 0.27...mixing can still be rate-controlling if the flow temperature is high or if a flame holder is present and there is an adequate source of combustion... temperature associated with kinetic energy and ΔTc is the change in temperature associated with the chemistry [3]. If the rise in temperature

  11. Theory of Combustion Noise (United States)


    The overall sound generation processes have been classi- fied in terms of the sound due to an isolated turbulent flame and that due to the...of the fluid mechanics of the reacting gas. The overall sound generation processes have been classified in terms of the sound due to an isolated ...steady intercoupling between various aerothermochemical modes excited in the combustion zone. To be specific, the non-steady exo- thermic and

  12. Combustion science and engineering

    CERN Document Server

    Annamalai, Kalyan


    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  13. Combustion Characteristics of Sprays (United States)


    regarded by implication or otherwise, or in any way licensing the holder or any other person or corporation, or conveying any rights or permission to...00 _’N 1. TI TLE inctuat Security CZaaafication5 Combustion Characteristics of Sprays 12. PERSONAL AUTHOR(S) Sohrab, Siavash H. 13& TYPE OF ?!HF of rich butane/air 3unsen flames. .lso, the rotacion speed and :he oerodic temDeracure fluc:uations of rotacfng ?HF are examined. :’!naily

  14. Strobes: an oscillatory combustion. (United States)

    Corbel, Justine M L; Lingen, Joost N J; Zevenbergen, John F; Gijzeman, Onno L J; Meijerink, Andries


    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the beginning of the 20th century. However, the chemical and physical processes involved in this curious oscillatory combustion remain unknown. Several theories have been proposed: One claims that two different reactions occur: one during the slow dark phase and another during the fast flash phase. The alternation between the phases is ascribed to heat variations. Other theories suggest that the formation of intermediate species during the dark phase and the change of phase are caused by variations in their concentration. A ternary strobe composition with ammonium perchlorate, magnalium, and barium sulfate is analyzed. The role of barium sulfate is studied by replacing it by other metal sulfates that have different physical properties (melting points), and the burning of the compositions is recorded with a high-speed camera and a spectrometer coupled with a charge-coupled device (CCD) camera. Experimental results show noticeable differences in the physical and chemical processes involved in the strobe reactions.

  15. Internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C.L.


    Current worldwide production of internal combustion piston engines includes many diversified types of designs and a very broad range of sizes. Engine sizes range from a few horsepower in small mobile units to over 40,000 brake horsepower in large stationary and marine units. The key characteristics of internal combustion piston engines considered appropriate for use as prime movers in Integrated Community Energy Systems (ICES) are evaluated. The categories of engines considered include spark-ignition gas engines, compression-ignition oil (diesel) engines, and dual-fuel engines. The engines are evaluated with respect to full-load and part-load performance characteristics, reliability, environmental concerns, estimated 1976 cost data, and current and future status of development. The largest internal combustion piston engines manufactured in the United States range up to 13,540 rated brake horsepower. Future development efforts are anticipated to result in a 20 to 25% increase in brake horsepower without increase in or loss of weight, economy, reliability, or life expectancy, predicated on a simple extension of current development trends.

  16. Issues in waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Robertson, Kerstin; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Sundquist, Lena; Wrangensten, Lars [AaF-Energikonsult AB, Stockholm (Sweden); Blom, Elisabet [AaF-Processdesign AB, Stockholm (Sweden)


    The main purpose of this review is to provide an overview of the state-of-the-art on research and development issues related to waste combustion with relevance for Swedish conditions. The review focuses on co-combustion in grate and fluidised bed furnaces. It is primarily literature searches in relevant databases of scientific publications with to material published after 1995. As a complement, findings published in different report series, have also been included. Since the area covered by this report is very wide, we do not claim to cover the issues included completely and it has not been possitile to evaluate the referred studies in depth. Basic knowledge about combustion issues is not included since such information can be found elsewhere in the literature. Rather, this review should be viewed as an overview of research and development in the waste-to-energy area and as such we hope that it will inspire scientists and others to further work in relevant areas.

  17. Spray combustion stability (United States)

    Liang, Pak-Yan; Jeng, S. M.; Litchford, Ronald


    The central purpose of this project is the improvement of liquid-fueled rocket motor design technology in order to assist the establishment of economical commercial access to space through the development of engines with enhanced performance and reliability. Specific research effort in the project is focused on spray physics and associated combustion instability phenomena. Results garnered from this work will contribute to the development of new computational tools for design of stable liquid propellant rocket engines. The specific objectives of the research effort include identifying and evaluating physical submodels which pertain to spray combustion stability with the idea of enhancing or refining existing submodels with a more comprehensive approach. In particular, any refinements to the spray combustion physical submodels which are achieved during the project will be channeled back to Rocketdyne for incorporation in their ARICC liquid rocket combustor code as second generation improvements. Also, as the ARICC code forms the basis or future CFD development, some effort is devoted to an evaluation of the code's capability for modeling oscillating pressure waves within the combustor.

  18. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang


    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  19. Internal combustion engine using premixed combustion of stratified charges (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI


    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  20. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris


    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  1. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail:;


    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  2. Nuclear developments at the international inter govern mental level (1961); Developpements nucleaires sur le plan international intergouvernemental (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Waynbaum, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    The United Nations organisation and nuclear energy rose simultaneously, in 1945, to occupy an important place in the public eye. The spiritual succession of the League of Nations which had foundered during the war was taken up by the new organisation which sought to implant its political ideal in a more tangible reality, so that it might thereby be inspired by concrete and substantial objectives. This is one of the reasons for the existence of the dozen specialized agencies created by the family of the United Nations and dealing with Health, Culture, Agriculture, Finance, etc. Nuclear energy is one of these techniques. Becoming suddenly an important power factor and exploiting for itself the prestige of Science, it became the favorite domain for the growth of this new spirit, as much in its universal form in 1945 as in its more regional form which it was later to adopt. The achievements are numerous and of varying importance; they deserve te be studied carefully. (author) [French] L'organisation des Nations Unies et le nucleaire ont ete places simultanement, en 1945, au premier plan de la scene mondiale. La Societe des Nations ayant sombre pendant la guerre, son heritage spirituel fut recueilli par la nouvelle organisation qui chercha a enraciner son ideal politique dans une realite plus materielle, de facon a y puiser une nourriture concrete et substantielle. C'est une des raisons d'existence de la douzaine d'institutions specialisees gravitant dans la famille des Nations Unies et s'occupant de Sante, de Culture, d'Agriculture, de Finances, etc. Le nucleaire est l'une de ces techniques. Devenu soudainement un facteur primordial de puissance, Cristallisant a son benefice le prestige de la Science, c'etait un terrain de predilection pour le developpement du nouvel esprit, aussi bien sous la forme universelle de 1945, que sous les formes regionales qui ont vu le jour ensuite. Les travaux realises que nombreux, d

  3. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika


    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  4. Combustion from basics to applications

    CERN Document Server

    Lackner, Maximilian; Winter, Franz


    Combustion, the process of burning, is defined as a chemical reaction between a combustible reactant (the fuel) and an oxidizing agent (such as air) in order to produce heat and in most cases light while new chemical species (e.g., flue gas components) are formed. This book covers a gap on the market by providing a concise introduction to combustion. Most of the other books currently available are targeted towards the experienced users and contain too many details and/or contain knowledge at a fairly high level. This book provides a brief and clear overview of the combustion basics, suitable f

  5. The modes of gaseous combustion

    CERN Document Server

    Rubtsov, Nickolai M


    This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.

  6. Active Combustion Control Valve Project (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the operational...

  7. Light Duty Efficient, Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, Donald W. [Cummins Inc., Columbus, IN (United States)


    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of our objectives were met with fuel efficiency improvement targets exceeded.

  8. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao


    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  9. Microgravity Smoldering Combustion Takes Flight (United States)


    The Microgravity Smoldering Combustion (MSC) experiment lifted off aboard the Space Shuttle Endeavour in September 1995 on the STS-69 mission. This experiment is part of series of studies focused on the smolder characteristics of porous, combustible materials in a microgravity environment. Smoldering is a nonflaming form of combustion that takes place in the interior of combustible materials. Common examples of smoldering are nonflaming embers, charcoal briquettes, and cigarettes. The objective of the study is to provide a better understanding of the controlling mechanisms of smoldering, both in microgravity and Earth gravity. As with other forms of combustion, gravity affects the availability of air and the transport of heat, and therefore, the rate of combustion. Results of the microgravity experiments will be compared with identical experiments carried out in Earth's gravity. They also will be used to verify present theories of smoldering combustion and will provide new insights into the process of smoldering combustion, enhancing our fundamental understanding of this frequently encountered combustion process and guiding improvement in fire safety practices.

  10. Radiation damage effects on CMS sensors quality assurance and irradiation tests

    CERN Document Server

    Furgeri, Alexander J; de Boer, Wim; Forton, E; Freudenstein, S; Hartmann, F


    The Large Hadron Collider (LHC) at the Centre Europeenne pour la Recherche Nucleaire (CERN), Geneva, Switzerland, is a proton-proton collider with a luminosity of 10**3**4/cm**2s and will be working for ten years (starting in 2007). The Compact Muon Solenoid (CMS) will be one of the four general-purpose detectors. The CMS tracker consists of ten barrel layers, plus 2 multiplied by 9 end cap discs, which amounts to a total of 24 328 silicon sensors with a total area of 206 m**2 silicon, covering a pseudorapidity of vertical bar eta; vertical bar less than approximately equals 2.5. For the sensors close to the beam pipe, fluences of 1.6 center dot 10**1**4n//1 MeV/cm**2 are expected over the ten-year lifetime. To guarantee the functionality of the single-side silicon sensors during the runtime of the LHC, quality assurance was developed. In the two Irradiation Qualification Centers (IQCs) in Karlsruhe, Germany, and Louvain-la-Neuve, Belgium, a fraction of 1% of the sensors are electrically qualified. In Karlsru...

  11. Some aspects of the nuclear fission process; Quelques aspects du processus de fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Netter, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    In the following report one can find first a short general view on the present situation of our knowledge concerning the nuclear fission process, namely on the nucleus going through the saddle-point. Then there are some aspects connected with the excitation energy of the fissioning nucleus. The measurements made at Saclay on the fast neutron fission cross-section of U{sup 233}, U{sup 235}, Pu{sup 239}, U{sup 238} are described at the beginning of this work. It appears that for U{sup 233} there is some characteristic shape modulation of the cross-section curve, in relation with the collective excited state of the deformed nucleus at the saddle-point. Good evidence of this is also given by the study of the relative fission rate with emission of long-range particles; it appears also that this ternary fission rate does not change substantially for neutron between thermal energy and 2 MeV, but that is very lower for the compound nucleus U{sup 239} than for even-even compound nuclei. At the end there are some experiments on the strong 4,5 MeV gamma-ray originated by slow neutron absorption in U{sup 235}. Time-of-flight device is used to establish that this 4,5 MeV gamma-ray seems mostly connected with radiative capture. (author) [French] Le present travail debute par un apercu de l'etat actuel de nos connaissances sur le processus de fission nucleaire, notamment sur le passage par le point-seuil. Puis sont evoques des aspects lies au niveau d'energie d'excitation auquel est porte le noyau qui subit la fission. Les mesures de sections efficaces de fission induite dans {sup 233}U, {sup 235}U, {sup 239}Pu et {sup 238}U par des neutrons rapides effectuees a Saclay sont decrites en premier lieu; elles font apparaitre pour {sup 233}U une ondulation caracteristique du role des etats collectifs d'excitation du noyau deforme au point-seuil. Des experiences sur la fission avec emission de particules de long parcours confirment cet aspect tout en demontrant que

  12. Volumetric Combustion Diagnostics (United States)


    i.e., the central plane of the burner and the plane where the PLIF measurement was taken) was extracted and plotted in Fig. 7b. Fig. 7c directly...Hsu, Particle Image Velocimetry in a Nonreacting and Reacting High-Speed Cavity, Journal of Propulsion and Power, 30(3) (2014) 576-591. [7] Y.W...quantitative laser sensors to kinetics, propulsion and practical energy systems, Proceedings of the Combustion Institute, 33(1) (2011) 1-40. [13] A.W

  13. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)


    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  14. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.


    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  15. Some Factors Affecting Combustion in an Internal-Combustion Engine (United States)

    Rothrock, A M; Cohn, Mildred


    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.


    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  17. Plasma igniter for internal-combustion engines (United States)

    Breshears, R. R.; Fitzgerald, D. J.


    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  18. Combustion of Methane Hydrate (United States)

    Roshandell, Melika

    A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding

  19. Manifold methods for methane combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)


    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  20. Liquid propellant rocket combustion instability (United States)

    Harrje, D. T.


    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  1. Public debate about the EPR nuclear power plant at Flamanville; Debat public sur la centrale nucleaire EPR a Flamanville

    Energy Technology Data Exchange (ETDEWEB)



    The project of building of he EPR reactor at Flamanville (Manche, France) has been submitted to the public debate. This document includes a presentation of the project and of the rules of the public debate, a synthesis of the file made by the prime contractor (EDF), a synthesis of the collective book of national actors concerned by the project (a group of associations for environment protection, Areva company, the ministries of economy and ecology, Global Chance, association of pro-nuclear ecologists (AEPN), 'Sortir du Nucleaire' (out-of nuclear) network, group of scientists for the information about nuclear (GSIEN), association for the promotion of the Flamanville site (Proflam), French nuclear energy society (SFEN) in association with 'Sauvons le Climat' (let's save climate), regional collective association 'EPR non merci, ni ailleurs, ni ici' (EPR, no thanks, neither elsewhere, nor here), NegaWatt), and 5 detailed books of actors: ACRO (association for the control of radioactivity in Western France), CFDT and CGT syndicates, the economic and social council of Basse Normandie region, and Proflam. (J.S.)

  2. Combustion & Laser Diagnostics Research Complex (CLDRC) (United States)

    Federal Laboratory Consortium — Description: The Combustion and Laser Diagnostics Research Complex (CLRDC) supports the experimental and computational study of fundamental combustion phenomena to...

  3. Report of unusual events in Dutch nuclear installations in 2004 (Report of failures 2004); Rapportage van ongewone gebeurtenissen in de Nederlandse nucleaire installaties gedurende 2004 (Storingsrapportage 2004)

    Energy Technology Data Exchange (ETDEWEB)



    No unusual events occurred in the Dutch nuclear power plant Borssele in 2004, which required special safety measures. Eight events in the Borssele reactor were reported to the 'Kernfysische Dienst' (Nuclear Physics Service). 13 events were reported by other nuclear installations. [Dutch] Er hebben zich in 2004 in de kernenergiecentrale Borssele en de overige Nederlandse nucleaire installaties geen ongewone gebeurtenissen voorgedaan die bijzondere veiligheidsmaatregelen noodzakelijk maakten. Ook hadden de gebeurtenissen, met uitzondering van de niet voorziene verschoning van een opslagbassin, geen nadelige gevolgen voor de omgeving. De bedrijfsvoering werd door het nemen van passende maatregelen verbeterd. Over 2004 zijn acht (vorig jaar zes) gebeurtenissen in de kernenergiecentrale Borssele schriftelijk aan de Kernfysische Dienst gemeld. Door de overige nucleaire installaties zijn dertien (vorig jaar twaalf) gebeurtenissen gemeld. Het totaal aantal storingsmeldingen is de laatste zeven jaren niet wezenlijk af- of toegenomen. De drie meldingen aangeduid met inschaling >0 zijn allemaal meldingen van INES-niveau 1; er deden zich geen incidenten voor van INES-niveau 2 of 3.

  4. From the coupling between ion beam analysis techniques and physico-chemical characterization methods to the study of irradiation effects on materials behaviour; Du couplage des techniques d'analyse par faisceaux d'ions et des methodes de caracterisation physico-chimique a l'etude des effets d'irradiation sur le comportement des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Millard-Pinard, N


    The general purpose of my research work is to follow and to interpret the surface evolution of materials, which have received several treatments. During my PhD and my post-doc work, my field of research was tribology. Since I arrived in the 'Aval du Cycle Electronucleaire' group of the Institut de Physique Nucleaire de Lyon, my research activities are in line with the CNRS program 'PACE ' (Programme sur l'Aval du Cycle Electronucleaire) within the ACTINET network. They are coordinated by the PARIS (Physico-chimie des actinides et autres radioelements en solution et aux interfaces) and NOMADE (NOuveaux MAteriaux pour les DEchets) GDR with ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), EDF and IRSN (Institut de Radioprotection et de Surete Nucleaire) as partner organisations. My work focused on the study of fission products and actinides migration in barrier materials, which may be capable of assuring the long term safety of deep geological repositories. Until now, it was necessary to use the coupling of ion beam analysis techniques and physico-chemical characterization techniques. During the last few months, I have became interested in understanding radiolytic effects. This new orientation has led us to use ion beams as an irradiating tool. These irradiation experiments are pursued in three major projects. The study of cobalt sulfide inhibition effects of radiolysis gas production during the irradiation of model organic molecules. This is a collaboration with the IRSN, the Institut de Recherche sur la Catalyse and the Ecole Nationale Superieure des Mines de Saint-Etienne. A PhD, co-directed by M. Pijolat from ENSMSE and myself, concerning this study will start in October 2003. Water radiolysis effects on iron corrosion are also studied in the particular case of vitrified nuclear waste containers, which will be stored in deep geological repositories. One ANDRA financed PhD, co-directed by Nathalie Moncoffre and myself, is

  5. Fabrication and characterization of oxide type fluorite with controlled porosity to study the mechanical behaviour of the fuel irradiated in storage conditions; Fabricacion y caracterizacion de oxidos tipo fluorita con porosidad controlada para estudiar el comportamiento mecanico del combustible irradiado en condiciones de almacenamiento

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S.; Borjas, S.; Gutierrez, L.; Bonales, L. J.; Rodriguez, N.; Cobo, J. M.; Torres, Y.; Cobos, J.


    The objective of this research is to get pills with distribution of porosity to simulate mechanical properties in the irradiated fuel resulting from own burnt of the material to produce the release of fission gases. (Author)

  6. Spying on spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)


    The British Coal Technical Services and Research Executive (TSRE) has carried out a project to investigate potential applications of fibre optic based distributed temperature sensing (DTS) technology within a mining environment. The objective was to determine whether DTS could identify and locate spontaneous combustion earlier than conventional systems. The trials took place in a British mine from April to September 1992 and from August to November 1993 using a commercially available system from York Sensors Ltd. Results indicate that DTS is capable of very sensitive temperature monitoring, revealing sub-degree thermal trends resulting from various activities and local heatings. DTS has several prospective mining applications, e.g. monitoring known hot spots, investigating ventilation and heat flow through mine workings. The trials show that the system can be installed, calibrated, operated and maintained by relatively inexperienced personnel. 1 photo.

  7. Forced cocurrent smoldering combustion (United States)

    Dosanjh, Sudip S.; Pagni, Patrick J.; Fernandez-Pello, A. Carlos


    An analytical model of cocurrent smoldering combustion through a very porous solid fuel is developed. Smoldering is initiated at the top of a long radially insulated uniform fuel cylinder, so that the smolder wave propagates downward, opposing an upward-forced flow of oxidizer, with the solid fuel and the gaseous oxidizer entering the reaction zone from the same direction (hence, cocurrent). Radiative heat transfer was incorporated using a diffusion approximation, and smoldering was modeled using a one-step reaction mechanism. The results indicate that, for a given fuel, the final temperature depends only on the initial oxygen mass flux, increasing logarithmically with the mass flux. The smolder velocity is linearly dependent on the initial oxygen mass flux, and, at a fixed value of the flux, increases with initial oxygen mass fraction. The mathematical relationship determining the conditions for steady smolder propagation is presented.

  8. Filtration combustion: Smoldering and SHS (United States)

    Matkowsky, Bernard J.


    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of combustion waves propagating in porous media. When delivery of reactants through the pores to the reaction site is an important aspect of the process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to insure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application may well differ. For example, smoldering generally occurs at a relatively low temperature and with a smaller propagation velocity than SHS filtration combustion waves. Nevertheless, the two areas of application have much in common, so that mechanisms learned about in one application can be used to advantage in the other. In this paper we discuss recent results in the areas of filtration combustion.

  9. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik


    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  10. On Lean Turbulent Combustion Modeling

    Directory of Open Access Journals (Sweden)

    Constantin LEVENTIU


    Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.

  11. Combustion of Solid Propellants (La Combustion des Propergols Solides) (United States)


    poudres modificateurs balistiques, des noirs de A mouler de caract~ristiques volontairement carbone sont souvent incorpor~s car ils ont diffdrontes antilueurs (suppresseurs de la post noir de carbone eat souvent utilisd combustion). Ceux-ci, g~ndralement des sels industriellemont comae param...devient compressible at is vitesse de combustion Pour 6tablir un bilan sur le risque eat modifide. La figure 7 illustre cet d’appariticn d’instabilit~s

  12. An Analysis of the Thermal and Structure Behaviour of the UO{sub 2}-PuO{sub 2}-Fuel in the Irradiation Experiment of the UO{sub 2}-PuO{sub 2}-Fuel in the Irradiation Experiment FR2 Capsule Test Series 5a; Analisis termico y estructural del combustible UO{sub 2}-PuO{sub 2} irradiado en el reactor FR2 dentro del experimento KVE-Vg.5a

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, J.; Helmut, E.


    In the Karlsruhe research reactor FR2 nine fuel pins were irradiated within three irradiation capsules in the course of the test series 5a. The pins contained UO{sub 2}-PuO{sub 2} fuel pellets. They reached bump values of about 6, 17 and 47 Mwd/Kg Me with linear rod powers of 400 to 600 W/cm and clad surface temperature between 500 and 700 degree centigree. A detailed analysis of the fuel structuration data (columnar-grain and equiaxed- -grain growth regions) have allowed to determine, with the help of physic-mathematical models, the radii of these regions and the heat transfer through the contact zone between fuel and clad depending on the bump. The results of the analysis showed that the fuel surface temperature rose with increasing burnup. (Author) 16 refs.

  13. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)


    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  14. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.


    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  15. Optical device and process for automatic classification of nuclear fuel pellets; Procede et dispositif optiques de classification automatique de pastilles cylindriques de combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, M.; Bouvet, P.; Wache, C.


    The pellets are turned about their axes and a flat beam is focused onto a generator line of the cylinder. The uniformly reflected light, along an extended zone, of a perfect pellet is received. Surface defects are determined by the variation of reflected light and size or nature of any fault can be determined. 7 figs.

  16. Production and validation of nuclear data for reactor and fuel cycle applications; Production et validation des donnees nucleaires pour les applications reacteurs et cycle du combustible

    Energy Technology Data Exchange (ETDEWEB)

    Trakas, C. [Framatome ANP GmbH NBTT, Erlangen (Germany); Verwaerde, D. [Electricite de France EDF, 75 - Paris (France); Toubon, H. [Cogema, 78 - Velizy Villacoublay (France)] [and others


    The aim of this technical meeting is the improvement of the existing nuclear data and the production of new data of interest for the upstream and downstream of the fuel cycle (enrichment, fabrication, management, storage, transport, reprocessing), for the industrial reactors, the research reactors and the new reactor concepts (criticality, dimensioning, exploitation), for the instrumentation systems (external and internal sensors), the radioprotection, the residual power, the structures (neutron bombardment effect on vessels, rods etc..), and for the activation of steel structures (Fr, Ni, Co). The expected result is the collection of more reliable and accurate data in a wider spectrum of energies and temperatures thanks to more precise computer codes and measurement techniques. This document brings together the communications presented at this meeting and dealing with: the process of production and validation of nuclear data; the measurement facilities and the big international programs; the users needs and the industrial priorities; the basic nuclear data (BND) needs at Cogema; the expression and evaluation of BND; the evaluation work: the efficient cross-sections; the processing of data and the creation of activation libraries; from the integral measurement to the qualification and the feedback on nuclear data. (J.S.)

  17. Dosimetry surveillance of workers in the installations downstream of the fuel cycle; Surveillance dosimetrique des travailleurs de l`aval du cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Ph. [CEA Centre de La Hague, 50 - Cherbourg (France). Section Medicale et Sociale; Raynaud, P. [Compagnie Generale des Matieres Nucleaires (COGEMA), 30 - Bagnols-sur-Ceze (France). Etablissement de Marcoule; Gelas, J.M. [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 -Velizy-Villacoublay (France)


    In this article is described the implementation of radiological protection of workers in the installations downstream of the fuel cycle. The two nuclear facilities are Cogema La Hague and Cogema Marcoule. The description of surveillance and medical examinations are given by two doctors, and concerns personnel who are directly affected on ionizing radiations. (N.C.).

  18. The future of the nuclear wastes and the spent fuels at the United States; Le devenir des dechets nucleaires et des combustibles uses aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)



    The USA regulation distinguishes three classes of nuclear wastes: the low activity wastes under the federal states control, the wastes contaminated by long life radionuclides (transuranic elements) and the high activity wastes. The two last classes are controlled by the DOE (Department of energy). The different classes management are discussed as the DOE obligations towards the operators, the storage project of Yucca Mountain and Private fuel storage of Skull Valley. (A.L.B.)

  19. Fifth International Microgravity Combustion Workshop (United States)

    Sacksteder, Kurt (Compiler)


    This conference proceedings document is a compilation of 120 papers presented orally or as poster displays to the Fifth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 18-20, 1999. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from at least eight international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for the Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  20. Sixth International Microgravity Combustion Workshop (United States)

    Sacksteder, Kurt (Compiler)


    This conference proceedings document is a compilation of papers presented orally or as poster displays to the Sixth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 22-24, 2001. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  1. Smoldering Combustion Experiments in Microgravity (United States)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.


    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  2. Dual-Pump CARS Development and Application to Supersonic Combustion (United States)

    Magnotti, Gaetano

    Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  3. The diverse applications of the nuclear power; Les diverses applications du nucleaire

    Energy Technology Data Exchange (ETDEWEB)



    The three great categories of application in industry and environment of ionizing radiations are the use of ionizing radiation to transport energy in matter it is industrial irradiation, the use of radioactive sources of low activity to analyze and measure, it is the nucleonic instrumentation, the use of radioactive tracers to follow and study the matter transfer. Are explained the treatments to improve the plastic materials and the ionisation of food. (N.C.)

  4. Techniques de combustion Combustin Techniques

    Directory of Open Access Journals (Sweden)

    Perthuis E.


    Full Text Available L'efficacité d'un processus de chauffage par flamme est étroitement liée à la maîtrise des techniques de combustion. Le brûleur, organe essentiel de l'équipement de chauffe, doit d'une part assurer une combustion complète pour utiliser au mieux l'énergie potentielle du combustible et, d'autre part, provoquer dans le foyer les conditions aérodynamiques les plus propices oux transferts de chaleur. En s'appuyant sur les études expérimentales effectuées à la Fondation de Recherches Internationales sur les Flammes (FRIF, au Groupe d'Étude des Flammes de Gaz Naturel (GEFGN et à l'Institut Français du Pétrole (IFP et sur des réalisations industrielles, on présente les propriétés essentielles des flammes de diffusion aux combustibles liquides et gazeux obtenues avec ou sans mise en rotation des fluides, et leurs répercussions sur les transferts thermiques. La recherche des températures de combustion élevées conduit à envisager la marche à excès d'air réduit, le réchauffage de l'air ou son enrichissement à l'oxygène. Par quelques exemples, on évoque l'influence de ces paramètres d'exploitation sur l'économie possible en combustible. The efficiency of a flame heating process is closely linked ta the mastery of, combustion techniques. The burner, an essential element in any heating equipment, must provide complete combustion sa as to make optimum use of the potential energy in the fuel while, at the same time, creating the most suitable conditions for heat transfers in the combustion chamber. On the basis of experimental research performed by FRIF, GEFGN and IFP and of industrial achievements, this article describesthe essential properties of diffusion flames fed by liquid and gaseous fuels and produced with or without fluid swirling, and the effects of such flames on heat transfers. The search for high combustion temperatures means that consideration must be given to operating with reduced excess air, heating the air or

  5. Jet plume injection and combustion system for internal combustion engines (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.


    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  6. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower


    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  7. Challenges in Propellants and Combustion: 100 Years after Nobel

    National Research Council Canada - National Science Library

    Kuo, Kenneth


    .... The Topics covered include: chemical kinetics of propellant combustion, environmental considerations in combustion of solid and liquid propellants, commercial application in the combustion of energetic materials, effective...

  8. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S


    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  9. Decree no. 2001-1199 of the 10 december 2001 publishing the resolution MSC. 88 (71) notifying adoption of the international compilation of safety rules for the spent nuclear fuels, plutonium and high level radioactive wastes transport in casks on ships (compilation INF) (annexes), adopted at London the 27 may 1999; Decret no. 2001-1199 du 10 decembre 2001 portant publication de la resolution MSC.88 (71) portant adoption du recueil international de regles de securite pour le transport de combustible nucleaire irradie, de plutonium et de dechets hautement radioactifs en colis a bord de navires (recueil INF) (ensemble une annexe), adoptee a Londres le 27 mai 1999

    Energy Technology Data Exchange (ETDEWEB)



    This legislative text concerns the safety rules of spent nuclear fuels, plutonium and high level radioactive wastes transport, in casks on ships. Rules, fire prevention, temperature control of casks, electric supply, radioprotection, management and emergency plans are detailed. (A.L.B.)

  10. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William


    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  11. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition......The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...

  12. Combustion of droplets and sprays (United States)

    Eigenbrod, Christian; Sattelmayer, Thomas; Bäßler, Stefan; Mauss, Fabian; Meisl, Jürgen; Oomens, Bas; Rackwitz, Leif; Tait, Nigel; Angelberger, Christian; Eilts, Peter; Magnusson, Ingemar; Lauvergne, Romain; Tatschl, Reinhard


    The combustion of liquid hydrocarbon fuels in internal combustion engines and gas turbines for energy production and aircraft propulsion is intrinsically tied to the formation of pollutants. Apart from aiming for the highest combustion efficiencies in order to lower the operational costs and the emission of CO2, the reduction of poisonous and environmentally harmful exhaust constituents is a challenging task for scientists and engineers. The most prominent pollutants are soot, identified to trigger respiratory diseases and cancer, and nitric oxides such as NO and NO2, which promote the formation of ozone affecting the cardiovascular system when released in the lower atmosphere. Soot and nitric oxides are greenhouse pollutants in the upper atmosphere. Even though only 2-3% of the anthropogenic emission of nitric oxides are contributed by aircraft, it is the only emission at high altitudes. Unfortunately, it has the greatest impact on climate there and it does not matter whether the fuels are fossil or, in the future, biomass.

  13. Novel Active Combustion Control Valve (United States)

    Caspermeyer, Matt


    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  14. Autodesk Combustion 4 fundamentals courseware

    CERN Document Server



    Whether this is your first experience with Combustion software or you're upgrading to take advantage of the many new features and tools, this guide will serve as your ultimate resource to this all-in-one professional compositing application. Much more than a point-and-click manual, this guide explains the principles behind the software, serving as an overview of the package and associated techniques. Written by certified Autodesk training specialists for motion graphic designers, animators, and visual effects artists, Combustion 4 Fundamentals Courseware provides expert advice for all skill le

  15. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)


    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  16. Catalytic Combustion of Ethyl Acetate


    ÖZÇELİK, Tuğba GÜRMEN; ATALAY, Süheyda; ALPAY, Erden


    The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethyl acetate. According to the homogeneous phase experimental results, 45% of ethyl acetate was converted at the maximum reactor temperature tested (350 °C). All the prepare...

  17. Application of the FIRST Combustion model to Spray Combustion

    NARCIS (Netherlands)

    de Jager, B.; Kok, Jacobus B.W.


    Liquid fuel is of interest to apply to gas turbines. The large advantage is that liquids are easily storable as compared to gaseous fuels. Disadvantage is that liquid fuel has to be sprayed, vaporized and mixed with air. Combustion occurs at some stage of mixing and ignition. Depending on the

  18. Scramjet Combustion Stability Behavior Modeling Project (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the means to accurately predict the combustion stability of a scramjet. This capability is very...

  19. Scramjet Combustion Stability Behavior Modeling Project (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the potential to predict the combustion stability of a scramjet. This capability is very...

  20. Free Energy and Internal Combustion Engine Cycles


    Harris, William D.


    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  1. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.


    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  2. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN


    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  3. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen


    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking...

  4. 30 CFR 56.4104 - Combustible waste. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Combustible waste. 56.4104 Section 56.4104... Control Prohibitions/precautions/housekeeping § 56.4104 Combustible waste. (a) Waste materials, including... properly, waste or rags containing flammable or combustible liquids that could create a fire hazard shall...

  5. Laboratory Test of Reciprocating Internal Combustion Engines (United States)


    700, Laboratory Tests of Reciprocating Internal Combustion Engines , dated 24 January 1985. Marginal notations are not used in this revision to...performance and endurance of reciprocating internal combustion engines . Test equipment includes engine dynamometers, precision fuel flow meters, oil...D-1 *This TOP supersedes TOP 02-2-700, Laboratory Tests of Reciprocating Internal Combustion Engines , dated 24

  6. Furnaces with multiple ?ameless combustion burners

    NARCIS (Netherlands)

    Danon, B.


    In this thesis three different combustion systems, equipped with either a single or multiple ?ameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a

  7. Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Don [ORNL; Hollenbach, Karla Riggle [ORNL; Fox, Patricia B [ORNL


    In the 1980s, a series of critical experiments referred to as the Haut Taux de Combustion (HTC) experiments was conducted by the Institut de Radioprotection et de Surete Nucleaire (IRSN) at the experimental criticality facility in Valduc, France. The plutonium-to- uranium ratio and the isotopic compositions of both the uranium and plutonium used in the simulated fuel rods were designed to be similar to what would be found in a typical pressurized-water reactor fuel assembly that initially had an enrichment of 4.5 wt% {sup 235}U and was burned to 37,500 MWd/MTU. The fuel material also includes {sup 241}Am, which is present due to the decay of {sup 241}Pu. The HTC experiments include configurations designed to simulate fuel handling activities, pool storage, and transport in casks constructed of thick lead or steel. Rights of use for the HTC experiment data were purchased under an agreement that limits release of the information. Consequently, a detailed and complete description of the experiments is not presented in this report. This report discusses evaluation of the four HTC data reports, modeling of the experiments, sensitivity and uncertainty analysis, and upper subcritical limit (USL) calculation. The report also presents some conclusions and recommendations concerning use of the HTC experiment data for burnup credit applications. The similarity of the HTC experiments with PWR spent nuclear fuel has been quantified using sensitivity/uncertainty analysis, confirming that the HTC experiments are significantly more applicable to the validation of burnup credit calculations than other available mixed-oxide (MOX) experiments. The HTC experiments were designed and executed with a high level of rigor, resulting in experimental uncertainties that are lower than many of the earlier MOX experiments. The HTC data reports, together with information provided in this report, provide sufficient data to allow for either detailed or simplified computational models to be

  8. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren


    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...

  9. Structural Analysis of Combustion Models

    CERN Document Server

    Tóth, J; Zsély, I


    Using ReactionKinetics, a Mathematica based package a few dozen detailed models for combustion of hydrogen, carbon monoxide and methanol are investigated. Essential structural characteristics are pulled out, and similarities and differences of the mechanisms are highlighted. These investigations can be used before or parallel with usual numerical investigations, such as pathway analysis, sensitivity analysis, parameter estimation, or simulation.

  10. 75 FR 3881 - Combustible Dust (United States)


    ... may form combustible dust include, but are not limited to, wood, coal, plastics, biosolids, candy..., pharmaceutical manufacturing, tire manufacturing, production of rubber and plastics, plastics and rubber products manufacturing, recycling, wastewater treatment, and coal handling. OSHA is developing a standard that will...

  11. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)


    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  12. Some problems on the aqueous corrosion of structural materials in nuclear engineering; Problemes de corrosion aqueuse de materiaux de structure dans les constructions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Grall, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    The purpose of this report is to give a comprehensive view of some aqueous corrosion studies which have been carried out with various materials for utilization either in nuclear reactors or in irradiated fuel treatment plants. The various subjects are listed below. Austenitic Fe-Ni-Cr alloys: the behaviour of austenitic Fe-Ni-Cr alloys in nitric medium and in the presence of hexavalent chromium; the stress corrosion of austenitic alloys in alkaline media at high temperatures; the stress corrosion of austenitic Fe-Ni-Cr alloys in 650 C steam. Ferritic steels: corrosion of low alloy steels in water at 25 and 360 C; zirconium alloys; the behaviour of ultrapure zirconium in water and steam at high temperature. (authors) [French] On presente un ensemble d'etudes de corrosion en milieu aqueux effectuees sur des materiaux utilises, soit dans la construction des reacteurs soit pour la realisation des usines de traitement des combustibles irradies. Les differents sujets etudies sont les suivants. Les alliages austenitiques Fer-Nickel-Chrome: comportement d'alliages austenitiques fer-nickel-chrome en milieu nitrique en presence de chrome hexavalent; Corrosion sous contrainte d'alliages austenitiques dans les milieux alcalins a haute temperature; Corrosion sous contrainte dans la vapeur a 650 C d'alliages austenitiques fer-nickel-chrome. Les aciers ferritiques; Corrosion d'aciers faiblement allies dans l'eau a 25 et 360 C; le zirconium et ses alliages; Comportement du zirconium tres pur dans l'eau et la vapeur a haute temperature. (auteurs)

  13. Gaseous emissions from waste combustion. (United States)

    Werther, Joachim


    An overview is given on methods and technologies for limiting the gaseous emissions from waste combustion. With the guideline 2000/76/EC recent European legislation has set stringent limits not only for the mono-combustion of waste in specialized incineration plants but also for co-combustion in coal-fired power plants. With increased awareness of environmental issues and stepwise decrease of emission limits and inclusion of more and more substances into the network of regulations a multitude of emission abatement methods and technologies have been developed over the last decades. The result is the state-of-the-art waste incinerator with a number of specialized process steps for the individual components in the flue gas. The present work highlights some new developments which can be summarized under the common goal of reducing the costs of flue gas treatment by applying systems which combine the treatment of several noxious substances in one reactor or by taking new, simpler routes instead of the previously used complicated ones or - in the case of flue gas desulphurisation - by reducing the amount of limestone consumption. Cost reduction is also the driving force for new processes of conditioning of nonhomogenous waste before combustion. Pyrolysis or gasification is used for chemical conditioning whereas physical conditioning means comminution, classification and sorting processes. Conditioning yields a fuel which can be used in power plants either as a co-fuel or a mono-fuel and which will burn there under much better controlled conditions and therefore with less emissions than the nonhomogeneous waste in a conventional waste incinerator. Also for cost reasons, co-combustion of wastes in coal-fired power stations is strongly pressing into the market. Recent investigations reveal that the co-firing of waste can also have beneficial effects on the operating behavior of the boiler and on the gaseous emissions.

  14. AGC-2 Irradiation Report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbaugh, David Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the

  15. Neutron Flux Depression in the UO{sub 2}-PuO{sub 2}(15 to 30%) Fuel Rods from IVO-FR2-Vg7-Irradiation Experiment; Depresion de flujo neutronico en las barras combustibles de UO2-PuO2(15 al 30%) del experimento de irradiacion IVO-FR2-Vg7

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.; Fernandez, J. L.


    The thermal-neutron flux depression within a fuel rod has a great influence in the radial temperature profile of the rod, especially for high enrichment fuel. For this reason, a study was made about the UO{sub 2}-PUO{sub 2} (15 to 30% PUO{sub 2}) fuel pins for the KfK-JEN joint irradiation program IVO, in the FR2 reactor. Different methods (diffusion, Bonalumi, successive generations) were compared and a new approach (parabolic approximation) was developed. (Author) 22 refs.

  16. Light Duty Efficient, Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Donald Stanton


    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx

  17. Combustion Aerosols from Pulverised Coal Combustion and Biomass Grate Combustion. Filtration aspects

    Energy Technology Data Exchange (ETDEWEB)

    Lillieblad, Lena [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology


    Combustion processes generate particles, which are formed both from the inorganic content in the fuel and from organic compounds as a result of incomplete combustion. The particles are removed from the flue gas by cyclones, electrostatic precipitators (ESPs) or fabric filters (FFs). The particle removal capacity is strongly depending on the particle properties, operating conditions and selected particle removal technology. The particle properties are depending on fuel type, combustion technique and combustion conditions. In this study the particle properties for two different types of solid fuel combustion were investigated and compared. The two processes were pulverised coal combustion and grate boilers operating on woody biomass. Characterisation of fuels was made both with standard analyses and more sophisticated methods like computer controlled scanning electron microscopy (CCSEM) and subsequent leaching procedures. A major difference between coal and woody biomass is the occurrence of potassium. In woody biofuel potassium is a reactive components, mainly water-soluble or organically associated, whereas it in coal it is associated to minerals like illite. The particle number size and particle mass size distributions were measured with low-pressure impactors (LPI), electrical mobility analysers and electrical low-pressure impactors (ELPI). The submicrometer particle mass concentration was similar for the two combustion processes. There is a difference between different coals and also between different woody biofuels. The coarse particle fraction is considerably larger for coal combustion, due to the high content of minerals in the coal. Potassium, sulphur and chlorine dominate the submicrometer particle chemical composition from wood fired grate boilers. Coarser particles have a high content of calcium. Silicon and aluminium are the major elements in particles from pulverised coal combustion. An enrichment of calcium, sulphur and phosphorous in the submicrometer

  18. Utilisation de l'essai comete et du biomarqueur gamma-H2AX pour detecter les dommages induits a l'ADN cellulaire par le 5-bromodeoxyuridine post-irradiation (United States)

    La Madeleine, Carole

    Ce memoire est presente a la Faculte de medecine et des sciences de la sante de l'Universite de Sherbrooke en vue de l'obtention du grade de maitre es sciences (M.Sc.) en radiobiologie (2009). Un jury a revise les informations contenues dans ce memoire. Il etait compose de professeurs de la Faculte de medecine et des sciences de la sante soit : Darel Hunting PhD, directeur de recherche (departement de medecine nucleaire et radiobiologie), Leon Sanche PhD, directeur de recherche (departement de medecine nucleaire et radiobiologie), Richard Wagner PhD, membre du programme (departement de medecine nucleaire et radiobiologie) et Guylain Boissonneault PhD, membre exterieur au programme (departement de biochimie). Le 5-bromodeoxyuridine (BrdU), un analogue halogene de la thymidine reconnu depuis les annees 60 comme etant un excellent radiosensibilisateur. L'hypothese la plus repandue au sujet de l'effet radio sensibilisant du BrdU est qu'il augmente le nombre de cassures simple et double brin lorsqu'il est incorpore dans l'ADN de la cellule et expose aux radiations ionisantes. Toutefois, de nouvelles recherches semblent remettre en question les observations precedentes. Ces dernieres etudes ont confirme que le BrdU est un bon radiosensibilisateur, car il augmente les dommages radio-induits dans l'ADN. Mais, c'est en etant incorpore dans une region simple brin que le BrdU radiosensibilise l'ADN. Ces recherches ont egalement revele pour la premiere fois un nouveau type de dommages produits lors de l'irradiation de l'ADN contenant du BrdU : les dimeres interbrins. Le but de ces travaux de recherche est de determiner si la presence de bromodeoxyuridine dans l'ADN augmente l'induction de bris simple et / ou double brin chez les cellules irradiees en utilisant de nouvelles techniques plus sensibles et specifiques que celles utilisees auparavant. Pour ce faire, les essais cometes et la detection des foci H2AX phosphorylee pourraient permettre d'etablir les effets engendres par

  19. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de


    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  20. Experimental and theoretical study of iron and mild steel combustion in oxygen flows (United States)

    El-Rabii, Hazem; Kazakov, Kirill A.; Muller, Maryse


    The effects of oxygen flow speed and pressure on the iron and mild steel combustion are investigated experimentally and theoretically. The studied specimens are vertical cylindrical rods subjected to an axial oxygen flow and ignited at the upper end by laser irradiation. Three main stages of the combustion process have been identified experimentally: (1) induction period, during which the rod is heated until an intensive metal oxidation begins at its upper end; (2) static combustion, during which a laminar liquid "cap'' slowly grows on the upper rod end, and, after the liquid cap detachment from the sample; (3) dynamic combustion, which is characterized by a rapid metal consumption and turbulent liquid motions. An analytical description of these stages is given. In particular, a model of the dynamic combustion is constructed based on the turbulent oxygen transport through the liquid metal-oxide flow. This model yields a simple expression for the fraction of metal burned in the process and allows one to calculate the normal propagation speed of the solid metal-liquid interface as a function of the oxygen flow speed and pressure. A comparison of the theory with the experimental results is made, and its potential application is mentioned.

  1. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher; Ju, Yiguang


    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of these devices to realize their full potential. Engineers and scientists working in energy-related fields will find: An overview of the fundamental physics and phenomena of microscale combustion; Presentations of the latest modeling and simulation techniques for gasphase and catalytic micro-reactors; The latest results from experiments in small-scale liquid film, microtube, and porous combustors, micro-thrusters, a...

  2. Fundamental studies of spray combustion

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.C.; Libby, P.A.; Williams, F.A. [Univ. of California, San Diego, CA (United States)


    Our research on spray combustion involves both experiment and theory and addresses the characteristics of individual droplets and of sprays in a variety of flows: laminar and turbulent, opposed and impinging. Currently our focus concerns water and fuel sprays in two stage laminar flames, i.e., flames arising, for example from a stream of fuel and oxidizer flowing opposite to an air stream carrying a water spray. Our interest in these flames is motivated by the goals of reducing pollutant emissions and extending the range of stable spray combustion. There remains considerable research to be carried out in order to achieve these goals. Thus far our research on the characteristics of sprays in turbulent flows has been limited to nonreacting jets impinging on a plate but this work will be extended to opposed flows with and without a flame. In the following we discuss details of these studies and our plans for future work.

  3. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)


    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  4. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.


    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  5. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Gary D. (Richland, WA); Chick, Lawrence A. (West Richland, WA); Kurosky, Randal P. (Maple Valley, WA)


    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  6. Steady Nuclear Combustion in Rockets (United States)

    Saenger, E.


    The astrophysical theory of stationary nuclear reactions in stars is applied to the conditions that would be met in the practical engineering cases that would differ from the former, particularly with respect to the much lower combustion pressures, dimensions of the reacting volume, and burnup times. This application yields maximum rates of hear production per unit volume of reacting gas occurring at about 10(exp 8) K in the cases of reactions between the hydrogen isotopes, but yields higher rates for heavier atoms. For the former, with chamber pressures of the order of 100 atmospheres, the energy production for nuclear combustion reaches values of about 10(exp 4) kilocalories per cubic meter per second, which approaches the magnitude for the familiar chemical fuels. The values are substantially lower for heavier atoms, and increase with the square of the combustion pressure. The half-life of the burnup in the fastest reactions may drop to values as low as those for chemical fuels so that, despite the high temperature, the radiated energy can remain smaller than the energy produced, particularly if an inefficiently radiating (i.e., easily completely ionized reacting material like hydrogen), is used. On the other hand, the fraction of completely ionized particles in the gases undergoing nuclear combustion must not exceed a certain upper limit because the densities (approximately 10(exp -10) grams per cubic centimeter)) lie in the range of high vacua and only for the previously mentioned fraction of nonionized particles can mean free paths be retained small enough so that the chamber diameters of several dozen meters will suffice. Under these conditions it appears that continuously maintained stable nuclear reactions at practical pressures and dimensions are fundamentally possible and their application can be visualized as energy sources for power plants and propulsion units.

  7. Coal combustion by wet oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.


    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  8. Status of Boron Combustion Research (United States)


    Chemical M. K. King, ARC L. Cook, NBS C. E. Kolb, Aerodyne *T. Curran, AFWAL/PO C. K. Law, U. Cal.-Davi3 P. Davidovits , Boston College *C. R. Martel...Homogeneous Combustion Kinetics of Boron Compounds. A. Fontijn, RPI. 1030 Simple Boron Atom Reactions. P. Davidovits , Boston College. 1050 Ultra-Fast Energy... DAVIDOVITS . J. Chem. Phys. 74, 3287 (1981). DED - T. G. DIGIUSEPPI. Rt. ESTES, and P. DAVIDOVITS . J. Phys. Chem.. 6, 260 (1982). ERF -A. J. ENGLISH

  9. Perspective -- Aerodynamic control of combustion

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheim, A.K. [Univ. of California, Berkeley, CA (United States). Mechanical Engineering


    To do useful work, the exothermic process of combustion should be carried out in an enclosure, as is typically the case with i.c. engines -- the subject of this paper`s particular concern. To meet the requirements of high efficiency and low pollutant production, this process should be executed at a relatively low temperature -- a condition attainable by the use of lean air-fuel mixtures. For this purpose it has to be distributed in space upon multipoint initiation and kept away from the walls to minimize their detrimental effects. In principle, all this can be accomplished by a system referred to as fireball combustion that takes advantage of entrainment and spiral mixing associated with large scale vortex structures of jet plumes. As demonstrated in this paper, the success in such an endeavor depends crucially upon the utilization of the essential elements of classical aerodynamics: the properly distributed sources, expressed in terms of velocity divergences prescribed by the thermodynamic process of combustion and of the vorticity field generated by shear between the jets and the fluid into which they are injected.

  10. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others


    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  11. Demonstration of Active Combustion Control (United States)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.


    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  12. Modeling the internal combustion engine (United States)

    Zeleznik, F. J.; Mcbride, B. J.


    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  13. Smog chamber study on the evolution of fume from residential coal combustion. (United States)

    Geng, Chunmei; Wang, Kun; Wang, Wei; Chen, Jianhua; Liu, Xiaoyu; Liu, Hongjie


    Domestic coal stoves are widely used in countryside and greenbelt residents in China for heating and cooking, and emit considerable pollutants to the atmosphere because of no treatment of their exhaust, which can result in deteriorating local air quality. In this study, a dynamic smog chamber was used to investigate the real-time emissions of gaseous and particulate pollutants during the combustion process and a static smog chamber was used to investigate the fume evolution under simulate light irradiation. The real-time emissions revealed that the total hydrocarbon (THC) and CO increased sharply after ignition, and then quickly decreased, indicating volatilization of hydrocarbons with low molecular weight and incomplete combustion at the beginning stage of combustion made great contribution to these pollutants. There was evident shoulder peak around 10 min combustion for both THC and CO, revealing the emissions from vitrinite combustion. Additionally, another broad emission peak of CO after 30 min was also observed, which was ascribed to the incomplete combustion of the inertinite. Compared with THC and CO, there was only one emission peak for NOx, SO2 and particular matters at the beginning stage of combustion. The fume evolution with static chamber simulation indicated that evident consumption of SO2 and NOx as well as new particle formation were observed. The consumption rates for SO2 and NOx were about 3.44% hr(-1) and 3.68% hr(-1), the new particle formation of nuclei particles grew at a rate of 16.03 nm/hr during the first reaction hour, and the increase of the diameter of accumulation mode particles was evident. The addition of isoprene to the diluted mixture of the fume could promote 03 and secondary particle formation.

  14. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.


    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.



    Nureddin Dinler; Nuri Yucel


    Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion...

  16. The Birmingham Irradiation Facility

    CERN Document Server

    Dervan, P; Hodgson, P; Marin-Reyes, H; Wilson, J


    At the end of 2012 the proton irradiation facility at the CERN PS [1] will shut down for two years. With this in mind, we have been developing a new ATLAS scanning facility at the University of Birmingham Medical Physics cyclotron. With proton beams of energy approximately 30 MeV, fluences corresponding to those of the upgraded Large Hadron Collider (HL-LHC) can be reached conveniently. The facility can be used to irradiate silicon sensors, optical components and mechanical structures (e.g. carbon fibre sandwiches) for the LHC upgrade programme. Irradiations of silicon sensors can be carried out in a temperature controlled cold box that can be scanned through the beam. The facility is described in detail along with the first tests carried out with mini (1 x 1 cm^2 ) silicon sensors.

  17. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics


    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The


    Energy Technology Data Exchange (ETDEWEB)



    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was

  19. Fuel or irradiation subassembly (United States)

    Seim, O.S.; Hutter, E.


    A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.

  20. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt


    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  1. Pollutant Formation in Monodisperse Fuel Spray Combustion (United States)

    Cernansky, N. P.; Sarv, H.


    The combustion of liquid sprays represents an extremely important class of combustion processes. In the transition region, encompassing droplet sizes in the range of 25-80 micron diameter, the mixing and evaporation processes are both incomplete at the flame front and burning occurs in a combined diffusive and premixed fashion. Under these conditions, the relative importance of heterogeneous and homogeneous effects in dominating the combustion process is switched and gives rise to a number of interesting phenomena. NO (sub x) formation in monodisperse spray combustion was investigated with the following specific objectives: (1) to quantitatively determine the effect of droplet size, number density, etc. on NO sub x formation in monodisperse fuel spray combustion; and (2) to isolate the important physical and chemical phenomena in NO sub x formation in these combustion systems.

  2. Sandia Combustion Research Program: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)


    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  3. Combustion and Heat Transfer Studies Utilizing Advanced Diagnostics: Combustion Studies (United States)


    Also, m ass conservation balance in the plane of th 1.0 . ./Id -005 0- bluff body base provided an additional cross-check against (W/Uei U/a...jet than asa thick jet spreading into adump combustor. Ass a . NAlI 2’A.. , 2.0 L K consequence, in Fig. 5b. streamlines around die recirculatiofi zone...Combustio of 23. Rawe., It, and Kremer, H.: EWmtwa Spwsposm IfWhucabon Fucks wih Air NACA Rept. 1300,29M. (nternational) on Combustion, p.667, The

  4. Experimental research on combustion fluorine retention using calcium-based sorbets during coal combustion (I)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Qing-jie; Lin, Zhi-yan; Liu, Jian-zhong; Wu, Xian; Zhou, Jun-hu; Cen, Ke-fa [Liaoning Technical University, Fuxin (China). College of Resource and Environment Engineering


    In order to provide experimental guide to commercial use of fluorine pollution control during coal combustion, with fluorine pollution control during coal combustion in mind, this paper proposed the theory of combustion fluorine retention technology. Feasibility of fluorine retention reaction with calcium-based fluorine retention agent was analyzed through thermodynamic calculation during coal combustion. By simulating the restraining and retention effects and influential factors of calcium-based sorbets on vaporized fluoride during experimental combustion using fixed bed tube furnace, the paper systematically explored the influential law of such factors as combustion temperature, retention time, and added quantities of calcium-based sorbets on effects of fluorine retention. The research result shows that adding calcium-based fluorine retention agent in coal combustion has double effects of fluorine retention and sulfur retention, it lays an experimental foundation for commercial test of combustion fluorine retention. 7 refs., 2 figs., 4 tabs.


    The Environmental Technology Verification report discusses the technology and performance of the Xonon Cool Combustion System manufactured by Catalytica Energy Systems, Inc., formerly Catalytica Combustion Systems, Inc., to control NOx emissions from gas turbines that operate wit...

  6. The combustion of solid fuels and wastes

    CERN Document Server

    Tillman, David


    Careful organization and empirical correlations help clarify the prodigious technical information presented in this useful reference.Key Features* Written for practicing engineers, this comprehensive book supplies an overall framework of the combustion process; It connects information on specific reactions and reaction sequences with current applications and hardware; Each major group of combustion solids is evaluated; Among the many topics covered are:* Various biomass forms* The coalification process* Grate, kiln, and suspension firing* Fluidized bed combustion

  7. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders


    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  8. Strategy for intelligent internal combustion engine with homogenous combustion in cylinder


    Weclas, Miroslaw


    In this report the author proposes strategy for development of intelligent combustion systems with a goal to approach a near-zero emission internal combustion engine operating in a wide range of speeds and loads. Main requirement for future I.C. engine is to develop a system permitting homogeneous combustion process (minimum of engine emissions) under all operational conditions. The author suggests, that none existing individual combustion system may satisfy these conditions. However, combina...

  9. Selection of technology for the low calorific synthetic gas combustion in the gas turbine combustion chamber (United States)

    Filippov, Prokopy; Levin, Evgeny; Ryzhkov, Alexander


    The leading gas turbines manufacturers are developing the technologies of the environmental friendly combustion of industrial and synthetic gases of low calorific values. In this case they are faced with critical problems concerning combustion stability assurance and the necessity of the gas turbines significant modernization due to the differences between the low calorific and natural gases. The numerical simulation results of the low calorific value synthetic gas combustion in the combustion chamber by means of different technologies are considered in the paper.

  10. Supercritical Combustion of Liquid Oxygen and Hydrocarbon for Staged-Combustion Cycle Engine Technology Development (United States)


    Mixtures," by G. Ribert, N. Zong, V. Yang, L. Pons , N. Darabiha, and S. Candel, Combustion and Flame, Vol. 154, 2008, pp. 319-330. 3. "Mass Transfer...and Combustion in Transcritical Non-Premixed Counterflows," by L. Pons , N. Darabiha, S. Candel, G. Ribert, and V. Yang, Combustion Theory and...supercritical environment," Combust. Sci. Tech. 178, 193 (2006). T. Poinsot and S. Lele , "Boundary conditions for direct simulation of compressible viscous

  11. Pyrolysis reactor and fluidized bed combustion chamber (United States)

    Green, Norman W.


    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  12. Fuel gas combustion research at METC

    Energy Technology Data Exchange (ETDEWEB)

    Norton, T.S.


    The in-house combustion research program at METC is an integral part of many METC activities, providing support to METC product teams, project managers, and external industrial and university partners. While the majority of in-house combustion research in recent years has been focussed on the lean premixed combustion of natural gas fuel for Advanced Turbine Systems (ATS) applications, increasing emphasis is being placed on issues of syngas combustion, as the time approaches when the ATS and coal-fired power systems programs will reach convergence. When the METC syngas generator is built in 1996, METC will have the unique combination of mid-scale pressurized experimental facilities, a continuous syngas supply with variable ammonia loading, and a team of people with expertise in low-emissions combustion, chemical kinetics, combustion modeling, combustion diagnostics, and the control of combustion instabilities. These will enable us to investigate such issues as the effects of pressure, temperature, and fuel gas composition on the rate of conversion of fuel nitrogen to NOx, and on combustion instabilities in a variety of combustor designs.

  13. NSUF Irradiated Materials Library

    Energy Technology Data Exchange (ETDEWEB)

    Cole, James Irvin [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  14. Childhood Head and Neck Irradiation (United States)

    ... Thyroid Association ® Childhood Head & Neck Irradiation What is the thyroid gland? The thyroid gland ... Thyroid Association ® Childhood Head & Neck Irradiation Thyroid nodules (see Thyroid Nodule brochure) • Thyroid nodules ...

  15. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)


    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  16. High pressure optical combustion probe

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, S.D.; Richards, G.A.


    The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod in a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.

  17. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)


    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  18. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard


    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...... in water. The content of the selected heavy metals (i.e. Cr, Ni, Pb and Cd) complied with the Danish Statutory Order on the use of bio-ash for agricultural purposes; however, critical releases of Cr were detected in the leachate extracts, especially in the fly ash. High alkaline pHs were measured in all...

  19. Transient combustion in hybrid rockets (United States)

    Karabeyoglu, Mustafa Arif


    Hybrid rockets regained interest recently as an alternative chemical propulsion system due to their advantages over the solid and liquid systems that are currently in use. Development efforts on hybrids revealed two important problem areas: (1) low frequency instabilities and (2) slow transient response. Both of these are closely related to the transient behavior which is a poorly understood aspect of hybrid operation. This thesis is mainly involved with a theoretical study of transient combustion in hybrid rockets. We follow the methodology of identifying and modeling the subsystems of the motor such as the thermal lags in the solid, boundary layer combustion and chamber gasdynamics from a dynamic point of view. We begin with the thermal lag in the solid which yield the regression rate for any given wall heat flux variation. Interesting phenomena such as overshooting during throttling and the amplification and phase lead regions in the frequency domain are discovered. Later we develop a quasi-steady transient hybrid combustion model supported with time delays for the boundary layer processes. This is integrated with the thermal lag system to obtain the thermal combustion (TC) coupled response. The TC coupled system with positive delays generated low frequency instabilities. The scaling of the instabilities are in good agreement with actual motor test data. Finally, we formulate a gasdynamic model for the hybrid chamber which successfully resolves the filling/emptying and longitudinal acoustic behavior of the motor. The TC coupled system is later integrated to the gasdynamic model to obtain the overall response (TCG coupled system) of gaseous oxidizer motors with stiff feed systems. Low frequency instabilities were also encountered for the TCG coupled system. Apart from the transient investigations, the regression rate behavior of liquefying hybrid propellants such as solid cryogenic materials are also studied. The theory is based on the possibility of enhancement

  20. Buoyancy effects on smoldering combustion (United States)

    Dosanjh, S.; Peterson, J.; Fernandez-Pello, A. C.; Pagni, P. J.


    The effect of buoyancy on the rate of spread of a concurrent smolder reaction through a porous combustible material is investigated theoretically and experimentally. In the experiments, buoyant forces are controlled by varying the density difference, and the smolder rate spread through porous alpha cellulose (0.83 void fraction) is measured as a function of the ambient air pressure. The smolder velocity is found to increase with the ambient pressure; extinction occurs when the buoyancy forces cannot overcome the drag forces, indicating that diffusion by itself cannot support the spread of a smolder reaction. Theoretical predictions are found to be in good qualitative agreement with the experimental results.


    Directory of Open Access Journals (Sweden)

    Yalçın ÖRS


    Full Text Available In this study, the combustion properties of some impregnation materials (abiotic and biotic factors used for eucalyptus wood in interior or exterior environments were investigated. The experimental samples were prepared from Eucalyptus wood based on ASTM-D-1413-76 Tanalith-CBC, boric acid, borax, vacsol-WR, immersol-WR, polyethylen glycole-400 and ammonium sulphate were used as an impregnation material. The results indicated that, vacuum treatment on Eucalyptus gave the lowest retention value of salts. Compounds containing boron+salt increased fire resistance however water repellents decreased the wood flammability.

  2. Combustion

    National Research Council Canada - National Science Library

    Glassman, Irvin


    ... permission in writing from the publisher. Permissions may be sought directly from Elsevier's Science and Technology Rights Department in Oxford, UK. Phone (44) 1865 843830, Fax: (44) 1865 853333, e-mail: You may also complete your request on-line via the Elsevier homepage: by selecting "...

  3. Measurement and analysis of combustion response to transverse combustion instability (United States)

    Pomeroy, Brian R.

    This research aimed to gain a better understanding of the response of a gas-centered swirl coaxial injector to transverse combustion instability. The goals of the research were to develop a combustion chamber that would be able to spontaneously produce transverse combustion instability at elevated pressures and temperatures. Methods were also developed to analyze high-speed video images to understand the response of the injector. A combustion chamber was designed that produced high levels of instabilities. The chamber was capable of pressures as high as 1034 kPa (150 psi) and operated using decomposed 90% hydrogen peroxide and JP-8. The chamber used an array of seven gas-centered swirl coaxial injectors that exhibited linear instability to drive the transverse oscillations. The injector elements would operate in a monopropellant configuration flowing only decomposed hydrogen peroxide or in a bipropellant configuration. The location of the bipropellant injectors could be varied to change the level of the instability in the chamber from 10% of the chamber pressure up to 70% of the chamber pressure. A study element was placed in the center of the chamber where it was observed simultaneously by two high-speed video cameras which recorded a backlit video to show the location of the fuel spray and the location of the emitted CH* chemiluminescence. The videos were synchronized with high frequency pressure measurements to gain a full understanding of the physics in the combustion chamber. Results showed that the study element was coupled with the first mode velocity wave. This was expected due to the first mode velocity anti-node being located in the center of the chamber. The velocity is an absolute maximum twice during each cycle so the coupling with the second mode pressure was also investigated showing a possible coupling with both the velocity and pressure. The results of the first mode velocity showed that, as the velocity wave traveled through the chamber, the fuel

  4. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    Energy Technology Data Exchange (ETDEWEB)



    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  5. Variable stroke internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Roseby, B.; Hallman, E.P.


    An internal combustion engine is described in which the longitudinal center line of the cylinders are parallel to and equally spaced around the longitudinal center line of the engine. The pistons, working within said cylinders, are mounted on a swash plate mechanism, by means of which the reciprocating motion the pistons is translated into the rotary motion of a carrier plate to which the said swash plate is mounted and, from which, is taken the drive into the vehicle transmission. Said swash plate is mounted on a post at the circumference of the carrier plate and pivots around said post when moved, on a longitudinal axis, by a mechanism. As each piston, in turn, passes the point on the swashplate adjacent to the mounting post, it is at the top-dead-center position in its cylinder. As said piston passes the diametrically opposite point on the swash plate it is at the bottom-dead-center position. When the swash plate angle is changed, by moving said mechanism, the bottom dead center position is changed thus causing the stroke of the piston to be changed. A circular form cylinder head contains a combustion chamber for each cylinder and a disc, driven by a forward projecting shaft mounted on the carrier plate, through gearing, and having cam forms on the face actuates the valve mechanism to cause the inlet and exhaust gases to flow to and from the cylinders as required for operation of the running cycle.

  6. Thermally stimulated luminescence studies in combustion ...

    Indian Academy of Sciences (India)

    Synthesis of materials by combustion technique results in homogeneous and fine crystalline product. Further, the technique became more popular since it not only saved time and energy but also was easy to process. Aluminum oxide phosphor was synthesized by using urea as fuel in combustion reaction.

  7. 30 CFR 57.4104 - Combustible waste. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Combustible waste. 57.4104 Section 57.4104... Control Prohibitions/precautions/housekeeping § 57.4104 Combustible waste. (a) Waste materials, including liquids, shall not accumulate in quantities that could create a fire hazard. (b) Waste or rags containing...

  8. Sandia combustion research program: Annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A. (eds.)


    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  9. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.


    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  10. Injector tip for an internal combustion engine (United States)

    Shyu, Tsu Pin; Ye, Wen


    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  11. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)


    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  12. A model for premixed combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Janus, M.C.; Richards, G.A.


    This paper describes a simulation based on a time dependent, nonlinear control volume analysis. The combustion is modeled as a well-stirred reactor having finite kinetics. Flow properties and species in the nozzle, combustion, and tailpipe regions are determined using a control volume formulation of the conservation equation.

  13. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Silicate based bioceramics are promising candidates as biomaterials for tissue engineering. The combustion synthesis method provides control on the morphology and particle size of the synthesized material. This paper discusses the combustion synthesis of akermanite (Ca2MgSi2O7 and Sr2MgSi2O7), which has been ...

  14. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza


    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  15. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza


    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  16. Internal and surface phenomena in metal combustion (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.


    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  17. Time Resolved Measurements and Reactive Pathways of Hypergolic Bipropellant Combustion

    National Research Council Canada - National Science Library

    Smith, Jr, James E


    This research has improved the fundamental understanding of the physical mechanisms leading to the ignition and combustion of hypergolic propellants from high-speed visualization and combustion diagnostics...

  18. Some characteristics of fine beryllium particle combustion (United States)

    Davydov, D. A.; Kholopova, O. V.; Kolbasov, B. N.


    Beryllium dust will be produced under plasma interaction with beryllium armor of the first wall in ITER. Exothermal reaction of this dust with water steam or air, which can leak into the reactor vacuum chamber in some accidents, gives concern in respect to reactor safety. Results of studies devoted to combustion of fine beryllium particles are reviewed in the paper. A chemically active medium and elevated temperature are prerequisite to the combustion of beryllium particles. Their ignition is hampered by oxide films, which form a diffusion barrier on the particle surface as a result of pre-flame oxidation. The temperature to initiate combustion of particles depends on flame temperature, particle size, composition of combustible mixture, heating rate and other factors. In mixtures enriched with combustible, the flame temperature necessary to ignite individual particles approaches the beryllium boiling temperature.

  19. 2003 Laser Diagnostic in Combustion Conference

    Energy Technology Data Exchange (ETDEWEB)

    Mark G. Allen


    The GRC Laser Diagnostics in Combustion aims at bringing together scientists and engineers working in the front edge of research and development to discuss and find new ways to solve problems connected to combustion diagnostics. Laser-based techniques have proven to be very efficient tools for studying combustion processes thanks to features as non-intrusiveness in combination with high spatial and temporal resolution. Major tasks for the community are to develop and apply techniques for quantitative measurements with high precision e.g of species concentrations, temperatures, velocities and particles characteristics (size and concentration). These issues are of global interest, considering that the major part of the World's energy conversion comes from combustion sources and the influence combustion processes have on the environment and society.

  20. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sören


    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  1. Combustion Engines Development Mixture Formation, Combustion, Emissions and Simulation

    CERN Document Server

    Schwarz, Christian; Teichmann, Rüdiger


    In the development of engines and vehicles it is nowadays standard practice to use commercially available computing programmes for simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the combustion chamber of an engine. Normally the source code is not available for these computing programmes and it takes too much time to study the respective specifications, so the users often do not have sufficient knowledge about the physical and chemical contents of the approaches that the programmes are based on. We have often been faced with this fact in talks to employees or in discussions during the presentation of results of simulation. Therefore it is our aim to point out different physical and chemical approaches and to show the possibilities and limits of the models used.

  2. Improvement of Sodium Neutronic Nuclear Data for the Computation of Generation IV Reactors; Contribution a l'amelioration des donnees nucleaires neutroniques du sodium pour le calcul des reacteurs de generation IV

    Energy Technology Data Exchange (ETDEWEB)

    Archier, P.


    de ces incertitudes provient des donnees nucleaires et, dans le cas des RNR-Na, des donnees nucleaires du sodium, qui presentent des differences significatives entre les bibliotheques internationales (JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0). L'objectif de cette these est d'ameliorer la connaissance sur les donnees nucleaires du sodium afin de mieux calculer les parametres neutroniques des RNR-Na et fournir des incertitudes fiables. Apres un etat des lieux des presentes donnees du {sup 23}Na, l'impact des differences est quantifie notamment sur les effets en reactivite de vidange du sodium, calcules avec des outils neutroniques deterministe et stochastique. Les resultats montrent qu'il est necessaire de reevaluer entierement les donnees nucleaires du sodium. Plusieurs developpements ont ete effectues dans le code d'evaluation Conrad, pour integrer de nouveaux modeles de reactions nucleaires et leurs parametres ainsi que pour permettre de proceder a des ajustements avec des mesures integrales. Suite a ces developpements, l'analyse des donnees differentielles et la propagation des incertitudes experimentales avec Conrad ont ete realisees. Le domaine des resonances resolues a ete etendu a 2 MeV et le domaine du continuum debute directement au-dela de cette energie. Une nouvelle evaluation du {sup 23}Na et les matrices de covariances multigroupes associees ont ete generees pour de futurs calculs d'incertitudes. La derniere partie de la these se focalise sur le retour des experiences integrales de vidange du sodium, par des methodes d'assimilation de donnees integrales, afin de reduire les incertitudes sur les sections efficaces du sodium. Ce document se clot sur des calculs d'incertitudes pour des RNR-Na de type industriel, qui montrent une meilleure prediction de leurs parametres neutroniques avec la nouvelle evaluation

  3. Safety of irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Iwahara, Shigeo (Foods Medicines Safety Center (Japan)); Kobayashi, Kazuo


    The safety of 7 irradiated foods (potato, onion, rice, wheat, vienna sausage, fish paste and mandarine orange), in terms of 2-year long-term toxic effect, reproductive physiology and possible teratogenesis, was studied using 3 generations of rats, mice and monkeys. The genetic toxicity was studied by means of various mutagenicity tests. The details of the studies conducted by the authors to date and some overseas data were reported. The available data showed no toxic effect.

  4. Distributed combustion in a cyclonic burner (United States)

    Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele


    Distributed combustion regime occurs in several combustion technologies were efficient and environmentally cleaner energy conversion are primary tasks. For such technologies (MILD, LTC, etc…), working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to significant features such as uniformity and distributed ignition. The present study numerically characterized the turbulence-chemistry and combustion regimes of propane/oxygen mixtures, highly diluted in nitrogen, at atmospheric pressure, in a cyclonic combustor under MILD Combustion operating conditions. The velocity and mixing fields were obtained using CFD with focus on mean and fluctuating quantities. The flow-field information helped differentiate between the impact of turbulence levels and dilution ones. The integral length scale along with the fluctuating velocity is critical to determine Damköhler and Karlovitz numbers. Together these numbers identify the combustion regime at which the combustor is operating. This information clearly distinguishes between conventional flames and distributed combustion. The results revealed that major controllers of the reaction regime are dilution and mixing levels; both are significantly impacted by lowering oxygen concentration through entrainment of hot reactive species from within the combustor, which is important in distributed combustion. Understanding the controlling factors of distributed regime is critical for the development and deployment of these novel combustion

  5. [Combination process of microwave desorption-catalytic combustion for toluene treatment]. (United States)

    Cao, Xiao-Qiang; Zhang, Hao; Huang, Xue-Min


    Using activated carbon as adsorbent, toluene waste gas was treated by adsorption process. After the adsorption process was completed, the adsorbent was desorbed by microwave irradiation; then Cu-Mn oxide composite catalysts were prepared by impregnation and the desorbed toluene gas was treated by catalytic combustion so as to completely purify the pollutant. The concentration of toluene was measured by gas chromatography (GC). The results indicated that it is feasible to add air to provide oxygen to the desorbed gas after the completion of the desorption process, in order to achieve the catalytic combustion; the ratio of desorbed gas and air was 1 : 1 (volume ratio), and the corresponding catalytic space velocity was 2.67 s(-1). Desorption temperature could affect the concentration of toluene in the desorption gas thereby affecting the catalytic combustion efficiency; the results indicated that 400 degrees C was an appropriate temperature for desorbing the activated carbon. When the catalytic combustion was kept at 300 degrees C, the final toluene treatment efficiency was higher than 90%, which was higher than 95% during the most time of the treatment process.

  6. Indirect combustion noise of auxiliary power units (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill


    Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the

  7. Filtration Combustion in Smoldering and SHS (United States)

    Matkowsky, Bernard J.


    Smolder waves and SHS (self-propagating high-temperature synthesis) waves are both examples of filtration combustion waves propagating in porous media. Smoldering combustion is important for the study of fire safety. Smoldering itself can cause damage, its products are toxic and it can also lead to the more dangerous gas phase combustion which corresponds to faster propagation at higher temperatures. In SHS , a porous solid sample, consisting of a finely ground powder mixture of reactants, is ignited at one end. A high temperature thermal wave, having a frontal structure, then propagates through the sample converting reactants to products. The SHS technology appears to enjoy a number of advantages over the conventional technology, in which the sample is placed in a furnace and "baked" until it is "well done". The advantages include shorter synthesis times, greater economy, in that the internal energy of the reactions is employed rather than the costly external energy of the furnace, purer products, simpler equipment and no intrinsic limitation on the size of the sample to be synthesized as exists in the conventional technology. When delivery of reactants through the pores to the reaction site is an important aspect of the combustion process, it is referred to as filtration combustion. The two types of filtration combustion have a similar mathematical formulation, describing the ignition, propagation and extinction of combustion waves in porous media. The goal in each case, however, is different. In smoldering the desired goal is to prevent propagation, whereas in SHS the goal is to ensure propagation of the combustion wave, leading to the synthesis of desired products. In addition, the scales in the two areas of application differ. Smoldering generally occurs at lower temperatures and propagation velocities than in SHS nevertheless, the two applications have much in common so that what is learned fit make application can be used to advantage in the other. In porous

  8. Basic Aerodynamics of Combustion Chambers, (United States)


    n layer, an- its rhti re ai ei ar td . te II- to vortical wraXes which are also cplled "vo-tical rolls." r, and r,~=the er-temal 142 GaI M6.12 *%AAtM...8217-2XCC, UMn Th-~ t tr’.~t in ain~zttfror tecit vr’ 0 7 fij74,it ~r ~ h-t >2 h’’tof the jeb ,;p ~ ’ - ~~ *~~~k -. A--w.- - -- Chaptler 8 Tur~l.flftece Jet...G, is very small (the straight line AD), then, it is only possible to have combustion when one has temperature TD ; no other condition will do. If one

  9. Nanoparticle emissions from combustion engines

    CERN Document Server

    Merkisz, Jerzy


     This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected metho...

  10. Catalytic combustion of residual fuels (United States)

    Bulzan, D. L.; Tacina, R. R.


    A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.

  11. ATF Neutron Irradiation Program Irradiation Vehicle Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cetiner, N. O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; McDuffee, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division


    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to Japan. This report discusses the conceptual design, the development and irradiation of the test vehicles.

  12. Extended lattice Boltzmann scheme for droplet combustion. (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas


    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  13. Medical intervention in case of nuclear or radiation event; Intervention medicale en cas d'evenement nucleaire ou radiologique

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, J.; Bourguignon, M.; Carli, P.; Carosella, E.; Challeton de Vathaire, C.; Court, L.; Ducousso, R.; Facon, A.; Fleutot, J.B.; Goldstein, P.; Gourmelon, P.; Herbelet, G.; Kolodie, H.; Lallemand, J.; Martin, J.C.; Menthonnex, P.; Masse, R.; Origny, S.; Pasnon, J.; Peton Klein, D.; Rougy, C.; Schoulz, D.; Romet, G.; Telion, C.; Vrousos, C


    This guide aims to be a practical tool for intervenors in case of nuclear or radiation accident. It proposes many sheets to favor the reactivity and the implementing of adapted measures. It concerns the course of action to take in case of irradiation accident or contamination and the reception in medical structure or a hospital. (A.L.B.)

  14. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)


    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  15. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)


    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  16. Combustion temperature charts for industrial gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matouskova, V.; Gerak, A.; Hlavacka, V.


    Researchers at Czechoslovakia's State Research Institute of Mechanical Engineering offer a method for calculating the theoretical flame temperature that includes the effect of endothermic reactions, especially the dissociation of combustion products. Charts presented for eight types of fuel gases can be used to determine the flame temperature relative to the temperature of the combustion air and to the excess-air ratio. Also considered is the relationship between these parameters and the characteristic temperature relationships for equipment using heat recovered from the flue gases to preheat incoming combustion air.

  17. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit


    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  18. 3rd International Conference on Numerical Combustion

    CERN Document Server

    Larrouturou, Bernard; Numerical Combustion


    Interest in numerical combustion is growing among applied mathematicians, physicists, chemists, engine manufacturers and many industrialists. This proceedings volume contains nine invited lectures and twenty seven contributions carefully selected by the editors. The major themes are numerical simulation of transsonic and supersonic combustion phenomena, the study of supersonic reacting mixing layers, and turbulent combustion. Emphasis is laid on hyperbolic models and on numerical simulations of hydrocarbon planes with a complete set of chemical reactions carried out in two-dimensional geometries as well as on complex reactive flow simulations.

  19. The John Zink Hamworthy combustion handbook

    CERN Document Server

    Baukal, Charles E


    Despite the length of time it has been around, its importance, and vast amounts of research, combustion is still far from being completely understood. Issues regarding the environment, cost, and fuel consumption add further complexity, particularly in the process and power generation industries. Dedicated to advancing the art and science of industrial combustion, The John Zink Hamworthy Combustion Handbook, Second Edition: Volume 3 - Applications offers comprehensive, up-to-date coverage of equipment used in the process and power generation industries. Under the leadership of Charles E. Baukal

  20. Annual Report: Advanced Combustion (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey [NETL; Richards, George


    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  1. Optimization of fuel cycles: marginal loss values; Optimisation des cycles de combustibles: valeurs marginales des pertes

    Energy Technology Data Exchange (ETDEWEB)

    Gaussens, J. [Commissariat a l' Energie Atomique, 75 - Paris (France); Lasteyrie, B. de; Doumerc, J. [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques, 75 - Paris (France)


    'uranium doit etre consideree comme definitivement perdue, alors que le reste pourrait etre recupere et recycle. Le cout eleve des pertes, recyclees ou non, d'autant plus eleve que l'uranium est plus enrichi, exige qu'il en soit tenu compte dans l'optimisation generale des cycles de combustible. Il importe donc de determiner leur niveau le plus souhaitable economiquement, aux diverses etapes d'elaboration du combustible nucleaire. Mais en France et dans d'autres pays, la production de matieres fissiles est geree par l'Etat, tandis que la fabrication de l'element combustible est effectuee par l'industrie privee. Les criteres d'optimisation et l'interet economique accorde aux pertes sont donc differents pour les deux parties de la chaine de fabrication. Pour tenter neanmoins d'atteindre un optimum conforme a l'interet collectif sans intervenir dans la politique de prix de l'entreprise, on peut utiliser la propriete des couts marginaux d'etre egaux entre eux a l'optimum, pour un volume de production donne. On peut donc ajuster le niveau des pertes pour realiser cette egalite des couts marginaux dont le calcul est plus facile a obtenir de la firme que la justification des prix eux-memes. On s'apercoit d'ailleurs que, bien qu'axee essentiellement sur les pertes, cette analyse globale peut conduire a une meilleure utilisation d'autres facteurs de production. On donne un expose theorique et des exemples pratiques de cette methode d'optimisation economique dans le cadre de la fabrication d'elements combustibles destines a des reacteurs du type: uranium naturel, moderes au graphite et refroidis par le gaz carbonique. (auteurs)

  2. Craniospinal irradiation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Scarlatescu, Ioana, E-mail:; Avram, Calin N. [Faculty of Physics, West University of Timisoara, Bd. V. Parvan 4, 300223 Timisoara (Romania); Virag, Vasile [County Hospital “Gavril Curteanu” - Oradea (Romania)


    In this paper we present one treatment plan for irradiation cases which involve a complex technique with multiple beams, using the 3D conformational technique. As the main purpose of radiotherapy is to administrate a precise dose into the tumor volume and protect as much as possible all the healthy tissues around it, for a case diagnosed with a primitive neuro ectoderm tumor, we have developed a new treatment plan, by controlling one of the two adjacent fields used at spinal field, in a way that avoids the fields superposition. Therefore, the risk of overdose is reduced by eliminating the field divergence.

  3. Coal Combustion Science quarterly progress report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.


    This document provides a quarterly status report of the Coal Combustion Science Program that is being conducted at the Combustion, Research Facility, Sandia National Laboratories, Livermore, California. Coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 56 refs., 25 figs., 13 tabs.

  4. Numerical modeling of straw combustion in a fixed bed

    DEFF Research Database (Denmark)

    Zhou, Haosheng; Jensen, Anker; Glarborg, Peter


    . The straw combustion processes include moisture evaporation, straw pyrolysis, gas combustion, and char combustion. The model provides detailed information of the structure of the ignition flame front. Simulated gas species concentrations at the bed surface, ignition flame front rate, and bed temperature...... packing condition, and heat capacity of the straw have considerable effects on the model predictions of straw combustion in the fixed bed....

  5. Key factors of combustion from kinetics to gas dynamics

    CERN Document Server

    Rubtsov, Nikolai M


    This book summarizes the main advances in the mechanisms of combustion processes. It focuses on the analysis of kinetic mechanisms of gas combustion processes and experimental investigation into the interrelation of kinetics and gas dynamics in gas combustion. The book is complimentary to the one previously published, The Modes of Gaseous Combustion.

  6. International Developments of Food Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P. [Head, Food Preservation Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)


    Food irradiation is increasingly accepted and applied in many countries in the past decade. Through its use, food losses and food-borne diseases can be reduced significantly, and wider trade in many food items can be facilitated. The past five decades have witnessed a positive evolution on food irradiation according to the following: 1940`s: discovery of principles of food irradiation; 1950`s: initiation of research in advanced countries; 1960`s: research and development were intensified in some advanced and developing countries; 1970`s: proof of wholesomeness of irradiated foods; 1980`s: establishment of national regulations; 1990`s: commercialization and international trade. (Author)

  7. Food irradiation and the consumer (United States)

    A Thomas, P.

    The poster presents a review of research work undertaken on the perception and understanding that consumers have of food irradiation. Food irradiation is not a revolutionary new food processing technique, in fact it is probably one of the most investigated methods presently available. Many countries such as Belgium, France, Denmark, Italy, Spain, the Netherlands and the United States of America permit food irradiation. In Britain it is presently banned although this is currently under review. Awareness of food irradiation by the general public in Britain, although not extensively researched would appear to be increasing, especially in the light of recent media coverage. New quantitative and qualitative work indicates that the general public are concerned about the safety and effectiveness of food irradiation. Research has shown that a large proportion of consumers in Britain, if given the opportunity to purchase irradiated food, would not do so. Further exploration into this response revealed the fact that consumers are confused over what food irradiation is. In addition, there is concern over the detection of irradiated food. The views presented in this paper, of the consumer reaction to irradiated food are of great importance to those involved in the food industry and industries allied to it, which are ultimately dependent on the consumer for their commercial survival.

  8. A study of the current group evaporation/combustion theories (United States)

    Shen, Hayley H.


    Liquid fuel combustion can be greatly enhanced by disintegrating the liquid fuel into droplets, an effect achieved by various configurations. A number of experiments carried out in the seventies showed that combustion of droplet arrays and sprays do not form individual flames. Moreover, the rate of burning in spray combustion greatly deviates from that of the single combustion rate. Such observations naturally challenge its applicability to spray combustion. A number of mathematical models were developed to evaluate 'group combustion' and the related 'group evaporation' phenomena. This study investigates the similarity and difference of these models and their applicability to spray combustion. Future work that should be carried out in this area is indicated.

  9. Kinetics of coal combustion: Part 2, Mechanisms and kinetics of coal volatiles combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gat, N.; Wolff, M. F.; Petach, M. B. [TRW Space and Technology Group, Redondo Beach, CA (USA)


    Presently very little is known about the combustion characteristics of mixtures of hydrocarbon fuels. Even less is known about the combustion of coal volatiles which are complex mixtures of light and high molecular weight hydrocarbons. This issue pertains not only to coal volatiles but also to the combustion of synthetic fuels, liquefaction and coal gasification products. The subject in general has been given very little attention in the literature. As a consequence, current modeling methods are based on assumptions which are not thoroughly validated and verified. The current investigation addressed this very problem of the combustion of mixtures of hydrocarbon fuels. 29 refs., 35 figs., 5 tabs.


    Directory of Open Access Journals (Sweden)

    S. V. Vorobiev


    Full Text Available The use of thermovision technology to diagnose failure of the combustion flame test tube of the main combustion chamber gas turbine engine is deal with in the article. Join the thermal radiation of the jet of combustion products and the internal elements was carried out using short-wave thermovision system AGA-782 with spectral spectral filters in several ranges from 3.2 to 5.6 microns. Thermovision is mounted on the axis of the flame tube. The output signal was recorded and processed on a computer in real time, allowing monitor the combustion process and the thermal state of the object during the experiment.

  11. Food irradiation and sterilization (United States)

    Josephson, Edward S.

    Radiation sterilization of food (radappertization) requires exposing food in sealed containers to ionizing radiation at absorbed doses high enough (25-70 kGy) to kill all organisms of food spoilage and public health significance. Radappertization is analogous to thermal canning is achieving shelf stability (long term storage without refrigeration). Except for dry products in which autolysis is negligible, the radappertization process also requires that the food be heated to an internal temperature of 70-80°C (bacon to 53°C) to inactivate autolytic enzymes which catalyze spoilage during storage without refrigeration. To minimize the occurence of irradiation induced off-flavors and odors, undesirable color changes, and textural and nutritional losses from exposure to the high doses required for radappertization, the foods are vacuum sealed and irradiated frozen (-40°C to -20°C). Radappertozed foods have the characteristic of fresh foods prepared for eating. Radappertization can substitute in whole or in part for some chemical food additives such as ethylene oxide and nitrites which are either toxic, carcinogenic, mutagenic, or teratogenic. After 27 years of testing for "wholesomeness" (safety for consumption) of radappertized foods, no confirmed evidence has been obtained of any adverse effecys of radappertization on the "wholesomeness" characteristics of these foods.

  12. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe


    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to

  13. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  14. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....

  15. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin


    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  16. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin


    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  17. Combustion properties of Kraft Black Liquors

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, W.J. Jr.; Hupa, M. (Aabo Akademi, Turku (Finland))


    In a previous study of the phenomena involved in the combustion of black liquor droplets a numerical model was developed. The model required certain black liquor specific combustion information which was then not currently available, and additional data were needed for evaluating the model. The overall objectives of the project reported here was to provide experimental data on key aspects of black liquor combustion, to interpret the data, and to put it into a form which would be useful for computational models for recovery boilers. The specific topics to be investigated were the volatiles and char carbon yields from pyrolysis of single black liquor droplets; a criterion for the onset of devolatilization and the accompanying rapid swelling; and the surface temperature of black liquor droplets during pyrolysis, combustion, and gasification. Additional information on the swelling characteristics of black liquor droplets was also obtained as part of the experiments conducted.

  18. Petroleum recovery by in situ combustion

    Energy Technology Data Exchange (ETDEWEB)

    Orkiszewski, J.


    In an in situ combustion process for the recovery of oil, the available fuel is changed to more nearly equal the minimum fuel requirement for the process. The API gravity of the reservoir oil and the temperature of the reservoir are used to determine the total available fuel. The available fuel in the reservoir is changed to more nearly equal the minimum fuel requirement for the in situ combustion process by injecting a fluid capable of changing either the API gravity of the reservoir oil, the reservoir temperature, or both. An oxygen containing gas is then injected into the reservoir to initiate combustion. Oil is recovered from the reservoir as a result of the in situ combustion process. (10 claims)

  19. Plume Diagnostics for Combustion Stability Project (United States)

    National Aeronautics and Space Administration — Sierra Engineering Inc. and Purdue University propose to develop a non-intrusive plume instrument capable of detecting and diagnosing combustion instability. This...

  20. Two phase exhaust for internal combustion engine (United States)

    Vuk, Carl T [Denver, IA


    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  1. Plume Diagnostics for Combustion Stability Project (United States)

    National Aeronautics and Space Administration — Sierra Engineering and Purdue University propose to leverage combustion stability testing, already funded and planned for the second and third quarters of next year...

  2. 76 FR 16646 - Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc... (United States)


    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc... concerning the securities of Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc...

  3. Self-oscillations of an unstable fuel combustion in the combustion chamber of a liquid-propellant rocket engine (United States)

    Gotsulenko, V. V.; Gotsulenko, V. N.


    The form of the self-oscillations of a vibrating combustion of a fuel in the combustion chamber of a liquidpropellant rocket engine, caused by the fuel-combustion lag and the heat release, was determined. The character of change in these self-oscillations with increase in the time of the fuel-combustion lag was investigated.

  4. Household fuels, direct combustion, public perception, fuel

    African Journals Online (AJOL)


    Jul 10, 2005 ... w ere smo k e, fl y - ash and high b urning rate . A ma j or c ause o f the p ro b lems w as the ... Key words: Household fuels, direct combustion, public perception, fuel-switching, food-switching, health impacts. 1 IN TR ..... levels from wood combustion typically exceed the recommended limit by 13 - 50 times ...

  5. Secondary combustion system for woodburning stove

    Energy Technology Data Exchange (ETDEWEB)

    von Conta, P. E. W.


    A secondary combustion system for a woodburning stove employs a concave shaped screen for dispersing exhaust gases. A mixing chamber is formed in an insulated conduit between the concave screen and a second planar screen. The planar screen is perforated to form a random array of flaps which increase the turbulence of the exhaust stream so that a secondary combustion of the exhaust gases is produced.

  6. L'Hidrogen com a combustible


    Díaz i Pérez, Germán


    L’objectiu del projecte, és estudiar la viabilitat de l’hidrogen com a combustible net. Dissenyant un planta de producció d’hidrogen que utilitzi energia neta per a realitzar el seu procés (energia elèctrica obtinguda a partir de fonts renovables), i utilitzant l’hidrogen obtingut per a accionar un autobús amb pila de combustible.

  7. Internal combustion engine and method for control (United States)

    Brennan, Daniel G


    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  8. Building America Expert Meeting. Combustion Safety

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Larry [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)


    This is an overview of "The Best Approach to Combustion Safety in a Direct Vent World," held June 28, 2012, in San Antonio, TX. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  9. Building America Expert Meeting: Combustion Safety

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.


    This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  10. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion


    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  11. Rapid Deployment of Rich Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richard S. Tuthill


    The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

  12. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)


    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  13. Carburetor for internal combustion engines (United States)

    Csonka, John J.; Csonka, Albert B.


    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  14. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal (United States)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo


    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which

  15. Nuclear wastes; Dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)



    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  16. Nuclear energy; Le nucleaire

    Energy Technology Data Exchange (ETDEWEB)



    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  17. Sensorial evaluation of irradiated mangoes

    Energy Technology Data Exchange (ETDEWEB)

    Broisler, Paula Olhe; Cruz, Juliana Nunes da; Sabato, Susy Frey [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails:;;


    Mango (Mangifera indica L.) is a tropical fruit of great economical relevance in the world, mainly for tropical countries like Brazil. It consists in the second tropical fruit more important grown in the world. On the other hand it is a very perishable fruit and its delivery to distant points is restricted due to short shelf life at environmental temperature. Food irradiation process is applied to fruits for their preservation, once it promotes disinfestation and even maturation retard, among other mechanisms. The Brazilian legislation permits the food irradiation and does not restrict the doses to be delivered. In order to verify eventual changes, sensorial evaluation is very important to study how irradiation affects the quality of the fruit and its acceptability. Mangoes were irradiated in a Cobalto-60 source, from the Radiation Technology Center, CTR, of IPEN/CNEN-SP at doses 0,5 kGy e 0,75 kGy. The sensorial evaluation was measured through Acceptance Test where irradiated samples were offered together with control sample to the tasters who answered their perception through hedonic scale. The parameters Color, Odor, Flavor and Texture were analyzed. Statistical analysis showed that only Odor parameter was different from control (sample irradiated at 0.5 kGy). Few tasters indicated that irradiated mangoes had fewer odors in relation to non-irradiated samples. (author)

  18. Consumer acceptance of irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, P. [Head, Food Preservation Section, Joint FAO/ IAEA Division of Nuclear Techniques in Food and Agriculture, Wagramerstr. 5, A-1400, Vienna (Austria)


    There was a widely held opinion during the 1970`s and 1980`s that consumers would be reluctant to purchase irradiated food, as it was perceived that consumers would confuse irradiated food with food contaminated by radionuclides. Indeed, a number of consumer attitude surveys conducted in several western countries during these two decades demonstrated that the concerns of consumers on irradiated food varied from very concerned to seriously concerned.This paper attempts to review parameters conducting in measuring consumer acceptance of irradiated food during the past three decades and to project the trends on this subject. It is believed that important lessons learned from past studies will guide further efforts to market irradiated food with wide consumer acceptance in the future. (Author)

  19. Irradiation of fresh fish (United States)

    Yueh-jen, Yen; Jin-lai, Zhou; Shao-chun, Lai

    Occasionally, in China, marine products can not be provided for the markets in good quality, for during the time when they are being transported from the sea port to inland towns or even at the time when they are unloaded from the ship, they are beginning to spoil. Obviously, it is very important that appropiate measures should be taken to prevent them from decay. Our study has proved that the shelf life of fresh Flatfish (Cynoglossue robustus) and Silvery pomfret (stromateoides argenteus), which, packed in sealed containers, are irradiated by 1.5 kGy, 2.2 kGy and 3.0 kGy, can be stored for about 13-26 days at 3° - 5° C.

  20. Irradiation for xenogeneic transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Halperin, E.C.; Knechtle, S.J.; Harland, R.C.; Yamaguchi, Yasua; Sontag, M.; Bollinger, R.R. (Duke Univ., Durham, NC (USA). Dept. of Radiology Duke Univ., Durham, NC (USA). Dept. of Microbiology and Immunology)


    Xenogeneic transplantation (XT) is the transplantation of organs or tissues from a member of one species to a member of another. Mammalian species frequently have circulating antibody which is directed against the foreign organ irrespective of known prior antigen exposure. This antibody may lead to hyperacute rejection once it ensues so efforts must be directed towards eliminating the pre-existing antibody. In those species in which hyperacute rejection of xenografts does not occur, cell-mediated refection, similar to allograft rejection, may occur. It is in the prevention of this latter form of refection that radiation is most likely to be beneficial in XT. Both total lymphoid irradiation (TLI) and selective lyphoid irradiation (LSI) have been investigated for use in conjunction with XT. TLI has contributed to the prolongation of pancreatic islet-cell xenografts from hamsters to rats. TLI has also markedly prolonged the survival of cardiac transplants from hamsters to rats. A more modest prolongation of graft survival has been seen with the use of TLI in rabbit-to-rat exchanges. Therapy with TLI, cyclosporine, and splenectomy has markedly prolonged the survival of liver transplants from hamsters to rats, and preliminary data suggest that TLI may contribute to the prolongation of graft survival in the transplantation of hearts from monkeys to baboons. SLI appears to have prolonged graft survival, when used in conjunction with anti-lymphocyte globulin, in hamster-to-rat cardiac graft exchanges. The current state of knowledge of the use of irradiaiton in experimental XT is reviewed. (author). 38 refs.; 1 fig.; 5 tabs.

  1. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad


    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  2. Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control

    NARCIS (Netherlands)

    Leskens, M.


    The combustion of municipal solid waste (MSW) is used for its inertisation, reduction of its volume and the conversion of its energy content into heat and/or electricity. Operation and control of modern large scale MSW combustion (MSWC) plants is determined by economic and environmental objectives


    Experiments were performed on a 73 kW rotary kiln incinerator simulator equipped with a 73 kW secondary combustion chamber (SCC) to examine emissions of products of incomplete combustion (PICs) resulting from incineration of carbon tetrachloride (CCl4) and dichlorometh...

  4. Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Miroslaw Weclas


    Full Text Available The paper summarizes the knowledge concerning porous media combustion techniques as applied in engines. One of most important reasons of this review is to introduce this still not well known technology to researchers doing with internal combustion engine processes, thermal engines, reactor thermodynamics, combustion, and material science. The paper gives an overview of possible applications of a highly porous open cell structures to in-cylinder processes. This application means utilization of unique features of porous media for supporting engine processes, especially fuel distribution in space, vaporization, mixing with air, heat recuperation, ignition and combustion. There are three ways for applying porous medium technology to engines: support of individual processes, support of homogeneous combustion process (catalytic and non-catalytic with temperature control, and utilization of the porous structure as a heat capacitor only. In the first type of application, the porous structure may be utilized for fuel vaporization and improved fuel distribution in space making the mixture more homogeneous in the combustion chamber. Extension of these processes to mixture formation and ignition inside a combustion reactor allows the realization of a homogeneous and a nearly zero emissions level combustion characterized by a homogeneous temperature field at reduced temperature level.

  5. Combustion Synthesis of Magnesium Aluminate (United States)

    Kale, M. A.; Joshi, C. P.; Moharil, S. V.


    In the system MgO-Al2O3, three compounds MgAl2O4, MgAl6O10 (also expressed as- Mg0.4Al2.4O4) and MgAl26O40 are well known. Importance of the first two is well established. Magnesium aluminate (MgAl2O4) spinel is a technologically important material due to its interesting thermal properties. The MgAl2O4 ceramics also find application as humidity sensors. Apart from the luminescence studies, the interest in MgAl2O4 is due to various applications such as humidity-sensing and PEM fuel cells, TL/OSL dosimetry of the ionizing radiations, white light source. Interest in the MgAl6O10 has aroused due to possible use as a substrate for GaN growth. Attempt was made to synthesize these compounds by the combustion synthesis using metal nitrates as oxidizer and urea as a fuel. Compounds MgAl2O4 and MgAl6O10 were formed in a single step, while MgAl26O40 was not formed by this procedure. Activation of MgAl6O10 by rare earth ions like Ce3+, Eu3+ and Tb3+ and ns2 ion Pb2+ could be achieved. Excitation bands for MgAl6O10 are at slightly shorter wavelengths compared to those reported for MgAl2O4.

  6. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza


    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  7. Investigating co-combustion characteristics of bamboo and wood. (United States)

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia


    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Assessment of Literature Related to Combustion Appliance Venting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, V. H.; Less, B. D.; Singer, B. C.; Stratton, J. C.; Wray, C. P.


    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents their technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.

  9. Measurements of gas and volatile element production rates from an irradiated molten lead and lead-bismuth spallation target with proton beams of 1 and 1.4 GeV; Mesures de taux de production d'elements gazeux et volatiles lors de reactions induites par des protons de 1 et 1,4 GeV sur des cibles epaisses de plomb et plomb-bismuth liquides

    Energy Technology Data Exchange (ETDEWEB)

    Tall, Y


    The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6. EURATOM Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will carry out a first advanced design of an experimental facility to demonstrate the technical feasibility of transmutation, and will produce a conceptual design of an industrial facility dedicated to transmutation. An ADS consists of three fundamental elements: the accelerator of protons, the sub-critical core and the spallation target. SUBATECH (physique Sub-Atomique et des Technologies associees) laboratory is involved to the study of the chosen liquid lead-bismuth as a spallation ADS target. The irradiation of liquid lead-bismuth target with energetic proton beam generates in addition to neutrons, volatile and radioactive residues. In order to determine experimentally the production rates of gas and volatile elements following a spallation reaction in a lead-bismuth target, the experiment IS419 was performed at the ISOLDE facility at CERN (Centre Europeen de la Recherche Nucleaire). This experiment constitutes the frame of the thesis whose main objective is to assess and study the production and release rates of many gas and volatile element from the irradiated lead-bismuth target with an energetic proton beam. The obtained data are compared to Monte Carlo simulation code (MCNPX) results in order to test the intranuclear cascade model of Bertini and of Cugnon, and the evaporation options of Dresner and Schmidt. (author)

  10. Diesel oil combustion in fluidized bed; Combustion de aceite diesel en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Cazares, Mario [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)


    The effect of the fluidized bed depth in the combustion in burning diesel oil in a fluidized bed, was analyzed. A self sustained combustion was achieved injecting the oil with an injector that utilized a principle similar to an automobile carburetor venturi. Three different depths were studied and it was found that the deeper the bed, the greater the combustion efficiency. Combustion efficiencies were attained from 82% for a 100mm bed depth, up to 96% for a 200mm bed depth. The diminution in the efficiency was mainly attributed to unburned hydrocarbons and to the carbon carried over, which was observed in the black smoke at the stack outlet. Other phenomena registered were the temperature gradient between the lower part of the bed and the upper part, caused by the fluidization velocity; additionally it was observed that the air employed for the oil injection (carbureting air) is the most important parameter to attain a complete combustion. [Espanol] Se analizo el efecto de la profundidad del lecho en la combustion al quemar aceite diesel en un lecho fluidizado experimental. Se logro combustion autosostenida inyectando el aceite con un inyector que utilizo un principio similar al venturi del carburador de automovil. Se estudiaron tres diferentes profundidades del lecho y se encontro que a mayor profundidad del lecho, mayor eficiencia de la combustion. Se lograron eficiencias de la combustion desde 82% para el lecho de 100 mm de profundidad hasta 96% para el de 200 mm. La disminucion de la eficiencia se atribuyo, principalmente, a los hidrocarburos no quemados y al carbon arrastrado, lo cual se observo en el humo negro a la salida de la chimenea. Otros fenomenos registrados fueron el gradiente de temperatura entre la parte baja del lecho y la parte superior causado por la velocidad de fluidizacion; ademas, se observo que el aire utilizado para inyectar el aceite (aire de carburacion) es el parametro mas importante para lograr una combustion completa.

  11. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle; 1: l'atome. 2: la radioactivite. 3: l'homme et les rayonnements. 4: l'energie. 5: l'energie nucleaire: fusion et fission. 6: le fonctionnement d'un reacteur nucleaire. 7: le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)



    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  12. Solar photothermochemical alkane reverse combustion (United States)

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H.; MacDonnell, Frederick M.


    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631

  13. Photocatalytic degradation of methylene blue on Sn-doped titania nanoparticles synthesized by solution combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Bhange, P.D., E-mail: [Department of Chemistry, Shivaji University, Kolhapur 416004, MS (India); Awate, S.V. [Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Gholap, R.S. [Center for Material Characterization, National Chemical Laboratory, Pune 411008 (India); Gokavi, G.S.; Bhange, D.S. [Department of Chemistry, Shivaji University, Kolhapur 416004, MS (India)


    Highlights: • Series of Sn-doped titania nanoparticles were prepared by solution combustion synthesis method. • Sn-doped titania nanoparticles were tested for degradation of MB under UV light irradiation. • The maximum Sn doping in the TiO{sub 2} lattice is found to be less than 10%. • The crystallite size decreases with increase in the Sn content. • The doping of Sn into TiO{sub 2} lattice hinders the recombination of electrons and holes thus enhance the photocatalytic activity. - Abstract: Series of tin-doped titania nanoparticles with varying tin content in the range 0–20 mol% have been prepared by solution combustion synthesis route using urea as a fuel. The structure, surface morphology and optical activity of Sn-doped TiO{sub 2} nanoparticles were investigated by various analytical techniques such as powder XRD, SEM, TEM, UV–vis and N{sub 2} adsorption study. The crystalline structures of the various phases were studied by rietveld refinement of the XRD data. The photocatalytic performance of Sn-doped titania nanoparticles were tested for degradation of MB under UV and visible light irradiation. The results reveal that the photocatalytic activity increases with increase in tin content which may be due to decrease in crystallite size with increase in surface area. The doping of Sn into TiO{sub 2} lattice hinders the recombination of electrons and holes thus enhance the quantum efficiency of photocatalytic reaction.

  14. Combustion Safety Simplified Test Protocol Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L [Gas Technology Inst., Des Plaines, IL (United States); Cautley, D. [Gas Technology Inst., Des Plaines, IL (United States); Bohac, D. [Gas Technology Inst., Des Plaines, IL (United States); Francisco, P. [Gas Technology Inst., Des Plaines, IL (United States); Shen, L. [Gas Technology Inst., Des Plaines, IL (United States); Gloss, S. [Gas Technology Inst., Des Plaines, IL (United States)


    "9Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project provides several key results. State weatherization agencies do not generally track combustion safety failures, the data from those that do suggest that there is little actual evidence that combustion safety failures due to spillage from non-dryer exhaust are common and that only a very small number of homes are subject to the failures. The project team collected field data on 11 houses in 2015. Of these homes, two houses that demonstrated prolonged and excessive spillage were also the only two with venting systems out of compliance with the National Fuel Gas Code. The remaining homes experienced spillage that only occasionally extended beyond the first minute of operation. Combustion zone depressurization, outdoor temperature, and operation of individual fans all provide statistically significant predictors of spillage.

  15. LIEKKI 2 - Combustion technology is environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M. [Aabo Akademi, Turku (Finland)


    Finland has wide experience in applications of various combustion technologies and fuels and in supplying energy to industry and municipalities. Furthermore, combustion hardware and equipment are amongst our most important export products. Above all, fluidized bed boilers, recovery boilers for pulp mills and heavy diesel engines and diesel power plants have achieved excellent success in the world markets. Exports of these products alone have amounted to several billions of Finnish marks of annual sales in recent years. Within modern combustion technology, the objective is to control flue gas emissions as far as possible in the process itself, thus doing away with the need for the separate scrubbing of flue gases. To accomplish this it has been necessary to conduct a large amount of research on the details of the chemistry of combustion emissions and the flows in furnaces and engine cylinders. A host of completely new products are being developed for the combustion technology field. The LIEKKI programme has been particularly interested in so-called combined-cycle processes based on pressurized fluidized bed technology

  16. Design factors for stable lean premix combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Yip, M.J.; Gemmen, R.S.


    The Advanced Turbine Systems (ATS) program includes the development of low-emission combustors. Low emissions have already been achieved by premixing fuel and air to avoid the hot gas pockets produced by nozzles without premixing. While the advantages of premixed combustion have been widely recognized, turbine developers using premixed nozzles have experienced repeated problems with combustion oscillations. Left uncontrolled, these oscillations can lead to pressure fluctuations capable of damaging engine hardware. Elimination of such oscillations is often difficult and time consuming - particularly when oscillations are discovered in the last stages of engine development. To address this issue, METC is studying oscillating combustion from lean premixing fuel nozzles. These tests are providing generic information on the mechanisms that contribute to oscillating behavior in gas turbines. METC is also investigating the use of so-called {open_quotes}active{close_quotes} control of combustion oscillations. This technique periodically injects fuel pulses into the combustor to disrupt the oscillating behavior. Recent results on active combustion control are presented in Gemmen et al. (1995) and Richards et al. (1995). This paper describes the status of METC efforts to avoid oscillations through simple design changes.

  17. Reaction and diffusion in turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)


    The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

  18. Testing fireproof materials in a combustion chamber

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr


    Full Text Available This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time. Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results – i.e. thermal distribution inside and heat release rate that has gone through the sample.

  19. Dioxins and polyvinylchloride in combustion and fires. (United States)

    Zhang, Mengmei; Buekens, Alfons; Jiang, Xuguang; Li, Xiaodong


    This review on polyvinylchloride (PVC) and dioxins collects, collates, and compares data from selected sources on the formation of polychlorinated dibenzofurans (PCDFs) and dibenzo-p-dioxins (PCDDs), or in brief dioxins, in combustion and fires. In professional spheres, the incineration of PVC as part of municipal solid waste is seldom seen as a problem, since deep flue gas cleaning is required anyhow. Conversely, with its high content of chlorine, PVC is frequently branded as a major chlorine donor and spitefully leads to substantial formation of dioxins during poorly controlled or uncontrolled combustion and open fires. Numerous still ill-documented and diverse factors of influence may affect the formation of dioxins during combustion: on the one hand PVC-compounds represent an array of materials with widely different formulations; on the other hand these may all be exposed to fires of different nature and consequences. Hence, attention should be paid to PVC with respect to the ignition and development of fires, as well as attenuating the emission of objectionable compounds, such as carbon monoxide, hydrogen chloride, polycyclic aromatic hydrocarbons, and dioxins. This review summarises available dioxin emissions data, gathers experimental and simulation studies of fires and combustion tests involving PVC, and identifies and analyses the effects of several local factors of influence, affecting the formation of dioxins during PVC combustion. © The Author(s) 2015.

  20. Testing fireproof materials in a combustion chamber (United States)

    Kulhavy, Petr; Martinec, Tomas; Novak, Ondrej; Petru, Michal; Srb, Pavel

    This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free) and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time). Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results - i.e. thermal distribution inside and heat release rate that has gone through the sample.

  1. LOX/Hydrocarbon Combustion Instability Investigation (United States)

    Jensen, R. J.; Dodson, H. C.; Claflin, S. E.


    The LOX/Hydrocarbon Combustion Instability Investigation Program was structured to determine if the use of light hydrocarbon combustion fuels with liquid oxygen (LOX) produces combustion performance and stability behavior similar to the LOX/hydrogen propellant combination. In particular methane was investigated to determine if that fuel can be rated for combustion instability using the same techniques as previously used for LOX/hydrogen. These techniques included fuel temperature ramping and stability bomb tests. The hot fire program probed the combustion behavior of methane from ambient to subambient temperatures. Very interesting results were obtained from this program that have potential importance to future LOX/methane development programs. A very thorough and carefully reasoned documentation of the experimental data obtained is contained. The hot fire test logic and the associated tests are discussed. Subscale performance and stability rating testing was accomplished using 40,000 lb. thrust class hardware. Stability rating tests used both bombs and fuel temperature ramping techniques. The test program was successful in generating data for the evaluation of the methane stability characteristics relative to hydrogen and to anchor stability models. Data correlations, performance analysis, stability analyses, and key stability margin enhancement parameters are discussed.

  2. Ignition and wave processes in combustion of solids

    CERN Document Server

    Rubtsov, Nickolai M; Alymov, Michail I


    This book focuses on the application of classical combustion theory to ignition and flame propagation in solid-solid and gas-solid systems. It presents experimental investigations in the areas of local ignition, filtration combustion, self-propagating high temperature synthesis and nanopowders protection. The authors highlight analytical formulas used in different areas of combustion in solids and propose an approach based on classical combustion theory. The book attempts to analyze the basic approaches to understanding of solid-solid and solid - gas combustion presented in contemporary literature in a unified approach based on classical combustion theory. .

  3. A comparative study of combustible cartridge case materials

    Directory of Open Access Journals (Sweden)

    Wei-tao Yang


    Full Text Available Foamed combustible material based on polymer bonded RDX was fabricated using CO2 as foaming agent. The inner structures of felted and foamed combustible materials were presented by SEM. The two materials presented different formulations and inner porous structures. The combustion behaviors of felted and foamed materials were investigated by closed vessel test. Simultaneously, the co-combustion behavior of combustible cartridge case with 7-perf consolidated propellants was also investigated. The results of closed vessel test is applicable to gun system which is made of the foamed combustible material as component.

  4. AFIP-4 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Danielle M Perez; Misti A Lillo; Gray S. Chang; Glenn A Roth; Nicolas Woolstenhulme; Daniel M Wachs


    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE). The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  5. AFIP-4 Irradiation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Danielle M Perez; Misti A Lillo; Gray S. Chang; Glenn A Roth; Nicolas Woolstenhulme; Daniel M Wachs


    The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-4 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a scale prototypic of research reactor fuel plates. The AFIP-4 test further examine the fuel/clad interface and its behavior under extreme conditions. After irradiation, fission gas retention measurements will be performed during post irradiation (PIE)1,2. The following report summarizes the life of the AFIP-4 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.

  6. Craniospinal Irradiation for Trilateral Retinoblastoma Following Ocular Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Lawrence B.; Bentel, Gunilla; Sherouse, George W.; Spencer, David P.; Light, Kim


    A case study is presented. Craniospinal radiotherapy and a three-field pineal boost for trilateral retinoblastoma were delivered to a patient previously irradiated for ocular retinoblastoma. The availability of CT-based three-dimensional treatment planning provided the capability of identifying the previously irradiated volume as a three-dimensional anatomic structure and of designing a highly customized set of treatment beams that minimized reirradiation of that volume.

  7. Transport Properties for Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.; Bastein, L.; Price, P.N.


    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  8. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)


    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ{sub c}) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  9. Laser Pyrolysis Techniques: Application To Catalysis, Combustion Diagnostics, And Kinetics (United States)

    Smith, Gregory P.


    A pulsed laser pyrolysis method has been developed to study kinetic processes at high temperatures. A CO2 laser is used to irradiate a 100 torr mixture of an infrared absorber (SF6), bath gas (N2), and reactants. Rapid heating to 700-1400 K occurs, followed by two-stage cooling. Unimolecular reactions are studied by competitive kinetics with a known standard, using mass-spectrometric or gas-chromatographic analysis. Bimolecular processes are examined using laser-induced fluorescence (LIF). The technique offers great advantages in reaching reactive temperatures in a fast and time-resolved manner, without the complications of hot surfaces. It is thus an ideal tool for analyzing and measuring some of the basic processes occurring in more complicated, real, hot systems. Our recent applications of the laser pyrolysis method in the areas of catalysis and combustion are summarized here. Several transition metal-carbonyl bond dissociation energies have been measured, and catalysis by the hot metal particulate products was observed. Since the use of LIF as a flame diagnotic requires some knowledge of the fluorescence quenching rates at high temperatures, the laser pyrolysis method was used to measure these rates for the important OH radical. Its reaction rate with acetylene was also measured, with implications for flame modeling and the mechanism of soot formation. Finally, this method can be used to ignite low concentrations of fuel and oxidant, and then study the time-resolved evolution of the flame chemistry by LIF and chemiluminescence observations.

  10. (Irradiation creep of graphite)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.R.


    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  11. Stillbirths and male irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boice, John D. Jr. [International Epidemiology Institute, Rockville, MD (United States)]. E-mail:; Robison, Leslie L. [University of Minnesota, Minneapolis, MN (United States); Mertens, Ann [University of Texas M D Anderson Cancer Center, Houston, TX (United States); Stovall, Marilyn; Green, Daniel M.; Mulvihill, John J.; ); Roswell Park Cancer Institute, Buffalo, NY (United States); University of Oklahoma, Oklahoma City, OK (US))


    Little (1999) recently reviewed the evidence that paternal preconception irradiation in the Sellafield workforce (Parker et al 1999) and among Japanese atomic bomb survivors (Otake et al 1990) might be associated with an increased risk of stillbirth. He concluded that the association reported for radiation workers was statistically incompatible with the absence of an association seen among the exposed Japanese parents. These studies and analyses illustrate the considerable difficulty in assessing stillbirths conceived by men exposed to ionising radiation at work. For example, occupational doses may not be sufficiently large to result in a detectable effect and maternal factors that are associated with stillbirths and important to adjust for may not be available. These papers also bring to focus a relevant but not well-studied public health issue, namely, what are the reproductive risks for men and women exposed to potential mutagens? We wish to emphasise here the theoretical and practical advantages of addressing this issue in persons not with low dose occupational or acute atomic bomb exposures, but with higher dose medical experiences; in particular, in survivors of cancers of childhood, adolescents, and young adulthood (Blatt 1999, Bryne et al 1998, Sankila et al 1998, Green et al 1997, Hawkins and Stevens 1996). Letter-to-the-editor.

  12. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....

  13. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...... of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably until 2007 resulting in increased emission of PAH and particulate matter. The emission of NMVOC has increased since 1990 as a result of both the increased...... combustion of wood in residential plants and the increased emission from lean-burn gas engines. The PCDD/F emission decreased since 1990 due to flue gas cleaning on waste incineration plants....

  14. Danish emission inventories for stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, M.; Illerup, J. B.

    Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...

  15. Internal Combustion Engines as Fluidized Bed Reactors (United States)

    Lavich, Zoe; Taie, Zachary; Menon, Shyam; Beckwith, Walter; Daly, Shane; Halliday, Devin; Hagen, Christopher


    Using an internal combustion engine as a chemical reactor could provide high throughput, high chemical conversion efficiency, and reactant/product handling benefits. For processes requiring a solid catalyst, the ability to develop a fluidized bed within the engine cylinder would allow efficient processing of large volumes of fluid. This work examines the fluidization behavior of particles in a cylinder of an internal combustion engine at various engine speeds. For 40 micron silica gel particles in a modified Megatech Mark III transparent combustion engine, calculations indicate that a maximum engine speed of about 60.8 RPM would result in fluidization. At higher speeds, the fluidization behavior is expected to deteriorate. Experiments gave qualitative confirmation of the analytical predictions, as a speed of 48 RPM resulted in fluidized behavior, while a speed of 171 RPM did not. The investigation shows that under certain conditions a fluidized bed can be obtained within an engine cylinder. Corresponding Author.

  16. Analysis of circulating fluidized bed combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Takehiko; Shimizu, Tadaaki; Yang, Guilin


    Fluidized bed combustors are commercialized as a technology to combust solid fuels with higher efficiency and lower emission and have functions of both combustion and simultaneous desulfurization and NOx reduction with dense phase fluidized beds but it is not so easy to realize these problems. The technology of circulating fluidized bed coal combustion is expected to offer potential break-through of various problems. But the details are not reported so far. Quantitative analysis of present situations was conducted and future problems were shown with officially available informations. This analysis includes the circulating rate and loading of solids, heat recovery and heat transfer rate as a function of loading of solids, the design of cyclones related to high solid concentration within the combustor, sulfur retention with reduced Ca/S ratio and problems related to NOx reduction to be developed in future. (51 refs, 23 figs, 8 tabs)

  17. Spectroscopy, Kinetics, and Dynamics of Combustion Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, David J. [Research/Professor


    Spectroscopy, kinetics and dynamics of jet cooled hydrocarbon transients relevant to the DOE combustion mission have been explored, exploiting i) high resolution IR lasers, ii) slit discharge sources for formation of jet cooled radicals, and iii) high sensitivity detection with direct laser absorption methods and near the quantum shot noise limit. What makes this combination powerful is that such transients can be made under high concentrations and pressures characteristic of actual combustion conditions, and yet with the resulting species rapidly cooled (T ≈10-15K) in the slit supersonic expansion. Combined with the power of IR laser absorption methods, this provides novel access to spectral detection and study of many critical combustion species.

  18. Improved bitumen extraction using wet combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wylie, I.; Hagen, D.; McGuire, A. [VAST Power Systems Inc., Elkhart, IN (United States)


    This presentation outlined the main concerns regarding the current combustion paradigm for steam assisted gravity drainage (SAGD) bitumen extraction and provided a solution that is more energy efficient with less environmental impact. SAGD operations currently use dry steam injection to deliver heat and reduce the viscosity bitumen, but this results in heat loss, restricted fuel choices, high water use and high emissions. Vast Power Systems Inc. has developed a wet flue gas known as VASTgas{sup TM} for efficient extraction. The downhole fluid has a much higher heat output and much lower emissions of nitrogen oxides, carbon monoxide and carbon dioxide. Other key advantages include net clean water from combustion and electricity as a by-product. This presentation also described the advantages of the VASThermogenerator{sup TM} for SAGD which solves some of the concerns regarding the combustion paradigm of mined bitumen and tailings pond purification. figs.

  19. Processing of hydroxyapatite obtained by combustion synthesis

    Directory of Open Access Journals (Sweden)

    M. Canillas


    Full Text Available One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties.

  20. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao


    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  1. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao


    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  2. Sounding Solid Combustibles: Non-premixed Flame Sound Synthesis for Different Solid Combustibles. (United States)

    Yin, Qiang; Liu, Shiguang


    With the rapidly growing VR industry, in recent years, more and more attention has been paid for fire sound synthesis. However, previous methods usually ignore the influences of the different solid combustibles, leading to unrealistic sounding results. This paper proposes SSC (sounding solid combustibles), which is a new recording-driven non-premixed flame sound synthesis framework accounting for different solid combustibles. SSC consists of three components: combustion noise, vortex noise and popping sounds. The popping sounds are the keys to distinguish the differences of solid combustibles. To improve the quality of fire sound, we extract the features of popping sounds from the real fire sound examples based on modified Empirical Mode Decomposition (EMD) method. Unlike previous methods, we take both direct combustion noise and vortex noise into account because the fire model is non-premixed flame. In our method, we also greatly resolve the synchronization problem during blending the three components of SSC. Due to the introduction of the popping sounds, it is easy to distinguish the fire sounds of different solid combustibles by our method, with great potential in practical applications such as games, VR system, etc. Various experiments and comparisons are presented to validate our method.

  3. Large eddy simulation and combustion instabilities; Simulation des grandes echelles et instabilites de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue, G.


    The new european laws on pollutants emission impose more and more constraints to motorists. This is particularly true for gas turbines manufacturers, that must design motors operating with very fuel-lean mixtures. Doing so, pollutants formation is significantly reduced but the problem of combustion stability arises. Actually, combustion regimes that have a large excess of air are naturally more sensitive to combustion instabilities. Numerical predictions of these instabilities is thus a key issue for many industrial involved in energy production. This thesis work tries to show that recent numerical tools are now able to predict these combustion instabilities. Particularly, the Large Eddy Simulation method, when implemented in a compressible CFD code, is able to take into account the main processes involved in combustion instabilities, such as acoustics and flame/vortex interaction. This work describes a new formulation of a Large Eddy Simulation numerical code that enables to take into account very precisely thermodynamics and chemistry, that are essential in combustion phenomena. A validation of this work will be presented in a complex geometry (the PRECCINSTA burner). Our numerical results will be successfully compared with experimental data gathered at DLR Stuttgart (Germany). Moreover, a detailed analysis of the acoustics in this configuration will be presented, as well as its interaction with the combustion. For this acoustics analysis, another CERFACS code has been extensively used, the Helmholtz solver AVSP. (author)

  4. Dust Combustion Safety Issues for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader


    This report summarizes the results of a safety research task to identify the safety issues and phenomenology of metallic dust fires and explosions that are postulated for fusion experiments. There are a variety of metal dusts that are created by plasma erosion and disruptions within the plasma chamber, as well as normal industrial dusts generated in the more conventional equipment in the balance of plant. For fusion, in-vessel dusts are generally mixtures of several elements; that is, the constituent elements in alloys and the variety of elements used for in-vessel materials. For example, in-vessel dust could be composed of beryllium from a first wall coating, tungsten from a divertor plate, copper from a plasma heating antenna or diagnostic, and perhaps some iron and chromium from the steel vessel wall or titanium and vanadium from the vessel wall. Each of these elements has its own unique combustion characteristics, and mixtures of elements must be evaluated for the mixture’s combustion properties. Issues of particle size, dust temperature, and presence of other combustible materials (i.e., deuterium and tritium) also affect combustion in air. Combustion in other gases has also been investigated to determine if there are safety concerns with “inert” atmospheres, such as nitrogen. Several coolants have also been reviewed to determine if coolant breach into the plasma chamber would enhance the combustion threat; for example, in-vessel steam from a water coolant breach will react with metal dust. The results of this review are presented here.

  5. Modeling internal ballistics of gas combustion guns. (United States)

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias


    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  6. Improvement of energy efficiency of natural gas combustion by applying a homogeneous combustion

    Directory of Open Access Journals (Sweden)

    Szymczyk Jacek


    Full Text Available In many heat devices designers and operators meet the problem of low efficiency of combustion and restricted emission standards. This process should be improved to maximize its efficiency and satisfy additional requirements as, for example, uniform temperature fieldin combustion chamber, low noise level or very low NOx emission. These requirements are satisfied by homogeneous combustion. Such combustion method is particularly attractive for the steel or glass industry or power industry based in particular on natural gas. In this paper factors, which have the biggest influence on performance of flameless combustion, are discussed, among others: momentum of fuel and oxidizer, composition of the mixture, the temperature of the inlet gases. Additionally, blind simulations of combustion in a combustion chamber of a furnace are run to assess how high is the influence of these factors individually. Numerical simulations are performed in a CFD code AVL Fire. The detailed chemical kinetics mechanism GRI-mech 3.0 is used for combustion calculations. Calculations results are correlated with experimental data. Blind simulations and experiment provide similar level of NOX emission (~6-8 ppm. Experiments showed that the effect of the addition of ethylene to fuel on emissions of NOX, CO, THC is not significant. Similarly, numerical simulations predict that influence of ethylene is negligible. CO, THC and CO2 were on a stable level across all cases. NOX emissions increases when mass flow of air and fuel increases due to higher heat release in the same volume, what results in higher temperature of combustion products. When temperature of fuel increases NOX level decreases.

  7. Irradiation pretreatment for coal desulfurization (United States)

    Hsu, G. C.


    Process using highly-penetrating nuclear radiation (Beta and Gamma radiation) from nuclear power plant radioactive waste to irradiate coal prior to conventional desulfurization procedures increases total extraction of sulfur.

  8. UV irradiance radiometers calibration procedure


    Doctorovich I. V.; Butenko V. K.; Hodovaniouk V. N.; Fodchuk I. M.; Yuriev V. G.


    The paper deals with the problems arising at calibration of narrow-band spectral-sensitive radiometers. The procedure of irradiance unit transfer to UV radiometers — UV radiometers calibration procedure — is presented.

  9. URAM-2 Cryogenic Irradiation Facility

    CERN Document Server

    Shabalin, E P; Kulikov, S A; Kulagin, E N; Melihov, V V; Belyakov, A A; Golovanov, L B; Borzunov, Yu T; Konstantinov, V I; Androsov, A V


    The URAM-2 irradiation facility has been built and mounted at the channel No. 3 of the IBR-2 reactor. It was constructed for study of radiolysis effects by fast neutron irradiation in some suitable for effective cold neutron production materials (namely: solid methane, methane hydrate, water ice, etc.). The facility cooling system is based on using liquid helium as a coolant material. The original charging block of the rig allows the samples to be loaded by condensing gas into irradiation cavity or by charging beads of ice prepared before. Preliminary tests for each facility block and assembling them at the working position were carried out. Use of the facility for study accumulation of chemical energy under irradiation at low temperature in materials mentioned above and its spontaneous release was started.

  10. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)



    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  11. Resonance ionization detection of combustion radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)


    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  12. Numerical parametric studies of spray combustion instability (United States)

    Pindera, M. Z.


    A coupled numerical algorithm has been developed for studies of combustion instabilities in spray-driven liquid rocket engines. The model couples gas and liquid phase physics using the method of fractional steps. Also introduced is a novel, efficient methodology for accounting for spray formation through direct solution of liquid phase equations. Preliminary parametric studies show marked sensitivity of spray penetration and geometry to droplet diameter, considerations of liquid core, and acoustic interactions. Less sensitivity was shown to the combustion model type although more rigorous (multi-step) formulations may be needed for the differences to become apparent.

  13. Combustion in Swirling Flows: A Review (United States)

    Syred, N.; Beer, J. M.


    Swirling flows have been commonly used for a number of years for the stabilization of high intensity combustion processes. In general these swirling flows are poorly understood because of their complexity. This paper describes the recent progress in understanding and using these swirling flows. The main effects of swirl are to improve flame stability as a result of the formation of toroidal recirculation zones and to reduce combustion lengths by producing high rates of entrainment of the ambient fluid and fast mixing, particularly near to the boundaries of recirculation zones.

  14. Enthalpy Calculation for Pressurized Oxy- coal Combustion


    Weihong Wu; Jingli Huang


    Oxy-fuel combustion is recognizing one of the most promising available technologies that zero emission accomplishment may be in the offing. With coal burned under the pressure of 6MPa and oxygen-enriched conditions, the high temperature and high pressure gaseous combustion product is composed of 95% CO2 and water-vapor, with the rest of O2, N2 and so on. However, once lauded as classic approach of resolving fuel gas enthalpy calculation pertaining to ideal gas at atmospheric pressure was rest...

  15. Reaction-diffusion pulses: a combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Llebot, Josep Enric [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Fort, Joaquim [Dept. de FIsica, Univ. de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)


    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations.

  16. Fiber-Supported Droplet Combustion Experiment-2 (United States)

    Colantonio, Renato O.


    A major portion of the energy produced in the world today comes from the burning of liquid hydrocarbon fuels in the form of droplets. Understanding the fundamental physical processes involved in droplet combustion is not only important in energy production but also in propulsion, in the mitigation of combustion-generated pollution, and in the control of the fire hazards associated with handling liquid combustibles. Microgravity makes spherically symmetric combustion possible, allowing investigators to easily validate their droplet models without the complicating effects of gravity. The Fiber-Supported Droplet Combustion (FSDC-2) investigation was conducted in the Microgravity Glovebox facility of the shuttles' Spacelab during the reflight of the Microgravity Science Laboratory (MSL- 1R) on STS-94 in July 1997. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and duo droplets with and without forced air convection. FSDC-2 is sponsored by the NASA Lewis Research Center, whose researchers are working in cooperation with several investigators from industry and academia. The rate at which a droplet burns is important in many commercial applications. The classical theory of droplet burning assumes that, for an isolated, spherically symmetric, single-fuel droplet, the gas-phase combustion processes are much faster than the droplet surface regression rate and that the liquid phase is at a uniform temperature equal to the boiling point. Recent, more advanced models predict that both the liquid and gas phases are unsteady during a substantial portion of the droplet's burning history, thus affecting the instantaneous and average burning rates, and that flame radiation is a dominant mechanism that can extinguish flames in a microgravity environment. FSDC-2 has provided well-defined, symmetric droplet burning data including radiative emissions to validate these theoretical

  17. Plasma igniter for internal combustion engine (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)


    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  18. CARS measurements in an internal combustion engine. (United States)

    Stenhouse, I A; Williams, D R; Cole, J B; Swords, M D


    The first reported coherent anti-Stokes Raman scattering (CARS) experiments within the cylinder of a firing internal combustion engine are described. The feasibility of making noninvasive temperature and species measurements, with good spatial and temporal resolution, both before and after ignition has been demonstrated. Temperatures have been derived from the shape of the Q-branch vibrational spectrum of nitrogen since it is present as a major species and does not take part in combustion. Methods of overcoming such problems as were encountered are discussed.

  19. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    KAUST Repository

    Mohamed, Samah Y.


    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.

  20. JANNAF Combustion Subcommittee Meeting. Volume 1 (United States)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)


    This volume, the first of four volumes, is a collection of 33 unclassified/unlimited papers which were presented at the 33rd Joint Army-Navy-NASA-Air Force (JANNAF) Combustion Subcommittee Meeting in conjunction with the Propulsion Systems Hazards at the Naval Postgraduate School, Monterey, CA. The JANNAF papers contained in this volume review airbreathing combustion measurement, performance and control; electrothermal-chemical gun experiment and modeling; liquid propellant gun experiment and modeling; solid propellant gun interior ballistics; formulation modeling and diagnostics, ignition, and gun barrel wear modeling, blast and flash; and ram, fastcore and gas generator gun propulsion concepts.

  1. Kinetic data base for combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, W.; Herron, J.T. [National Institute of Standards and Technology, Gaithersburg, MD (United States)


    The aim of this work is to develop a set of evaluated rate constants for use in the simulation of hydrocarbon combustion. The approach has been to begin with the small molecules and then introduce larger species with the various structural elements that can be found in all hydrocarbon fuels and decomposition products. Currently, the data base contains most of the species present in combustion systems with up to four carbon atoms. Thus, practically all the structural grouping found in aliphatic compounds have now been captured. The direction of future work is the addition of aromatic compounds to the data base.

  2. Long term profitable technique: in situ combustion

    Energy Technology Data Exchange (ETDEWEB)

    Naudin, Y.


    Onsite combustion, used for heavy petroleum, should permit the rate of recuperation of certain oil fields to be increased to 45% before the end of the century. This procedure, which has not yet been perfected and is, to large extent, still in the laboratory stage, is the object of extensive experiments in the oil fields of Suplacu and Balaria in Rumania. The IFP, which has been associated with these projects since 1969, is continuing its exhaustive laboratory tests. From an economic point of view, onsite combustion necessitates heavy investments, and the technical cost of production ranges from $5 to $15/bbl.

  3. Experiments Developed to Study Microgravity Smoldering Combustion (United States)

    Vergilii, Franklin


    The overall objective of the Microgravity Smoldering Combustion (MSC) research program is to understand and predict smoldering combustion under normal and microgravity (near-zero-gravity) conditions to help prevent and control smolder-originated fires, in both environments. Smoldering is defined as a nonflaming, self-sustaining, propagating, exothermic surface reaction. If a material is sufficiently permeable, smoldering is not confined to its outer surface, but can propagate as a reaction wave through the interior of the material. The MSC program will accomplish its goals by conducting smolder experiments on the ground and in a space-based laboratory, and developing theoretical models of the process. Space-based experiments are necessary because smoldering is a very slow process and, consequently, its study in a microgravity environment requires extended periods of time that can only be achieved in space. Smoldering can occur in a variety of processes ranging from the smolder of porous insulating materials to underground coal combustion. Many materials can sustain smoldering, including wood, cloth, foams, tobacco, other dry organic materials, and charcoal. The ignition, propagation, transition to flaming, and extinction of the smolder reaction are controlled by complex, thermochemical mechanisms that are not well understood. As with many forms of combustion, gravity affects the availability of the oxidizer and the transport of heat, and therefore, the rate of combustion. The smoldering combustion of porous materials has been studied both experimentally and theoretically, usually in the context of fire safety. Smoldering encompasses a number of fundamental processes, including heat and mass transfer in a porous media; endothermic pyrolysis of combustible material; ignition, propagation, and extinction of heterogeneous exothermic reactions at the solid-gas pore interface; and the onset of gas phase reactions (flaming) from existing surface reactions. Smoldering

  4. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments (United States)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.


    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  5. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere. (United States)

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro


    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Improved Combustion Products Monitor for the ISS Project (United States)

    National Aeronautics and Space Administration — The Compound Specific Analyzer – Combustion Products, used on the International Space Station as a warning monitor of smoldering or combustion events, is being...

  7. JANNAF 37th Combustion Subcommittee Meeting. Volume 1 (United States)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)


    This volume, the first of two volumes is a compilation of 59 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 37th Combustion Subcommittee (CS) meeting held jointly with the 25th Airbreathing Propulsion Subcommittee (APS), 19th Propulsion Systems Hazards Subcommittee (PSHS), and 1st Modeling and Simulation Subcommittee (MSS) meetings. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered at the CS meeting include: a keynote address on the Future Combat Systems, and review of a new JANNAF Modeling and Simulation Subcommittee, and technical papers on gun propellant burning rate, gun tube erosion, advanced gun propulsion concepts, ETC guns, novel gun propellants; liquid, hybrid and novel propellant combustion; solid propellant combustion kinetics, GAP, ADN and RDX combustion, sandwich combustion, metal combustion, combustion instability, and motor combustion instability.

  8. Can-rupture detection in gas-cooled nuclear reactors; La detection des ruptures de gaine dans les piles nucleaires refroidies par gaz

    Energy Technology Data Exchange (ETDEWEB)

    Roguin, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    Can-rupture detection (DRG) is one important aspect of pile safety, more particularly so in the case of gas-cooled reactors. A rapid and sure detection constitutes also an improvement as far as the efficiency of electricity-producing nuclear power stations are concerned. Among the numerous can-rupture detection methods, that based on the measurement of the concentration of short-lived fission gases in the heat-carrying fluid has proved to be the most sensitive and the most rapid. A systematic study of detectors based on the electrostatic collection of the daughter products of fission gases has been undertaken with a view to equip the reactors EL 2, G 3, EDF 1, EDF 2 and EDF 3, the gas loops of PEGASE and EL 4. The different parameters are studied in detail in order to obtain a maximum sensitivity and to make it possible to construct detection devices having the maximum operational reliability and requiring the minimum maintenance. The primary applications of these devices are examined in the case of the above-mentioned reactors. (author) [French] La Detection des Ruptures de Gaines (D. R. G.) est un aspect important de la securite des piles et plus particulierement des piles refroidies par un gaz. Une detection rapide et sure constitue aussi un element d'amelioration du rendement des centrales nucleaires productrices d'energie electrique. Parmi les nombreuses methodes de detection des ruptures de gaines, la mesure de la concentration dans le fluide caloporteur des gaz de fission a vie courte s'est revelee comme la plus sensible et la plus rapide. Une etude systematique des detecteurs a collection electrostatique des descendants des gaz de fission a ete entreprise en vue d'equiper les piles EL 2, G 3, EDF 1, EDF 2 et EDF 3, les boucles a gaz de la pile Pegase et la pile EL 4. Les divers parametres sont etudies en detail pour obtenir une sensibilite maximum et permettre la realisation de dispositifs de detection ayant le maximum de securite de

  9. Numerical investigation of the heterogeneous combustion processes of solid fuels


    Alganash, Blaid; Paul, M. C.; Watson, Ian.A.


    Two-phase computational modelling based on the Euler–Euler was developed to investigate the heterogeneous combustion processes of biomass, in the solid carbon phase, inside a newly designed combustion chamber (Model 1). A transient simulation was carried out for a small amount of carbon powder situated in a cup which was located at the centre of the combustion chamber. A heat source was provided to initiate the combustion with the air supplied by three injection nozzles. The results show that...

  10. Design of a High Intensity Turbulent Combustion System (United States)


    the product. When all the carbons in the fuel converts into carbon dioxide (CO2) and all the hydrogen forms water (H20) then the combustion process...spark plug. The detail of the experiments are described in the later chapters. Although most of the hydrocarbon combustion produces carbon dioxide (CO2...combustion of carbon monoxide with 30 steps among 11 species, methane, methanol , ethane, ethylene, and acetylene combustion with 134 steps among 30

  11. Preliminary Combustion Analysis toward Stability Estimation of Rocket Engine Combustor


    Mizobuchi, Yasuhiro; Shimizu, Taro; Naito, Taiki; 溝渕, 泰寛; 清水, 太郎; 内藤, 大貴


    A combustion flow in a model combustor equipped with a single injector located at a non-center position of the face plate is numerically simulated to investigate the combustion oscillation driving term, so called 'Rayleigh Index term' which plays a key role when we estimate the combustion stability of rocket engine combustors. The simulation reproduces the unsteady but stabilized flame behavior and reveals the flame stabilization mechanism. The critical combustion oscillation mode, T-mode, is...

  12. Combustion chemistry - activities in the CHEK research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering


    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This presentation describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control) Research Programme. (orig.)

  13. A Combustion and Heat Transfer Model for Porous Media (United States)


    combustion process in two phases. During the initial phase, combustion occurs within the porous medium. The second phase occurs when the exo- thermic ...the combustion model. Specifically, there is a change in the behavior of combustion when insulated boundaries on the porous solid are changed to...represent insulated boundaries on the porous solid (i.e., no heat loss from the porous solid to the environment). Expressions III. 51 and III. 52 provide for

  14. Traveling-Wave Thermoacoustic Engines With Internal Combustion (United States)

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William


    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  15. Fundamentals of Turbulent and Multi-Phase Combustion

    CERN Document Server

    Kuo, Kenneth Kuan-yun


    Detailed coverage of advanced combustion topics from the author of Principles of Combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form-until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence

  16. Fuel supply mechanism for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    San Filipo, F.J.


    This patent describes a fuel supply mechanism for an internal combustion engine having a plurality of combustion chambers. It comprises: a remote reservoir adapted to contain a primary supply of fuel; means, located in said remote reservoir, for evaporating fuel in said remote reservoir into an air stream moving therethrough; and means for transporting said air stream containing such evaporated fuel from said remote reservoir directly into said combustion chambers of said internal combustion engine.

  17. Staged combustion with piston engine and turbine engine supercharger (United States)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA


    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  18. A Computational Study of Transverse Combustion Instability Mechanisms (United States)


    Marshall Space Flight Center. References 1. Smith, D. A., Zukoski, E. E., “Combustion Instability Sustained by Unsteady Vortex Combustion,” 21st JPC ...Prediction in a Model Rocket Combustor,” 47th JPC , AIAA 2011-6030. 10. Harvazinski, M. E., Modeling Self-Excited Combustion Instabilities Using A...Instabilities,” 49th JPC , AIAA 2013-3992. 13. Smith, R., Xia, G., Anderson, W., Merkle, C. L., “Extraction of Combustion Instability Mechanisms form Detailed

  19. Progress report of the Phebus Pf program; Recherches en surete nucleaire: etat d'avancement du programme phebus PF

    Energy Technology Data Exchange (ETDEWEB)



    This document presents the Phebus facility that has been designed to study accidental situations occurring in the core of a fission reactor. This facility reproduces at a reduced scale the partial fusion of a fuel assembly. This installation is made up of a 40 MW pool reactor and of an imposing irradiation rig, more than 200 sensors collect experimental data. 6 experiments are planned for the next 12 years. The 2 first tests were performed in december 93 and july 96 (FPT0 and FTP1) and these preliminary experiments have not only validated previous results about the release of fission products but have also given unprecedented data about the velocity of the deterioration of the core and of the quantity of hydrogen released during the core fusion. (A.C.)

  20. A study of the fluorescence of the rare gases excited by nuclear particles. Use of the principle for the detection of nuclear radiation by scintillation; Etude de la fluorescence des gaz rares excites par des particules nucleaires. Utilisation pour la detection des rayonnements nucleaires par scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    moins deux composantes, l'une tres breve due a la desexcitation directe du gaz rare, l'autre relativement plus lente, due au transfert d'energie sur les impuretes. La mesure des durees de vie des etats excites a confirme l'hypothese precedente, la partie breve de l'impulsion est extremement courte: inferieure a 2,25.10{sup -9} s dans le cas du xenon, la partie plus lente a une duree qui depend etroitement de la concentration d'azote, l'azote etant l'impurete dont le role est preponderant dans tous les cas. L'etude des gaz rares soumis a un champ electrique a permis de montrer que la quantite de lumiere produite par une particule {alpha} peut etre multipliee (par 60 dans un champ de 600 V/cm par exemple) ce qui correspond a un rendement de luminescence superieur a celui de INa TI. Dans la deuxieme partie on a etudie les caracteristiques des gaz rares comme scintillateurs, la plus importante est l'absence de saturation de la fluorescence lorsque la densite d'excitation transmise au gaz devient tres grande. Ceci joint au temps de scintillation tres court a permis d'etudier un certain nombre d'applications a la physique nucleaire (mesure d'energie des particules lourdes, etude cinetique des reacteurs nucleaires, spectroscopie des neutrons...). (auteur)

  1. Knock characteristics of dual-fuel combustion in diesel engines ...

    Indian Academy of Sciences (India)

    This paper investigates the combustion knock characteristics of diesel engines running on natural gas using pilot injection as means of initiating combustion. The diesel engines knock under normal operating conditions but the knock referred to in this paper is an objectionable one. In the dual-fuel combustion process we ...

  2. 30 CFR 56.7807 - Flushing the combustion chamber. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flushing the combustion chamber. 56.7807 Section 56.7807 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber...

  3. 30 CFR 57.7807 - Flushing the combustion chamber. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  4. 30 CFR 57.4103 - Fueling internal combustion engines. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  5. 30 CFR 77.1105 - Internal combustion engines; fueling. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  6. 30 CFR 56.4103 - Fueling internal combustion engines. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  7. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  8. Numerical investigation of spray combustion towards HITAC conditions

    NARCIS (Netherlands)

    Zhu, Shanglong


    The features of High Temperature Air Combustion (HiTAC), i.e. high-efficiency combustion processes creating a uniform temperature distribution with low NOX and CO emissions, lend itself ideally for the combustion of all sorts of "difficult” fuels, ranging from low-calorific gases such as

  9. 16 CFR 1209.7 - Test procedures for smoldering combustion. (United States)


    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for smoldering combustion... for smoldering combustion. This section provides the test method for determining smoldering combustion... removable extension top extending 8±.5 cm. above the top of the smolder box shall also be provided. The...

  10. 14 CFR 25.833 - Combustion heating systems. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heating systems. 25.833 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.833 Combustion heating systems. Combustion heaters must be approved. Pressurization ...

  11. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing (United States)

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo


    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species. PMID:27250021

  12. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)



    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  13. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines (United States)

    Schnauffer, Kurt


    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  14. Effects of low-temperature pretreatment on enhancing properties of refuse-derived fuel via microwave irradiation. (United States)

    Liu, Zhen; Wang, Han-Qing; Zhou, Yue-Yun; Zhang, Xiao-Dong; Liu, Jian-Wen


    The present study focuses on pretreatment of enhancing the properties of refuse-derived fuel (RDF) via low-temperature microwave irradiation. These improved properties include lower chlorine content, a more porous surface structure and better combustion characteristics. In this study, low-temperature microwave irradiation was carried out in a modified microwave apparatus and the range of temperature was set to be 220-300℃. We found that the microwave absorbability of RDF was enhanced after being partly carbonized. Moreover, with the increasing of the final temperature, the organochlorine removal ratio was greatly increased to 80% and the content of chlorine was dramatically decreased to an extremely low level. It was also interesting to find that the chlorine of RDF was mainly released as HCl rather than organic chloride volatiles. The finding is just the same as the polyvinyl chloride pyrolysis process. In addition, pores and channels emerged during the modifying operation and the modified RDF has better combustibility and combustion stability than traditional RDF. This work revealed that low-temperature modification of RDF via microwave irradiation is significant for enhancing the quality of RDF and avoiding HCl erosion of equipment substantially.

  15. Oxy-fuel combustion of pulverized fuels

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue


    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  16. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction...

  17. Straw Combustion in a Grate Furnace

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der


    Fixed-bed combustion of straw has been conducted in a 15 cm diameter and 137 cm long cylindrical reactor. Air, which could be preheated, was introduced through the bottom plate. The straw was ignited at the top with a radiation heater. After ignition, when a self-sustaining reaction front...

  18. Combustion: an oil spill mitigation tool

    Energy Technology Data Exchange (ETDEWEB)



    The technical feasibility of using combustion as an oil spill mitigation tool was studied. Part I of the two-part report is a practical guide oriented toward the needs of potential users, while Part II is the research or resource document from which the practical guidance was drawn. The study included theoretical evaluations of combustion of petroleum pool fires under the effects of weathering and an oil classification system related to combustion potential. The theoretical analysis of combustion is balanced by practical experience of oil burning and case history information. Decision elements are provided which can be used as a guide for technical evaluations of a particular oil spill situation. The rationale for assessing technical feasibility is given in the context of other alternatives available for response to an oil spill. A series of research and technology development concepts are included for future research. The ethics of using oil burning are discussed as issues, concerns, and tradeoffs. A detailed annotated bibliography is appended along with a capsule review of a decade of oil burning studies and other support information.

  19. CloudFlame: Cyberinfrastructure for combustion research

    KAUST Repository

    Goteng, Gokop


    Combustion experiments and chemical kinetics simulations generate huge data that is computationally and data intensive. A cloud-based cyber infrastructure known as Cloud Flame is implemented to improve the computational efficiency, scalability and availability of data for combustion research. The architecture consists of an application layer, a communication layer and distributed cloud servers running in a mix environment of Windows, Macintosh and Linux systems. The application layer runs software such as CHEMKIN modeling application. The communication layer provides secure transfer/archive of kinetic, thermodynamic, transport and gas surface data using private/public keys between clients and cloud servers. A robust XML schema based on the Process Informatics Model (Prime) combined with a workflow methodology for digitizing, verifying and uploading data from scientific graphs/tables to Prime is implemented for chemical molecular structures of compounds. The outcome of using this system by combustion researchers at King Abdullah University of Science and Technology (KAUST) Clean Combustion Research Center and its collaborating partners indicated a significant improvement in efficiency in terms of speed of chemical kinetics and accuracy in searching for the right chemical kinetic data.

  20. The PDF method for turbulent combustion (United States)

    Pope, S. B.


    Probability Density Function (PDF) methods provide a means of calculating the properties of turbulent reacting flows. They have been successfully applied to many turbulent flames, including some with finite rate kinetic effects. Here the methods are reviewed with an emphasis on computational issues and their application to turbulent combustion.

  1. Combustion properties of wood impregnated with commercial ...

    African Journals Online (AJOL)

    The objective of this study was to determine some combustion properties of Calabrian pine (Pinus brutia Ten.) wood specimens impregnated with aqueous solutions of commercial fertilizers. Ammonium sulphate (AS) and diammonium phosphate (DAP) were used as commercial fertilizers. Diammonium phosphate and ...

  2. Gasoline Combustion Fundamentals DOE FY17 Report

    Energy Technology Data Exchange (ETDEWEB)

    Ekoto, Isaac W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)


    Advanced automotive gasoline engines that leverage a combination of reduced heat transfer, throttling, and mechanical losses; shorter combustion durations; and higher compression and mixture specific heat ratios are needed to meet aggressive DOE VTP fuel economy and pollutant emission targets. Central challenges include poor combustion stability at low-power conditions when large amounts of charge dilution are introduced and high sensitivity of conventional inductive coil ignition systems to elevated charge motion and density for boosted high-load operation. For conventional spark ignited operation, novel low-temperature plasma (LTP) or pre-chamber based ignition systems can improve dilution tolerances while maintaining good performance characteristics at elevated charge densities. Moreover, these igniters can improve the control of advanced compression ignition (ACI) strategies for gasoline at low to moderate loads. The overarching research objective of the Gasoline Combustion Fundamentals project is to investigate phenomenological aspects related to enhanced ignition. The objective is accomplished through targeted experiments performed in a single-cylinder optically accessible research engine or an in-house developed optically accessible spark calorimeter (OASC). In situ optical diagnostics and ex situ gas sampling measurements are performed to elucidate important details of ignition and combustion processes. Measurements are further used to develop and validate complementary high-fidelity ignition simulations. The primary project audience is automotive manufacturers, Tier 1 suppliers, and technology startups—close cooperation has resulted in the development and execution of project objectives that address crucial mid- to long-range research challenges.

  3. Controlling spontaneous combustion in surface coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, N.


    The Witbank Coalfield in South Africa has historically been mined out using the bord-and-pillar method, with typically low coal-recovery ratios, leaving significant amounts of coal in pillars and as floor and roof coal. These pillars are being re-extracted by underground and surface mining methods. During surface mining, air enters through the cracks and bords into the old workings, causing spontaneous combustion of coal. Over the long term, air will also enter the old underground bord-and-pillar workings at shallow depth through sinkholes caused by bord collapse underground. The resulting environmental problems may necessitate future rehabilitation at great cost. Existing knowledge about spontaneous combustion in opencast collieries indicates that there is no typical fire and certainly no standard technique for preventing it from happening. However, with current measures it is possible to control the spontaneous combustion of coal in opencast collieries. A project supported by Coaltech 2020, a South African coal mining Collaborative Research Programme, has been completed to develop methods for minimising and controlling spontaneous combustion in old workings by surface mining methods and applications. However, the findings and recommendations of this study, which focused on the Witbank Coalfield, can be adapted to other surface coal mines. 11 figs.

  4. Fluidized-bed combustion reduces atmospheric pollutants (United States)

    Jonke, A. A.


    Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.

  5. Detonation capturing for stiff combustion chemistry

    NARCIS (Netherlands)

    Berkenbosch, A.C.; Kaasschieter, E.F.; Klein, R.


    This paper contributes to the topic of unphysical one-cell-per-time-step travelling combustion wave solutions in numerical computations of detonation waves in the presence of stiff chemical source terms. These false weak detonation solutions appear when a gas-dynamics-chemistry operator-splitting

  6. Starting apparatus for internal combustion engines (United States)

    Dyches, G.M.; Dudar, A.M.


    This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

  7. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    The polycrystalline sample of LiBaPO4 : Tb3+ (LBPT) was successfully synthesized by solution combustion synthesis and studied for its luminescence characteristics. The thermoluminescence (TL) glow curve of LBPT material consists of two peaks at 204.54 and 251.21°C. The optimum concentration was 0.005 mol to ...

  8. Effects of combustible stacking in large compartments

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco


    of non uniform distribution of the combustible materials and fire propagation. These aspects are discussed in this paper with reference to an industrial steel building, taken as case study. Fires triggered by the burning of wooden pallets stored in the premises have been investigated with respect...

  9. Combustion Power Unit--400: CPU-400. (United States)

    Combustion Power Co., Palo Alto, CA.

    Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…

  10. Advanced Fuels and Combustion Processes for Propulsion (United States)


    production from biomass steam reforming – Conduct a feasibility analysis of the proposed integrated process Energia Technologies - D. Nguyen & K. Parimi...strength foam material development by Ultramet – Combustion experiments performed U. Of Alabama – End-user input provided by Solar Turbines Major

  11. Evaluation of thermal characteristics of oscillating combustion ...

    African Journals Online (AJOL)

    The results when compared to the conventional combustion led to low fuel and specific energy consumption, enhanced heat transfer rate, increased furnace efficiency with visibly low volumes of flue gases with reduced emissions. The increased heat transfer rate and furnace efficiency was found to be in agreement with the ...

  12. Fractal turbulence enhancing low-swirl combustion

    NARCIS (Netherlands)

    Verbeek, Antonie Alex; Bouten, Thijs W.F.M.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Theodorus H.

    The use of fractal grids in a low-swirl burner can significantly increase the turbulent combustion rate, realizing a higher power density in these flames. The standard turbulence generating blocking grid has been replaced by one consisting of a pattern of cruciform structures of different sizes,

  13. Turbine Burners: Turbulent Combustion of Liquids Fuels (United States)


    stabilized combustion facility on liquid fuel adds another level of complex- ity because the fuel must first vaporize before it can mix into the air supply...vortex of the size of the cavity was entrained in a cavity of aspect ratio 1. This vortex was seen using multiple imaging techniques. (b) Schlieren

  14. Simulation of lean premixed turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bell, John B.; Day, Marcus S.; Almgren, Ann S.; Lijewski, MichaelJ.; Rendleman, Charles A.; Cheng, Robert K.; Shepherd, Ian G.


    There is considerable technological interest in developingnew fuel-flexible combustion systems that can burn fuels such ashydrogenor syngas. Lean premixed systems have the potential to burn thesetypes of fuels with high efficiency and low NOx emissions due to reducedburnt gas temperatures. Although traditional scientific approaches basedon theory and laboratory experiment have played essential roles indeveloping our current understanding of premixed combustion, they areunable to meet the challenges of designing fuel-flexible lean premixedcombustion devices. Computation, with itsability to deal with complexityand its unlimited access to data, hasthe potential for addressing thesechallenges. Realizing this potential requires the ability to perform highfidelity simulations of turbulent lean premixed flames under realisticconditions. In this paper, we examine the specialized mathematicalstructure of these combustion problems and discuss simulation approachesthat exploit this structure. Using these ideas we can dramatically reducecomputational cost, making it possible to perform high-fidelitysimulations of realistic flames. We illustrate this methodology byconsidering ultra-lean hydrogen flames and discuss how this type ofsimulation is changing the way researchers study combustion.

  15. Co-combustion: A summary of technology

    Directory of Open Access Journals (Sweden)

    Leckner Bo


    Full Text Available Co-combustion of biomass or waste together with a base fuel in a boiler is a simple and economically suitable way to replace fossil fuels by biomass and to utilize waste. Co-combustion in a high-efficiency power station means utilization of biomass and waste with a higher thermal efficiency than what otherwise had been possible. Due to transport limitations, the additional fuel will only supply a minor part (less than a few hundreds MW fuel of the energy in a plant. There are several options: co-combustion with coal in pulverized or fluidized bed boilers, combustion on added grates inserted in pulverized coal boilers, combustors for added fuel coupled in parallel to the steam circuit of a power plant, external gas producers delivering its gas to replace an oil, gas or pulverized fuel burner. Furthermore biomass can be used for reburning in order to reduce NO emissions or for afterburning to reduce N2O emissions in fluidized bed boilers. Combination of fuels can give rise to positive or negative synergy effects, of which the best known are the interactions between S, Cl, K, Al, and Si that may give rise to or prevent deposits on tubes or on catalyst surfaces, or that may have an influence on the formation of dioxins. With better knowledge of these effects the positive ones can be utilized and the negative ones can be avoided.

  16. Combustion synthesis of cadmium sulphide nanomaterials for ...

    Indian Academy of Sciences (India)

    The observed enhanced photocatalytic activity of the CdS nanomaterials for the hydrogen production from water (2120 μmol/h) can be attributed to high crystallinity, low band gap and less exciton recombination due to the C and N doping. Keywords. Cadmium sulphide; combustion synthesis; anion doping; water splitting; ...

  17. GRCop-84 Development for Combustion Chamber Liners (United States)

    Ellis, David; Nathal, Michael; Yun, Hee Man; Lerch, Bradley; Greenbauer-Seng, Leslie; Thomas-Ogbuji, Linus; Holmes, Richard


    The development, test, and thermophysical & mechanical properties of a GRCop-84 alloy for combustion chamber liners is discussed. Topics discussed include: History of GRCop-84 development, GRCop-84 thermal expansion, thermal conductivity of GRCop-84, yield strength of GRCop-84, GRCop-84 creep lives, GrCop-84 low cycle fatigue (LCF) lives, and hot fire testing of GRCop-84 spool pieces.

  18. Coal combustion and air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, J.


    Briefly describes the general problem of emissions from fossil-fuel combustion and compares the effects of burning brown coal and those of using heating oil. Describes methods selected for desulfurization in Czechoslovakia based on the magnesite method. Raw materials for this method are available in the country and the processes have been tested in the USSR. The first installation is under construction on a 200 MW unit of an electricity plant in North Bohemia. Briefly describes this system, which involves cooling and humidifying combustion products before they enter a scrubber to be passed over sulfur dioxide magnesium oxide, which converts the sulfur dioxide to produce magnesium sulfite crystals, which are then converted by fluidized-bed combustion at 900-950 C back to sulfur dioxide and magnesium oxide. The sulfur dioxide is used for manufacturing sulfuric acid and the magnesium oxide is recycled through the system. Discusses in general terms future possibilities for dealing with combustion products, including semi-dry, wet, calcium chloride, limestone, RCE (Refractories Consulting and Engineering, GmbH, FRG) and citrate methods, and briefly examines the economic aspects involved. 12 refs.

  19. Combustion synthesis of graphene and ultracapacitor performance

    Indian Academy of Sciences (India)

    Graphene sheets are synthesized by a simple method starting from graphitic oxide as a precursor. Reaction of graphitic oxide at 250 °C with a combustion mixture of urea and ammonium nitrate results in the formation of thin graphene sheets. Graphene formation is characterized by XRD, TGA, XPS and TEM. Graphene ...

  20. Simulation Of The Internal-Combustion Engine (United States)

    Zeleznik, Frank J.; Mcbride, Bonnie J.


    Program adapts to available information about particular engine. Mathematical model of internal-combustion engine constructed and implemented as computer program suitable for use on large digital computer systems. ZMOTTO program calculates Otto-cycle performance parameters as well as working-fluid compositions and properties throughout cycle for number of consecutive cycles and for variety of input parameters. Written in standard FORTRAN IV.

  1. Cars beyond Otto's Internal Combustion Engines

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 11. Cars Beyond Otto's Internal Combustion Engines. A K Shukla. General Article Volume 6 Issue 11 November 2001 pp 49-62. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  2. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard


    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice...

  3. Hydrogen-oxygen powered internal combustion engine (United States)

    Cameron, H.; Morgan, N.


    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  4. Comparing maximum pressures in internal combustion engines (United States)

    Sparrow, Stanwood W; Lee, Stephen M


    Thin metal diaphragms form a satisfactory means for comparing maximum pressures in internal combustion engines. The diaphragm is clamped between two metal washers in a spark plug shell and its thickness is chosen such that, when subjected to explosion pressure, the exposed portion will be sheared from the rim in a short time.


    African Journals Online (AJOL)

    IMPROVED COMBUSTION PROCESSES IN MEDICAL WASTES INCINERATORS FOR RURAL APPLICATIONS. ... African Journal of Science and Technology ... In particular, the demand for health services has increased to an extent that the health sector produces large quantities of biomedical wastes that can have severe ...

  6. Experimental toxicology of pyrolysis and combustion hazards. (United States)

    Cornish, H H; Hahn, K J; Barth, M L


    Data are presented on the acute toxicity (mortality only) of the thermal degradation products of polymers obtained by two methods of degradation. One system utilized a slowly increasing temperature (5 degrees C/min) and gradual degradation of the polymer with the rats being exposed to degradation products as they were evolved. In this system the more toxic polymers included wool, polypropylene, poly(vinyl chloride), and urethane foam. The second system utilized conditions of rapid combustion and exposure of rats to the total products of combustion for a period of 4 hr. In this system the more toxic materials included red oak, cotton, acrylonitrile-butadiene-styrene (ABS), and styrene-acrylonitrile. It is of interest to note that the natural product wool is among the least toxic under these rapid combustion conditions and among the most toxic under slow pyrolysis conditions. Other materials also vary in the comparative toxicity of their thermal degradation products, depending upon the conditions of degradation and animal exposure. The two experimental techniques presented here may well represent the two extreme conditions of rapid combustion versus slow pyrolysis. Intermediate types of fire situations might be expected to result in relative acute toxicities somewhere between these two extremes. This report deals with acute toxicity on the basis of mortality data only and does not include other parameters of toxicity such as organ weights and histopathology. PMID:1175552

  7. Burning characteristics of microcellular combustible objects

    Directory of Open Access Journals (Sweden)

    Wei-tao Yang


    Full Text Available Microcellular combustible objects for application of combustible case, caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process, in which supercritical CO2 is used as foaming agent. The formulations consist of inert polymer binder and ultra fine RDX. For the inner porous structures of microcellular combustible objects, the cell sizes present a unimodal or bimodal distribution by adjusting the foaming conditions. Closed bomb test is to investigate the influence of both porous structure style and RDX content on burning behavior. The sample with bimodal distribution of cell sizes burns faster than that with unimodal distribution, and the concentration of RDX can influence the burning characteristics in a positive manner. In addition, the translation of laminar burning to convective burning is determined by burning rate versus pressure curves of samples at two different loading densities, and the resulting transition pressure is 30 MPa. Moreover, the samples with bigger sample size present higher burning rate, resulting in providing deeper convective depth. Dynamic vivacity of samples is also studied. The results show that the vivacity increases with RDX content and varies with inner structure.

  8. A model for premixed combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Janus, M.C.; Richards, G.A.


    Combustion oscillations are receiving renewed research interest due to increasing application of lean premix (LPM) combustion to gas turbines. A simple, nonlinear model for premixed combustion is described; it was developed to explain experimental results and to provide guidance for developing active control schemes based on nonlinear concepts. The model can be used to quickly examine instability trends associated with changes in equivalence ratio, mass flow rate, geometry, ambient conditions, etc. The model represents the relevant processes occurring in a fuel nozzle and combustor analogous to current LPM turbine combustors. Conservation equations for the nozzle and combustor are developed from simple control volume analysis, providing ordinary differential equations that can be solved on a PC. Combustion is modeled as a stirred reactor, with bimolecular reaction between fuel and air. Although focus is on the model, it and experimental results are compared to understand effects of inlet air temperature and open loop control schemes. The model shows that both are related to changes in transport time.



    Ashok A Dhale; Awari,Gajanan K.; Singh, Mahendra P.


    At present, the emissions of internal combustion engine can only be improved by catalytic treatments of the exhaust gases. Such treatments, however, result in high costs and relatively low conversion efficiency. This suggests that a new combustion technique should be developed to yield improved primary combustion processes inside the engine with drastically reduced exhaust gas emissions. To fulfill all requirements, Dr. Franz Drust has proposed a new combustion concept to perform homogenous c...

  10. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun


    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  11. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang


    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  12. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    John C. Wagner


    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  13. NOx Emission Reduction by Oscillating combustion

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Gas Technology


    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  14. Fuel Chemistry And Combustion Distribution Effects On Rocket Engine Combustion Stability (United States)


    AFRL-AFOSR-VA-TR-2016-0014 Effects of Increased Energy and Particulate Damping on Rocket William. Anderson PURDUE UNIVERSITY Final Report 11/19/2015...Distribution Effects On Rocket Engine Combustion Stability 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0431 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...addition can be used to alter the combustion instability characteristics of liquid rocket engines. Fuels with increased energy, either due to higher heats

  15. The Multi-User Droplet Combustion Apparatus: the Development and Integration Concept for Droplet Combustion Payloads in the Fluids and Combustion Facility Combustion Integrated Rack (United States)

    Myhre, C. A.


    The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user facility designed to accommodate four different droplet combustion science experiments. The MDCA will conduct experiments using the Combustion Integrated Rack (CIR) of the NASA Glenn Research Center's Fluids and Combustion Facility (FCF). The payload is planned for the International Space Station. The MDCA, in conjunction with the CIR, will allow for cost effective extended access to the microgravity environment, not possible on previous space flights. It is currently in the Engineering Model build phase with a planned flight launch with CIR in 2004. This paper provides an overview of the capabilities and development status of the MDCA. The MDCA contains the hardware and software required to conduct unique droplet combustion experiments in space. It consists of a Chamber Insert Assembly, an Avionics Package, and a multiple array of diagnostics. Its modular approach permits on-orbit changes for accommodating different fuels, fuel flow rates, soot sampling mechanisms, and varying droplet support and translation mechanisms to accommodate multiple investigations. Unique diagnostic measurement capabilities for each investigation are also provided. Additional hardware provided by the CIR facility includes the structural support, a combustion chamber, utilities for the avionics and diagnostic packages, and the fuel mixing capability for PI specific combustion chamber environments. Common diagnostics provided by the CIR will also be utilized by the MDCA. Single combustible fuel droplets of varying sizes, freely deployed or supported by a tether are planned for study using the MDCA. Such research supports how liquid-fuel-droplets ignite, spread, and extinguish under quiescent microgravity conditions. This understanding will help us develop more efficient energy production and propulsion systems on Earth and in space, deal better with combustion generated pollution, and address fire hazards associated with

  16. Modification of combustion aerosols in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    Combustion aerosols particles are released on large scale into the atmosphere in the industrialized regions as well as in the tropics (by wood fires). The particles are subjected to various aging processes which depend on the size, morphology, and chemical composition of the particles. The interaction of combustion particles with sunlight and humidity as well as adsorption and desorption of volatile material to or from the particles considerably changes their physical and chemical properties and thus their residence time in the atmosphere. This is of importance because combustion particles are known to have a variety of health effects on people. Moreover, atmospheric aerosol particles have an influence on climate, directly through the reflection and absorption of solar radiation and indirectly through modifying the optical properties and lifetime of clouds. In a first step, a field experiment was carried out to study the sources and characteristics of combustion aerosols that are emitted from vehicles in a road tunnel. It was found that most of the fine particles were tail pipe emissions of diesel powered vehicles. The calculation shows that on an average these vehicles emit about 300 mg fine particulate matter per driven kilometer. This emission factor is at least 100 times higher than the mean emission factor estimated for gasoline powered vehicles. Furthermore, it is found that during their residence time in the tunnel, the particles undergo significant changes: The particles change towards a more compact structure. The conclusion is reached that this is mainly due to adsorption of volatile material from the gas phase to the particle surface. In the atmosphere, the life cycle as well as the radiative and chemical properties of an aerosol particle is strongly dependent on its response to humidity. Therefore the hygroscopic behavior of combustion particles emitted from single sources (i.e. from a gasoline and a diesel engine) were studied in laboratory experiments.

  17. Combustive management of oil spills. Final report

    Energy Technology Data Exchange (ETDEWEB)


    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris.

  18. Combustion characteristics of biodried sewage sludge. (United States)

    Hao, Zongdi; Yang, Benqin; Jahng, Deokjin


    In this study, effects of biodrying on the characteristics of sewage sludge and the subsequent combustion behavior were investigated. 7-Day of biodrying removed 49.78% of water and 23.17% of VS initially contained in the sewage sludge and increased lower heating value (LHV) by 37.87%. Meanwhile, mass contents of C and N decreased from 36.25% and 6.12% to 32.06% and 4.82%, respectively. Surface of the biodried sewage sludge (BDSS) appeared granulated and multi-porous, which was thought to facilitate air transfer during combustion. According to thermogravimetric (TG) analysis coupled with mass spectrometer (MS) with a heating rate of 10 °C/min from 35 °C to 1000 °C, thermally-dried sewage sludge (TDSS) and BDSS lost 74.39% and 67.04% of the initial mass, respectively. In addition, combustibility index (S) of BDSS (8.67 × 10 -8  min -2  K -3 ) was higher than TDSS. TG-MS analyses also showed that less nitrogenous gases were generated from BDSS than TDSS. It was again showed that the average CO and NO concentrations in exit gas from isothermal combustion of BDSS were lower than those from TDSS, especially at low temperatures (≤800 °C). Based on these results, it was concluded that biodrying of sewage sludge was an energy-efficient water-removal method with less emission of air pollutants when BDSS was combusted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Optimization of combustion chamber geometry for stoichiometric diesel combustion using a micro genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Wook


    This paper describes the optimization of combustion chamber geometry and engine operating conditions for stoichiometric diesel combustion, targeting lower gross indicated specific fuel consumption. The KIVA code, coupled with a micro genetic algorithm population of nine for each generation was used. The optimization variables were composed of ten variables related to the combustion chamber geometry and engine operating conditions. In addition, an auto mesh generator was developed for generating various kinds of combustion chambers, such as open-crater, re-entrant, deep, and shallow types. In addition, the computational models were validated against the experimental results for a stoichiometric process in terms of the combustion pressure history and emissions. Through the preset optimization, a 35% improvement in the gross indicated that specific fuel consumption was achieved. In addition, the optimization results showed that the optimum engine operating conditions employed a premixed charge compression ignition combustion regime with early injection and a narrow spray included angle. Furthermore, a higher boost pressure was used to prevent fuel film formation. (author)


    Directory of Open Access Journals (Sweden)

    Nureddin Dinler


    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  1. Biomass Suspension Combustion: Effect of Two-Stage Combustion on NOx Emissions in a Laboratory-Scale Swirl Burner

    DEFF Research Database (Denmark)

    Lin, Weigang; Jensen, Peter Arendt; Jensen, Anker Degn


    A systematic study was performed in a suspension fired 20 kW laboratory-scale swirl burner test rig for combustion of biomass and co-combustion of natural gas and biomass. The main focus is put on the effect of two-stage combustion on the NO emission, as well as its effect on the incomplete...

  2. Food irradiation: Gamma processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kunstadt, P. [MDS Nordion International, 447 March Road. Kanata, Ontario, K2K148 (Canada)


    The number of products being radiation processed is constantly increasing and today include such diverse items as medical disposable, fruits and vegetables, bulk spices, meats, sea foods and waste effluents. Not only do the products differ but also many products, even those within the same groupings, require different minimum and maximum radiation doses. These variations create many different requirements in the irradiator design. The design of Cobalt-60 radiation processing facilities is well established for a number of commercial applications. Installations in over 40 countries, with some in operation since the early 1960s, are testimony to the fact that irradiator design, manufacture, installation and operation is a well established technology. However, in order to design gamma irradiators for the preservation of foods one must recognize those parameters typical to the food irradiation process as well as those systems and methods already well established in the food industry. This paper discusses the basic design concepts for gamma food irradiators. They are most efficient when designed to handle a limited product density range at an established dose. Safety of Cobalt-60 transport, safe facility operation principles and the effect of various processing parameters on economics, will also be discussed. (Author)

  3. Proton irradiation for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Yasushi; Chiba, Shunya [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Tanaka, Naomi


    A curative effect of high dose proton irradiation for hepatoma was investigated. In cases of single nodular type HCC, radiation field was limited to tumor, and in cases of multi nodular type HCC, irradiation was also fractionated. An average dose of radiation was 4 Gy/time, average times were 16, and an average total dose was 72 Gy. Tumor size reduction rate at 6 months after proton irradiation (123 cases) was CR (17.9%), PR (52.0%), NC (29.3%) and PD (0.8%). And the reduction rate of tumor size in monotherapy cases was 100% (after 3 weeks), 96% (after 1 year) and 88% (after 2 years). The local control rate was 99.1% (after 1 year) and 91.4% (after 3-5 years). AFP value significantly decreased from 571.0{+-}1266.6 ng/ml before radiation to 145.4{+-}346.3 ng/ml after radiation (p<0.0005). The recurrence after radiation occurred more at outside of radiation field, significantly. Indication basis of proton irradiation was showed in this article. Because selective radiation is possible, the proton irradiation should be optimum therapy in specific carcinomas of deep organ. (K.H.)

  4. Elective ilioingunial lymph node irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.H.; Parsons, J.T.; Morgan, L.; Million, R.R.


    Most radiologists accept that modest doses of irradiation (4500-5000 rad/4 1/2-5 weeks) can control subclinical regional lymph node metastases from squamous cell carcinomas of the head and neck and adenocarcinomas of the breast. There have been few reports concerning elective irradiation of the ilioinguinal region. Between October 1964 and March 1980, 91 patients whose primary cancers placed the ilioinguinal lymph nodes at risk received elective irradiation at the University of Florida. Included are patients with cancers of the vulva, penis, urethra, anus and lower anal canal, and cervix or vaginal cancers that involved the distal one-third of the vagina. In 81 patients, both inguinal areas were clinically negative; in 10 patients, one inguinal area was positive and the other negative by clinical examination. The single significant complication was a bilateral femoral neck fracture. The inguinal areas of four patients developed mild to moderate fibrosis. One patient with moderate fibrosis had bilateral mild leg edema that was questionably related to irradiation. Complications were dose-related. The advantages and dis-advantages of elective ilioinguinal node irradiation versus elective inguinal lymph node dissection or no elective treatment are discussed.

  5. Numerical investigation of spray combustion towards HITAC conditions


    Zhu, Shanglong


    The features of High Temperature Air Combustion (HiTAC), i.e. high-efficiency combustion processes creating a uniform temperature distribution with low NOX and CO emissions, lend itself ideally for the combustion of all sorts of "difficult” fuels, ranging from low-calorific gases such as waste-gases, to heavy fuel-oils. However, to date most of the applications of HiTAC are for gaseous fuels and solid fuels, while little has been investigated on liquid fuel spray combustion in such combustion...

  6. Stagnation point reverse flow combustor for a combustion system (United States)

    Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Hashmonay, Ben-Ami (Inventor)


    A combustor assembly includes a combustor vessel having a wall, a proximate end defining an opening and a closed distal end opposite said proximate end. A manifold is carried by the proximate end. The manifold defines a combustion products exit. The combustion products exit being axially aligned with a portion of the closed distal end. A plurality of combustible reactant ports is carried by the manifold for directing combustible reactants into the combustion vessel from the region of the proximate end towards the closed distal end.

  7. Production of nanocrystalline metal powders via combustion reaction synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong


    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  8. Introduction to Physics and Chemistry of Combustion Explosion, Flame, Detonation

    CERN Document Server

    Liberman, Michael A


    Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and

  9. Coal combustion science. Quarterly progress report, July--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.


    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. The information reported is for the period July-September 1994. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project.

  10. Variable compression ratio device for internal combustion engine (United States)

    Maloney, Ronald P.; Faletti, James J.


    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  11. Simulation of liquid propellant rocket engine combustion instabilities (United States)

    Ventrice, M. B.; Fang, J. C.; Purdy, K. R.


    A simulation technique for studying the high frequency combustion instabilities of liquid propellant rocket engines has been developed and used to investigate various aspects of instability phenomena. Of importance was investigation of the significance of the method of coupling the combustion and the gas dynamics of the system. Two coupling processes were studied: linear response of the combustion process to pressure fluctuations, and the nature of the resulting instabilities; and nonlinear response of the combustion process to velocity fluctuations, and the nature of the resulting instabilities. For the combustion model studied, nonlinear (velocity) coupling was found to more closely characterize liquid propellant instabilities.

  12. Currently developing opportunities in food irradiation and modern irradiation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, R. [Director Business Development. SteriGenics International Inc. 17901 East Warren Avenue No. 4, Detroit, Michigan 48224-1333 (United States)


    I. Factor currently influencing advancing opportunities for food irradiation include: heightened incidence and awareness of food borne illnesses and causes. Concerns about ensuring food safety in international as well as domestic trade. Regulatory actions regarding commonly used fumigants/pesticides e.g. Me Br. II. Modern irradiator design: the SteriGenics {sup M}ini Cell{sup .} A new design for new opportunities. Faster installation of facility. Operationally and space efficient. Provides local {sup o}nsite control{sup .} Red meat: a currently developing opportunity. (Author)

  13. Acclimation to a dynamic irradiance regime changes excessive irradiance sensitivity of Emiliania huxleyi and Thalassiosira weissflogii


    van De Poll, Willem H.; Visser, Ronald J. W.; Buma, Anita G. J.


    Effects of fluctuating irradiance regimes on excessive photosynthetically active radiation (PAR) and ultraviolet (UV) radiation sensitivity were assessed for Emiliania huxleyi (Lohman) and Thalassiosira weissflogii (Grunow) Fryxell and Hasle. Cultures acclimated to low irradiance were subjected to two irradiance regimes of equal daily dose: dynamic irradiance simulating vertical mixing within the water column and constant irradiance. For each regime two irradiance levels were studied. Growth ...

  14. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  15. Specifics of phytomass combustion in small experimental device

    Directory of Open Access Journals (Sweden)

    Lenhard Richard


    Full Text Available A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass, which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.

  16. Energy and exergy analysis of chemical looping combustion technology and comparison with pre-combustion and oxy-fuel combustion technologies for CO2 capture


    Mukherjee, Sanjay; Kumar, Prashant; Yang, Aidong; Fennell, Paul


    Abstract Carbon dioxide (CO2) emitted from conventional coal-based power plants is a growing concern for the environment. Chemical looping combustion (CLC), pre-combustion and oxy-fuel combustion are promising CO2 capture technologies which allow clean electricity generation from coal in an integrated gasification combined cycle (IGCC) power plant. This work compares the characteristics of the above three capture technologies to those of a conventional IGCC plant without CO2 capture. CLC tech...

  17. Combustion chamber and thermal vapor stream producing apparatus and method (United States)

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.


    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  18. The chemistry of the nuclear fuel cycle: from mine to waste management; La chimie dans le cycle du combustible nucleaire: de la mine a la gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Deidier, L. [CEA Saclay, DEN/DIR, 91 - Gif-sur-Yvette (France); Gin, St. [CEA Marcoule, DTCD/SECM, 30 (France)


    There is no getting away from nuclear energy as one of the solutions to achieve the conflicting goals of satisfying the world's rising energy requirements while reducing greenhouse gas emissions. Fuel cycle technologies with uranium for initial material are evolving to transform nuclear energy into a sustainable resource. Materials with high added value are increasingly recycled, reactors are becoming more efficient, radioactive wastes volumes are decreasing and suitable disposition routes are progressively being developed to manage them depending on their toxicity. This article provides an overview of the current situation in France and a glimpse of future trends. It highlights the central role of chemistry in most fuel cycle operations, opening a broad spectrum of possibilities for research and innovation to accompany the prospects for development of this sector. (authors)

  19. Incidence of sulfur based additives to the microstructure of nuclear fuels. Elaboration and characterizations; Incidence d'additifs a base de soufre sur la microstructure des combustibles nucleaires. Elaboration et caracterisations

    Energy Technology Data Exchange (ETDEWEB)

    Caranoni, L


    Even though the global reactor working of MOX fuel is good, the fission gas emission now represents the limitative factor of its use at high burn-up. The increase of the average grain size promotes the diffusional length of fission gas inside the grain, slowing down their emission. In this respect, we have studied the influence of sulphur based additives on the crystal grain growth of nuclear oxide ceramics. The first part of this work concerns the preparation and characterisation of sulfur additives and especially the uranium oxy-sulphur, UOS. The study of its thermal behaviour has shown that the partial pressure ratio pH{sub 2}O/pH{sub 2}S controls the reaction kinetics between UOS and H{sub 2}O vapour, which leads to SO{sub 2} emission. After sintering at 1700 deg. C under reducing atmosphere, the UOS grains are strongly anisotropic. Their structure is characterised by (0,0,1) planar defects. The second part presents the study of the incorporation of these additives in UO{sub 2} powder. We have shown that the sulphur has a very favourable action on crystal growth. After sintering at 1700 deg C during 4 hours under Ar-5% H{sub 2} - 1000 ppm H{sub 2}O atmosphere, the average grain size is about 25-30 microns. The samples present a local grain size gradient between a thick peripheral layer (usual grain size) and the core (large grains) which is in accordance with a local sulphur concentration gradient. The sulphur action suddenly appears during the thermal cycle between 1600 deg C and 1700 deg C, whereas its mass concentration is lower than 30 ppm. SIMS analysis have highlighted, in the core, the segregation of sulphur at the grain boundary. According to these observations, a mechanism has been proposed to explain the activation induced by sulphur. The experiences carried out on mixed oxide, especially (U, Pu)O{sub 2}, confirm that the grain growth activation is induced by the presence of sulphur. (authors)

  20. AREVA Technical Days (ATD) session 2: operations of the back-end of the nuclear fuel cycle; AREVA Technical Days (ATD) session 2: les activites du pole Aval du cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)



    These technical days organized by the Areva Group aims to explain the group activities in a technological and economic point of view, to provide an outlook of worldwide energy trends and challenges and to present each of their businesses in a synthetic manner. This second session deals with the reprocessing business, back-end financing mechanisms, technology transfer, environmental management, risk management programs, research and development contribution to waste volume reductions, issues and outlook of nuclear wastes, comparison of the open and closed cycles. (A.L.B.)

  1. Research on the chemistry of actinides and fission products for the development of nuclear fuel cycle; Developpement du cycle du combustible nucleaire. Recherche sur la chimie des actinides et des produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Peretroukhine, V.F. [Institute of Physical Chemistry Russian Academy of Sciences (IPC-Moscow) (Russian Federation); Lecomte, M. [CEA Valrho, Dept. Radiochimie et Procedes, 30 - Marcoule (France); David, F. [Institut de Physique Nucleaire, (IN2P3/CNRS) 91 - Orsay (France)


    The present document is prepared for CEA, IPNO and Russian Academy of Sciences administrations in compliance with the decision, accepted by the Director Committee of the three-parties-Convention on its seventh meeting in Moscow 21 May 2002. Being the general frame, determining the strategy of three-party cooperation, the Convention 1993-2003 consists of the number of contracts between organisation-participants. The present document is compiled, using annual proceedings of Director Committee and Technical Committee meetings and using published French-Russian papers and technical reports, produced in the frame of all contracts of the convention. Lists of published papers and personal summary reports of Russian participants of the contracts are presented in Appendix 1. (authors)

  2. The radioactive wastes extracted by CO{sub 2} in a supercritical state; Les dechets radioactifs tries par CO{sub 2} supercritique contenus dans les combustibles nucleaires uses. Les dechets radioactifs tries par CO{sub 2} supercritique

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, V


    Russian researchers have shown that CO{sub 2} in a supercritical state is able to selectively extract the uranium and the plutonium contained in spent fuels. This work require still a lot of validation studies but could be in the future an option to the current Purex process. (O.M.)

  3. Directional irradiances and fractional clouds (United States)

    Pagh Nielsen, Kristian; Andersen, Elsa; Dragsted, Janne; Furbo, Simon


    For large scale implementation of solar energy, better understanding of the directional and temporal variations in the solar resource is needed. This includes understanding the shading within a multiple row field of solar panels and how this affects the electricity or heat production. We have studied directional irradiances measured simultaneously from 16 downward directions at 1 minute temporal resolution. Also, we have performed measurements of the variations in the field of view across individual solar heating panels in the operational solar district heating plant in Hedehusene in Denmark. By combining a model of directional diffuse irradiances with the field of view variation across a solar panel in a solar panel field we can quantify the effect of shading of diffuse irradiances on the heat flow from the panel.

  4. Endodontics and the irradiated patient

    Energy Technology Data Exchange (ETDEWEB)

    Cox, F.L.


    With increasingly larger numbers of irradiated patients in our population, it seems likely that all dentists will eventually be called upon to manage the difficult problems that these patients present. Of utmost concern should be the patient's home care program and the avoidance of osteroradionecrosis. Endodontics and periodontics are the primary areas for preventing or eliminating the infection that threatens osteoradionecrosis. Endodontic treatment must be accomplished with the utmost care and maximum regard for the fragility of the periapical tissues. Pulpally involved teeth should never be left open in an irradiated patient, and extreme care must be taken with the between-visits seal. If one is called upon for preradiation evaluation, routine removal of all molar as well as other compromised teeth should be considered. Attention should be directed to the literature for further advances in the management of irradiated patients.

  5. Fluidized bed combustion and its application to refused fuels. Combustion en leche fluido y su aplicacion a combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Euba, J.


    As a consequence of the energetic crisis produced in th 70's it was proposed to find new power supplies and it also was the start of the use of traditional energy, which up to that date had not been profitable. At the same time, the worry about the pollutant emissions to the environment was increasing and finally it was approved a new legislation on atmosphere pollution, which is the Directive of the European community Council of 24th November 1988. Under these circumstances there are very important the new technologies for the supply of residual combustion with low values of pollution, where it is very important the combustion in fluidized bed. (Author)

  6. Students' understanding of combustion and its instruction (United States)

    Tai, Chih-Che

    This study examined a cross-age population of 1,237 students from grades 6 through 12 and also 76 university students. Also, 75 8th grade students in two instructional groups were involved in a session of 16-hour science courses. A questionnaire with six knowledge and twelve cognitive ability questions was used to evaluate students' understanding of combustion. Furthermore, one pre-test and two post-tests were used to evaluate students' learning gains in instruction. Video recordings and curriculum materials were examined in terms of how both types of instruction were implemented. Five patterns were found to describe how students developed their understanding of combustion, including (I) gradual increase, (II) stepwise increase, (III) persistent misunderstanding, (IV) early understanding, and (V) varied understanding . The first two patterns are consistent with results from previous studies. However, the next three non-age-growing patterns suggest that the age maturation is not necessarily a determining factor and other variables such as curricula may be more important. Students at different ages applied their knowledge and problem solving strategies differently. The 6--8th grade students used more intuitive, real-life experiences to solve combustion questions in contrast to the 10th grade and older students, who applied more formal science knowledge to solve combustion questions. It was also found that the older students integrated their mobilized knowledge more accurately than the younger learners when they answered combustion questions in different versions of the questionnaire. Two types of instruction, established and experimental, were shown to be effective in promoting 8th grade students' understanding of combustion in the context of Taiwanese classrooms. In addition, although the two types of instruction had been implemented differently, the findings suggested that neither form of instruction was superior to the other as measured by the students

  7. Characterisation of metal combustion with DUST code

    Energy Technology Data Exchange (ETDEWEB)

    García-Cascales, José R., E-mail: [DITF, ETSII, Universidad Politécnica de Cartagena, Dr Fleming s/n, 30202 Murcia (Spain); Velasco, F.J.S. [Centro Universitario de la Defensa de San Javier, MDE-UPCT, C/Coronel Lopez Peña s/n, 30730 Murcia (Spain); Otón-Martínez, Ramón A.; Espín-Tolosa, S. [DITF, ETSII, Universidad Politécnica de Cartagena, Dr Fleming s/n, 30202 Murcia (Spain); Bentaib, Ahmed; Meynet, Nicolas; Bleyer, Alexandre [Institut de Radioprotection et Sûreté Nucléaire, BP 17, 92260 Fontenay-aux-Roses (France)


    Highlights: • This paper is part of the work carried out by researchers of the Technical University of Cartagena, Spain and the Institute of Radioprotection and Nuclear Security of France. • We have developed a code for the study of mobilisation and combustion that we have called DUST by using CAST3M, a multipurpose software for studying many different problems of Mechanical Engineering. • In this paper, we present the model implemented in the code to characterise metal combustion which describes the combustion model, the kinetic reaction rates adopted and includes a first comparison between experimental data and calculated ones. • The results are quite promising although suggest that improvement must be made on the kinetic of the reaction taking place. - Abstract: The code DUST is a CFD code developed by the Technical University of Cartagena, Spain and the Institute of Radioprotection and Nuclear Security, France (IRSN) with the objective to assess the dust explosion hazard in the vacuum vessel of ITER. Thus, DUST code permits the analysis of dust spatial distribution, remobilisation and entrainment, explosion, and combustion. Some assumptions such as particle incompressibility and negligible effect of pressure on the solid phase make the model quite appealing from the mathematical point of view, as the systems of equations that characterise the behaviour of the solid and gaseous phases are decoupled. The objective of this work is to present the model implemented in the code to characterise metal combustion. In order to evaluate its ability analysing reactive mixtures of multicomponent gases and multicomponent solids, two combustion problems are studied, namely H{sub 2}/N{sub 2}/O{sub 2}/C and H{sub 2}/N{sub 2}/O{sub 2}/W mixtures. The system of equations considered and finite volume approach are briefly presented. The closure relationships used are commented and special attention is paid to the reaction rate correlations used in the model. The numerical

  8. Irradiation test of high density Si material

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Choo, Kee Nam; Lee, Chul Yong; Yang, Seong Woo; Shim, Kyue Taek; Park, Sang Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The feasibility of irradiation test for the high-density Si material entrusted by Guju Inc. was reviewed. The high density Si material is used for a sealing of the penetration holes of piping at the nuclear power plants. The irradiation test was performed and the density changes between before and after irradiation test were measured. The irradiation tests were performed 2 times for 1 day and 20 days at IP 4 hole of HANARO. The 3 Si specimens irradiated were without flaws and the density changes after irradiation were successfully measured. The result satisfies the requirement of the design specification.

  9. Notes on irradiation of neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Woods, W.K.


    The fission product, promethium-147, would be much more desirable as a heat-producing radioisotope if it were not in such short supply. C.A. Rohrmann`s chart ``Characteristics of Radioisotopic Heat Sources`` lists the annual availability of Pm-147 as 5-5 kw, corresponding to about 17 kg. Hence, consideration has been given to irradiation of neodymium-146 in order to augment the supply of Pm-147, A method for separating Nd-146 from other neodymium isotopes does not exist today. This memorandum presents the results of a brief look at the irradiation of mixed neodymium isotopes which are available without isotopic separation.

  10. Significance of irradiation of blood

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Hiroshi; Gotoh, Eisuke; Mochizuki, Sachio (Jikei Univ., Tokyo (Japan). School of Medicine)


    Many reports of fatal GVHD occurring in non-immunocompromised patients after blood transfusion have been published in Japan. One explantation is that transfused lymphocytes were simulated and attack the recipient organs recognized as HLA incompatible. That is so called 'one-way matching'. To reduce the risk of post-transfusion GVHD, one of the most convenient methods is to irradiate the donated blood at an appropriate dose for inactivation of lymphocytes. Because no one knows about the late effect of irradiated blood, it is necessary to make the prospective safety control. (author).

  11. Oxidation and sublimation of porous graphite during fiber laser irradiation (United States)

    Phillips, Grady T.; Bauer, William A.; Gonzales, Ashley E.; Herr, Nicholas C.; Perram, Glen P.


    Porous graphite plates, cylinders and cones with densities of 1.55-1.82 g/cm3 were irradiated by a 10 kW fiber laser at 0.075 -3.525 kW/cm2 for 120 s to study mass removal and crater formation. Surface temperatures reached steady state values as high as 3767 K. The total decrease in sample mass ranged from 0.06 to 6.29 g, with crater volumes of 0.52 - 838 mm3, and penetration times for 12.7 mm thick plates as short as 38 s. Minor contaminants in the graphite samples produced calcium and iron oxide to be re-deposited on the graphite surface. Significantly increased porosity of the sample is observed even outside of the laser-irradiated region. Total mass removed increases with deposited laser energy at a rate of 4.83 g/MJ for medium extruded graphite with an apparent threshold of 0.15 MJ. Visible emission spectroscopy reveals C2 Swan and CN red, CN violet bands and Li, Na, and K 2P3/2,1/2 - 2S1/2 doublets. The reacting boundary layer is observed using a mid-wave imaging Fourier transform spectrometer (IFTS) at 2 cm-1 spectral resolution, 0.5 mm/pixel spatial resolution, and 0.75 Hz data cube rate. A two-layer radiative transfer model was used to determine plume temperature, CO, and CO2 concentrations from spectral signatures. The new understanding of graphite combustion and sublimation during laser irradiation is vital to the more complex behavior of carbon composites.

  12. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite. (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong


    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Combustion Safety Simplified Test Protocol Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Gas Technology Inst., Des Plaines, IL (United States); Cautley, D. [Gas Technology Inst., Des Plaines, IL (United States); Bohac, D. [Gas Technology Inst., Des Plaines, IL (United States); Francisco, P. [Gas Technology Inst., Des Plaines, IL (United States); Shen, L. [Gas Technology Inst., Des Plaines, IL (United States); Gloss, S. [Gas Technology Inst., Des Plaines, IL (United States)


    Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project team collected field data on 11 houses in 2015.

  14. Clean coal combustion in domestic sector

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.; Kubica, K.; Sciazko, M. [Institute for Chemical Processing of Coal, Zabrze (Poland)


    Combustion of raw coal in existing domestic furnaces with a low efficiency (usually below 50%) is a source of pollutants generation like dust, SO{sub 2} and PAH including cancerogenic BAP, resulting in serious environmental problems. Emission of pollutants depends on solid fuels quality and fuel combustion parameters. Pollutants emission can be decreased by the use of upgraded coal derived solid fuels or replacement of old heating appliances with new ones with high thermal efficiency and ecological affectivity. Several ecological fuels manufacturing methods have been elaborated in the Institute for Chemical Processing of Coal. Thermal and emission tests of heating devices and solid fuels were performed with the use of IChPW experimental plant. Results were confirmed in heating devices in real heating objects. Taking results into account proposal of legal regulation for Polish domestic sector was elaborated. 4 figs., 2 tabs.

  15. Clean coal combustion in domestic sector

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.; Kubica, K.; Sciazko, M. (Institute for Chemical Processing of Coal, Zabrze (Poland))


    Combustion of raw coal in existing domestic furnaces with a low efficiency (usually below 50%) is a source of pollutants generation like dust, SO[sub 2] and PAH including cancerogenic BAP, resulting in serious environmental problems. Emission of pollutants depends on solid fuels quality and fuel combustion parameters. Pollutants emission can be decreased by the use of upgraded coal derived solid fuels or replacement of old heating appliances with new ones with high thermal efficiency and ecological affectivity. Several ecological fuels manufacturing methods have been elaborated in the Institute for Chemical Processing of Coal. Thermal and emission tests of heating devices and solid fuels were performed with the use of IChPW experimental plant. Results were confirmed in heating devices in real heating objects. Taking results into account proposal of legal regulation for Polish domestic sector was elaborated. 4 figs., 2 tabs.

  16. Future fundamental combustion research for aeropropulsion systems (United States)

    Mularz, E. J.


    Physical fluid mechanics, heat transfer, and chemical kinetic processes which occur in the combustion chamber of aeropropulsion systems were investigated. With the component requirements becoming more severe for future engines, the current design methodology needs the new tools to obtain the optimum configuration in a reasonable design and development cycle. Research efforts in the last few years were encouraging but to achieve these benefits research is required into the fundamental aerothermodynamic processes of combustion. It is recommended that research continues in the areas of flame stabilization, combustor aerodynamics, heat transfer, multiphase flow and atomization, turbulent reacting flows, and chemical kinetics. Associated with each of these engineering sciences is the need for research into computational methods to accurately describe and predict these complex physical processes. Research needs in each of these areas are highlighted.

  17. Secondary combustion system for wood burning stove

    Energy Technology Data Exchange (ETDEWEB)

    von Conta, P.E.W.


    This patent describes an improved secondary combustion system for combusting the exhaust gases exiting from a fire box in a wood burning stove comprising: an insulated conduit defining an exhaust passageway leading from an intake opening to an exit opening; screen means interposed across the exhaust passageway in the vicinity of the intake opening to impart a rapid acceleration to a gas stream entering the exhaust passageway; rotation means to impart a rotation to the gas stream in a first portion of the exhaust passageway; counter-rotation means to impart a counter-rotation to the gas stream in a second portion of the exhaust passageway; deceleration means to decelerate the gas stream in the second portion of the exhaust passageway; and secondary air means to inject a source of secondary air into the exhaust passageway.

  18. Synthesis of functional materials in combustion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, V. D., E-mail:; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I. [Russian Academy of Sciences, Institute of Solid State Chemistry, Ural Branch (Russian Federation)


    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating–reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al{sub 2}O{sub 3}, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO{sub 2}, and manganites, cobaltites, and aluminates of rare earth elements.

  19. Synthesis of functional materials in combustion reactions (United States)

    Zhuravlev, V. D.; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.


    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating-reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al2O3, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO2, and manganites, cobaltites, and aluminates of rare earth elements.

  20. Internal Combustion Engine Principles with Vehicle Applications

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    The book is an introductory text on the subject of internal combustion engines, intended for use in engineering courses at the senior or introductory graduate student level. The focus in on describing the basic principles of engine operation on a broad basis, to provide a foundation for further...... exchange processes, combustion in different engine types, exhaust emissions, engine control including mean value engine models, pressure charging, fuels and fuel systems, balancing, friction, and heat transfer. In addition, methods to establish the connection between engine characteristics and vehicle...... study, research and development. The goal is to describe the main variables involved in engine operation of different engine types, and how their interaction determines engine performance. Topics included are: general engine parameters, thermodynamic cycles including simple engine simulation, air...